2013届电子汽车类英文翻译原文

合集下载

关于电动汽车中英文对照资料

关于电动汽车中英文对照资料

Electric VehiclesAs the world's continuing energy crisis, and war and oil consumption and energy ----- car full with the amount of increase, decrease energy day by day, one day it will disappear without a trace. Oil is not living resources. Oil consumption in the net must be to find a substitute before. With the development of technology and social progress, it was the invention of electric vehicles. Electric cars will become the ideal means of transport.Calvary in the development of the world have achieved fruitful results, especially with the computer and automotive electronic technology and the rapid development of the information age. Electronic control technology is widely used in motor vehicles, automotive applications, electronic devices has become increasingly diverse, electronic technology not only to improve and enhance the tradition of quality and performance of electric vehicles, but also improve the car's power, fuel economy , reliability, and the purification of exhaust gas emissions. Widely used in automotive electronic products not only reduces costs, and reduce maintenance complexity. From the engine's fuel injection ignition, air control, emission control, faultself-diagnosis to the body aids are commonly used by the electronic control technology, can be said that the development of future cars mainly mechanical and electrical integration. Widely used in automotive electronic control ignition system with electronic control of the major fuel injection system, ignition system, electronic control, electronically controlled automatic transmission, electronically controlled anti-skid (ABS / ASR) control system, electronic control suspension system, electronically controlled power steering system , vehicle dynamics control system, airbag system, active seat belt systems, electronic control automatic air conditioning system, leadThere are GPS navigation systems, etc.. With the quick response of these systems car, functionality, high reliability, is to ensure the engine power and reduces fuel consumption, and they meet emissions regulations standards.Car is essential to modern means of transport. The electric car has brought us fun things to us can be a hard day of physical and mental relaxation. Take for instance automatic transmission, the car is moving, you can not step on the clutch pedal, you can achieve automatic transmission and the engine will not turn off, so effectively improve the convenience of driving to reduce driver fatigue. Mainly by the torque converter automatic transmission, gear transmission, oil pump, hydraulic control system, Electronic control system, oil cooling system, etc..Electronically controlled suspension is used to buffer the main road to face the body of the impact and reduce vibration to ensure ride comfort and handling stability. When the car driving on uneven road car chassis and according to the road to a high degree of automatic adjustment. When the vehicle height higher than the set low, on to the inflatable air chamber or tank or oil-filled. If it is the contrary, they put the oil gas or diarrhea. To ensure the level of car travel, improving driving stability. Power steering system with variable power can significantly change due to the efficiency and status of the driver, so widely used in electric vehicles. VDC on the car has a vitalrole in its performanceAccording to need to take the initiative to change the wheel to brake the car motion state, so that the best driving car status and control performance, and increase the car's adhesion, control and stability. Other than that, 4WS, 4WD has significantly increased ,the value and performance of electric vehicles simultaneously improve. ABS to reduce braking distances and a shift operation ability to maintain effective driving directions to improve the stability while reducing tire wear. Airbag in a great program to protect the driver and passenger safety, reducing car collision on the driver and passenger cushion to protect the lives over to the purpose.Intelligent electronics in the car to make the car to promote safe driving and other higher level functions. Through a variety of sensors for automatic driving. In addition to those outside the Smart Car is equipped with a variety of sensors can be fully aware of traffic facilities and the environment information and can readily determine whether the vehicles and drivers at risk, with self-seeking way, navigation, collision avoidance, toll collection and other functions. Improve the safety during transport, to reduce driver fatigue manipulation to enhance passenger comfort. Of course, battery electric vehicles is the keyElectric vehicle batteries are: lead-acid batteries, nickel cadmium batteries, sodium sulfur batteries, sodium sulfur batteries, lithium batteries, zinc - air batteries, flywheel batteries, fuel cells and solar batteries. In many kinds of batteries, fuel cells, is by far the most promising vehicles which the power source of energy shortage. Clean and efficient fuel cell with characteristics different from other batteries, it does not need charging, as long as the external continuous supply of fuel, can be a continuous and stable power. Fuel cell vehicles (FCEV) is comparable with the dynamic performance of internal combustion engine vehicles, the emissions, fuel economy is better than internal combustion vehicles.With the computer and electronic products continue to open-class ride, electric car technology has matured and improved, making driving safer, convenient, flexible and comfortable. Now, the electric car from the ordinary consumer from very far, only a few people in a hurry fashionable it. Electric cars can really traditional fuel vehicles to compete in the future automotive market will eventually be electric cars and smart cars are replaced. This is only a matter of time that day will come for. ABS, GPS, 4WS, 4WD, and various new age electronics and modern high performance vehicles, understanding composition, perfect match,Bring our unparalleled precision driving comfort and driving safety.电动汽车作为世界上持续的能源危机,战争和石油消费的增加,与汽车数量的能源-----充分,能源日益减少,有一天它会消失得无影无踪。

英文作文 推销智能汽车

英文作文 推销智能汽车

英文作文推销智能汽车英文:As a car enthusiast, I am excited to introduce you to the world of smart cars. Smart cars are the future of driving, and they offer a range of benefits thattraditional cars simply can't match.First and foremost, smart cars are incredibly convenient. With features like remote start, automatic parking, and voice-activated controls, driving a smart car is a breeze. You can even use your smartphone to control your car's functions from anywhere in the world.In addition to convenience, smart cars are also much safer than traditional cars. They are equipped with advanced safety features like collision detection, lane departure warning, and automatic emergency braking. These features can help prevent accidents and keep you and your passengers safe on the road.But perhaps the biggest advantage of smart cars istheir efficiency. They are designed to be as energy-efficient as possible, which means they use less fuel and produce fewer emissions than traditional cars. This notonly saves you money on gas, but it also helps reduce your carbon footprint.Overall, smart cars are the way of the future. Theyoffer unparalleled convenience, safety, and efficiency, and they are the perfect choice for anyone who wants to stay ahead of the curve.中文:作为一位车迷,我很高兴向大家介绍智能汽车的世界。

学位论文-—汽车专业 翻译 中英文(全)the automobile in america

学位论文-—汽车专业 翻译 中英文(全)the automobile in america

The Automobile in the United StatesHistory 389, section 3. George Mason University. Spring 2010Science and Technology I, room 224. Tuesdays and Thursdays, 12 – 1:15 pm.Course Blackboard site: General advice: /teachingProfessor Zachary M. SchragE-mail: zschrag@ (please include ―389‖ in subject header).Office: Robinson B 357A. Tel. 703/594-1844. Office Hours: Mondays, 2-4 pm.While I greatly enjoy meeting students individually, department meetings and other commitments occasionally force me to cancel scheduled office hours, so please let me know in advance if you are coming to office hours. If you would like to meet some other time, please send me an e-mail with two or three proposed times.Course DescriptionThis course examines the biography of one of the most important characters in twentieth-century U.S. history: the automobile. Embracing the histories of business, policy, labor, the environment, technology, and culture, this course seeks a holistic understanding of the role of the car in American life. It will examine the invention and adoption of the automobile, the rise of assembly-line manufacturing, the evolution of roadside architecture, and the challenges posed by oil shortages. It seeks to draw a variety of students and encourage them to think about one of the fundamental interactions between humans and machines in the history of the nation and in their own lives.GoalsIn this course, students will:∙Reflect on the significance of the automobile in shaping the America we know today, including their own daily lives.∙Use the automobile to understand the interconnections among technology, business, labor, culture, and politics.∙Practice critical reading of primary and secondary sources, including texts, images, music, and motion pictures.∙Practice research skills using sources in electronic databases, on paper, and in the world around us.∙Practice skills of writing, editing, and revision.Readings∙Kathleen Franz. Tinkering: Consumers Reinvent The Early Automobile.University of Pennsylvania Press, 2005. ISBN-10: 0812238818∙Stephen Meyer. The Five Dollar Day: Labor Management and Social Control in the Ford Motor Company, 1908-1921. State University of New York Press, 1981. ISBN-10: 0873955099∙Chester Liebs. Main Street to Miracle Mile: American Roadside Architecture. The Johns Hopkins University Press; Reprint edition, 1995. ISBN-10: 0801850959∙Tom McCarthy. Auto Mania: Cars, Consumers, and the Environment. Yale University Press (2009), Paperback. ISBN-10: 0300158483. ISBN-13: 9780300158489∙Gordon Harvey. Writing With Sources: A Guide for Students. Second edition. Hackett, 2008. ISBN13: 9780872209442∙Zachary M. Schrag, ―Guidelines for History Students,‖/teaching/teaching.html.CollaborationThis course is designed to encourage the kind of collaboration that makes scholarship so much fun. While you are responsible for your own essays, you will get a great deal of help from each other identifying and interpreting primary and secondary sources, and revising your work.You must credit your classmates for the help that they give you, since a scholar should be proud of the use she has made of others’ work. Citation need not be terribly formal, but I suggest the following forms for citing work by your classmates:∙Joanna Student, "Lincoln’s Imagery," 26 January 2010, History 389 Discussion Board.For a document posted by a student, but written by someone else:∙Lisa Rein, ―Daring to Dream of Reducing Tysons Traffic,‖ Washington Post, 10 December 2009 (posted by Joanna Student).Online ComponentsExcept for the peer-editing, this course is designed to be paperless; all assignments except for the essay drafts should be posted on Blackboard, . You will also receive essay comments electronically.AssignmentsPlease note than 105 percentage points are available, to allow for illness, family emergencies, and other mishaps.Attendance and Participation (15 percent)Much of this course is discussion based, which means that each student’s learning de pends on the other students’ being prepared, punctual, and active. The participation grade is designed to encourage you to help other students learn, and to prepare you for a lifetime of meetings.The participation grade is based on your prompt arrival and active participation in discussions. The highest participation grades will go to students who animate class discussions by asking questions of their peers. The most valuable contributions often begin with the words, ―I don’t understand.‖ Answering such qu estions, and questions posed by the instructor, is also helpful.You should be in your seat, ready to take notes at 12 noon; chronic tardiness will lower your grade. To be counted as on time, you must sign in by 12 noon. To be counted present, you must sign the late attendance sheet. If you need to leave early, please speak to me before class. If you leave early without notifying me, you will be counted absent.You are expected to attend class twice a week. To allow for family and medical emergencies, up to two weeks’ absence is excused. After that, absence for any reason will sharply lower your grade, until you have missed half the course. At that point, you will receive no credit for participation. Chronic absence or tardiness will also affect the grades on your written work.At the end of each unit, you will submit a participation memo, explaining your contribution to the class discussions and your plans for future discussions.Reading Responses (8 percent. 1 percent each)On twelve occasions during the course, you are assigned short responses. They are due at 9 am on the day indicated.On discussion days for which you submit a response, you should be prepared to be called on to describe your findings to the class.There are two kinds of responses:Reading responses (1 point each)On eight occasions, you are assigned responses to the readings. Questions will be posted on Blackboard:.1. Choose one of the questions for that day’s reading and write a one-paragraph response, roughly 125 – 175 words. Write your response as if it were part of a longer essay. Begin with a clear topic sentence (See /teaching/topicsentences.html) that makes an argument rather than just stating facts. Then support that argument with specific facts and quotations from the reading. Use parentheses to indicate page numbers. I suggest you compose your response in a word processor or text editor, then paste it into the discussion board. Research responses (9 percent. 3 points each)On three occasions, you are asked to complete small research assignments. You will be assigned to a group, which will determine specific deadlines. Points are based on the ability of your choice of documents and analysis to spark class discussion.Specific assignments will be posted on Blackboard. All research assignments require the following steps:1. Find a document or image according to the specific assignment instructions.2. Write a one-paragraph analysis of the document or image following the examples at ―Document Analysis‖ </teaching/documentanalysis.html> or ―Image Analysis‖3. Post the document on the appropriate Blackboard discussion, along with the document as an attachment.Essays (60 percent. 15 percent each)On four occasions, you are assigned six-ten paragraph essays (roughly 800-1200 words). Please keep in mind the instructions at /teaching/index.html, especially those on thesis statements and topic sentences.The essays require the following steps:1. Read the essay question, posted on Blackboard.2. Assemble evidence from the assigned readings, from the documents you and your classmates have gathered, and from music and films played in class. Each essay should contain a mix of evidence from primary and secondary sources from the appropriate unit. Evidence from other units of the course may be helpful as well.3. Develop a thesis statement that answers the question and can be supported by your evidence. See /teaching/thesistemplate.html for a suggested form.4. Write a rough draft of your essay. Bring two copies to class.5. Share your rough draft with two of your classmates during the peer editing session. If you do not receive helpful comments, demand them.6. Revise the draft according to the helpful comments you received.Peer Editing InstructionsYour job as a peer editor is not to correct spelling and minor errors, or to provide uncritical encouragement. Rather, it is to demand that your peers teach you something you did not know before.Your comments should begin with one of the following forms, or a close approximation:1. Your paper corrected a misconception I had. Before reading it, I thought _________. But you showed me . . .2. Your paper answered a question I had. Before reading it, I could not understand why_________. But you showed me . . .3. Your paper explained the significance of _________. Before reading it, I couldn’t understand why _________ was important. But you showed me . . .4. For the most part, this paper did not teach me anything that wasn’t pretty obvious from listening to the lecture and reading the book. But I was struck by your comment that ―_________.‖ This comment [insert phrase 1, 2, or 3]. Could you expand this point into a thesis for the whole essay?Final Exam (10 percent)The final exam will be an in-class essay exam that will ask you to reflect on the course as a whole and to analyze primary documents.Extra Credit (1 percent each; up to 3 percent)The goal of this assignment is to get you to think about the course in relation to your daily life. For each week of the course, you may write a two-paragraph journal entry. Up to three entries will count toward course credit, but you may only submit one per week. The first paragraph should describe something that happened to you or that you witnessed involving ground transportation. It can be something that just happened, a news story or article you saw, or a story from your past—but make it something you’re willing to share with the class. The second paragraph should explain how that event or item illustrates or complicates the themes of the course.ScheduleWeek 1January 19 Introduction—Cars and ChoicesUnit 1: What is a car? 1878-1940January 21 Lecture: The Invention of the Car.Week 2January 26 Discussion. Reading 1 due: Tinkering, 1-73January 28 Workshop: reading primary sources.Read: ―How to Read a Primary Source,‖ ―Document Analysis,‖ and ―ImageAnalysis.‖ /teaching/Week 3February 2 Discussion. Group 1.Research 1 due:early automobiles (Harper’s) February 4 Discussion: Reading 2 due: Tinkering,74-102; 130-166Week 4February 9 Discussion. Group 2.Research 2 due:early automobiles (NYPL brochures) February 11 Peer Editing. Essay 1 draft dueUnit 2: Are cars democratic? 1908-1945Week 5February 16 Lecture: Making the Model T.Essay 1 final due.February 18 Discussion: Reading 3 due: Five Dollar Day, 1-65.Week 6February 23 Discussion: Industry filmsFebruary 25 Discussion Group 3.Research 3 due:(ProQuest historical newspapers). Week 7March 2 Discussion: Reading 4 due: Five Dollar Day, 67-147.March 4 Peer Editing. Essay 2 draft dueSPRING BREAKUnit 3: How should we build for cars? 1945-1973Week 8March 16 Lecture: The Automotive Landscape. Essay 2 final dueMarch 18 Discussion: Reading 5 due: Main Street to Miracle Mile, vi-73Week 9March 23 Discussion: Group 1.Research 4 due Postcards/photosMarch 25 Discussion: Group 2.Research 5 due Postcards/photosWeek 10March 30 Discussion: Group 3.Research 6 due:Photographs/photosApril 1 Peer Editing. Essay 3 draft due.Unit 4: Are cars sustainable? 1955-2010Week 11April 6 Film: Who Killed the Electric Car? Essay 3 final dueApril 8 Discussion: Reading 6 due: Auto Mania, 99-147Week 12April 13 Discussion: Groups 1 and 3.Research 7 due:Car AdsApril 15 Discussion: Reading 7 due: Auto Mania, 148-92Week 13April 20 Discussion: Reading 8 due Auto Mania, 193-252April 22 Discussion: Group 2.Research 8 due Government documents Week 14April 27 Peer Editing. Essay 4 draft dueConclusionApril 29 Exam Review. Essay 4 final due.Final Exam: Tuesday, May 11, 10:30 am – 1:15 pm.在美国汽车历史389,第3节。

智能汽车的英语作文

智能汽车的英语作文

智能汽车的英语作文Title: The Evolution of Smart Cars: Revolutionizing Transportation。

In the realm of transportation, the emergence of smart cars has sparked a profound shift in how we perceive and interact with automobiles. This essay delves into the multifaceted impacts of smart cars on society, exploring their benefits, challenges, and the implications for the future.The Advent of Smart Cars。

Smart cars, also known as autonomous or self-driving vehicles, represent the culmination of advancements in artificial intelligence, sensor technology, and automotive engineering. Unlike traditional cars, smart cars possess the ability to perceive their environment, make decisions, and navigate routes without human intervention. This revolutionary capability has the potential to redefine theconcept of transportation.Advantages of Smart Cars。

电动汽车文章(中英翻译)

电动汽车文章(中英翻译)

电动汽车文章(中英翻译)The electric car — a green transport revolution in the making?As the world's continuing energy crisis, and war and oil consumption and energy ----- car full with the amount of increase, decrease energy day by day, one day it will disappear without a trace. Oil is not living resources. Oil consumption in the net must be to find a substitute before. With the development of technology and social progress, the invention of the electric vehicles will be effective help ease the financial difficulty. Electric cars will become the ideal means of transport.Faced with high energy costs and rising consumer and government concern over the fate of the environment, the world's automakers are stepping up investment in the development of alternative power train technologies that promise to substantially cut fuel consumption and reduce greenhouse gas emissions.Much attention to-date has focused on advances by Japanese and American automakers in the development of hybrid and battery electric vehicles. Toyota's,Prius has emerged as the best-selling hybrid car in the world. TesIa Motors, a US-based start-up, has launched its first battery electric vehicle, the Tesla Roadster. By the end of 2010, GM plans to launch its much-touted Volt hybrid, while Chrysler has recently announced similar plans.The Chinese government also has the National High Technology Research and Development Program (863 Program) specifically listed, including hybrid vehicles, including electric cars of major projects. At present, China's independent innovation of new energy vehicles in the process, adhere to thegovernment support to core technology, key components and system integration focusing on the principles established in hybrid electric vehicles, pure electric vehicles, fuel cell vehicles as a "three vertical "Several European countries as well as U.S,Japan,China and others, have recently announced bold plans for the introduction of electric vehicles. These include fiscal incentives, funding research on batteries and electric vehicles and plans for the deployment of a charging infrastructure. Major cities such as London and Paris have announced electric car-sharing systems, while public administrations and companies using large captive fleets are purchasing electric vehicles.At the same time, utilities, car manufacturers, battery producers and academics are joining forces on initiatives such as the EURELECTRIC Task Force on Electric Vehicles and EpoSS, the European Technology Platform on Smart Systems Integration. Together with the European Investment Bank the European Commission has launched the European Green Cars Initiative, with EUR 5 billion partly dedicated to the research, development and manufacturing of batteries and electric cars and to demonstration projects.This flurry of activity seems to indicate that the electric car is heading for a major breakthrough at last - but is it here to stay this time? History calls for caution. The production of electric vehicles began as far back as 1838 – 52 years before combustion engine vehicles. However, after 1913 the mass commercialization of the combustion engine led to a rapid decline in electric vehicles. Attempts to reintroduce electric vehicles in past decades have for the most part been unsuccessful and they still represent a very small, niche market.One of the biggest issues facing the potential take-up of electric vehicles is the rate of improvement in the performance of electric vehicle batteries.The biggest drag on electric vehicle performance comes from the lithium-ion battery, which can add another 220 kilograms to the total weight of a car, versus an ICE-powered vehicle.Since most passenger vehicles in China today are driven in urban areas, where shorter distances and slower speeds are the norm, this may not prove to be as vexing an issue as it is in other markets such as the US or Europe, where the average driving distance and top speed are considerably longer and higher. Continued research and development into electric battery technology is generating promising improvements in performance. US-based A123Systems,one of the world's largest producers of high-power lithium-ion batteries, Announced a battery capable of powering a car for 200 kilometers between charges. Toshiba recently announced the commercial launch of its Super Charge battery, which can be charged to 90 percent capacity in less than five minutes.Yet today the future looks brighter. A great deal of progress has been made in battery technology and electric vehicles are expected to re-enter the market on a large scale within the next couple of years. Based on a moderate growth scenario, by 2050, electric vehicles could represent more than 60%of new sales and constitute up to 25% of the global car fleet. However, estimates of the extent of future deployment vary greatly, as there is still some uncertainty in relation to the development of technology and future consumer behavior.One of the primary benefits of electric vehicles is, of course, the reduction of Green house gases emitted into the atmosphere. Our calculation of the total carbon abatement potential ofalternative power train technologies counted not only the CO2 emissions that vehicles produce, but also emissions produced through out their entire life-cycle, from the CO2 emitted during the generation of electric power through to the transportation of fuel.Over a period of 8 months in 2008, a global McKinsey team studied the passenger vehicle industries in North America, Europe, China, and India. The team examined four power train technology alternatives, chosen on the basis of existing technologies and their near-term commercial feasibility. They contrasted them to conventional internalcombustion engine (ICE) vehicles that run on gasoline or diesel.Full hybrid vehicles: Running primarily on gasoline, full hybrids are powered by a battery during acceleration of the vehicle, but draw most of their power from an internal combustion engine. Full hybrids, equipped with ICE improvement technologies mentioned above, have a life-cycle carbon abatement potential of 56 percent.Compressed natural gas (CNG) vehicles: CNG vehicles are normally perceived to be a source of clean energy, but their life cycle carbon abatement potential depends wholly on the source of the gas一the greater the distance the gas needs to be transported, the higher this power train's "well-to-tank" emissions. CNG cars rank close to hybrids in their life-cycle carbon abatement potential at 55 percent, assuming the gas comes from local sources.Electric vehicles: Electric vehicles include plug-in hybrid vehicles (PHEV) and battery electric vehicles (BEV). Compared with full hybrids, plug-in hybrid vehicles contain a much biggerbattery that can power the vehicle for a longer distance without the aid of an internal combustion engine, can be recharged by plugging them into standard electric sockets, and derive a smaller proportion of their propulsion from the internal combustion engine. Can be recharged by plugging them into standard electric sockets, and derive a smaller proportion of their propulsion from the internal combustion engine. Battery electric vehicles run solely on battery power without the aid of any internalcombustion mechanism. Given reliance on coal-fired plants for electricity.electric vehicles today only have a 19 percent carbon abatement potential over current internal combustion engine technologies; however, this can be increased to as much as 49 percent if diversifies its energy mix towards alternative energy sources for its supply of electric power.Electric vehicles have zero tailpipe emissions, but there are, of course, emissions involved in the production of electricity. As an example,with no concerted action to adopt new power train technologies, the level ofCO2 emissions from passenger cars in China could reach nearly 1.2 billion tons in 2030. However, our research showed that by adopting a mix of various alternative power train technologies, China could cut emissions from passenger vehicles by up to 45 percent. Relative to other power train technologies, electric vehicles demonstrate a some what weaker carbon abatement potential. While full hybrid cars have an abatement potential of 56 percent, electric vehicles' potential stands at 19 percent. This can be explained by the fact that China still relies on coal-fired plants for as much as 85 percent of its electricity supply. This can be explained by the fact that China stillrelies on coal-fired plants for as much as 85 percent of its electricity supply.It also can blossom into another electric car benefits of electricvehicles is th e “displacement “of harmful air pollutants from urban to rural areas, where population exposure is lower. Noise levels are also lower, particularly in urban driving conditions.Another major advantage of electric vehicles is their energy efficiency. With a tank-to-wheel efficiency in the range of 60 to 80 %, they outperform conventional cars four-fold. Generally, electric vehicles show greatest energy savings at low speeds and in situations involving frequently-changing driving dynamics, which is another reason why cities are a prime target market.Electric vehicles will also create opportunities for software developers. Electric vehicles require an electronic interface that informs the driver of the status of the car's vital statistics, from fuel and battery usage, to split-second updates in GPS navigation systems. Venture-backed start-up Better Place is developing a comprehensive information management system it calls AutOS.that will, among other things, inform the driver of the nearest battery-charging stations.While other technologies such as fuel cells hold great promise in reducing CO2 emissions, its commercial application remains years away. Investing in electric vehicles, however, does not mean Chinese OEMs and suppliers should stop their research into other technologies. Rather, they should maintain a balanced technology portfolio, with electric vehicles being a near-term solution, while viewing other technologiessuch as fuel cells as a potential long-term solution that couldyield returns once the technology becomes commercially viable.Thanks to their energy efficiency, and assuming that electricity generation will be even greener in the future, electric vehicles could contribute to a considerable reduction in greenhouse gases. Given the ongoing debate on climate change, this could prove to be an important factor. Indeed, transport is responsible for more than a fifth of the EU’s greenhouse gas emissions and it is the only sector with growing emissions. While the improvement of internal combustion engines still offers considerable potential for reducing emissions per kilometer driven, reductions in greenhouse gas emissions over and above 50 % will require new technological solutions, such as the electric vehicle.Compared to conventional vehicles, and based on the current average European electricity supply, electric vehicles have 50 % less emissions. Further benefits can be achieved if the carbon intensity of power generation continues to decrease with further greener and renewable energy sources.The electric car finally seems to be on the verge of breaking through, offering significant environmental benefits, especially in urban areas. There are, however, still some obstacles related to green electricity supply, the as yet expensive battery technology, the limited driving range and the need for a dense network of electric chargingfacilities. To overcome these obstacles, innovative business models are being developed to help transform automotive transport.电动车:正在进行的绿色交通革命?随着世界上持续的能源危机,战争和石油消费以及汽车数量的增加,能源日益减少,有一天它会消失得无影无踪。

