高三数学10月月考试题 文(无答案)
黑龙江省哈尔滨师范大学附属中学2024-2025学年高三上学期10月月考数学试题
黑龙江省哈尔滨师范大学附属中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知全集{}{}1,2,3,4,5,6,1,2U A ==,且U A B U ⋃=ð,则满足条件的集合B 有( ) A .3个B .4个C .15个D .16个2.已知命题()002:,log 310xP x R ∃∈+≤,则( ) A .P 是假命题;()2:,log 310xP x R ⌝∀∈+≤ B .P 是假命题;()2:,log 310xP x R ⌝∀∈+> C .P 是真命题;()2:,log 310xP x R ⌝∀∈+≤ D .P 是真命题;()2:,log 310xP x R ⌝∀∈+>3.已知()2024sin cos 0π2025θθθ+=<<,则2θ是( ) A .第一象限角B .第二象限角C .第三象限角D .第四象限角4.若函数()ln 1f x x ax =-+的图象在2x =处的切线与y 轴垂直,则函数()f x 的图象在1x =处的切线方程为( ) A .0x y += B .20x y -= C .210x y -+=D .220x y --=5.已知,a b 是正数,1a b +=,则①14ab ≤,②114a b +≥,③2212a b +≥,④3314a b +≥四个结论中正确的有( ) A .1个 B .2个 C .3个D .4个6.已知122log aa =,121log 2bb ⎛⎫= ⎪⎝⎭,则下面正确的是( )A .a b >B .14a <C.b >D .12a b -<7.已知函数()f x 是定义在实数集R 上的不恒为零的偶函数,且对任意实数x 都有(1)(1)()xf x x f x +=+,则52f ⎛⎫⎪⎝⎭的值是( )A .0B .12C .1D .528.已知函数()sin (0)f x x ωω=>的图像向左平移π12后得到的图像关于π(,0)6对称,()f x 在π5π(,)418上具有单调性,则ω的最大值为( ) A .16 B .18 C .32D .36二、多选题9.已知函数())f x x x =,则下面正确的是( ) A .(sin1)(cos1)f f > B .(sin 2)(cos 2)f f > C .(sin1)(sin 2)f f >D .(cos1)(cos2)f f >10.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,若,,A B C 成等差数列,b D 是AC 中点,则下面正确的是( )A .ABC VB .ABC V 周长的最大值为C .中线BD 长度的最大值为32D .若A 为锐角,则(1,2]c ∈11.已知函数2()sin sin 2f x x x =,则下面说法正确的是( )A .π是()f x 的一个周期;B .π,02()是()f x 的对称中心;C .π4x =是()f x 的对称轴; D .()f x三、填空题12.不等式12(3)(21)(log 1)0xx x --->的解集为;13.锐角α的终边上有一点()sin 6,cos6P -,则α=;14.定义在R 上的函数()f x 满足:(1)(1)0,(2)(2)2f x f x f x f x ++-=++-=.下面四个结论:①()y f x =具有周期性;②(1)y f x =+是奇函数;③()1y f x =+是奇函数;④(2025)2024f =.其中正确的序号是四、解答题15.已知ABC V 的内角A ,B ,C 所对边分别为a ,b ,ccos 1A A +=. (1)求角A ;(2)若23a bc =,求5cos sin 62B C ππ⎛⎫⎛⎫-++ ⎪ ⎪⎝⎭⎝⎭的值;16.已知函数()121log 22xx f x a ⎛⎫=++ ⎪⎝⎭.(1)若()f x 的定义域为R ,求a 的取值范围;(2)当0a =时,判断()f x 的奇偶性,并解关于t 的不等式()()112f t f t +>-. 17.已知函数()2cos f x x x x =+. (1)求()f x 的单调区间;(2)若11π024x ⎡⎤∃∈⎢⎥⎣⎦,,使()222f x a a ≤-++成立,求a 的取值范围.18.已知()(1)ln(1)f x ax x x =++-. (1)当2a =时,求函数()y f x =的极值;(2)当0x ≥时,()0f x ≥恒成立,求实数a 的取值范围.19.已知集合M 是满足下列性质的函数()f x 的全体:存在实数a 、()0k k ≠,对于定义域内任意x ,均有()()f a x kf a x +=-成立,称数对(),a k 为函数()f x 的“伴随数对”.(1)判断函数()2f x x =是否属于集合M ,并说明理由;(2)若函数()sin f x x M =∈,求满足条件的函数()f x 的所有“伴随数对”; (3)若()1,1、()2,1-都是函数()f x 的“伴随数对”,当12x ≤<时,()cos 2f x x π⎛⎫=⎪⎝⎭,当2x =时,()0f x =,求当20142016x ≤≤时,函数()y f x =的解析式和零点.。
四川省成都市第七中学2025届高三上学期10月月考数学试题
四川省成都市第七中学2025届高三上学期10月月考数学试题一、单选题1.已知集合{A x y ==,{}21x B y y ==+,则A B =I ( )A .(]1,2B .(]0,1C .[]1,2D .[]0,2 2.已知复数z 满足23i z z +=+,则3iz +=( )A .12i +B .12i -C .2i +D .2i -3.已知向量a r ,b r 满足222a b a b -=-=rr r r ,且1b =r ,则a b ⋅=r r ( )A .14 B .14- C .12 D .12-4.如图为函数y =f x 在[]6,6-上的图象,则()f x 的解析式只可能是( )A .())ln cos f x x x =B .())ln sin f x x x =C .())ln cos f x x x =D .())ln sin f x x x =5.已知()()cos f x x a x =+为奇函数,则曲线()y f x =在点()()π,πf 处的切线方程为( ) A .ππ0x y +-= B .ππ0x y -+= C .π0x y -+= D .0x y += 6.在体积为12的三棱锥A BCD -中,AC AD ⊥,BC BD ⊥,平面ACD ⊥平面BCD ,π3ACD ∠=,π4BCD ∠=,若点,,,A B C D 都在球O 的表面上,则球O 的表面积为( )A .12πB .16πC .32πD .48π7.若sin()cos 2sin()αβααβ+=-,则tan()αβ+的最大值为( )A B C D8.设2024log 2023a =,2023log 2022b =,0.2024log 0.2023c =,则( )A .c a b <<B .b c a <<C .b a c <<D .a b c <<二、多选题9.设等比数列{}n a 的公比为q ,其前n 项和为n S ,前n 项积为n T ,并满足条件:11a >,202420251,a a >20242025101a a -<-,下列结论正确的是( ) A .20242025S S <B .202420261a a <C .2024T 是数列{}n T 中的最大值D .数列{}n T 无最大值10.一个不透明的盒子中装有大小和质地都相同的编号分别为1,2,3,4的4个小球,从中任意摸出两个球.设事件1A =“摸出的两个球的编号之和小于5”,事件2A =“摸出的两个球的编号都大于2”,事件3A =“摸出的两个球中有编号为3的球”,则( ) A .事件1A 与事件2A 是互斥事件B .事件1A 与事件3A 是对立事件C .事件1A 与事件3A 是相互独立事件D .事件23A A I 与事件13A A ⋂是互斥事件 11.已知6ln ,6e n m m a n a =+=+,其中e n m ≠,则e n m +的取值可以是( ) A .e B .2e C .23e D .24e三、填空题12.若1sin 3α=-,则()cos π2α-=. 13.设n S 是数列{}n a 的前n 项和,点()()*,n n a n N ∈在直线2y x =上,则数列1n S ⎧⎫⎨⎬⎩⎭的前n 项和为.14.已知点()2,0A ,()1,4B ,M ,N 是y 轴上的动点,且满足4MN =,AMN V 的外心P 在y 轴上的射影为Q ,则点P 的轨迹方程为,PQ PB +的最小值为.四、解答题V的内角A,B,C的对边分别为a,b,c,且15.设ABC()()()b a ABC BACc ABC C+∠-∠=∠-,BC,AC边上的两条中线AD,BE相交sin sin sin sin于点P.∠;(1)求BACV的面积.(2)若AD=BE=2,cos DPE∠=ABC16.如图,在三棱锥D-ABC中,△ABC是以AB为斜边的等腰直角三角形,△ABD是边长为2的正三角形,E为AD的中点,F为DC上一点,且平面BEF⊥平面ABD.(1)求证:AD⊥平面BEF;(2)若平面ABC⊥平面ABD,求平面BEF与平面BCD夹角的余弦值.17.为研究“眼睛近视是否与长时间看电子产品有关”的问题,对某班同学的近视情况和看电子产品的时间进行了统计,得到如下的列联表:附表:2()()()()()n ad bc a b c d a c b d χ-=++++. (1)根据小概率值0.05α=的2χ独立性检验,判断眼睛近视是否与长时间看电子产品有关;(2)在该班近视的同学中随机抽取3人,则至少有两人每天看电子产品超过一小时的概率是多少?(3)以频率估计概率,在该班所在学校随机抽取2人,记其中近视的人数为X ,每天看电子产品超过一小时的人数为Y ,求()P X Y =的值.18.已知函数()()ln 1f x x =+.(1)求曲线y =f x 在3x =处的切线方程.(2)讨论函数()()()F x ax f x a =-∈R 的单调性;(3)设函数()()1111g x x f f x x ⎛⎫⎛⎫=+-+ ⎪ ⎪⎝⎭⎝⎭.证明:存在实数m ,使得曲线y =g x 关于直线x m =对称.19.已知椭圆C 的对称中心在坐标原点,以坐标轴为对称轴,且经过点)和⎛- ⎝⎭. (1)求椭圆C 的标准方程; (2)过点()2,0M 作不与坐标轴平行的直线l 交曲线C 于A ,B 两点,过点A ,B 分别向x 轴作垂线,垂足分别为点D ,E ,直线AE 与直线BD 相交于P 点.①求证:点P 在定直线上;②求PAB V 面积的最大值.。
四川省绵阳中学2024-2025学年高三上学期10月月考数学试题
四川省绵阳中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知全集R U =,集合{}2230M x x x =--≤和{}21,Z N x x k k ==-∈的关系的韦恩(Venn )图如图所示,则阴影部分所示的集合的元素共有( )A .3个B .2个C .1个D .无穷多个 2.围棋是中国传统棋种,蕴含着中华文化丰富内涵,围棋棋盘横竖各有19条线,共有19×19=361个落子点.每个落子点都有落白子、落黑子和空白三种可能,因此围棋空间复杂度的上限3613M ≈.科学家们研究发现,可观测宇宙中普通物质的原子总数8010N ≈.则下列各数中与M N 最接近的是( )(参考数据:lg30.48≈) A .9310 B .8310 C .7310 D .53103.lg(tan 1)y x =-的定义域为( )A .ππππ,24x k x k k ⎧⎫+>>+∈⎨⎬⎩⎭Z B .πππ,π,42x x k x k k ⎧⎫>+≠+∈⎨⎬⎩⎭Z C .ππ,4x x k k ⎧⎫>+∈⎨⎬⎩⎭Z D .ππ,42k x x k ⎧⎫>+∈⎨⎬⎩⎭Z 4.设0.302a =.,0.20.3b =,0.2log 2c =,则( )A .c b a >>B .c a b >>C .b a c >>D .a b c >>5.设函数3()f x x x =,则不等式()()332log 3log 0f x f x +-<的解集是( )A .1,2727⎛⎫ ⎪⎝⎭B .10,27⎛⎫ ⎪⎝⎭ C .()0,27 D .()27,+∞6.下列选项可以使得1144xy -≤≤成立的一个充分不必要条件的是( ) A .221x y += B .2241x y += C .1x y += D .1y x= 7.函数()f x 的导函数()(1)(ln 1)f x x x ax '=-+-,若函数()f x 仅在1x =有极值,则a 的取值范围是( )A .21e a ≤- B .21e a <-或1a = C .21e a ≤-或1a = D .1a =8.存在三个实数1a ,2a ,3a 使其分别满足下述两个等式:(1)1232a a a =-;(2)1230a a a ++=,其中M 表示三个实数1a ,2a ,3a 中的最小值,则( )A .M 的最小值是2-B .M 的最大值是2-C .M 的最小值是D .M 的最大值是-二、多选题9.已知定义在R 上的奇函数()f x ,其周期为4,当(0,2)x ∈时,()22x f x =-,则( ) A .(2024)0f =B .()f x 的值域为(2,2)-C .()f x 在(2,2)-上单调递增D .()f x 在[4,4]-上有9个零点10.已知函数()214()log 21f x x ax =-+,下列说法正确的是( )A .()f x 关于x a =对称B .()f x 的值域为R ,当且仅当1a ≥或1a ≤-C .()f x 的最大值为1,当且仅当a =D .()f x 有极值,当且仅当1a <11.关于函数()cos sin2f x x x =,下列说法中正确的是( )A .图象关于直线π4x =对称B .()f x 为偶函数C .2π为()f x 的周期D三、填空题12.已知α顶点在坐标原点,始边与x 轴非负半轴重合,其终边上一点P 的坐标为11,23⎛⎫ ⎪⎝⎭,则sin 2α的值为13.甲说:()2ln 23y x ax =-+在(,1]-∞上单调递减,乙说:存在实数x 使得2210x ax -+>在1,22⎡⎤⎢⎥⎣⎦成立,若甲、乙两人至少有一人说的话是对的,则a 的取值范围是 14.已知不等式11e 2x a ax b -+-≥对任意的实数x 恒成立,则b a的最大值为.四、解答题15.已知函数3212()232a f x x x ax +=-+. (1)若1a =,求函数()f x 的极值;(2)讨论函数()f x 的单调性.16.已知函数()πsin 26f x x ⎛⎫=++ ⎪⎝⎭,将函数()f x 的图象向右平移π2个单位长度,再将所得函数图象上各点的横坐标缩短到原来的12,纵坐标不变,得到函数()y g x =的图象. (1)求()g x 的解析式;(2)若关于x 的方程()g x k =-在区间π5π,186⎡⎤-⎢⎥⎣⎦上有且只有两个实数解,求实数k 的取值范围.17.已知ππ42α≤≤,3ππ2β≤≤,4sin 25α=,cos()αβ+= (1)求225sin 8sin cos 11cos 82222πsin 2ααααα++-⎛⎫- ⎪⎝⎭的值(2)求角βα-的值.18.已知函数()3ln 2(1)2x f x x x x=++--. (1)证明:曲线()y f x =是中心对称图形;(2)若()()214f m f m -+<,求实数m 的取值范围.19.已知函数()()()2ln 1cos 2g x x x =--+--,函数()f x 与()g x 的图像关于1x =-对称,.(1)求()f x 的解析式;(2)()1f x ax -≤在定义域内恒成立,求a 的值;(3)求证:2111ln 42nk n f k =+⎛⎫-< ⎪⎝⎭∑,*N n ∈.。
贵州省贵阳市第三实验中学2024-2025学年高三上学期10月月考数学试题
贵州省贵阳市第三实验中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知复数z 为纯虚数,且满足22z z -=,则z =( )A .2i 3±B .2i 3C .i -D .i2.已知集(){}(){}222,|log 1,,|4A x y y x B x y x y ==-=+=,则A B U 的非空真子集个数为( )A .13个B .14个C .15个D .16个3.已知函数()2x f x e x =+在点()()0,0f 处的切线为直线l ,若直线l 与两坐标轴围成的三角形的面积为多少( )A .12B .1C .2D .234.已知一个圆柱形容器的轴截面是边长为4的正方形,往容器内注水后水面高度为32,若再往容器中放入一个半径为34的实心铁球,则此时水面的高度为( ) A .52 B .73 C .10564 D .2785.心率是指正常人安静状态下每分钟心跳的次数,也叫安静心率,一般为 60~100 次/分.某生统计了自己的八组心率,如下为:80,76,a ,80,83,81,85,b 平均数为80分且a ,b 是两个相邻的自然数,则这组数据的第75分位数是多少( )A .79B .80C .81D .826.若单位向量,a b r r 满足,120a b 〈〉=︒r r ,向量c r 满足()()c a c b -⊥-r r r r ,则a c b c ⋅+⋅r r r r 的最小值为( )A B C D 7.十进制计数法简单易懂,方便人们进行计算.也可以用其他进制表示数,如十进制下,68795÷=⋅⋅⋅;9712÷=⋅⋅⋅;1701÷=⋅⋅⋅将余数从下往上排列起来,所以125就是68这个数的七进制.表示形式216817175=⨯+⨯+就是125,个位数为5,那么用七进制表示十进制的116,其个位数是( )A .6B .5C .2D .1 8.已知双曲线222:1y C x b-=,在双曲线C 上任意一点P 处作双曲线C 的切线(0,0p p x y >>),交C 在第一、四象限的渐近线分别于A 、B 两点.当2OPA S =△时,该双曲线的离心率为( )AB .CD .9.若实数0a b >>,则下列不等式一定成立的是( )A .0.30.3a b <B .lg lg a b >C .1111a b <-- D二、多选题10.已知非常数函数()f x 的定义域为R ,且()()()()f x f y f xy xy x y =++,则( )A .()00f =B .()12f =-或()11f =C .()f x x 是{}0x x x ∈≠R 且上的增函数D .()f x 是R 上的增函数 11.芯片时常制造在半导体晶元表面上.某企业使用新技术对某款芯片制造工艺进行改进.部分芯片由智能检测系统进行筛选,其中部分次品芯片会被淘汰,筛选后的芯片及未经筛选的芯片进入流水线由工人进行抽样检验.记A 表示事件“某芯片通过智能检测系统筛选”,B 表示事件“某芯片经人工抽检后合格”.改进生产工艺后,这款芯片的某项质量指标ξ服从正态分布()25.40,0.05N ,现从中随机抽取M 个,这M 个芯片中恰有m 个的质量指标ξ位于区间()5.35,5.55,则下列说法正确的是( )(参考数据:()0.6826P μσξμσ-<≤-≈,()330.9974P μσξμσ-<≤+≈)A .()()|PB P B A >B .()()||P A B P A B >C .()5.35 5.550.84P ξ<<≈D .()45P m =取得最大值时,M 的估计值为54三、填空题12.若直线l :2y x =与圆C :22230x y x +--=交于A ,B 两点,则AB =.13.已知定义在R 上的函数()f x 的图象关于点()1,0中心对称,且当1x ≥时,()2f x x a =+,则()0f =.14.已知正方体12345678A A A A A A A A -的棱长为3,取出各棱的两个三等分点,共24个点,对于正方体的每个顶点i A ,设这24个点中与i A 距离最小的三个点为,,i i i P Q R ,从正方体中切去所有四面体1,2,8,,i i i i A PQ R i =L ,得到的几何体的外接球表面积是.四、解答题15.已知函数()()sin f x A x ωϕ=+(0A >,0ω>,ππ22ϕ-<<),函数()f x 和它的导函数f ′ x 的图象如图所示.(1)求函数()f x 的解析式;(2)已知()65f α=,求π212f α⎛⎫- ⎪⎝⎭'的值. 16.已知函数321()3f x x bx cx bc =-+++. (1)若函数()f x 在1x =处有极值43-,求,b c 的值; (2)若函数()()()2g x f x c x b =-+-在[4,)x ∈+∞内单调递减,求b 的取值范围.17.已知四棱锥P ABCD -的底面是一个梯形,//AB DC ,90ABC ∠=︒,4AB BC ==,2CD =,3PA PD ==,PB PC ==(1)证明:平面PAD ⊥平面ABCD ;(2)求二面角C PA D --的余弦值.18.在一场乒乓球赛中,甲、乙、丙、丁四人角逐冠军.比赛采用“双败淘汰制”,具体赛制为:首先,四人通过抽签两两对阵,胜者进入“胜区”,败者进入“败区”;接下来,“胜区”的两人对阵,胜者进入最后决赛;“败区”的两人对阵,败者直接淘汰出局获第四名,紧接着,“败区”的胜者和“胜区”的败者对阵,胜者晋级最后的决赛,败者获第三名;最后,剩下的两人进行最后的冠军决赛,胜者获得冠军,败者获第二名.甲对阵乙、丙、丁获胜的概率均为()01p p <<,且不同对阵的结果相互独立.(1)若0.6p =,经抽签,第一轮由甲对阵乙,丙对阵丁;①求甲获得第四名的概率;②求甲在“双败淘汰制”下参与对阵的比赛场数的数学期望;(2)除“双败淘汰制”外,也经常采用“单败淘汰制”:抽签决定两两对阵,胜者晋级,败者淘汰,直至决出最后的冠军.哪种赛制对甲夺冠有利?请说明理由.19.已知集合{}123,,,...,n E x x x x =,记{}2|E S S E =⊆,{}\|,X Y x x X x Y =∈∉,N 是自然数集∙称函数:2N E h →,若对于任意S E ⊆,()N h S ∈;∙称函数:2N E h →是单调的,若对于任意X Y E ⊆⊆,()()h X h Y ≤;•称函数:2N E h →是次模的...,若对于任意X Y E ⊆、,()()()()h X Y h X Y h X h Y +≤+U U 已知函数:2N E f →是次模的.... (1)判断f 是否一定是单调的,并说明理由;(2)证明:对于任意X Y E ⊆⊆,\e E Y ∈,{}()(){}()()f X e f X f Y e f Y -≥-U U ;(3)若f 是单调的,k 是正整数,k n ≤,记}{|F S S k S E =⊆恰含有个元素,,已知集合S F*∈满足()(),f S f S S F *≤∀∈.初始集合M =∅,然后小明重复k 次如下操作:在集合\E M 中选取使得{}()f M e U 最小的元素e 加入集合M ,最终得到集合M F *∈.证明:()()f M kf S **≤。
福建省福州第一中学2025届高三上学期10月月考数学试题
福建省福州第一中学2025届高三上学期10月月考数学试题一、单选题1.若直线:10l x my ++=的倾斜角为2π3,则实数m 值为( )AB .CD .2.某市政府调查市民收入与旅游欲望时,采用独立性检验法抽取3 000人,计算发现k2=6.023,则根据这一数据查阅下表,市政府断言市民收入增减与旅游欲望有关系的把握是( )A .90%B .95%C .97.5%D .99.5%3.在四棱锥S ABCD -中,若SA xSB ySC zSD =++u u r u u r u u u r u u u r,则实数组(),,x y z 可能为( )A .()1,1,1-B .()1,0,1-C .()1,1,0-D .()1,1,1--4.n S 是等差数列{}n a 的前n 项和,若1236a a a ++=,7916+=a a ,则9S =( ) A .43B .44C .45D .465.已知函数()()()()2,f x a x a x b a b =--∈R ,则“0b a >>”是“b 为()f x 的极小值点”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充分必要条件D .既不充分也不必要条件6.某城市新修建的一条道路上有12盏路灯,为了节省用电而又不能影响正常的照明,可以熄灭其中的4盏灯,但两端的灯不能熄灭,也不能熄灭相邻的两盏灯,则熄灯的方法有( )A .47CB .48CC .49C D .49A7.已知函数()f x 在R 上可导,且()()f x f x '<,若()()1e 1af f a ->成立,则a 的取值范围是( ) A .(),1-∞B .()1,eC .()1,+∞D .()e,+∞8.已知F 为双曲线2222:1(0,0)x y C a b a b-=>>的左焦点,A 是C 的右顶点,点P 在过点F 且斜率为22π3OAP ∠=且线段OP 的垂直平分线经过点A ,则C 的离心率为( )AB 1C D二、多选题9.为了解推动出口后的亩收入情况,从该种植区抽取样本,得到推动出口后亩收入的样本均值 2.1x =,样本方差20.01s =,已知该种植区以往的亩收入X 服从正态分布()21.8,0.1N ,假设推动出口后的亩收入Y 服从正态分布()2,N x s ,则( )(参考:若随机变量Z 服从正态分布()2,N μσ,()0.8413P Z μσ<+≈)A .(2)0.5P X >>B .( 1.9)0.2P X ><C .(2)0.5P Y >>D .(2)0.8P Y ><10.已知抛物线22x py =(0p >)的焦点为F ,过点Fl 与该抛物线相交于()11,M x y ,()22,N x y 两点(其中1>0x ),则下面说法正确的是( )A .若2p =,则124x x =-B .若121y y =,则2p =C .若2p =,则OMN S =V D .若2p =,则8MF =+11.设函数32()231f x x ax =-+,则( )A .当1a >时,()f x 有三个零点B .当a<0时,0x =是()f x 的极大值点C .存在a ,b ,使得x b =为曲线()y f x =的对称轴D .存在a ,使得点()()1,1f 为曲线()y f x =的对称中心三、填空题12.在二项式7x ⎛- ⎝的展开式中x 的系数为.13.已知函数32(),()f x x x g x x a =-=+,曲线()y f x =在点(1,(1))f --处的切线也是曲线()y g x =的切线.则a 的值是14.舒腾尺是荷兰数学家舒腾设计的一种作图工具,如图,O 是滑槽AB 的中点,短杆ON 可绕O 转动,长杆MN 通过N 处的铰链与ON 连接,MN 上的栓子D 可沿滑槽AB 滑动.当点D 在滑槽AB 内做往复移动时,带动点N 绕O 转动,点M 也随之而运动.若1ON DN ==,3MN =,4AB =,则 MA 的最小值为.四、解答题15.已知各项均为正数的等差数列{}n a 前n 项和为n S ,248a a ⋅=,515S =; (1)求数列{}n a 的通项公式;(2)设12n n b -=,求数列{}n n a b ⋅的前n 项和n T .16.已知四棱锥,,P ABCD E F -为,AC PB 的中点,PA ⊥平面ABCD ,BC PC ⊥.(1)若AD DC =,证明:DE ∥平面PBC ;(2)若2AC BC ==,二面角A FC B --的大小为120︒,求PA .17.古希腊数学家阿基米德利用“逼近法”得到椭圆的面积等于圆周率π与椭圆的长半轴长、短半轴长的乘积.已知椭圆C 的中心为原点,焦点12,F F 均在x 轴上,离心率等于45,面积为15π.(1)求C 的标准方程;(2)若()0,1Q ,过点()0,5P 的直线l 与椭圆交于,A B 两点,求QAB V 面积的最大值.18.放行准点率是衡量机场运行效率和服务质量的重要指标之一.某机场自2012年起采取相关策略优化各个服务环节,运行效率不断提升.以下是根据近10年年份数i x 与该机场飞往A地航班放行准点率i y (1210i =L ,,,)(单位:百分比)的统计数据所作的散点图及经过初步处理后得到的一些统计量的值.其中()ln 2012i i t x =-,1110i i t t ==∑(1)根据散点图判断,y bx a =+与()ln 2012y c x d =-+哪一个适宜作为该机场飞往A 地航班放行准点率y 关于年份数x 的经验回归方程类型(给出判断即可,不必说明理由),并根据表中数据建立经验回归方程,由此预测2023年该机场飞往A 地的航班放行准点率. (2)已知2023年该机场飞往A 地、B 地和其他地区的航班比例分别为0.2、0.2和0.6.若以(1)中的预测值作为2023年该机场飞往A 地航班放行准点率的估计值,且2023年该机场飞往B 地及其他地区(不包含A 、B 两地)航班放行准点率的估计值分别为80%和75%,试解决以下问题:(i )现从2023年在该机场起飞的航班中随机抽取一个,求该航班准点放行的概率; (ii )若2023年某航班在该机场准点放行,判断该航班飞往A 地、B 地、其他地区等三种情况中的哪种情况的可能性最大,说明你的理由.附:(1)对于一组数据()11,u v ,()22,u v ,…,(),n n u v ,其回归直线v u αβ=+的斜率和截距的最小二乘估计分别为()()()1122211ˆn niii ii i nniii i u u v v u v nu vu u unu β====---⋅==--∑∑∑∑,ˆˆv u αβ=- 参考数据:ln10 2.30≈,ln11 2.40≈,ln12 2.48≈.19.已知函数()e cos xf x ax x =--,且()f x 在[)0,∞+上的最小值为0.(1)求实数a 的取值范围;(2)设函数()y x ϕ=在区间D 上的导函数为()y x ϕ'=,若()()1x x x ϕϕ'⋅>对任意实数x D ∈恒成立,则称函数()y x ϕ=在区间D 上具有性质S . (i )求证:函数()f x 在 0,+∞ 上具有性质S ;(ii )记()()()()112...ni p i p p p n ==∏,其中*N n ∈,求证:()111sin 1ni i i n n =>+∏.。
四川省仁寿第一中学校南校区2025届高三上学期10月月考数学试题
四川省仁寿第一中学校南校区2025届高三上学期10月月考数学试题一、单选题1.集合{}1,0,1,2A =-,集合{B x y ==,则集合A B = ()A .{}1,0,1,2-B .{}1C .{}2D .{}1,22.平面向量()1,2a = ,(),2b m =- ,若()a a b ⊥- ,则实数m =()A .9-B .9C .7-D .73.已知二项式()51ax +的展开式中3x 的系数是80-,则实数a 的值为()A .4-B .4C .2-D .24.为弘扬我国优秀的传统文化,某市教育局对全市所有中小学生进行了“成语”听写测试,经过大数据分析,发现本次听写测试成绩服从正态分布()278,4N .试根据正态分布的相关知识估计测试成绩不小于90的学生所占的百分比为()参考数据:若()2~,N ημσ,则)()0.6826P X μαμα-<<+=,()220.9544P X μαμα-<<+=,()330.9974P X μαμσ-<<+=.A .0.13%B .1.3%C .3%D .3.3%5.已知定义域为R 的奇函数()f x 满足()()5f x f x +=,()15f =,则()2024f =()A .5-B .5C .2024-D .20246.高温可以使病毒中的蛋白质失去活性,从而达到杀死病毒的效果,某科研团队打算构建病毒的成活率与温度的某种数学模型,通过实验得到部分数据如下表:温度x (℃)6810病毒数量y (万个)302220由上表中的数据求得回归方程为ˆˆybx a =+,可以预测当温度为14℃时,病毒数量为()参考公式:()()()121ˆni i i n i i x x y y b x x ==--=-∑∑,ˆˆy bxa =+A .12B .10C .9D .117.设()()224f x x ax x R =-+∈,则关于x 的不等式()0f x <有解的一个必要不充分条件是()A .20a -<<B .2a <-或2a >C .4a >D .2a ≥8.体积为4的长方体1111ABCD A B C D -中11AA =,则该长方体的最小外接球表面积为()A .9π2B .9πC .112πD .11π二、多选题9.设i 为虚数单位,复数z 满足()1i 2z -=,则()A .z 的虚部为1B .2z =C .z 在复平面内的对应点位于第一象限D .22z =10.已知奇函数()f x 的定义域为R ,若()()2f x f x =-,则()A .()00f =B .()f x 的图象关于直线2x =对称C .()()2=-+f x f xD .()f x 的一个周期为411.下列结论中,错误的结论有()A .()43y x x =-取得最大值时x 的值为1B .若1x <-,则11x x ++的最大值为2-C .函数()2f x =2D .若0a >,0b >,且2a b +=,那么12a b +的最小值为32+三、填空题12.已知函数()()()00x a x f x x b x ⎧+<⎪=⎨-≥⎪⎩的零点为3-和1,则a b +=.13.口袋中装有两个红球和三个白球,从中任取两个球,用X 表示取出的两个球中白球的个数,则X 的数学期望()E X =.14.()12,0,x x m ∀∈,12x x ≠,都有122121ln ln 1x x x x x x ->--,则实数m 的取值范围为.四、解答题15.如图,正方体1111ABCD A B C D -中,E 为1DD的中点.(1)证明:1//BD 平面ACE ;(2)求1AC 与平面ACE 所成角的正弦值.16.已知等差数列的公差0d >,且满足11a =,44a =.(1)求数列的通项公式;(2)记()*11n n n b n a a +=∈⋅N ,求数列{}n b 的前2022项和n T .17.“十四五”时期,成都基于历史文化底蕴、独特资源禀赋、生活城市特质和市民美好生活需要,高水平推进“三城三都”(世界文创名城、旅游名城、赛事名城和国际美食之都、音乐之都、会展之都)建设.2023年,成都大运会的成功举办让赛事名城的形象深入人心,让世界看到成都的专业、活力和对体育的热爱;2024年,相约去凤凰山体育场观看成都蓉城队的比赛已经成为成都人最时尚的生活方式之一.已知足球比赛积分规则为:球队胜一场积3分,平一场积1分,负一场积0分.成都蓉城队2024年七月还将迎来主场与A 队和客场与B 队的两场比赛.根据前期比赛成绩,设成都蓉城队主场与A 队比赛:胜的概率为12,平的概率为13,负的概率为16;客场与B 队比赛:胜的概率为14,平的概率为12,负的概率为14,且两场比赛结果相互独立.(1)求成都蓉城队七月主场与A 队比赛获得积分超过客场与B 队比赛获得积分的概率;(2)用X 表示成都蓉城队七月与A 队和B 队比赛获得积分之和,求X 的分布列与期望.18.已知函数()f x 的定义域为R ,对任意x ,y 都满足()()()f x y f x f y +=,且()0f x ≠.当0x >时,()1f x >,且()29f =.(1)求()1f ,()3f 的值;(2)用函数单调性的定义证明()f x 在R 上单调递增;(3)若对任意的R x ∈,()()()2223534f x a a f x f x -+≥--恒成立,求实数a 的取值范围.19.已知函数()()()ln f x ax x a a =-+∈R .(1)当2a =时,求()f x 的单调区间;(2)若()1f x a a≥-恒成立,求a 的取值范围;(3)若数列{}n a 满足21121,1n n n a a n a +==+,记n S 为数列{}n a 的前n 项和.证明:221n S n >-.。
山东省泰安第一中学2024-2025学年高三上学期10月月考数学试题
山东省泰安第一中学2024-2025学年高三上学期10月月考数学试题一、单选题1.设集合{}{}21,3,2,1,M a N a =+=,若{}1,4M N =I ,则a =( ) A .2- B .0 C .2 D .2±2.已知复数z 满足23i z z +=+,则3i z +=( ) A .12i + B .12i - C .2i + D .2i -3.在平行四边形ABCD 中,AB a AD b ==u u u r r u u u r r ,,点E 为CD 中点,点F 满足2AF FB=u u u r u u u r ,则EF =u u u r ( )A .16a b -r rB .1233a b +r rC .1233a b --r rD .1233a b -+r r 4.已知0,0a b >>,则“2a b +>”是“222a b +>”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在ABC V 中,内角,,A B C 的对边分别为,,a b c,已知a ()(()sin sin sin sin A B b c B C -=+,则ABC V 外接圆的半径为( ) A .1 BC .2 D6.某农业研究所对玉米幼穗的叶龄指数R 与可见叶片数x 进行分析研究,其关系可以用函数15e ax R =(a 为常数)表示.若玉米幼穗在伸长期可见叶片为7片,叶龄指数为30,则当玉米幼穗在四分体形成期叶龄指数为82.5时,可见叶片数约为( )(参考数据:ln20.7≈,ln5.5 1.7≈)A .15B .16C .17D .187.函数3214,0,()3cos ,0,x ax a x f x ax x x ⎧+-+>⎪=⎨⎪+≤⎩在R 上单调,则a 的取值范围是( )A .[1,3)B .(1,3]C .[]1,3D .(1,3)8.已知函数()()sin f x x ωθ=+π20,||ωθ⎛⎫< ⎪>⎝⎭,(0)f =,函数()f x 在区间2π,36π⎛⎫- ⎪⎝⎭上单调递增,在区间5π0,6⎛⎫ ⎪⎝⎭上恰有1个零点,则ω的取值范围是( ) A .4,25⎛⎤ ⎥⎝⎦B .45,54⎛⎤ ⎥⎝⎦C .4,15⎛⎤ ⎥⎝⎦D .5,24⎛⎤ ⎥⎝⎦二、多选题9.下列选项正确的是( )A .命题“0x ∃>,210x x ++≥”的否定是0x ∀≤,210x x ++<B .满足{}{}11,2,3M ⊆⊆的集合M 的个数为4C .已知lg3x =,lg5y =,则lg 452x y =+D .已知正方形OABC 的边长为1,则()()5OA OB CA CB +⋅+=u u u r u u u r u u u r u u u r 10.已知函数π()sin 33f x x ⎛⎫=+ ⎪⎝⎭,下列说法正确的是( ) A .()f x 的最小正周期为2π3B .点π,06⎛⎫ ⎪⎝⎭为()f x 图象的一个对称中心C .若()(R)f x a a =∈在ππ,189x ⎡⎤∈-⎢⎥⎣⎦1a ≤<D .若()f x 的导函数为()f x ',则函数()()y f x f x =+'11.已知函数()e ,R x f x ax x =+∈,则( )A .当0a >时,函数()f x 在R 上一定单调递增B .当3a =-时,函数()f x 有两个零点C .当0a <时,方程()1f x a=一定有解 D .当0a =时,()ln 2f x x ->在()0,∞+上恒成立三、填空题12.已知函数()()121x f x a a =-∈-R 为奇函数,则实数a 的值为. 13.已知π02βα<<<,()4cos 5αβ-=,1cos cos 2αβ=,则11tan tan αβ-=.14.已知函数()3,01,ln ,1,x x f x x x ≤≤⎧=⎨>⎩若存在实数12,x x 满足120x x ≤<,且()()12f x f x =,则216x x -的取值范围为.四、解答题15.如图,在四边形ABCD 中,2AB =,AC =AD =2π3CAD CBA ∠∠==.(1)求cos BCA ∠;(2)求BD .16.已知函数32()31f x x x ax =-+-.(1)若()f x 的图缘在点00(,())x f x 处的切线经过点(0,0),求0x ;(2)12,x x 为()f x 的极值点,若()()122f x f x +>-,求实数a 的取值范围.17.已知函数2()2sin cos f x x x x =+R x ∈,且将函数()f x 的图象向左平移π(0)2ϕϕ<<个单位长度得到函数()g x 的图象.(1)求()f x 的最小正周期和单调递增区间;(2)若函数()g x 是奇函数,求ϕ的值;(3)若1cos 3ϕ=,当x θ=时函数()g x 取得最大值,求π12f θ⎛⎫+ ⎪⎝⎭的值. 18.在ABC V 中,角,,A B C 所对的边分别为,,a b c ,满足3cos 5c a B b =+. (1)求cos A 的值;(2)当BC 与BC 边上的中线长均为2时,求ABC V 的周长;(3)当ABC V 内切圆半径为1时,求ABC V 面积的最小值. 19.已知函数()e ,()ln (,)x f x a g x x b a b ==+∈R .(1)当1b =时,()()f x g x ≥恒成立,求实数a 的取值范围;(2)已知直线12l l 、是曲线()y g x =的两条切线,且直线12 l l 、的斜率之积为1.(i )记0x 为直线12 l l 、交点的横坐标,求证:01x <; (ii )若12 l l 、也与曲线()y f x =相切,求,a b 的关系式并求出b 的取值范围.。
黑龙江哈尔滨市黑龙江省实验中学2024-2025学年高三上学期第二次月考(10月)数学试题(无答案)
黑龙江省实验中学2024-2025学年高三学年上学期第二次月考数学试题考试时间:120分钟 总分:150分 命题人:高三数学备课组一、单项选择题(共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一项符合要求)1.若集合,其中且,则实数的取值范围是( )A. B. C. D.2.“”是“”的( )A.充要条件 B.既不充分又不必要条件C.必要不充分条件 D.充分不必要条件3.已知复数满足,则复数的共轭复数在复平面内对应的点位于()A.第一象限B.第二象限C.第三象限D.第四象限4.若正数满足,则的最小值为( )A.3 B.6 C.9 D.125.已知函数的定义域为,且,若函数的图象与函数的图象有交点,且交点个数为奇数,则( )A. B.0 C.1 D.26.在中,,设点为的中点,在上,且,则( )A.16B.12C.8D.7.已知函数在上有且仅有两个零点,则正数的取值范围是( )A. B. C. D.{}230,A xmx m =->∈R ∣2A ∈1A ∉m 33,42⎛⎤ ⎥⎝⎦33,42⎡⎫⎪⎢⎣⎭33,42⎛⎫ ⎪⎝⎭33,42⎡⎤⎢⎥⎣⎦5π12α=22cos sin αα-=z ()22i (1i)z -=+z z ,a b 1232ab a b =++ab ()y f x =R ()()f x f x -=()y f x =()2log 22x x y -=+()0f =1-ABC V π6,4,2BC AB CBA ∠===D AC E BC 0AE BD ⋅= BC AE ⋅= 4-()445sin cos 8f x x x ωω=+-π0,4⎛⎤⎥⎝⎦ω48,33⎛⎤ ⎥⎝⎦48,33⎡⎫⎪⎢⎣⎭816,33⎛⎤ ⎥⎝⎦816,33⎡⎫⎪⎢⎣⎭8.在中,内角所对的边分别为.已知的外接圆半径是边的中点,则长为( )B.C.二、多项选择题(共3小题,每小题6分,共18分,在每小题给出的四个选项中,有多项符合题目要求,全部选对的得6分,部分选对得部分分,有错选得0分)9.函数的部分图象如图所示,则()A.该图像向右平移个单位长度可得的图象B.函数的图像关于点对称C.函数的图像关于直线对称D.函数在上单调递减10.已知是平面上的三个非零向量,那么( )A.若,则B.若,则C.若,则与的夹角为D.若,则在方向上的投影向量相同ABC V ,,A B C ,,a b c 222π,24,3A b c ABC =+=V R D =AC BD 1+()()πsin 0,0,2f x A x A ωϕωϕ⎛⎫=+>>< ⎪⎝⎭π63sin2y x =()y f x =π,06⎛⎫- ⎪⎝⎭()y f x =5π12x =-()y f x =2ππ,36⎡⎤--⎢⎥⎣⎦,,a b c ()()a b c b c a ⋅=⋅ a ∥ca b a b +=- 0a b ⋅= a b a b ==+ a a b - π3a b a c ⋅=⋅ ,b c a11.定义在上的函数满足,则( )A.是周期函数B.C.的图象关于直线对称D.三、填空题(共3小题,每小题5分,共15分)12.已知,则__________.13.若数列满足,则__________.14.已知函数及其导函数的定义域均为,且为偶函数,若时,,且,则不等式的解集为__________.四、解答题(本大题共5个小题,共77分,解答应写出文字说明,证明过程或演算步骤)15.(本题满分13分)在中,内角,C 所对的边分别为.已知.(1)求角的大小;(2)若且,求的外接圆半径.16.(本题满分15分)在中,角所对的边分别为,设向量.(1)求函数的最小值;(2)若,求的面积.17.(本题满分15分)R ()f x ()()()()()322,6,12f x f x f f x f x f ⎛⎫++=+=-=⎪⎝⎭()f x ()20240f =()f x ()21x k k =-∈Z 20241120242k k f k=⎛⎫-= ⎪⎝⎭∑πsin 6x ⎛⎫+= ⎪⎝⎭ππcos 2cos 233πcos 2sin cos 3x x x x x ⎛⎫⎛⎫+-- ⎪ ⎪⎝⎭⎝⎭=⎛⎫+ ⎪⎝⎭{}n a 21111,1n na a a +==-985a =()f x ()f x 'ππ,22⎛⎫-⎪⎝⎭()f x 0x ≥()()tan f x f x x ≥'π23f ⎛⎫= ⎪⎝⎭()1cos f x x <ABC V ,A B ,,a b c 12cos sin 2sin sin B C A B =+C 32a b c +=3a =ABC V ABC V ,,A B C ,,a b c ()()()π2π2sin ,cos ,cos sin ,,,63m A A A n A A A f A m n A ⎡⎤=+=-=⋅∈⎢⎥⎣⎦ ()f A ()0,sin f A a B C ==+=ABC V已知锐角的三个内角,C 所对的边为.(1)求角的大小;(2)求的取值范围.18.(本题满分17分)已知函数.(1)当时,求的极值;(2)若,当时,恒成立,求的取值范围.19.(本题满分17分)已知函数.(1)当时,设,求在处的切线方程;(2)当时,求的单调区间;(3)证明:若曲线与直线有且仅有两个交点,求的取值范围.ABC ,A B ()()(),,,cos cos cos cos sin sin a b c A B A B C C A +-=B 222a c b+()()()22ln 1f x ax a x x a =-+++∈R 1a =()f x ()12,0,x x ∞∀∈+12x x ≠()()12122f x f x x x ->--a ()log a a x f x x =e a =()()e 1F x xf x -=()F x 1x =2a =()f x ()y f x =21y a =a。
山东省济宁市嘉祥县第一中学2024-2025学年高三上学期10月月考数学试题(无答案)
2024—2025学年度第一学期10月月考高三数学试题2024.10本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,共8页.时量120分钟,满分150分.第Ⅰ卷一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合,,则( )A .B .C .D .2.若复数z 满足(i 是虚数单位),则等于()AB .CD3.设向量,,则下列结论中正确的是( )A .B .C .D .与垂直4.在中,“”是“”的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件5.在中,E 为边AB 的中点,,则( )A .B .C .D .6.把函数的图像上所有点的横坐标缩短到原来的(纵坐标不变),再把图像上所有的点向左平行移动个单位长度,得到的图像所表示的函数是( )A .B .C .D .7.已知,,,,则( ){}2log 1A x x =>{}04B x x =<<A B = {}24x x <<{}24x x <<{}02x x <≤{}2x x ≤()1i 3i z +=-+z 54()1,0a = 11,22b ⎛⎫= ⎪⎝⎭ a b= a b ⋅=a b ∥ a b - b ABC △π6A >1sin 2A >ABC △23BD BC = DE =1263AB AC -+ 5163AB AC + 1263AB AC + 1263AB AC-sin y x =12π3πsin 23y x ⎛⎫=-⎪⎝⎭πsin 26x y ⎛⎫=+ ⎪⎝⎭πsin 23y x ⎛⎫=+⎪⎝⎭2πsin 23y x ⎛⎫=+ ⎪⎝⎭π02α<<π02β<<()3cos 5αβ+=()1sin 5αβ-=tan tan αβ=A .B .C .D .8.设是定义在R 上的奇函数,且,当时,,则的值为( )A .2B .-2C .-1D .1二、多选题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求,全部选对的得6分,部分选对的得部分分,有选错的得0分.9.下列说法中正确的是()A .若,,则B .若是锐角三角形,则C .若点G 为的重心,则D .命题:,的否定是:,.10.设正实数a ,b 满足,则下列结论正确的是( )A .有最小值1B有最小值2C有最大值D .有最大值811.已知,.若存在,,使得成立,则下列结论正确的是()A .函数在处的切线与函数在处的切线相同B .当时,C .当时,D .若恒成立,则第Ⅱ卷三、填空题:本题共3小题,每小题5分,共15分.12.在中,a ,b ,c 分别为内角A ,B ,C 的对边,若,且,则的面积为______.13.若函数的定义域和值域的交集为空集,则正实数a 的取值范围是______3103553103()f x ()()2f x f x +=-10x -≤<()()2log 62f x x =-+253f ⎛⎫⎪⎝⎭a b ∥ b c ∥ a c∥ ABC △sin cos AB>ABC △0GA GB GC ++=x ∀∈R 21x >-x ∃∈R 21x ≤-4a b +=11a b+22a b +()e xf x x =()lng x x x =1x ∈R ()20,x ∈+∞()()12f x g x t +=()y g x =11,e e g ⎛⎫⎛⎫ ⎪ ⎪⎝⎭⎝⎭()y f x =()()1,1f --0t >12x x t =0t >12eln t x x ≤()()f x g x mx >+2m ≤ABC △sin sin 4sin sin a B b A c A B +=222a b c +-=ABC △()()223,02,0x x f x x x a⎧+≤⎪=⎨-<≤⎪⎩14.已知函数,若对恒成立,则实数a 的取值范围为______.四、解答题:本题共5小题,共77分.请在答题卡指定区域内作答.解答时应写出文字说明、证明过程或演算步骤.15.(13分)已知函数的部分图象如图所示.(1)求的解析式;(2)若函数,求在区间上的最大值和最小值.16.(15分)已知向量,,函数.(1)求函数的最小正周期;(2)在中,角A ,B ,C 的对边分别为a ,b ,c ,的角平分线交AB 于点D ,若恰好为函数的最大值,且此时,求的最小值.17.(15分)已知函数,其中.(1)当时,求曲线在处的切线方程;(2)当时,若在区间上的最小值为,求a 的值.18.(17分)如图,已知平面四边形ABCD 中,,.(1)若A ,B ,C ,D 四点共圆,求AC ;(2)求四边形ABCD 面积的最大值.()()e ln 0xaf x a x x x a =+-->()0f x ≥()1,x ∀∈+∞()()()2sin 0,0πf x x ωϕωϕ=+><<()f x ()()sing x f x x =()g x π0,4⎡⎤⎢⎥⎣⎦),cos a x x =()cos ,cos b x x =- ()32f x a b =⋅+ ()y f x =ABC △ACB ∠()f C ()f x ()CD f C =34a b +()2exx ax af x -+=a ∈R 0a =()y f x =()()1,1f 0a >()f x []0,a 1eAB BC ==2CD =4AD =19.(17分)已知函数.(1)当时,求的最大值;(2)当时,求证:(参考数据).()2sin sin 2f x x x =-0πx ≤≤()f x ππ32x ≤≤()()ln 1f x x >+2πln 0.7393=。
浙江省金华第一中学2023-2024学年高三上学期10月月考数学试题
浙江省金华第一中学2023-2024学年高三上学期10月月考数学试题学校:___________姓名:___________班级:___________考号:___________一、单选题A .{}0,2,4B .{2,2.已知i 是虚数单位,复数1z 21z z 的共轭复数的虚部为()A .15-B .153.已知向量()cos ,sin a αα=,A .33B .224.奥林匹克标志由五个互扣的环圈组成,五环象征五大洲的团结有8个交点,从中任取3个点,A .314B .5145.等比数列{}n a 的公比为q ,前A .“q >0”是“{}n a 为递增数列A .()sin x x f -=7.已知双曲线C :点为A ,以12F F 为直径的圆交双曲线的一条渐近线于若2AQ AP ≥,则该双曲线的离心率的取值范围是(A .(1,3⎤⎦8.已知函数()f x =二、多选题9.下列说法正确的有()A .若随机变量()()21,,00.8X N P X σ~≥=,则()020.6P X ≤≤=B .残差和越小,模型的拟合效果越好C .根据分类变量X 与Y 的成对样本数据计算得到2 4.012χ=,依据0.05α=的独立性检验()0.05 3.841=x ,可判断X 与Y 有关且犯错误的概率不超过0.05D .数据4,7,5,6,10,2,12,8的第70百分位数为810.在正方体1111ABCD A B C D -中,M ,N ,P 分别是面1AB ,面11B D ,面1DA 的中心,则下列结论正确的是()A .1NP DC ∥C .1D C ⊥平面MNP11.设点00(,)P x y 在圆:O x 为y kx =.则()A .对任意实数k 和点B .对任意点P ,必存在实数C .对任意实数k ,必存在点D .对任意实数k 和点12.设随机变量ξ的分布列如下:ξ12345P1a 2a 3a 4a a 则()A .当{}n a 为等差数列时,B .数列{}n a 的通项公式可能为C .当数列{}n a 满足n aD .当数列{}n a 满足(P 三、填空题13.已知22nx x ⎛⎫- ⎪⎝⎭的展开式中第四、解答题17.已知ABC 的内角向量(),3m a a = ,n (1)求角A ;(2)若23a =,ABC 18.已知正项等比数列(1)求数列{}n a 的通项公式;(2)求数列{}n b 的前2n 19.如图,在四棱锥P 为边AB 的中点.(1)求证:AE ∥平面POC ;。
河南省驻马店市新蔡县第一高级中学2025届高三上学期10月月考数学试题
河南省驻马店市新蔡县第一高级中学2025届高三上学期10月月考数学试题一、单选题1.命题“x ∀∈R ,2210x x ++≥”的否定是( ) A .x ∃∈R ,2210x x ++≥ B .x ∃∈R ,2210x x ++< C .x ∀∈R ,2210x x ++>D .x ∀∈R ,2210x x ++<2.已知集合{}30A x x =->,{}2540B x x x =-+>,则A B =I ( )A .(,1)-∞B .(3),-∞C .(3,)+∞D .(4,)+∞3.设()f x 是定义域为R 的奇函数,且(1)()f x f x +=-.若1133f ⎛⎫= ⎪⎝⎭,则53f ⎛⎫= ⎪⎝⎭( ).A .53-B .13-C .13D .534.若函数(),142,12x a x f x a x x ⎧>⎪=⎨⎛⎫-+≤ ⎪⎪⎝⎭⎩是R 上的增函数,则实数a 的取值范围为( ) A . 1,+∞B .()1,8C .()4,8D .[)4,85.已知函数()2234x xf x +=-⨯,若20x x +≤,则()f x 的最大值和最小值分别是( )A .2,03B .4,13C .45,34D .log3,16.若函数()22()log 2f x x ax =-++在()1,2上单调递减,则实数a 的取值范围是( )A .()1,2B .[)1,2C .(]1,2D .[]1,27.已知函数()f x 定义域为R ,()1f x -为奇函数,()1f x +为偶函数,当[]1,3x ∈时,()f x kx m =+,若()()031f f -=-,则()2022f =( )A .1-B .1C .2-D .28.已知55a =,5log b =5log 2c =,则a ,b ,c 的大小关系为( ) A .a b c >>B .a c b >>C .b a c >>D .c b a >>二、多选题9.(多选)下列说法不正确的是( )A .已知{}{}260,10A xx x B x mx =+-==-=∣∣,若B A ⊆,则m 组成集合为11,23⎧⎫-⎨⎬⎩⎭B .不等式23208kx kx +-<对一切实数x 恒成立的充分不必要条件是30k -<<C .()f x 的定义域为()1,2-,则()21f x -的定义域为()3,3-D .不等式20ax bx c ++>解集为()(),23,-∞-⋃+∞,则0a b c ++>10.已知函数()f x 的定义域为R ,若满足()()211f x f x -+-=-,且函数()f x 图像关于()1,0中心对称,则( )A .()01f =-B .()20242023f =C .()()2024f x f x +=D .()202420244049i f i =-=-∑11.设0x >函数()ln f x x =,2()g x x x=+,则下列结论中正确的是( ) A .存在0x >,使得()1f x x >-B .函数(1)f x +的图象与函数e 1x y =-的图象有且仅有一条公共的切线C .函数()g x 图象上的点与原点距离的最小值为D .函数()()f x g x +的极小值点为1x =三、填空题12.设函数()2π4sin sin cos 242x f x x x ⎛⎫=++ ⎪⎝⎭,若()2f x m -<成立的充分条件为π5π,46x ⎡⎤∈⎢⎥⎣⎦,则实数m 的取值范围是.13.已知函数()34,132,1x x x f x x +<⎧=⎨-≥⎩,若m n <,且()()f m f n =,则()mf n 的取值范围是.14.若函数()()πsin 06f x x ωω⎛⎫=-> ⎪⎝⎭的部分图象如图所示,且()OC OA OB ω=+u u u r u u u r u u u r ,则()f x 的最小正周期为,()f x 在()0,100π上的零点个数为.四、解答题15.已知函数2()1,()1f x x g x x =+=-. (1)若a ∈R ,求不等式()()0af x g x +<的解集;(2)若3b ≤,对12[1,2],[4,5]x x ∀∈∃∈,使得1218))()((bf x f x g x b +=++成立,求b 的取值范围. 16.若二次函数()y f x =对任意()y f x =都满足()()11f x f x +=-,其最小值为1-,且有()00f =(1)求()f x 的解析式;(2)解关于x 的不等式()2f x a ax >-;(3)设函数()()()g 23x f x a x =--+,求()g x 在区间[]1,1-的最小值. 17.已知函数31()3x x f x a+=+为奇函数.(1)解不等式()2f x >;(2)设函数33()log log 39x xg x m =⋅+,若对任意的1[3,27]x ∈,总存在2(0,1]x ∈,使得12()()g x f x =成立,求实数m 的取值范围.18.已知函数()ln ,f x ax x a =-∈R . (1)讨论()f x 在区间[1,2]上的单调性;(2)若(0,]x e ∈时,不等式()3f x ≤有解,求a 的取值范围.19.已知集合{}()**2,4n M x x n n n =∈≤∈≥N N ,若存在数阵1212,,,,,,n n a a a T b b b ⎡⎤=⎢⎥⎣⎦L L 满足:①{}{}1212,,,,,,n n n a a a b b b M =L U L ;②(1,2,,)k k a b k k n -==L ;则称n M 为“好集合”,并称数阵T 为n M 的一个“好数阵”.(1)已知数阵,5,,7,3,,2x y w T z ⎡⎤=⎢⎥⎣⎦是4M 的一个好数阵,试写出x ,y ,z ,w 的值; (2)若集合n M 为“好集合”,证明:集合n M 的“好数阵”必有偶数个;(3)判断6M 是否为“好集合”.若是,求出满足条件{}12,,,n n a a a ∈L 的所有“好数阵”;若不是,说明理由.。
上海市七宝中学2024-2025学年高三上学期10月月考数学试题
上海市七宝中学2024-2025学年高三上学期10月月考数学试题一、填空题1.已知{|31},{1,0,1}A x x B =->=-,则A B =I .2.已知1sin 5α=,则3πcos 2α⎛⎫+= ⎪⎝⎭. 3.已知幂函数()()257m f x m m x =-+的图象关于y 轴对称,则实数m 的值是.4.记n S 为等差数列{}n a 的前n 项和,若25348,211a a a a +=+=,则9S =.5.不等式304x x -≤+的解集是. 6.已知i 为虚数单位,3i +是实系数一元二次方程20x px q ++=的一个虚根,则p q +=.7.已知随机变量X 的分布列为:011123x p ⎛⎫ ⎪ ⎪ ⎪⎝⎭,若()23E X =,且32Y X =-,则()D Y =. 8.设函数()22x x f x -=-,则使得2()(23)0f x f x +-<成立的x 的解集..是. 9.已知函数πsin(2)6y x m =--在π[0,]2上有两个零点,则m 的取值范围为. 10.已知集合{}2017,Z M x x x =≤∈,集合P 是集合M 的三元子集,叫{,,}P a b c M =⊆,P中的元素a ,b ,c 满足1122a b c a c b⎧+=⎪⎨⎪+=⎩,则符合要求的集合P 有个数是.11.如图,某城市公园内有一矩形空地ABCD ,300m AB =,180m =AD ,现规划在边AB ,CD ,DA 上分别取点E ,F ,G ,且满足AE EF =,FG GA =,在EAG △内建造喷泉瀑布,在EFG V 内种植花奔,其余区域铺设草坪,并修建栈道EG 作为观光路线(不考虑宽度),则当sin ∠=AEG 时,栈道EG 最短.12.对于一个有穷正整数数列Q ,设其各项为1a ,2a ,...,m a ,各项和为()S Q ,集合(){,|,1}j i i j a a i j m >≤<≤中元素的个数为()T Q ,对所有满足()100S Q =的数列Q,则()T Q 的最大值为.二、单选题13.已知集合{}1,1,2,3A =-,集合{}2|,B y y x x A ==∈,则集合B 的子集个数为( )A .7B .8C .16D .3214.记ABC V 的三个内角,,A B C 的对边分别为,,a b c ,若135,,32A B B C A C c a b μμ⎡⎤+=∈⎢⎥⎣⎦u u u r u u u r u u u r ,则c o s B 的取值范围为( )A .1,12⎡⎤⎢⎥⎣⎦B .15,68⎡⎤⎢⎥⎣⎦C .15,28⎡⎤⎢⎥⎣⎦D .1,16⎡⎤⎢⎥⎣⎦15.已知α,β均为锐角,()sin 2sin cos αβαβ=+,则tan α取得最大值时,()tan αβ+的值为( )ABC .2D .116.已知函数()f x 的定义域为R ,定义集合()()(){}000|,,M x x x f x f x =∈∈-∞>R ,在使得[]1,1M =-的所有()f x 中,下列成立的是( )A .存在()f x ,使得()f x 是偶函数B .存在()f x ,使得()f x 在R 上单调递减C .存在()f x ,使得()f x 在1x =-处取极大值D .存在()f x ,使得()f x 的最小值是()2f三、解答题17.如图,已知四棱锥P ABCD -的底面ABCD 是边长为6的正方形,侧面PCD ⊥底面,5ABCD PC PD ==,点,E G 分别是,DC DP 的中点,点F 在棱AB 上且3AF FB =.(1)求证:FG ∥平面BPE ;(2)求直线FG 与平面PBC 所成的角的正弦值.18.在ABC V 中,内角,,A B C 所对的边分别为,,a b c ,已知2cos sin a c b C C +=.(1)求角B ;(2)若3b =,求ABC V 周长的最大值.19.在经济学中,函数()f x 的边际函数()(1)()Mf x f x f x =+-,某公司每月最多生产10台光刻机的某种设备,生产x 台(*1,N x x ≥∈)这种设备的收入函数为()221640R x x x =++(单位千万元),其成本函数为()4010C x x x=+(单位千万元).(以下问题请注意定义域) (1)求收入函数()R x 的最小值;(2)求成本函数()C x 的边际函数()MC x 的最大值;(3)求生产x 台光刻机的这种设备的的利润()z x 的最小值. 20.已知双曲线2222:1x y C a b-=(0a >,0b >)的一条渐近线的倾斜角为π3,C 的右焦点F到该渐近线的距离为(1)求C 的方程;(2)若过F 的直线与C 的左、右支分别交于点A ,B ,与圆222:O x y a +=交于与A ,B 不重合的M ,N 两点.(ⅰ)求直线AB 斜率的取值范围;(ⅱ)求AB MN ⋅的取值范围.21.函数()f x 的定义域为R ,若()f x 满足对任意12,x x ∈R ,当12x x M -∈时,都有()()12f x f x M -∈,则称()f x 是M 连续的.(1)请写出一个函数()f x 是{}1连续的,并判断()f x 是否是{}n 连续的()*n ∈N ,说明理由;(2)证明:若()f x 是[]2,3连续的,则()f x 是{}2连续且是{}3连续的;(3)当11,22x ⎡⎤∈-⎢⎥⎣⎦时,()3112f x ax bx =++,其中,a b ∈Z ,且()f x 是[]2,3连续的,求,a b 的值.。
河北省石家庄一中2024-2025学年高三上学期10月月考数学试题
河北省石家庄一中2024-2025学年高三上学期10月月考数学试题一、单选题1.已知集合{0,2,5}M =,集合{}*N 05N x x =∈≤<∣,则M N =I ( ) A .{}0,2,5 B .{}0,2 C .{}2,5 D .{}22.若53i1iz +=+,则z =( ) A .4i + B .4i -C .11i 22+D .11i 22-3.已知21,e e u r u u r 是单位向量,1212e e ⋅=-u r u u r ,则122e e +u r u u r 与2e u u r 的夹角为( )A .π6B .π4C .π3D .2π34.艳阳高照的夏天,“小神童”是孩子们喜爱的冰淇淋之一.一个“小神童”近似为一个圆锥,若该圆锥的侧面展开的扇形面积是底面圆面积的2倍,圆锥的母线长为12cm ,则该圆锥的体积为( )A.3cm B .3124πcm C.3cm D .3168πcm5.已知数列{}{}n n a b ,均为等差数列,其前n 项和分别为n n S T ,,满足(23)(31)n n n S n T +=-,则789610a a a b b ++=+( )A .2B .3C .5D .66.已知双曲线C :22221()00a x y a bb >-=>,,圆221:(2)4O x y -+=与圆222:(1)1O x y +-=的公共弦所在的直线是C 的一条渐近线,则C 的离心率为( )AB .2C D7.已知函数()()sin f x x ωϕ=+()0ω>,若()0f =,π5π36f f⎛⎫⎛⎫-=- ⎪ ⎪⎝⎭⎝⎭,则ω的最小值为( ) A .3B .1C .67D .238.已知函数1()ln f x x t x x ⎛⎫=-- ⎪⎝⎭有三个零点,则t 的取值范围是( )A .()1,0-B .10,4⎛⎫ ⎪⎝⎭C .()1,2D .10,2⎛⎫⎪⎝⎭二、多选题9.下列说法正确的是( )A .随机变量()~3,1X N ,且(24)0.6827P X ≤≤=,则(4)0.15865P x >=B .随机变量Y 服从两点分布,且1()3E Y =,则(3)2D Y =C .对a ,b 两个变量进行相关性检验,得到相关系数为0.8728-,对m ,n 两个变量进行相关性检验,得到相关系数为0.8278,则a 与b 负相关,m 与n 正相关,其中m 与n 的相关性更强D .在6(12)y +的展开式中,偶数项系数的二项式系数和为3210.已知定义在R 上的连续函数()f x 满足,x y ∀∈R ,()()()()f x y f x y f x f y ++-=,()10f =,当[)0,1x ∈时,()0f x >恒成立,则下列说法正确的是( )A .()01f =B .()f x 是偶函数C .13f ⎛⎫= ⎪⎝⎭D .()f x 的图象关于2x =对称11.已知在正方体1111ABCD A B C D -中,12AA =,点M 为11A D 的中点,点P 为正方形1111D C B A 内一点(包含边界),且//BP 平面1AB M ,球O 为正方体1111ABCD A B C D -的内切球,下列说法正确的是( )A.球O 的体积为4π3B .点P 的轨迹长度为C .异面直线1CC 与BP 所成角的余弦值取值范围为⎣⎦D .三棱锥11M AA B -外接球与球O 内切三、填空题12.如图,一只蚂蚁位于点M 处,去搬运位于N 处的糖块,M N →的最短路线有条.13.函数11()ln e e 432x x xf x x x--=+--+-,若实数m 满足()()322f m f m +-<-,则m 的取值范围为.14.已知抛物线2:4C y x =的焦点为F ,点M (异于原点O )在抛物线上,过M 作C 的切线l ,ON l ⊥,垂足为N ,直线MF 与直线ON 交于点A ,点(0,2)B ,则||AB 的最小值是.四、解答题15.在锐角ABC V 中,a ,b ,c 分别是角A ,B ,C 的对边,tan (2)tan c B a c C =-. (1)求B ;(2)若b =ABC V 的面积S 取值范围.16.如图,在三棱柱111ABC A B C -中,四边形11AA B B 是矩形,122BB BC AB ===,1160BCC AC ∠=︒,(1)求证:1B C ⊥平面1ABC ;(2)求平面1AB C 与平面11A BC 所成角的余弦值.17.已知焦距为2222:1(0)x y C a b a b+=>>的右焦点为F ,右顶点为A ,过F 作直线l 与椭圆C 交于B 、D 两点(异于点A ),当BD x ⊥轴时,||1BD =. (1)求椭圆C 的方程;(2)证明:BAD ∠是钝角.18.已知函数()e x f x x a =+的最小值是12e -,()e 1x g x =-.(1)求a 的值;(2)当(0,)x ∈+∞时,()()f x kg x >恒成立,求整数k 的最大值.19.若数集{}()1212,,0,,3n n A a a a a a a n =≤<<<≥L L 中任意两个元素i a 和)1(j a i j n ≤≤≤的和j i a a +或差j i a a -,至少有一个属于该数集,我们就将这种数集称为“T 数集”. (1)判断数集{}1,2,3,4,6M =是否为“T 数集”;(2)已知数集{}()1212,,0,,3n n A a a a a a a n =≤<<<≥L L 是“T 数集”,证明: ①10a =; ②122n n na a a a +++=L . (3)已知数集{}()1212,,0,,3n n A a a a a a a n =≤<<<≥L L 是“T 数集”,现给数集A 添加()*N ,2k k k ∈≥个元素:1n a +,L ,()1n k n k n n a a a a +++>>>L ,若数集A 仍是“T 数集”,证明:212211n k i i i a a a +-=+<⋅∑.。
辽宁省实验中学2024-2025学年高三上学期10月月考 数学试题
辽宁省实验中学高三年级10月份月考数学试卷满分:150分时间:120分钟一、单项选择题:本大题共8小题,每小题5分,共40分,在每小题给出的四个选项中,只有一个选项是正确的.请把正确的选项填涂在答题卡相应的位置上.1.若()12:log 11,:39a p a q --<<,则p 是q 的()条件A.充分不必要 B.必要不充分C.充要D.既不充分也不必要2.若sin 2cos θθ=-,则sin (sin cos )θθθ+=()A.65-B.25-C.25D.653.已知函数()()22ln 3=--+f x x ax a在[)1,+∞上单调递增,则a 的取值范围是()A.(],1-∞- B.(),1∞-- C.(],2-∞ D.()2,+∞4.在ABC V 中,角A ,B ,C 的对边分别为a ,b ,c ,若sin sin sin (34A B Ck k ==为非零实数),则下列结论错误..的是()A.当5k =时,ABC V 是直角三角形B.当3k =时,ABC V 是锐角三角形C.当2k =时,ABC V 是钝角三角形D.当1k =时,ABC V 是钝角三角形5.耳机的降噪效果成为衡量一个耳机好坏的标准之一,降噪的工作原理就是通过麦克风采集周围环境的噪音,通过数字化分析,以反向声波进行处理,实现声波间的抵消,使噪音降为0,完成降噪(如图所示),已知噪音的声波曲线是3cos2y x =,通过主动降噪芯片生成的反向声波曲线是()sin y A x ωϕ=+(其中0A >,0ω>,0πϕ≤<2),则ϕ=().A.π3B.π2C.πD.3π26.已知函数是定义在R 上的偶函数,且在区间[)0,+∞单调递减,若a +∈R ,且满足()()313log log 22f a f a f ⎛⎫+≤ ⎪⎝⎭,则a 的取值范围是()A.1,99⎡⎤⎢⎥⎣⎦B.1,9⎛⎤-∞ ⎥⎝⎦ C.1,22⎡⎤⎢⎥⎣⎦D.[)10,9,9⎛⎤+∞ ⎥⎝⎦7.已知正数x y z ,,,满足346x y z ==,则下列说法不正确的是()A.1112x y z+= B.x y z >>C.112x z y+< D.346x y z<<8.设函数()()π2sin 106f x x ωω⎛⎫=--> ⎪⎝⎭在[]π,2π上至少有两个不同零点,则实数ω的取值范围是()A.3,2⎡⎫+∞⎪⎢⎣⎭B.375,,232⎡⎤⎡⎫+∞⎪⎢⎥⎢⎣⎦⎣⎭C.1319,3,66⎡⎤⎡⎫+∞⎪⎢⎥⎢⎣⎦⎣⎭D.1,2⎡⎫+∞⎪⎢⎣⎭二、多项选择题:本大题共3小题,每小题6分,共18分.在每小题给出的四个选项中,有多项符合题目要求。
安徽省六安第二中学2024-2025学年高三上学期第二次月考(10月) 数学试题
六安二中2025届高三第二次月考试题数学分值:150分时间:120分钟注意事项1.考生务必将自己的姓名、班级写在答题卡上并粘好条形码.2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的选项涂黑.如需改动,用橡皮擦干净后,再选涂其它选项.不能答在试题卷上.3.解答题按照题号在各题的答题区域(黑色线框)内作答,超出答题区域的答案无效.4.保持答题卡卷面清洁,不折叠,不破损.第Ⅰ卷(选择题58分)一、单项选择题:本大题共8小题,每题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的,请将正确的选项填涂在答题卡上.1.设集合{}|1A x x =<,集合{|B y y ==,则A∩B=()A.(-1,1)B.(0,1)C.[0,1)D.(1,+∞)2.已知x ∈R ,则“10ln 2x <≤”是“102x x -<-”的()A.充分不必要条件B.必要不充分条件C.充要条件D.既不充分也不必要条件3.已知12log 3a =,sin6b π=,20.5c -=,则()A.a <b <cB.b <c <aC.c <a <bD.b <a <c4.函数2ln ||||x x y x =的图象大致是()A.B. C. D.5.已知函数f (x )是定义域为R 的奇函数,当x ≥0时,f (x )=x (x +2).若.f (2+m )+f (2m-5)>0,则m 的取值范围为()A.(-∞,0)B.(0,+∞)C.(-∞,1)D.(1,+∞)6.科学技能的迅猛发展,使人们在学校里学到的专业知识,逐步陈旧过时,这就是所谓的“知识半衰期”.1950年以前,知识的半衰期为50年:21世纪,知识的半衰期平均为3.2年;IT 业高级工程师1.8年.如果一个高三学生的初始知识量为0T ,则经过一定时间,即t 个月后的知识量T 满足01()2a a ht T T T T ⎛⎫-=- ⎪⎝⎭,h 称为知识半衰期,其中a T 是课堂知识量,若25a T =,某同学知识量从80降至75大约用时1个月,那么知识量从75降至45大约还需要()(参考数据:lg2≈0.30,lg11≈1.04)A.8个月B.9个月C.10个月D.11个月7、已知函数2,1()23,1x a a x f x ax ax a x ⎧+≥=⎨-+-+<⎩(a >0且a ≠1),若f (x )的值域为R ,则实数a 的取值范围是()A.20,3⎛⎤⎥⎝⎦B.31,2⎛⎤⎥⎝⎦C.[2,+∞)D.[3,+∞)8.对于x ∈(0,+∞),不等式()()ln 10x e mx m x -+-≥恒成立,则实数m 的取值范围为()A.0<m <1B.0<m ≤1C.0<m ≤eD.0<m <e二、多项选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分,有选错的得0分.9.下列结论中正确的是()A.若函数f (x )的定义域为[0,2],则函数f (2x +2)的定义域为[-1,0]B.当x ∈R 时,不等式210kx kx ++>恒成立,则k 的取值范围是(0,4)C.命题“∀x >1,x 2-x >0”的否定是20001,0x x x ∃≤-≤”D.函数||12x y ⎛⎫= ⎪⎝⎭的值域为(0,1]10.已知a =log 315,b =log 515,则()A.111ab+= B.ab >4C.a 2+b 2<8D.a +b >411.设函数f (x )与其导函数f '(x )定义域均为R ,且f '(x +2)为偶函数,110f x f x +--=()(),则()A.f '(1+x )=f '(1-x )B.f '(3)=0C.f '(2025)=1D.f (2+x )+f (2-x )=2f (2)第Ⅱ卷(非选择题92分)三、填空题:本题共3小题,每小题5分,共15分.12.函数2()lg(43)f x x x =-+的单调递减区间为__________.13.已知曲线y =x +ln x 在点(1,1)处的切线与曲线y =ax 2+(2a +3)x +1只有一个公共点,求a 的值__________.14.已知函数ln ,0,()1,0x x x f x x x x>⎧⎪=⎨-<⎪⎩若函数()()()()1g x f f x af x =-+有唯一零点,则实数a 的取值范围是__________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.(13分)已知命题P :“∃x ∈R ,x 2-ax +1=0”为假命题,设实数a 的所有取值构成的集合为A .(Ⅰ)求集合C R A ;(Ⅱ)设集合B ={x |m+1<x <2m+1},若t ∈A 是t ∈B 的必要不充分条件,求实数m 的取值范围.16.(15分)已知函数21()log 1xf x x-=+.(Ⅰ)判断并证明f (x )的奇偶性;(Ⅱ)若对任意11,,[2,2]33x t ⎡⎤∈-∈-⎢⎣⎦,不等式.f (x )≥t 2+at -6恒成立,求实数a 的取值范围.17.(15分)函数f (x )=(x +1)e x .(Ⅰ)求函数在(-2,f (-2))处的切线方程;(Ⅱ)求出方程f (x )=a (a ∈R)的解的个数.18.(17分)已知函数.f (x )=ac 2x +(a -2)c x -x ,(Ⅰ)当a >0时,求f (x )的单调区间:(Ⅱ)若f (x )有两个零点,求a 的取值范围.19.(17分)从函数的观点看,方程的根就是函数的零点,设函数的零点为r .牛顿在《流数法》一书中,给出了高次代数方程的一种数值解法——牛顿法.具体做法如下:先在x 轴找初始点P 0(x 0,0),然后作y =f (x )在点Q 0(x 0,f (x 0))处切线,切线与x 轴交于点P 1(x 1,0),再作y =f (x )在点(Q 1(x 1,f (x 1))处切线(Q 1P 1⊥x 轴,以下同),切线与x 轴交于点.P 2(x 2,0),.再作y =f (x )在点Q 2(x 2,f (x 2))处切线,一直重复,可得到一列数:x 0,x 1,x 2,∴,x n .显然,它们会越来越逼近r .于是,求r 近似解的过程转化为求x n ,若设精度为ε,则把首次满足|x n -x n ₋1|<ε的x n 称为r 的近似解.(Ⅰ)设f (x )=x 3+x 2+1,试用牛顿法求方程.f (x )=0满足精度ε=0.4的近似解(取x 0=-1,且结果保留小数点后第二位);(Ⅱ)如图,设函数g(x )=2x ;(i)由以前所学知识,我们知道函数8g(x )=2x 没有零点,你能否用上述材料中的牛顿法加以解释?(ii)若设初始点为P 0(0,0),类比上述算法,求所得前n 个三角形00111211,,,n n n Q P P P PQ P P Q -- 的面积和.六安二中2025届高三第二次月考试题数学参考答案及评分标准(仅供参考)题号1234567891011答案CAADDCBCADABDBD6.【详解】由题意得117525(8025)2h⎛⎫-=- ⎪⎝⎭,即1110211h⎛⎫= ⎪⎝⎭;则14525(7525)2t H⎛⎫-=- ⎪⎝⎭,所以1120502th ⎡⎤⎛⎫⎢⎥=⨯ ⎪⎢⎥⎝⎭⎣⎦,得102115t⎛⎫= ⎪⎝⎭,两边取对数102lg 1lg 115t =,25lg lg 2lg 52lg 2120.3110101lg11lg111 1.04lg 11t --⨯-===≈=---,故选:C.7.【详解】当x <1时,则f (x )=-ax 2+2ax -a +3=-a (x -1)2+3,且a >0,所以f (x )=-a (x -1)2+3<3,若函数f (x )的值域为R ,可知当x ≥1时,则.f (x )=a x +a 的值域包含[3,+∞),若0<a <1,则.f (x )=a x +a 在[1,+∞)内单调递减,可得f (x )≤f (1)=2a ,不合题意;若a >1,则.f (x )=a x +a 在[1,+∞)内单调递增,可得f (x )≥f (1)=2a ,则2a ≤3,解得312a <≤;综上所述:实数a 的取值范围是31,2⎛⎤⎥⎝⎦故选:B.8.【详解】已知x ∈(0,+∞),由()()ln 10x e mx m x -+-≥得,()()ln ln x mxe x e mx +≥+,构造函数f (x )=e x +x ,f (x )是R 上的增函数,则由.f (x )≥f (ln(m x ))得:x ≥ln(mx ),即x e m x ≤,令(),(0,)x eg x x x =∈+∞,2(1)()xx e g x x -'=,当x ∈(0,1),g'(x )<0,则g(x )单调递减,当x ∈(1,+∞),g'(x )>0,则g(x )单调递增,∴()()min 1g x g e ==,则m ≤e ,又m >0,则0<m ≤c .故选:C.9.【详解】A:由题设0≤2x +2≤2,则-1≤x ≤0,即f (2x +2)的定义域为[-1,0],A 对;B:当x ∈R 时,不等式kx 2+kx +1>0恒成立,当k =0时,1>0恒成立,当k ≠0时,则需满足2040k k k >⎧⎨∆=-<⎩,∴0<k <4,综合可得k 的取值范围是[0,4),B 不正确,C :由全称命题的否定为特称命题,故原命题的否定为20001,0x x x >-≤,C 错;D:令t =|x |∈[0,+∞),故1(0,1]2t y ⎛⎫=∈ ⎪⎝⎭,即||12x y ⎛⎫= ⎪⎝⎭的值域为(0,1],D 对.故选:AD10.【详解】a =log 315>0,b =log 515>0,a ≠b ,且151511log 3log 51a b+=+=,故A 正确;又由111ab+=可知ab =a +b >4,B 正确;a 2+b 2≥2ab >8,故C 错误.11()224b aa b a b a b a b ⎛⎫+=++=++>= ⎪⎝⎭,D 正确;故选:ABD.11.【详解】对于A ,∵f (1+x )-f (1-x )=0,∴f '(1+x )+f '(1-x )=0,即f '(x )关于(1,0)对称,故A 错误;对于B ,)'(2f x +为偶函数,故f '(x +2)=f '(-x +2),即f '(x )关于x =2对称,由f '(x )关于x =2对称,知f '(3)=f '(1)=0,故B 正确;对于C ,f '(x )关于x =2对称和f '(x )关于(1,0)对称可得:f '(x )=-f '(-x +2)=f '(-x +4),故f '(x +4)=-f '(x +2)=-[-f '(x )]=f '(x ),即f '(x )的周期为4,所以f '(2025)=f '(1)=0,故C 错;对于D ,由(2()2)f x f x ''+=-+得:f (x +2)=-f (-x +2)+m ,即f (x +2)+f (-x +2)=m ,令x =0得,2f (2)=m ,故f (2+x )+f (2-x )=2f (2),故D 正确.故选:BD 12.(-∞,1)13.a =0或12a =详解(此题为书本选择性必修一第103页第13题)解:y =x +ln x 的导数为11y x'=+,曲线y =x +ln x 在x =1处的切线斜率为1121k =+=,则曲线y =x +ln x 在x =1处的切线方程为y -1=2x -2,即y =2x -1.由于切线与曲线y =ax 2+(2a +3)x +1只有一个公共点,y =ax 2+(2a +3)x +1可联立y =2x -1,得ax 2+(2a +1)x +2=0①有且只有一解,当a =0时①式变为x +2=0,则x =-2,方程①有且只有一解,符合题意;当a ≠0时,则Δ=(2a +1)2-8a =0,4a 2-4a +1=0,解得12a =综上,a =0或12a =.14.54a =-或-1≤a <1详解当x <0时,f (x )单调递减,图象为以y =-x 和y 轴为渐近线的双曲线的一支;当x >0时,有f '(x )=ln x +1,可得.f (x )在10,e ⎛⎫ ⎪⎝⎭单调递减,在1,e ⎛⎫+∞ ⎪⎝⎭单调递增且min 11()f x f e e ⎛⎫==- ⎪⎝⎭,0lim ()0x f x →=,画出图象如下:由题意,f (f (x ))-af (x )+1=0有唯一解,设t =f (x ),则1t e <-,(否则至少对应2个x ,不满足题意),原方程化为f (t )-at +1=0,即f (t )=at -1,该方程存在唯一解t 0,且01(,)t e∈-∞-.转化为y =f (t )与y =at -1有唯一公共点,且该点横坐标在1,e ⎛⎫-∞- ⎪⎝⎭,画图如下:。
江苏省盐城中学2024-2025学年高三上学期10月月考数学试题
江苏省盐城中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知集合{}3,2,1,0,1,2,3U =---,{}1,0,1A =-,{}1,2B =,则()U A B ⋃=ð( ) A .{}2,3- B .{}3,2,3- C .{}3,2,3-- D .{}3,2,1,0,2,3---2.若复数z 满足1ii z-=,则z =( )AB .2C D .13.“213x -≥”是“201x x -≥+”的( ) A .充分而不必要条件 B .必要而不充分条件 C .充要条件D .既不充分也不必要条件4.在ABC V 中,2,CD DB AE ED ==u u u r u u u r u u u r u u u r ,则CE =u u u r( )A .1163AB AC -u u ur u u u rB .1263AB AC -u u ur u u u rC .1536AB AC -u u ur u u u rD .1133AB AC -u u ur u u u r5.在一个空旷的房间中大声讲话会产生回音,这种现象叫做“混响”.用声强的大小来度量声音的强弱,假设讲话瞬间发出声音的声强为0W ,则经过t 秒后这段声音的声强变为()0e tW t W τ-=(τ为常数).把混响时间()R T 定义为声音的声强衰减到讲话之初的610-倍所需时间,则R T 约为( )(参考数据ln 20.7≈,ln5 1.6≈) A .4.2τB .9.6τC .13.8τD .23τ6.化简cos20sin30cos40sin40cos60-=o o oo o( )A .1BC .2D 7.已知数列{}n a 的各项均为正数,且11a =,对于任意的*n ∈N ,均有121n n a a +=+,()22log 11n n b a =+-.若在数列{}n b 中去掉{}n a 的项,余下的项组成数列{}n c ,则1220c c c +++=L ( )A .599B .569C .554D .5688.已知函数11()221xf x =-+,()f x '是()f x 的导函数,则下列结论正确的是( ) A .()()0f x f x --= B .()0f x '<C .若120x x <<,则()()1221x f x x f x >D .若120x x <<,则()()()1212f x f x f x x +>+二、多选题9.下列命题中,正确的是( )A .在ABC V 中,若cos cos a A bB =,则ABC V 必是等腰直角三角形 B .在锐角ABC V 中,不等式sin cos A B >恒成立 C .在ABC V 中,若A B >,则sin sin A B >D .在ABC V 中,若260,B b ac =︒=,则ABC V 必是等边三角形 10.已知0,0,2a b a b >>+=,则( )A .1≥abB .222a bb a +≥ C .145aa b+≥ D .224a b ab ++<11.已知函数()2ln 11f x x x =---,则下列结论正确的是( ) A .若0a b <<,则()()f a f b < B .()()20242025log 2025log 20240f f +=C .若()()()e 1,0,1,0,e 1b b f a b a b +=-∈∈+∞-,则e 1b a =D .若()1,2,a ∈则()()1f a f a ->三、填空题12.在ABC V 中,角,,A B C 的对边分别为,,a b c ,若sin :sin :sin 2:3:4A B C =,则sin C =. 13.已知函数()πsin 6f x x ω⎛⎫=+ ⎪⎝⎭,()f x '为()f x 的导函数,()f x '在π0,2⎡⎤⎢⎥⎣⎦上单调递减,则正实数ω的取值范围为.14.已知函数32()f x x ax bx c =+++恰有两个零点12,x x 和一个极大值点()0102x x x x <<,且102,,x x x 成等比数列.若()0()f x f x >的解集为(5,)+∞,则0x =.四、解答题15.已知函数()ππsin 2cos cos 2cos 022f x x x ϕϕϕ⎛⎫⎛⎫=-+<< ⎪⎪⎝⎭⎝⎭,对x ∀∈R ,有()π3f x f ⎛⎫≤ ⎪⎝⎭. (1)求ϕ的值及()f x 的单调递增区间; (2)若()00π10,,43x f x ⎡⎤∈=⎢⎥⎣⎦时,求0sin 2x .16.已知数列{}n a 的前n 项和为n S ,1112,34n n n a S S a ++=+=-. (1)求数列{}n a 的通项公式;(2)在n a 与1n a +之间插入n 个实数,使这n +2个数依次组成公差为dn 的等差数列,求数列1n d ⎧⎫⎨⎬⎩⎭的前n 项和Tn17.在ABC V 中,AC =,且BC 边上的中线AD 长为1. (1)若5π6BAC ∠=,求BC 的长; (2)若2ABC DAC ∠=∠,求BC 的长. 18.设函数()e ,()ln x f x g x x ==.(1)已知e ln x kx x ≥≥对任意(0,)x ∈+∞恒成立,求实数k 的取值范围; (2)已知直线l 与曲线(),()f x g x 分别切于点()()()()1122,,,x f x x g x ,其中1>0x . ①求证:212e e x --<<;②已知()21e 0xx x x λ-++≤对任意[)1,x x ∞∈+恒成立,求λ的最大值.19.若数列 a n 的各项均为正数,且对任意的相邻三项11t t t a a a -+,,,都满足211t t t a a a -+≤,则称该数列为“对数性凸数列”,若对任意的相邻三项11t t t a a a -+,,,都满足112t t t a a a -++≤则称该数列为“凸数列”.(1)已知正项数列{}n c 是一个“凸数列”,且e n c na =,(其中e 为自然常数,*N n ∈),证明:数列 a n 是一个“对数性凸数列”;(2)若关于x 的函数231423()f x b b x b x b x =+++有三个零点,其中0(1,2,3,4)i b i >=.证明:数列1234,,,b b b b 是一个“对数性凸数列”;(3)设正项数列01,,,n a a a L 是一个“对数性凸数列”证明:110101111111n n n n i j i j i j i j a a a a n n n n --====⎛⎫⎛⎫⎛⎫⎛⎫≥ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪+-⎝⎭⎝⎭⎝⎭⎝⎭∑∑∑∑.。
陕西省渭南市蒲城县2024-2025学年高三上学期10月月考数学检测试题
陕西省渭南市蒲城县2024-2025学年高三上学期10月月考数学检测试题注意事项:1.本试卷分选择题和非选择题两部分.满分150分,考试时间120分钟.2.考生作答时,请将答案答在答题卡上.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑;非选择题请用直径0.5毫米黑色墨水签字笔在答题卡上各题的答题区域内作答,超出答题区域书写的答案无效,在试题卷、草稿纸上作答无效.3.本试卷命题范围:集合与逻辑、不等式、函数.一、选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一个选项是符合题目要求的.1. 已知集合,,则(){}13,5A =,{}1,2,3B =A B = A.B.C.D.{}3{}1,2,5{}1,2,3,5{}1,2,3,4,52. 已知命题,则的否定是( )2024:R,20230x p x x ∀∈+>p A .B.2024R,20230x x x ∀∈+≤2024R,20230x x x ∃∈+<C.D.2024R,20230x x x ∃∈+≤2024R,20230x x x ