《等腰三角形》习题ppt课件
合集下载
等腰三角形ppt课件

新课讲授
由此得到另一条等边三角形的判定定理:
有一个角是60°的等腰三角形是等边三角形.
几何语言: ∵∠A=60°,AB=AC, ∴ AB=BC=AC (或△ABC是等边三角形).
例题讲解
例1 已知:如图,在△ABC中,AB=AC,点D,E 分别是AB,AC上的点,且DE∥BC.
求证:△ADE为等腰三角形.
新知探究 你能说出“等腰三角形的两个底角相等”这个定理条 件和结论吗?请写出它的逆命题。
逆命题:有两个角相等 的三角形是等腰三角形
这个命题是真命题么?你能证明么?
新知探究
活动探究:画△ABC,使∠B=∠C, 量一量,线段AB与AC的长度.
我测量后发现AB与AC相等.
3cm
3cm
新课讲授
事实上,如图,在△ABC中,∠B=∠C. 沿过点A的直线把∠BAC对折,
证明 : ∵ AB=AC,
性质定理
∴ ∠B=∠C(等边对等角).
又∵ DE∥BC,
∴ ∠ADE=∠B,∠AED=∠C, ∴ ∠ADE=∠AED,
∴△ADE为等腰三角形(等角对等边).
判定定理
例题讲解
例2 已知:如图,△ABC是等边三角形,点D,E 分别在BA,CA的延长线上,且AD=AE.
求证:△ADE是等边三角形.
类比探究
等腰三角形的判定方法:
方法一: 从边看 有两条边相等的三角形是
等腰三角形(定义). 方法二: 从角看
有两个角相等的三角形是 等腰三角形.
等边三角形的判定方法:
方法一: 从边看 有三条边相等的三角形是
等边三角形(定义). 方法二: 从角看
有三个角相等的三角形是 等边三角形.
新课讲授,
等腰三角形的复习ppt课件

特点
等腰三角形是轴对称图形,有一条对称 轴,即底边的垂直平分线(或底边的中 垂线)。
等腰三角形性质
等腰三角形的两个底角相等 (简写成“等边对等角”)。
等腰三角形的顶角的平分线, 底边上的中线,底边上的高的 重合(简写成“三线合一”)。
等腰三角形是轴对称图形,对 称轴是底边的垂直平分线。
判定方法
在一个三角形中,如果一个角的 平分线与它所对边的高重合,那
么这个三角形是等腰三角形。
在一个三角形中,如果一条边上 的中线等于这条边的一半,那么
这个三角形是等腰三角形。
在一个三角形中,如果两个角的 度数相等,那么这两个角所对的 边也相等,即这个三角形是等腰
三角形。
02
等腰三角形面积与 周长计算
面积计算公式
等腰三角形面积公式
01
$S = frac{1}{2} times 底 times 高$
题目2 已知等腰三角形ABC的周长为16cm,AD是底边 BC上的中线,AD∶AB = 3∶5,且△ABD的周长 为12cm,求△ABC的各边长及AD的长.
题目3 已知等腰三角形一腰上的高与另一腰的夹角为 45°,且腰长为6,则其面积为多少?
THANKS
感谢您的观看
善于利用图形中的隐含条件,如公共边、公共角等。
辅助线构造方法
等腰三角形中的高
连接顶点与底边中点,构 造出高,利用高的性质进 行证明。
中位线
连接两腰中点,构造出中 位线,利用中位线的性质 进行证明。
角平分线
若题目中涉及到角的平分, 可以构造角平分线,利用 角平分线的性质进行证明。
典型例题解析
解析
根据等腰三角形的性质, 我们知道∠B=∠C。又因 为AD是BC边上的高, 所以 ∠ADB=∠ADC=90°。 根据三角形的全等判定, 我们可以证明 △ABD≌△ACD,从而得 出∠BAD=∠CAD。
等腰三角形是轴对称图形,有一条对称 轴,即底边的垂直平分线(或底边的中 垂线)。
等腰三角形性质
等腰三角形的两个底角相等 (简写成“等边对等角”)。
等腰三角形的顶角的平分线, 底边上的中线,底边上的高的 重合(简写成“三线合一”)。
等腰三角形是轴对称图形,对 称轴是底边的垂直平分线。
判定方法
在一个三角形中,如果一个角的 平分线与它所对边的高重合,那
么这个三角形是等腰三角形。
在一个三角形中,如果一条边上 的中线等于这条边的一半,那么
这个三角形是等腰三角形。
在一个三角形中,如果两个角的 度数相等,那么这两个角所对的 边也相等,即这个三角形是等腰
三角形。
02
等腰三角形面积与 周长计算
面积计算公式
等腰三角形面积公式
01
$S = frac{1}{2} times 底 times 高$
题目2 已知等腰三角形ABC的周长为16cm,AD是底边 BC上的中线,AD∶AB = 3∶5,且△ABD的周长 为12cm,求△ABC的各边长及AD的长.
题目3 已知等腰三角形一腰上的高与另一腰的夹角为 45°,且腰长为6,则其面积为多少?
THANKS
感谢您的观看
善于利用图形中的隐含条件,如公共边、公共角等。
辅助线构造方法
等腰三角形中的高
连接顶点与底边中点,构 造出高,利用高的性质进 行证明。
中位线
连接两腰中点,构造出中 位线,利用中位线的性质 进行证明。
角平分线
若题目中涉及到角的平分, 可以构造角平分线,利用 角平分线的性质进行证明。
典型例题解析
解析
根据等腰三角形的性质, 我们知道∠B=∠C。又因 为AD是BC边上的高, 所以 ∠ADB=∠ADC=90°。 根据三角形的全等判定, 我们可以证明 △ABD≌△ACD,从而得 出∠BAD=∠CAD。
等腰三角形课件PPT

等腰三角形中的塞瓦定理与梅涅劳斯定理
在等腰三角形中,若点P位于底边中线上,则AP、BP、CP分别交BC、AC、AB于点D、E 、F时,满足塞瓦定理和梅涅劳斯定理。
挑战性问题:寻找最大面积等腰三角形
问题描述
给定一条长度为L的线段AB,在 AB的同一侧作两个等边三角形 ABC和ABD,连接CD。在AB上 取一点P,连接CP和DP。试找出 使得△CPD面积最大的点P的位置
05
等腰三角形相关定理证明
勾股定理在等腰三角形中证明
01
勾股定理基本内容
在直角三角形中,直角边的平方和等于斜边的平方。
02
等腰三角形与勾股定理关系
当等腰三角形为直角三角形时,其两条腰为直角边,底边为斜边,满足
勾股定理。
03
证明过程
设等腰直角三角形的两条腰为a,底边为c,根据勾股定理有a² + a² =
等角对等边
两个底角相等,且每个 底角都等于顶角的补角
。
对称性
等腰三角形是轴对称图 形,对称轴是底边的垂
直平分线。
等腰三角形与等边三角形关系
等边三角形是特殊的等腰三角形
等边三角形的三边都相等,因此它也满足等腰三角形的定义。
等腰三角形不一定是等边三角形
虽然等腰三角形的两腰相等,但它的底边可以与两腰不等,因此不是所有等腰 三角形都是等边三角形。
c²,化简得2a² = c²,从而证明了在等腰直角三角形中,勾股定理成立
。
射影定理在等腰三角形中证明
射影定理基本内容
在直角三角形中,斜边上的垂线 将斜边分为两段,这两段与直角 边的乘积相等。
等腰三角形与射影定 理关系
当等腰三角形为直角三角形时, 其高线即为斜边上的垂线,满足 射影定理。
在等腰三角形中,若点P位于底边中线上,则AP、BP、CP分别交BC、AC、AB于点D、E 、F时,满足塞瓦定理和梅涅劳斯定理。
挑战性问题:寻找最大面积等腰三角形
问题描述
给定一条长度为L的线段AB,在 AB的同一侧作两个等边三角形 ABC和ABD,连接CD。在AB上 取一点P,连接CP和DP。试找出 使得△CPD面积最大的点P的位置
05
等腰三角形相关定理证明
勾股定理在等腰三角形中证明
01
勾股定理基本内容
在直角三角形中,直角边的平方和等于斜边的平方。
02
等腰三角形与勾股定理关系
当等腰三角形为直角三角形时,其两条腰为直角边,底边为斜边,满足
勾股定理。
03
证明过程
设等腰直角三角形的两条腰为a,底边为c,根据勾股定理有a² + a² =
等角对等边
两个底角相等,且每个 底角都等于顶角的补角
。
对称性
等腰三角形是轴对称图 形,对称轴是底边的垂
直平分线。
等腰三角形与等边三角形关系
等边三角形是特殊的等腰三角形
等边三角形的三边都相等,因此它也满足等腰三角形的定义。
等腰三角形不一定是等边三角形
虽然等腰三角形的两腰相等,但它的底边可以与两腰不等,因此不是所有等腰 三角形都是等边三角形。
c²,化简得2a² = c²,从而证明了在等腰直角三角形中,勾股定理成立
。
射影定理在等腰三角形中证明
射影定理基本内容
在直角三角形中,斜边上的垂线 将斜边分为两段,这两段与直角 边的乘积相等。
等腰三角形与射影定 理关系
当等腰三角形为直角三角形时, 其高线即为斜边上的垂线,满足 射影定理。
等腰三角形 ppt课件

复习回顾
两角分别相等且其中一组等角的对边相等的两个三角形全等
已知:如图,∠A=∠D,∠B=∠E,BC =EF. 求证:△ABC ≌ △DEF.
证明:∵∠A+∠B+∠C=180°,
A
D
∠D+∠E+∠F=180°,
∴∠C=180°-(∠A+∠B),
∠F=180°-(∠D+∠E). B
CE
F
∵∠A=∠D,∠B=∠E(已知),
在△BAD和△CAD中 AB=AC ( 已知 ), ∠BAD=∠CAD ( 已作 ),
AD=AD (公共边),
∴ ∴
∠△BB=AD∠≌C (△全C等AD三(角SA形S的). 对应角相等)B.
D
C
等腰三角形的“三线合一”
AB=AC AD平分∠BAC AD⊥BC
几何语言: ∵
BD=CD∴Biblioteka D学以致用A
求证:∠B=∠C
方法一:作底边上的中线 证明:取BC的中点D,连结AD
∴BD=CD
∵AB=AC,BD=CD,AD=AD
B
D
C
∴△ABD≌△ACD (SSS)
∴∠B=∠C
你还有其他方法吗?请同学交流
方法二:作顶角的平分线
已知: 如图,在△ABC中,AB=AC. 求证: ∠B= ∠C.
证明:作顶角的平分线AD,则∠BAD=∠CAD. A
例1.如图所示,在△ABC中,AB=AC,点D在BC上,且BD=AD,DC=AC,求∠B的度数.
分析:根据题目中给出的相等线段,你发现图中有几个的等腰三角形呢?
解:设∠B的度数为x. ∵AB=AC,∴∠C=∠B=x. ∵AD=BD,∴∠B=∠DAB=x. ∴∠ADC=∠B+∠DAB=2x. ∵AC=CD,∴∠ADC=∠CAD=2x. 在△ACD中, ∠CAD+∠ADC+∠C=180°,
《等腰三角形的性质》ppt课件

若只知道一个角为60°,但无法确定该角是顶角还是底角,则不能判定为等边三角形 。
在处理与等腰三角形有关的问题时,常常需要分类讨论,并考虑各种特殊情况。
04
等腰三角形面积计算与应用
面积计算公式推导
1 2
等腰三角形面积公式
S = 1/2 × b × h,其中b为底边长度,h为高。
通过已知两边和夹角求面积
特点
等腰三角形是轴对称图形,有一条对称轴,即底边的垂直平 分线;等腰三角形的两底角相等;等腰三角形底边上的垂直 平分线、底边上的中线、顶角平分线和底边上的高互相重合 ,简称“三线合一”。
与等边三角形关系
区别
等边三角形的三边都相等,而等腰三 角形只有两边相等;等边三角形的三 个内角都是60度,而等腰三角形的 两个底角相等,但不一定都是60度 。
应用举例
利用两边相等定理解决与等腰 三角形相关的问题,如角度计
算、边长求解等。
两角相等定理
两角相等定理内容
等腰三角形的两个底角相 等。
定理证明方法
通过构造高线或利用相似 三角形进行证明。
应用举例
利用两角相等定理解决与 等腰三角形相关的问题, 如角度计算、相似三角形 判定等。
对称性及其推论
对称性
等腰三角形是轴对称图形,其 对称轴是底边的垂直平分线。
若已知等腰三角形的两边a和夹角θ,则面积S = 1/2 × a^2 × sinθ。
3
通过已知三边求面积
应用海伦公式,先求出半周长p = (a + b + c) / 2,再代入公式S = sqrt[p(p - a)(p - b)(p - c)] 。
典型例题解析
例题1
例题3
已知等腰三角形的底边长为10cm, 腰长为8cm,求其面积。
在处理与等腰三角形有关的问题时,常常需要分类讨论,并考虑各种特殊情况。
04
等腰三角形面积计算与应用
面积计算公式推导
1 2
等腰三角形面积公式
S = 1/2 × b × h,其中b为底边长度,h为高。
通过已知两边和夹角求面积
特点
等腰三角形是轴对称图形,有一条对称轴,即底边的垂直平 分线;等腰三角形的两底角相等;等腰三角形底边上的垂直 平分线、底边上的中线、顶角平分线和底边上的高互相重合 ,简称“三线合一”。
与等边三角形关系
区别
等边三角形的三边都相等,而等腰三 角形只有两边相等;等边三角形的三 个内角都是60度,而等腰三角形的 两个底角相等,但不一定都是60度 。
应用举例
利用两边相等定理解决与等腰 三角形相关的问题,如角度计
算、边长求解等。
两角相等定理
两角相等定理内容
等腰三角形的两个底角相 等。
定理证明方法
通过构造高线或利用相似 三角形进行证明。
应用举例
利用两角相等定理解决与 等腰三角形相关的问题, 如角度计算、相似三角形 判定等。
对称性及其推论
对称性
等腰三角形是轴对称图形,其 对称轴是底边的垂直平分线。
若已知等腰三角形的两边a和夹角θ,则面积S = 1/2 × a^2 × sinθ。
3
通过已知三边求面积
应用海伦公式,先求出半周长p = (a + b + c) / 2,再代入公式S = sqrt[p(p - a)(p - b)(p - c)] 。
典型例题解析
例题1
例题3
已知等腰三角形的底边长为10cm, 腰长为8cm,求其面积。
人教版八年级数学上册《等腰三角形》课件(共28张PPT)

轴对称图形
两个底角相等,简称“等边对等角”
顶角平分线、底边上的中线、和底边上
的高互相重合,简称“三线合一”
2. 能根据等腰三角形的概念与性质求等腰三 角形的周长或知道一角求其它两角或证线段、 角相等。
当堂检测
(1)如图,△ABC 中, AB =AC, ∠A =36°,
则∠B =
;
(2)如图,△ABC 中, AB =AC, ∠A =3 ∠B,
A
重合的线段
重合的角
AB=AC BD=CD AD=AD
∠B = ∠C.
∠BAD = ∠CAD
B
∠ADB =∠ADC =90°
D
C
等腰三角形的性质
性质 1 等腰三角形的两个底角相等 (简写成等边对等角)
性质 2 等腰三角形的顶角平分线、底 边上的中线、底边上的高互相重合 (简写成三线合一)
几何语言:
6、“教学的艺术不在于传授本领,而在于激励、唤醒、鼓舞”。2021年11月2021/11/72021/11/72021/11/711/7/2021
▪7、“教师必须懂得什么该讲,什么该留着不讲,不该讲的东西就好比是学生思维的器,马上使学生在思维中出现问题。”“观察是 思考和识记之母。”2021/11/72021/11/7November 7, 2021
B
C
D
已知:△ABC中,AB=AC 求证:∠B=C
如何证明两个三角形全等?
作BC边上的高AD 作BC边上的中线AD 作顶角的平分线 AD
归纳总结
A等腰三角形常见辅助线A NhomakorabeaA
┌
B
D
CB
D
CB
D
C
如图,作△ABC 的中线AD
《等腰三角形的性质》优秀课件

全等识别
若两个三角形三边及三角分别相等,则这两个三角形全等。在等腰三角形中, 若两个等腰三角形的底边和腰长分别相等,则这两个等腰三角形全等。
2024/1/26
21
对后续知识点(如圆、三角函数)的铺垫作用
对圆的知识点铺垫
等腰三角形的性质与圆的性质有密切联系。例如,在等腰三角形中,底边上的中垂线同时也是底边所 在圆的直径;此外,在等腰三角形中引入外接圆和内切圆的概念,可以进一步探讨三角形的性质。
SAS全等判定
若两个三角形两边和夹角分别相等,则这两个三 角形全等。
3
HL全等判定(直角三角形)
在直角三角形中,若斜边和一条直角边分别相等 ,则这两个三角形全等。
2024/1/26
5
与其他特殊三角形关系
与等边三角形的关系
等边三角形是特殊的等腰三角形,三 边都相等。
与相似三角形的关系
若两个等腰三角形的顶角和底角分别 相等,则这两个三角形相似。
8
边角关系
等腰三角形中,两个等腰边所 对的两个底角相等,即等边对 等角。
2024/1/26
等腰三角形的顶角平分线、底 边上的中线、底边上的高相互 重合,即“三线合一”。
等腰三角形中,若有一个角是 60度,则这个三角形是等边三 角形。
9
面积计算公式
等腰三角形的面积可以通过以下公式计算
面积 = (底边长度 × 高) / 2。其中,底边长度是两个等腰边所夹的底边的长度, 高是从顶点到底边的垂直距离。
《等腰三角形的性质》 优秀课件
2024/1/26
1
目录
2024/1/26
• 等腰三角形基本概念 • 等腰三角形性质探究 • 等腰三角形在生活中的应用 • 等腰三角形相关定理证明 • 等腰三角形在几何变换中的地位和作用 • 典型例题解析与课堂互动环节
等腰三角形ppt课件

何图形的基本性质把复杂作图拆
解成基本作图,逐步操作.
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥
AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求
证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边”
判定等腰三角形,只需证明三
角形两个内角相等即可.
角的度数,再利用三角形的内角和等于18 0 °
列出方程,求出未知数的值即可.
知2-练
感悟新知
解:设∠ A=x°.
知2-练
∵ AD=DE,∴∠ AED= ∠ A=x°.
∵ DE=EB,∴∠ EBD= ∠ BDE= x°.
∴∠ BDC= ∠ A+ ∠ EBD= x°.
∵ BC=BD,∴∠ C= ∠ BDC= x°.
∵ AB=AC,∴∠ ABC= ∠ C= x°.
∴ x+ x+ x =18 0,解得x =4 5 .∴∠
A=45°.
感悟新知
知2-练
5 -1. [新考向知识情境化中考·衢州]“三等分角”大约是在
公元前五世纪由古希腊人提出来的,借助如图所示的
“三等分角仪”能三等分任一角.
感悟新知
知2-练
A. 2
B. 3
C. 4
D. 5
感悟新知
知1-练
1-2.[期末·广州南沙区]若等腰三角形的周长是28 cm,一条
边长为6 cm,则它的腰长为______
11 cm.
感悟新知
知识点 2 等腰三角形的性质
知2-讲
必定是锐角
1. 性质1:等腰三角形的两个底角相等(简写成
解成基本作图,逐步操作.
感悟新知
知3-练
例6 如图13.3-11, 在△ ABC 中,D 为AC 的中点,DE ⊥
AB,DF ⊥ BC,垂足分别为点E,F,且DE=DF.求
证:△ ABC 是等腰三角形.
解题秘方:利用“等角对等边”
判定等腰三角形,只需证明三
角形两个内角相等即可.
角的度数,再利用三角形的内角和等于18 0 °
列出方程,求出未知数的值即可.
知2-练
感悟新知
解:设∠ A=x°.
知2-练
∵ AD=DE,∴∠ AED= ∠ A=x°.
∵ DE=EB,∴∠ EBD= ∠ BDE= x°.
∴∠ BDC= ∠ A+ ∠ EBD= x°.
∵ BC=BD,∴∠ C= ∠ BDC= x°.
∵ AB=AC,∴∠ ABC= ∠ C= x°.
∴ x+ x+ x =18 0,解得x =4 5 .∴∠
A=45°.
感悟新知
知2-练
5 -1. [新考向知识情境化中考·衢州]“三等分角”大约是在
公元前五世纪由古希腊人提出来的,借助如图所示的
“三等分角仪”能三等分任一角.
感悟新知
知2-练
A. 2
B. 3
C. 4
D. 5
感悟新知
知1-练
1-2.[期末·广州南沙区]若等腰三角形的周长是28 cm,一条
边长为6 cm,则它的腰长为______
11 cm.
感悟新知
知识点 2 等腰三角形的性质
知2-讲
必定是锐角
1. 性质1:等腰三角形的两个底角相等(简写成
等腰三角形ppt课件

02
等腰三角形的判定
定义与判定方法
定义:有两边长度相等的三角形称为等 腰三角形。
3. 角平分线法:若一个三角形一个角的 平分线等于其对应边的高线,则该三角 形为等腰三角形。
2. 中线法:若一个三角形中线等于其一 半长度,则该三角形为等腰三角形。
判定方法
1. 定义法:根据等腰三角形的定义,只 需判断一个三角形有两边长度相等即可 。
等腰三角形性质定理的推广与拓展主要涉及以下几个方面:一是推广到更复杂的几何图形中,如平行四边形、菱 形等;二是拓展到三角函数中,用于研究三角函数的对称性和周期性等问题;三是拓展到物理学中,用于研究力 矩平衡等问题。
04
等腰三角形的实际应用
建筑中的等腰三角形
总结词
建筑美学与等腰三角形的完美结合
详细描述
性质定理的应用举例
总结词
等腰三角形性质定理的应用场景及实例
详细描述
等腰三角形性质定理的应用场景广泛,例如在几何、三角函数、建筑等领域都有 应用。以几何为例,通过等腰三角形的性质定理可以证明一些重要的几何定理, 如勾股定理、余弦定理等。
性质定理的推广与拓展
总结词
等腰三角形性质定理的推广及拓展方向
详细描述
等腰三角形在实际VS
详细描述
等腰三角形在实际问题中有着广泛的应用 ,它是解决问题的重要工具。例如,在物 理学中,等腰三角形可以用来解决力臂平 衡的问题;在生物学中,可以用来解释 DNA分子的结构;在经济学中,可以用 来分析股票市场的波动等。
05
等腰三角形的相关练习题及 解析
边角关系在判定中的应用
等边对等角
在等腰三角形中,相等的两边所对的角也相等。
三角形内角和定理
【课件】等腰三角形的性质+课件人教版数学八年级上学期

4. 如图,在△ABC中,AB=AC,点D在AC上,且BD= BC=AD,求∠A的度数.
解:设∠A=x°. ∵BD=AD, ∴∠ABD=∠A=x°. ∴∠BDC=2x°. ∵BD=BC, ∴∠C=∠BDC=2x°. ∵AB=AC,∴∠ABC=2x°. ∵∠A+∠ABC+∠C=180°, ∴x+2x+2x=180.∴x=36. 即∠A=36°.
(2)等腰三角形的一个角为70°,则它底角的度数为 _5_5_°__或__7_0_°___.
3. 如图,在△ABC中,AB=AC,∠A=40°,MN是AB
的垂直平分线,求∠DBC的度数.
解:∵∠A=40°,AB=AC, ∴∠ABC=∠ACB=70°. ∵MN垂直平分AB, ∴DB=AD. ∴∠ABD=∠A=40°. ∴∠DBC=∠ABC-∠ABD=70°-40°=30°.
5.如图,点D,E在△ABC的边BC上,AB=AC,
BD=CE.求证:AD=AE. 证明:∵AB=AC,∴∠B=∠C.
AB=AC,
在△ABD和△ACE中,B=C, ∴△ABD≌△ACE. BD=CE, ∴AD=AE.
6. 如图,点D,E在△ABC的边BC上,AB=AC,AD= AE.求证:BD=CE.
例2.已知等腰三角形的两边长分别为4和6,则周长为
_1__4_或__1_6_;
变式2.一等腰三角形的一个外角是110°,则它的底角的度 数为 70°或 55°.
例3.如图,点D在AC上,AB=BD=DC,∠C=40°,
求∠A,∠ABD的度数.
解:∵BD=DC, ∴∠DBC=∠C=40°.
∴∠BDA=∠DBC+∠C=40°+40°=80°. 又 ∵AB=BD, ∴∠A=∠BDA=80°. ∴∠ABD=180°-∠A-∠BDA
等腰三角形ppt课件

5.已知等腰三角形的两内角之比为4:1,则这个
三角形的顶角度数为
;
世上无难事,只要肯登攀
A
∴∠EOB=∠CBO, ∠∵FBOOC、=∠COBC分O别平分∠ABC、∠ACB
∴∠CBO=∠ABO,∠BCO=∠ACO ∴∠EOB=∠ABO ,∠FOC=∠ACO
OБайду номын сангаас
E
F
∴BE=OE,CF=OF
∴ EF=EO+FO=BE+CF
B
C
若AB≠AC,其他条件不变,图中还有等腰三角形吗?结论还成立吗?
