天津市宁河县2019-2020学年中考数学一模试卷含解析

合集下载

天津市宁河县2019-2020学年中考数学模拟试题(2)含解析

天津市宁河县2019-2020学年中考数学模拟试题(2)含解析

天津市宁河县2019-2020学年中考数学模拟试题(2)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列运算正确的是( )A .x 3+x 3=2x 6B .x 6÷x 2=x 3C .(﹣3x 3)2=2x 6D .x 2•x ﹣3=x ﹣1 2.反比例函数是y=2x 的图象在( ) A .第一、二象限 B .第一、三象限 C .第二、三象限 D .第二、四象限3.在平面直角坐标系xOy 中,函数31y x =+的图象经过( )A .第一、二、三象限B .第一、二、四象限C .第一、三、四象限D .第二、三、四象限4.如图是一个由4个相同的长方体组成的立体图形,它的主视图是( )A .B .C .D .5.如图,直角三角形ABC 中,∠C=90°,AC=2,AB=4,分别以AC 、BC 为直径作半圆,则图中阴影部分的面积为( )A .2π﹣3B .π+3C .π+23D .2π﹣236.如图由四个相同的小立方体组成的立体图像,它的主视图是( ).A .B .C .D .7.下列运算正确的是 ( )A .22a +a=33aB .()32m =5mC .()222x y x y +=+D .63a a ÷=3a8.由一些相同的小立方块搭成的几何体的三视图如图所示,则搭成该几何体的小立方块有( )A .3块B .4块C .6块D .9块9.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x 千米/小时,根据题意,得A .B .C .D .10.如图,在平面直角坐标系中,把△ABC 绕原点O 旋转180°得到△CDA ,点A ,B ,C 的坐标分别为(﹣5,2),(﹣2,﹣2),(5,﹣2),则点D 的坐标为( )A .(2,2)B .(2,﹣2)C .(2,5)D .(﹣2,5)11.在下列四个标志中,既是中心对称又是轴对称图形的是( )A .B .C .D .12.若x >y ,则下列式子错误的是( )A .x ﹣3>y ﹣3B .﹣3x >﹣3yC .x+3>y+3D .x y >33二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知点A 是一次函数y =23x(x≥0)图象上一点,过点A 作x 轴的垂线l ,B 是l 上一点(B 在A 上方),在AB 的右侧以AB 为斜边作等腰直角三角形ABC ,反比例函数y =k x (x >0)的图象过点B ,C ,若△OAB 的面积为5,则△ABC 的面积是________.14.若a 是方程2320x x --=的根,则2526a a +-=_____.15.因式分解:3a 2-6a+3=________.16.现有八个大小相同的矩形,可拼成如图1、2所示的图形,在拼图2时,中间留下了一个边长为2的小正方形,则每个小矩形的面积是_____.17.如图,在平面直角坐标系xOy 中,A (-2,0),B (0,2),⊙O 的半径为1,点C 为⊙O 上一动点,过点B 作BP ⊥直线AC ,垂足为点P ,则P 点纵坐标的最大值为 cm .18.如图是由大小完全相同的正六边形组成的图形,小军准备用红色、黄色、蓝色随机给每个正六边形分别涂上其中的一种颜色,则上方的正六边形涂红色的概率是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,正方形网格中,△ABC 为格点三角形(即三角形的顶点都在格点上).把△ABC 沿BA 方向平移后,点A 移到点A 1,在网格中画出平移后得到的△A 1B 1C 1;把△A 1B 1C 1绕点A 1按逆时针方向旋转90°,在网格中画出旋转后的△A 1B 2C 2;如果网格中小正方形的边长为1,求点B 经过(1)、(2)变换的路径总长.20.(6分) (1)计算:3tan30°+|2﹣3|+(13)﹣1﹣(3﹣π)0﹣(﹣1)2018. (2)先化简,再求值:(x ﹣22xy y x-)÷222x y x xy -+,其中x=2,y=2﹣1. 21.(6分)全民学习、终身学习是学习型社会的核心内容,努力建设学习型家庭也是一个重要组成部分.为了解“学习型家庭”情况,对部分家庭五月份的平均每天看书学习时间进行了一次抽样调查,并根据收集的数据绘制了下面两幅不完整的统计图,请根据图中提供的信息,解答下列问题:本次抽样调查了 个家庭;将图①中的条形图补充完整;学习时间在2~2.5小时的部分对应的扇形圆心角的度数是 度;若该社区有家庭有3000个,请你估计该社区学习时间不少于1小时的约有多少个家庭?22.(8分)如图,某大楼的顶部竖有一块广告牌CD ,小李在山坡的坡脚A 处测得广告牌底部D 的仰角为60°沿坡面AB 向上走到B 处测得广告牌顶部C 的仰角为45°,已知山坡AB 的倾斜角∠BAH =30°,AB =20米,AB =30米.(1)求点B 距水平面AE 的高度BH ;(2)求广告牌CD 的高度.23.(8分)如图,平面直角坐标系中,直线y 2x 2=+与x 轴,y 轴分别交于A ,B 两点,与反比例函数k y (x 0)x=>的图象交于点()M a,4.()1求反比例函数k y (x 0)x =>的表达式; ()2若点C 在反比例函数k y (x 0)x =>的图象上,点D 在x 轴上,当四边形ABCD 是平行四边形时,求点D 的坐标.24.(10分)如图,已知一次函数1y k x b =+的图象与反比例函数2k y x=的图象交于点()4,A m -,且与y 轴交于点B ;点C 在反比例函数2k y x=的图象上,以点C 为圆心,半径为2的作圆C 与x 轴,y 轴分别相切于点D 、B .(1)求反比例函数和一次函数的解析式;(2)请连结OA ,并求出AOB ∆的面积;(3)直接写出当0x <时,210k k x b x+->的解集. 25.(10分)如图,在四边形ABCD 中,AB ∥DC ,AB =AD ,对角线AC ,BD 交于点O ,AC 平分∠BAD ,过点C 作CE ⊥AB 交AB 的延长线于点E ,连接OE .求证:四边形ABCD 是菱形;若AB =5,BD =2,求OE 的长.26.(12分)如图,在Rt △ABC 中,∠ABC=90°,AB=CB ,以AB 为直径的⊙O 交AC 于点D ,点E 是AB 边上一点(点E 不与点A 、B 重合),DE 的延长线交⊙O 于点G ,DF ⊥DG ,且交BC 于点F .(1)求证:AE=BF;(2)连接GB,EF,求证:GB∥EF;(3)若AE=1,EB=2,求DG的长.27.(12分)如图,某数学活动小组为测量学校旗杆AB的高度,沿旗杆正前方23米处的点C出发,沿斜面坡度1:3i 的斜坡CD前进4米到达点D,在点D处安置测角仪,测得旗杆顶部A的仰角为37°,量得仪器的高DE为1.5米.已知A、B、C、D、E在同一平面内,AB⊥BC,AB//DE.求旗杆AB的高度.(参考数据:sin37°≈35,cos37°≈45,tan37°≈34.计算结果保留根号)参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】分析:根据合并同类项法则,同底数幂相除,积的乘方的性质,同底数幂相乘的性质,逐一判断即可.详解:根据合并同类项法则,可知x3+x3=2x3,故不正确;根据同底数幂相除,底数不变指数相加,可知a6÷a2=a4,故不正确;根据积的乘方,等于各个因式分别乘方,可知(-3a3)2=9a6,故不正确;根据同底数幂相乘,底数不变指数相加,可得x2•x﹣3=x﹣1,故正确.故选D.点睛:此题主要考查了整式的相关运算,是一道综合性题目,熟练应用整式的相关性质和运算法则是解题关键.2.B【解析】【分析】【详解】解:∵反比例函数是y=2x中,k=2>0,∴此函数图象的两个分支分别位于一、三象限.故选B.3.A【解析】【分析】一次函数y=kx+b的图象经过第几象限,取决于k和b.当k>0,b>O时,图象过一、二、三象限,据此作答即可.【详解】∵一次函数y=3x+1的k=3>0,b=1>0,∴图象过第一、二、三象限,故选A.【点睛】一次函数y=kx+b的图象经过第几象限,取决于x的系数和常数项.4.A【解析】由三视图的定义可知,A是该几何体的三视图,B、C、D不是该几何体的三视图.故选A.点睛:从正面看到的图是正视图,从上面看到的图形是俯视图,从左面看到的图形是左视图,能看到的线画实线,看不到的线画虚线.本题从左面看有两列,左侧一列有两层,右侧一列有一层.5.D【解析】分析:观察图形可知,阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC,然后根据扇形面积公式和三角形面积公式计算即可.详解:连接CD.∵∠C=90°,AC=2,AB=4,∴2242-3.∴阴影部分的面积= S半圆ACD +S半圆BCD -S△ABC=2211113223 222ππ⨯+⨯-⨯⨯=322ππ+-2π=-.故选:D .点睛:本题考查了勾股定理,圆的面积公式,三角形的面积公式及割补法求图形的面积,根据图形判断出阴影部分的面积= S 半圆ACD +S 半圆BCD -S △ABC 是解答本题的关键.6.D【解析】从正面看,共2列,左边是1个正方形,右边是2个正方形,且下齐.故选D.7.D【解析】【分析】根据整式的混合运算计算得到结果,即可作出判断.【详解】A 、22a 与a 不是同类项,不能合并,不符合题意;B 、()32m =6m ,不符合题意;C 、原式=22x 2y xy ++,不符合题意;D 、63a a ÷=3a ,符合题意,故选D .【点睛】此题考查了整式的混合运算,熟练掌握运算法则是解本题的关键.8.B【解析】分析:从俯视图中可以看出最底层小正方体的个数及形状,从主视图和左视图可以看出每一层小正方体的层数和个数,从而算出总的个数.解答:解:从俯视图可得最底层有3个小正方体,由主视图可得有2层上面一层是1个小正方体,下面有2个小正方体,从左视图上看,后面一层是2个小正方体,前面有1个小正方体,所以此几何体共有四个正方体.故选B .9.A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,故选A.10.A【解析】分析:依据四边形ABCD是平行四边形,即可得到BD经过点O,依据B的坐标为(﹣2,﹣2),即可得出D的坐标为(2,2).详解:∵点A,C的坐标分别为(﹣5,2),(5,﹣2),∴点O是AC的中点,∵AB=CD,AD=BC,∴四边形ABCD是平行四边形,∴BD经过点O,∵B的坐标为(﹣2,﹣2),∴D的坐标为(2,2),故选A.点睛:本题主要考查了坐标与图形变化,图形或点旋转之后要结合旋转的角度和图形的特殊性质来求出旋转后的点的坐标.11.C【解析】【分析】根据轴对称图形与中心对称图形的概念对各选项分析判断利用排除法求解.【详解】解:A、不是中心对称图形,是轴对称图形,故本选项错误;B、既不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.12.B【解析】根据不等式的性质在不等式两边加(或减)同一个数(或式子),不等号的方向不变;不等式两边乘(或除以)同一个正数,不等号的方向不变;不等式两边乘(或除以)同一个负数,不等号的方向改变即可得出答案:A、不等式两边都减3,不等号的方向不变,正确;B、乘以一个负数,不等号的方向改变,错误;C、不等式两边都加3,不等号的方向不变,正确;D、不等式两边都除以一个正数,不等号的方向不变,正确.故选B.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.5 3【解析】【分析】如图,过C作CD⊥y轴于D,交AB于E.设AB=2a,则BE=AE=CE=a,再设A(x,23x),则B(x,2 3x+2a)、C(x+a,23x+a),再由B、C在反比例函数的图象上可得x(23x+2a)=(x+a)(23x+a),解得x=3a,由△OAB的面积为5求得ax=5,即可得a2=53,根据S△ABC=12AB•CE即可求解.【详解】如图,过C作CD⊥y轴于D,交AB于E.∵AB⊥x轴,∴CD⊥AB,∵△ABC是等腰直角三角形,∴BE=AE=CE,设AB=2a,则BE=AE=CE=a,设A (x ,23x ),则B (x ,23x+2a ),C (x+a ,23x+a ), ∵B 、C 在反比例函数的图象上,∴x (23x+2a )=(x+a )(23x+a ), 解得x=3a ,∵S △OAB =12AB•DE=12•2a•x=5, ∴ax=5,∴3a 2=5, ∴a 2=53, ∴S △ABC =12AB•CE=12•2a•a=a 2=53. 故答案为:53. 【点睛】本题考查了反比例函数图象上点的坐标特征、等腰直角三角形的性质、三角形面积,熟练掌握反比例函数上的点符合反比例函数的关系式是关键.14.1【解析】【分析】利用一元二次方程解的定义得到3a 2-a=2,再把2526a a +-变形为()2523a a --,然后利用整体代入的方法计算.【详解】∵a 是方程2320x x --=的根,∴3a 2-a-2=0,∴3a 2-a=2,∴2526a a +-=()2523a a --=5-2×2=1.故答案为:1.【点睛】此题考查一元二次方程的解,解题关键在于掌握能使一元二次方程左右两边相等的未知数的值是一元二次方程的解.15.3(a -1)2【解析】【分析】先提公因式,再套用完全平方公式.【详解】解:3a 2-6a+3=3(a 2-2a+1)=3(a-1)2.【点睛】考点:提公因式法与公式法的综合运用.16.1.【解析】【分析】设小矩形的长为x ,宽为y ,则由图1可得5y=3x ;由图2可知2y-x=2.【详解】解:设小矩形的长为x ,宽为y ,则可列出方程组,3522x y y x =⎧⎨-=⎩,解得106x y =⎧⎨=⎩, 则小矩形的面积为6×10=1. 【点睛】本题考查了二元一次方程组的应用.17.13+ 【解析】【分析】【详解】当AC 与⊙O 相切于点C 时,P 点纵坐标的最大值,如图,直线AC 交y 轴于点D ,连结OC ,作CH ⊥x 轴于H ,PM ⊥x 轴于M ,DN ⊥PM 于N ,∵AC 为切线,∴OC ⊥AC ,在△AOC 中,∵OA=2,OC=1,∴∠OAC=30°,∠AOC=60°,在Rt△AOD中,∵∠DAO=30°,∴OD=3OA=23,在Rt△BDP中,∵∠BDP=∠ADO=60°,∴DP=12BD=12(2-23)=1-3,在Rt△DPN中,∵∠PDN=30°,∴PN=12DP=12-3,而MN=OD=233,∴PM=PN+MN=1-36+23=13+,即P点纵坐标的最大值为13 +.【点睛】本题是圆的综合题,先求出OD的长度,最后根据两点之间线段最短求出PN+MN的值.18.1 3【解析】试题分析:上方的正六边形涂红色的概率是,故答案为.考点:概率公式.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)(2)作图见解析;(3)222.【解析】【分析】(1)利用平移的性质画图,即对应点都移动相同的距离.(2)利用旋转的性质画图,对应点都旋转相同的角度.(3)利用勾股定理和弧长公式求点B经过(1)、(2)变换的路径总长.【详解】解:(1)如答图,连接AA1,然后从C点作AA1的平行线且A1C1=AC,同理找到点B1,分别连接三点,△A1B1C1即为所求.(2)如答图,分别将A 1B 1,A 1C 1绕点A 1按逆时针方向旋转90°,得到B 2,C 2,连接B 2C 2,△A 1B 2C 2即为所求.(3)∵¼2211290222222,?1802BB B B π⋅=+===, ∴点B 所走的路径总长=2222. 考点:1.网格问题;2.作图(平移和旋转变换);3.勾股定理;4.弧长的计算.20. (1)3;(2) x ﹣y ,1.【解析】【分析】(1)根据特殊角的三角函数值、绝对值、负整数指数幂、零指数幂可以解答本题;(2)根据分式的减法和除法可以化简题目中的式子,然后将x 、y 的值代入化简后的式子即可解答本题.【详解】(1)3tan30°3(13)-1-(3-π)0-(-1)2018 =3×333+3-1-1, =33,=3;(2)(x ﹣22xy y x-)÷222x y x xy -+, =()()()222•x x y x xy y x x y x y +-++-, =()()()()2•x y x x y xx y x y -++-=x-y , 当2,2-1时,原式22+1=1.【点睛】本题考查特殊角的三角函数值、绝对值、负整数指数幂、零指数幂、分式的化简求值,解答本题的关键是明确它们各自的计算方法.21. (1)200;(2)见解析;(3)36;(4)该社区学习时间不少于1小时的家庭约有2100个.【解析】【分析】(1)根据1.5~2小时的圆心角度数求出1.5~2小时所占的百分比,再用1.5~2小时的人数除以所占的百分比,即可得出本次抽样调查的总家庭数;(2)用抽查的总人数乘以学习0.5-1小时的家庭所占的百分比求出学习0.5-1小时的家庭数,再用总人数减去其它家庭数,求出学习2-2.5小时的家庭数,从而补全统计图;(3)用360°乘以学习时间在2~2.5小时所占的百分比,即可求出学习时间在2~2.5小时的部分对应的扇形圆心角的度数;(4)用该社区所有家庭数乘以学习时间不少于1小时的家庭数所占的百分比即可得出答案.【详解】解:(1)本次抽样调查的家庭数是:30÷54360=200(个); 故答案为200;(2)学习0.5﹣1小时的家庭数有:200×108360=60(个), 学习2﹣2.5小时的家庭数有:200﹣60﹣90﹣30=20(个),补图如下:(3)学习时间在2~2.5小时的部分对应的扇形圆心角的度数是:360×20200=36°; 故答案为36;(4)根据题意得:3000×903020200++=2100(个). 答:该社区学习时间不少于1小时的家庭约有2100个.【点睛】本题考查条形统计图、扇形统计图及相关计算.在扇形统计图中,每部分占总部分的百分比等于该部分所对应的扇形圆心角的度数与360°的比.22.(1) BH为10米;(2) 宣传牌CD高约(40﹣203)米【解析】【分析】(1)过B作DE的垂线,设垂足为G.分别在Rt△ABH中,通过解直角三角形求出BH、AH;(2)在△ADE解直角三角形求出DE的长,进而可求出EH即BG的长,在Rt△CBG中,∠CBG=45°,则CG=BG,由此可求出CG的长然后根据CD=CG+GE-DE即可求出宣传牌的高度.【详解】(1)过B作BH⊥AE于H,Rt△ABH中,∠BAH=30°,∴BH=12AB=12×20=10(米),即点B距水平面AE的高度BH为10米;(2)过B作BG⊥DE于G,∵BH⊥HE,GE⊥HE,BG⊥DE,∴四边形BHEG是矩形.∵由(1)得:BH=10,AH=103,∴BG=AH+AE=(103+30)米,Rt△BGC中,∠CBG=45°,∴CG=BG=(103+30)米,∴CE=CG+GE=CG+BH=103+30+10=103+40(米),在Rt△AED中,DEAE=tan∠DAE=tan60°=3,DE=3AE=303∴CD=CE﹣DE=103+40﹣303=40﹣203.答:宣传牌CD高约(40﹣203)米.【点睛】本题考查解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题,解题的关键是掌握解直角三角形的应用-仰角俯角问题和解直角三角形的应用-坡度坡角问题的基本方法.23.(1)y=4x(1)(1,0)【解析】【分析】(1)将点M的坐标代入一次函数解析式求得a的值;然后将点M的坐标代入反比例函数解析式,求得k 的值即可;(1)根据平行四边形的性质得到BC∥AD且BD=AD,结合图形与坐标的性质求得点D的坐标.【详解】解:(1)∵点M(a,4)在直线y=1x+1上,∴4=1a+1,解得a=1,∴M(1,4),将其代入y=kx得到:k=xy=1×4=4,∴反比例函数y=kx(x>0)的表达式为y=4x;(1)∵平面直角坐标系中,直线y=1x+1与x轴,y轴分别交于A,B两点,∴当x=0时,y=1.当y=0时,x=﹣1,∴B(0,1),A(﹣1,0).∵BC∥AD,∴点C的纵坐标也等于1,且点C在反比例函数图象上,将y=1代入y=4x,得1=4x,解得x=1,∴C(1,1).∵四边形ABCD是平行四边形,∴BC∥AD且BD=AD,由B(0,1),C(1,1)两点的坐标知,BC∥AD.又BC=1,∴AD=1,∵A(﹣1,0),点D在点A的右侧,∴点D的坐标是(1,0).【点睛】考查了反比例函数与一次函数交点问题.熟练掌握平行四边形的性质和函数图象上点的坐标特征是解决问题的关键,难度适中.24.(1)4y x =,324y x =+;(2)4;(3)40x -<<. 【解析】【分析】(1)连接CB ,CD ,依据四边形BODC 是正方形,即可得到B (1,2),点C (2,2),利用待定系数法即可得到反比例函数和一次函数的解析式;(2)依据OB=2,点A 的横坐标为-4,即可得到△AOB 的面积为:2×4×12=4; (3)依据数形结合思想,可得当x <1时,k 1x+b−2k x>1的解集为:-4<x <1. 【详解】解:(1)如图,连接CB ,CD , ∵⊙C 与x 轴,y 轴相切于点D ,B ,且半径为2,90CBO CDO BOD ∴∠=∠=︒=∠,BC CD =,∴四边形BODC 是正方形,2BO OD DC CB ∴====,()0,2B ∴,点()2,2C ,把点()2,2C 代入反比例函数2k y x =中, 解得:24k =, ∴反比例函数解析式为:4y x=, ∵点()4,A m -在反比例函数4y x =上, 把()4,A m -代入4y x=中,可得414m ==--, ()4,1A ∴--,把点()0,2B 和()4,1A --分别代入一次函数1y k x b =+中,得出:1412k b b -+=-⎧⎨=⎩,解得:13 4 2kb⎧=⎪⎨⎪=⎩,∴一次函数的表达式为:324y x=+;(2)如图,连接OA,2OBQ=,点A的横坐标为4﹣,AOB∴∆的面积为:12442⨯⨯=;(3)由()4,1A--,根据图象可知:当0x<时,21kk x bx+->的解集为:40x-<<.【点睛】本题考查了反比例函数与一次函数的交点依据待定系数法求函数解析式,解题的关键是求出C,B点坐标.25.(1)见解析;(1)OE=1.【解析】【分析】(1)先判断出∠OAB=∠DCA,进而判断出∠DAC=∠DAC,得出CD=AD=AB,即可得出结论;(1)先判断出OE=OA=OC,再求出OB=1,利用勾股定理求出OA,即可得出结论.【详解】解:(1)∵AB∥CD,∴∠OAB=∠DCA,∵AC为∠DAB的平分线,∴∠OAB=∠DAC,∴∠DCA=∠DAC,∴CD=AD=AB,∵AB∥CD,∴四边形ABCD是平行四边形,∵AD=AB,∴▱ABCD是菱形;(1)∵四边形ABCD是菱形,∴OA=OC,BD⊥AC,∵CE⊥AB,∴OE=OA=OC,∵BD=1,∴OB=12BD=1,在Rt△AOB中,AB=5,OB=1,∴OA=22AB OB=1,∴OE=OA=1.【点睛】此题主要考查了菱形的判定和性质,平行四边形的判定和性质,角平分线的定义,勾股定理,判断出CD=AD=AB是解本题的关键26.(1)详见解析;(2)详见解析;(3).【解析】(1)连接BD,由三角形ABC为等腰直角三角形,求出∠A与∠C的度数,根据AB为圆的直径,利用圆周角定理得到∠ADB为直角,即BD垂直于AC,利用直角三角形斜边上的中线等于斜边的一半,得到AD=DC=BD=AC,进而确定出∠A=∠FBD,再利用同角的余角相等得到一对角相等,利用ASA得到三角形AED与三角形BFD全等,利用全等三角形对应边相等即可得证;(2)连接EF,BG,由三角形AED与三角形BFD全等,得到ED=FD,进而得到三角形DEF为等腰直角三角形,利用圆周角定理及等腰直角三角形性质得到一对同位角相等,利用同位角相等两直线平行即可得证;(3)由全等三角形对应边相等得到AE=BF=1,在直角三角形BEF中,利用勾股定理求出EF的长,利用锐角三角形函数定义求出DE的长,利用两对角相等的三角形相似得到三角形AED与三角形GEB相似,由相似得比例,求出GE的长,由GE+ED求出GD的长即可.(1)证明:连接BD,在Rt△ABC中,∠ABC=90°,AB=BC,∴∠A=∠C=45°,∵AB为圆O的直径,∴∠ADB=90°,即BD⊥AC,∴AD=DC=BD=AC,∠CBD=∠C=45°,∴∠A=∠FBD,∵DF⊥DG,∴∠FDG=90°,∴∠FDB+∠BDG=90°,∵∠EDA+∠BDG=90°,∴∠EDA=∠FDB,在△AED和△BFD中,∠A=∠FBD,AD=BD,∠EDA=∠FDB,∴△AED≌△BFD(ASA),∴AE=BF;(2)证明:连接EF,BG,∵△AED≌△BFD,∴DE=DF,∵∠EDF=90°,∴△EDF是等腰直角三角形,∴∠DEF=45°,∵∠G=∠A=45°,∴∠G=∠DEF,∴GB∥EF;(3)∵AE=BF,AE=1,∴BF=1,在Rt△EBF中,∠EBF=90°,∴根据勾股定理得:EF2=EB2+BF2,∵EB=2,BF=1,∴EF=,∵△DEF为等腰直角三角形,∠EDF=90°,∴cos∠DEF=,∵EF=,∴DE=×,∵∠G=∠A,∠GEB=∠AED,∴△GEB∽△AED,∴,即GE•ED=AE•EB,∴•GE=2,即GE=,则GD=GE+ED=.27.33+3.5【解析】【分析】延长ED交BC延长线于点F,则∠CFD=90°,Rt△CDF中求得CF=CDcos∠DCF=23、DF=CD=2,作EG⊥AB,可得GE=BF=4、GB=EF=3.5,再求出AG=GEtan∠AEG=43•tan37°可得答案.【详解】如图,延长ED交BC延长线于点F,则∠CFD=90°,∵tan∠1333,∴∠DCF=30°,∵CD=4,∴DF=12CD=2,CF=CDcos∠DCF=4×323∴333,过点E作EG⊥AB于点G,则3GB=EF=ED+DF=1.5+2=3.5,又∵∠AED=37°,∴AG=GEtan∠,则,故旗杆AB的高度为(+3.5)米.考点:1、解直角三角形的应用﹣仰角俯角问题;2、解直角三角形的应用﹣坡度坡角问题。