分享汽车英语作文带翻译

分享汽车英语作文带翻译

分享汽车英语作文带翻译Title: The Impact of Automobiles on Society。

Introduction:Automobiles have undeniably revolutionized the way we live, work, and interact with the world around us. From the early days of the Model T to the advanced electric vehicles of today, cars have played a central role in shaping society. In this essay, we will explore the various impacts automobiles have had on society, both positive and negative, and delve into their significance in our modern world.Body:1. Economic Impact:Automobiles have had a profound impact on the global economy. The automotive industry is a major driver of economic growth, providing employment to millions of peopleworldwide. From manufacturing and assembly to sales and maintenance, the automotive sector contributessignificantly to GDP in many countries. Moreover, the automobile industry stimulates growth in related sectors such as steel, rubber, and electronics. However, the reliance on automobiles has also led to issues such as oil dependency and environmental degradation.2. Social Impact:The advent of automobiles has transformed social dynamics by facilitating greater mobility and connectivity. People can now travel long distances in relatively short periods, enabling easier access to employment, education, and leisure activities. The rise of car ownership has also influenced urbanization patterns, leading to the development of suburbs and the decentralization of cities. However, this increased reliance on cars has resulted in issues like traffic congestion, air pollution, and the erosion of community bonds in some areas.3. Environmental Impact:Automobiles are a significant contributor to environmental pollution, emitting greenhouse gases and other pollutants that harm air quality and contribute to climate change. The widespread use of fossil fuels in traditional internal combustion engines has led to concerns about carbon emissions and their impact on the planet. However, advancements in technology have introducedelectric and hybrid vehicles, offering a more sustainable alternative to traditional cars. The shift towards greener transportation options is essential for mitigating the environmental impact of automobiles.4. Technological Impact:The automotive industry is at the forefront of technological innovation, driving advancements in areas such as safety, connectivity, and autonomous driving. Features like anti-lock brakes, airbags, and collision avoidance systems have made cars safer than ever before, reducing the likelihood of accidents and saving lives. Moreover, the integration of GPS, Bluetooth, and otherconnectivity features has transformed the driving experience, enhancing convenience and productivity. The ongoing development of self-driving cars promises to revolutionize transportation further, offering benefitssuch as improved traffic flow and enhanced mobility for the elderly and disabled.Conclusion:In conclusion, automobiles have had a profoundimpact on society, shaping our economy, social interactions, and environment. While cars have brought about numerous benefits in terms of mobility and convenience, they also pose significant challenges, including environmental degradation and traffic congestion. As we move towards a more sustainable future, it is essential to address these issues through technological innovation, policy intervention, and changes in consumer behavior. By embracing greener transportation options and adopting smarter urban planning strategies, we can ensure that automobiles continue to enrich our lives without compromising the well-being of future generations.。

关于智能汽车总结英文作文

关于智能汽车总结英文作文

关于智能汽车总结英文作文英文:Smart cars, also known as intelligent vehicles, have been a hot topic in recent years. As a virtual assistant, I have been asked many questions about this topic. In my opinion, smart cars are a revolutionary development in the automobile industry.Firstly, smart cars are equipped with advanced sensors and cameras that can detect and analyze the surrounding environment. This allows the car to make decisions and take actions based on real-time information. For example, if a pedestrian suddenly appears in front of the car, the smart car can automatically apply the brakes to avoid a collision.Secondly, smart cars are connected to the internet and can communicate with other vehicles and infrastructure.This enables them to share information about traffic conditions, road hazards, and weather conditions. As aresult, smart cars can optimize their routes and avoid congestion, saving time and reducing fuel consumption.Thirdly, smart cars are equipped with advanced driver assistance systems (ADAS) that can assist drivers invarious ways. For example, lane departure warning systems can alert drivers when they are drifting out of their lane, while adaptive cruise control can maintain a safe distance from the vehicle in front.In conclusion, smart cars represent a majorbreakthrough in the automobile industry, and their benefits are numerous. They can improve safety, reduce congestion, save time, and enhance the driving experience.中文:智能汽车,也被称为智能化车辆,近年来成为了热门话题。

汽车专业毕业论文翻译中英文(全)AUTOMOBILE

汽车专业毕业论文翻译中英文(全)AUTOMOBILE

Mark Steffka, B.S.E., M.S., is with the Electromagnetic Compatibility (EMC) Engineering Group of General Motors (GM) Pow ertrain and is a faculty member of two universities in the Detroit, Michigan, area. He has over 25 years of industry experience in the design, development, and testing of military, aerospace and automotive electronics, including power, control, and radio frequency (RF) systems. Since 2000, he has been an adjunct lecturer at the University of Michigan-Dearborn, in the Electrical and Computer Engineering (ECE) department for the undergraduate and graduate classes on EMC, and was a Co-Principal Investigator for a United States’ National Science Foundation grant which resulted in the establishment of the campus’ EMC laboratory. For the college’s Engineering Professional Development office he is the instructor for engineering continuing education courses on “Automotive EMC” and “Antennas”. He is the recipient of faculty and alumni awards from the University of Michigan – Dearborn, College of Engineering and Computer Science, for his contributions to engineering education and the EMC curriculum. At the University of Detroit –Mercy he is an adjunct professor and teaches an undergraduate and graduate engineering course on EMC. He is a member of Institute of Electrical and Electronics Engineers(IEEE), has served as a session chair for the IEEE EMC Symposium and a technical session organizer for the Society of Automotive Engineers (SAE) World Congress. He has been a speaker at IEEE and SAE conferences held in the United States and international locations.His publications have covered topics on EMC, RFI, and was a co-author of the book“Automotive Electromagnetic Compatibility”. He has held an amateur radio license since 1975, with the call sign WW8MS, is a Life Member of ARRL, the National Association for Amateur Radio, and serves on the ARRL EMC Committee.马克Steffka,疯牛病,硕士,是与电磁兼容性(EMC)工程集团,通用汽车(GM)的动力,是两个在密歇根州底特律地区的大学任教。

汽车专业英语课文翻译

汽车专业英语课文翻译

汽车专业英语课文翻译汽车专业英语是一门涵盖广泛的学科,它涵盖了汽车工程学、汽车设计学、汽车制造学、汽车维修学等多个领域。

学习汽车专业英语是非常有必要的,因为这是一个国际化的语言,同时也是在汽车行业工作所必要掌握的技能之一。

下面是一篇汽车专业英语课文,通过对其进行翻译,可以更好地理解其中的内容。

原文:Car Engine LubricationThe importance of lubrication in the engine of a car cannot be overemphasized. Without proper lubrication, the moving parts of anengine would grind agnst each other, causing unnecessary wear and tearon the engine and ultimately leading to its premature flure.Lubrication is accomplished by an oil pump that circulates oil throughout the engine. The oil serves as a lubricant between the moving parts, reducing friction and preventing metal-to-metal contact. The oil also acts as a cooling agent, carrying away heat generated by the engine.Oil filters are used to remove impurities from the oil, which can cause damage to the engine if not removed. Over time, the oil in an engine becomes contaminated and loses its viscosity, or thickness. It is important to regularly change the oil in a car to ensure that it continues to provide proper lubrication and cooling.Synthetic oils are becoming increasingly popular for use in car engines. Synthetic oils are engineered to provide superior lubrication and are more resistant to breaking down and losing their viscosity overtime. They also provide better protection agnst wear and tear and can improve fuel efficiency.Overall, proper lubrication is essential for the longevity and performance of a car engine. Regularly changing the oil and using high-quality synthetic oils can help to ensure that a car engine remns in top condition.译文:汽车发动机润滑汽车发动机的润滑问题不可忽视。

电动汽车电子技术中英文资料外文翻译文献

电动汽车电子技术中英文资料外文翻译文献

电动汽车电子技术中英文资料外文翻译As the world energy crisis, and the war and the energy consumption of oil -- and are full of energy, in one day, someday it will disappear without a trace. Oil is not in resources. So in oil consumption must be clean before finding a replacement. With the development of science and technology the progress of the society, people invented the electric car. Electric cars will become the most ideal of transportation.In the development of world each aspect is fruitful, especially with the automobile electronic technology and computer and rapid development of the information age. The electronic control technology in the car on a wide range of applications, the application of the electronic device, cars, and electronic technology not only to improve and enhance the quality and the traditional automobile electrical performance, but also improve the automobile fuel economy, performance, reliability and emissions purification. Widely used in automobile electronic products not only reduces the cost and reduce the complexity of the maintenance. From the fuel injection engine ignition devices, air control and emission control and fault diagnosis to the body auxiliary devices are generally used in electronic control technology, auto development mainly electromechanical integration. Widely used in automotive electronic control ignition system mainly electronic control fuel injection system, electronic control ignition system, electronic control automatic transmission, electronic control (ABS/ASR) control system, electronic control suspension system, electronic control power steering system, vehicle dynamic control system, the airbag systems, active belt system, electronic control system and the automatic air-conditioning and GPS navigation system etc. With the system response, the use function of quick car, high reliability, guarantees of engine power and reduce fuel consumption and emission regulations meet standards.The car is essential to modern traffic tools. And electric cars bring us infinite joy will give us the physical and mental relaxation. Take for example, automatic transmission in road, can not on the clutch, can achieveautomatic shift and engine flameout, not so effective improve the driving convenience lighten the fatigue strength. Automatic transmission consists mainly of hydraulic torque converter, gear transmission, pump, hydraulic control system, electronic control system and oil cooling system, etc. The electronic control of suspension is mainly used to cushion the impact of the body and the road to reduce vibration that car getting smooth-going andstability. When the vehicle in the car when the road uneven road can according to automatically adjust the height. When the car ratio of height, low set to gas or oil cylinder filling or oil. If is opposite, gas or diarrhea. To ensure and improve the level of driving cars driving stability. Variable force power steering system can significantly change the driver for the work efficiency and the state, so widely used in electric cars. VDC to vehicle performance has important function it can according to the need of active braking to change the wheels of the car, car motions of state and optimum control performance, and increased automobile adhesion, controlling and stability. Besides these, appear beyond 4WS 4WD electric cars can greatly improve the performance of the value and ascending simultaneously. ABS braking distance is reduced and can keep turning skills effectively improve the stability of the directions simultaneously reduce tyre wear. The airbag appear in large programs protected the driver and passenger's safety, and greatly reduce automobile in collision of drivers and passengers in the buffer, to protect the safety of life.Intelligent electronic technology in the bus to promote safe driving and that the other functions. The realization of automatic driving through various sensors. Except some smart cars equipped with multiple outside sensors can fully perception of information and traffic facilities and to judge whether the vehicles and drivers in danger, has the independent pathfinding, navigation, avoid bump, no parking fees etc. Function. Effectively improve the safe transport of manipulation, reduce the pilot fatigue, improve passenger comfort. Of course battery electric vehicle is the key, the electric car battery mainly has: the use of lead-acid batteries, nickel cadmium battery, the battery, sodium sulfide sodium sulfide lithium battery, the battery, the battery, the flywheel zinc - air fuel cell and solar battery, the battery. In many kind of cells, the fuel cell is by far the most want to solve the problem of energy shortage car. Fuel cells have high pollution characteristics, different from other battery, the battery, need not only external constantly supply of fuel and electricity can continuously steadily. Fuel cell vehicles (FCEV) can be matched with thecar engine performance and fuel economy and emission in the aspects of superior internal-combustion vehicles.Along with the computer and electronic product constantly upgrading electric car, open class in mature technology and perfected, that drive more safe, convenient and flexible, comfortable. Now, the electric car from ordinary consumers distance is still very far away, only a few people in bandwagon. Electric cars with traditional to compete in the market, the carwill was electric cars and intelligent car replaced. This is the question that day after timing will come. ABS, GPS, and various new 4WD 4WS, electronic products and the modern era, excellent performance auto tacit understanding is tie-in, bring us unparalleled precision driving comfort and safety of driving.随着世界能源危机的持续,以及战争和能源-----石油的消耗及汽车饱有量的增加,能源在一天一天下降,终有一天它会消失的无影无踪。

2013:全球车界这一年2013 The year in cars

2013:全球车界这一年2013 The year in cars

2013:全球车界这一年2013: The year in carsChristmas arrived on schedule for the U.S. auto industry as a spurt of sales put the wrapping on a surprisingly successful year. Analysts predicted that sales in December could hit a seasonally-adjusted rate of 17 million, which would be the first month at that rate in nearly six years. That would push 2013 sales up to a robust 15.7 million units.2013年的圣诞节如期而至。

对美国汽车工业来说,年底猛增的销量为格外成功的2013年画上了句号。

分析师预计,12月销量的季节变动调整年率可能达到1700万辆,这也是近六年来首个达到这一销量的月份。

同时,它将使2013年全年销量达到1570万辆的高位。

Welcome as they were, surging sales weren't the biggest news of the year. Detroit celebrated when General Motors (GM, Fortune 500) made Mary Barra the auto industry's first female CEO, then held its breath while Ford (F, Fortune 500) CEO Alan Mulally dithered over a move to Seattle and Microsoft. The old Big Three, complaining about straining available production capacity, made plans to expand and hire. Tesla(TSLA) fired up electric car sales and refused to play by industry's rules, while Google(GOOG, Fortune 500) pioneered a car that drives itself.尽管销量大幅增长让人欢欣雀跃,但它并不是汽车业今年最重大的新闻。

smart cars课文翻译

smart cars课文翻译

能看、能听、有知觉、具嗅觉、会说话的智能汽车?还能自动驾驶?这听起来或许像是在做梦,但计算机革命正致力于把这一切变为现实。

智能汽车米基奥•卡库即便是过去70年间基本上没有多少变化的汽车工业,也将感受到计算机革命的影响。

汽车工业是20世纪最赚钱、最有影响力的产业之一。

目前世界上有5亿辆车,或者说每10人就有1辆车。

汽车工业的销售额达一万亿美元左右,从而成为世界上最大的制造业。

汽车及其行驶的道路,将在21世纪发生重大变革。

未来“智能汽车”的关键在于传感器。

“我们会见到能看、能听、有知觉、具嗅觉、会说话并能采取行动的车辆与道路,”正在设计未来智能汽车和智能道路的通用汽车公司ITS项目的技术主任比尔•斯普雷扎预言道。

美国每年有大约4万人死于交通事故。

在汽车事故中死亡或严重受伤的人数太多,我们已经不屑在报纸上提及。

这些死亡的人中至少有半数是酒后开车者造成的,另有许多死亡事故是驾驶员不小心所导致。

智能汽车能消除绝大多数这类汽车事故。

它能通过会感测空气中的酒精雾气的电子传感器检测开车者是否喝醉酒,并拒绝启动引擎。

这种车还能在遇窃后通报警方,告知车辆的确切地点。

能监控行车过程以及周围行车状况的智能汽车已经建造出来。

藏在保险杠里的微型雷达能对周围的汽车作扫描。

如果你发生重大行车失误(如变道时有车辆在你“盲点”内),计算机立即会发出警报。

在麻省理工学院媒介实验室,业已制造出能测知你行车时有多少睡意的样车,这对长途卡车司机意义尤其重要。

一连数小时注视着中夹分道线这样一个单调、几乎能催眠的过程是被严重低估的威胁生命的重大隐患。

为消除这一隐患,藏在仪表板里的一架微型相机可对准开车者的脸部及眼睛。

如果司机的眼帘合上一定时间,行车变得不稳,仪表板里的计算机就会向司机发出警报。

开车最头疼的两大麻烦是迷路和交通堵塞。

虽然计算机革命不可能彻底解决这两个问题,但却会带来积极的影响。

你汽车上与绕轨道运行的卫星发出的无线电信号调谐的传感器能随时精确地确定你汽车的方位,并告知交通阻塞情况。

汽车电子系统中英文对照外文翻译文献

汽车电子系统中英文对照外文翻译文献

汽车电子系统中英文对照外文翻译文献汽车电子系统中英文对照外文翻译文献(文档含英文原文和中文翻译)The Changing Automotive Environment:High-Temperature ElectronicsR. Wayne Johnson, Fellow, IEEE, John L. Evans, Peter Jacobsen, James R. (Rick) Thompson, and Mark ChristopherAbstract—The underhood automotive environment is harsh and current trends in the automotive electronics industry will be pushing the temperature envelope for electronic components. The desire to place engine control units on the engine and transmission control units either on or in the transmission will push the ambient temperature above 125℃. However, extreme cost pressures,increasing reliability demands (10 year/241 350 km) and the cost of field failures (recalls, liability, customer loyalty) will make the shift to higher temperatures occur incrementally. The coolest spots on engine and in the transmission will be used. These large bodies do provide considerable heat sinking to reduce temperature rise due to power dissipation in the control unit. The majority of near term applications will be at 150 ℃ or less andthese will be worst case temperatures, not nominal. The transition to X-by-wire technology, replacing mechanical and hydraulic systems with electromechanical systems will require more power electronics. Integration of power transistors and smart power devices into the electromechanical actuator will require power devices to operate at 175 ℃ to 200 ℃ . Hybrid electric vehicles and fuel cell vehicles will also drive the demand for higher temperature power electronics. In the case of hybrid electric and fuel cell vehicles, the high temperature will be due to power dissipation. The alternates to high-temperature devices are thermal management systems which add weight and cost. Finally, the number of sensors in vehicles is increasing as more electrically controlled systems are added. Many of these sensors must work in high-temperature environments. The harshest applications are exhaustgas sensors and cylinder pressure or combustion sensors. High-temperature electronics use in automotive systems will continue to grow, but it will be gradual as cost and reliability issues are addressed. This paper examines the motivation for higher temperature operation,the packaging limitations even at 125 C with newer package styles and concludes with a review of challenges at both the semiconductor device and packaging level as temperatures push beyond 125 ℃.Index Terms—Automotive, extreme-environment electronics.I. INTRODUCTIONI N 1977, the average automobile contained $110 worth of electronics [1]. By 2003 the electronics content was $1510 per vehicle and is expected to reach $2285 in 2013 [2].The turning point in automotive electronics was governmentTABLE IMAJOR AUTOMOTIVE ELECTRONIC SYSTEMSTABLE IIAUTOMOTIVETEMPERATUREEXTREMES(DELPHIDELCOELECTRONIC SYSTEMS) [3]regulation in the 1970s mandating emissions control and fuel economy. The complex fuel control required could not be accomplished using traditional mechanical systems. These government regulations coupled with increasing semiconductor computing power at decreasing cost have led to an ever increasing array of automotive electronics. Automotive electronics can be divided into five major categories as shown in Table I.The operating temperature of the electronics is a function of location, power dissipation by the electronics, and the thermal design. The automotive electronics industry defines high-temperature electronics as electronics operating above 125 ℃. However, the actual temperature for various electronics mounting locations varies considerably. Delphi Delco Electronic Systems recently published the typical continuous maximum temperatures as reproduced in Table II [3]. The corresponding underhood temperatures are shown in Fig. 1. The authors note that typical junction temperatures for integrated circuits are 10 ℃to15℃higher than ambient or baseplate temperature, while power devices can reach 25 ℃ higher. At-engine temperatures of 125℃ peak can be maintained by placing the electronics on theintake manifold.Fig. 1. Engine compartment thermal profile (Delphi Delco Electronic Systems) [3].TABLE III THEAUTOMOTIVEENVIRONMENT(GENERALMOTORS ANDDELPHIDELCO ELECTRONICSYSTEMS) [4]TABLE IV REQUIREDOPERATIONTEMPERATURE FORAUTOMOTIVEELECTRONIC SYSTEMS(TOYOTAMOTORCORP. [5]TABLE V MECHATRONICMAXIMUMTEMPERATURERANGES(DAIMLERCHRYSLER,EATONCORPORA TION, ANDAUBURNUNIVERSITY) [6]Fig. 2. Automotive temperatures and related systems (DaimlerChrysler) [8].automotive electronic systems [8]. Fig. 3 shows an actual measured transmission temperature profile during normal and excessive driving conditions [8]. Power braking is a commonly used test condition where the brakes are applied and the engine is revved with the transmission in gear.A similar real-world situation would be applying throttle with the emergency brake applied. Note that when the temperature reached 135℃, the over temperature light came on and at the peak temperature of 145℃, the transmission was beginning to smell of burnt transmission fluid.TABLE VI2002I NTERNATIONAL T ECHNOLOGY R OADMAPFOR S EMICONDUCTORS A MBI ENTOPERATINGTEMPERATURES FORHARSHENVIRONMENTS (AUTOMOTIVE)[9]The 2002 update to the International Technology Roadmap for Semiconductors (ITRS)did not reflect the need for higher operating temperatures for complex integrated circuits,but did recognize increasing temperature requirements for power and linear devices asshown in Table VI [9]. Higher temperature power devices (diodes and transistors) will beused for the power section of power converters and motor drives for electromechanicalactuators. Higher temperature linear devices will be used for analog control of powerconverters and for amplification and some signal processing of sensor outputs prior totransmission to the control units. It should be noted that at the maximum rated temperaturefor a power device, the power handling capability is derated to zero. Thus, a 200℃ ratedpower transistor in a 200℃ environment would have zero current carrying capability. Thus,the actual operating environments must be lower than the maximum rating.In the 2003 edition of the ITRS, the maximum junction temperatures identified forharsh-environment complex integrated circuits was raised to 150℃through 2018 [9]. Theambient operating temperature extreme for harsh-environment complex integrated circuits was defined as 40℃to 125℃through 2009, increasing to 40℃to 150℃for 2010 and beyond. Power/linear devices were not separately listed in 2003.The ITRS is consistent with the current automotive high-temperature limitations. Delphi Delco Electronic Systems offers two production engine controllers (one on ceramic and one on thin laminate) for direct mounting on the engine. These controllers are rated for operation over the temperature range of 40℃to 125℃. The ECU must be mounted on the coolest spot on the engine. The packaging technology is consistent with 140℃ operation, but the ECU is limited by semiconductor and capacitor technologies to 125℃.The future projections in the ITRS are not consistent with the desire to place controllers on-engine or in-transmission. It will not always be possible to use the coolest location for mounting control units. Delphi Delco Electronics Systems has developed an in-transmission controller for use in an ambient temperature of 140℃[10] using ceramic substrate technology. DaimlerChrysler is also designing an in-transmission controller for usewith a maximum ambient temperature of 150℃ (Figs. 4 and 5) [11].II. MECHATRONICSMechatronics, or the integration of electrical and mechanical systems offers a number ofadvantages in automotive assembly. Integration of the engine controller with the engine allows pretest of the engine as a complete system prior to vehicle assembly. Likewise with the integration of the transmission controller and the transmission, pretesting and tuning to account for machining variations can be performed at the transmission factory prior to shipment to the automobile assembly site. In addition, most of the wires connecting to a transmission controller run to the solenoid pack inside the transmission. Integration of the controller into the transmission reduces the wiring harness requirements at the automobile assembly level.Fig. 4. Prototype DaimlerChrysler ceramic transmission controller [11]Fig. 5. DaimlerChrysler in-transmission module [11].The trend in automotive design is to distribute control with network communications. As the industry moves to more X-by-wire systems, this trend will continue. Automotivefinalassembly plants assemble subsystems and components supplied by numerous vendors to build the vehicle. Complete mechatronic subsystems simplify the design, integration, management, inventory control, and assembly of vehicles. As discussed in the previous section, higher temperature electronics will be required to meet future mechatronic designs.III. PACKAGINGCHALLENGES AT125℃Trends in electronics packaging, driven by computer and portable products are resulting in packages which will not meet underhood automotive requirements at 125℃. Most notable are leadless and area array packages such as small ball grid arrays (BGAs) and quadflatpacks no-lead (QFNs). Fig. 6 shows the thermal cycle test 40 ℃to 125℃ results for two sizes of QFN from two suppliers [12]. A typical requirement is for the product to survive 2000–2500 thermal cycles with<1% failure for underhood applications. Smaller I/O QFNs have been found to meet the requirements.Fig. 7 presents the thermal cycle results for BGAs of various body sizes [13]. The die size in the BGA remained constant (8.6 *8.6 mm). As the body size decreases so does the reliability. Only the 23-mm BGA meets the requirements. The 15-mm BGA with the 0.56-mm-thick BT substrate nearly meets the minimum requirements. However, the industry trend is to use thinner BT substrates (0.38 mm) for BGA packages.One solution to increasing the thermal cycle performance of smaller BGAs is to use underfill. Capillary underfill was dispensed and cured after reflow assembly of the BGA. Fig. 8 shows a Weibull plot of the thermal cycle data for the 15-mm BGAs with four different underfills. Underfill UF1 had no failures after 5500 cycles and is, therefore, not plotted. Underfill, therefore, provides a viable approach to meeting underhood automotive requirements with smaller BGAs, but adds process steps, time, and cost to the electronics assembly process.Since portable and computer products dominate the electronics market, the packages developed for these applications are replacing traditional packages such as QFPs for new devices. The automotive electronics industry will have to continuedeveloping assembly approaches such as underfill just to use these new packages in current underhood applications.IV. TECHNOLOGY CHALLENGES ABOVE125 ℃The technical challenges for high-temperature automotive applications are interrelated, but can be divided into semiconductors, passives, substrates,interconnections, and housings/connectors. Industries such as oil well logging have successfully fielded high-temperature electronics operating at 200℃and above. However, automotive electronics are further constrained by high-volume production, low cost, and long-term reliability requirements. The typical operating life for oil well logging electronics may only be 1000 h, production volumes are in the range of 10s or 100s and, while cost is a concern, it is not a dominant issue. In the following paragraphs, the technical challenges for high-temperature automotive electronics are discussed.Semiconductors: The maximum rated ambient temperature for most silicon basedintegrated circuits is 85℃, which is sufficient for consumer, portable, and computing product applications. Devices for military and automotive applications are typically rated to 125℃. A few integrated circuits are rated to 150℃, particularly for power supply controllers and a few automotive applications. Finally, many power semiconductor devices are derated to zero power handling capability at 200℃.Nelmset al.and Johnsonet al.have shown that power insulated-gate bipolar transistors (IGBTs) and metal–oxide–semiconductorfield-effect transistors (MOSFETs) can be used at 200℃[14], [15]. The primary limitations of these power transistors at the higher temperatures are the packaging (the glass transition temperature of common molding compounds is in the 180℃to 200℃range) and the electrical stress on the transistor during hard switching.A number of factors limit the use of silicon at high temperatures. First, with a bandgap of 1.12 eV, the silicon p-n junction becomes intrinsic at high temperature (225℃to 400℃depending on doping levels). The intrinsic carrier concentration is given by (1)As the temperature increases, the intrinsic carrier concentration increases. When the intrinsic carrier concentration nears the doping concentration level, p-n junctions behave as resistors, not diodes, and transistors lose their switching characteristics. One approach used in high-temperature integrated circuit design is to increase the doping levels, which increases the temperature at which the device becomes intrinsic. However, increasing the doping levels decreases the depletion widths, resulting in higher electricfields within the device that can lead to breakdown.A second problem is the increase in leakage current through a reverse-biased p-n junction with increasing temperature. Reverse-biased p-n junctions are commonly used in IC design to provide isolation between devices. The saturation current (I,the ideal reverse-biascurrent of the junction) is proportional to the square of the intrinsic carrier concentrationwhere Ego=bandgap energy atT= 0KThe leakage current approximately doubles for each10℃rise in junction temperature. Increased junction leakage currents increase powerdissipation within the device and can lead to latch-up of the parasitic p-n-p-n structure incomplimentary metal–oxide–semiconductor (CMOS) devices. Epitaxial-CMOS(epi-CMOS) has been developed to improve latch-up resistance as the device dimensionsare decreased due to scaling and provides improved high-temperature performancecompared to bulk CMOS.Silicon-on-insulator (SOI) technology replaces reverse-biased p-n junctions withinsulators, typically SiO2 , reducing the leakage currents and extending the operating rangeof silicon above 200℃. At present, SOI devices are more expensive than conventional p-njunction isolated devices. This is in part due to the limited use of SOI technology. With the continued scaling of device dimensions, SOI is being used in some high-performance applications and the increasing volume may help to eventually lower the cost.Other device performance issues at higher temperatures include gate threshold voltage shifts, decreased noise margin, decreased switching speed, decreased mobility, decreased gain-bandwidth product, and increased amplifier input–offset voltage [16]. Leakage currents also increase for insulators with increasing temperature. This results in increased gate leakage currents, and increased leakage of charge stored in memory cells (data loss). For dynamic memory, the increased leakage currents require faster refresh rates. For nonvolatile memory, the leakage limits the life of the stored data, a particular issue for FLASH memory used in microcontrollers and automotive electronics modules.Beyond the electrical performance of the device, the device reliability must also be considered. Electromigration of the aluminum metallization is a major concern. Electromigration is the movement of the metal atoms due to their bombardment by electrons (current flow). Electromigration results in the formation of hillocks and voids in the conductor traces. The mean time to failure (MTTF) for electromigration is related to the current density (J)and temperature(T) as shown in (3)The exact rate of electromigration and resulting time to failure is a function of the aluminum microstructure. Addition of copper to the aluminum increases electromigration resistance. The trend in the industry to replace aluminum with copper will improve the electromigration resistance by up to three orders of magnitude [17].Time dependent dielectric breakdown (TDDB) is a second reliability concern. Time to failure due to TDDB decreases with increasing temperature. Oxide defects, including pinholes, asperities at the Si–SiO2 interface and localized changes in chemical structure that reduce the barrier height or increase the charge trapping are common sources of early failure [18]. Breakdown can also occur due to hole trapping (Fowler–Nordheim tunneling). The holes can collect at weak spots in the Si–SiO2 interface, increasing the electricfield locally and leading to breakdown [18]. The temperature dependence of time-to-breakdown(tBD) can be expressed as [18]Values reported for Etbd vary in the literature due to its dependence on the oxidefield and the oxide quality. Furthermore, the activation energy increases with breakdown time [18].With proper high-temperature design, junction isolated silicon integrated circuits can be used to junction temperatures of 150℃to 165℃, epi-CMOS can extend the range to 225℃to 250℃ and SOI can be used to 250℃ to 280℃ [16, pp. 224]. High-temperature, nonvolatile memory remains an issue.For temperatures beyond the limits of silicon, silicon carbidebased semiconductors are being developed. The bandgap of SiC ranges from 2.75–3.1 depending on the polytype. SiC has lower leakage currents and higher electric field strength than Si. Due to its wider bandgap, SiC can be used as a semiconductor device at temperatures over 600℃. The primary focus of SiC device research is currently for power devices. SiC power devices may eventuallyfind application as power devices in braking systems and direct fuel injection. High-temperature sensors have also been fabricated with SiC. Berget al.have demonstrated a SiCbased sensor for cylinder pressure in combustion engines [19] at up to 350℃ and Casadyet al.[20] have shown a SiC-based temperature sensor for use to 500℃. At present, the wafer size, cost, and device yield have made SiC devices too expensive for general automotive use. Most SiC devices are discrete, as the level of integration achieved in SiC to date is low.Passives: Thick and thin-film chip resistors are typically rated to 125 ℃. Naefeet al.[21] and Salmonet al.[22] have shown that thick-film resistors can be used at temperatures above 200℃if the allowable absolute tolerance is 5% or greater. The resistors studied were specifically formulated with a higher softening point glass. The minimum resistance as afunction of temperature was shifted from 25℃to 150℃to minimize the temperature coefficient of resistance (TCR) over the temperature range to 300℃. TaN and NiCr thin-film resistors have been shown to have less than 1% drift after 1000 h at 200℃ [23]. Thus, for tighter tolerance applications, thin-film chip resistors are preferred. Wire wound resistors provide a high-temperature option for higher power dissipation levels [21].High-temperature capacitors present more of a challenge. For low-value capacitors, negative-positive-zero (NPO) ceramic and MOS capacitors provide low-temperature coefficient of capacitance (TCC) to 200℃. NPO ceramic capacitorshave been demonstrated to 500℃ [24]. Higher dielectric constant ceramics (X7R, X8R, X9U), used to achieve the high volumetric efficiency necessary for larger capacitor values, exhibit a significant capacitance decrease above the Curie temperature, which is typically between 125℃ to 150℃. As the temperature increases, the leakage current increases, the dissipation factor increases, and the breakdown strength decreases. Increasing the dielectric tape thickness to increase breakdown strength reduces the capacitance and is a tradeoff. X7R ceramic capacitors have been shown to be stable when stored at 200℃[23]. X9U chip capacitors are commercially available for use to 200 C, but there is a significant decrease in capacitance above 150℃.Consideration must also be given to the capacitor electrodes and terminations. Ni is now being substituted for Ag and PdAg to lower capacitor cost. The impact of this change on hightemperature reliability must be evaluated. The surface finish for ceramic capacitor terminations is typically Sn. The melting point of the Sn (232℃) and its interaction with potential solders/brazes must also be considered. Alternate surfacefinishes may be required.For higher value, low-voltage requirements, wet tantalum capacitors show reasonable behavior at 200℃ if the hermetic seal does not lose integrity [23]. Aluminum electrolytics are also available for use to 150℃. Mica paper (260℃) and Teflonfilm (200℃) capacitors can provide higher voltage capability, but are large and bulky [25]. High-temperature capacitors are relatively expensive. V olumetrically efficient, high-voltage, highcapacitance, high-temperature and low-cost capacitors are still needed.Standard transformers and inductor cores with copper wire and teflon insulation are suitable for operation to 200℃. For higher temperature operation, the magnetic core, the conductor metal (Ni instead of Cu) and insulator must be selected to be compatible with the higher temperatures [16, pp. 651–652] Specially designed transformers can be used to 450℃ to 500℃, however, they are limited in operating frequency.Crystals are required for clock frequency generation for microcontrollers. Crystals with acceptable frequency shift over the temperature range from 55℃to 200℃have been demonstrated [22]. However, the selection of packaging materials and assembly process for the crystal are key to high-temperature performance and reliability. For example, epoxies used in assembly must be compatible with 200℃ operation.Substrates: Thick-film substrates with gold metallization have been used in circuits to 500℃[21], [23]. Palladium silver, platinum silver, and silver conductors are morecommonly used in automotive hybrids for reduced cost. Silver migration has been observed with an unpassivated PdAg thick-film conductor under bias at 300℃ [21]. The time-to-failure needs to be examined as a function of temperature and bias voltage with and without passivation. Low-temperature cofired ceramic (LTCC) and high-temperature cofired ceramic (HTCC) are also suitable for high-temperature automotive applications. Embedded resistors are standard to thick-film hybrids, LTCC, and some HTCC technologies. As previously mentioned, thick-film resistors have been demonstrated at temperatures 200℃. Dielectric tapes for embedded capacitors have also been developed for LTCC and HTCC. However, these embedded capacitors have not been characterized for high-temperature use.High-Tg laminates are also available for fabrication of hightemperature printed wiring boards. Cyanate esters [Tg=250℃by differential scanning calorimetry (DSC)], polyimide (260℃by DSC), and liquid crystal polymers(Tm>280℃)provide options for use to 200℃. Cyanate ester boards have been used successfully in test vehicles at 175℃, but failed when exposed to 250℃ [26]. The higher coefficient of thermal expansion (CTE) of the laminate substrates compared to the ceramics must be considered in the selection of component attachment materials. The temperature limits of the laminates with respect to assembly temperatures must also be carefully considered. Work is ongoing to develop and implement embedded resistor and capacitor technology for laminate substrates for conventional temperature ranges. This technology has not been extended to high-temperature applications.One method many manufacturers are using to address the higher temperatures whilemaintaining lower cost is the use of laminate substrates attached to metal. The typical design involves the use of higher Tg( +140℃ and above) laminate substrates attached to an aluminum plate (approximately 2.54-mm thick) using a sheet or liquid adhesive. To assist in thermal performance, the laminate substrate is often thinner (0.76 mm) than traditional automotive substrates for under-the-hood applications. While this design provides improved thermal performance, the attachment of the laminate to aluminum increases the CTE for the overall substrates. The resultant CTE is very dependent on the ability of the attachment material to decouple the CTE between the laminate substrate and the metal backing. However, regardless of the attachment material used, the combination of the laminate and metal will increase the CTE of the overall substrate above that of a stand-alone laminate substrate. This impact can be quite significant in the reliability performance for components with low CTE values (such as ceramic chip resistors). Fig. 9 illustrates the impact of two laminate-to-metal attachment options compared to standard laminate substrates [27], [28]. The reliability data presented is for 2512 ceramic chip resistors attached to a 0.79-mm-thick laminate substrate attached to aluminum using two attachment materials. Notice that while one material significantly outperforms the other, both are less reliable than the same chip resistor attached to laminate without metal backing.This decrease in reliability is also exhibited on small ball grid array (BGA) packages. Fig. 10 shows the reliability of a 15-mm BGA package attached to laminate compared to the same package attached to a laminate substrate with metal backing [27], [28]. The attachment material used for the metal-backed substrate was the best material selected from previous testing. Notice again that the metal-backed substrate deteriorates the reliability. This reliability deterioration is of particular concern since many IC packages used for automotive applications are ball grid array packages and the packaging trend is for reduced packaging size. These packaging trends make the use of metal-backed substrates difficult for next generation products.One potential solution to the above reliability concern is the use of encapsulants and underfills. Fig. 11 illustrates how conformal coating can improve component reliability for surface mount chip resistors [27], [28]. Notice that the reliability varies greatly depending on material composition. However, for components which meet a marginal level of reliability, conformal coatings may assist the design in meeting the target reliability requirements. The same scenario can be found for BGA underfills. Typical underfill materials may extend the component life by a factor of two or more. For marginal IC packages, this enhancement may provide enough reliability improvement toall the designs to meet under-the-hood requirements. Unfortunately, the improvements provided byencapsulants and underfills increase the material cost and adds one or more manufacturing processes for material dispense and cure.Interconnections: Methods of mechanical and electrical interconnection of the active and passive components to the board include chip and wire,flip-chip, and soldering of packaged parts. In chip and wire assembly, epoxy die-attach materials can beused to 165℃ [29]. Polyimide and silicone die-attach materials can be used to 200℃. For higher temperatures, SnPb ( >90Pb), AuGe, AuSi, AuSn, and AuIn have been used. However,with the exception of SnPb, these are hard brazes and with increasing die size, CTE mismatches between the die and the substrate will lead to cracking with thermalcycling. Ag–glass die attach has also been used with Si die, but the die stresses are high [30]. The processing temperatures (330℃ to 425℃) required for the hard brazes and the Ag-glass are not compatible with the laminate-based substrates.Small-diameter Au and Pt wire bonding can be used to 500℃ on thick-film Au with Au pads on the SiC die [22].However, most Si die have aluminum metallization and the use of Au wire is limited to 180 ℃to 200℃due to Au–Al intermetallic formation and Kirkendall voiding. Use of Al wire creates a monometallic bond at the die interface. Pd-doped thick-film Au conductors have been developed for compatibility with small-diameter Al wire to 300℃[31]. While Al wire can be bonded to silver bearing thick-film conductors, the primary concern is corrosion due to the galvanic potential between Al and Ag [32]. Chlorine contamination in the presence of moisture is the primary corrosion mechanism. Increasing the Pd content of the PdAg conductor, extreme care in the cleanliness of the assembly and potting in silicone gel can be used to reduce the risk of corrosion. Au wire can be bonded to pure Ag thick films, but the Ag migrates along the surface of the gold wire at elevated temperatures [33].On laminate substrates, Ni/Aufinishes over the copper are compatible with Au wire (thick Aufinish) and with Al wire (thin Aufinish). In the case of Al wire, the Au layer must be thin so the Al wire bonds to the underlying Ni. Intermetallic formation and voiding will occur if the Au layer is too thick. If a phosphorus containing Ni is used, the phosphorus content should be limited to 6 –8 .Al–Ni bonds are potentially reliable to 300℃, but further study is required [32].For wire bonding to power devices, large-diameter Al wire bonding is used. In some。

新能源电动汽车英文翻译

新能源电动汽车英文翻译

湖北文理学院毕业设计(论文)英文翻译题目在采用PWM逆变器下的变速感应电机驱动器中的传导性排放轴承电流的减少和鉴定专业机械设计制造及其自动化班级机制0911姓名杨成杰学号2009116140指导教师职称周立文(学校)冯南(企业)2013年5月10日┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊Minimization and identification of conducted emission bearing current in variable speed induction motor drives using PWM inverterAbstract. The recent increase in the use of speed control of ac induction motor for variable speed drive using pulse width modulation (PWM) inverter is due to the advent of modern power electronic devices and introduction of microprocessors. There are many advantages of using ac induction motor for speed control applications in process and aerospace industries, but due to fast switching of the modem power electronic devices,the parasitic coupling produces undesirable effects. The undesirable effects include radiated and conducted electromagnetic interference (EMI) which adversely affect nearby computers, electronic/electrical instruments and give rise to the flow of bearing current in the induction motor. Due to the flow of bearing current in the induction motor,electrical discharge machining takes place in the inner race of the bearing which reduces the life of the bearing. In high power converters and inverters, the conducted and radiated emissions become a major concern. In this paper, identification of bearing current due to conducted emission, the measurement of bearing current in a modified induction motor and to minimize the bearing current are discussed. The standard current probe, the standard line impedance stabilization network (LISN)), the electronics interface circuits are used to measure high frequency common mode current,bearing current and to minimize the conducted noise from the system. The LISN will prevent the EMI noise entering the system from the supply source by conductive methods, at the same time prevents the EMI generated if any due to PWM, fast switching in the system, will not be allowed to enter the supply line. For comparing the results with Federal Communications Commission (FCC) and Special Committee on Radio Interference (CISPR) standards, the graphs are plotted with frequency Vs,line voltage in dB μV,common mode voltage in dB μV and the bearing current in dBμA without and with minimizing circuits.Keywords. EMI;a.c.drives; bearing current.┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊1.IntroductionWith the development of power electronic devices like the insulated gate bi-polar transistor (IGBT), the power MOSFET and the advances in microprocessors, the ac induction motor is becoming popular in variable speed drives with PWM inverter circuits. Since the rise time and fall time of the IGBT are less than 200 nanoseconds, the dissipation loss across the device becomes very less and there by increases the performance of the circuit. However, due to the fast switching action of the device the dw/dt of the inverter output becomes large. This high dw/dX voltage transition coupled with parasitic stray capacitance in the system causes high frequency line to ground current or common mode current and hence bearing current; introducing large EMI in the system.In figure 1,Ilg (the magnitude of ground current) depends on the cable capacitance, machine capacitance,parasitic capacitance of the devices, the output voltage rise time (tr ise) and the system voltage, V oltage gets induced in the rotor shaft of the induction motor due to fast switching. This induced voltage generates circulating current and flows to the ground through the bearing resulting in an electrical discharge machining (EDM) action at the inner race of the bearing.Due to the EDM, the life of the bearing reduces. The common mode voltage Vng (figure 1) can be measured from the star point of the stator winding of the induction motor (IM) or connected node of three 1MO resistors to the ground in case of the IM connected in delta. The reasons for common mode voltage generation are already discussed.It is noted that the sum of sinusoidal balanced phase voltages in a 3-phase IM at the star point is equal to zero. Therefore,Vng=(Van+Vbn+Vcn)/3 ⑴Common mode current=Cdν/dt⑵┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊Where ‘C’ is the total capacitance of the system and V an,V bn and V cn are the voltages between the respective phases and the star point in the stator winding2.Existing conducted emission, bearing current identification and measurement methodsV arious methods have been proposed to reduce the conducted emission common mode voltage and the measurement of bearing current. An output reactor connected to the inverter out put reduces the dv/dt of the inverter output voltage, which in turn reduces the common mode voltage at the star point of the IM and the flow of bearing current. Wious configurations of L-C filter have been reported. The inductance ‘L,and capacitance ‘C’ are designed according to the permitted insertion loss for the given power rating of the inverter. The draw back of the filter method is the voltage drop across the filter.In the passive filter method, the transformer secondary should be isolated for its successful operation and this is not possible in many process/engineering industries. An active common noise canceller has been tried to eliminate the conducted emission common mode voltage produced by the PWM inverter. The active common noise canceller superimposes a compensating voltage applied at the star point. This has the same amplitude as the common mode voltage produced by the PWM inverter but has opposite polarity; hence the common mode voltage applied to the load is cancelled completely. However, this method is suitable only for low voltage/power applications due to the resistive current sensor.Julian proposed a filter circuit for reducing the common mode voltage.This filter circuit is based on current sensing and it operates a fast transistor amplifier for the current compensation. Significant attenuation of the common mode voltage occurs.The method presented in this paper is different from earlier methods. Here,the phase current is sensed by the individual current transformer (CT) and is suitable for any voltage level. Since the CT is used for sensing the phase current there is no voltage drop in the sensor there by there is no reduction of terminal voltage applied to the IM.In tiidr circuit, the primary winding of the transformer is connected in series in each of the phases. Since the circuit uses the transformer, there is voltage drop due to the phase current of the IM, hence the terminal voltage applied to the IM gets reduced. The circuit is also used to reduce the common mode voltage and the common mode current at the star point of the IM. But this circuit is useful for the low voltage and low power applications.In the present work,the standard LISN,the standard current probes are used and the results are compared without and with the common mode voltage reduction circuits for the PWM inverter used for variable speed ac IM drives.┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊Julian proposed a filter circuit for reducing the common mode voltage.This filter circuit is based on current sensing and it operates a fast transistor amplifier for the current compensation. Significant attenuation of the common mode voltage occurs.The method presented in this paper is different from earlier methods. Here,the phase current is sensed by the individual current transformer (CT) and is suitable for any voltage level. Since the CT is used for sensing the phase current there is no voltage drop in the sensor there by there is no reduction of terminal voltage applied to the IM.In tiidr circuit,the primary winding of the transformer is connected in series in each of the phases. Since the circuit uses the transformer, there is voltage drop due to the phase current of the IM, hence the terminal voltage applied to the IM gets reduced. The circuit is also used to reduce the common mode voltage and the common mode current at the star point of the IM. But this circuit is useful for the low voltage and low power applications.In the present work,the standard LISN,the standard current probes are used and the results are compared without and with the common mode voltage reduction circuits for the PWM inverter used for variable speed ac IM drives.┊┊┊┊┊┊┊┊┊┊┊┊┊装┊┊┊┊┊订┊┊┊┊┊线┊┊┊┊┊┊┊┊┊┊┊┊┊在采用PWM逆变器下的变速感应电机驱动器中的传导性排放轴承电流的减少和鉴定摘要由于现代电力电子器件的出现和微处理器的采用,交流异步电机的速度控制被广泛应用了,这种使用用于使用PWM逆变器的变速驱动器中。

(完整版)新能源汽车英文资料翻译

(完整版)新能源汽车英文资料翻译

New energy vehiclesNew energy vehicles is a new automotive product type, because the development time is not long, the technology is still not mature, so has not yet formed a widely accepted concept, but it certainly is new energy automobile is compared to the traditional fuel vehicles, the new energy vehicles, according to the definition of the scope of the concept size, there are two types of narrow and broad statement.Generalized: used in gasoline and diesel oil as power source of the car.Special: a non conventional vehicle fuel as the advanced technology of powercontrol and drive, the formation of technology has advanced principle, new technology, new structure of automobile.New energy vehicles, including fuel cell cars, hybrid cars, hydrogen powered cars and solar car etc..Hybrid electric vehicle is a vehicle equipped with more than two source:battery, fuel cell, solar cell,Turbine locomotive.The current hybrid vehicles generally refers to the diesel generator, plus battery cars.Advantages:Vehicle starting and stopping, driven only by the battery, do not reach a certain speed,The engine will not work, therefore, can make the engine has been maintained in the best condition, good dynamic performance, very low emissions, and the source and power are the engine, gas can only. Its principle is simply the motor and engine the reasonable arrangement of power output machine.Disadvantages:There are two sets of power,Management control system plus two sets of dynamic,Complex structure,Difficult,The price is high and long distance speed is not fuel-efficient.Pure electric vehicle is composed entirely of rechargeable battery (such as lead-acid batteries, nickel cadmium batteries, nickel hydrogen batteries or lithium ion batteries provide power source for car).Pure electric vehicle motor fuel to replace machine, low noise, no pollution,and by the use of electrical energy single, electric control system of hybrid electric vehicle is greatly simplified compared. Reduces the cost, the price also can compensate the battery. Pure electric vehicle is mainly used for the airport, community, courts and other places.Disadvantages: only in certain range, the market is smaller. The main reason is because of various categories, the prevailing prices high, life is short, the size and weight of the large, long charging time, serious shortcomings.Fuel cell vehicles refers to the hydrogen, methanol as the fuel, the current through the chemical reaction, depending on the electric motor driven vehicles. The battery power is through the chemical reaction of hydrogen and oxygen, rather than through the combustion, directly into electrical energy.The chemical reaction process of fuel cell does not produce harmful products,therefore the fuel cell vehicle is a car without pollution, energy conversion efficiency of the fuel cell of high 2 ~ 3 times than the internal combustion engine, so the use of environmental protection and energy, fuel cell vehiclesand is an ideal vehicle.Household car is more and more, oil prices more and more expensive, every car company began to research and development of new energy vehicles.1.IntroductionChery since 2000 we have engaged in the research and development of the new energy vehicles, through more than ten years of independent innovation, the new energy vehicles business experienced three important stages of development; From 2001 to 2005, the company with the national 863 project for the carrier, joint top Chinese universities and research institutes, undertake and completed a number of national 863 electric vehicle research subject, the major projects in just3 years time, complete the ISG moderate hybrid and pure electric vehicles of the rational development model. From 2005 to 2008, approved by ministry of a "by national energy conservation and environmental protection automotive engineering technology research center", based on the basic completion of the new energy vehicles of the industrialization of the research and development, the establishment of a sound energy saving and new energy vehicle development system, the world first-class new energy test center, trial-produce center, in the electric car key components and core technology, the company has formed a set of key parts research, testing, application and industrialization of calibration ability, in the motor, motor drive system, DC/DC, advanced power battery, the battery management system, the vehicle controller, initially forming a batch production ability, have the new energy vehicles, the core technology of the calibration technology and experiment technology. New energy vehicles special vehicle accessories system, including: electric air conditioning, the electric steering (EPS), electric vacuum, electric heating, electronic brake system has been formed series products, with the bulk production ability. The first paragraph A5-BSG hybrid cars in 2008 listed in wuhu, batch, dalian city, as the taxi are greatly welcomed by customers, but also become henan, guangdong, xinjiang, shanxi, fujian, zhejiang and other private user's private cars. Moderate hybrid (ISG) car has entered the small batch production stage, which is DuoGe new energy vehicle demonstration pilot city, as the lease, the first choice of state-owned cars models. Miniature pureelectric vehicles and intermediate pure electric vehicles and miniature electric buses, pure electric taxies, pure electric bus industrialization development also has made a great progress. At the same time, we also pay more attention on high efficiency and energy saving the gasoline engine, the diesel engine technology, flexible fuel automobile technology, strong hybrid technology, fuel cell vehicle technology, comprehensive development, a number of technical are in the leading domestic level. Since 2009, the company launched a new comprehensive energy car large-scale industrialization and application, chery A5ISG, A5BSG, S11EV and S18EV has got a letter issued by the department work products in the country the announcement and saving energy and environmental protection products recommended directory; In January 2009, chery automobile company "energy conservation and environmental protection technology platform construction project" get "country" first prize progress prize in science and technology. In March 2010 the first batch of economical pure electric car delivery customers use and chery new energy vehicle technology Co., LTD. was set up, marked the new energy vehicle company opened a new chapter in the business2.Main discussion1. The advantages of new energy vehicles (strength) analysisThe state information center forecast, China's passenger car market growth situation will continue for at least a further 15 years, annual growth needs roughly equivalent to GDP growth in the 1.5 times or so. In 2009 a car into the family (middle-income families buy have ability). From the qualitative Angle, car market at least will also have 20 years of fast growth. If domestic GDP2020 years than in 2000, around 2020 words to quadruple our country will more than the United States, automobile demand will reach 20 million cars, as the world's largest car market.Since 1988, in fujian province, and become the largest of the special economic zone, the provincial capital of hainan province since the haikou city become haikou city won the top ten cities, and national environmental protection model city, national sanitary city, China excellent tourist city, national garden city, national historical and cultural city, a national civilization city advanced city, the work the comprehensive improvement of the urban environment, "China excellent city living environment prize" and so on the city reputation. Hainan consistent development of the island, environmental protection island is travel health island, new energy, cars are the city's another environmental and health. From the economic development prospects and haikou city car market development scale, in the city to see public transport, taxi, business, environmental sanitation and postal and other public service and other fields, new energy vehicles have a large market space.2.New energy vehicles disadvantages (weakness) analysis(1) the traffic congestion, chaos. Nearly five years motor vehicles and drivers haikou number to sustained growth, road traffic management brought unprecedented pressure. According to information, haikou city road 859 existing with a total length of 1797 km, motor vehicle ownership of 250000 vehicles per day, and are at a 200 rate, of which the amount of private cars is as high as 26%, to the current haikou is obviously can't meet the transportation network of motor vehicle driving demand. Second, the city center area road reconstruction speed slow, to the original road reconstruction is not form system engineering, special is ages ago, DuanTouLu neck road has not been effective reform. Constrain the other major trunk and disperse traffic volume ability. Again, there are pure state road traffic and the lagging problems, such as haikou existing parking lot for cannot accommodate next overmuch vehicles, lead to the driver in some sections on both sides of the parking. This makes originally not wide road become more narrow. There is traffic development, citizens behind haikou travel a single pattern, motorcycles, cars, etc, make travel has become the public preferred way material utilization rate reduced. If the road is sabafish intermediary haikou motorcycles and elegant demeanour car most serious place one of the flood. In the waiting by the shop, packed with motorcycles and elegant demeanour car. They ZhanDao rob guest, obstruct the other vehicles, normal traffic caused easily traffic jam. Haikou traffic police is insufficient, the control points, blind area, people's traffic, too weak, the bus lines concept overlap serious, site layout is not reasonable. Some sections of the serious traffic jam, especially holidays or rush, traffic is chaos.(2) for less than for parking. Data shows, at present, haikou has more than 160000vehicles auto possession, and with more than 20000 cars a year speed increases. The current haikou on an average day with more than 60 new car the road, in a day and added between so many parking obviously is not very practical. In the next few years, whether public or parking garage area will be more strained3.Wide range of reading up to dataHybrid cars advantage is: 1, the hybrid power may according to the average need after the power to determine the maximum power of internal combustion engine, right now in oil consumption is low, less pollution the optimal conditions work. Need high power internal combustion engine power shortage, the battery to supplement; Load for a little while and surplus power can power generation to recharge the battery, due to the internal combustion engine, the battery and sustainable work can constantly, so their trip and charging as ordinary cars. 2, for there is a battery, can be very convenient recycling braking, hill and idle when energy. 3, in the noisy city, can shut by internal combustion engines, battery, to achieve "drive alone zero discharge". 4, with internal combustion engines can be very convenient solve energy consumption of the air conditioning, heating, such as pure electric vehicle defrosting problems met. 5, can use the existing gas station come on, don't have to investment. 6, can let the battery to keep in good working condition, not happened, filling put, prolong the service life, and reduce the cost.Faults: long distance high-speed basic can't save fuel4.PresentationThe essay take about chery Hybird car in china.This kind of car is very useful for every family.because of Hybird car can save petrol .so it’s cheaper than other cars. Sometimes,this kind of cars can use electric it can protect environment also can control the climate change. This very accord with China's national conditions. In the future green cars are very popular to use in the world.翻译新能源汽车作为一种新的汽车产品类型,由于发展时间还不长,技术还不成熟,所以尚未形成一个被广泛认可的概念,但是肯定的是新能源汽车的提出是相对于传统燃料汽车而言的,目前关于新能源汽车的概念根据其定义范围的大小,有狭义和广义两种说法。