例题讲解
等腰三角形练习 ----分类讨论思想
一、课前热身,知识再现
1.已知等腰三角形的一内角为40°;求其余两个内角的
度数
;
2.已知等腰三角形的两边长为3和4,其周长
为
;
二、自主探究 (关于角的讨论)
1、已知等腰三角形的一外角为100°;则等腰三角形的
顶角的度数为 800或200
(关于等腰三角形边的讨论)
3
∴∠AFD=∠4 ∵∠AFD=∠3
4
∴∠3=∠4 ∴CE=CF
B
E
C
∴△CEF是等腰三角形
典 例2 如图,在△ABC中,AB=AC,∠ABC和∠ACB的平分线交于点O.
例 过O作EF∥BC交AB于E,交AC于F.探究EF、BE、FC之间的关系.
精 析
解:EF=BE+CF.
∵ EF∥BC
理由如下:
证明:∵△ABC中AB=AC,D在BC的中点, ∴∠B=∠C,BD=CD
∵DE⊥AB,DF⊥AC. ∴∠BED=∠CFD=9 0在°△BDE和△CDF中,
∠BED=∠CFD ∠B=∠C BD=CD
17.1 等腰三角形 - 第1课时课件(共23张PPT)

等边三角形的性质定理
等边三角形的三个角都相等,并且每一个角都等于60°.
例题解析
例1已知:如图,在△ABC中,AB=BC,BD,CE分别为∠ABC,∠ACB的平分线.求证:BD=CE.
证明:∵BD,CE分别为∠ABC,∠ACB的平分线,∴∠ABD=½∠ABC,∠ACE=½∠ACB.∵∠ABC=∠ACB(等边对等角)∴∠ABD=∠ACE(等量代换).∵AB=AC(已知),∠A=∠A(公共角),∴△ABD≌△ACE( ASA ).∴BD=CE(全等三角形的对应边相等).
2.如图,在△ABC中,AB=AC,∠B=50°,则∠C的度数为( ).A.80° B.60°C.50° D.40°
C
3.如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为( )A.25° B.60° C.85° D.95°
(1)证明:∵△ABC和△ECD都是等边三角形,∴AC =BC,CD =CE,∠ACB =∠DCE=60°,又∵∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DBC,∴∠ACD=∠BCE,在△ACD和△BCE中,AC =BC,∠ACD=∠BCE,CD =CE,∴△ACD≌△BCE(SAS).∴AD=BE.
三边都相等的三角形叫做等边三角形.等边三角形是等腰三角形的特例.
定义
知识点3 等边三角形的定义及性质定理
已知:如图,在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.
证明:∵在△ABC中,AB=BC=AC,∴∠A=∠B=∠C(等边对等角).∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°.
(2)解:在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC-∠CED=120°-60°=60°.
等边三角形的三个角都相等,并且每一个角都等于60°.
例题解析
例1已知:如图,在△ABC中,AB=BC,BD,CE分别为∠ABC,∠ACB的平分线.求证:BD=CE.
证明:∵BD,CE分别为∠ABC,∠ACB的平分线,∴∠ABD=½∠ABC,∠ACE=½∠ACB.∵∠ABC=∠ACB(等边对等角)∴∠ABD=∠ACE(等量代换).∵AB=AC(已知),∠A=∠A(公共角),∴△ABD≌△ACE( ASA ).∴BD=CE(全等三角形的对应边相等).
2.如图,在△ABC中,AB=AC,∠B=50°,则∠C的度数为( ).A.80° B.60°C.50° D.40°
C
3.如图,△ABC是等边三角形,点D在AC边上,∠DBC=35°,则∠ADB的度数为( )A.25° B.60° C.85° D.95°
(1)证明:∵△ABC和△ECD都是等边三角形,∴AC =BC,CD =CE,∠ACB =∠DCE=60°,又∵∠ACD=∠ACB-∠DCB,∠BCE=∠DCE-∠DBC,∴∠ACD=∠BCE,在△ACD和△BCE中,AC =BC,∠ACD=∠BCE,CD =CE,∴△ACD≌△BCE(SAS).∴AD=BE.
三边都相等的三角形叫做等边三角形.等边三角形是等腰三角形的特例.
定义
知识点3 等边三角形的定义及性质定理
已知:如图,在△ABC中,AB=BC=AC.求证:∠A=∠B=∠C=60°.
证明:∵在△ABC中,AB=BC=AC,∴∠A=∠B=∠C(等边对等角).∵∠A+∠B+∠C=180°,∴∠A=∠B=∠C=60°.
(2)解:在等边△ECD中,∠CDE=∠CED=60°,∴∠ADC=120°,∵△ACD≌△BCE,∴∠BEC=∠ADC=120°,∴∠AEB=∠BEC-∠CED=120°-60°=60°.
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
错角相等) 又∵∠1=∠2(已知) ∴∠B=∠C ∴AB=AC(等角对等边)
思想方法:转化思想
11
四、能力提升 已知:如图,在等腰△ABC中,AB=AC,O是底边
BC上的中点,OD⊥AB于D,OE⊥AC于E.求证: AD=AE。
证明:∵AB=AC(已知) ∴∠B=∠C(等边对等角) ∵O是底边BC上的中点(已知) ∴OB=OC ∵OD⊥AB,OE⊥AC(已知) ∴∠ODB=∠OEC=90° ∴△BCE≌△ACD(AAS) ∴BD=CE(全等三角形对应边相等) ∴AB—BD=AC—CE 即AD=AE
13
五、综合应用
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是 等边三角形.BE交AC于F,AD交CE于H,①求证: △BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明 理由
②∵△BCE≌△ACD ∴∠CBF=∠CAH(全等三角形对应角相等) ∵∠FCH=180°—∠BCF—∠HCD
6
2.在三角形ABC中,AB=AC,且AD ⊥BC,已知 BD=2cm,求DC=_2__cm, BC=__4_cm?
A
12
B
D
C
7
3. 在三角形ABC中,AB=AC,且AD ⊥BC,已知∠ 1=20°,求∠ 2=__2_0__度∠ BAC=___40___度?
A 12
∟
B
D
C
8
4 .在三角形ABC中,AB=AC,AD=4cm,且 BD=CD,求点A到线段BC的距离
1
A
一
顶Leabharlann 知腰角腰
识
回
顾
底角
B
底角 C
底边
一 起 回 忆
2
三角形
性质
判定
等腰三角形 等边三角形
1.等边对等角。
2.三线合一 。 3.轴对称图形。
1.等角对等边。 2.定义:两边等的 三角形是等腰三角 形。
1.三边相等。 2.三个角都相等, 每个角都是60°。 3.轴对称图形。
1.有一个角是60°
的等腰三角形是
A
12
B
D
C
9
三、拓展训练
1、如图,△ABC中,AB=AD=DC,∠BAD=50°,求∠B、 ∠C的度数.
解:∵AB=AD=DC(已知)
∴ ∠B=∠ADB,
∠C=∠DAC(等边对等角)
∵∠BAD+∠B+∠ADB=180°(三角形内角等于180°)
∴∠B=∠ADB
=½ (180°—∠BAD) =½ ×(180°—50°)
=180°—60°—60° =60° ∴∠BCF=∠FCH=60° 又∵BC=AC ∴△BCF≌△ACH(ASA) ∴CF=CH(全等三角形对应边相等) ③△CFH是等边三角形. 理由:∵CF=CH ,∠FCH=60° ∴△CFH是等边三角形.
14
六、补充练习 如图,已知P、Q是△ ABC边BC上的两点,且BP= PQ=QC=AP=AQ.求:∠ BAC的度数。
=65°
∵∠ADB=∠C+∠DAC(三角形的一个外角等于与它不相邻的两个 内角和)
∴∠C=½ ∠ADB
=½ ×65°
=32.5°
10
2、如图,已知∠EAC是△ABC的外角,∠1=∠2, AD∥BC,请说明AB=AC的理由。
理由:∵AD∥BC(已知) ∴∠B=∠1(两直线平行,
同位角相等) ∠C=∠2(两直线平行,内
等边三角形。
2.三个角相等的
三角形是等边三
角形。
3
热身练习 1.填空
思想方法:分类讨论
1)、等腰三角形的一个顶角是100º,则它的底角是 ___4_0_º_。
2)、等腰三角形的一个底角是50º,则它的顶角是 ___8_0_º_。
3)、等腰三角形的一个内角等于70°,则它的底角 等于_7_0_º_或。55º
√ 2)、有一个角是60°的等腰三角形其它两内角也60°。( )
√ 3)、三角形的三个外角都相等的三角形是等边三角形。( )
4)、等腰三角形的底角都是锐角。
√ ( )
5)、钝角三角形不可能是等腰三角形 。
× ( )
5
难点突破1 三角形ABC中,已知AB=AC,且 ∠B=80° ,则∠C=——80度,∠A=—2—0 度?
15
七、小结
通过本节课的复习,谈谈你有什么收获?
16
再 见
17
12
五、综合应用
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是 等边三角形.BE交AC于F,AD交CE于H,①求证: △BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明 理由。
证明:①∵△ABC和△CDE都是等边三角形(已知) ∴BC=AC,CE=CD ∠BCF=∠HCD=60°(等边三角形三边相等, 三个角都等于60°) ∴∠BCF+∠FCH=∠HCD+∠FCH 即∠BCA=∠ACD ∴△BCE≌△ACD(SAS)
4)、等腰三角形底边是4cm,腰长是6cm,则它的周 长是__1_6__cmcm
5)、等腰三角形有两边长分别为3cm、4cm,则周长 为 __1_0_c_m。或11cm
6)、等腰三角形有两边长分别为2cm、4cm,则周长 为 ___1_0_cm。
4
2.判断题
× 1)、等腰三角形的角平分线、中线和高互相重合。( )
思想方法:转化思想
11
四、能力提升 已知:如图,在等腰△ABC中,AB=AC,O是底边
BC上的中点,OD⊥AB于D,OE⊥AC于E.求证: AD=AE。
证明:∵AB=AC(已知) ∴∠B=∠C(等边对等角) ∵O是底边BC上的中点(已知) ∴OB=OC ∵OD⊥AB,OE⊥AC(已知) ∴∠ODB=∠OEC=90° ∴△BCE≌△ACD(AAS) ∴BD=CE(全等三角形对应边相等) ∴AB—BD=AC—CE 即AD=AE
13
五、综合应用
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是 等边三角形.BE交AC于F,AD交CE于H,①求证: △BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明 理由
②∵△BCE≌△ACD ∴∠CBF=∠CAH(全等三角形对应角相等) ∵∠FCH=180°—∠BCF—∠HCD
6
2.在三角形ABC中,AB=AC,且AD ⊥BC,已知 BD=2cm,求DC=_2__cm, BC=__4_cm?
A
12
B
D
C
7
3. 在三角形ABC中,AB=AC,且AD ⊥BC,已知∠ 1=20°,求∠ 2=__2_0__度∠ BAC=___40___度?
A 12
∟
B
D
C
8
4 .在三角形ABC中,AB=AC,AD=4cm,且 BD=CD,求点A到线段BC的距离
1
A
一
顶Leabharlann 知腰角腰
识
回
顾
底角
B
底角 C
底边
一 起 回 忆
2
三角形
性质
判定
等腰三角形 等边三角形
1.等边对等角。
2.三线合一 。 3.轴对称图形。
1.等角对等边。 2.定义:两边等的 三角形是等腰三角 形。
1.三边相等。 2.三个角都相等, 每个角都是60°。 3.轴对称图形。
1.有一个角是60°
的等腰三角形是
A
12
B
D
C
9
三、拓展训练
1、如图,△ABC中,AB=AD=DC,∠BAD=50°,求∠B、 ∠C的度数.
解:∵AB=AD=DC(已知)
∴ ∠B=∠ADB,
∠C=∠DAC(等边对等角)
∵∠BAD+∠B+∠ADB=180°(三角形内角等于180°)
∴∠B=∠ADB
=½ (180°—∠BAD) =½ ×(180°—50°)
=180°—60°—60° =60° ∴∠BCF=∠FCH=60° 又∵BC=AC ∴△BCF≌△ACH(ASA) ∴CF=CH(全等三角形对应边相等) ③△CFH是等边三角形. 理由:∵CF=CH ,∠FCH=60° ∴△CFH是等边三角形.
14
六、补充练习 如图,已知P、Q是△ ABC边BC上的两点,且BP= PQ=QC=AP=AQ.求:∠ BAC的度数。
=65°
∵∠ADB=∠C+∠DAC(三角形的一个外角等于与它不相邻的两个 内角和)
∴∠C=½ ∠ADB
=½ ×65°
=32.5°
10
2、如图,已知∠EAC是△ABC的外角,∠1=∠2, AD∥BC,请说明AB=AC的理由。
理由:∵AD∥BC(已知) ∴∠B=∠1(两直线平行,
同位角相等) ∠C=∠2(两直线平行,内
等边三角形。
2.三个角相等的
三角形是等边三
角形。
3
热身练习 1.填空
思想方法:分类讨论
1)、等腰三角形的一个顶角是100º,则它的底角是 ___4_0_º_。
2)、等腰三角形的一个底角是50º,则它的顶角是 ___8_0_º_。
3)、等腰三角形的一个内角等于70°,则它的底角 等于_7_0_º_或。55º
√ 2)、有一个角是60°的等腰三角形其它两内角也60°。( )
√ 3)、三角形的三个外角都相等的三角形是等边三角形。( )
4)、等腰三角形的底角都是锐角。
√ ( )
5)、钝角三角形不可能是等腰三角形 。
× ( )
5
难点突破1 三角形ABC中,已知AB=AC,且 ∠B=80° ,则∠C=——80度,∠A=—2—0 度?
15
七、小结
通过本节课的复习,谈谈你有什么收获?
16
再 见
17
12
五、综合应用
如图,已知点B、C、D在同一条直线上,△ABC和△CDE都是 等边三角形.BE交AC于F,AD交CE于H,①求证: △BCE≌△ACD;②求证:CF=CH;③判断△CFH的形状并说明 理由。
证明:①∵△ABC和△CDE都是等边三角形(已知) ∴BC=AC,CE=CD ∠BCF=∠HCD=60°(等边三角形三边相等, 三个角都等于60°) ∴∠BCF+∠FCH=∠HCD+∠FCH 即∠BCA=∠ACD ∴△BCE≌△ACD(SAS)
4)、等腰三角形底边是4cm,腰长是6cm,则它的周 长是__1_6__cmcm
5)、等腰三角形有两边长分别为3cm、4cm,则周长 为 __1_0_c_m。或11cm
6)、等腰三角形有两边长分别为2cm、4cm,则周长 为 ___1_0_cm。
4
2.判断题
× 1)、等腰三角形的角平分线、中线和高互相重合。( )