《最新6套汇总》天津市宁河县2019-2020学年中考数学一模试卷

《最新6套汇总》天津市宁河县2019-2020学年中考数学一模试卷

2019-2020学年数学中考模拟试卷一、选择题1.已知等腰三角形的其中两边长分别为4,9,则这个等腰三角形的周长是()A.13 B.17 C.22 D.17或222.二次函数y=ax2+bx+c(a≠0)的图象如图所示,有下列结论:①abc>0;②a+b+c=2;③a12 ;④b>1,其中正确的结论个数是()A.1个B.2 个C.3 个D.4 个3.如图,已知点M为平行四边形ABCD边AB的中点,线段CM交BD于点E,S△BEM=2,则图中阴影部分的面积为()A.5 B.4 C.8 D.64.如图,在平行四边形ABCD中,AD=2AB,F是AD的中点,作CE⊥AB,垂足E在线段AB上,连接EF、CF,则下列结论①∠DCF=12∠BCD;②S△BEC=2S△CEF;③∠DFE=3∠AEF;④当∠AEF=54°时,则∠B=68°,中一定成立的是()A.①③B.②③④C.①④D.①③④5.方程的两个根为( )A.,B.,C.,D.,6.如图,在平面直角坐标系中,菱形OABC的顶点A在x轴的正半轴上,顶点B在函数y=kx(x>0)的图象上,若∠C=60°,AB=2,则k的值为()AB C .1 D .2724a =5===;④= )A .①B .②C .③D .④ 8.计算(﹣2x 2)3的结果是( )A .﹣6x 5B .6x 5C .8x 6D .﹣8x 69.如图,在△ABC 中,AB =AC ,∠BAC =45°,将△ABC 绕点A 逆时针方向旋转得△AEF ,其中,E ,F 是点B ,C 旋转后的对应点,BE ,CF 相交于点D .若四边形ABDF 为菱形,则∠CAE 的大小是( )A.45°B.60°C.75°D.90°10.一个直角三角形两边长分别为3和4,则它的面积为( )A .6B .12C .6或10D .6或211.如图,四边形ABCD 是菱形,对角线AC ,BD 相交于点O ,DH ⊥AB 于点H ,连接OH ,若∠DHO =20°,则∠ADC 的度数是( )A.120°B.130°C.140°D.150°12.关于方程x 2+2x ﹣4=0的根的情况,下列结论错误的是( ) A .有两个不相等的实数根 B .两实数根的和为﹣2 C .没有实数根 D .两实数根的积为﹣4二、填空题13.如图:AD 是正△ABC 的高,O 是AD 上一点,⊙O 经过点D ,分别交AB 、AC 于E 、F (1)求∠EDF 的度数;(2)若AD =6AEF 的周长;(3)设EF 、AD 相较于N ,若AE =3,EF =7,求DN 的长.14.定义符号{}min a,b 的含义为:当a b ≥时,{}min a,b b =;当a b <时,{}min a,b a.=如:{}min 1,33-=-,{}min 4,2--= 4.-则{}2min x 2,x -+-的最大值是______.15.如图所示,直线y=12x 分别与双曲线y=1k x(k 1>0,x >0)、双曲线y=2k x (k 2>0,x >0)交于点A ,点B ,且OA=2AB ,将直线向左平移4个单位长度后,与双曲线y=2k x交于点C ,若S △ABC =1,则k 1k 2的值为_____.16.如图,点P 是正方形ABCD 的对角线BD 上的一个动点(不与B 、D 重合),连结AP ,过点B 作直线AP 的垂线,垂足为H ,连结DH ,若正方形的边长为4,则线段DH 长度的最小值是________.17.分解因式:258x x -= ______.18.若多项式A 满足,2(1)1A a a ⋅-+=-,则A=________________. 三、解答题19.甲,乙两人玩“石头,剪刀,布”的游戏,试求在一次比赛时两人做同种手势(石头,石头)的概率.20.已知:在锐角△ABC 中,AB =AC .D 为底边BC 上一点,E 为线段AD 上一点,且∠BED =∠BAC =2∠DEC ,连接CE .(1)求证:∠ABE =∠DAC ;(2)若∠BAC =60°,试判断BD 与CD 有怎样的数量关系,并证明你的结论;(3)若∠BAC =α,那么(2)中的结论是否还成立.若成立,请加以证明;若不成立,请说明理由. 21.如图,在方格纸中,每个小正方形的边长都是1,点P 、Q 都在格点上.(1)若点P 的坐标记为(-1,1),反比例函数ky x= 的图像的一条分支经过点Q ,求该反比例函数解析式;(2)在图中画出一个以P 、Q 为其中两个顶点的格点平行四边形,且面积等于(1)中的k 的值. 22.深圳某学校为构建书香校园,拟购进甲、乙两种规格的书柜放置新购置的图书.已知每个甲种书柜的进价比每个乙种书柜的进价高20%,用3600元购进的甲种书柜的数量比用4200元购进的乙种书柜的数量少4台.(1)求甲、乙两种书柜的进价;(2)若该校拟购进这两种规格的书柜共60个,其中乙种书柜的数量不大于甲种书柜数量的2倍.请您帮该校设计一种购买方案,使得花费最少.23.消费者在网店购物后,将从“好评、中评、差评”中选择一种作为对卖家的评价,假设这三种评价是等可能的,若小明、小亮在某网店购买了同一商品,且都给出了评价,则两人中至少有一个给“好评”的概率为( )A.13B.49C.59D.2324.先化简,再计算:2221222x x xx x x x--+--+,其中x1.25.某公司研发生产的560件新产品需要精加工后才能投放市场.现由甲、乙两个工厂来加工生产.已知甲工厂每天加工生产的新产品件数是乙工厂每天加工生产新产品件数的1.5倍,并且加工生产240件新产品甲工厂比乙工厂少用4天.(1)求甲、乙两个工厂每天分别可加工生产多少件新产品?(2)若甲工厂每天的加工生产成本为3万元,乙工厂每天的加工生产成本为2.4万元,要使这批新产品的加工生产总成本不超过60万元,至少应安排甲工厂加工生产多少天?【参考答案】***一、选择题13.(1)60°;⑵18;⑶DN=111415.916.17.(58)x x-18.-(a+1)三、解答题19.1 3【解析】【分析】依据题意先用列表法或画树状图法分析所有等可能的出现结果,然后根据概率公式求出该事件的概率.【详解】列表得:可知共有3×3=9种可能,两人做同种手势的有3种,所以概率是93=. 【点睛】本题考查了列表法或树状图法求概率,列表法可以不重复不遗漏的列出所有可能的结果,列表法适合于两步完成的事件,树状图法适合两步或两步以上完成的事件.用到的知识点为:概率=所求情况数与总情况数之比.20.(1)见解析;(2)BD =2DC ,见解析;(3)(2)中的结论仍然还成立,见解析. 【解析】 【分析】(1)根据外角的性质,推出∠BED=∠ABE+∠BAE ,由∠BAC=∠BAE+∠DAC ,根据∠BED=∠BAC 进行等量代换即可;(2)在AD 上截取AF=BE ,连接CF ,作CG ∥BE 交直线AD 于G ,∠BED=∠BAC ,结合(1)所推出的结论,求证△ACF ≌△BAE ,根据全等三角形的性质、三角形内角和定理推出∠CFG=180°-∠AFC=180°-∠BEA=∠BED ,由CG ∥BE ,可得∠CGF=∠BED ,BD :CD=BE :CG ,继而推出∠CFG=∠CGF ,即CG=CF ,通过等量代换可得BE=AF=2CF ,把比例式中的BE 、CG 用2CF 、CF 代换、整理后即可推出BD=2DC ,总上所述BD 与CD 的数量关系与∠BAC 的度数无关;(3)根据(2)所推出的结论即可推出若∠BAC=α,那么(2)中的结论仍然还成立. 【详解】(1)证明:∵∠BED =∠ABE+∠BAE ,∠BED =∠BAC , ∴∠ABE+∠BAE =∠BAC , ∵∠BAC =∠BAE+∠DAC , ∴∠DAC =∠ABE ;(2)解:在AD 上截取AF =BE ,连接CF ,作CG ∥BE 交直线AD 于G ,∠BED =∠BAC , ∵∠FAC =∠EBA , ∴在△ACF 和△BAE 中,CA AB FAC EBA AF BE ⎧⎪∠∠⎨⎪⎩===, ∴△ACF ≌△BAE (SAS ),∴CF =AE ,∠ACF =∠BAE ,∠AFC =∠AEB . ∵∠AFC =∠BEA∴180°﹣∠AFC =180°﹣∠BEA ∴∠CFG =∠BEF ,∴∠CFG =180°﹣∠AFC =180°﹣∠BEA =∠BED ,∵CG∥BE,∴∠CGF=∠BED,∴∠CFG=∠CGF,∴CG=CF,∵∠BED=2∠DEC,∵∠CFG=∠DEC+∠ECF,∠CFG=∠BED,∴∠ECF=∠DEC,∴CF=EF,∴BE=AF=2CF,∵CG∥BE,∴BD:CD=BE:CG,∴BD:CD=2CF:CF=2,∴BD=2DC,∴BD与CD的数量关系与∠BAC的度数无关;(3)解:∵BD与CD的数量关系与∠BAC的度数无关,∴若∠BAC=α,那么(2)中的结论仍然还成立.【点睛】本题主要考查等腰三角形的性质、全等三角形的判定与性质、平行线的性质、三角形内角和定理等知识点,关键在于正确地作出辅助线,求证相关的三角形全等,进行等量代换.21.(1)4yx=;(2)详见解析.【解析】【分析】(1)建立平面直角坐标第,确定Q点坐标,即可求出反比例函数解析式;(2)由(1)得k=4,画出面积为4的平行四边形即可.【详解】(1)如图1,建立平面直角坐标系由题意得Q(2,2),把Q(2,2)代入kyx=得22k=,解得k=4∴该反比例函数解析式为4 yx =(2)如图所示或或【点睛】本题考查了用待定系数法求反比例函数解析式,解此题的关键是根据点P 的坐标确定平面直角坐标系,同时还考查了平行四边形的画法.22.(1)每个甲种书柜的进价为360元,每个乙种书柜的进价为300元;(2)购进乙种书柜20个,则购进甲种书柜40个时花费最少,费用为19200元. 【解析】 【分析】(1)设每个乙种书柜的进价为x 元,每个甲种书柜的进价为1.2x 元,根据用3600元购进的甲种书柜的数量比用4200元购进的乙种书柜的数量少4台,列方程求解;(2)设购进甲种书柜m 个,则购进乙种书柜(60-m )个,根据乙种书柜的数量不大于甲种书柜数量的2倍,列不等式组求解. 【详解】解:(1)设每个乙种书柜的进价为x 元,则每个甲种书柜的进价为1.2x 元, 根据题意得,3600420041.2x x+=, 解得x=300,经检验,x=300是原方程的根, 300×1.2=360(元).故每个甲种书柜的进价为360元,每个乙种书柜的进价为300元;(2)设购进甲种书柜m 个,则购进乙种书柜(60-m )个,购进两种书柜的总成本为y 元,根据题意得,()36030060602y m m m m =+-⎧-≤⎨⎩, 解得y=60m+18000(m≥20), ∵k=60>0,∴y 随x 的增大而增大, 当m=20时,y=19200(元).故购进甲种书柜20个,则购进乙种书柜40个时花费最少,费用为19200元. 【点睛】本题考查了分式方程和一元一次不等式组的应用,解答本题的关键是读懂题意,设出未知数,找出合适的等量关系和不等关系,列方程和不等式组求解. 23.C 【解析】 【分析】画树状图展示所有9种等可能的结果数,找出两人中至少有一个给“好评”的结果数,然后根据概率公式求解. 【详解】画树状图为:共有9种等可能的结果数,两人中至少有一个给“好评”的结果数为5, 所以两人中至少有一个给“好评”的概率=59. 故选C . 【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n ,再从中选出符合事件A 或B 的结果数目m ,然后根据概率公式计算事件A 或事件B 的概率.24.1x x-,【解析】 【分析】原式约分后,利用同分母分式的减法法则计算得到最简结果,将x 的值代入计算即可求出值. 【详解】 原式=(1)(2)12(1)1212(1)x x x x x x x x x x x x+-++-⋅-=-=-+,当x 时,2=. 【点睛】此题考查了分式的化简求值,熟练掌握运算法则是解本题的关键.25.(1)甲工厂每天可以加工生产30件新产品,乙工厂每天可以加工生产20件新产品;(2)至少应安排甲工厂加工生产12天. 【解析】 【分析】(1)设乙工厂每天可以加工生产x 件新产品,则甲工厂每天可以加工生产1.5x 件新产品,根据工作时间=工作总量÷工作效率结合加工生产240件新产品甲工厂比乙工厂少用4天,即可得出关于x 的分式方程,解之经检验后即可得出结论;(2)设安排甲工厂加工生产m 天,则安排乙工厂加工生产(28-1.5m )天,根据总费用=3×甲工厂加工生产的天数+2.4×乙工厂加工生产的天数结合总成本不超过60万元,即可得出关于m 的一元一次不等式,解之取其最小值即可得出结论. 【详解】(1)设乙工厂每天可以加工生产x 件新产品,则甲工厂每天可以加工生产1.5x 件新产品, 依题意,得:24024041.5x x-=, 解得:x =20,经检验,x =20是原分式方程的解,且符合题意, ∴1.5x =30.答:甲工厂每天可以加工生产30件新产品,乙工厂每天可以加工生产20件新产品. (2)设安排甲工厂加工生产m 天,则安排乙工厂加工生产(28﹣1.5m)天, 依题意,得:3m+2.4(28﹣1.5m)≤60,解得:m≥12.答:至少应安排甲工厂加工生产12天.【点睛】本题考查了分式方程的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式.2019-2020学年数学中考模拟试卷一、选择题1.如图,⊙O 的直径AB =8cm ,AM 和BN 是它的两条切线,切点分别为A ,B ,DE 切⊙O 于E ,交AM 于D ,交BN 于C ,设AD =x ,BC =y ,则y 与x 的函数关系式为( )A .16y x=B .y =2xC .y =2x 2D .8y x=2.某店在开学初用880元购进若干个学生专用科学计算器,按每个50元出售,很快就销售一空,据了解学生还急需3倍数量这种计算器,由于量大,每个进价比上次优惠1元,该店又用2580元购进所需计算器,该店第一次购进计算器的单价为( ) A.20元B.42元C.44元D.46元3.根据以下程序,当输入x =2时,输出结果为( )A.﹣1B.﹣4C.1D.114.在百度搜索引擎中输入“合肥”二字,能搜索到与之相关的结果个数约为41300000,数41300000用科学记数法表示正确的为:( )A.B.C.D.5.如图,在Rt △ABC 中,∠C =90°,按以下步骤作图:①以点A 为圆心,以小于AC 的长为半径作弧,分别交AC ,AB 于点M ,N ;②分别以点M ,N 为圆心,以大于12MN 的长为半径作弧,两弧相交于点O ;③连接AP ,交BC 于点E .若CE =3,BE =5,则AC 的长为( )A .4B .5C .6D .76.下列运算正确的是( ) A.235a a a +=B.248•a a a =C.()3263a ba b = D.22a a a ÷=7.小明沿着坡角为45°的坡面向下走了5米,那么他竖直方向下降的高度为( )A.1米B.2米C.米8.如图,在平行四边形ABCD 中,E 是BC 的中点,且∠AEC =∠DCE ,则下列结论不正确的是( )A .BF=12DFB .S △AFD =2S △EFBC .四边形AECD 是等腰梯形 D .∠AEB =∠ADC9.下列运算正确的是( )A .2a+3b =5abB .2(2a ﹣b )=4a ﹣bC .(a+b )(a ﹣b )=a 2﹣b 2D .(a+b )2=a 2+b 2 10.一幅美丽的图案是由四个边长相等的正多边形镶嵌而成,其中的三个分别为正三角形、正四边形、正六边形,那么另外一个为( )A .正三角形B .正四边形C .正五边形D .正六边形 11.如图,已知菱形ABCD ,AB=4,BAD=120∠︒,E 为BC 中点,P 为对角线BD 上一点,则PE+PC 的最小值等于( )A. B. C. D.12)的值估计在( )A .1.6与1.7之间B .1.7与1.8之间C .1.8与1.9之间D .1.9与2.0之间 二、填空题13.要使分式1x 1-有意义,x 的取值应满足______. 14.若在平行四边形ABCD 中,∠A =30°,AB =9,AD =8,则S 四边形ABCD =_____.15.已知反比例函数的图象经过点()1,3A ,那么这个反比例函数的解析式是________.16.若n 边形的每个外角均为120︒,则 n 的值是________.17.A 班学生参加“垃圾分类知识”竞赛,已知竞赛得分都是整数,竞赛成绩的频数分布直方图,如图所示,那么成绩高于60分的学生占A 班参赛人数的百分率为__.18.如图,边长为1的菱形ABCD 中,∠DAB =60度.连接对角线AC ,以AC 为边作第二个菱形ACC 1D 1,使∠D 1AC =60°;连接AC 1,再以AC 1为边作第三个菱形AC 1C 2D 2,使∠D 2AC 1=60°;…,按此规律所作的第n 个菱形的边长为_____.三、解答题19.解方程:252112x x x+--=3. 20.在一块直角三角形的废料上,要裁下一个半圆形的材料,并且要半圆的直径在斜边AB 上,且充分利用原三角形废料.(1)试画出你的设计(用圆规、直尺作图,不写作法,但要保留作图痕迹.)(2)若AC=4,BC=3,试计算出该半圆形材料的半径.21.如图,□ABCD 中,E 为BC 边上一点,连接DE ,若DE AD =,∠AFD+∠B=180°.求证:AB AF =.22.如图,某数学兴趣小组为测量一棵古树BH 和教学楼CG 的高,先在A 处用高1.5米的测角仪测得古树顶端H 的仰角∠HDE 为37°,此时教学楼顶端G 恰好在视线DH 上,再向前走8米到达B 处,又测得教学楼顶端G 的仰角∠GEF 为45°,点A 、B 、C 三点在同一水平线上.(1)求古树BH 的高;(2)计算教学楼CG 的高度.(参考数据:sin37°≈0.60,cos37°≈0.80,tan37°≈0.75)23.先化简再求值:22a a 2a 11a 2a 1a 1a --⎛⎫÷+- ⎪-+-⎝⎭,并从0,12四个数中,给a 选取一个恰当的数进行求值.24.如图所示,边长为2的等边三角形OAB 的顶点A 在x 轴的正半轴上,B 点位于第一象限将△OAB 绕O 点顺时针旋转30°后,怡好A 点在双曲线k y x= ,(x>0)上(1)求双曲线k y x= (x>0)的解析式 (2)等边三角形OAB 继续按顺时针方向旋转多少度后,A 点再次落在双曲线上?25.背景材料:在学习全等三角形知识时,数学兴趣小组发现这样一个模型,它是由两个共顶点且顶角相等的等腰三角形构成.在相对位置变化的同时,始终存在一对全等三角形.通过资料查询,他们知道这种模型称为手拉手模型.例如:如图1,两个等腰直角三角形△ABC 和△ADE ,∠BAC =∠EAD =90°,AB =AC ,AE =AD ,如果把小等腰三角形的腰长看作是小手,大等腰三角形的腰长看作大手,两个等腰三角形有公共顶点,类似大手拉着小手,这个就是手拉手模型,在这个模型中易得到△ABD ≌△ACE .学习小组继续探究:(1)如图2,已知△ABC ,以AB ,AC 为边分别向△ABC 外作等边△ABD 和等边△ACE ,请作出一个手拉手图形(尺规作图,不写作法,保留作图痕迹),并连接BE ,CD ,证明BE =CD ;(2)小刚同学发现,不等腰的三角形也可得到手拉手模型,例如,在△ABC 中AB >AC ,DE ∥BC ,将三角形ADE 旋转一定的角度(如图3),连接CE 和BD ,证明△ABD ∽△ACE .学以致用:(3)如图4,四边形ABCD 中,∠CAB =90°,∠ADC =∠ACB =α,tan α=34,CD =5,AD =12.请在图中构造小刚发现的手拉手模型求BD 的长.【参考答案】***一、选择题13.x≠114.3615.3y x=17.5%.18.1n-三、解答题19.12 x=-【解析】【分析】先把分式方程化为整式方程,解整式方程求得x的值,检验即可得分式方程的解. 【详解】原方程变形为253 2121xx x-=--,方程两边同乘以(2x﹣1),得2x﹣5=3(2x﹣1),解得12x=-.检验:把12x=-代入(2x﹣1),(2x﹣1)≠0,∴12x=-是原方程的解,∴原方程的12x=-.【点睛】本题考查了分式方程的解法,把分式方程化为整式方程是解决问题的关键,解分式方程时,要注意验根.20.(1)答案见解析;(2)127.【解析】【分析】(1)作∠ACB的角平分线交AB于O,过O作OE⊥AC于E,以O为圆心,OE为半径作圆交AB于D、F.图中半圆即为所求.(2)作OH⊥BC于H.首先证明OE=OH,设OE=OH=r,利用面积法构建方程求出r即可.【详解】解:(1)作∠ACB的角平分线交AB于O,过O作OE⊥AC于E,以O为圆心,OE为半径作圆交AB于D、F.(2)∵OC平分∠ACB,OE⊥AC,OH⊥BC,∴OE=OH,设OE=OH=r,∵S△ABC=12•AC•BC=12•AC•r+12•BC•r,∴r=127.本题考查作图-应用与设计,角平分线的性质等知识,解题的关键是熟练掌握五种基本作图,学会利用面积法构建方程解决问题.21.见解析.【解析】【分析】根据平行四边形的性质可证明ADF ∆≌DEC ∆,从而可得结论.【详解】在□ABCD 中,AB CD =,AB ∥CD ,AD ∥BC ,∴180B C ∠+∠=︒,ADF CED ∠=∠∵180AFD B ∠+∠=︒,∴C AFD ∠=∠又∵DE AD =,∴ADF ∆≌DEC ∆,∴AF CD =,∴AF AB =.【点睛】本题考查了平行四边形的性质以及全等三角形的判定与性质,掌握判定与性质是解题的关键.22.(1)7.5;(2)25.5.【解析】【分析】(1)利用等腰直角三角形的性质即可解决问题;(2)解直角三角形即可得到结论..【详解】(1)由题意:四边形ABED 是矩形,可得DE =AB =8米,AD =BE =1.5米,在Rt △DEH 中,∵∠EDH =37°,∴HE =DE•tan37°≈8×0.75=6米.∴BH =EH+BE =7.5米;(2)设GF =x 米,在Rt △GEF 中,∠GEF =45°,∴EF =GF =x ,在Rt △DFG 中,tan37°=8GF x DF x =+≈0.75, ∴x≈24,∴CG =CF+FG =25.5米,答:教学楼CG 的高度为25.5米.【点睛】本题考查解直角三角形的应用-仰角俯角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题.23.12a -,2. 【解析】【分析】根据分式的运算,将分式化简后,再选中能使分式有意义的a 的值代入求值即可.【详解】原式=22(1)121(1)1a a a a a a ---+÷-- ═2(1)1(1)(2)a a a a a a --⨯-- =12a -, ∵a≠0,1,2,当a 2=. 【点睛】本题主要考查分式的化简求值,解决此题的关键是先根据分式的运算性质,将其化简,再将未知数的代入求值,特别是要注意选取的a 的值要保证分式在整个运算过程中始终有意义.24.(1)(2)30°,理由见解析 【解析】【分析】(1)在Rt △AOD 中,OA=2,∠AOD=30°,就可以求出OD,AD 的长度,就得到A 点的坐标,代入双曲线k y x= (x >0)就可以求出函数的解析式(2)作出函数的图象,根据图象就可以得到.然后进行验证即可【详解】(1)如图所示,OA=2,∠AOD=30°在Rt △AOD 中,∴OD=OA ・cos30°=2AD=OA·sin30°=212⨯ =1∴把代入k y x =∴∴双曲线的解析式为 (2)猜想等边三角形OAB 继续按顺时针方向旋转30°后,A 点再次落在双曲线上,如图,此时代入y=-x 满足故猜想正确.【点睛】此题考查反比例函数的综合题,利用直角三角形的性质和三角函数是解题关键25.(1)作图见解析,证明见解析;(2)见解析;(3)BD= .【解析】【分析】(1)由等边三角形的性质可得AD=AB,AC=AE,∠DAB=∠EAC=60°,可得∠DAC=∠BAE,即可证△DAC≌△BAE,可得BD=CE;(2)通过证明△ADE∽△ABC,可得AB ADAC AE=,由旋转的性质可得∠BAC=∠DAE,即可得结论;(3)过点A 作AE垂直于AD,作∠AED=α,连接CE,则∠EDC=90°,通过证明△AEC∽△ADB,可得CE ACBD AB=,由锐角三角函数和勾股定理可求AE,DE,EC的长,即可求BD的长.【详解】(1)作图∵△ABD和△ACE都是等边三角形∴AD=AB,AC=AE,∠DAB=∠EAC=60°,∴∠DAC=∠BAE,且AD=AB,AC=AE∴△DAC≌△BAE(SAS)∴BE=CD(2)如图,在第一个图中,∵DE∥BC∴△ADE∽△ABC∴AB AD AC AE=∵将三角形ADE旋转一定的角度∴∠BAC=∠DAE∴∠BAD=∠CAE,且AB AD AC AE=∴△ABD∽△ACE;(3)如图,过点A 作AE垂直于AD,作∠AED=α,连接CE,则∠EDC=90°,∵∠AED=∠ACB=α,∠CAB=∠DAE=90°∴△AED∽△ACB∴AE AC AD AB=∵∠CAB=∠DAE=90°∴∠CAE=∠DAB,且AE AC AD AB=∴△AEC∽△ADB∴CE AC BD AB=∵△AED∽△ACB∴∠ADE=∠ABC∵∠ACB+∠ABC=90°,∠ADC=∠ACB ∴∠ADC+∠ADE=90°∴∠EDC=90°∵tanα=34ADAE=,AD=12.∴AE=16∴DE=20∴EC=∵43 CE AC BD AB==∴BD【点睛】本题是相似综合题,考查了相似三角形的判定和性质,全等三角形的判定和性质,勾股定理,锐角三角函数,添加恰当辅助线构造相似三角形是本题的关键.2019-2020学年数学中考模拟试卷一、选择题1.如图,⊙O1与⊙O2相交于A、B两点,经过点A的直线CD分别与⊙O1、⊙O2交于C、D,经过点B的直线EF分别与⊙O1、⊙O2交于E、F,且EF∥O1O2.下列结论:①CE∥DF;②∠D=∠F;③EF=2O1O2.必定成立的有()A.0个B.1个C.2个D.3个2.如图,在Rt△ABC中,∠C=90°,∠B=30°,AE平分∠CAB,EF∥AC,若AF=4,则CE=()A.3B.C.D.23.要使有意义,则x应该满足()A.0≤x≤3B.0<x≤3且x≠1C.1<x≤3D.0≤x≤3且x≠14.如图,抛物线y=ax2+bx+c与x轴交于点A(﹣1,0),顶点坐标为(1,n),与y轴的交点在(0,2)与(0,3)之间(包含端点),下列结论:①当x>3时,y<0;②﹣1≤a≤﹣23;③3≤n≤4;④关于x的方程ax2+bx+c=n﹣1有两个不相等的实数根.其中正确的有()A.1个B.2个C.3个D.4个5.如图,经过测量,C地在A地北偏东46°方向上,同时C地在B地北偏西63°方向上,则∠C的度数为()A.99°B.109°C.119°D.129°6.某城市为了解游客人数的变化规律,提高旅游服务质量,收集并整理了2014年1月至2016年12月期间月接待游客量(单位:万人)的数据,绘制了下面的折线图:根据该折线图,下列结论错误的是()A.月接待游客量逐月增加B.年接待游客量逐年增加C.各年的月接待游客量高峰期大致在7,8月份D.各年1月至6月的月接待游客量相对7月至12月,波动性更小,变化比较平稳7.下列四个图形中,既是轴对称图形又是中心对称图形的是()A.B.C.D.8.如图,CE是□ABCD的边AB的垂直平分线,垂足为点O,CE与DA的延长线交于点E、连接AC,BE,DO,DO与AC交于点F,则下列结论:①四边形ACBE是菱形;②∠ACD=∠BAE;③AF:BE=2:3;④S四:S△COD=2:3.其中正确的结论有()个.边形AFOEA.1 B.2 C.3 D.49.已知a,b,c为三角形的三边,则关于代数式a2﹣2ab+b2﹣c2的值,下列判断正确的是()A.大于0 B.等于0C.小于0 D.以上均有可能10.分式方程的解是( )A. B. C. D.11.如图,在ABCD中,对角线AC、BD相交于点O. E、F是对角线AC上的两个不同点,当E、F两点满足下列条件时,四边形DEBF不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠12.某机构调查了某小区部分居民当天行走的步数(单位:千步),并将数据整理绘制成如下不完整的频数直方图和扇形统计图.根据统计图,得出下面四个结论:①此次一共调查了200位小区居民;②行走步数为8~12千步的人数超过调查总人数的一半;③行走步数为4~8千步的人数为50人;④扇形图中,表示行走步数为12~16千步的扇形圆心角是72°.其中正确的结论有( )A .①②③B .①②④C .②③④D .①③④ 二、填空题13.已知一组数据1,2,3,5,x 的平均数是3,则这组数据的方差是_____.14.如图,在扇形OAB 中,∠AOB=90°,半径OA=6.将扇形OAB 沿过点B 的直线折叠,点O 恰好落在弧AB 上点D 处,折痕交OA 于点C ,则有下列选项:①∠ACD=60°;②CB=6;③阴影部分的周长为12+3π;④阴影部分的面积为9π﹣12.其中正确的是_______.(填写编号)15.如图,点A (m ,6),B (n ,1)在反比例函数k y x=的图象上,AD ⊥x 轴于点D ,BC ⊥x 轴于点C ,点E 在CD 上,CD =5,△ABE 的面积为10,则点E 的坐标是_____.16.如图是某几何体的三视图及相关数据(单位:cm ),则该几何体的侧面积为_____cm 2.17.如图,在▱ABCD 中,点E 在BC 上,AE 、BD 相交于点F ,若BE :EC =1:2,则△BEF 与四边形FECD 的面积比等于_____.18.若x 是3和6的比例中项,则x =_____.三、解答题19.如图,AB 为⊙O 的直径,点C ,D 在⊙O 上,且点C 是BD 的中点.连接AC ,过点C 作⊙O 的切线EF 交射线AD 于点 E .(1)求证:AE ⊥EF ;(2)连接BC .若AE =165,AB =5,求BC 的长.20.(1)计算:()011()20192sin 603π-+--+︒ (2)化简:2222631121x x x x x x x ++-÷+--+ 21.等腰直角三角板的一个锐角顶点与正方形ABCD 的顶点A 重合,两边分别交BC 、CD 于M 、N .(1)如图①,作AE ⊥AN 交CB 的延长线于E ,求证:△ABE ≌△AND ;(2)如图②,若M 、N 分别在边CB 、DC 所在的直线上时.①求证:BM+MN=DN;②如图③,作直线BD交直线AM、AN于P、Q两点,若MN=10,CM=8,求AP的长.22.红灯笼,象征着阖家团圆,红红火火,挂灯笼成为我国的一种传统文化.小明在春节前购进甲、乙两种红灯笼,用3120元购进甲灯笼与用4200元购进乙灯笼的数量相同,已知乙灯笼每对进价比甲灯笼每对进价多9元.(1)求甲、乙两种灯笼每对的进价;(2)经市场调查发现,乙灯笼每对售价50元时,每天可售出98对,售价每提高1元,则每天少售出2对:物价部门规定其销售单价不高于每对65元,设乙灯笼每对涨价x元,小明一天通过乙灯笼获得利润y元.①求出y与x之间的函数解析式;②乙种灯笼的销售单价为多少元时,一天获得利润最大?最大利润是多少元?23()()0232tan451π---︒+-24.某厂为新型号电视机上市举办促销活动,顾客每买一台该型号电视机,可获得一次抽奖机会,该厂拟按10%设大奖,其余90%为小奖。