2013职称英语理工类阅读理解原文答案译文之01

2013职称英语理工类阅读理解原文答案译文之01

Ford Abandons Electric VehiclesThe Ford motor company’s abandonment of electric cars effectively signals the end of the road for the technology,analysts say.General Motors。

and Honda’ceased production of battery.powered cars in 1 999, to focus on fuel cell and hybrid electric gasoline engines, which are more attractive to the consumer.Ford has now announced it will do the same.Three years ago.the company introduced the Think City two—seater car and a golf cart called the THINK, or Think Neighbor.It hoped to sell 5,000 cars each year and 10,000 carts.But a lack of demand means only about l,000 of the cars have been produced,and less than 1。

700 carts have been sold so far in 2002.“The bottom line is we don’t believe that this is the future of environment tr ansport for the mass market.”Tim Holmes of Ford Europe said on Friday.“We feel we have given electric our best shot”The Think City has a range of only about 53 miles and up to a six-hour battery recharge time.General Motors’EVI electric vehicle also had a limited range。

智能汽车的英语作文及翻译

智能汽车的英语作文及翻译

English Composition:In the dawn of the 21st century, the concept of smart cars has emerged as a revolutionary advancement in the automotive industry. These vehicles, equipped with advanced technologies, are designed to enhance safety, efficiency, and the overall driving experience. The integration of artificial intelligence, sensors, and connectivity allows smart cars to perform tasks that were once the sole domain of human drivers.The primary features of smart cars include autonomous driving capabilities, which enable the vehicle to navigate without human intervention. This is achieved through a combination of cameras, radar, and lidar sensors that constantly monitor the cars surroundings, allowing it to make informed decisions on the road. Additionally, smart cars are equipped with advanced driverassistance systems ADAS that can detect potential hazards and take preventive measures, such as automatic braking or lane correction.Another significant aspect of smart cars is their connectivity. These vehicles can communicate with other cars, traffic infrastructure, and even pedestrians through vehicletoeverything V2X technology. This communication allows for realtime traffic updates, collision avoidance, and improved traffic flow management. Moreover, smart cars can be connected to the internet, providing access to a wealth of information and services, such as navigation, weather updates, and even remote diagnostics.The environmental impact of smart cars is also noteworthy. Many smart cars are electric or hybrid, reducing their carbon footprint and contributing to a cleaner environment. Furthermore, their efficiency in navigation and energy consumption can lead to a significant reduction in fuel usage and emissions.However, the adoption of smart cars is not without challenges. Issues such as data security, privacy concerns, and the ethical implications of autonomous decisionmaking need to be addressed. Additionally, the high cost of these vehicles and the need for extensive infrastructure development pose barriers to widespread adoption.In conclusion, smart cars represent the future of transportation, offering a safer, more efficient, and environmentally friendly mode of travel. As technology continues to advance, it is expected that smart cars will become more affordable and accessible, leading to a transformative change in the way we navigate our world.Translation:在21世纪初,智能汽车的概念作为汽车工业的革命性进步而出现。

大学智能汽车英文作文

大学智能汽车英文作文

大学智能汽车英文作文英文:As a college student, I believe that the development of intelligent automobiles is a topic that deserves our attention. Intelligent automobiles are vehicles that can sense the environment, analyze data, and make decisions based on that data. They are equipped with advanced technologies such as artificial intelligence, machine learning, and computer vision, which enable them to operate autonomously.Intelligent automobiles have the potential to revolutionize the transportation industry. They can reduce traffic congestion, improve road safety, and provide a more comfortable and convenient driving experience. For example, autonomous vehicles can communicate with each other to avoid collisions and optimize traffic flow. They can also adapt to different driving conditions and provide personalized services to passengers.However, there are still some challenges that need to be addressed before intelligent automobiles can become widely adopted. One of the biggest challenges is ensuring the safety and reliability of these vehicles. Asintelligent automobiles rely heavily on sensors and software, any malfunction or error could lead to serious consequences. Therefore, it is important to conduct rigorous testing and validation to ensure that these vehicles are safe and reliable.Another challenge is the cost of intelligent automobiles. Currently, these vehicles are more expensive than traditional vehicles due to the advanced technologies they use. As a result, they may not be affordable for everyone. However, as the technology continues to improve and production costs decrease, the price of intelligent automobiles is expected to become more affordable.In conclusion, I believe that intelligent automobiles are the future of transportation. While there are still some challenges that need to be overcome, the benefits ofthese vehicles are undeniable. They have the potential to improve road safety, reduce traffic congestion, and provide a more comfortable and convenient driving experience. I am excited to see how this technology will continue to develop and shape the future of transportation.中文:作为一名大学生,我认为智能汽车的发展是一个值得我们关注的话题。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

Requirements on Automotive Semiconductors
With help of some examples of applications we will show where these requirements are coming from:
Modern direct injection engines use many different sensors (knock signal, air mass flow, lambda sensor) and actuators (valves, electric motors, pumps). The high pressure injection valves are directly connected to the corresponding integrated power stages. These power stages and the valves are co-designed and have to be handled as a single entity (so-called component package) including even the necessary software. These power stages drive voltages of more than 80V to open and close the valves.
Having the electronics close to sensors and actuators and the control units very often under the hood or within other challenging environments, completely different requirements on automotive semiconductors are necessary compared to consumer electronics.
1-4244-0439-X/07/$25.00 © 2007 IEEE3
therefore be a continuous challenge for the engineers. Parameter Temperature
LS-CAN: 100 kBitls ................Ethernet HS-CAN: 500 kBit/s (100 Base FlexRay: 10 MBitIs _...................... Ethernet: 100 MBitIs MOST: 24,5 MBit/s
4 - 8kV(MM); 15 kV some cases
I I
LIN
Generally required Gateway Performance
In order to handle the increasing complexity of the incar network system engineering and architecturing was introduced, leading to so-called domain oriented bus topologies. The electronic systems of a car are divided into domains like body electronics or vehicle motion management. Within such a domain a so-called domain controller takes care of managing the tasks (e.g. reading sensor outputs, sending messages to actuators) within the domain. This controller connects intelligent sensors and actuators via local bus systems and is by itself connected via a central gateway to other domain controllers. There are many different architectures in use and new ones are under development. They are based on central domain control units consisting of a [tC (microcontroller) with embedded NVM (non-volatile memory, mostly flash EEPROM) and some automotive specific mixed signal IC's, which are very often customer specific designed (ASICs). These ASICs are connected via point-to-point lines to the automotive specific electronics either at sensors or actuators. There is a clear trend to replace analog communication by digital communication in this area.
Automotive electronics increased in functionality and complexity heavily during the past decades and was undergoing major changes in architecture, functionality, networking capabilities - and there are many new systems coming up soon. The harsh environment in cars and the high requirements on quality of all components led to many automotive specific solutions for semiconductors, their packaging, and the process technologies used to manufacture them. Apart from this manufacturing of automotive semiconductors needs focus on test and release procedures and on specific logistic process. In this paper we will give an overview on automotive specific requirements for semiconductors and their manufacturers.
Introduction
Automotive electronics changed dramatically during the past 50 years due to increasing requirements by legislation - emission, fuel consumption, safety for passengers, and last but not least convenience and entertainment.
Automotive electronics and its specific requirements
Starting from a few simple and isolated functions in corresponding electronic devices, automotive electronics developed into a completely networked architecture of as many as 100 microprocessors and we expect the system complexity in cars to increase further during the next decades. More and more mission critical functions (e.g. ABS) rely on electronic components leading to permanently increasing requirements for the robustness of the so-called E/E-system (electric/electronic system) of cars. Due to budget limitations of the end-user all new functions of cars can only be implemented, if existing functions decrease in cost. Cost pressure will
OBD: On-Board Diagnostic Central Gatewayf
LS-CAN m
<1
'FlexRay
Humidity
ESD
Tolerated Field Failure Rate
< 1,000 ppm
4 - 8kV
Low
0% up to 100% target: zero failure
During the past 35 years the automotive industry in Europe was capable to reduce the number of casualties from accidents by 60% although the traffic density increased by more than 250% and there will be further improvements coming up. The emission of cars (particles, HC, NOx, CO) was reduced by 91-98% since 1990 with the help of new electronic control units and strategies including new sensor technologies and electronically controlled actuators. In parallel, fuel
相关文档
最新文档