【附5套中考模拟试卷】天津市宁河县2019-2020学年中考数学教学质量调研试卷含解析

【附5套中考模拟试卷】天津市宁河县2019-2020学年中考数学教学质量调研试卷含解析

天津市宁河县2019-2020学年中考数学教学质量调研试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若x是2的相反数,|y|=3,则12y x的值是( )A.﹣2 B.4 C.2或﹣4 D.﹣2或42.北京故宫的占地面积达到720 000平方米,这个数据用科学记数法表示为( )A.0.72×0.72×10106平方米 B.7.2×7.2×10106平方米C.72×72×10104平方米 D.7.2×7.2×10105平方米3.改革开放40年以来,城乡居民生活水平持续快速提升,居民教育、文化和娱乐消费支出持续增长,已经成为居民各项消费支出中仅次于居住、食品烟酒、交通通信后的第四大消费支出,如图为北京市统计局发布的2017年和2018年我市居民人均教育、文化和娱乐消费支出的折线图.说明:在统计学中,同比是指本期统计数据与上一年同期统计数据相比较,例如2018年第二季度与2017年第二季度相比较;环比是指本期统计数据与上期统计数据相比较,例如2018年第二季度与2018年第一季度相比较.根据上述信息,下列结论中错误的是( )A.2017年第二季度环比有所提高B.2017年第三季度环比有所提高C.2018年第一季度同比有所提高D.2018年第四季度同比有所提高4.下列四个图形中既是轴对称图形,又是中心对称图形的是( )A. B. C. D.5.下列运算不正确的是A. B.C. D.6.如图,已知数轴上的点A、B表示的实数分别为a,b,那么下列等式成立的是( )A .a b a b +=-B .a b a b +=--C .a b b a +=-D .a b a b +=+7.30cos ︒的值是()n n n n A .22B .33C .12D .328.已知二次函数y=3(x ﹣1)2+k 的图象上有三点A (2,y 1),B (2,y 2),C (﹣5,y 3),则y 1、y 2、y 3的大小关系为( ) A .y 1>y 2>y 3B .y 2>y 1>y 3C .y 3>y 1>y 2D .y 3>y 2>y 19.下列运算正确的是( ) A .(a 2)3 =a 5B .23a a a =gC .(3ab )2=6a 2b 2D .a 6÷a 3 =a 210.某校八(2)班6名女同学的体重(单位:kg )分别为35,36,38,40,42,42,则这组数据的中位数是( ) A .38B .39C .40D .4211.下列运算正确的是( )A .x 4+x 4=2x 8B .(x 2)3=x 5C .(x ﹣y )2=x 2﹣y 2D .x 3•x=x 4 12.实数a ,b 在数轴上的位置如图所示,以下说法正确的是( )A .a+b=0B .b <aC .ab >0D .|b|<|a|二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.分解因式:4m 2﹣16n 2=_____.14.如图,边长为4的正方形ABCD 内接于⊙O ,点E 是弧AB 上的一动点(不与点A 、B 重合),点F 是弧BC 上的一点,连接OE ,OF ,分别与交AB ,BC 于点G ,H ,且∠EOF=90°,连接GH ,有下列结论:①弧AE=弧BF ;②△OGH 是等腰直角三角形;③四边形OGBH 的面积随着点E 位置的变化而变化;④△GBH 周长的最小值为4+22.其中正确的是_____.(把你认为正确结论的序号都填上)15.不等式组1xx m>-⎧⎨<⎩有2个整数解,则m的取值范围是_____.16.在Rt△ABC中,∠ABC=90°,AB=3,BC=4,点E,F分别在边AB,AC上,将△AEF沿直线EF 翻折,点A落在点P处,且点P在直线BC上.则线段CP长的取值范围是____.17.在平面直角坐标系中,点 A的坐标是(-1,2) .作点A关于x 轴的对称点,得到点A1 ,再将点A1 向下平移 4个单位,得到点A2 ,则点A2 的坐标是_________.18.一个盒子内装有大小、形状相同的四个球,其中红球1个、绿球1个、白球2个,小明摸出一个球不放回,再摸出一个球,则两次都摸到白球的概率是_______.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)数学课上,李老师和同学们做一个游戏:他在三张硬纸片上分别写出一个代数式,背面分别标上序号①、②、③,摆成如图所示的一个等式,然后翻开纸片②是4x1+5x+6,翻开纸片③是3x1﹣x﹣1.解答下列问题求纸片①上的代数式;若x是方程1x=﹣x﹣9的解,求纸片①上代数式的值.20.(6分)问题探究(1)如图①,在矩形ABCD中,AB=3,BC=4,如果BC边上存在点P,使△APD为等腰三角形,那么请画出满足条件的一个等腰三角形△APD,并求出此时BP的长;(2)如图②,在△ABC中,∠ABC=60°,BC=12,AD是BC边上的高,E、F分别为边AB、AC的中点,当AD=6时,BC边上存在一点Q,使∠EQF=90°,求此时BQ的长;问题解决(3)有一山庄,它的平面图为如图③的五边形ABCDE,山庄保卫人员想在线段CD上选一点M安装监控装置,用来监视边AB,现只要使∠AMB大约为60°,就可以让监控装置的效果达到最佳,已知∠A=∠E=∠D=90°,AB=270m,AE=400m,ED=285m,CD=340m,问在线段CD上是否存在点M,使∠AMB=60°?若存在,请求出符合条件的DM的长,若不存在,请说明理由.21.(6分)解不等式组:426113x x x x >-⎧⎪+⎨-≤⎪⎩,并写出它的所有整数解. 22.(8分)在某市组织的大型商业演出活动中,对团体购买门票实行优惠,决定在原定票价基础上每张降价80元,这样按原定票价需花费6000元购买的门票张数,现在只花费了4800元.求每张门票原定的票价;根据实际情况,活动组织单位决定对于个人购票也采取优惠措施,原定票价经过连续二次降价后降为324元,求平均每次降价的百分率.23.(8分)有一水果店,从批发市场按4元/千克的价格购进10吨苹果,为了保鲜放在冷藏室里,但每天仍有一些苹果变质,平均每天有50千克变质丢弃,且每存放一天需要各种费用300元,据预测,每天每千克价格上涨0.1元.设x 天后每千克苹果的价格为p 元,写出p 与x 的函数关系式;若存放x 天后将苹果一次性售出,设销售总金额为y 元,求出y 与x 的函数关系式;该水果店将这批水果存放多少天后一次性售出,可以获得最大利润,最大利润为多少?24.(10分)(1)如图1,半径为2的圆O 内有一点P ,切OP=1,弦AB 过点P ,则弦AB 长度的最大值为__________;最小值为___________.图① (2)如图2,△ABC 是葛叔叔家的菜地示意图,其中∠ABC=90°,AB=80米,BC=60米,现在他利用周边地的情况,把原来的三角形地拓展成符合条件的面积尽可能大、周长尽可能长的四边形地,用来建鱼塘.已知葛叔叔想建的鱼塘是四边形ABCD ,且满足∠ADC=60°,你认为葛叔叔的想法能实现吗?若能,求出这个四边形鱼塘面积和周长的最大值;若不能,请说明理由.图② 25.(10分)计算:|2﹣1|﹣2sin45°2sin45°++38﹣21()2- 26.(12分)如图,直线y =2x +6与反比例函数y =k x(k >0)的图像交于点A(1,m),与x 轴交于点B ,平行于x 轴的直线y =n(0<n <6)交反比例函数的图像于点M ,交AB 于点N ,连接BM.(1)求m的值和反比例函数的表达式;(2)直线y=n沿y轴方向平移,当n为何值时,△BMN的面积最大?27.(12分)综合与探究:如图1,抛物线y=﹣33x2+233x+3与x轴分别交于A、B两点(点A在点B的左侧),与y轴交于C点.经过点A的直线l与y轴交于点D(0,﹣3).(1)求A、B两点的坐标及直线l的表达式;(2)如图2,直线l从图中的位置出发,以每秒1个单位的速度沿x轴的正方向运动,运动中直线l与x 轴交于点E,与y轴交于点F,点A 关于直线l的对称点为A′,连接FA′、BA′,设直线l的运动时间为t (t>0)秒.探究下列问题:①请直接写出A′的坐标(用含字母t的式子表示);②当点A′落在抛物线上时,求直线l的运动时间t的值,判断此时四边形A′BEF的形状,并说明理由; (3)在(2)的条件下,探究:在直线l的运动过程中,坐标平面内是否存在点P,使得以P,A′,B,E 为顶点的四边形为矩形?若存在,请直接写出点P的坐标; 若不存在,请说明理由.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】直接利用相反数以及绝对值的定义得出x,y的值,进而得出答案.【详解】解:∵x是1的相反数,|y|=3,∴x=-1,y=±y=±33,∴y-12x=4或-1.故选D.【点睛】此题主要考查了有理数的混合运算,正确得出x,y的值是解题关键.2.D【解析】试题分析:把一个数记成a×a×1010n(1≤a<10,n整数位数少1)的形式,叫做科学记数法.∴此题可记为1.2×2×10105平方米.考点:科学记数法3.C【解析】【分析】根据环比和同比的比较方法,验证每一个选项即可.【详解】2017年第二季度支出948元,第一季度支出859元,所以第二季度比第一季度提高,故A正确; 2017年第三季度支出1113元,第二季度支出948元,所以第三季度比第二季度提高,故B正确; 2018年第一季度支出839元,2017年第一季度支出859元,所以2018年第一季度同比有所降低,故C错误;2018年第四季度支出1012元,2017年第一季度支出997元,所以2018年第四季度同比有所降低,故D 正确;故选C.本题考查折线统计图,同比和环比的意义;能够从统计图中获取数据,按要求对比数据是解题的关键. 4.D【解析】【分析】根据轴对称图形与中心对称图形的概念求解.【详解】A、是轴对称图形,不是中心对称图形,故此选项错误;B、是轴对称图形,不是中心对称图形,故此选项错误;C、是轴对称图形,不是中心对称图形,故此选项错误;D、是轴对称图形,也是中心对称图形,故此选项正确.故选D.【点睛】此题主要考查了中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,旋转180度后两部分重合.5.B【解析】,B是错的,A、C、D运算是正确的,故选B6.B【解析】【分析】根据图示,可得:b<0<a,|b|>|a|,据此判断即可.【详解】∵b<0<a,|b|>|a|,∴a+b<0,∴|a+b|= -a-b.故选B.【点睛】此题主要考查了实数与数轴的特征和应用,以及绝对值的含义和求法,要熟练掌握.7.D【解析】【分析】根据特殊角三角函数值,可得答案.解:3302cos ︒=,故选:D . 【点睛】本题考查了特殊角三角函数值,熟记特殊角三角函数值是解题关键. 8.D 【解析】试题分析:根据二次函数的解析式y =3(x -1)2+k ,可知函数的开口向上,对称轴为x=1,根据函数图像的对称性,可得这三点的函数值的大小为y 3>y 2>y 1. 故选D点睛:此题主要考查了二次函数的图像与性质,解题时先根据顶点式求出开口方向,和对称轴,然后根据函数的增减性比较即可,这是中考常考题,难度有点偏大,注意结合图形判断验证. 9.B 【解析】分析:本题考察幂的乘方,同底数幂的乘法,积的乘方和同底数幂的除法. 解析: ()326aa =,故A 选项错误; a 3·a = a 4故B 选项正确;(3ab)2 = 9a 2b 2故C 选项错误; a 6÷a 3 = a 3故D 选项错误. 故选B. 10.B 【解析】 【分析】根据中位数的定义求解,把数据按大小排列,第3、4个数的平均数为中位数. 【详解】解:由于共有6个数据,所以中位数为第3、4个数的平均数,即中位数为38402+=39, 故选:B . 【点睛】本题主要考查了中位数.要明确定义:将一组数据从小到大(或从大到小)重新排列后,若这组数据的个数是奇数,则最中间的那个数叫做这组数据的中位数;若这组数据的个数是偶数,则最中间两个数的平均数是这组数据的中位数. 11.D【解析】A. x 4+x 4=2x 4 ,故错误;B. (x 2)3=x 6 ,故错误;C. (x ﹣y )2=x 2﹣2xy+y 2 ,故错误;D. x 3•x=x 4,正确,故选D. 12.D 【解析】 【分析】根据图形可知,a 是一个负数,并且它的绝对是大于1小于2,b 是一个正数,并且它的绝对值是大于0小于1,即可得出|b|<|a|. 【详解】A 选项:由图中信息可知,实数a 为负数,实数b 为正数,但表示它们的点到原点的距离不相等,所以它们不互为相反数,和不为0,故A 错误;B 选项:由图中信息可知,实数a 为负数,实数b 为正数,而正数都大于负数,故B 错误;C 选项:由图中信息可知,实数a 为负数,实数b 为正数,而异号两数相乘积为负,负数都小于0,故C 错误;D 选项:由图中信息可知,表示实数a 的点到原点的距离大于表示实数b 的点到原点的距离,而在数轴上表示一个数的点到原点的距离越远其绝对值越大,故D 正确. ∴ 选D.二、填空题:(本大题共6个小题,每小题4分,共24分.) 13.4(m+2n )(m ﹣2n ). 【解析】 【分析】原式提取4后,利用平方差公式分解即可. 【详解】解:原式=4(224m n - )()()422m n m n =+-. 故答案为()()422m n m n +-【点睛】本题考查提公因式法与公式法的综合运用,解题的关键是熟练掌握因式分解的方法. 14.①②④【解析】【分析】 ①根据ASA 可证△BOE ≌△COF ,根据全等三角形的性质得到BE=CF ,根据等弦对等弧得到»»AE BF =,可以判断①; ②根据SAS 可证△BOG ≌△COH ,根据全等三角形的性质得到∠GOH=90°,OG=OH ,根据等腰直角三角形的判定得到△OGH 是等腰直角三角形,可以判断②;③通过证明△HOM ≌△GON ,可得四边形OGBH 的面积始终等于正方形ONBM 的面积,可以判断③;④根据△BOG ≌△COH 可知BG=CH ,则BG+BH=BC=4,设BG=x ,则BH=4-x ,根据勾股定理得到GH=22BG BH +=()224x x+- ,可以求得其最小值,可以判断④.【详解】解:①如图所示,∵∠BOE+∠BOF=90°,∠COF+∠BOF=90°, ∴∠BOE=∠COF , 在△BOE 与△COF 中,OB OCBOE COF OE OF=⎧⎪∠=∠⎨⎪=⎩, ∴△BOE ≌△COF , ∴BE=CF ,∴»»AE BF =,①正确; ②∵OC=OB ,∠COH=∠BOG ,∠OCH=∠OBG=45°, ∴△BOG ≌△COH ; ∴OG=OH ,∵∠GOH=90°,∴△OGH 是等腰直角三角形,②正确. ③如图所示,∵△HOM ≌△GON ,∴四边形OGBH 的面积始终等于正方形ONBM 的面积,③错误; ④∵△BOG ≌△COH , ∴BG=CH , ∴BG+BH=BC=4, 设BG=x ,则BH=4-x ,则GH=22BG BH +=()224x x+-,∴其最小值为4+22,④正确. 故答案为:①②④ 【点睛】考查了圆的综合题,关键是熟练掌握全等三角形的判定和性质,等弦对等弧,等腰直角三角形的判定,勾股定理,面积的计算,综合性较强. 15.1<m≤2 【解析】 【分析】首先根据不等式恰好有2个整数解求出不等式组的解集为1x m -<<,再确定12m <≤. 【详解】Q 不等式组1x x m>-⎧⎨<⎩有2个整数解,∴其整数解有0、1这2个,∴12m <≤.故答案为:12m <≤. 【点睛】此题主要考查了解不等式组,关键是正确理解解集的规律:同大取大,同小取小,大小小大中间找,大大小小找不到. 16.15CP ≤≤ 【解析】 【分析】根据点E 、F 在边AB 、AC 上,可知当点E 与点B 重合时,CP 有最小值,当点F 与点C 重合时CP 有最大值,根据分析画出符合条件的图形即可得. 【详解】如图,当点E 与点B 重合时,CP 的值最小,此时BP=AB=3,所以PC=BC-BP=4-3=1,如图,当点F与点C重合时,CP的值最大,此时CP=AC,Rt△ABC中,∠ABC=90°,AB=3,BC=4,根据勾股定理可得AC=5,所以CP的最大值为5,所以线段CP长的取值范围是1≤CP≤5,故答案为1≤CP≤5.【点睛】本题考查了折叠问题,能根据点E、F分别在线段AB、AC上,点P在直线BC上确定出点E、F位于什么位置时PC有最大(小)值是解题的关键.17.(-1, -6)【解析】【分析】直接利用关于x轴对称点的性质得出点A1坐标,再利用平移的性质得出答案.【详解】∵点A的坐标是(-1,2),作点A关于x轴的对称点,得到点A1,∴A1(-1,-2),∵将点A1向下平移4个单位,得到点A2,∴点A2的坐标是:(-1,-6).故答案为:(-1, -6).【点睛】解决本题的关键是掌握好对称点的坐标规律:(1)关于x轴对称的点,横坐标相同,纵坐标互为相反数;(2)关于y轴对称的点,纵坐标相同,横坐标互为相反数;(3)关于原点对称的点,横坐标与纵坐标都互为相反数.18.16【解析】【分析】首先根据题意画出树状图,然后由树状图求得所有等可能的结果与两次都摸到白球的情况,再利用概率公式即可求得答案.【详解】画树状图得:∵共有12种等可能的结果,两次都摸到白球的有2种情况, ∴两次都摸到白球的概率是:212=16. 故答案为:16. 【点睛】本题考查用树状图法求概率,解题的关键是掌握用树状图法求概率. 三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤. 19.(1)7x 1+4x+4;(1)55. 【解析】 【分析】(1)根据整式加法的运算法则,将(4x 1+5x+6)+(3x 1﹣x ﹣1)即可求得纸片①上的代数式; (1)先解方程1x =﹣x ﹣9,再代入纸片①的代数式即可求解. 【详解】 解:(1)纸片①上的代数式为: (4x 1+5x+6)+(3x 1﹣x ﹣1) =4x 1+5x+6+3x 1-x-1 =7x 1+4x+4(1)解方程:1x =﹣x ﹣9,解得x =﹣3 代入纸片①上的代数式得7x 1+4x+4=7×7×(-3)²(-3)²(-3)²+4×+4×+4×(-3)+4 (-3)+4 =63-11+4=55即纸片①上代数式的值为55. 【点睛】本题考查了整式加减混合运算,解一元一次方程,代数式求值,在解题的过程中要牢记并灵活运用整式加减混合运算的法则.特别是对于含括号的运算,在去括号时,一定要注意符号的变化. 20.(1)1;2-7;7;(1)4+3;(4)(200-253-402)米. 【解析】【分析】(1)由于△PAD是等腰三角形,底边不定,需三种情况讨论,运用三角形全等、矩形的性质、勾股定理等知识即可解决问题.(1)以EF为直径作⊙O,易证⊙O与BC相切,从而得到符合条件的点Q唯一,然后通过添加辅助线,借助于正方形、特殊角的三角函数值等知识即可求出BQ长.(4)要满足∠AMB=40°,可构造以AB为边的等边三角形的外接圆,该圆与线段CD的交点就是满足条件的点,然后借助于等边三角形的性质、特殊角的三角函数值等知识,就可算出符合条件的DM长. 【详解】(1)①作AD的垂直平分线交BC于点P,如图①,则PA=PD.∴△PAD是等腰三角形.∵四边形ABCD是矩形,∴AB=DC,∠B=∠C=90°.∵PA=PD,AB=DC,∴Rt△ABP≌Rt△DCP(HL).∴BP=CP.∵BC=2,∴BP=CP=1.②以点D为圆心,AD为半径画弧,交BC于点P′,如图①,则DA=DP′.∴△P′AD是等腰三角形.∵四边形ABCD是矩形,∴AD=BC,AB=DC,∠C=90°.∵AB=4,BC=2,∴DC=4,DP′=2.∴CP′=2243=7.∴BP′=2-7.③点A 为圆心,AD 为半径画弧,交BC 于点P″,如图①, 则AD=AP″.∴△P″AD 是等腰三角形. 同理可得:BP″=7.综上所述:在等腰三角形△ADP 中, 若PA=PD ,则BP=1; 若DP=DA ,则BP=2-7; 若AP=AD ,则BP=7.(1)∵E 、F 分别为边AB 、AC 的中点, ∴EF ∥BC ,EF=12BC . ∵BC=11, ∴EF=4.以EF 为直径作⊙O ,过点O 作OQ ⊥BC ,垂足为Q ,连接EQ 、FQ ,如图②.∵AD ⊥BC ,AD=4, ∴EF 与BC 之间的距离为4. ∴OQ=4 ∴OQ=OE=4.∴⊙O 与BC 相切,切点为Q . ∵EF 为⊙O 的直径, ∴∠EQF=90°.过点E 作EG ⊥BC ,垂足为G ,如图②. ∵EG ⊥BC ,OQ ⊥BC , ∴EG ∥OQ .∵EO ∥GQ ,EG ∥OQ ,∠EGQ=90°,OE=OQ , ∴四边形OEGQ 是正方形. ∴GQ=EO=4,EG=OQ=4. ∵∠B=40°,∠EGB=90°,EG=4,∴BG=3.∴BQ=GQ+BG=4+3.∴当∠EQF=90°时,BQ的长为4+3.(4)在线段CD上存在点M,使∠AMB=40°.理由如下:以AB为边,在AB的右侧作等边三角形ABG,作GP⊥AB,垂足为P,作AK⊥BG,垂足为K.设GP与AK交于点O,以点O为圆心,OA为半径作⊙O, 过点O作OH⊥CD,垂足为H,如图③.则⊙O是△ABG的外接圆,∵△ABG是等边三角形,GP⊥AB,∴AP=PB=12AB.∵AB=170,∴AP=145.∵ED=185,∴OH=185-145=6.∵△ABG是等边三角形,AK⊥BG, ∴∠BAK=∠GAK=40°.∴OP=AP•tan40°=145×33=253.∴OA=1OP=903.∴OH<OA.∴⊙O与CD相交,设交点为M,连接MA、MB,如图③. ∴∠AMB=∠AGB=40°,OM=OA=903..∵OH⊥CD,OH=6,OM=903,∴HM=2222=(903)150OM OH--=402.∵AE=200,OP=253,∴DH=200-253.若点M在点H的左边,则DM=DH+HM=200-253+402.∵200-253+402>420,∴DM>CD.∴点M不在线段CD上,应舍去.若点M在点H的右边,则DM=DH-HM=200-253-402.∵200-253-402<420,∴DM<CD.∴点M在线段CD上.综上所述:在线段CD上存在唯一的点M,使∠AMB=40°,此时DM的长为(200-253-402)米.【点睛】本题考查了垂直平分线的性质、矩形的性质、等边三角形的性质、正方形的判定与性质、直线与圆的位置关系、圆周角定理、三角形的中位线定理、全等三角形的判定与性质、勾股定理、特殊角的三角函数值等知识,考查了操作、探究等能力,综合性非常强.而构造等边三角形及其外接圆是解决本题的关键. 21.﹣2,﹣1,0,1,2;【解析】【分析】首先解每个不等式,两个不等式的解集的公共部分就是不等式组的解集;再确定解集中的所有整数解即可. 【详解】解:解不等式(1),得x3>-解不等式(2),得x≤2所以不等式组的解集:-3<x≤2它的整数解为:-2,-1,0,1,222.(1)1(2)10%.【解析】试题分析:(1)设每张门票的原定票价为x元,则现在每张门票的票价为(x-80)元,根据“按原定票价需花费6000元购买的门票张数,现在只花费了4800元”建立方程,解方程即可;(2)设平均每次降价的百分率为y ,根据“原定票价经过连续二次降价后降为324元”建立方程,解方程即可.试题解析:(1)设每张门票的原定票价为x 元,则现在每张门票的票价为(x-80)元,根据题意得 6000480080xx =-, 解得x=1.经检验,x=1是原方程的根. 答:每张门票的原定票价为1元;(2)设平均每次降价的百分率为y ,根据题意得 1(1-y )2=324,解得:y 1=0.1,y 2=1.9(不合题意,舍去). 答:平均每次降价10%.考点:1.一元二次方程的应用;2.分式方程的应用.23.()1?0.14p x =+;()22580040000y x x =-++;(3)该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元. 【解析】 【分析】(1)根据按每千克4元的市场价收购了这种苹果10000千克,此后每天每千克苹果价格会上涨0.1元,进而得出x 天后每千克苹果的价格为p 元与x 的函数关系; (2)根据每千克售价乘以销量等于销售总金额,求出即可; (3)利用总售价-成本-费用=利润,进而求出即可. 【详解】()1根据题意知,0.14p x =+;()()()220.141000050580040000y x x x x =+-=-++. ()3300410000w y x =--⨯Q25500x x =-+25(50)12500x =--+∴当50x =时,最大利润12500元,答:该水果店将这批水果存放50天后一次性售出,可以获得最大利润,最大利润为12500元. 【点睛】此题主要考查了二次函数的应用以及二次函数最值求法,得出w 与x 的函数关系是解题关键.24.(1)弦AB 长度的最大值为4,最小值为23;(2)面积最大值为(25003+2400)平方米,周长最大值为340米. 【解析】【分析】 (1)当AB 是过P 点的直径时,AB 最长;当AB ⊥OP 时,AB 最短,分别求出即可.(2)如图在△ABC 的一侧以AC 为边做等边三角形AEC ,再做△AEC 的外接圆,则满足∠ADC=60°的点D 在优弧AEC 上(点D 不与A 、C 重合),当D 与E 重合时,S △ADC 最大值=S △AEC ,由S △ABC 为定值,故此时四边形ABCD 的面积最大,再根据勾股定理和等边三角形的性质求出此时的面积与周长即可. 【详解】(1)(1)当AB 是过P 点的直径时,AB 最长=2×=2×2=42=4; 当AB ⊥OP 时,AB 最短,AP=2222213OA OP -=-=∴AB=23 (2)如图,在△ABC 的一侧以AC 为边做等边三角形AEC , 再做△AEC 的外接圆,当D 与E 重合时,S △ADC 最大 故此时四边形ABCD 的面积最大, ∵∠ABC=90°,AB=80,BC=60 ∴AC=22100AB BC +=∴周长为AB+BC+CD+AE=80+60+100+100=340(米)S △ADC =111005032500322AC h ⨯=⨯⨯= S △ABC =118060240022AB BC ⨯=⨯⨯=∴四边形ABCD 面积最大值为(25003+2400)平方米.【点睛】此题主要考查圆的综合利用,解题的关键是熟知圆的性质定理与垂径定理. 25.﹣1【解析】 【分析】直接利用负指数幂的性质以及绝对值的性质、特殊角的三角函数值分别化简得出答案. 【详解】原式=(2﹣1)﹣2×22+2﹣4 =2﹣1﹣2+2﹣4 =﹣1. 【点睛】此题主要考查了实数运算,正确化简各数是解题关键. 26.(1)m =8,反比例函数的表达式为y =8x;(2)当n =3时,△BMN 的面积最大. 【解析】 【分析】(1)求出点A 的坐标,利用待定系数法即可解决问题; (2)构造二次函数,利用二次函数的性质即可解决问题. 【详解】解:(1)∵直线y=2x+6经过点A (1,m ), ∴m=2×m=2×1+6=81+6=8, ∴A (1,8),∵反比例函数经过点A (1,8), ∴8=1k, ∴k=8,∴反比例函数的解析式为y=8x.(2)由题意,点M ,N 的坐标为M (8n,n ),N (62n -,n ),∵0<n <6, ∴62n -<0,∴S △BMN =12×(|62n -|+|8n |)×n=12×(﹣62n -+8n)×n=﹣14(n ﹣3)2+254, ∴n=3时,△BMN 的面积最大.27.(1)A (﹣1,0),B (3,0),y=﹣3x ﹣3; (2)①A′(32t ﹣1,32t );②A′BEF 为菱形,见解析;(3)存在,P点坐标为(53,433)或(73,﹣233).【解析】 【分析】(1)通过解方程﹣33x2+233x+3=0得A(−1,0),B(3,0),然后利用待定系数法确定直线l的解析式;(2)①作A′H⊥x轴于H,如图2,利用OA=1,OD=3得到∠OAD=60°,再利用平移和对称的性质得到EA=EA′=t,∠A′EF=∠AEF=60°,然后根据含30度的直角三角形三边的关系表示出A′H,EH 即可得到A′的坐标;②把A′(32t−1,32t)代入y=−33x2+233x+3得−33(32t−1)2+233(32t−1)+3=32t,解方程得到t=2,此时A′点的坐标为(2,3),E(1,0),然后通过计算得到AF=BE=2,A′F∥BE,从而判断四边形A′BEF为平行四边形,然后加上EF=BE可判定四边形A′BEF为菱形;(3)讨论:当A′B⊥BE时,四边形A′BEP为矩形,利用点A′和点B的横坐标相同得到32t−1=3,解方程求出t得到A′(3,433),再利用矩形的性质可写出对应的P点坐标;当A′B⊥EA′,如图4,四边形A′BPE为矩形,作A′Q⊥x轴于Q,先确定此时A′点的坐标,然后利用点的平移确定对应P点坐标. 【详解】(1)当y=0时,﹣33x2+233x+3=0,解得x1=﹣1,x2=3,则A(﹣1,0),B(3,0),设直线l的解析式为y=kx+b,把A(﹣1,0),D(0,﹣3)代入得{3k bb-+==-,解得3{3kb=-=-,∴直线l的解析式为y=﹣3x﹣3; (2)①作A′H⊥x轴于H,如图,∵OA=1,OD=3,∴∠OAD=60°,∵EF∥AD,∴∠AEF=60°,∵点A 关于直线l的对称点为A′, ∴EA=EA′=t,∠A′EF=∠AEF=60°,在Rt△A′EH中,EH=12EA′=12t,A′H=3EH=32t,∴OH=OE+EH=t﹣1+12t=32t﹣1,∴A′(32t﹣1,32t);②把A′(32t﹣1,32t)代入y=﹣33x2+233x+3得﹣33(32t﹣1)2+233(32t﹣1)+3=32t,解得t1=0(舍去),t2=2,∴当点A′落在抛物线上时,直线l的运动时间t的值为2; 此时四边形A′BEF为菱形,理由如下:当t=2时,A′点的坐标为(2,3),E(1,0),∵∠OEF=60°∴OF=3OE=3,EF=2OE=2,∴F(0,3),∴A′F∥x轴,∵A′F=BE=2,A′F∥BE,∴四边形A′BEF为平行四边形,而EF=BE=2,∴四边形A′BEF为菱形;(3)存在,如图:当A′B⊥BE时,四边形A′BEP为矩形,则32t﹣1=3,解得t=83,则A′(3,433),∵OE=t﹣1=53,∴此时P点坐标为(53,433);当A′B⊥EA′,如图,四边形A′BPE为矩形,作A′Q⊥x轴于Q,∵∠AEA′=120°,∴∠A′EB=60°,∴∠EBA′=30°∴BQ=3A′Q=3•32t=32t,∴32t﹣1+32t=3,解得t=43,此时A′(1,233),E(13,0),点A′向左平移23个单位,向下平移233个单位得到点E,则点B(3,0)向左平移23个单位,向下平移23 3个单位得到点P,则P(73,﹣233),综上所述,满足条件的P点坐标为(53,433)或(73,﹣233).【点睛】本题考查了二次函数的综合题:熟练掌握二次函数图象上点的坐标特征、二次函数的性质、菱形的判定和矩形的性质;会利用待定系数法求函数解析式;理解坐标与图形性质.AdministratorA d m i n i s t r a t o rGT? M i c r o s o f t W o r d。

【精选3份合集】天津市宁河县2019年中考一模数学试卷有答案含解析

【精选3份合集】天津市宁河县2019年中考一模数学试卷有答案含解析

中考数学模拟试卷(解析版)注意事项:1. 答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。

2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。

3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。

4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。

一、选择题1.如图,实数﹣3、x、3、y在数轴上的对应点分别为M、N、P、Q,这四个数中绝对值最小的数对应的点是()A.点M B.点N C.点P D.点Q解析:D【解析】∵实数-3,x,3,y在数轴上的对应点分别为M、N、P、Q,∴原点在点M与N之间,∴这四个数中绝对值最大的数对应的点是点Q.故选D.2.某校举行“汉字听写比赛”,5个班级代表队的正确答题数如图.这5个正确答题数所组成的一组数据的中位数和众数分别是()A.10,15 B.13,15 C.13,20 D.15,15解析:D【解析】【分析】将五个答题数,从小打到排列,5个数中间的就是中位数,出现次数最多的是众数.【详解】将这五个答题数排序为:10,13,15,15,20,由此可得中位数是15,众数是15,故选D.【点睛】本题考查中位数和众数的概念,熟记概念即可快速解答.3.如图,A、B、C是小正方形的顶点,且每个小正方形的边长为1,则tan∠BAC的值为()A.12B.1 C.3D.3解析:B【解析】【分析】连接BC,由网格求出AB,BC,AC的长,利用勾股定理的逆定理得到△ABC为等腰直角三角形,即可求出所求.【详解】如图,连接BC,由网格可得AB=BC=5,AC=10,即AB2+BC2=AC2,∴△ABC为等腰直角三角形,∴∠BAC=45°,则tan∠BAC=1,故选B.【点睛】本题考查了锐角三角函数的定义,解直角三角形,以及勾股定理,熟练掌握勾股定理是解本题的关键.4.矩形具有而平行四边形不具有的性质是()A.对角相等B.对角线互相平分C.对角线相等D.对边相等解析:C【解析】试题分析:举出矩形和平行四边形的所有性质,找出矩形具有而平行四边形不具有的性质即可.解:矩形的性质有:①矩形的对边相等且平行,②矩形的对角相等,且都是直角,③矩形的对角线互相平分、相等;平行四边形的性质有:①平行四边形的对边分别相等且平行,②平行四边形的对角分别相等,③平行四边形的对角线互相平分;∴矩形具有而平行四边形不一定具有的性质是对角线相等,故选C.5.如图,△ABC中AB两个顶点在x轴的上方,点C的坐标是(﹣1,0),以点C为位似中心,在x轴的下方作△ABC的位似图形△A′B′C′,且△A′B′C′与△ABC的位似比为2:1.设点B的对应点B′的横坐标是a,则点B的横坐标是()A.12a-B.1(1)2a-+C.1(1)2a--D.1(3)2a-+解析:D【解析】【分析】设点B的横坐标为x,然后表示出BC、B′C的横坐标的距离,再根据位似变换的概念列式计算.【详解】设点B的横坐标为x,则B、C间的横坐标的长度为﹣1﹣x,B′、C间的横坐标的长度为a+1,∵△ABC放大到原来的2倍得到△A′B′C,∴2(﹣1﹣x)=a+1,解得x=﹣12(a+3),故选:D.【点睛】本题考查了位似变换,坐标与图形的性质,根据位似变换的定义,利用两点间的横坐标的距离等于对应边的比列出方程是解题的关键.6.如图是由5个大小相同的正方体搭成的几何体,这个几何体的俯视图是()A.B.C.D.解析:A【解析】分析:根据从上面看得到的图形是俯视图,可得答案.详解:从上面看第一列是两个小正方形,第二列是一个小正方形,第三列是一个小正方形,故选:A.点睛:本题考查了简单组合体的三视图,从上面看得到的图形是俯视图.7.小明乘出租车去体育场,有两条路线可供选择:路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达.若设走路线一时的平均速度为x千米/小时,根据题意,得A.B.C.D.解析:A【解析】若设走路线一时的平均速度为x千米/小时,根据路线一的全程是25千米,但交通比较拥堵,路线二的全程是30千米,平均车速比走路线一时的平均车速能提高80%,因此能比走路线一少用10分钟到达可列出方程.解:设走路线一时的平均速度为x千米/小时,故选A.8.下列所给的汽车标志图案中,既是轴对称图形,又是中心对称图形的是()A.B.C.D.解析:B【解析】分析:根据轴对称图形与中心对称图形的概念求解即可.详解:A .是轴对称图形,不是中心对称图形;B .是轴对称图形,也是中心对称图形;C .是轴对称图形,不是中心对称图形;D .是轴对称图形,不是中心对称图形.故选B .点睛:本题考查了中心对称图形和轴对称图形的知识,关键是掌握好中心对称图形与轴对称图形的概念.轴对称图形的关键是寻找对称轴,图形两部分折叠后可重合,中心对称图形是要寻找对称中心,图形旋转180°后与原图重合.9.12233499100++++++++L 的整数部分是( ) A .3B .5C .9D .6 解析:C【解析】解:∵21+=2﹣1,23+=3﹣2 (99100)+=﹣99+100,∴原式=2﹣1+3﹣2+…﹣99+100=﹣1+10=1.故选C .10.如图是一个正方体的表面展开图,如果对面上所标的两个数互为相反数,那么图中x 的值是( ).A .3-B .3C .2D .8解析:D【解析】【分析】 根据正方体平面展开图的特征得出每个相对面,再由相对面上的两个数互为相反数可得出x 的值.【详解】解:“3”与“-3”相对,“y”与“-2”相对,“x”与“-8”相对, 故x=8,故选D .【点睛】本题主要考查了正方体相对面上的文字,解决本题的关键是要熟练掌握正方体展开图的特征.。

2020届天津市宁河区中考数学第一次联考试卷(有答案)

2020届天津市宁河区中考数学第一次联考试卷(有答案)

天津市宁河区九年级下学期数学第一次联考试卷一、单选题1.2sin45°的值等于()A. 1B.C.D. 2【答案】B【考点】特殊角的三角函数值【解析】【解答】2sin45°=2× .故答案为:B.【分析】把sin45°的三角函数值代入计算.2.下列图案中,可以看做是中心对称图形的有()A. 1个B. 2个C. 3个D. 4个【答案】B【考点】中心对称及中心对称图形【解析】【解答】第一个图形不是中心对称图形;第二个图形是中心对称图形;第三个图形不是中心对称图形;第四个图形不是中心对称图形.综上所述,可以看做是中心对称图形的有2个.故答案为:B.【分析】根据中心对称图形的定义判断.在平面内,把一个图形绕着某个点旋转180°,如果旋转后的图形能与原来的图形重合,那么这个图形叫做中心对称图形,这个点叫做它的对称中心.3.已知一个反比例函数的图像经过点A(3,﹣4),那么不在这个函数图像上的点是()A. (﹣3,﹣4)B. (﹣3,4)C. (2,﹣6)D. (,﹣12 )【答案】A【考点】反比例函数的应用【解析】【解答】解:设反比例函数的解析式为:y= (k≠0).∵反比例函数的图像经过点(3,﹣4),∴k=3×(﹣4)=﹣12.∴只需把各点横纵坐标相乘,结果为﹣12的点在函数图像上,四个选项中只有A不符合.故选:A.【分析】只需把所给点的横纵坐标相乘,结果是﹣12的,就在此函数图像上.4.如图是一个水平放置的圆柱形物体,中间有一细棒,则此几何体的俯视图是()A. B. C. D.【答案】C【考点】简单组合体的三视图【解析】【解答】解:从上边看时,圆柱是一个矩形,中间的木棒是虚线,故选:C.【分析】找到从上面看所得到的图形即可.5.函数y= 与y=ax2(a≠0)在同一平面直角坐标系中的图象可能是()A. B. C. D.【答案】D【考点】反比例函数的图象,二次函数的图象【解析】解答:a>0时,y= 的函数图象位于第一三象限,y=ax2的函数图象位于第一二象限且经过原点; a<0时,y= 的函数图象位于第二四象限,y=ax2的函数图象位于第三四象限且经过原点,纵观各选项,只有D选项图形符合.故选:D.分析:分a>0和a<0两种情况,根据二次函数图象和反比例函数图象作出判断即可得解.6.如图,⊙O是△ABC的外接圆,已知∠ABO=30°,则∠ACB的大小为()A. 60°B. 30°C. 45°D. 50°【答案】A【考点】圆周角定理【解析】【解答】∵∠ABO=30°,OA=OB,∴∠BAO=∠ABO=30°,∴∠AOB=180°-30°-30°=120°.∵∠AOB与∠ACB对这相同的弧AB,∴∠ACB= .故答案为:A.【分析】由题意易求出∠AOB的度数,再由圆周角定理可求出∠ACB的度数.7.已知圆的半径为R,这个圆的内接正六边形的面积为()A. R2B. R2C. 6R2D. 1.5R2【答案】B【考点】正多边形和圆【解析】【解答】解:设O是正六边形的中心,AB是正六边形的一边,OC是边心距,∠AOB=60°,OA=OB=R,则△OAB是正三角形,∵OC=OA•sin∠A= R,∴S△OAB= AB•OC= R2,∴正六边形的面积为6× R2= R2,故选B.【分析】设O是正六边形的中心,AB是正六边形的一边,OC是边心距,则△OAB是正三角形,△OAB的面积的六倍就是正六边形的面积.8.若关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,则k的取值范围是()A. k>﹣1B. k>﹣1且k≠0C. k<1D. k<1且k≠0【答案】B【考点】一元二次方程的定义,根的判别式【解析】【解答】解:∵关于x的一元二次方程kx2﹣2x﹣1=0有两个不相等的实数根,∴,即,解得k>﹣1且k≠0.故选B.【分析】根据根的判别式及一元二次方程的定义得出关于k的不等式组,求出k的取值范围即可.9.在平面直角坐标系中,点A的坐标为(﹣1,2),点B的坐标为(5,4),则线段AB的中点坐标为()A. (2,3)B. (2,2.5)C. (3,3)D. (3,2.5)【答案】A【考点】坐标与图形性质【解析】【解答】解:∵点A的坐标为(﹣1,2),点B的坐标为(5,4),∴线段AB的中点坐标为(,),即(2,3),故选:A.【分析】根据中点坐标公式[ (x A+x B),(y A+y B)]代入计算即可.10.如图,⊙O的直径AB垂直于弦CD,垂足为E,∠A=15°,半径为2,则弦CD的长为( )A. 2B. 1C.D. 4【答案】A【考点】垂径定理,圆周角定理【解析】【解答】∵⊙O的直径AB垂直于弦CD,∴CE=DE,∠CEO=90°,∵∠A=15°,∴∠COE=30°,∵OC=2,∴CE= OC=1,∴CD=2OE=2,故答案为:A.【分析】由圆周角定理可求出∠COE的度数,再由30°角所对的直角边等于斜边的一半可求出CE,最后根据垂径定理可求出CD的长.11.如图,点P是正方形ABCD内一点,将△ABP绕着B沿顺时针方向旋转到与△CBP′重合,若PB=3,则PP′的长为()A. 2B. 3C. 3D. 无法确定【答案】B【考点】勾股定理,旋转的性质【解析】【解答】由旋转的性质,得BP′=BP=3,∠PBP′=∠ABC=90°.在Rt△PBP′中,由勾股定理,得PP′= ,故答案为:B.【分析】由旋转的性质得BP′=BP=3,∠PBP′=∠ABC=90°.再由勾股定理可求出PP′的值.12.已知二次函数y=﹣(x﹣h)2+1(为常数),在自变量x的值满足1≤x≤3的情况下,与其对应的函数值y 的最大值为﹣5,则h的值为()A. 3﹣或1+B. 3﹣或3+C. 3+ 或1﹣D. 1﹣或1+【答案】C【考点】二次函数的最值【解析】【解答】解:∵当x<h时,y随x的增大而增大,当x>h时,y随x的增大而减小,∴①若h <1≤x≤3,x=1时,y取得最小值﹣5,可得:﹣(1﹣h)2+1=﹣5,解得:h=1﹣或h=1+ (舍);②若1≤x≤3<h,当x=3时,y取得最小值﹣5,可得:﹣(3﹣h)2+1=﹣5,解得:h=3+ 或h=3﹣(舍).综上,h的值为1﹣或3+ ,故选:C.【分析】由解析式可知该函数在x=h时取得最小值1、x<h时,y随x的增大而增大、当x>h时,y随x的增大而减小,根据1≤x≤3时,函数的最小值为﹣5可分如下两种情况:①若h<1≤x≤3,x=1时,y取得最小值﹣5;②若1≤x≤3<h,当x=3时,y取得最小值﹣5,分别列出关于h的方程求解即可.二、填空题13.抛物线y=5(x﹣4)2+3的顶点坐标是________.【答案】(4,3)【考点】二次函数y=a(x-h)^2+k的性质【解析】【解答】抛物线y=5(x﹣4)2+3,∴顶点坐标是(4,3)故答案为:(4,3)【分析】根据抛物线y=a(x+h)2+k的顶点坐标为(h,k)易得答案.14.在反比例函数y= 的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,则m的取值范围是________.【答案】m>﹣【考点】反比例函数的性质【解析】【解答】∵反比例函数y= 的图象上有两点A(x1,y1),B(x2,y2),当x1<0<x2时,有y1<y2,∴1+2m>0,故m的取值范围是:m>﹣.故答案为:【分析】由反比例函数的性质可知此反比例函数的图象在一三象限,故1+2m>0,可解出m的范围.15.如果圆锥的高为3,母线长为5,则圆锥的侧面积为________.【答案】20π【考点】圆锥的计算【解析】【解答】∵圆锥的高为3,母线长为5,∴由勾股定理得,底面半径= =4,∴底面周长=2π×4=8π,∴侧面展开图的面积= ×8π×5=20π.故答案为:20π.【分析】由勾股定理可求出底面半径,则侧面展开图的面积=展开图的扇形面积=底面周长与母线乘积的一半.16.小凡沿着坡角为30°的坡面向下走了2米,那么他下降________米.【答案】1【考点】含30度角的直角三角形【解析】【解答】∵30°的角所对的直角边等于斜边的一半,∴他下降×2=1米.故答案为:1.【分析】利用30°的角所对的直角边等于斜边的一半来求可得.17.如图所示,在边长为9的正三角形ABC中,BD=3,∠ADE=60°,则AE的长为________.【答案】2【考点】等边三角形的性质,相似三角形的判定与性质【解析】【解答】由等边三角形的性质可得∠B=∠C,再根据三角形外角的性质可求得∠EDC=∠BAD,所以△ABD∽△DCE,所以,因为BD=3,所以CD=6,所以,所以AE=2【分析】根据等边三角形的性质可得∠B=∠C,再根据三角形外角的性质,可可证得∠EDC=∠BAD,利用相似三角形的判定定理可证得△ABD∽△DCE,根据相似三角形的性质,得出对应边成比例,就可求出AE的长。

天津市宁河县2019-2020学年中考数学考前模拟卷(1)含解析

天津市宁河县2019-2020学年中考数学考前模拟卷(1)含解析

天津市宁河县2019-2020学年中考数学考前模拟卷(1)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.小张同学制作了四张材质和外观完全一样的书签,每个书签上写着一本书的名称或一个作者姓名,分别是:《西游记》、施耐庵、《安徒生童话》、安徒生,从这四张书签中随机抽取两张,则抽到的书签正好是相对应的书名和作者姓名的概率是( ) A .12B .13C .14D .162.下列说法正确的是( )A .掷一枚均匀的骰子,骰子停止转动后,5点朝上是必然事件B .明天下雪的概率为12,表示明天有半天都在下雪 C .甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S 甲2=0.4,S 乙2=0.6,则甲的射击成绩较稳定D .了解一批充电宝的使用寿命,适合用普查的方式3.如图,等腰△ABC 的底边BC 与底边上的高AD 相等,高AD 在数轴上,其中点A ,D 分别对应数轴上的实数﹣2,2,则AC 的长度为( )A .2B .4C .25D .454.平面直角坐标系内一点()2, 3P -关于原点对称点的坐标是( ) A .()3,2-B .()2,3C .()2,3--D .()2,3-5.抛物线223y x +=(﹣)的顶点坐标是( ) A .(2,3)B .(-2,3)C .(2,-3)D .(-2,-3)6.下列图形中,是轴对称图形但不是中心对称图形的是( )A .B .C .D .7.黄河是中华民族的象征,被誉为母亲河,黄河壶口瀑布位于我省吉县城西45千米处,是黄河上最具气势的自然景观.其落差约30米,年平均流量1010立方米/秒.若以小时作时间单位,则其年平均流量可用科学记数法表示为( )A .6.06×104立方米/时B .3.136×106立方米/时C .3.636×106立方米/时D .36.36×105立方米/时8.如图,正方形ABCD 的边长为2,其面积标记为S 1,以CD 为斜边作等腰直角三角形,以该等腰直角三角形的一条直角边为边向外作正方形,其面积标记为S 2,…,按照此规律继续下去,则S 2018的值为( )A .20151()2B .20162()2C .20152()2D .20161()29.目前,世界上能制造出的最小晶体管的长度只有0.000 000 04m ,将0.000 000 04用科学记数法表示为( ) A .0.4×108B .4×108C .4×10﹣8D .﹣4×10810.如图,等边△ABC 内接于⊙O ,已知⊙O 的半径为2,则图中的阴影部分面积为( )A .8233π- B .433π- C .8333π- D .9344π- 11.某品牌的饮水机接通电源就进入自动程序:开机加热到水温100℃,停止加热,水温开始下降,此时水温(℃)与开机后用时(min )成反比例关系,直至水温降至30℃,饮水机关机.饮水机关机后即刻自动开机,重复上述自动程序.若在水温为30℃时,接通电源后,水温y (℃)和时间x (min )的关系如图所示,水温从100℃降到35℃所用的时间是( )A .27分钟B .20分钟C .13分钟D .7分钟12.如图,AB ∥CD ,∠ABK 的角平分线BE 的反向延长线和∠DCK 的角平分线CF 的反向延长线交于点H ,∠K ﹣∠H=27°,则∠K=( )A .76°B .78°C .80°D .82°二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,在梯形ABCD 中,//AD BC ,3BC AD =,点E 、F 分别是边AB 、CD 的中点.设AD a =u u u r r,DC b =u u u r r,那么向量EC uuu r 用向量,a b v v 表示是________.14.如果一个直角三角形的两条直角边的长分别为5、12,则斜边上的高的长度为______. 15.一艘货轮以18km/h 的速度在海面上沿正东方向航行,当行驶至A 处时,发现它的东南方向有一灯塔B ,货轮继续向东航行30分钟后到达C 处,发现灯塔B 在它的南偏东15°方向,则此时货轮与灯塔B 的距离是________km.16.如图,AB 为O e 的直径,AC 与O e 相切于点A ,弦//BD OC .若36C ∠=o ,则DOC ∠=______o .17.如图,在Rt△ABC中,∠BAC=90°,AB=AC=4,D是BC的中点,点E在BA的延长线上,连接ED,若AE=2,则DE的长为_____.18.如图,⊙O中,弦AB、CD相交于点P,若∠A=30°,∠APD=70°,则∠B等于_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)解不等式组:.20.(6分)有一科技小组进行了机器人行走性能试验,在试验场地有A、B、C三点顺次在同一笔直的赛道上,甲、乙两机器人分别从A、B两点同时同向出发,历时7分钟同时到达C点,乙机器人始终以60米/分的速度行走,如图是甲、乙两机器人之间的距离y(米)与他们的行走时间x(分钟)之间的函数图象,请结合图象,回答下列问题:(1)A、B两点之间的距离是米,甲机器人前2分钟的速度为米/分;(2)若前3分钟甲机器人的速度不变,求线段EF所在直线的函数解析式;(3)若线段FG∥x轴,则此段时间,甲机器人的速度为米/分;(4)求A、C两点之间的距离;(5)若前3分钟甲机器人的速度不变,直接写出两机器人出发多长时间相距28米.21.(6分)如图,△ABC内接于⊙O,过点C作BC的垂线交⊙O于D,点E在BC的延长线上,且∠DEC =∠BAC.求证:DE是⊙O的切线;若AC∥DE,当AB=8,CE=2时,求⊙O直径的长.22.(8分)已知:如图,A、C、F、D在同一直线上,AF=DC,AB=DE,BC=EF,求证:△ABC≌△DEF.23.(8分)已知:如图,在菱形ABCD中,F为边BC的中点,DF与对角线AC交于点M,过M作ME⊥CD 于点E,∠1=∠1.(1)若CE=1,求BC的长;(1)求证:AM=DF+ME.24.(10分)如图,在四边形ABCD中,AB=AD,CB=CD,E是CD上一点,BE交AC于F,连接DF.(1)证明:∠BAC=∠DAC.(2)若∠BEC=∠ABE,试证明四边形ABCD是菱形.25.(10分)如图,一次函数y kx b =+的图象与反比例函数my x=的图象交于()A 2,3-,B ()4,n 两点.(1)求一次函数与反比例函数的解析式;(2)结合图形,直接写出一次函数大于反比例函数时自变量x 的取值范围.26.(12分)如图,已知在Rt ABC V 中,90C ∠=︒,AD 是BAC ∠的平分线.(1)作一个O e 使它经过A D 、两点,且圆心O 在AB 边上;(不写作法,保留作图痕迹) (2)判断直线BC 与O e 的位置关系,并说明理由.27.(12分)如图,AB 是⊙O 的直径,AC 是⊙O 的切线,BC 与⊙O 相交于点D ,点E 在⊙O 上,且DE=DA ,AE 与BC 交于点F . (1)求证:FD=CD ;(2)若AE=8,tan ∠E=,求⊙O 的半径.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】【分析】根据题意先画出树状图得出所有等情况数和到的书签正好是相对应的书名和作者姓名的情况数,再根据概率公式即可得出答案.【详解】解:根据题意画图如下:共有12种等情况数,抽到的书签正好是相对应的书名和作者姓名的有2种情况,则抽到的书签正好是相对应的书名和作者姓名的概率是212=16;故选D.【点睛】此题考查的是用列表法或树状图法求概率.列表法可以不重复不遗漏的列出所有可能的结果,适合于两步完成的事件;树状图法适合两步或两步以上完成的事件;解题时要注意此题是放回实验还是不放回实验.用到的知识点为:概率=所求情况数与总情况数之比.2.C【解析】【分析】根据必然事件、不可能事件、随机事件的概念、方差和普查的概念判断即可.【详解】A. 掷一枚均匀的骰子,骰子停止转动后,5点朝上是随机事件,错误;B. “明天下雪的概率为12”,表示明天有可能下雪,错误;C. 甲、乙两人在相同条件下各射击10次,他们成绩的平均数相同,方差分别是S甲2=0.4,S乙2=0.6,则甲的射击成绩较稳定,正确;D. 了解一批充电宝的使用寿命,适合用抽查的方式,错误;故选:C【点睛】考查方差, 全面调查与抽样调查, 随机事件, 概率的意义,比较基础,难度不大.3.C【解析】【分析】根据等腰三角形的性质和勾股定理解答即可.【详解】解:∵点A,D分别对应数轴上的实数﹣2,2,∴AD=4,∵等腰△ABC的底边BC与底边上的高AD相等,∴BC=4,∴CD=2,在Rt△ACD中,AC=,故选:C.【点睛】此题考查等腰三角形的性质,注意等腰三角形的三线合一,熟练运用勾股定理.4.D【解析】【分析】根据“平面直角坐标系中任意一点P(x,y),关于原点的对称点是(-x,-y),即关于原点的对称点,横纵坐标都变成相反数”解答.【详解】解:根据关于原点对称的点的坐标的特点,∴点A(-2,3)关于原点对称的点的坐标是(2,-3), 故选D.【点睛】本题主要考查点关于原点对称的特征,解决本题的关键是要熟练掌握点关于原点对称的特征.5.A【解析】【分析】已知解析式为顶点式,可直接根据顶点式的坐标特点,求顶点坐标.【详解】解:y=(x-2)2+3是抛物线的顶点式方程,根据顶点式的坐标特点可知,顶点坐标为(2,3).故选A.【点睛】此题主要考查了二次函数的性质,关键是熟记:顶点式y=a(x-h)2+k,顶点坐标是(h,k),对称轴是x=h.6.A【解析】A.是轴对称图形不是中心对称图形,正确;B.是轴对称图形也是中心对称图形,错误;C.是中心对称图形不是轴对称图形,错误;D. 是轴对称图形也是中心对称图形,错误,故选A.【点睛】本题考查轴对称图形与中心对称图形,正确地识别是解题的关键.7.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【详解】1010×360×24=3.636×106立方米/时,故选C.【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.8.A【解析】【分析】根据等腰直角三角形的性质可得出2S2=S1,根据数的变化找出变化规律“S n=(12)n﹣2”,依此规律即可得出结论.【详解】如图所示,∵正方形ABCD的边长为2,△CDE为等腰直角三角形,∴DE2+CE2=CD2,DE=CE,∴2S2=S1.观察,发现规律:S1=22=4,S2=12S1=2,S2=12S2=1,S4=12S2=12,…,∴S n=(12)n﹣2.当n=2018时,S2018=(12)2018﹣2=(12)3.故选A.【点睛】本题考查了等腰直角三角形的性质、勾股定理,解题的关键是利用图形找出规律“S n=(12)n﹣2”.9.C【解析】【分析】科学记数法的表示形式为a×10n的形式,其中1≤a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n 是负数.【详解】0.000 000 04=4×10-8,故选C【点睛】此题考查科学记数法,难度不大10.A【解析】解:连接OB、OC,连接AO并延长交BC于H,则AH⊥BC.∵△ABC是等边三角形,∴BH=323,OH=1,∴△OBC的面积=12×BC×3△OBA的面积=△OAC的面积=△OBC的面积=3,由圆周角定理得,∠BOC=120°,∴图中的阴影部分面积=2240223360π⨯-=8233π-.故选A.点睛:本题考查的是三角形的外接圆与外心、扇形面积的计算,掌握等边三角形的性质、扇形面积公式是解题的关键.11.C【解析】【分析】先利用待定系数法求函数解析式,然后将y=35代入,从而求解.【详解】解:设反比例函数关系式为:kyx=,将(7,100)代入,得k=700,∴700yx =,将y=35代入700yx =,解得20x=;∴水温从100℃降到35℃所用的时间是:20-7=13,故选C.【点睛】本题考查反比例函数的应用,利用数形结合思想解题是关键.12.B【解析】如图,分别过K、H作AB的平行线MN和RS,∵AB∥CD,∴AB∥CD∥RS∥MN,∴∠RHB=∠ABE=12∠ABK,∠SHC=∠DCF=12∠DCK,∠NKB+∠ABK=∠MKC+∠DCK=180°,∴∠BHC=180°﹣∠RHB﹣∠SHC=180°﹣12(∠ABK+∠DCK),∠BKC=180°﹣∠NKB﹣∠MKC=180°﹣(180°﹣∠ABK)﹣(180°﹣∠DCK)=∠ABK+∠DCK﹣180°,∴∠BKC=360°﹣2∠BHC ﹣180°=180°﹣2∠BHC ,又∠BKC ﹣∠BHC=27°,∴∠BHC=∠BKC ﹣27°,∴∠BKC=180°﹣2(∠BKC ﹣27°),∴∠BKC=78°,故选B .二、填空题:(本大题共6个小题,每小题4分,共24分.)13.122a b v v + 【解析】分析:根据梯形的中位线等于上底与下底和的一半表示出EF ,然后根据向量的三角形法则解答即可.详解:∵点E 、F 分别是边AB 、CD 的中点,∴EF 是梯形ABCD 的中位线,FC=12DC ,∴EF=12(AD+BC ).∵BC=3AD ,∴EF=12(AD+3AD )=2AD ,由三角形法则得,EC uuu r =EF u u u r +FC uuu r =2AD u u u r +12DC AD u u u Q r u u u r .=a DC u u u r r ,=b EC ∴u u u r r ,=2a r +12b r . 故答案为:2a r +12b r . 点睛:本题考查了平面向量,平面向量的问题,熟练掌握三角形法则和平行四边形法则是解题的关键,本题还考查了梯形的中位线等于上底与下底和的一半.14.6013【解析】【分析】利用勾股定理求出斜边长,再利用面积法求出斜边上的高即可.【详解】解:∵直角三角形的两条直角边的长分别为5,12,=13,∵三角形的面积=12×5×12=12×13h (h 为斜边上的高), ∴h=6013. 故答案为:6013. 【点睛】考查了勾股定理,以及三角形面积公式,熟练掌握勾股定理是解本题的关键.15.1【解析】【分析】作CE ⊥AB 于E ,根据题意求出AC 的长,根据正弦的定义求出CE ,根据三角形的外角的性质求出∠B 的度数,根据正弦的定义计算即可.【详解】作CE ⊥AB 于E ,1km/h×30分钟=9km , ∴AC=9km , ∵∠CAB=45°,∴CE=AC•sin45°=9km ,∵灯塔B 在它的南偏东15°方向,∴∠NCB=75°,∠CAB=45°,∴∠B=30°,∴BC===1km ,故答案为:1.【点睛】本题考查的是解直角三角形的应用-方向角问题,正确标注方向角、熟记锐角三角函数的定义是解题的关键.16.1【解析】【分析】利用切线的性质得90OAC ∠=o ,利用直角三角形两锐角互余可得54AOC ∠=o ,再根据平行线的性质得到54OBD AOC ∠=∠=o ,D DOC ∠=∠,然后根据等腰三角形的性质求出D ∠的度数即可.【详解】∵AC 与O e 相切于点A ,∴AC ⊥AB ,∴90OAC ∠=o ,o o o o,∴90903654∠=-∠=-=AOC CBD OC,∵//∠=∠,∴54∠=∠=o,D DOCOBD AOC=,∵OB OD∴54∠=∠=o,D OBD∴54DOC∠=o.故答案为1.【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.17.25【解析】【分析】过点E作EF⊥BC于F,根据已知条件得到△BEF是等腰直角三角形,求得BE=AB+AE=6,根据勾股定理得到BF=EF=32,求得DF=BF−BD=2,根据勾股定理即可得到结论.【详解】解:过点E作EF⊥BC于F,∴∠BFE=90°,∵∠BAC=90°,AB=AC=4,∴∠B=∠C=45°,BC=2,∴△BEF是等腰直角三角形,∵BE=AB+AE=6,∴BF=EF=2∵D是BC的中点,∴BD=2,∴DF=2,∴DE =22DF EF +=22(32)(2)+=25.故答案为25.【点睛】本题考查了等腰直角三角形的性质,勾股定理,正确的作出辅助线构造等腰直角三角形是解题的关键. 18.40°【解析】【分析】由∠A =30°,∠APD =70°,利用三角形外角的性质,即可求得∠C 的度数,又由在同圆或等圆中,同弧或等弧所对的圆周角相等,即可求得∠B 的度数.【详解】解:∵∠A =30°,∠APD =70°,∴∠C =∠APD ﹣∠A =40°,∵∠B 与∠C 是»AD 对的圆周角,∴∠B =∠C =40°.故答案为40°.【点睛】此题考查了圆周角定理与三角形外角的性质.此题难度不大,解题的关键是掌握在同圆或等圆中,同弧或等弧所对的圆周角相等定理的应用.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.x<2.【解析】试题分析 :由不等式性质分别求出每一个不等式的解集,找出它们的公共部分即可.试题解析:,由①得:x<3,由②得:x<2,∴不等式组的解集为:x<2.20.(1)距离是70米,速度为95米/分;(2)y=35x ﹣70;(3)速度为60米/分;(4)=490米;(5)两机器人出发1.2分或2.1分或4.6分相距21米.【解析】【分析】(1)当x=0时的y 值即为A 、B 两点之间的距离,由图可知当=2时,甲追上了乙,则可知(甲速度-乙速度)×时间=A 、B 两点之间的距离;(2)由题意求解E、F两点坐标,再用待定系数法求解直线解析式即可;(3)由图可知甲、乙速度相同;(4)由乙的速度和时间可求得BC之间的距离,再加上AB之间的距离即为AC之间的距离;(5)分0-2分钟、2-3分钟和4-7分钟三段考虑.【详解】解:(1)由图象可知,A、B两点之间的距离是70米,甲机器人前2分钟的速度为:(70+60×2)÷2=95米/分;(2)设线段EF所在直线的函数解析式为:y=kx+b,∵1×(95﹣60)=35,∴点F的坐标为(3,35),则,解得,∴线段EF所在直线的函数解析式为y=35x﹣70;(3)∵线段FG∥x轴,∴甲、乙两机器人的速度都是60米/分;(4)A、C两点之间的距离为70+60×7=490米;(5)设前2分钟,两机器人出发x分钟相距21米,由题意得,60x+70﹣95x=21,解得,x=1.2,前2分钟﹣3分钟,两机器人相距21米时,由题意得,35x﹣70=21,解得,x=2.1.4分钟﹣7分钟,直线GH经过点(4,35)和点(7,0),设线段GH所在直线的函数解析式为:y=kx+b,则,,解得,则直线GH的方程为y=x+,当y=21时,解得x=4.6,答:两机器人出发1.2分或2.1分或4.6分相距21米.【点睛】本题考查了一次函数的应用,读懂图像是解题关键..21.(1)见解析;(2)⊙O直径的长是45.【解析】【分析】(1)先判断出BD是圆O的直径,再判断出BD⊥DE,即可得出结论;(2)先判断出AC⊥BD,进而求出BC=AB=8,进而判断出△BDC∽△BED,求出BD,即可得出结论.【详解】证明:(1)连接BD,交AC于F,∵DC⊥BE,∴∠BCD=∠DCE=90°,∴BD是⊙O的直径,∴∠DEC+∠CDE=90°,∵∠DEC=∠BAC,∴∠BAC+∠CDE=90°,∵弧BC=弧BC,∴∠BAC=∠BDC,∴∠BDC+∠CDE=90°,∴BD⊥DE,∴DE是⊙O切线;解:(2)∵AC∥DE,BD⊥DE,∴BD⊥AC.∵BD是⊙O直径,∴AF=CF,∴AB=BC=8,∵BD⊥DE,DC⊥BE,∴∠BCD=∠BDE=90°,∠DBC=∠EBD,∴△BDC∽△BED,∴BDBE=BCBD,∴BD2=BC•BE=8×10=80,∴BD=45.即⊙O直径的长是45.【点睛】此题主要考查圆周角定理,垂径定理,相似三角形的判定和性质,切线的判定和性质,第二问中求出BC=8是解本题的关键.22.证明见解析【解析】试题分析:首先根据AF=DC,可推得AF﹣CF=DC﹣CF,即AC=DF;再根据已知AB=DE,BC=EF,根据全等三角形全等的判定定理SSS即可证明△ABC≌△DEF.试题解析:∵AF=DC,∴AF﹣CF=DC﹣CF,即AC=DF;在△ABC和△DEF中∴△ABC≌△DEF(SSS)23.(1)1;(1)见解析.【解析】试题分析:(1)根据菱形的对边平行可得AB∥CD,再根据两直线平行,内错角相等可得∠1=∠ACD,所以∠ACD=∠1,根据等角对等边的性质可得CM=DM,再根据等腰三角形三线合一的性质可得CE=DE,然后求出CD的长度,即为菱形的边长BC的长度;(1)先利用“边角边”证明△CEM和△CFM全等,根据全等三角形对应边相等可得ME=MF,延长AB 交DF于点G,然后证明∠1=∠G,根据等角对等边的性质可得AM=GM,再利用“角角边”证明△CDF和△BGF全等,根据全等三角形对应边相等可得GF=DF,最后结合图形GM=GF+MF即可得证.试题解析:(1)∵四边形ABCD是菱形,∴AB∥CD,∴∠1=∠ACD,∵∠1=∠1,∴∠ACD=∠1,∴MC=MD,∵ME⊥CD,∴CD=1CE,∵CE=1,∴CD=1,∴BC=CD=1;(1)AM=DF+ME证明:如图,∵F为边BC的中点,∴BF=CF=12 BC,∴CF=CE,在菱形ABCD中,AC平分∠BCD,∴∠ACB=∠ACD,在△CEM和△CFM中,∵CE CFACB ACD CM CM⎧⎪∠∠⎨⎪⎩===,∴△CEM≌△CFM(SAS),∴ME=MF,延长AB交DF的延长线于点G,∵AB∥CD,∴∠G=∠1,∵∠1=∠1,∴∠1=∠G,∴AM=MG,在△CDF和△BGF中,∵2GBFG CFD BF CF∠∠⎧⎪∠∠⎨⎪⎩===∴△CDF≌△BGF(AAS),∴GF=DF,由图形可知,GM=GF+MF,∴AM=DF+ME.24.证明见解析【解析】试题分析:由AB=AD,CB=CD结合AC=AC可得△ABC≌△ADC,由此可得∠BAC=∠DAC,再证△ABF≌△ADF即可得到∠AFB=∠AFD,结合∠AFB=∠CFE即可得到∠AFD=∠CFE;(2)由AB∥CD可得∠DCA=∠BAC结合∠BAC=∠DAC可得∠DCA=∠DAC,由此可得AD=CD结合AB=AD,CB=CD可得AB=BC=CD=AD,即可得到四边形ABCD是菱形.试题解析:(1)在△ABC和△ADC中,∵AB=AD,CB=CD,AC=AC,∴△ABC≌△ADC,∴∠BAC=∠DAC,在△ABF和△ADF中,∵AB=AD,∠BAC=∠DAC,AF=AF,∴△ABF≌△ADF,∴∠AFB=∠AFD.(2)证明:∵AB∥CD,∴∠BAC=∠ACD,∵∠BAC=∠DAC,∴∠ACD=∠CAD,∴AD=CD,∵AB=AD,CB=CD,∴AB=CB=CD=AD,∴四边形ABCD是菱形.25.(1)6yx=-;3342y x=-+;(2)2x<-或04x<<;【解析】【分析】(1)利用点A 的坐标可求出反比例函数解析式,再把B (4,n )代入反比例函数解析式,即可求得n 的值,于是得到一次函数的解析式;(2)根据图象和A ,B 两点的坐标即可写出一次函数的值大于反比例函数时自变量x 的取值范围.【详解】(1)m y x=Q 过点()2,3A -, 6m ∴=-, ∴反比例函数的解析式为6y x =-; Q 点()4,B n 在6y x=- 上, 32n ∴=-, 3(4,2B ∴- ), Q 一次函数y kx b =+过点()2,3A -,3(4,2B - ) 23342k b k b -+=⎧⎪∴⎨+=-⎪⎩, 解得:3432k b ⎧=-⎪⎪⎨⎪=⎪⎩. ∴一次函数解析式为3342y x =-+; (2)由图可知,当2x <-或04x <<时,一次函数值大于反比例函数值.【点睛】本题主要考查了反比例函数与一次函数的交点问题,解题的关键是求出反比例函数解析式和一次函数的解析式.26.(1)见解析;(2)BC 与O e 相切,理由见解析.【解析】【分析】(1)作出AD 的垂直平分线,交AB 于点O ,进而利用AO 为半径求出即可;(2)利用半径相等结合角平分线的性质得出OD ∥AC ,进而求出OD ⊥BC ,进而得出答案.【详解】(1)①分别以A D 、为圆心,大于12AD 的长为半径作弧,两弧相交于点E 和F , ②作直线EF ,与AB 相交于点O ,③以O 为圆心,OA 为半径作圆,如图即为所作;(2)BC 与O e 相切,理由如下:连接OD ,,OA OD Q 为O e 半径,OA OD ∴=,AOD ∴V 是等腰三角形,OAD ODA ∠=∠∴,AD Q 平分BAC ∠,CAD OAD ∴∠=∠,CAD ODA ∴∠=∠,AC OD ∴P ,90C ∠=︒Q ,90ODB ∴∠=︒,OD BC ∴⊥,OD Q 为O e 半径,BC ∴与O e 相切.【点睛】本题主要考查了切线的判定以及线段垂直平分线的作法与性质等知识,掌握切线的判定方法是解题关键.27.(1)证明见解析;(2);【解析】【分析】(1)先利用切线的性质得出∠CAD+∠BAD=90°,再利用直径所对的圆周角是直角得出∠B+∠BAD=90°,从而可证明∠B=∠EAD ,进而得出∠EAD=∠CAD ,进而判断出△ADF ≌△ADC ,即可得出结论;(2)过点D 作DG ⊥AE ,垂足为G .依据等腰三角形的性质可得到EG=AG=1,然后在Rt △GEG 中,依据锐角三角函数的定义可得到DG的长,然后依据勾股定理可得到AD=ED=2,然后在Rt△ABD中,依据锐角三角函数的定义可求得AB的长,从而可求得⊙O的半径的长.【详解】(1)∵AC 是⊙O 的切线,∴BA⊥AC,∴∠CAD+∠BAD=90°,∵AB 是⊙O 的直径,∴∠ADB=90°,∴∠B+∠BAD=90°,∴∠CAD=∠B,∵DA=DE,∴∠EAD=∠E,又∵∠B=∠E,∴∠B=∠EAD,∴∠EAD=∠CAD,在△ADF和△ADC中,∠ADF=∠ADC=90°,AD=AD,∠FAD=∠CAD,∴△ADF≌△ADC,∴FD=CD.(2)如下图所示:过点D作DG⊥AE,垂足为G.∵DE=AE,DG⊥AE,∴EG=AG=AE=1.∵tan∠E=,∴=,即=,解得DG=1.∴ED==2.∵∠B=∠E,tan∠E=,∴sin∠B=,即,解得AB=.∴⊙O的半径为.【点睛】本题考查了切线的性质,圆周角定理,圆的性质,全等三角形的判定和性质,利用等式的性质和同角的余角相等判断角相等是解本题的关键.。

2019-2020学年天津市宁河县中考数学复习检测试题

2019-2020学年天津市宁河县中考数学复习检测试题
18.因式分解: .
三、解答题(本题包括8个小题)
19.(6分)一不透明的布袋里,装有红、黄、蓝三种颜色的小球(除颜色外其余都相同),其中有红球2个,蓝球1个,黄球若干个,现从中任意摸出一个球是红球的概率为 .求口袋中黄球的个数;甲同学先随机摸出一个小球(不放回),再随机摸出一个小球,请用“树状图法”或“列表法”,求两次摸出都是红球的概率;
9.A
【解析】
【分析】
利用平行线的性质以及相似三角形的性质一一判断即可.
【详解】
解:∵AB⊥BD,CD⊥BD,EF⊥BD,
∴AB∥CD∥EF
∴△ABE∽△DCE,
∴ ,故选项B正确,
∵EF∥AB,
∴ ,
∴ ,故选项C,D正确,
故选:A.
【点睛】
考查平行线的性质,相似三角形的判定和性质,平行线分线段成比例定理等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.
∴二元一次方程组 的解为
故选A.
【点睛】
本题主要考查了函数解析式与图象的关系,满足解析式的点就在函数的图象上,在函数的图象上的点,就一定满足函数解析式.函数图象交点坐标为两函数解析式组成的方程组的解.
8.A
【解析】
分析:依据AD是BC边上的高,∠ABC=60°,即可得到∠BAD=30°,依据∠BAC=50°,AE平分∠BAC,即可得到∠DAE=5°,再根据△ABC中,∠C=180°﹣∠ABC﹣∠BAC=70°,可得∠EAD+∠ACD=75°.
20.(6分)如图,在锐角三角形ABC中,点D,E分别在边AC,AB上,AG⊥BC于点G,AF⊥DE于点F,∠EAF=∠GAC.求证:△ADE∽△ABC;若AD=3,AB=5,求 的值.
21.(6分)先化简,再求值: ,其中 .

天津市宁河县名校2019-2020学年中考数学模拟学业水平测试试题

天津市宁河县名校2019-2020学年中考数学模拟学业水平测试试题

天津市宁河县名校2019-2020学年中考数学模拟学业水平测试试题一、选择题1+1的值在( )A .2和3之间B .3和4之间C .4和5之间D .5和6之间2.一件商品的原价是100元,经过两次提价后的价格为121元.如果每次提价的百分率都是x ,根据题意,下面列出的方程正确的是( )A.100(1﹣x )=121B.100(1+x )=121C.100(1﹣x )2=121D.100(1+x )2=1213.我国古代数学名著《孙子算经》中记载了一道题,大意是:100匹马恰好拉了100片瓦,已知1匹大马能拉3片瓦,3匹小马能拉1片瓦,问有多少匹大马、多少匹小马?若设大马有x 匹,小马有y 匹,那么可列方程组为( )A .10033100x y x y +=⎧⎨+=⎩B .1003100x y x y +=⎧⎨+=⎩C .100131003x y x y +=⎧⎪⎨+=⎪⎩D .1003100x y x y +=⎧⎨+=⎩ 4.新中国成立70年以来,中国铁路营业里程由52000公里增长到131000公里,将数据131000用科学记数法表示为( )A .13.1×105B .13.1×104C .1.31×106D .1.31×1055.下列说法正确的是( )A.了解全国中学生最喜爱哪位歌手,适合全面调查.B.甲乙两种麦种,连续3年的平均亩产量相同,它们的方差为:S 甲2=5,S 乙2=0.5,则甲麦种产量比较稳.C.某次朗读比赛中预设半数晋级,某同学想知道自己是否晋级,除知道自己的成绩外,还需要知道平均成绩.D.一组数据:3,2,5,5,4,6的众数是5.6.如图是由5个完全相同的小正方体组成的几何体,则该几何体的俯视图是( )A. B. C . D .7.如图,为了美化校园,学校在一块边角空地建造了一个扇形花圃,扇形圆心角∠AOB =120°,半径OA 为9m ,那么花圃的面积为( )A .54πm 2B .27πm 2C .18πm 2D .9πm 28.下列运算正确的是( )=﹣5B.(x 3)2=x 5C.x 6÷x 3=x 2D.(﹣14)-2=169.不等式组21320xx+⎧⎨-->⎩…的解集是()A.x<﹣2 B.﹣2<x≤1C.x≤﹣2 D.x≥﹣210.如图菱形OABC中,∠A=120°,OA=1,将菱形OABC绕点O顺时针方向旋转90°,则图中阴影部分的面积是()A.23πB.232π-C.11122π- D.23π﹣111.将一张宽为5cm的长方形纸片(足够长)折叠成如图所示图形,重叠部分是一个三角形,则这个三角形面积的最小值是()Acm2B.252cm2C.25cm2D212.下列设计的图案中,是中心对称图形但不是轴对称图形的是()A.B.C .D .二、填空题13.如图,在平面直角坐标系中,等腰直角三角形OAA1的直角边OA在x轴上,点A1在第一象限,且OA=1,以点A1为直角顶点,OA1为一直角边作等腰直角三角形OA1A2,再以点A2为直角顶点,OA2为直角边作等腰直角三角形OA2A3…依此规律,则点A2018的坐标是_____.14.用黑白两种颜色的正六边形地面砖按如下所示的规律,拼成若干个图案:则第10个图案中有白色地面砖 块.15.周末,张三、李四两人在磁湖游玩,张三在湖心岛P 处观看李四在湖中划船(如图),小船从P 处出发,沿北偏东60︒方向划行200米到A 处,接着小船向正南方向划行一段时间到B 处.在B 处李四观测张三所在的P 处在北偏西45︒的方向上,这时张三与李四相距_________米(保留根号).16.引入新数i ,新数i 满足分配律,结合律,交换律,已知21i =-,那么(2)(2)i i +-=_____.17.若整数a α<<a 的值为_____.18.寒假中,小王向小李借一本数学培优资料,但相互找不到对方的家,电话中两人商量,走两家之间长度为2400米的一条路,相向而行.小李在小王出发5分钟后带上数学培优资料出发.在整个行走过程中,两人均保持各自的速度匀速行走.两人相距的路程y (单位:米)与小王出发的时间x (单位:分)之间的关系如图所示,则两人相遇时,小李走了_____米.三、解答题19.如图,已知等边△ABC ,请用直尺(不带刻度)和圆规,按下列要求作图(不要求写作法,但要保留作图痕迹)(1)作△ABC 的外接圆圆心O ;(2)设D 是AB 边上一点,在图中作出一个等边△DFH ,使点F ,点H 分别在边BC 和AC 上;(3)在(2)的基础上作出一个正六边形DEFGHI .20.解不等式组:22213x x x x >-⎧⎪+⎨>⎪⎩ . 21.点A (-1,0)是函数y =x 2-2x +m 2-4m 的图像与x 轴的一个公共点.(1)求该函数的图像与x 轴的另一个公共点的坐标以及m 的值;(2)将该函数图像沿y 轴向上平移 个单位后,该函数的图像与x 轴只有一个公共点.22.在“双十一”购物节中,某儿童品牌玩具淘宝专卖店购进了A 、B 两种玩具,其中A 类玩具的进价比B 玩具的进价每个多3元,经调查发现:用900元购进A 类玩具的数量与用750元购进B 类玩具的数量相同(1)求A 、B 的进价分别是每个多少元?(2)该玩具店共购进了A 、B 两类玩具共100个,若玩具店将每个A 类玩具定价为30元出售,每个B 类玩具定价25元出售,且全部售出后所获得利润不少于1080元,则该淘宝专卖店至少购进A 类玩具多少个? 23.已知0234a b c ==≠,求2222223a bc b a ab c-++-的值. 24.如图,在平行四边形ABCD 中,AB ⊥AC ,过点D 作DE ⊥AD 交直线AC 于点E ,点O 是对角线AC 的中点,点F 是线段AD 上一点,连接FO 并延长交BC 于点G .(1)如图1,若AC =4,cos ∠CAD =45,求△ADE 的面积; (2)如图2,点H 为DC 是延长线上一点,连接HF ,若∠H =30°,DE =BG ,求证:DH =.25.已知:如图,在矩形ABCD 中,点E 在边AD 上,点F 在边BC 上,且AE=CF ,作EG ∥FH ,分别与对角线BD 交于点G 、H ,连接EH ,FG .(1)求证:△BFH ≌△DEG ;(2)连接DF ,若BF=DF ,则四边形EGFH 是什么特殊四边形?证明你的结论.【参考答案】***一、选择题13.(0,21009)14.15.16.517.3或418.1200三、解答题19.(1)见解析(2)见解析(3)见解析【解析】【分析】(1)根据垂直平分线的作法作出AB,AC的垂直平分线交于点O即为所求;(2)取BF=CH=AD构成等边三角形;(3)作新等边三角形边的垂直平分,确定外心,再作圆确定另外三点,六边形DEFGHI即为所求正六边形.【详解】(1)如图所示:点O即为所求.(2)如图所示,等边△DFH即为所求;(3)如图所示:六边形DEFGHI即为所求正六边形.【点睛】本题考查了作图﹣复杂作图.解决此类题目的关键是熟悉基本几何图形的性质.20.﹣2<x <1.【解析】【分析】先求出每一个不等式的解集,再根据找不等式组解集的规律找出不等式组的解集即可.【详解】22213x x x x ①②>-⎧⎪⎨+>⎪⎩, 解不等式①,得x >﹣2,解不等式②,得x <1,∴不等式组的解集是﹣2<x <1.【点睛】本题考查了解一元一次不等式和解一元一次不等式组的应用,解此题的关键是能根据不等式的解集找出不等式组的解集,确定方法:同大取大,同小取小,大小小大中间找,大大小小无解了.21.(1)另一个公共点的坐标是(3,0).m 1=1,m 2=3.(2)4.【解析】【分析】(1)求出二次函数对称轴,根据二次函数图像的对称性可得与x 轴的另一个交点坐标,将x =-1,y =0代入函数解析式可求出m ;(2)求出函数图像顶点坐标,根据函数图像平移规律即可得到平移方式.【详解】解:(1)在函数y =x 2-2x +m 2-4m 中,∵a =1,b =-2,∴该二次函数图像的对称轴是过点(1,0)且平行于y 轴的直线.∵点A (-1,0)是函数y =x 2-2x +m 2-4m 的图像与x 轴的一个公共点,根据二次函数图像的对称性,∴该函数与x 轴的另一个公共点的坐标是(3,0).将x =-1,y =0代入函数y =x 2-2x +m 2-4m 中,得0=3+m 2-4m .解这个方程,得m 1=1,m 2=3.(2)函数解析式为:y =x 2-2x -3,当x=1时,y=-4,∴将该函数图像沿y 轴向上平移4个单位后,该函数的图像与x 轴只有一个公共点.【点睛】本题考查了二次函数的图像和性质,熟练掌握二次函数的对称性以及对称轴的求法是解题关键.22.(1)A 类玩具的进价是18元,B 类玩具的进价是15元;(2)该淘宝专卖店至少购进A 类玩具40个.【解析】【分析】(1)设B 类玩具的进价为 x 元,则A 类玩具的进价是 ()3x + 元,根据 900元购进A 类玩具的数量=750元购进B 类玩具的数量,建立方程,解出并检验即可.(2)设购进A 类玩具 a 个,则购进B 类玩具 ()100-a 个 ,根据A 类玩具利润+B 类玩具利润≥1080,列出关于a 的不等式,解出即得.【详解】(1)解:设B 类玩具的进价为 x 元,则A 类玩具的进价是 ()3x +元,由题意得:9007503x x=+ 解得: 15x =经检验: 15x =是原方程的解.所以15+3=18(元)答:A 类玩具的进价是18元,B 类玩具的进价是15元;(2)解:设购进 A 类玩具 a 个,则购进 B 类玩具 ()100-a 个,由题意得:1210(100)1080a a +-≥解得: 40a ≥答:该淘宝专卖店至少购进A 类玩具40个.【点睛】此题考查分式方程的应用和一元一次不等式的应用,解题关键在于列出方程23.76- 【解析】【分析】 设234a b c k ===,用含有k 的代数式分别表示出a 、b 、c ,代入分式化简即可求值. 【详解】 设234a b c k ===,则a=2k ,b=3k ,c=4k , ∴原式= 2222222(2)234(3)776(2)323(4)6k k k k k k k k k k -⋅⋅+=-=-+⋅⋅- 【点睛】本题考查的是分式的化简求值,设出参数,用含有k 的代数式分别表示出a 、b 、c 是关键.24.(1)758;(2)详见解析. 【解析】【分析】(1)根据平行四边形的性质得到∠CAD=∠ACB,因为AB⊥AC,根据三角函数得到cos∠CAD4BC,cos∠CAD=ADAE,再根据勾股定理进行计算即可得到答案;(2)作FK⊥DH于K,根据题意,由三角函数得到HK=2FH,根据全等三角形的判定(ASA)得到△BOG≌△DOF(ASA),根据全等三角形的性质得到BG=DF,结合题意根据全等三角形的判定(AAS)和性质即可得到答案.【详解】(1)解:∵四边形ABCD是平行四边形,∴AD∥BC,AD=BC,∴∠CAD=∠ACB,∵AB⊥AC,∴cos∠CAD=45=cos∠ACB=ACBC=4BC,∴BC=AD=5,∵cos∠CAD=AD AE,∴5AE=45,∴AE=254,DE154,S△ADE=12AD•DE=12×5×154=758;(2)证明:作FK⊥DH于K,如图2所示:∵∠H=30°,∴∠HFK=60°,∴HK,连接BD,则OB=OD,∠OBG=∠ODF,∠BOG=∠DOF,在△BOG和△DOF中,OBG ODF OB ODBOG DOF ∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△BOG≌△DOF(ASA),∴BG=DF,∵DE =BG ,∴DE =DF ,∵AB ⊥AC ,AB ∥CD ,∴CD ⊥AC ,∴∠DCE =∠FKD =90°,∵∠CDE+∠CED =90°,∠CDE+∠KDF =90°,∴∠CED =∠KDF ,在△DCE 和△FKD 中,DCE FKD CED KDF DE DF ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴△DCE ≌△FKD (AAS ),∴DK =CE ,∴DH =DK+HK =. 【点睛】本题考查三角函数、全等三角形的判定(ASA 、AAS )和性质,解题的关键是掌握全等三角形的判定(ASA 、AAS )和性质.25.(1)见解析;(2)四边形EGFH 是菱形,理由见解析【解析】【分析】(1)由平行四边形的性质得出AD ∥BC ,AD=BC ,OB=OD ,由平行线的性质得出∠FBH=∠EDG ,∠OHF=∠OGE ,得出∠BHF=∠DGE ,求出BF=DE ,由AAS 即可得出结论;(2)先证明四边形EGFH 是平行四边形,再由等腰三角形的性质得出EF ⊥GH ,即可得出四边形EGFH 是菱形.【详解】(1)证明:∵四边形ABCD 是平行四边形,∴AD ∥BC ,AD=BC ,∴∠FBH=∠EDG ,∵AE=CF ,∴BF=DE ,∵EG ∥FH ,∴∠OHF=∠OGE ,∴∠BHF=∠DGE ,在△BFH 和△DEG 中, FBH EDG BHF DGEBF DE ∠=∠⎧⎪∠=∠⎨⎪=⎩,∴BFH ≌△DEG (AAS );(2)解:四边形EGFH 是菱形;理由如下:连接DF ,设EF 交BD 于O .如图所示:由(1)得:BFH≌△DEG,∴FH=EG,又∵EG∥FH,∴四边形EGFH是平行四边形,∵DE=BF,∠EOD=∠BOF,∠EDO=∠FBO,∴△EDO≌△FBO,∴OB=OD,∵BF=DF,OB=OD,∴EF⊥BD,∴EF⊥GH,∴四边形EGFH是菱形.【点睛】此题考查全等三角形的判定与性质,矩形的性质,解题关键在于利用平行四边形的性质求证。

天津市宁河县2019-2020学年中考数学模拟试题(4)含解析

天津市宁河县2019-2020学年中考数学模拟试题(4)含解析

天津市宁河县2019-2020学年中考数学模拟试题(4)一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图是二次函数2y=ax +bx+c 的部分图象,由图象可知不等式2ax +bx+c<0的解集是( )A .1<x<5-B .x>5C .x<1-且x>5D .x <-1或x >52.若等式(-5)□5=–1成立,则□内的运算符号为( )A .+B .–C .×D .÷3.如图,已知在Rt △ABC 中,∠ABC=90°,点D 是BC 边的中点,分别以B 、C 为圆心,大于线段BC 长度一半的长为半径圆弧,两弧在直线BC 上方的交点为P ,直线PD 交AC 于点E ,连接BE ,则下列结论:①ED ⊥BC ;②∠A=∠EBA ;③EB 平分∠AED ;④ED=12AB 中,一定正确的是( )A .①②③B .①②④C .①③④D .②③④4.如图,由两个相同的正方体和一个圆锥体组成一个立体图形,其俯视图是A .B .C .D .5.定义:一个自然数,右边的数字总比左边的数字小,我们称之为“下滑数”(如:32,641,8531等).现从两位数中任取一个,恰好是“下滑数”的概率为( ) A .12 B .25 C .35 D .7186.下列运算正确的是( )A .5a+2b=5(a+b )B .a+a 2=a 3C.2a3•3a2=6a5D.(a3)2=a57.一组数据3、2、1、2、2的众数,中位数,方差分别是()A.2,1,0.4 B.2,2,0.4C.3,1,2 D.2,1,0.28.内角和为540°的多边形是()A.B.C.D.9.某果园2011年水果产量为100吨,2013年水果产量为144吨,求该果园水果产量的年平均增长率.设该果园水果产量的年平均增长率为x,则根据题意可列方程为()A.144(1﹣x)2=100 B.100(1﹣x)2=144 C.144(1+x)2=100 D.100(1+x)2=14410.许昌市2017年国内生产总值完成1915.5亿元,同比增长9.3%,增速居全省第一位,用科学记数法表示1915.5亿应为()A.1915.15×108B.19.155×1010C.1.9155×1011D.1.9155×101211.﹣3的相反数是()A.13-B.13C.3-D.312.如图,在直角坐标系中,有两点A(6,3)、B(6,0).以原点O为位似中心,相似比为13,在第一象限内把线段AB缩小后得到线段CD,则点C的坐标为()A.(2,1) B.(2,0) C.(3,3) D.(3,1) 二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,平行于x轴的直线AC分别交抛物线y1=x2(x≥0)与y2=23x(x≥0)于B、C两点,过点C作y轴的平行线交y1于点D,直线DE∥AC,交y2于点E,则DEAB=______.14.在某一时刻,测得一根高为2m的竹竿的影长为1m,同时测得一栋建筑物的影长为9m,那么这栋建筑物的高度为_____m.15.一次函数y=kx+b 的图像如图所示,则当kx+b>0 时,x 的取值范围为___________.16.计算:112a a=________.17.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.18.一次函数y=(k﹣3)x﹣k+2的图象经过第一、三、四象限.则k的取值范围是_____.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图,在平面直角坐标系xOy中,已知点A(3,0),点B(0,33),点O为原点.动点C、D分别在直线AB、OB上,将△BCD沿着CD折叠,得△B'CD.(Ⅰ)如图1,若CD⊥AB,点B'恰好落在点A处,求此时点D的坐标;(Ⅱ)如图2,若BD=AC,点B'恰好落在y轴上,求此时点C的坐标;(Ⅲ)若点C的横坐标为2,点B'落在x轴上,求点B'的坐标(直接写出结果即可).20.(6分)某市飞翔航模小队,计划购进一批无人机.已知3台A型无人机和4台B型无人机共需6400元,4台A型无人机和3台B型无人机共需6200元.(1)求一台A型无人机和一台B型无人机的售价各是多少元?(2)该航模小队一次购进两种型号的无人机共50台,并且B型无人机的数量不少于A型无人机的数量的2倍.设购进A型无人机x台,总费用为y元.①求y与x的关系式;②购进A型、B型无人机各多少台,才能使总费用最少?21.(6分)如图,在平面直角坐标系中,四边形OABC为矩形,直线y=kx+b交BC于点E(1,m),交AB于点F(4,12),反比例函数y=nx(x>0)的图象经过点E,F.(1)求反比例函数及一次函数解析式;(2)点P是线段EF上一点,连接PO、PA,若△POA的面积等于△EBF的面积,求点P的坐标.22.(8分)已知关于x的一元二次方程x2+(2m+3)x+m2=1有两根α,β求m的取值范围;若α+β+αβ=1.求m的值.23.(8分)主题班会上,王老师出示了如图所示的一幅漫画,经过同学们的一番热议,达成以下四个观点:A.放下自我,彼此尊重;B.放下利益,彼此平衡;C.放下性格,彼此成就;D.合理竞争,合作双赢.要求每人选取其中一个观点写出自己的感悟.根据同学们的选择情况,小明绘制了下面两幅不完整的图表,请根据图表中提供的信息,解答下列问题:观点频数频率A a 0.2B 12 0.24C 8 bD 20 0.4(1)参加本次讨论的学生共有人;表中a=,b=;(2)在扇形统计图中,求D所在扇形的圆心角的度数;(3)现准备从A,B,C,D四个观点中任选两个作为演讲主题,请用列表或画树状图的方法求选中观点D(合理竞争,合作双赢)的概率.24.(10分)如图,在平面直角坐标系中有三点(1,2),(3,1),(-2,-1),其中有两点同时在反比例函数kyx的图象上,将这两点分别记为A,B,另一点记为C,(1)求出k的值;(2)求直线AB对应的一次函数的表达式;(3)设点C 关于直线AB 的对称点为D ,P 是x 轴上的一个动点,直接写出PC +PD 的最小值(不必说明理由).25.(10分)已知,抛物线2y ax x c =++的顶点为(1,2)M --,它与x 轴交于点B ,C (点B 在点C 左侧).(1)求点B 、点C 的坐标;(2)将这个抛物线的图象沿x 轴翻折,得到一个新抛物线,这个新抛物线与直线:46l y x =-+交于点N .①求证:点N 是这个新抛物线与直线l 的唯一交点;②将新抛物线位于x 轴上方的部分记为G ,将图象G 以每秒1个单位的速度向右平移,同时也将直线l 以每秒1个单位的速度向上平移,记运动时间为t ,请直接写出图象G 与直线l 有公共点时运动时间t 的范围.26.(12分)某初级中学正在展开“文明城市创建人人参与,志愿服务我当先行”的“创文活动”为了了解该校志愿者参与服务情况,现对该校全体志愿者进行随机抽样调查.根据调查数据绘制了如下所示不完整统计图.条形统计图中七年级、八年级、九年级、教师分别指七年级、八年级、九年级、教师志愿者中被抽到的志愿者,扇形统计图中的百分数指的是该年级被抽到的志愿者数与样本容量的比.请补全条形统计图;若该校共有志愿者600人,则该校九年级大约有多少志愿者?27.(12分)艺术节期间,学校向学生征集书画作品,杨老师从全校36个班中随机抽取了4 个班(用A,B,C,D表示),对征集到的作品的数量进行了统计,制作了两幅不完整的统计图.请根据相关信息,回答下列问题:(1)请你将条形统计图补充完整;并估计全校共征集了_____件作品;(2)如果全校征集的作品中有4件获得一等奖,其中有3名作者是男生,1名作者是女生,现要在获得一等奖的作者中选取两人参加表彰座谈会,请你用列表或树状图的方法,求选取的两名学生恰好是一男一女的概率.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.D【解析】ax+bx+c<0的解集:利用二次函数的对称性,可得出图象与x轴的另一个交点坐标,结合图象可得出2由图象得:对称轴是x=2,其中一个点的坐标为(1,0),∴图象与x轴的另一个交点坐标为(-1,0).ax+bx+c<0的解集即是y<0的解集,由图象可知:2∴x<-1或x>1.故选D.2.D【解析】【分析】根据有理数的除法可以解答本题.【详解】解:∵(﹣5)÷5=﹣1,∴等式(﹣5)□5=﹣1成立,则□内的运算符号为÷,故选D.【点睛】考查有理数的混合运算,解答本题的关键是明确有理数的混合运算的计算方法.3.B【解析】【详解】解:根据作图过程,利用线段垂直平分线的性质对各选项进行判断:根据作图过程可知:PB=CP,∵D为BC的中点,∴PD垂直平分BC,∴①ED⊥BC正确.∵∠ABC=90°,∴PD∥AB.∴E为AC的中点,∴EC=EA,∵EB=EC.∴②∠A=∠EBA正确;③EB平分∠AED错误;④ED=12AB正确.∴正确的有①②④.故选B.考点:线段垂直平分线的性质.4.D【解析】【分析】由圆锥的俯视图可快速得出答案.【详解】找到从上面看所得到的图形即可,注意所有的看到的棱都应表现在俯视图中,从几何体的上面看:可以得到两个正方形,右边的正方形里面有一个内接圆.故选D.【点睛】本题考查立体图形的三视图,熟记基本立体图的三视图是解题的关键.5.A【解析】分析:根据概率的求法,找准两点:①全部情况的总数:根据题意得知这样的两位数共有90个;②符合条件的情况数目:从总数中找出符合条件的数共有45个;二者的比值就是其发生的概率.详解:两位数共有90个,下滑数有10、21、20、32、31、30、43、42、41、40、54、53、52、51、50、65、64、63、62、61、60、76、75、74、73、72、71、70、87、86、85、84、83、82、81、80、98、97、96、95、94、93、92、91、90共有45个,概率为451= 902.故选A.点睛:此题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=mn.6.C【解析】【分析】直接利用合并同类项法则以及单项式乘以单项式、幂的乘方运算法则分别化简得出答案.【详解】A、5a+2b,无法计算,故此选项错误;B、a+a2,无法计算,故此选项错误;C、2a3•3a2=6a5,故此选项正确;D、(a3)2=a6,故此选项错误.故选C.【点睛】此题主要考查了合并同类项以及单项式乘以单项式、幂的乘方运算,正确掌握运算法则是解题关键.7.B【解析】试题解析:从小到大排列此数据为:1,2,2,2,3;数据2出现了三次最多为众数,2处在第3位为中位数.平均数为(3+2+1+2+2)÷5=2,方差为15[(3-2)2+3×(2-2)2+(1-2)2]=0.1,即中位数是2,众数是2,方差为0.1.故选B.8.C【解析】试题分析:设它是n边形,根据题意得,(n﹣2)•180°=140°,解得n=1.故选C.考点:多边形内角与外角.9.D【解析】试题分析:2013年的产量=2011年的产量×(1+年平均增长率)2,把相关数值代入即可.解:2012年的产量为100(1+x ),2013年的产量为100(1+x )(1+x )=100(1+x )2,即所列的方程为100(1+x )2=144,故选D .点评:考查列一元二次方程;得到2013年产量的等量关系是解决本题的关键.10.C【解析】【分析】科学记数法的表示形式为10n a ⨯的形式,其中110a ≤<,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数.【详解】用科学记数法表示1915.5亿应为1.9155×1011, 故选C .【点睛】考查科学记数法,掌握绝对值大于1的数的表示方法是解题的关键.11.D【解析】【分析】相反数的定义是:如果两个数只有符号不同,我们称其中一个数为另一个数的相反数,特别地,1的相反数还是1.【详解】根据相反数的定义可得:-3的相反数是3.故选D.【点睛】本题考查相反数,题目简单,熟记定义是关键.12.A【解析】【分析】根据位似变换的性质可知,△ODC ∽△OBA ,相似比是13,根据已知数据可以求出点C 的坐标. 【详解】由题意得,△ODC ∽△OBA ,相似比是13, ∴OD DC OB AB=, 又OB=6,AB=3,∴OD=2,CD=1,∴点C 的坐标为:(2,1),故选A .【点睛】本题考查的是位似变换,掌握位似变换与相似的关系是解题的关键,注意位似比与相似比的关系的应用.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.3【解析】【分析】首先设点B 的横坐标,由点B 在抛物线y 1=x 2(x≥0)上,得出点B 的坐标,再由平行,得出A 和C 的坐标,然后由CD 平行于y 轴,得出D 的坐标,再由DE ∥AC ,得出E 的坐标,即可得出DE 和AB ,进而得解.【详解】设点B 的横坐标为a ,则()2,B a a∵平行于x 轴的直线AC∴())220,,,A a C a 又∵CD 平行于y 轴∴)2,3D a 又∵DE ∥AC ∴()23,3E a a∴(3,DE a AB a ==∴DE AB=3【点睛】此题主要考查抛物线中的坐标求解,关键是利用平行的性质.14.1【解析】分析:根据同时同地的物高与影长成正比列式计算即可得解.详解:设这栋建筑物的高度为xm ,由题意得,2=19x,解得x=1,即这栋建筑物的高度为1m.故答案为1.点睛:同时同地的物高与影长成正比,利用相似三角形的相似比,列出方程,通过解方程求出这栋高楼的高度,体现了方程的思想.15.x>1【解析】分析:题目要求kx+b>0,即一次函数的图像在x 轴上方时,观察图象即可得x的取值范围.详解:∵kx+b>0,∴一次函数的图像在x 轴上方时,∴x的取值范围为:x>1.故答案为x>1.点睛:本题考查了一次函数与一元一次不等式的关系,主要考查学生的观察视图能力.16.12a.【解析】【分析】根据异分母分式加减法法则计算即可.【详解】原式211 222a a a =-=.故答案为:12a.【点睛】本题考查了分式的加减,关键是掌握分式加减的计算法则.17.9.6×1.【解析】【详解】将9600000用科学记数法表示为9.6×1.故答案为9.6×1.18.k>3【解析】分析:根据函数图象所经过的象限列出不等式组3020k k ->⎧⎨-+<⎩,通过解该不等式组可以求得k 的取值范围.详解:∵一次函教y=(k−3)x−k+2的图象经过第一、三、四象限,∴3020k k ->⎧⎨-+<⎩,解得,k>3. 故答案是:k>3.点睛:此题主要考查了一次函数图象,一次函数y kx b =+的图象有四种情况: ①当0,0k b >>时,函数y kx b =+的图象经过第一、二、三象限; ②当0,0k b ><时,函数y kx b =+的图象经过第一、三、四象限; ③当0,0k b <>时,函数y kx b =+的图象经过第一、二、四象限; ④当0,0k b <<时,函数y kx b =+的图象经过第二、三、四象限.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(1)D (0);(1)C (11﹣,18);(3)B'(0),(10). 【解析】 【分析】(1)设OD 为x ,则x ,在RT △ODA 中应用勾股定理即可求解;(1)由题意易证△BDC ∽△BOA ,再利用A 、B 坐标及BD=AC 可求解出BD 长度,再由特殊角的三角函数即可求解;(3)过点C 作CE ⊥AO 于E ,由A 、B 坐标及C 的横坐标为1,利用相似可求解出BC 、CE 、OC 等长度;分点B’在A 点右边和左边两种情况进行讨论,由翻折的对称性可知BC=B’C ,再利用特殊角的三角函数可逐一求解. 【详解】(Ⅰ)设OD 为x ,∵点A (3,0),点B (0,),∴AO=3,BO=∴AB=6 ∵折叠 ∴BD=DA在Rt △ADO 中,OA1+OD1=DA1.∴9+OD1=(OD )1.∴OD=3∴D(0,3)(Ⅱ)∵折叠∴∠BDC=∠CDO=90°∴CD∥OA∴BD BCBO AB=且BD=AC,∴66 33BD-=∴BD=123﹣18∴OD=33﹣(123﹣18)=18﹣93∵tan∠ABO=3 OBAO=,∴∠ABC=30°,即∠BAO=60°∵tan∠ABO=3 BD3 CD=,∴CD=11﹣63∴D(11﹣63,113﹣18)(Ⅲ)如图:过点C作CE⊥AO于E∵CE⊥AO∴OE=1,且AO=3∴AE=1,∵CE⊥AO,∠CAE=60°∴∠ACE=30°且CE⊥AO∴AC=1,3∵BC=AB﹣AC∴BC=6﹣1=4若点B'落在A 点右边, ∵折叠∴BC=B'C=4,CE ⊥OA∴=∴∴B'(0) 若点B'落在A 点左边, ∵折叠∴BC=B'C=4,CE ⊥OA∴=∴ 1∴B'(10)综上所述:B'(0),(10) 【点睛】本题结合翻折综合考查了三角形相似和特殊角的三角函数,第3问中理解B’点的两种情况是解题关键. 20.(1)一台A 型无人机售价800元,一台B 型无人机的售价1000元;(2)①y =﹣200x+50000;②购进A 型、B 型无人机各16台、34台时,才能使总费用最少. 【解析】 【分析】(1)根据3台A 型无人机和4台B 型无人机共需6400元,4台A 型无人机和3台B 型无人机共需6200元,可以列出相应的方程组,从而可以解答本题; (2)①根据题意可以得到y 与x 的函数关系式;②根据①中的函数关系式和B 型无人机的数量不少于A 型无人机的数量的2倍,可以求得购进A 型、B 型无人机各多少台,才能使总费用最少. 【详解】解:(1)设一台A 型无人机售价x 元,一台B 型无人机的售价y 元,346400436200x y x y +=⎧⎨+=⎩, 解得,8001000x y =⎧⎨=⎩,答:一台A 型无人机售价800元,一台B 型无人机的售价1000元; (2)①由题意可得,y 800x 100050x 200x 50000++=(﹣)=﹣, 即y 与x 的函数关系式为y 200x 50000+=﹣; ②∵B 型无人机的数量不少于A 型无人机的数量的2倍,50x 2x ﹣∴≥,解得,2163x ≤, y 200x 50000+Q =﹣,∴当x 16=时,y 取得最小值,此时y 20016500004680050x 34⨯+=﹣=,﹣=, 答:购进A 型、B 型无人机各16台、34台时,才能使总费用最少. 【点睛】本题考查二元一次方程组的应用、一次函数的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和方程的知识解答. 21.(1)2y x =;1522y x =-+;(2)点P 坐标为(114,98). 【解析】 【分析】 (1)将F (4,12)代入0ny x x=(>),即可求出反比例函数的解析式2y x =;再根据2y x =求出E 点坐标,将E 、F 两点坐标代入y kx b =+,即可求出一次函数解析式; (2)先求出△EBF 的面积,点P 是线段EF 上一点,可设点P 坐标为1522x x +(,﹣),根据面积公式即可求出P 点坐标. 【详解】解:(1)∵反比例函数0ny x x =(>)经过点142F (,),∴n=2,反比例函数解析式为2y x=. ∵2y x=的图象经过点E (1,m ), ∴m=2,点E 坐标为(1,2).∵直线y kx b =+ 过点12E (,),点142F (,),∴2142k bk b+=⎧⎪⎨+=⎪⎩,解得1252kb⎧=-⎪⎪⎨⎪=⎪⎩,∴一次函数解析式为1522y x=+﹣;(2)∵点E坐标为(1,2),点F坐标为1 4 2(,),∴点B坐标为(4,2),∴BE=3,BF=32,∴1139•32224 EBFS BE BF∆==⨯⨯=,∴94POA EBFS S∆∆==.点P是线段EF上一点,可设点P坐标为1522 x x+(,﹣),∴115942224x⨯-+=(),解得114x=,∴点P坐标为119 48(,).【点睛】本题主要考查反比例函数,一次函数的解析式以及三角形的面积公式. 22.(1)m≥﹣;(2)m的值为2.【解析】【分析】(1)根据方程有两个相等的实数根可知△>1,求出m的取值范围即可;(2)根据根与系数的关系得出α+β与αβ的值,代入代数式进行计算即可.【详解】(1)由题意知,(2m+2)2﹣4×1×m2≥1,解得:m≥﹣;(2)由根与系数的关系得:α+β=﹣(2m+2),αβ=m2,∵α+β+αβ=1,∴﹣(2m+2)+m2=1,解得:m1=﹣1,m1=2,由(1)知m≥﹣,所以m1=﹣1应舍去,m的值为2.【点睛】本题考查的是根与系数的关系,熟知x1,x2是一元二次方程ax2+bx+c=1(a≠1)的两根时,x1+x2=﹣,x1x2=是解答此题的关键.23.(1)50、10、0.16;(2)144°;(3)1 2 .【解析】【分析】(1)由B观点的人数和所占的频率即可求出总人数;由总人数即可求出a、b的值,(2)用360°乘以D观点的频率即可得;(3)画出树状图,然后根据概率公式列式计算即可得解【详解】解:(1)参加本次讨论的学生共有12÷0.24=50,则a=50×0.2=10,b=8÷50=0.16,故答案为50、10、0.16;(2)D所在扇形的圆心角的度数为360°×0.4=144°;(3)根据题意画出树状图如下:由树形图可知:共有12中可能情况,选中观点D(合理竞争,合作双赢)的概率有6种,所以选中观点D(合理竞争,合作双赢)的概率为61 122.【点睛】此题考查了列表法或树状图法求概率以及条形统计图.用到的知识点为:概率=所求情况数与总情况数之比.24.(2)2;(2)y=x+2;(334【解析】【分析】(2)确定A、B、C的坐标即可解决问题;(2)理由待定系数法即可解决问题;(3)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值=CD′的长.【详解】解:(2)∵反比例函数y=kx的图象上的点横坐标与纵坐标的积相同,∴A(2,2),B(-2,-2),C(3,2)∴k=2.(2)设直线AB的解析式为y=mx+n,则有221 m nm n++⎧⎨-+-⎩=,解得11mn⎧⎨⎩==,∴直线AB的解析式为y=x+2.(3)∵C、D关于直线AB对称,∴D(0,4)作D关于x轴的对称点D′(0,-4),连接CD′交x轴于P,此时PC+PD的值最小,最小值223+5=34【点睛】本题考查反比例函数图象上的点的特征,一次函数的性质、反比例函数的性质、轴对称最短问题等知识,解题的关键是熟练掌握待定系数法确定函数解析式,学会利用轴对称解决最短问题.25.(1)B(-3,0),C(1,0);(2)①见解析;②23≤t≤6.【解析】【分析】(1)根据抛物线的顶点坐标列方程,即可求得抛物线的解析式,令y=0,即可得解;(2)①根据翻折的性质写出翻折后的抛物线的解析式,与直线方程联立,求得交点坐标即可;②当t=0时,直线与抛物线只有一个交点N(3,-6)(相切),此时直线与G无交点;第一个交点出现时,直线过点C(1 +t,0),代入直线解析式:y=-4x+6+t,解得t=23;最后一个交点是B(-3+t,0),代入y =-4x+6+t,解得t=6,所以23≤t≤6.【详解】(1)因为抛物线的顶点为M(-1,-2),所以对称轴为x=-1,可得:1=12aa-1+c=2⎧--⎪⎨⎪-⎩,解得:a=12,c=32-,所以抛物线解析式为y=12x2+x32-,令y=0,解得x=1或x=-3,所以B(-3,0),C(1,0);(2)①翻折后的解析式为y=-12x2-x3+2,与直线y=-4x+6联立可得:12x2-3x+92=0,解得:x1=x2=3,所以该一元二次方程只有一个根,所以点N(3,-6)是唯一的交点;②23≤t≤6.【点睛】本题主要考查了图形运动,解本题的要点在于熟知一元二次方程的相关知识点.26.(1)作图见解析;(2)1.【解析】试题分析:(1)根据百分比=计算即可解决问题,求出八年级、九年级、被抽到的志愿者人数画出条形图即可;(2)用样本估计总体的思想,即可解决问题;试题解析:解:(1)由题意总人数=20÷40%=50人,八年级被抽到的志愿者:50×30%=15人九年级被抽到的志愿者:50×20%=10人,条形图如图所示:(2)该校共有志愿者600人,则该校九年级大约有600×20%=1人.答:该校九年级大约有1名志愿者.27.(1)图形见解析,216件;(2)1 2【解析】【分析】(1)由B班级的作品数量及其占总数量的比例可得4个班作品总数,再求得D班级的数量,可补全条形图,再用36乘四个班的平均数即估计全校的作品数;(2)列表得出所有等可能结果,从中找到一男、一女的结果数,根据概率公式求解可得.【详解】(1)4个班作品总数为:1201236360÷=件,所以D班级作品数量为:36-6-12-10=8;∴估计全校共征集作品364×36=324件.条形图如图所示,(2)男生有3名,分别记为A1,A2,A3,女生记为B,列表如下:A1A2A3 BA1(A1,A2)(A1,A3)(A1,B)A2(A2,A1)(A2,A3)(A2,B)A3(A3,A1)(A3,A2)(A3,B)B (B,A1)(B,A2)(B,A3)由列表可知,共有12种等可能情况,其中选取的两名学生恰好是一男一女的有6种.所以选取的两名学生恰好是一男一女的概率为61 122=.【点睛】考查了列表法或树状图法求概率以及扇形与条形统计图的知识.注意掌握扇形统计图与条形统计图的对应关系.用到的知识点为:概率=所求情况数与总情况数之比.。

天津市宁河县2019-2020学年中考第一次质量检测数学试题含解析

天津市宁河县2019-2020学年中考第一次质量检测数学试题含解析

天津市宁河县2019-2020学年中考第一次质量检测数学试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.已知443y x x =-+-+,则y x 的值为()n n A .43 B .43- C .34 D .34- 2.如图,AB 为O e 的直径,,C D 为O e 上两点,若40BCD ∠︒=,则ABD ∠的大小为( ).A .60°B .50°C .40°D .20°3.点(,2)A a a -是一次函数2y x m =+图象上一点,若点A 在第一象限,则m 的取值范围是( ). A .24m -<< B .42m -<< C .24m -≤≤ D .42m -≤≤4.在方格纸中,选择标有序号①②③④中的一个小正方形涂黑,与图中阴影部分构成中心对称图形.该小正方形的序号是( )A .①B .②C .③D .④5.如图,在边长为4的正方形ABCD 中,E 、F 是AD 边上的两个动点,且AE=FD ,连接BE 、CF 、BD ,CF 与BD 交于点H ,连接DH ,下列结论正确的是( )①△ABG ∽△FDG ②HD 平分∠EHG ③AG ⊥BE ④S △HDG :S △HBG =tan ∠DAG ⑤线段DH 的最小值是25﹣2A .①②⑤B .①③④⑤C .①②④⑤D .①②③④6.安徽省在一次精准扶贫工作中,共投入资金4670000元,将4670000用科学记数法表示为( ) A .4.67×107 B .4.67×106 C .46.7×105 D .0.467×1077.如图,在直角坐标系中,直线122y x =-与坐标轴交于A 、B 两点,与双曲线2k y x=(0x >)交于点C ,过点C 作CD ⊥x 轴,垂足为D ,且OA=AD ,则以下结论:①ΔADB ΔADC S S =;②当0<x <3时,12y y <;③如图,当x=3时,EF=83; ④当x >0时,1y 随x 的增大而增大,2y 随x 的增大而减小.其中正确结论的个数是( )A .1B .2C .3D .48.根据中国铁路总公司3月13日披露,2018年铁路春运自2月1日起至3月12日止,为期40天全国铁路累计发送旅客3.82亿人次.3.82亿用科学记数法可以表示为( )A .3.82×107B .3.82×108C .3.82×109D .0.382×10109.足球运动员将足球沿与地面成一定角度的方向踢出,足球飞行的路线是一条抛物线. 不考虑空气阻力,足球距离地面的高度h (单位:m )与足球被踢出后经过的时间t (单位:s )之间的关系如下表: t0 1 2 3 4 5 6 7 … h 0 8 14 18 20 20 18 14 …下列结论:①足球距离地面的最大高度为20m ;②足球飞行路线的对称轴是直线92t =;③足球被踢出9s 时落地;④足球被踢出1.5s 时,距离地面的高度是11m. 其中正确结论的个数是( )A .1B .2C .3D .410.已知点A (0,﹣4),B (8,0)和C (a ,﹣a ),若过点C 的圆的圆心是线段AB 的中点,则这个圆的半径的最小值是( )A .22B .2C .3D .211.下列四个几何体中,主视图是三角形的是( )A .B .C .D .12.下列计算正确的是()A.a2•a3=a5B.2a+a2=3a3C.(﹣a3)3=a6D.a2÷a=2二、填空题:(本大题共6个小题,每小题4分,共24分.)13.计算:364的值是______________.14.如图,将矩形ABCD沿GH对折,点C落在Q处,点D落在E处,EQ与BC相交于F.若AD=8cm,AB=6cm,AE=4cm.则△EBF的周长是_____cm.15.菱形ABCD中,060A?,其周长为32,则菱形面积为____________.16.因式分解:9x﹣x2=_____.17.如图,已知圆O的半径为2,A是圆上一定点,B是OA的中点,E是圆上一动点,以BE为边作正方形BEFG(B、E、F、G四点按逆时针顺序排列),当点E绕⊙O圆周旋转时,点F的运动轨迹是_________图形18.某种水果的售价为每千克a元,用面值为50元的人民币购买了3千克这种水果,应找回元(用含a的代数式表示).三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图所示,直线y=﹣2x+b与反比例函数y=kx交于点A、B,与x轴交于点C.(1)若A(﹣3,m)、B(1,n).直接写出不等式﹣2x+b>kx的解.(2)求sin∠OCB的值.(3)若CB﹣CA=5,求直线AB的解析式.20.(6分)根据图中给出的信息,解答下列问题:放入一个小球水面升高,cm,放入一个大球水面升高cm;如果要使水面上升到50cm,应放入大球、小球各多少个?21.(6分)为了解某校学生的身高情况,随机抽取该校男生、女生进行抽样调查.已知抽取的样本中男生、女生的人数相同,利用所得数据绘制如下统计图表:组别身高A x<160B 160≤x<165C 165≤x<170D 170≤x<175E x≥175根据图表提供的信息,回答下列问题:(1)样本中,男生的身高众数在组,中位数在组;(2)样本中,女生身高在E 组的有 人,E 组所在扇形的圆心角度数为 ;(3)已知该校共有男生600人,女生480人,请估让身高在165≤x <175之间的学生约有多少人?22.(8分)先化简,再求值:(231x x --﹣2)÷11x -,其中x 满足12x 2﹣x ﹣4=0 23.(8分)某种型号油电混合动力汽车,从A 地到B 地燃油行驶需纯燃油费用76元,从A 地到B 地用电行驶需纯用电费用26元,已知每行驶1千米,纯燃油费用比纯用电费用多0.5元.求每行驶1千米纯用电的费用;若要使从A 地到B 地油电混合行驶所需的油、电费用合计不超过39元,则至少需用电行驶多少千米?24.(10分)如图,在图中求作⊙P ,使⊙P 满足以线段MN 为弦且圆心P 到∠AOB 两边的距离相等.(要求:尺规作图,不写作法,保留作图痕迹,并把作图痕迹用黑色签字笔加黑)25.(10分)如图,AB ∥CD ,以点A 为圆心,小于AC 长为半径作圆弧,分别交AB ,AC 于E ,F 两点,再分别以E ,F 为圆心,大于12EF 长为半径作圆弧,两条圆弧交于点P ,连接AP ,交CD 于点M ,若∠ACD=110°,求∠CMA 的度数______.26.(12分)解方程:1+231833x x x x x-=-- 27.(12分)如图,已知平行四边形OBDC 的对角线相交于点E ,其中O (0,0),B (3,4),C (m ,0),反比例函数y=k x (k≠0)的图象经过点B .求反比例函数的解析式;若点E 恰好落在反比例函数y=k x上,求平行四边形OBDC 的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.C【解析】由题意得,4−x ⩾0,x−4⩾0,解得x=4,则y=3,则y x =34, 故选:C.2.B【解析】【分析】根据题意连接AD ,再根据同弧的圆周角相等,即可计算的ABD ∠的大小.【详解】解:连接AD ,∵AB 为O e 的直径,∴90ADB ∠=︒.∵40BCD ∠=︒,∴40A BCD ∠=∠=︒,∴904050ABD ∠=︒-︒=︒.故选:B .【点睛】本题主要考查圆弧的性质,同弧的圆周角相等,这是考试的重点,应当熟练掌握.3.B【解析】试题解析:把点(,2)A a a -代入一次函数2y x m =+得,22a a m -=+23m a =-.∵点A 在第一象限上,∴0{20a a >->,可得02a <<,因此4232a -<-<,即42m -<<,故选B .4.B【解析】根据中心对称图形的概念,中心对称图形是图形沿对称中心旋转180度后与原图重合。

2019-2020天津市数学中考第一次模拟试卷(带答案)

2019-2020天津市数学中考第一次模拟试卷(带答案)

2019-2020天津市数学中考第一次模拟试卷(带答案) 一、选择题1.如图所示,已知A(12,y1),B(2,y2)为反比例函数1yx图像上的两点,动点P(x,0)在x正半轴上运动,当线段AP与线段BP之差达到最大时,点P的坐标是()A.(12,0)B.(1,0)C.(32,0)D.(52,0)2.如图,矩形ABCD中,AB=3,BC=4,动点P从A点出发,按A→B→C的方向在AB 和BC上移动,记PA=x,点D到直线PA的距离为y,则y关于x的函数图象大致是()A.B.C.D.3.已知林茂的家、体育场、文具店在同一直线上,图中的信息反映的过程是:林茂从家跑步去体育场,在体育场锻炼了一阵后又走到文具店买笔,然后再走回家.图中x表示时间,y表示林茂离家的距离.依据图中的信息,下列说法错误的是()A .体育场离林茂家2.5kmB .体育场离文具店1kmC .林茂从体育场出发到文具店的平均速度是50min mD .林茂从文具店回家的平均速度是60min m 4.在Rt △ABC 中,∠C =90°,AB =4,AC =1,则cosB 的值为( )A .154B .14C .1515D .417175.2-的相反数是( )A .2-B .2C .12D .12- 6.若关于x 的一元二次方程()2110k x x -++=有两个实数根,则k 的取值范围是() A .54k ≤ B .54k > C .514k k ≠<且 D .514k k ≤≠且 7.如图,矩形纸片ABCD 中,4AB =,6BC =,将ABC V 沿AC 折叠,使点B 落在点E 处,CE 交AD 于点F ,则DF 的长等于( )A .35B .53C .73D .54 8.甲种蔬菜保鲜适宜的温度是1℃~5℃,乙种蔬菜保鲜适宜的温度是3℃~8℃,将这两种蔬菜放在一起同时保鲜,适宜的温度是( )A .1℃~3℃B .3℃~5℃C .5℃~8℃D .1℃~8℃ 9.观察下列图形中点的个数,若按其规律再画下去,可以得到第9个图形中所有点的个数为( )A .61B .72C .73D .8610.矩形ABCD 与CEFG ,如图放置,点B ,C ,E 共线,点C ,D ,G 共线,连接AF ,取AF 的中点H ,连接GH .若BC=EF=2,CD=CE=1,则GH=( )A.1B.23C.22D.5211.下面的几何体中,主视图为圆的是()A.B.C.D.12.下列二次根式中,与3是同类二次根式的是()A.18B.13C.24D.0.3二、填空题13.中国的陆地面积约为9 600 000km2,把9 600 000用科学记数法表示为.14.如图所示,图①是一个三角形,分别连接三边中点得图②,再分别连接图②中的小三角形三边中点,得图③……按此方法继续下去.在第n个图形中有______个三角形(用含n的式子表示)15.口袋内装有一些除颜色外完全相同的红球、白球和黑球,从中摸出一球,摸出红球的概率是0.2,摸出白球的概率是0.5,那么摸出黑球的概率是.16.如图,将矩形ABCD沿CE折叠,点B恰好落在边AD的F处,如果AB2BC3,那么tan∠DCF的值是____.17.如图,一束平行太阳光线照射到正五边形上,则∠1= ______.18.当m =____________时,解分式方程533x m x x-=--会出现增根. 19.已知(a -4)(a -2)=3,则(a -4)2+(a -2)2的值为__________.20.如图所示,过正五边形ABCDE 的顶点B 作一条射线与其内角EAB ∠的角平分线相交于点P ,且60ABP ∠=︒,则APB ∠=_____度.三、解答题21.某小微企业为加快产业转型升级步伐,引进一批A ,B 两种型号的机器.已知一台A 型机器比一台B 型机器每小时多加工2个零件,且一台A 型机器加工80个零件与一台B 型机器加工60个零件所用时间相等.(1)每台A ,B 两种型号的机器每小时分别加工多少个零件?(2)如果该企业计划安排A ,B 两种型号的机器共10台一起加工一批该零件,为了如期完成任务,要求两种机器每小时加工的零件不少于72件,同时为了保障机器的正常运转,两种机器每小时加工的零件不能超过76件,那么A ,B 两种型号的机器可以各安排多少台?22.现代互联网技术的广泛应用,催生了快递行业的高速发展.小明计划给朋友快递一部分物品,经了解有甲、乙两家快递公司比较合适.甲公司表示:快递物品不超过1千克的,按每千克22元收费;超过1千克,超过的部分按每千克15元收费.乙公司表示:按每千克16元收费,另加包装费3元.设小明快递物品x 千克.(1)请分别写出甲、乙两家快递公司快递该物品的费用y (元)与x (千克)之间的函数关系式;(2)小明选择哪家快递公司更省钱?23.如图1,已知二次函数y=ax 2+32x+c (a≠0)的图象与y 轴交于点A (0,4),与x 轴交于点B 、C ,点C 坐标为(8,0),连接AB 、AC . (1)请直接写出二次函数y=ax 2+32x+c 的表达式; (2)判断△ABC 的形状,并说明理由;(3)若点N 在x 轴上运动,当以点A 、N 、C 为顶点的三角形是等腰三角形时,请写出此时点N 的坐标;(4)如图2,若点N在线段BC上运动(不与点B、C重合),过点N作NM∥AC,交AB于点M,当△AMN面积最大时,求此时点N的坐标.24.解不等式组3415122x xxx≥-⎧⎪⎨--⎪⎩>,并把它的解集在数轴上表示出来25.某公司销售两种椅子,普通椅子价格是每把180元,实木椅子的价格是每把400元.(1)该公司在2019年第一月销售了两种椅子共900把,销售总金额达到了272000元,求两种椅了各销售了多少把?(2)第二月正好赶上市里开展家俱展销活动,公司决定将普通椅子每把降30元后销售,实木椅子每把降价2a%(a>0)后销售,在展销活动的第一周,该公司的普通椅子销售量比上一月全月普通椅子的销售量多了103a%:实木椅子的销售量比第一月全月实木椅子的销售量多了a%,这一周两种椅子的总销售金额达到了251000元,求a的值.【参考答案】***试卷处理标记,请不要删除一、选择题1.D解析:D【解析】【分析】求出AB的坐标,设直线AB的解析式是y=kx+b,把A、B的坐标代入求出直线AB的解析式,根据三角形的三边关系定理得出在△ABP中,|AP-BP|<AB,延长AB交x轴于P′,当P在P′点时,PA-PB=AB,此时线段AP与线段BP之差达到最大,求出直线AB于x轴的交点坐标即可.【详解】∵把A(12,y1),B(2,y2)代入反比例函数y=1x得:y1=2,y2=12,∴A(12,2),B(2,12),∵在△ABP中,由三角形的三边关系定理得:|AP-BP|<AB,∴延长AB 交x 轴于P′,当P 在P′点时,PA-PB=AB ,即此时线段AP 与线段BP 之差达到最大,设直线AB 的解析式是y=kx+b ,把A 、B 的坐标代入得: 122122k b k b ⎧+⎪⎪⎨⎪+⎪⎩==, 解得:k=-1,b=52, ∴直线AB 的解析式是y=-x+52, 当y=0时,x=52, 即P (52,0), 故选D .【点睛】本题考查了三角形的三边关系定理和用待定系数法求一次函数的解析式的应用,解此题的关键是确定P 点的位置,题目比较好,但有一定的难度.2.B解析:B【解析】【分析】①点P 在AB 上时,点D 到AP 的距离为AD 的长度,②点P 在BC 上时,根据同角的余角相等求出∠APB=∠PAD,再利用相似三角形的列出比例式整理得到y 与x 的关系式,从而得解.【详解】①点P 在AB 上时,0≤x≤3,点D 到AP 的距离为AD 的长度,是定值4;②点P 在BC 上时,3<x≤5,∵∠APB+∠BAP=90°,∠PAD+∠BAP=90°,∴∠APB=∠PAD,又∵∠B=∠DEA=90°,∴△ABP∽△DEA, ∴AB DE =AP AD AB AP DE AD=, 即34x y =, ∴y=12x, 纵观各选项,只有B 选项图形符合,故选B .3.C解析:C【解析】【分析】从图中可得信息:体育场离文具店1000m ,所用时间是(45﹣30)分钟,可算出速度.【详解】解:从图中可知:体育场离文具店的距离是:2.5 1.511000km m -==,所用时间是()453015-=分钟, ∴体育场出发到文具店的平均速度1000200min 153m ==/ 故选:C .【点睛】本题运用函数图象解决问题,看懂图象是解决问题的关键. 4.A解析:A【解析】∵在Rt △ABC 中,∠C =90°,AB =4,AC =1,∴BC ,则cos B =BC AB =4, 故选A 5.B解析:B【解析】【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B .【点睛】本题考查求相反数,熟记相反数的性质是解题的关键 .6.D解析:D【解析】【分析】运用根的判别式和一元二次方程的定义,组成不等式组即可解答【详解】解:∵关于x 的一元二次方程(k ﹣1)x 2+x +1=0有两个实数根,∴210=1-41)10k k -⎧⎨∆⨯-⨯≥⎩≠( , 解得:k ≤54且k ≠1. 故选:D .【点睛】此题考查根的判别式和一元二次方程的定义,掌握根的情况与判别式的关系是解题关键7.B解析:B【解析】【分析】由折叠的性质得到AE=AB ,∠E=∠B=90°,易证Rt △AEF ≌Rt △CDF ,即可得到结论EF=DF ;易得FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中利用勾股定理得到关于x 的方程x 2=42+(6-x )2,解方程求出x 即可.【详解】∵矩形ABCD 沿对角线AC 对折,使△ABC 落在△ACE 的位置,∴AE=AB ,∠E=∠B=90°,又∵四边形ABCD 为矩形,∴AB=CD ,∴AE=DC ,而∠AFE=∠DFC ,∵在△AEF 与△CDF 中,AFE CFD E DAE CD ∠∠⎧⎪∠∠⎨⎪⎩=== ,∴△AEF ≌△CDF (AAS ),∴EF=DF ;∵四边形ABCD 为矩形,∴AD=BC=6,CD=AB=4,∵Rt △AEF ≌Rt △CDF ,∴FC=FA ,设FA=x ,则FC=x ,FD=6-x ,在Rt △CDF 中,CF 2=CD 2+DF 2,即x 2=42+(6-x )2,解得x =133, 则FD =6-x=53. 故选B .【点睛】考查了折叠的性质:折叠前后两图形全等,即对应角相等,对应边相等.也考查了矩形的性质和三角形全等的判定与性质以及勾股定理. 8.B解析:B【解析】【分析】根据“1℃~5℃”,“3℃~8℃”组成不等式组,解不等式组即可求解.【详解】解:设温度为x ℃,根据题意可知1538x x x x ≥⎧⎪≤⎪⎨≥⎪⎪≤⎩ 解得35x ≤≤.故选:B .【点睛】本题考查一元一次不等式组的应用,将现实生活中的事件与数学思想联系起来,读懂题列出不等式关系式即可求解.9.C解析:C【解析】【分析】设第n 个图形中有a n 个点(n 为正整数),观察图形,根据各图形中点的个数的变化可得出变化规律“a n =n 2+n+1(n 为正整数)”,再代入n =9即可求出结论.【详解】设第n个图形中有a n个点(n为正整数),观察图形,可知:a1=5=1×2+1+2,a2=10=2×2+1+2+3,a3=16=3×2+1+2+3+4,…,∴a n=2n+1+2+3+…+(n+1)=n2+n+1(n为正整数),∴a9=×92+×9+1=73.故选C.【点睛】本题考查了规律型:图形的变化类,根据各图形中点的个数的变化找出变化规律“a n =n2+n+1(n为正整数)”是解题的关键.10.C解析:C【解析】分析:延长GH交AD于点P,先证△APH≌△FGH得AP=GF=1,GH=PH=12PG,再利用勾股定理求得PG=2,从而得出答案.详解:如图,延长GH交AD于点P,∵四边形ABCD和四边形CEFG都是矩形,∴∠ADC=∠ADG=∠CGF=90°,AD=BC=2、GF=CE=1,∴AD∥GF,∴∠GFH=∠PAH,又∵H是AF的中点,∴AH=FH,在△APH和△FGH中,∵PAH GFH AH FHAHP FHG∠=∠⎧⎪=⎨⎪∠=∠⎩,∴△APH≌△FGH(ASA),∴AP=GF=1,GH=PH=12 PG,∴PD=AD﹣AP=1,∵CG=2、CD=1,∴DG=1,则GH=12PG=12, 故选:C . 点睛:本题主要考查矩形的性质,解题的关键是掌握全等三角形的判定与性质、矩形的性质、勾股定理等知识点.11.C解析:C【解析】试题解析:A 、的主视图是矩形,故A 不符合题意;B 、的主视图是正方形,故B 不符合题意;C 、的主视图是圆,故C 符合题意;D 、的主视图是三角形,故D 不符合题意;故选C .考点:简单几何体的三视图.12.B解析:B【解析】【分析】【详解】ABC=D 故选B . 二、填空题13.6×106【解析】【分析】【详解】将9600000用科学记数法表示为96×106故答案为96×106解析:6×106.【解析】【分析】【详解】将9600000用科学记数法表示为9.6×106. 故答案为9.6×106.14.【解析】【分析】分别数出图①图②图③中的三角形的个数可以发现:第几个图形中三角形的个数就是4与几的乘积减去3如图③中三角形的个数为9=4×3-3按照这个规律即可求出第n 各图形中有多少三角形【详解】分 解析:()43n -【解析】【分析】分别数出图①、图②、图③中的三角形的个数,可以发现:第几个图形中三角形的个数就是4与几的乘积减去3.如图③中三角形的个数为9=4×3-3.按照这个规律即可求出第n 各图形中有多少三角形.【详解】分别数出图①、图②、图③中的三角形的个数,图①中三角形的个数为1=4×1-3; 图②中三角形的个数为5=4×2-3; 图③中三角形的个数为9=4×3-3; …可以发现,第几个图形中三角形的个数就是4与几的乘积减去3.按照这个规律,如果设图形的个数为n ,那么其中三角形的个数为4n-3.故答案为4n-3.【点睛】此题主要考查学生对图形变化类这个知识点的理解和掌握,解答此类题目的关键是根据题目中给出的图形,数据等条件,通过认真思考,归纳总结出规律,此类题目难度一般偏大,属于难题.15.3【解析】试题解析:根据概率公式摸出黑球的概率是1-02-05=03考点:概率公式解析:3.【解析】试题解析:根据概率公式摸出黑球的概率是1-0.2-0.5=0.3.考点:概率公式.16.【解析】【分析】【详解】解:∵四边形ABCD 是矩形∴AB =CD ∠D =90°∵将矩形ABCD 沿CE 折叠点B 恰好落在边AD 的F 处∴CF =BC ∵∴∴设CD =2xCF =3x ∴∴tan ∠DCF =故答案为:【点【解析】【分析】【详解】 解:∵四边形ABCD 是矩形,∴AB =CD ,∠D =90°,∵将矩形ABCD 沿CE 折叠,点B 恰好落在边AD 的F 处,∴CF =BC ,∵AB2BC3=,∴CD2CF3=.∴设CD=2x,CF=3x,∴22DF=CF CD5x-=.∴tan∠DCF=DF5x5=CD=.故答案为:52.【点睛】本题考查翻折变换(折叠问题),翻折对称的性质,矩形的性质,勾股定理,锐角三角函数定义.17.30°【解析】【分析】【详解】解:∵AB//CD∴∠BAC+∠ACD=180°即∠1+∠EAC+∠ACD=180°∵五边形是正五边形∴∠EAC=108°∵∠ACD=42°∴∠1=180°-42°-1解析:30°.【解析】【分析】【详解】解:∵AB//CD,∴∠BAC+∠ACD=180°,即∠1+∠EAC+∠ACD=180°,∵五边形是正五边形,∴∠EAC=108°,∵∠ACD=42°,∴∠1=180°-42°-108°=30°故答案为:30°.18.2【解析】分析:分式方程的增根是分式方程转化为整式方程的根且使分式方程的分母为0的未知数的值详解:分式方程可化为:x-5=-m由分母可知分式方程的增根是3当x=3时3-5=-m解得m=2故答案为:2解析:2【解析】分析:分式方程的增根是分式方程转化为整式方程的根,且使分式方程的分母为0的未知数的值.详解:分式方程可化为:x-5=-m,由分母可知,分式方程的增根是3,当x=3时,3-5=-m,解得m=2,故答案为:2.点睛:本题考查了分式方程的增根.增根问题可按如下步骤进行:①让最简公分母为0确定增根;②化分式方程为整式方程;③把增根代入整式方程即可求得相关字母的值.19.10【解析】【分析】试题分析:把(a ﹣4)和(a ﹣2)看成一个整体利用完全平方公式求解【详解】(a ﹣4)2+(a ﹣2)2=(a ﹣4)2+(a ﹣2)2-2(a ﹣4)(a ﹣2)+2(a ﹣4)(a ﹣2)=解析:10【解析】【分析】试题分析:把(a ﹣4)和(a ﹣2)看成一个整体,利用完全平方公式求解.【详解】(a ﹣4)2+(a ﹣2)2=(a ﹣4)2+(a ﹣2)2-2(a ﹣4)(a ﹣2)+2(a ﹣4)(a ﹣2) =[(a ﹣4)-(a ﹣2)]2+2(a ﹣4)(a ﹣2)=(-2)2+2×3=10故答案为10【点睛】本题考查了完全平方公式:(a±b )2=a 2±2ab+b 2求解,整体思想的运用使运算更加简便. 20.66【解析】【分析】首先根据正五边形的性质得到度然后根据角平分线的定义得到度再利用三角形内角和定理得到的度数【详解】解:∵五边形为正五边形∴度∵是的角平分线∴度∵∴故答案为:66【点睛】本题考查了多 解析:66【解析】【分析】首先根据正五边形的性质得到108EAB ∠=度,然后根据角平分线的定义得到54PAB ∠=度,再利用三角形内角和定理得到APB ∠的度数.【详解】解:∵五边形ABCDE 为正五边形,∴108EAB ∠=度,∵AP 是EAB ∠的角平分线,∴54PAB ∠=度,∵60ABP ∠=︒,∴180605466APB ∠=︒-︒-︒=︒.故答案为:66.【点睛】本题考查了多边形内角与外角,题目中还用到了角平分线的定义及三角形内角和定理.三、解答题21.(1)每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【解析】【分析】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,根据工作时间=工作总量÷工作效率结合一台A型机器加工80个零件与一台B型机器加工60个零件所用时间相等,即可得出关于x的分式方程,解之经检验后即可得出结论;(2)设A型机器安排m台,则B型机器安排(10m)-台,根据每小时加工零件的总量8A=⨯型机器的数量6B+⨯型机器的数量结合每小时加工的零件不少于72件且不能超过76件,即可得出关于m的一元一次不等式组,解之即可得出m的取值范围,再结合m为正整数即可得出各安排方案.【详解】(1)设每台B型机器每小时加工x个零件,则每台A型机器每小时加工(x+2)个零件,依题意,得:8060x2x=+,解得:x=6,经检验,x=6是原方程的解,且符合题意,x28∴+=.答:每台A型机器每小时加工8个零件,每台B型机器每小时加工6个零件;(2)设A型机器安排m台,则B型机器安排(10m)-台,依题意,得:()() 861072 861076mm mπ⎧+-⎪⎨+-⎪⎩……,解得:6m8剟,mQ为正整数,m678∴=、、,答:共有三种安排方案,方案一:A型机器安排6台,B型机器安排4台;方案二:A型机器安排7台,B型机器安排3台;方案三:A型机器安排8台,B型机器安排2台.【点睛】本题考查了分式方程的应用以及一元一次不等式组的应用,解题的关键是:(1)找准等量关系,正确列出分式方程;(2)根据各数量之间的关系,正确列出一元一次不等式组.22.答案见解析【解析】试题分析:(1)根据“甲公司的费用=起步价+超出重量×续重单价”可得出y甲关于x的函数关系式,根据“乙公司的费用=快件重量×单价+包装费用”即可得出y乙关于x的函数关系式;(2)分0<x≤1和x>1两种情况讨论,分别令y甲<y乙、y甲=y乙和y甲>y乙,解关于x的方程或不等式即可得出结论.试题解析:(1)由题意知:当0<x≤1时,y甲=22x;当1<x时,y甲=22+15(x﹣1)=15x+7.y乙=16x+3;∴22?(01){157?(1)x xyx x甲<<=+>,=163y x+乙;(2)①当0<x≤1时,令y甲<y乙,即22x<16x+3,解得:0<x<12;令y甲=y乙,即22x=16x+3,解得:x=12;令y甲>y乙,即22x>16x+3,解得:12<x≤1.②x>1时,令y甲<y乙,即15x+7<16x+3,解得:x>4;令y甲=y乙,即15x+7=16x+3,解得:x=4;令y甲>y乙,即15x+7>16x+3,解得:0<x<4.综上可知:当12<x<4时,选乙快递公司省钱;当x=4或x=12时,选甲、乙两家快递公司快递费一样多;当0<x<12或x>4时,选甲快递公司省钱.考点:一次函数的应用;分段函数;方案型.23.(1)y=﹣14x2+32x+4;(2)△ABC是直角三角形.理由见解析;(3)点N的坐标分别为(﹣8,0)、(8﹣45,0)、(3,0)、(8+45,0).(4)当△AMN面积最大时,N点坐标为(3,0).【解析】【分析】(1)由点A、C的坐标利用待定系数法即可求出二次函数的解析式;(2)令二次函数解析式中y=0,求出点B的坐标,再由两点间的距离公式求出线段AB、AC、BC的长度,由三者满足AB2+AC2=BC2即可得出△ABC为直角三角形;(3)分别以A、C两点为圆心,AC长为半径画弧,与x轴交于三个点,由AC的垂直平分线与x轴交于一点,即可求得点N的坐标;(4)设点N的坐标为(n,0)(-2<n<8),通过分割图形法求面积,再根据相似三角形面积间的关系以及三角形的面积公式即可得出S△AMN关于n的二次函数关系式,根据二次函数的性质即可解决最值问题.【详解】(1)∵二次函数y=ax2+x+c的图象与y轴交于点A(0,4),与x轴交于点B、C,点C坐标为(8,0),∴,解得.∴抛物线表达式:y=﹣x2+x+4;(2)△ABC是直角三角形.令y=0,则﹣x2+x+4=0,解得x1=8,x2=﹣2,∴点B的坐标为(﹣2,0),由已知可得,在Rt△ABO中AB2=BO2+AO2=22+42=20,在Rt△AOC中AC2=AO2+CO2=42+82=80,又∵BC=OB+OC=2+8=10,∴在△ABC中AB2+AC2=20+80=102=BC2∴△ABC是直角三角形.(3)∵A(0,4),C(8,0),∴AC==4,①以A为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(﹣8,0),②以C为圆心,以AC长为半径作圆,交x轴于N,此时N的坐标为(8﹣4,0)或(8+4,0)③作AC的垂直平分线,交x轴于N,此时N的坐标为(3,0),综上,若点N在x轴上运动,当以点A、N、C为顶点的三角形是等腰三角形时,点N的坐标分别为(﹣8,0)、(8﹣4,0)、(3,0)、(8+4,0).(4)如图,设点N的坐标为(n,0),则BN=n+2,过M点作MD⊥x轴于点D,∴MD∥OA,∴△BMD∽△BAO,∴=,∵MN∥AC∴=,∴=,∵OA=4,BC=10,BN=n+2∴MD=(n+2),∵S △AMN =S △ABN ﹣S △BMN =BN•OA﹣BN•MD =(n+2)×4﹣×(n+2)2=﹣(n ﹣3)2+5,当n=3时,△AMN 面积最大是5,∴N 点坐标为(3,0).∴当△AMN 面积最大时,N 点坐标为(3,0).【点睛】本题考查了二次函数的综合问题,熟练掌握二次函数的知识点是本题解题的关键.24.-1<x≤1【解析】【分析】分别解两个不等式,然后根据数轴或“都大取大,都小取小,大小小大取中间,大大小小无解了”求解不等式组.【详解】 解:341{5122x x x x ≥--->①② 解不等式①可得x≤1,解不等式②可得x >-1在数轴上表示解集为:所以不等式组的解集为:-1<x≤1.【点睛】本题考查了解不等式组,熟练掌握计算法则是解题关键.25.(1)普通椅子销售了400把,实木椅子销售了500把;(2)a 的值为15.【解析】【分析】(1)设普通椅子销售了x 把,实木椅子销售了y 把,根据总价=单价×数量结合900把椅子的总销售金额为272000元,即可得出关于x ,y 的二元一次方程组,解之即可得出结论;(2)根据销售总价=销售单价×销售数量,即可得出关于a 的一元二次方程,解之取其正值即可得出结论.【详解】(1)设普通椅子销售了x把,实木椅子销售了y把,依题意,得:900 180400272000 x yx y+=⎧⎨+=⎩,解得:400500 xy=⎧⎨=⎩.答:普通椅子销售了400把,实木椅子销售了500把.(2)依题意,得:(180﹣30)×400(1+103a%)+400(1﹣2a%)×500(1+a%)=251000,整理,得:a2﹣225=0,解得:a1=15,a2=﹣15(不合题意,舍去).答:a的值为15.【点睛】本题考查了二元一次方程组的应用以及一元二次方程的应用,找准等量关系,正确列出二元一次方程组和一元二次方程是解题关键.。

天津市宁河县2019-2020学年中考数学一模考试卷含解析

天津市宁河县2019-2020学年中考数学一模考试卷含解析

天津市宁河县2019-2020学年中考数学一模考试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.如图所示的工件,其俯视图是()A.B.C.D.2.在Rt△ABC中,∠C=90°,如果AC=4,BC=3,那么∠A的正切值为()A.34B.43C.35D.453.下列图形中,可以看作中心对称图形的是( )A.B.C.D.4.如图,嘉淇同学拿20元钱正在和售货员对话,且一本笔记本比一支笔贵3元,请你仔细看图,1本笔记本和1支笔的单价分别为( )A.5元,2元B.2元,5元C.4.5元,1.5元D.5.5元,2.5元5.如图,半径为3的⊙A经过原点O和点C(0,2),B是y轴左侧⊙A优弧上一点,则tan∠OBC为()A.13B.2C2D226.如图,△ABC中,AB=AC,BC=12cm,点D在AC上,DC=4cm,将线段DC沿CB方向平移7cm 得到线段EF,点E、F分别落在边AB、BC上,则△EBF的周长是()cm.A.7 B.11 C.13 D.167.下列图形中,既是中心对称,又是轴对称的是()A.B.C.D.8.下列运算正确的是()A.(a2)5=a7B.(x﹣1)2=x2﹣1C.3a2b﹣3ab2=3 D.a2•a4=a69.某个密码锁的密码由三个数字组成,每个数字都是0-9这十个数字中的一个,只有当三个数字与所设定的密码及顺序完全相同,才能将锁打开,如果仅忘记了所设密码的最后那个数字,那么一次就能打开该密码的概率是()A.B.C.D.10.观察下列图形,则第n个图形中三角形的个数是()A.2n+2 B.4n+4 C.4n﹣4 D.4n11.如图,Rt△AOB中,∠AOB=90°,OA在x轴上,OB在y轴上,点A、B的坐标分别为(3,0),(0,1),把Rt△AOB沿着AB对折得到Rt△AO′B,则点O′的坐标为()A.35 22(,)B.332,)C.2352(,)D.4332,)12.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH 的长等于()A.3.5 B.4 C.7 D.14二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,一艘船向正北航行,在A处看到灯塔S在船的北偏东30°的方向上,航行12海里到达B点,在B处看到灯塔S在船的北偏东60°的方向上,此船继续沿正北方向航行过程中距灯塔S的最近距离是_____海里(不近似计算).14.用配方法将方程x2+10x﹣11=0化成(x+m)2=n的形式(m、n为常数),则m+n=_____.15.计算:cos245°-tan30°sin60°=______.16.方程1223x x=+的解为__________.17.如图,正五边形ABCDE和正三角形AMN都是⊙O的内接多边形,则∠BOM=_______.18.一个不透明的布袋里装有5个红球,2个白球,3个黄球,它们除颜色外其余都相同,从袋中任意摸出2个球,都是黄球的概率为.三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某超市预测某饮料有发展前途,用1600元购进一批饮料,面市后果然供不应求,又用6000元购进这批饮料,第二批饮料的数量是第一批的3倍,但单价比第一批贵2元.第一批饮料进货单价多少元?若二次购进饮料按同一价格销售,两批全部售完后,获利不少于1200元,那么销售单价至少为多少元?20.(6分)如图,已知一次函数的图象与反比例函数的图象交于A,B两点,点A的横坐标是2,点B的纵坐标是-2。

《最新6套汇总》天津市宁河县2019-2020学年中考数学第一次模试卷

《最新6套汇总》天津市宁河县2019-2020学年中考数学第一次模试卷

2019-2020学年数学中考模拟试卷一、选择题1.如图,在平行四边形ABCD 中,AB 4=,BAD ∠的平分线与BC 的延长线交于点E ,与DC 交于点F ,且点F 为边DC 的中点,DG AE ⊥,垂足为G ,若DG 1=,则AE 的边长为( )A .B .C .4D .82.(2015秋•怀柔区期末)如图,直线L 上有三个正方形a ,b ,c ,若a ,c 的面积分别为1和9,则b的面积为( )A .8B .9C .10D .11 3.如果两个数的和是负数,那么这两个数 A.同是正数B.同为负数C.至少有一个为正数D.至少有一个为负数4.有七张正面分别标有数字﹣3,﹣2,﹣1,0,1,2,3的卡片,它们除数字不同外其余全部相同.现将它们背面朝上,洗匀后从中随机抽取一张,记卡片上的数字为a ,则使关于x 的一元二次方程x 2﹣2(a ﹣1)x+a (a ﹣3)=0有两个不相等的实数根,且以x 为自变量的二次函数y =x 2﹣(a 2+1)x ﹣a+2的图象不经过点(1,0)的概率是( ) A .27B .37C .47D .675.小明用尺规作了如下四幅图形:①作一个角等于已知角;②作一个角的平分线;③作一条线段的垂直平分线;④过直线外一点P 作已知直线的垂线,从保留的作图痕迹看出作图正确的是( )A .①②④B .②③C .①③④D .①②③④6.如图,点E 在△DBC 的边DB 上,点A 在△DBC 内部,∠DAE=∠BAC=90°,AD=AE ,AB=AC .给出下列结论:①BD=CE ;②∠ABD+∠ECB=45°;③BD ⊥CE ;④BE 2=2(AD 2+AB 2)﹣CD 2.其中正确的是( )A.①③④B.②④C.①②③D.①②③④7.把一个足球垂直于水平地面向上踢,该足球距离地面的高度h (米)与所经过的时间t (秒)之间的关系为2110(014)2h t t t =-≤≤. 若存在两个不同的t 的值,使足球离地面的高度均为a (米),则a 的取值范围( ) A .042a ≤≤B .050a ≤<C .4250a ≤<D .4250a ≤≤8.如图,I 是△ABC 的内心,AI 的延长线和△ABC 的外接圆相交于点D ,连接BI 、BD 、DC .下列说法中错误的一项是( )A.线段DB 绕点D 顺时针旋转一定能与线段DC 重合B.线段DB 绕点D 顺时针旋转一定能与线段DI 重合C.∠CAD 绕点A 顺时针旋转一定能与∠DAB 重合D.线段ID 绕点I 顺时针旋转一定能与线段IB 重合 9.下列事件中,属于必然事件的是( ) A .“世界杯新秀”姆巴佩发点球 100%进球 B .任意购买一张车票,座位刚好挨着窗口 C .三角形内角和为 180° D .叙利亚不会发生战争10.如图,AD 为等边△ABC 的高,E 、F 分别为线段AD 、AC 上的动点,且AE =CF ,当BF +CE 取得最小值时,∠AFB =A .112.5°B .105°C .90°D .82.5°11.如图,把长方形纸片ABCD 沿对角线折叠,设重叠部分为△EBD ,那么,有下列说法:①△EBA 和△EDC 一定是全等三角形;②△EBD 是等腰三角形,EB =ED ;③折叠后得到的图形是轴对称图形;④折叠后∠ABE 和∠CBD 一定相等;其中正确的有( )A .1个B .2个C .3个D .4个12.如果点(﹣2,6)在反比例函数ky x=的图象上,那么下列各点中,在此图象上的是( ) A .(3,4)B .(﹣3,﹣4)C .(6,2)D .(﹣3,4)二、填空题13.如图,在长方形ABCD 中,DC =6cm ,在DC 上存在一点E ,沿直线AE 把△ADE 折叠,使点D 恰好落在BC 边上的点F 处,若△ABF 的面积为24cm 2,那么折叠的△ADE 的面积为_____.14.分解因式:22x y -=_______________. 15.如果圆锥的底面半径为3cm ,母线长为6cm ,那么它的侧面积等于_______2cm . 16.一个n 边形的每一个外角都是60°,则这个n 边形的内角和是________ 17.某社区对寒假期间参加社区活动的部分学生的年龄进行统计,结果如下表:18.如图,在同一平面直角坐标系中,函数y 1=kx+b (k 、b 是常数,且k≠0)与反比例函数y 2=cx(c 是常数,且c≠0)的图象相交于A (﹣3,﹣2),B (2,3)两点,则不等式y 1>y 2的解集是_____.三、解答题 19.解方程:1112x x x x-+-=. 20.如图,利用一幢已知高度的楼房CD (楼高为20m ),来测量一幢高楼AB 的高在DB 上选取观测点E 、F ,从E 测得楼房CD 和高楼AB 的顶部C 、A 的仰角分别为58°、45°.从F 测得C ,A 的仰角分别为22°,70°.求楼AB 的高度(精确到1m )(参考数据:tan22°≈0.40,tan58°≈1.60,tan70°≈2.75)21.如图,在四边形ABCD 中,AD ∥BC ,BA =BC ,BD 平分∠ABC . (1)求证:四边形ABCD 是菱形;(2)过点D 作DE ⊥BD ,交BC 的延长线于点E ,若BC =5,BD =8,求四边形ABED 的周长.22.我市为了节约用水,准备实行自来水“阶梯计费”方式,用户用水不超出基本用水量的部分享受基本价格,超出基本用水量的部分实行加价收费为更好地决策,自来水公司在某街道随机抽取了部分用户的用水量数据,按A,B,C,D,E五个区间进行统计,并将统计结果绘制如下两幅不完整的统计图,请你结合图中所给信息解答下列问题:(说明:A:0﹣3吨;B:3﹣6吨;C:6﹣9吨;D:9﹣12吨;E:12﹣16吨,且每组数据区间包括右端的数但不包括左端的数)(1)这次随机抽样调查了_____用户(2)补全频数分布直方图,求扇形统计图中B部分的圆心角的度数;(3)如果自来水公司将基本用水量定为每户9吨,那么该街道1.8万用户中约有多少用户的用水全部享受基本用水量的价格?23.(1)计算:201)3tan30|1π︒-++-.(2)解不等式组:3(2)4 2113x xxx-->⎧⎪+⎨>-⎪⎩.24.第一个盒子中有2个白球,1个黄球,第二个盒子中有1个白球,1个黄球,这些球除颜色外都相同,分别从每个盒中随机取出一个球.(1)求取出的两个球中一个是白球,一个是黄球的概率;(2)若第一个盒子中有2个白球,1个黄球,第二个盒子中有1个白球,1个黄球,其他条件不变,则取出的两个球都是黄球的概率为________.25.某公司开发出一款新的节能产品,该产品的成本价为6元件,该产品在正式投放市场前通过代销点进行了为期一个月(30天)的试营销,售价为9元/件,工作人员对销售情况进行了跟踪记录,并将记录情况绘成图象,图中的折线ODE表示日销售量y(件)与销售时间x(天)之间的函数关系,已知线段DE表示的函数关系中,时间每增加1天,日销售量减少4件,(1)请直接写出y与x之间的函数关系式;(2)日销售利润不低于960元的天数共有多少天?试销售期间,日销售最大利润是多少元?(3)工作人员在统计的过程中发现,有连续两天的销售利润之和为1980元,请你算出是哪两天.【参考答案】*** 一、选择题13.503cm 214.(x+y)(x-y) 15.18π 16.720° 17.15岁.18.﹣3<x <0或x >2. 三、解答题 19.x =﹣3 【解析】 【分析】两边都乘以2x 化分式方程为整式方程,解整式方程求得x 的值,最后代入最简公分母检验即可得; 【详解】解:方程两边都乘以2x ,得 2(x ﹣1)﹣(x+1)=2x 2x ﹣2﹣x ﹣1=2x ﹣x =3 x =﹣3检验:把x =﹣3代入2x =﹣6≠0, ∴原方程的解为:x =﹣3. 【点睛】本题主要考查解分式方程,解题的关键是熟练掌握解分式方程的基本步骤. 20.59米 【解析】 【分析】在△CED 中,得出DE ,在△CFD 中,得出DF ,进而得出EF ,列出方程即可得出建筑物AB 的高度. 【详解】解:在Rt △CED 中,∠CED=58°, ∵tan58°=CDDE, ∴DE=58CD tan =2058tan ,在Rt △CFD 中,∠CFD=22°, ∵tan22°=CDDF,∴DF=22CD tan =2022tan ,∴EF=DF-DE=2022tan -2050tan ,同理:EF=BE-BF=45AB tan -70ABtan ,∴45AB tan -70AB tan =2022tan -2050tan ,解得:AB≈59(米),答:建筑物AB 的高度约为59米. 【点睛】本题考查解直角三角形的应用,解题的关键是明确题意,利用数形结合的思想解答问题. 21.(1)详见解析;(2)26. 【解析】 【分析】(1)根据平行线的性质得到∠ADB =∠CBD ,根据角平分线定义得到∠ABD =∠CBD ,等量代换得到∠ADB =∠ABD ,根据等腰三角形的判定定理得到AD =AB ,根据菱形的判定即可得到结论;(2)由垂直的定义得到∠BDE =90°,等量代换得到∠CDE =∠E ,根据等腰三角形的判定得到CD =CE =BC ,根据勾股定理得到DE =6,于是得到结论. 【详解】(1)证明:∵AD ∥BC , ∴∠ADB =∠CBD , ∵BD 平分∠ABC , ∴∠ABD =∠CBD , ∴∠ADB =∠ABD , ∴AD =AB , ∵BA =BC , ∴AD =BC ,∴四边形ABCD 是平行四边形, ∵BA =BC ,∴四边形ABCD 是菱形; (2)解:∵DE ⊥BD ,∴∠BDE =90°,∴∠DBC+∠E =∠BDC+∠CDE =90°, ∵CB =CD , ∴∠DBC =∠BDC , ∴∠CDE =∠E , ∴CD =CE =BC , ∴BE =2BC =10,∵BD=8,∴DE6,∵四边形ABCD是菱形,∴AD=AB=BC=5,∴四边形ABED的周长=AD+AB+BE+DE=26.【点睛】本题考查了菱形的判定和性质,角平分线定义,平行线的性质,勾股定理,等腰三角形的性质,正确的识别图形是解题的关键.22.(1)100;(2)补图见解析;72°;(3)1.224万户.【解析】【分析】(1)根据A区间的用户数和所占的百分比可以求得这次抽查的用户数;(2)根据(1)中的结果和频数分布直方图可以求得B区间的人数,从而可以将直方图补充完整,进而求得扇形统计图中B部分的圆心角的度数;(3)根据直方图中的数据可以计算出该街道1.8万用户中约有多少用户的用水全部享受基本用水量的价格.【详解】(1)这次随机抽样调查了:10÷10%=100(户),故答案为:100;(2)根据题意,B区间用户数为:100﹣10﹣38﹣24﹣8=20(户)补全的频数分布直方图如图所示,扇形统计图中B部分的圆心角的度数是:360°×20100=72°;(3)根据题意,1.8×102038100++=1.224(万户).答:该街道1.8万用户中约有1.224万户的用水全部享受基本价格.【点睛】本题考查频数分布直方图、扇形统计图、用样本估计总体,解答本题的关键是明确题意,利用数形结合的思想解答.23.(1)1;(2) 1<x<4.【解析】【分析】(1)先根据零指数幂、有理数乘方的法则、绝对值的性质及特殊角的三角函数值计算出各数,再根据实数混合运算的法则进行计算即可.(2)分别求出不等式的解集,即可解答【详解】解:(1)原式=﹣1+1+3×3+1=1;(2)3(2)42113x xxx-->⎧⎪⎨+>-⎪⎩①②,由①得:x>1,由②得:x<4,则不等式组的解集为1<x<4.【点睛】此题考查负整数指数幂,零指数幂,实数的运算,特殊角的三角函数值,解一元一次不等式组,掌握运算法则是解题关键24.(1)12(2)16【解析】【分析】(1) 找出1个白球、1个黄球所占结果数,然后根据概率公式求解(2)先计算出所有60种等可能的结果数,再找出2个球都是黄球所占结果数,然后根据概率公式求解; 【详解】(1)记第一个盒子中的球分别为白1、白2、黄1,第二个盒子中的球分别为白3、黄2,由列举可得:(白1白3)、(白2白3)、(黄1白3)、(白1黄2)、(白2黄2)、(黄1黄2),共6种等可能结果,即n=6,记“一个是白球,一个是黄球”为事件A,共3种,即m=3,∴P(A)=12;(2)画树状图为如下,则共有6种等可能的结果数,其中2个球都是黄球占1种所以取出的2个球都是黄球的概率=16.【点睛】此题考查了列表法和画树状图,解题关键在于列出可能出现的结果25.(1)20(018)4432(1830)x xyx x<≤≤⎧=⎨-+≤⎩;(2)试销售期间,日销售最大利润是1080元;(3)连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【解析】【分析】(1)根据点D的坐标利用待定系数法即可求出线段OD的函数关系式,根据第23天销售了340件,结合时间每增加1天日销售量减少4件,即可求出线段DE的函数关系式,联立两函数关系式求出交点D的坐标,此题得解;(2)分0≤x≤18和18<x≤30,找出关于x的一元一次不等式,解之即可得出x的取值范围,有起始和结束时间即可求出日销售利润不低于960元的天数,再根据点D的坐标结合日销售利润=单件利润×日销售数,即可求出日销售最大利润;(3) 设第x天和第(x+1)天的销售利润之和为1980元,据此列出方程,根据取值范围解答即可.【详解】(1)20(018),4432(1830).x xyx x≤≤⎧=⎨-+≤⎩<(2)当0≤x≤18时,根据题意得,(9﹣6)×20x≥960,解得:x≥16;当18<x≤30时,根据题意得,(9﹣6)×(-4x+432)≥960,解得:x≤28.∴16≤x≤28. 28-16+1=13(天),∴日销售利润不低于960元的天数共有13天.由20x=-4x+432解得,x=18,当x=18时,y=20x=360,∴点D的坐标为(18,360),∴日最大销售量为360件,360×(9-6)=1080(元),∴试销售期间,日销售最大利润是1080元.(3)设第x天和第(x+1)天的销售利润之和为1980元.∵1980÷(9﹣6)=660<340×2,∴x<17,或x+1>23,当x<17时,根据题意可得20x+20(x+1)=660,解得x=16,符合,当x+1>23时,-4x+432-4(x+1)+432=660,解得x=25,符合,∴连续两天的销售利润之和为1980元的是第16,17两天和第25,26两天.【点睛】本题考查了一次函数的应用、待定系数法一次函数解析式,解题的关键是利用待定系数法求出OD的函数关系式以及依照数量关系找出DE的函数关系式.2019-2020学年数学中考模拟试卷一、选择题1.若关于的x 方程230x x a ++=有一个根为1-,则a 的值为( ) A .-4B .-2C .2D .-42.﹣2的倒数为( ) A.12B.-12C.﹣2D.23.若数a 使关于x 的不等式组2122274x x x a-⎧≤-+⎪⎨⎪+-⎩>有且只有4个整数解,且使关于y 的分式方程211ay y+--=3的解为正数,则符合条件的所有整数a 的和为( ) A.﹣2B.0C.3D.64.下列事件中,是随机事件的是( ) A .任意抛一枚图钉,钉尖着地 B .任意画一个三角形,其内角和是180oC .通常加热到100℃时,水沸腾D .太阳从东方升起5.某市的商品房原价为12000元/m 2,经过连续两次降价后,现价为9200元/m 2,设平均每次降价的百分率为x ,则根据题意可列方程为( ) A .12000(1﹣2x )=9200 B .12000(1﹣x )2=9200 C .9200(1+2x )=12000 D .9200(1+x )2=12000 6.若55+55+55+55+55=25n ,则n 的值为( )A .10B .6C .5D .37.如图,在Rt △ABC 中,∠A =90°,P 为边BC 上一动点,PE ⊥AB 于E ,PF ⊥AC 于F ,动点P 从点B 出发,沿着BC 匀速向终点C 运动,则线段EF 的值大小变化情况是( )A.一直增大B.一直减小C.先减小后增大D.先增大后减少8.中国“一带一路”战略沿线国家和地区带来很大的经济效益,沿线某地区居民2017年人均收入为300美元,预计2019年人均收入将达到1200美元,设2017年到2019年该地区居民年人均收入平均增长率为x ,可列方程为( )A .()300121200x +=B .()230011200x += C .()230011200x+=D .30021200x +=9.某市公园的东、西、南、北方向上各有一个入口,周末佳佳和琪琪随机从一个入口进入该公园游玩,则佳佳和琪琪恰好从同一个入口进入该公园的概率是( ) A .12B .14C .16D .11610.某医疗器械公司接到400件医疗器械的订单,由于生产线系统升级,实际每月生产能力比原计划提高了30%,结果比原计划提前4个月完成交货.设每月原计划生产的医疗器械有x 件,则下列方程正确的是( ) A .400400(130%)x x-+=4 B .400400(130%)x x -+=4C .400400(130%)x x--=4 D .4004004(130%)x x-=-11.若方程x 2﹣7x+12=0的两个实数根恰好是直角△ABC 的两边的长,则△ABC 的周长为( ) A .12 B .C .12或D .1112.如图,在ABCD 中, 对角线AC 、BD 相交于点O. E 、F 是对角线AC 上的两个不同点,当E 、F 两点满足下列条件时,四边形DEBF 不一定是平行四边形( ).A .AE =CFB .DE =BFC .ADE CBF ∠=∠D .AED CFB ∠=∠二、填空题13.已知:反比例函数y =kx的图象经过点A (2,﹣3),那么k =_____. 14.方程22310x x +-=的两个根为1x 、2x ,则1211+x x 的值等于______. 15.不等式组29611x x x k +>+⎧⎨-<⎩的解集为2x <,则k 的取值范围为_____.16.若分式12x - 有意义,则x 的取值范围为_____.17.如图在Rt △AOB 中,∠ABO =90°,将Rt △AOB 绕点O 顺时针旋转120°得Rt △COD 、已知AB =1,那么图中阴影部分的面积为___(结果保留π)18.计算的结果是_____. 三、解答题19.由于雾霾天气频发,市场上防护口罩出现热销,某医药公司每月固定生产甲、乙两种型号的防雾霾口罩共20万只,且所有产品当月全部售出,原料成本、销售单价及工人生产提成如表:(2)公司实行计件工资制,即工人每生产一只口罩获得一定金额的提成,如果公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元,应怎样安排甲、乙两种型号的产量,可使该月公司所获利润最大?并求出最大利润(利润=销售收入-投入总成本)20.如图:矩形ABCD 中,AC 是对角线,∠BAC 的平分线AE 交BC 于点E ,∠DCA 的平分线CF 交AD 于F .(1)求证:四边形AECF 是平行四边形.(2)若四边形AECF 是菱形,求AB 与AC 的数量关系.21.解方程:32x -﹣12x x--=1 22.如图,一次函数y =﹣x+b 交x 轴于点A ,交y 轴于点B (0,1),与反比例函数1(0)ky k x=<的图象交于点C ,C 点的横坐标是﹣2. (1)求反比例函数y 1的解析式; (2)设函数2m y (m 0)x =>的图象与1k y (k 0)x =<的图象关于y 轴对称,在2(0)my m x=>的图象上取一点D (D 点的横坐标大于1),过D 点作DE ⊥x 轴于点E ,若四边形OBDE 的面积为10,求D 点的坐标.23.甲、乙两人在笔直的道路AB 上相向而行,甲骑自行车从A 地到B 地,乙驾车从B 地到A 地,假设他们分别以不同的速度匀速行驶,甲先出发6分钟后,乙才出发,乙的速度为32千米/分,在整个过程中,甲、乙两人之间的距离y(千米)与甲出发的时间x(分)之间的部分函数图象如图. (1)A 、B 两地相距____千米,甲的速度为____千米/分; (2)求线段EF 所表示的y 与x 之间的函数表达式; (3)当乙到达终点A 时,甲还需多少分钟到达终点B ?24.在我市迎接奥运圣火的活动中,某校教学楼上悬挂着宣传条幅DC,小丽同学在点A 处,测得条幅顶端D 的仰角为30°,再向条幅方向前进10米后,又在点B 处测得条幅顶端D 的仰角为45°,已知测点A.B 和C 离地面高度都为1.44米,求条幅顶端D 点距离地面的高度(计算结果精确到0.1米, ≈1.732)25.如图,在半圆弧AB 中,直径6AB =cm ,点M 是AB 上一点,2MB =cm ,P 为AB 上一动点,PC AB ⊥交AB 于点C ,连接AC 和CM ,设A 、P 两点间的距离为x cm ,A 、C 两点间的距离为1y cm ,C 、M 两点间的距离为2y cm.小东根据学习函数的经验,分别对函数1y 、2y 随自变量x 的变化而变化的规律进行了探究:下面是小东的探究过程,请补充完整:(1)按照下表中自变量x 的值进行取点、画图、测量,分别得到了1y ,2y 与x 的几组对应值;(2)在同一平面直角坐标系中,描出补全后的表中各组数值所对应的点(,1),(,2y ),并画出函数1y ,2y 的图象;(3)结合函数图象,解决问题:①当AC CM >时,线段AP 的取值范围是 ;②当AMC ∆是等腰三角形时,线段AP 的长约为 .【参考答案】*** 一、选择题13.-614.15.k≥116.x≠2.17.13 .18.3三、解答题19.(1)甲、乙两种型号的产品分别为10万只,10万只;(2)当y=15时,W最大,最大值为91万元.【解析】【分析】(1)设甲型号的产品有x万只,则乙型号的产品有(20-x)万只,根据销售收入为300万元列出方程,求出方程的解即可得到结果;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20-y)万只,根据公司六月份投入总成本(原料总成本+生产提成总额)不超过239万元列出不等式,求出不等式的解集确定出y的范围,再根据利润=售价-成本列出W与y的一次函数,根据y的范围确定出W的最大值即可.【详解】(1)设甲型号的产品有x万只,则乙型号的产品有(20-x)万只,根据题意得:18x+12(20-x)=300,解得:x=10,则20-x=20-10=10,则甲、乙两种型号的产品分别为10万只,10万只;(2)设安排甲型号产品生产y万只,则乙型号产品生产(20-y)万只,根据题意得:13y+8.8(20-y)≤239,解得:y≤15,根据题意得:利润W=(18-12-1)y+(12-8-0.8)(20-y)=1.8y+64,当y=15时,W最大,最大值为91万元.【点睛】此题考查了一元一次方程的应用,以及一次函数的应用,弄清题中的等量关系是解本题的关键.20.(1)见解析;(2)当2AB=AC时,四边形AECF是菱形,理由见解析.【解析】【分析】(1)根据矩形的性质和平行四边形的判定证明即可;(2)根据菱形的判定解答即可.【详解】(1)证明:∵四边形ABCD是矩形,∴AB∥DC,∴∠BAC =∠DCA ,∵∠BAC =2∠EAC ,∠DCA =2∠FCA , ∴∠EAC =∠FCA , ∴AE ∥CF , ∵AF ∥EC ,∴四边形AECF 是平行四边形;(2)当2AB =AC 时,四边形AECF 是菱形, 理由如下:∵2AB =AC ,∠ABC =90°, ∴∠ACB =30°,∠BAC =60°, ∴∠EAC =30°, ∴∠EAC =∠ACB , ∴AE =EC ,∵四边形AECF 是平行四边形, ∴平行四边形AECF 是菱形. 【点睛】此题主要考查了平行四边形、菱形的判定,关键是掌握各种特殊四边形的判定方法. 21.x =3. 【解析】 【分析】分式方程变形后,去分母转化为整式方程,求出整式方程的解得到x 的值,经检验即可得到分式方程的解. 【详解】 原方程可变为:32x -﹣12x x--=1, 方程两边同乘(x ﹣2),得3﹣(x ﹣1)=x ﹣2, 解得:x =3,检验:当x =3时,x ﹣2≠0, ∴原方程的解为x =3. 【点睛】此题考查了解分式方程,利用了转化的思想,解分式方程注意要检验.22.(1)16y x =-;(2)314,7⎛⎫ ⎪⎝⎭【解析】 【分析】(1)运用待定系数法解得即可;(2)根据(1)的结论,可设点D 坐标为(a ,6a ),则DE =6a,OE =a ,由四边形OBDE 的面积为10,根据梯形的面积公式即可求解. 【详解】(1)把B (0,1)代入y =﹣x+b 得:b =1, ∴y =﹣x+1, 当x =﹣2时,y =3, ∴点C 坐标为(﹣2,3),∴反比例函数解析式为16y x=-; (2)∵函数1y 的图象与函数2y 的图象关于y 轴对称, 设点D 坐标为(a ,6a ),则DE =6a,OE =a , ∴S 四边形OBDE =OE (OB+DE )=12a (1+6a)=10, 解得:a =14, ∴D 点坐标为(14,37). 【点睛】本题考查了用待定系数法求一次函数和反比例函数的解析式,函数图象上点的坐标特征,函数的图象和性质的应用,能求出两函数的解析式是解此题的关键,数形结合思想的应用. 23.(1)24,13;(2)y =﹣116x+33;(3)当乙到达终点A 时,甲还需50分钟到达终点B . 【解析】 【分析】(1)观察图象知A 、B 两地相距为24km ,由纵坐标看出甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟,则甲的速度是26千米/分钟; (2)列方程求出相遇时的时间,求出点F 的坐标,再运用待定系数法解答即可;(3)根据相遇前甲行驶的路程除以乙行驶的速度,可得乙到达A 站需要的时间,根据相遇前乙行驶的路程除以甲行驶的速度,可得甲到达B 站需要的时间,再根据有理数的减法,可得答案 【详解】解:(1)观察图象知A 、B 两地相距为24km ,∵甲先行驶了2千米,由横坐标看出甲行驶2千米用了6分钟, ∴甲的速度是2163=千米/分钟; 故答案为:24,13; (2)设甲乙经过a 分钟相遇,根据题意得,31(6)2423a a -+=,解答a =18, ∴F(18,0),设线段EF 表示的y 与x 之间的函数表达式为y =kx+b ,根据题意得,018226x b k b =+⎧⎨=+⎩,解得11k 6b 33⎧=-⎪⎨⎪=⎩, ∴线段EF 表示的y 与x 之间的函数表达式为y =﹣116x+33; (3)相遇后乙到达A 地还需:(18×13)÷32=4(分钟), 相遇后甲到达B 站还需:(12×32)÷13=54(分钟)当乙到达终点A 时,甲还需54﹣4=50分钟到达终点B . 【点睛】本题考查了函数图象,利用同路程与时间的关系得出甲乙的速度是解题关键.注意求出相遇后甲、乙各自的路程和时间. 24.1m 【解析】 【分析】首先分析图形:根据题意构造直角三角形;本题涉及到两个直角三角形Rt △BCD 、Rt △ACD,应利用其公共边DC 构造方程关系式,进而可解即可求出答案 【详解】在Rt △BCD 中,tan45°=1CDBC= ,∴CD=BC.在R △ACD 中,tan30°=CD AC =∴3CD AB BC =+∴10CD CD =+∴+∴5CD ===≈13.66(米)∴条幅顶端D 点距离地面的高度为13.66+1.4=15.1(米) 【点睛】此题考查解直角三角形的应用-仰角俯角问题,解题关键在于利用其公共边DC 构造方程关系式 25.(1)见解析;(2)见解析;(3)①26AP <≤,②2或2.6. 【解析】 【分析】(1)求出PM ,由y 2的值通过勾股定理求出PC 2,再次运用勾股定理即可求出y 1; (2)根据表格数据描点连线即可;(3)①结合函数图像,找到y 1在y 2上方时x 的取值范围; ②观察函数图像,找到当y 1=y 2,y 1=4=AM 时x 的值即可. 【详解】解:(1)∵AP=3, ∴PM=6-3-2=1, ∵CM=3.16,∴PC 2=22223.1618.9856CM PM -=-= ,∴AC=y 1 4.24=≈,补全下表:(2)描点(,1),画出函数1的图象:(3)①观察函数图像可知,当y 1>y 2时,26x <≤, 线段AP 的取值范围是26AP <≤; ②观察图像可知,当y 1=y 2时,x=2, 当y 1=4=AM 时,x≈2.6, ∴线段AP 的长约为2或2.6 【点睛】本题考查了圆的基本性质、勾股定理以及函数的相关知识,解题的关键是理解题意,学会利用数形结合的思想思考问题,属于中考常考题型.2019-2020学年数学中考模拟试卷一、选择题1.已知反比例函数2y -x=,点A (a-b ,2),B (a-c ,3)在这个函数图象上,下列对于a ,b ,c 的大小判断正确的是( ) A .a <b <c B .a <c <b C .c <b <a D .b <c <a2.化简21644m m m+--的结果是( ) A .4m -B .4m +C .44m m +- D .44m m -+ 3.如图,下列条件中,不能判定△ACD ∽△ABC 的是( )A.∠ADC =∠ACBB.∠B =∠ACDC.∠ACD =∠BCDD.4.若点A (a ,b ),B (1a,c )都在反比例函数y =1x 的图象上,且﹣1<c <0,则一次函数y =(b ﹣c )x+ac 的大致图象是( )A .B .C .D .5.如图,在△ABC 中,AB =3,BC =4,AC =5,点D 在边BC 上,以AC 为对角线的所有平行四边形ADCE 中,DE 的最小值是( )A .2B .3C .4D .56.已知1,3a b ==,而且b 和a 的方向相反,那么下列结论中正确的是( ) A .3a b =B .3a b =-C .3b a =D .3b a =-.7.如图,阴影部分是从一块直径为40cm 的圆形铁板中截出的一个工件示意图,其中ABC ∆是等边三角形,则阴影部分的面积为( )A .2800cm π B .2400cm 3π⎛+ ⎝C .2400cm 3π⎛+⎝ D .2200cm π8.如图,有一矩形纸片ABCD ,AB=10,AD=6,将纸片折叠,使AD 边落在AB 边上,折痕为AE ,再将△AED 以DE 为折痕向右折叠,AE 与BC 交于点F ,则梯形BDEF 的面积为( )A .14B .16C .18D .109.关于x 的正比例函数,y=(m+1)23m x -若y 随x 的增大而减小,则m 的值为( ) A .2B .-2C .±2D .-1210.观察下列表格,求一元二次方程x 2﹣x =1.1的一个近似解是( )11.如图,E 、F 分别是矩形ABCD 边AB 、CD 上的点,将矩形ABCD 沿EF 折叠,使A 、D 分别落在A '和D '处,若150∠=︒,则2∠的度数是( )A .65︒B .60︒C .50︒D .40︒12.计算2123131x xx x +----的结果为( ) A .1 B .-1C .331x - D .331x x +- 二、填空题13.若2x 2+3与2x 2﹣4互为相反数,则x 为__________.14.如图,在四边形ABCD 中,AD=AB=BC ,连接AC ,且∠ACD=30°,tan∠,CD=3,则AC =________.15.已知一个扇形的半径是2,圆心角是60︒,则这个扇形的面积是_____. 16.(-2)xy xy +=________________.17.某十字路口设有交通信号灯,东西向信号灯的开启规律如下:红灯开启30秒后关闭,紧接着黄灯开启3秒后关闭,再紧接着绿灯开启17秒,按此规律选一下去.如果不考虑其他因素,一辆汽车沿东西方向随机地行驶到该路口时,遇到红灯的概率是______.18.已知梯形的上底长为5厘米,下底长为9厘米,那么这个梯形的中位线长等于_____厘米. 三、解答题19.如图,AB 为⊙O 的直径,C 为⊙O 上一点,∠CAB 的平分线交⊙O 于点D ,过点D 作ED ⊥AE ,垂足为E ,交AB 的延长线于F . (1)求证:ED 是⊙O 的切线;(2)若AD =,AB =6,求FD 的长.20.我市“木兰溪左岸绿道”工程已全部建成并投入使用,10公里的河堤便道铺满了彩色的透水沥青,堤岸旁的各类花草争奇斗艳,与木兰溪河滩上的特色花草相映成趣,吸引着众多市民在此休闲锻炼、散步观光.某小区随机调查了部分居民在一周内前往“木兰溪左岸绿道”锻炼的次数,并制成如图不完整的统计图表:居民前往“木兰溪左岸绿道”锻炼的次数统计表(1)a=,b=.(2)请计算扇形统计图中“3次”所对应扇形的圆心角的度数;(3)若该小区共有2000名居民,根据调查结果,估计该小区居民在一周内前往木兰溪左岸绿道”锻炼“4次及以上”的人数.21.如图,已知在Rt△ABC中,∠B=30°,∠ACB=90°,延长CA到O,使AO=AC,以O为圆心,OA 长为半径作⊙O交BA延长线于点D,连接CD.(1)求证:CD是⊙O的切线;(2)若AB=4,求图中阴影部分的面积.22.下面是小元设计的“经过已知直线外一点作这条直线的垂线”的尺规作图过程,已知:如图1,直线l和l外一点P.求作:直线l的垂线,使它经过点P,作法:如图2,(1)在直线l上任取一点A;(2)连接AP,以点P为圆心,AP长为半径作弧,交直线l于点B(点A,B不重合);(3)连接BP,作∠APB的角平分线,交AB于点H;(4)作直线PH,交直线l于点H.所以直线PH就是所求作的垂线.根据小元设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹);(2)完成下面的证明.证明:∵PH平分∠APB,∴∠APH=.∵PA=,∴PH⊥直线l于H.( ) (填推理的依据)23.如图,抛物线y =ax 2x 轴交于A (﹣3,0),B (9,0)两点,与y 轴交于点C ,连接AC ,BC .点P 沿AC 以每秒1个单位长度的速度由点A 向点C 运动,同时,点Q 沿BO 以每秒2个单位长度的速度由点B 向点O 运动,当一个点停止运动时,另一个点也随之停止运动,连接PQ ,过点Q 作QD ⊥x 轴,与抛物线交于点D ,连接PD 与BC 交于点E .设点P 的运动时间为t 秒(t >0) (1)求抛物线的表达式;(2)①直接写出P ,D 两点的坐标(用含t 的代数式表示,结果需化简). ②在点P ,Q 运动的过程中,当PQ =PD 时,求t 的值;(3)点M 为线段BC 上一点,在点P ,Q 运动的过程中,当点E 为PD 中点时,是否存在点M 使得PM+12BM 的值最小?若存在,请求出PM+12BM 的最小值;若不存在,请说明理由.24.为弘扬泰山文化,某校举办了“泰山诗文大赛”活动,从中随机抽取部分学生的比赛成绩,根据成绩(成绩都高于50分),绘制了如下的统计图表(不完整):(1)求出a ,b 的值;(2)计算扇形统计图中“第5组”所在扇形圆心角的度数; (3)若该校共有1800名学生,那么成绩高于80分的共有多少人?25.春暖花开,树木萌芽,某种时令蔬菜的价格呈上升趋势,若这种蔬菜开始时的售价为每斤20元,并且每天涨价2元,从第六天开始,保持每斤30元的稳定价格销售,直到11天结束,该蔬菜退市. (1)请写出该种蔬菜销售价格y 与天数x 之间的函数关系式;(2)若该种蔬菜于进货当天售完,且这种蔬菜每斤进价z 与天数x 的关系为z =﹣21(8)8x +12。

天津市宁河县2019-2020学年中考数学仿真第一次备考试题含解析

天津市宁河县2019-2020学年中考数学仿真第一次备考试题含解析

天津市宁河县2019-2020学年中考数学仿真第一次备考试题一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.)1.下列关于x的方程中一定没有实数根的是()A.210=-D.220x mx-+=C.2x x--=--=B.2x x4690x x2.某车间有26名工人,每人每天可以生产800个螺钉或1000个螺母,1个螺钉需要配2个螺母,为使每天生产的螺钉和螺母刚好配套.设安排x名工人生产螺钉,则下面所列方程正确的是()A.2×1000(26﹣x)=800x B.1000(13﹣x)=800xC.1000(26﹣x)=2×800x D.1000(26﹣x)=800x3.如图,点M为▱ABCD的边AB上一动点,过点M作直线l垂直于AB,且直线l与▱ABCD的另一边交于点N.当点M从A→B匀速运动时,设点M的运动时间为t,△AMN的面积为S,能大致反映S与t函数关系的图象是()A.B.C.D.4.如图,AB是⊙O的直径,C,D是⊙O上位于AB异侧的两点.下列四个角中,一定与∠ACD互余的角是()A.∠ADC B.∠ABD C.∠BAC D.∠BAD5.如图,两个等直径圆柱构成如图所示的T形管道,则其俯视图正确的是()A .B .C .D .6.如图,在4×4的正方形网格中,每个小正方形的边长都为1,△AOB 的三个顶点都在格点上,现将△AOB 绕点O 逆时针旋转90°后得到对应的△COD ,则点A 经过的路径弧AC 的长为( )A .3π2B .πC .2πD .3π7.有两组数据,A 组数据为2、3、4、5、6;B 组数据为1、7、3、0、9,这两组数据的( ) A .中位数相等 B .平均数不同 C .A 组数据方差更大 D .B 组数据方差更大8.已知二次函数2y ax bx c =++的图象与x 轴交于点()2,0-、()1,0x ,且112x <<,与y 轴的正半轴的交点在()0,2的下方.下列结论:①420a b c -+=;②0a b c -+<;③20a c +>;④210a b -+>.其中正确结论的个数是( )个. A .4个B .3个C .2个D .1个9.下列图形中,既是中心对称,又是轴对称的是( )A .B .C .D .10.把不等式组11x x <-⎧⎨≤⎩的解集表示在数轴上,下列选项正确的是( )A .B .C .D .11.如图,等腰直角三角形纸片ABC 中,∠C=90°,把纸片沿EF 对折后,点A 恰好落在BC 上的点D 处,点CE=1,AC=4,则下列结论一定正确的个数是( )①∠CDE=∠DFB ;②BD >CE ;③2CD ;④△DCE 与△BDF 的周长相等.A .1个B .2个C .3个D .4个12.已知1122()()A x y B x y ,,,两点都在反比例函数ky x=图象上,当12x 0x <<时,12y y < ,则k 的取值范围是( ) A .k>0B .k<0C .k 0≥D .k 0≤二、填空题:(本大题共6个小题,每小题4分,共24分.)13.在ABCD 中,AB=3,BC=4,当ABCD 的面积最大时,下列结论:①AC=5;②∠A+∠C=180o ;③AC ⊥BD ;④AC=BD .其中正确的有_________.(填序号)14.如图,直线a 经过正方形ABCD 的顶点A ,分别过此正方形的顶点B 、D 作BF a ⊥于点F 、DE a ⊥ 于点E .若85DE BF ==,,则EF 的长为________.15.如图,等腰△ABC 中,AB =AC =5,BC =8,点F 是边BC 上不与点B ,C 重合的一个动点,直线DE 垂直平分BF ,垂足为D .当△ACF 是直角三角形时,BD 的长为_____.16.等腰ABC ∆中,AD 是BC 边上的高,且12AD BC =,则等腰ABC ∆底角的度数为__________. 17.因式分解a 3-6a 2+9a=_____.18.如图,在Y ABCD 中,AB=6cm ,AD=9cm ,∠BAD 的平分线交BC 于点E ,交DC 的延长线于点F ,BG ⊥AE ,垂足为G ,BG=42cm ,则EF +CF 的长为 cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)如图①,在正方形ABCD 的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M ,则图中ADE V ≌DFC △,可知ED FC =,求得DMC ∠=______.如图②,在矩形()ABCD AB BC >的外侧,作两个等边三角形ABE 和ADF ,连结ED 与FC 交于点M .()1求证:ED FC =.()2若20ADE ∠=o ,求DMC ∠的度数.20.(6分)如图,点C 在线段AB 上,AD ∥EB ,AC =BE ,AD =BC ,CF 平分∠DCE . 求证:CF ⊥DE 于点F .21.(6分)某商家预测一种应季衬衫能畅销市场,就用13200元购进了一批这种衬衫,面市后果然供不应求.商家又用28800元购进了第二批这种衬衫,所购数量是第一批购进量的2倍,但单价贵了10元.该商家购进的第一批衬衫是多少件?若两批衬衫按相同的标价销售,最后剩下50件按八折优惠卖出,如果两批衬衫全部售完后利润率不低于25%(不考虑其它因素),那么每件衬衫的标价至少是多少元? 22.(8分)为鼓励大学毕业生自主创业,某市政府出台了相关政策:由政府协调,本市企业按成本价提供产品给大学毕业生自主销售,成本价与出厂价之间的差价由政府承担.李明按照相关政策投资销售本市生产的一种新型节能灯.已知这种节能灯的成本价为每件元,出厂价为每件元,每月销售量(件)与销售单价(元)之间的关系近似满足一次函数:.李明在开始创业的第一个月将销售单价定为元,那么政府这个月为他承担的总差价为多少元?设李明获得的利润为(元),当销售单价定为多少元时,每月可获得最大利润?物价部门规定,这种节能灯的销售单价不得高于元.如果李明想要每月获得的利润不低于元,那么政府为他承担的总差价最少为多少元?23.(8分)天水某公交公司将淘汰某一条线路上“冒黑烟”较严重的公交车,计划购买A 型和B 型两行环保节能公交车共10辆,若购买A 型公交车1辆,B 型公交车2辆,共需400万元;若购买A 型公交车2辆,B 型公交车1辆,共需350万元,求购买A 型和B 型公交车每辆各需多少万元?预计在该条线路上A 型和B 型公交车每辆年均载客量分别为60万人次和100万人次.若该公司购买A 型和B 型公交车的总费用不超过1220万元,且确保这10辆公交车在该线路的年均载客量总和不少于650万人次,则该公司有哪几种购车方案?哪种购车方案总费用最少?最少总费用是多少?24.(10分)如图,B 、E 、C 、F 在同一直线上,AB =DE ,BE =CF ,∠B =∠DEF ,求证:AC =DF .25.(10分)已知关于x 的一元二次方程(3)(2)(1)x x p p --=+.试证明:无论p 取何值此方程总有两个实数根;若原方程的两根1x ,2x 满足222121231x x x x p +-=+,求p 的值.26.(12分)如图,已知点A ,B 的坐标分别为(0,0)、(2,0),将△ABC 绕C 点按顺时针方向旋转90°得到△A 1B 1C . (1)画出△A 1B 1C ;(2)A 的对应点为A 1,写出点A 1的坐标; (3)求出B 旋转到B 1的路线长.27.(12分)如图,矩形ABCD 的对角线AC 、BD 交于点O ,且DE ∥AC ,CE ∥BD . (1)求证:四边形OCED 是菱形;(2)若∠BAC=30°,AC=4,求菱形OCED 的面积.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.B 【解析】 【分析】根据根的判别式的概念,求出△的正负即可解题. 【详解】解: A. x 2-x-1=0,△=1+4=5>0,∴原方程有两个不相等的实数根, B. 24x 6x 90-+=, △=36-144=-108<0,∴原方程没有实数根, C. 2x x =-, 2x x 0+=, △=1>0,∴原方程有两个不相等的实数根, D. 2x mx 20--=, △=m 2+8>0,∴原方程有两个不相等的实数根, 故选B. 【点睛】本题考查了根的判别式,属于简单题,熟悉根的判别式的概念是解题关键. 2.C 【解析】 【分析】试题分析:此题等量关系为:2×螺钉总数=螺母总数.据此设未知数列出方程即可 【详解】 .故选C.解:设安排x 名工人生产螺钉,则(26-x )人生产螺母,由题意得 1000(26-x )=2×800x ,故C 答案正确,考点:一元一次方程. 3.C 【解析】分析:本题需要分两种情况来进行计算得出函数解析式,即当点N 和点D 重合之前以及点M 和点B 重合之前,根据题意得出函数解析式.详解:假设当∠A=45°时,,AB=4,则MN=t ,当0≤t≤2时,AM=MN=t ,则S=212t ,为二次函数;当2≤t≤4时,S=t ,为一次函数,故选C .点睛:本题主要考查的就是函数图像的实际应用问题,属于中等难度题型.解答这个问题的关键就是得出函数关系式. 4.D【解析】【详解】∵∠ACD对的弧是»AD,»AD对的另一个圆周角是∠ABD,∴∠ABD=∠ACD(同圆中,同弧所对的圆周角相等),又∵AB为直径,∴∠ADB=90°,∴∠ABD+∠BAD=90°,即∠ACD+∠BAD=90°,∴与∠ACD互余的角是∠BAD.故选D.5.B【解析】试题分析:三视图就是主视图(正视图)、俯视图、左视图的总称.从物体的前面向后面投射所得的视图称主视图(正视图)——能反映物体的前面形状;从物体的上面向下面投射所得的视图称俯视图——能反映物体的上面形状;从物体的左面向右面投射所得的视图称左视图——能反映物体的左面形状.故选B 考点:三视图6.A【解析】【分析】根据旋转的性质和弧长公式解答即可.【详解】解:∵将△AOB绕点O逆时针旋转90°后得到对应的△COD,∴∠AOC=90°,∵OC=3,∴点A经过的路径弧AC的长=903180π⨯=3π2,故选:A.【点睛】此题考查弧长计算,关键是根据旋转的性质和弧长公式解答.7.D【解析】【分析】分别求出两组数据的中位数、平均数、方差,比较即可得出答案. 【详解】A 组数据的中位数是:4,平均数是:(2+3+4+5+6) ÷5=4, 方差是:[(2-4)2+(3-4)2+(4-4)2+(5-4)2+(6-4)2] ÷5=2; B 组数据的中位数是:3,平均数是:(1+7+3+0+9) ÷5=4, 方差是:[(1-4)2+(7-4)2+(3-4)2+(0-4)2+(9-4)2] ÷5=12; ∴两组数据的中位数不相等,平均数相等,B 组方差更大. 故选D. 【点睛】本题考查了中位数、平均数、方差的计算,熟练掌握中位数、平均数、方差的计算方法是解答本题的关键. 8.B 【解析】分析:根据已知画出图象,把x=−2代入得:4a−2b+c=0,把x=−1代入得:y=a−b+c>0,根据122cx x a⋅=<-,不等式的两边都乘以a(a<0)得:c>−2a ,由4a−2b+c=0得22c a b -=-,而0<c<2,得到102c-<-<即可求出2a−b+1>0.详解:根据二次函数y=ax 2+bx+c 的图象与x 轴交于点(−2,0)、(x 1,0),且1<x 1<2,与y 轴的正半轴的交点在(0,2)的下方,画出图象为:如图把x=−2代入得:4a−2b+c=0,∴①正确;把x=−1代入得:y=a−b+c>0,如图A 点,∴②错误; ∵(−2,0)、(x 1,0),且1<x 1,∴取符合条件1<x 1<2的任何一个x 1,−2⋅x 1<−2, ∴由一元二次方程根与系数的关系知122cx x a⋅=<-, ∴不等式的两边都乘以a(a<0)得:c>−2a , ∴2a+c>0,∴③正确;④由4a−2b+c=0得22c a b -=-, 而0<c<2,∴102c-<-< ∴−1<2a−b<0 ∴2a−b+1>0,∴④正确.所以①③④三项正确.故选B.点睛:属于二次函数综合题,考查二次函数图象与系数的关系, 二次函数图象上点的坐标特征, 抛物线与x 轴的交点,属于常考题型.9.C【解析】【分析】根据中心对称图形,轴对称图形的定义进行判断.【详解】A、是中心对称图形,不是轴对称图形,故本选项错误;B、不是中心对称图形,也不是轴对称图形,故本选项错误;C、既是中心对称图形,又是轴对称图形,故本选项正确;D、不是中心对称图形,是轴对称图形,故本选项错误.故选C.【点睛】本题考查了中心对称图形,轴对称图形的判断.关键是根据图形自身的对称性进行判断.10.C【解析】【分析】求得不等式组的解集为x<﹣1,所以C是正确的.【详解】解:不等式组的解集为x<﹣1.故选C.【点睛】本题考查了不等式问题,在表示解集时“≥”,“≤”要用实心圆点表示;“<”,“>”要用空心圆点表示.11.D【解析】等腰直角三角形纸片ABC中,∠C=90°,∴∠A=∠B=45°,由折叠可得,∠EDF=∠A=45°,∴∠CDE+∠BDF=135°,∠DFB+∠B=135°,∴∠CDE=∠DFB,故①正确;由折叠可得,DE=AE=3,∴CD=2222-=,DE CE∴BD=BC﹣DC=4﹣22>1,∴BD>CE,故②正确;∵BC=4,2CD=4,∴BC=2CD,故③正确;∵AC=BC=4,∠C=90°,∴AB=42,∵△DCE的周长=1+3+22=4+22,由折叠可得,DF=AF,∴△BDF的周长=DF+BF+BD=AF+BF+BD=AB+BD=42+(4﹣22)=4+22,∴△DCE与△BDF的周长相等,故④正确;故选D.点睛:本题主要考查了折叠问题,折叠是一种对称变换,它属于轴对称,折叠前后图形的形状和大小不变,位置变化,对应边和对应角相等.12.B【解析】【分析】根据反比例函数的性质判断即可.【详解】解:∵当x1<x2<0时,y1<y2,∴在每个象限y随x的增大而增大,∴k<0,故选:B.【点睛】本题考查了反比例函数的性质,解题的关键是熟练掌握反比例函数的性质.二、填空题:(本大题共6个小题,每小题4分,共24分.)13.①②④【解析】【分析】由当ABCD的面积最大时,AB⊥BC,可判定ABCD是矩形,由矩形的性质,可得②④正确,③错误,又由勾股定理求得AC=1.【详解】∵当ABCD的面积最大时,AB⊥BC,∴ABCD是矩形,∴∠A=∠C=90°,AC=BD,故③错误,④正确;∴∠A+∠C=180°;故②正确;∴AC==1,故①正确.故答案为:①②④.【点睛】此题考查了平行四边形的性质、矩形的判定与性质以及勾股定理.注意证得▱ABCD是矩形是解此题的关键.14.13【解析】【分析】根据正方形的性质得出AD=AB,∠BAD=90°,根据垂直得出∠DEA=∠AFB=90°,求出∠EDA=∠FAB,根据AAS推出△AED≌△BFA,根据全等三角形的性质得出AE=BF=5,AF=DE=8,即可求出答案;【详解】∵ABCD是正方形(已知),∴AB=AD,∠ABC=∠BAD=90°;又∵∠FAB+∠FBA=∠FAB+∠EAD=90°,∴∠FBA=∠EAD(等量代换);∵BF⊥a于点F,DE⊥a于点E,∴在Rt△AFB和Rt△AED中,∵90{AFB DEAFBA EADAB DA∠=∠=︒∠=∠=,∴△AFB≌△AED(AAS),∴AF=DE=8,BF=AE=5(全等三角形的对应边相等),∴EF=AF+AE=DE+BF=8+5=13.故答案为13.点睛:本题考查了勾股定理,全等三角形的性质和判定,正方形的性质的应用,能求出△AED≌△BFA 是解此题的关键.15.2或78 【解析】【分析】分两种情况讨论:(1)当AFC 90∠︒=时,AF BC ⊥,利用等腰三角形的三线合一性质和垂直平分线的性质可解;(2)当CAF 90=∠︒时,过点A 作AM BC ⊥于点M ,证明AMC FAC V V ∽,列比例式求出FC ,从而得BF ,再利用垂直平分线的性质得BD .【详解】解:(1)当AFC 90∠︒=时,AF BC ⊥,142AB ACBF BC BF =∴=∴=Q ∵DE 垂直平分BF ,8122BC BD BF =∴==Q .(2)当CAF 90=∠︒时,过点A 作AM BC ⊥于点M ,AB AC Q =BM CM =∴在Rt AMC V 与Rt FAC V 中,AMC FAC 90C C ∠∠∠∠︒==,=,AMC FAC ∴V V ∽,AC MC FC AC=Q 2AC FC MC∴= 15,42254AC MC BC FC ===∴=Q2578441728BF BC FCBD BF∴=-=-=∴==.故答案为2或78.【点睛】本题主要考查了等腰三角形的三线合一性质和线段垂直平分线的性质定理得应用.本题难度中等.16.75︒,45︒,15︒【解析】【分析】分三种情况:①点A是顶角顶点时,②点A是底角顶点,且AD在△ABC外部时,③点A是底角顶点,且AD在△ABC内部时,再结合直角三角形中,30°的角所对的直角边等于斜边的一半即可求解.【详解】①如图,若点A是顶角顶点时,∵AB=AC,AD⊥BC,∴BD=CD,∵12AD BC=,∴AD=BD=CD,在Rt△ABD中,∠B=∠BAD=()118090=452︒︒︒﹣;②如图,若点A是底角顶点,且AD在△ABC外部时,∵12AD BC =,AC=BC , ∴12AD AC =, ∴∠ACD=30°,∴∠BAC=∠ABC=12×30°=15°; ③如图,若点A 是底角顶点,且AD 在△ABC 内部时,∵12AD BC =,AC=BC , ∴12AD AC =, ∴∠C=30°,∴∠BAC=∠ABC=12(180°-30°)=75°; 综上所述,△ABC 底角的度数为45°或15°或75°;故答案为75︒,45︒,15︒.【点睛】本题考查了等腰三角形的性质和直角三角形中30°的角所对的直角边等于斜边的一半的性质,解题的关键是要分情况讨论.17.a(a-3)2【解析】【分析】根据因式分解的方法与步骤,先提取公因式,再根据完全平方公式分解即可.【详解】解:3269a a a -+()269a a a =-+()23a a =-故答案为:()23a a -.【点睛】本题考查因式分解的方法与步骤,熟练掌握方法与步骤是解答关键.18.5【解析】分析:∵AF 是∠BAD 的平分线,∴∠BAF=∠FAD .∵Y ABCD 中,AB ∥DC ,∴∠FAD =∠AEB .∴∠BAF=∠AEB .∴△BAE 是等腰三角形,即BE=AB=6cm .同理可证△CFE 也是等腰三角形,且△BAE ∽△CFE .∵BC= AD=9cm ,∴CE=CF=3cm .∴△BAE 和△CFE 的相似比是2:1.∵BG ⊥AE , BG=,∴由勾股定理得EG=2cm .∴AE=4cm .∴EF=2cm .∴EF +CF=5cm .三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.阅读发现:90°;(1)证明见解析;(2)100°【解析】【分析】阅读发现:只要证明15DFC DCF ADE AED ∠=∠=∠=∠=o ,即可证明.拓展应用:()1欲证明ED FC =,只要证明ADE V ≌DFC △即可. ()2根据DMC FDM DFC FDA ADE DFC ∠=∠+∠=∠+∠+∠即可计算.【详解】解:如图①中,Q 四边形ABCD 是正方形,AD AB CD ∴==,90ADC ∠=o ,ADE QV ≌DFC △,DF CD AE AD ∴===,6090150FDC ∠=+=o o o Q ,15DFC DCF ADE AED ∴∠=∠=∠=∠=o ,601575FDE ∴∠=+=o o o ,90MFD FDM ∴∠+∠=o ,90FMD ∴∠=o ,故答案为90o()1ABE QV 为等边三角形,60EAB ∴∠=o ,EA AB =.ADF QV 为等边三角形,60FDA ∴∠=o ,AD FD =.Q 四边形ABCD 为矩形,90BAD ADC ∴∠=∠=o ,DC AB =.EA DC ∴=.150EAD EAB BAD ∠=∠+∠=o Q ,150CDF FDA ADC ∠=∠+∠=o ,EAD CDF ∴∠=∠.在EAD V 和CDF V中, AE CD EAD FDC AD DF =⎧⎪∠=∠⎨⎪=⎩,EAD ∴V ≌CDF V. ED FC ∴=;()2EAD QV ≌CDF V ,20ADE DFC ∴∠=∠=o ,602020100DMC FDM DFC FDA ADE DFC ∴∠=∠+∠=∠+∠+∠=++=o o o o .【点睛】本题考查全等三角形的判定和性质、正方形的性质、矩形的性质等知识,解题的关键是正确寻找全等三角形,利用全等三角形的寻找解决问题,属于中考常考题型.20.证明见解析.【解析】【分析】根据平行线性质得出∠A=∠B ,根据SAS 证△ACD ≌△BEC ,推出DC=CE ,根据等腰三角形的三线合一定理推出即可.【详解】∵AD ∥BE ,∴∠A =∠B .在△ACD 和△BEC 中∵,∴△ACD ≌△BEC (SAS ),∴DC =CE . ∵CF 平分∠DCE ,∴CF ⊥DE (三线合一).【点睛】本题考查了全等三角形的性质和判定,平行线的性质,等腰三角形的性质等知识点,关键是求出DC=CE ,主要考查了学生运用定理进行推理的能力.21.(1)120件;(2)150元.【解析】试题分析:(1)设该商家购进的第一批衬衫是x 件,则购进第二批这种衬衫可设为2x 件,由已知可得,,这种衬衫贵10元,列出方程求解即可.(2)设每件衬衫的标价至少为a 元,由(1)可得出第一批和第二批的进价,从而求出利润表达式,然后列不等式解答即可.试题解析:(1)设该商家购进的第一批衬衫是x 件,则第二批衬衫是2x 件. 由题意可得:2880013200102x x-=,解得120x =,经检验120x =是原方程的根. (2)设每件衬衫的标价至少是a 元.由(1)得第一批的进价为:132********÷=(元/件),第二批的进价为:120(元)由题意可得:()120(110)24050(120)50(0.8120)25%42000a a a ⨯-+-⨯-+⨯-≥⨯解得:35052500a ≥,所以,150a ≥,即每件衬衫的标价至少是150元.考点:1、分式方程的应用 2、一元一次不等式的应用.22.(1)政府这个月为他承担的总差价为644元;(2)当销售单价定为34元时,每月可获得最大利润144元;(3)销售单价定为25元时,政府每个月为他承担的总差价最少为544元.【解析】试题分析:(1)把x=24代入y=﹣14x+544求出销售的件数,然后求出政府承担的成本价与出厂价之间的差价;(2)由利润=销售价﹣成本价,得w=(x ﹣14)(﹣14x+544),把函数转化成顶点坐标式,根据二次函数的性质求出最大利润;(3)令﹣14x 2+644x ﹣5444=2,求出x 的值,结合图象求出利润的范围,然后设设政府每个月为他承担的总差价为p 元,根据一次函数的性质求出总差价的最小值.试题解析:(1)当x=24时,y=﹣14x+544=﹣14×24+544=344, 344×(12﹣14)=344×2=644元, 即政府这个月为他承担的总差价为644元;(2)依题意得,w=(x ﹣14)(﹣14x+544)=﹣14x 2+644x ﹣5444=﹣14(x﹣34)2+144∵a=﹣14<4,∴当x=34时,w有最大值144元.即当销售单价定为34元时,每月可获得最大利润144元;(3)由题意得:﹣14x2+644x﹣5444=2,解得:x1=24,x2=1.∵a=﹣14<4,抛物线开口向下,∴结合图象可知:当24≤x≤1时,w≥2.又∵x≤25,∴当24≤x≤25时,w≥2.设政府每个月为他承担的总差价为p元,∴p=(12﹣14)×(﹣14x+544)=﹣24x+3.∵k=﹣24<4.∴p随x的增大而减小,∴当x=25时,p有最小值544元.即销售单价定为25元时,政府每个月为他承担的总差价最少为544元.考点:二次函数的应用.23.(1)购买A型公交车每辆需100万元,购买B型公交车每辆需150万元.(2)购买A型公交车8辆,则B型公交车2辆费用最少,最少总费用为1100万元.【解析】【分析】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,根据“A型公交车1辆,B型公交车2辆,共需400万元;A型公交车2辆,B型公交车1辆,共需350万元”列出方程组解决问题;(2)设购买A型公交车a辆,则B型公交车(10-a)辆,由“购买A型和B型公交车的总费用不超过1220万元”和“10辆公交车在该线路的年均载客总和不少于650万人次”列出不等式组探讨得出答案即可.【详解】(1)设购买A型公交车每辆需x万元,购买B型公交车每辆需y万元,由题意得24002350x y x y +=⎧⎨+=⎩, 解得100150x y =⎧⎨=⎩, 答:购买A 型公交车每辆需100万元,购买B 型公交车每辆需150万元.(2)设购买A 型公交车a 辆,则B 型公交车(10﹣a )辆,由题意得100150(10)122060100(10)650a a a a +-⎧⎨+-⎩……, 解得:283554a ≤≤, 因为a 是整数,所以a =6,7,8;则(10﹣a )=4,3,2;三种方案:①购买A 型公交车6辆,则B 型公交车4辆:100×6+150×4=1200万元;②购买A 型公交车7辆,则B 型公交车3辆:100×7+150×3=1150万元;③购买A 型公交车8辆,则B 型公交车2辆:100×8+150×2=1100万元;购买A 型公交车8辆,则B 型公交车2辆费用最少,最少总费用为1100万元.【点睛】此题考查二元一次方程组和一元一次不等式组的应用,注意理解题意,找出题目蕴含的数量关系,列出方程组或不等式组解决问题.24.见解析【解析】【分析】由BE =CF 可得BC =EF ,即可判定()ABC DEF SAS ∆∆≌,再利用全等三角形的性质证明即可.【详解】∵BE =CF ,∴BE EC EC CF ++=,即BC =EF ,又∵AB =DE ,∠B =∠DEF ,∴在ABC ∆与DEF ∆中,AB DE B DEF BC EF =⎧⎪∠=∠⎨⎪=⎩,∴()ABC DEF SAS ∆∆≌,∴AC =DF .【点睛】本题主要考查了三角形全等的判定,熟练掌握三角形全等的判定定理是解决本题的关键.25.(1)证明见解析;(2)-2.【解析】分析:(1)将原方程变形为一般式,根据方程的系数结合根的判别式,即可得出△=(2p+1)2≥1,由此即可证出:无论p 取何值此方程总有两个实数根;(2)根据根与系数的关系可得出x 1+x 2=5、x 1x 2=6-p 2-p ,结合x 12+x 22-x 1x 2=3p 2+1,即可求出p 值. 详解:(1)证明:原方程可变形为x 2-5x+6-p 2-p=1.∵△=(-5)2-4(6-p 2-p )=25-24+4p 2+4p=4p 2+4p+1=(2p+1)2≥1,∴无论p 取何值此方程总有两个实数根;(2)∵原方程的两根为x 1、x 2,∴x 1+x 2=5,x 1x 2=6-p 2-p .又∵x 12+x 22-x 1x 2=3p 2+1,∴(x 1+x 2)2-3x 1x 2=3p 2+1,∴52-3(6-p 2-p )=3p 2+1,∴25-18+3p 2+3p=3p 2+1,∴3p=-6,∴p=-2.点睛:本题考查了根与系数的关系以及根的判别式,解题的关键是:(1)牢记“当△≥1时,方程有两个实数根”;(2)根据根与系数的关系结合x 12+x 22-x 1x 2=3p 2+1,求出p 值.26.(1)画图见解析;(2)A 1(0,6);(3)弧BB 1=2. 【解析】【分析】(1)根据旋转图形的性质首先得出各点旋转后的点的位置,然后顺次连接各点得出图形;(2)根据图形得出点的坐标;(3)根据弧长的计算公式求出答案.【详解】解:(1)△A 1B 1C 如图所示.(2)A 1(0,6). (3) 221310,BC =+=¼1901010.1801802n r BB ππ∴===. 【点睛】本题考查了旋转作图和弧长的计算.27.(1)证明见解析;(1)23【解析】【分析】(1)由平行四边形的判定得出四边形OCED 是平行四边形,根据矩形的性质求出OC=OD ,根据菱形的判定得出即可.(1)解直角三角形求出BC=1.3OE ,交CD 于点F ,根据菱形的性质得出F 为CD 中点,求出OF=12BC=1,求出OE=1OF=1,求出菱形的面积即可. 【详解】 ()1证明:CE //OD Q ,DE //OC ,∴四边形OCED 是平行四边形,Q 矩形ABCD ,AC BD ∴=,1OC AC 2=,1OD BD 2=, OC OD ∴=,∴四边形OCED 是菱形;()2在矩形ABCD 中,ABC 90o ∠=,BAC 30∠=o ,AC 4=,BC 2∴=,AB DC 23∴==连接OE ,交CD 于点F ,Q 四边形OCED 为菱形,F ∴为CD 中点,O Q 为BD 中点,1OF BC 12∴==, OE 2OF 2∴==,OCED 11S OE CD 2232322∴=⨯⨯=⨯⨯=菱形 【点睛】本题主要考查了矩形的性质和菱形的性质和判定的应用,能灵活运用定理进行推理是解此题的关键,注意:菱形的面积等于对角线积的一半.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

天津市宁河县2019-2020学年中考数学一模试卷一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.已知(AC BC)ABC ∆<,用尺规作图的方法在BC 上确定一点P ,使PA PC BC +=,则符合要求的作图痕迹是( )A .B .C .D .2.小明在一次登山活动中捡到一块矿石,回家后,他使用一把刻度尺,一只圆柱形的玻璃杯和足量的水,就测量出这块矿石的体积.如果他量出玻璃杯的内直径d,把矿石完全浸没在水中,测出杯中水面上升了高度h,则小明的这块矿石体积是( ) A .24d h πB .22d h πC .2d h πD .24d h π3.2017年人口普查显示,河南某市户籍人口约为2536000人,则该市户籍人口数据用科学记数法可表示为( ) A .2.536×104人B .2.536×105人C .2.536×106人D .2.536×107人4.2022年冬奥会,北京、延庆、张家口三个赛区共25个场馆,北京共12个,其中11个为2008年奥运会遗留场馆,唯一一个新建的场馆是国家速滑馆,可容纳12000人观赛,将12000用科学记数法表示应为( ) A .12×103B .1.2×104C .1.2×105D .0.12×1055.如图,菱形ABCD 的对角线交于点O ,AC=8cm ,BD=6cm ,则菱形的高为( )A .485cm B .245cm C .125cm D .105cm6.111112233499100++++++++L的整数部分是()A.3 B.5 C.9 D.67.某市从今年1月1日起调整居民用水价格,每立方米水费上涨13.小丽家去年12月份的水费是15元,而今年5月的水费则是10元.已知小丽家今年5月的用水量比去年12月的用水量多5m1.求该市今年居民用水的价格.设去年居民用水价格为x元/m1,根据题意列方程,正确的是()A.301551(1)3xx-=+B.301551(1)3xx-=-C.301551(1)3x x-=+D.301551(1)3x x-=-8.如图,在⊙O中,直径AB⊥弦CD,垂足为M,则下列结论一定正确的是()A.AC=CD B.OM=BM C.∠A=12∠ACD D.∠A=12∠BOD9.2012﹣2013NBA整个常规赛季中,科比罚球投篮的命中率大约是83.3%,下列说法错误的是A.科比罚球投篮2次,一定全部命中B.科比罚球投篮2次,不一定全部命中C.科比罚球投篮1次,命中的可能性较大D.科比罚球投篮1次,不命中的可能性较小10.下列基本几何体中,三视图都是相同图形的是()A.B.C.D.11.下列图案中,既是中心对称图形,又是轴对称图形的是()A.B.C.D.12.如图,AB为⊙O的直径,C为⊙O上的一动点(不与A、B重合),CD⊥AB于D,∠OCD的平分线交⊙O于P,则当C在⊙O上运动时,点P的位置()A.随点C的运动而变化B.不变C.在使PA=OA的劣弧上D.无法确定二、填空题:(本大题共6个小题,每小题4分,共24分.)13.如图,已知等腰直角三角形ABC 的直角边长为1,以Rt△ABC 的斜边AC 为直角边,画第二个等腰直角三角形ACD,再以Rt△ACD 的斜边AD 为直角边,画第三个等腰直角三角形ADE……依此类推,直到第五个等腰直角三角形AFG,则由这五个等腰直角三角形所构成的图形的面积为__________.14.若n边形的内角和是它的外角和的2倍,则n= .15.一位小朋友在粗糙不打滑的“Z”字形平面轨道上滚动一个半径为10cm的圆盘,如图所示,AB与CD 水平,BC与水平面的夹角为60°,其中AB=60cm,CD=40cm,BC=40cm,那么该小朋友将圆盘从A点滚动到D点其圆心所经过的路线长为____cm.16.如图,在等腰直角三角形ABC中,∠C=90°,点D为AB的中点,已知扇形EAD和扇形FBD的圆心分别为点A、点B,且AB=4,则图中阴影部分的面积为_____(结果保留π).17.如图,将边长为1的正方形的四条边分别向外延长一倍,得到第二个正方形,将第二个正方形的四条边分别向外延长一倍得到第三个正方形,…,则第2018个正方形的面积为_____.18.计算:2-+(|﹣3|)0=_____.(3)-三、解答题:(本大题共9个小题,共78分,解答应写出文字说明、证明过程或演算步骤.19.(6分)某中学九(1)班为了了解全班学生喜欢球类活动的情况,采取全面调查的方法,从足球、乒乓球、篮球、排球等四个方面调查了全班学生的兴趣爱好,根据调查的结果组建了4个兴趣小组,并绘制成如图所示的两幅不完整的统计图(如图①,②,要求每位学生只能选择一种自己喜欢的球类),请你根据图中提供的信息解答下列问题:(1)九(1)班的学生人数为,并把条形统计图补充完整;(2)扇形统计图中m=,n=,表示“足球”的扇形的圆心角是度;(3)排球兴趣小组4名学生中有3男1女,现在打算从中随机选出2名学生参加学校的排球队,请用列表或画树状图的方法求选出的2名学生恰好是1男1女的概率.20.(6分)定安县定安中学初中部三名学生竞选校学生会主席,他们的笔试成绩和演讲成绩(单位:分)分别用两种方式进行统计,如表和图.A B C笔试85 95 90口试80 85(1)请将表和图中的空缺部分补充完整;图中B同学对应的扇形圆心角为度;竞选的最后一个程序是由初中部的300名学生进行投票,三名候选人的得票情况如图(没有弃权票,每名学生只能推荐一人),则A同学得票数为,B同学得票数为,C同学得票数为;若每票计1分,学校将笔试、演讲、得票三项得分按4:3:3的比例确定个人成绩,请计算三名候选人的最终成绩,并根据成绩判断当选.(从A、B、C、选择一个填空)21.(6分)(1)计算:﹣22+|12﹣4|+(13)-1+2tan60°(2)求不等式组620{21xx x-≥->的解集.22.(8分)如图,点G是正方形ABCD对角线CA的延长线一点,对角线BD与AC交于点O,以线段AG为边作一个正方形AEFG,连接EB、GD.(1)求证:EB=GD;(2)若AB=5,AG=22,求EB的长.23.(8分)如图,要利用一面墙(墙长为25米)建羊圈,用100米的围栏围成总面积为400平方米的三个大小相同的矩形羊圈,求羊圈的边长AB,BC各为多少米?24.(10分)为了落实国务院的指示精神,某地方政府出台了一系列“三农”优惠政策,使农民收入大幅度增加.某农户生产经销一种农产品,已知这种产品的成本价为每千克20元,市场调查发现,该产品每天的销售量y(千克)与销售价x(元/千克)有如下关系:y=﹣2x+1.设这种产品每天的销售利润为w元.求w与x之间的函数关系式.该产品销售价定为每千克多少元时,每天的销售利润最大?最大利润是多少元?如果物价部门规定这种产品的销售价不高于每千克28元,该农户想要每天获得150元的销售利润,销售价应定为每千克多少元?25.(10分)货车行驶25km与轿车行驶35km所用时间相同.已知轿车每小时比货车多行驶20km,求货车行驶的速度.26.(12分)解不等式:233x -﹣12x -≤1 27.(12分)先化简,再求值:,其中x=1.参考答案一、选择题(本大题共12个小题,每小题4分,共48分.在每小题给出的四个选项中,只有一项是符合题目要求的.) 1.D 【解析】试题分析:D 选项中作的是AB 的中垂线,∴PA=PB ,∵PB+PC=BC , ∴PA+PC=BC .故选D . 考点:作图—复杂作图. 2.A 【解析】圆柱体的底面积为:π×(2d)2, ∴矿石的体积为:π×(2d )2h= 2π4d h .故答案为2π4d h .3.C 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值≥1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】2536000人=2.536×106人. 故选C . 【点睛】本题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值.4.B 【解析】 【分析】科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数.确定n 的值时,要看把原数变成a 时,小数点移动了多少位,n 的绝对值与小数点移动的位数相同.当原数绝对值>1时,n 是正数;当原数的绝对值<1时,n 是负数. 【详解】数据12000用科学记数法表示为1.2×104,故选:B. 【点睛】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n 的形式,其中1≤|a|<10,n 为整数,表示时关键要正确确定a 的值以及n 的值. 5.B 【解析】试题解析:∵菱形ABCD 的对角线86AC cm BD cm ==,,114322AC BD OA AC cm OB BD cm ∴⊥====,,,根据勾股定理,5AB cm ===, 设菱形的高为h , 则菱形的面积12AB h AC BD =⋅=⋅, 即15862h =⨯⨯, 解得24.5h = 即菱形的高为245cm . 故选B . 6.C 【解析】﹣1=,∴原式﹣=﹣1+10=1.故选C . 7.A 【解析】解:设去年居民用水价格为x 元/cm 1,根据题意列方程:30155113x x -=⎛⎫+ ⎪⎝⎭,故选A . 8.D 【解析】 【分析】根据垂径定理判断即可. 【详解】 连接DA .∵直径AB ⊥弦CD ,垂足为M ,∴CM=MD ,∠CAB=∠DAB . ∵2∠DAB=∠BOD ,∴∠CAD=12∠BOD .故选D . 【点睛】本题考查的是垂径定理和圆周角定理,熟知在同圆或等圆中,同弧或等弧所对的圆周角相等,都等于这条弧所对的圆心角的一半是解答此题的关键. 9.A 【解析】试题分析:根据概率的意义,概率是反映事件发生机会的大小的概念,只是表示发生的机会的大小,机会大也不一定发生。

因此。

A 、科比罚球投篮2次,不一定全部命中,故本选项正确;B 、科比罚球投篮2次,不一定全部命中,正确,故本选项错误;C 、∵科比罚球投篮的命中率大约是83.3%,∴科比罚球投篮1次,命中的可能性较大,正确,故本选项错误; D 、科比罚球投篮1次,不命中的可能性较小,正确,故本选项错误。

相关文档
最新文档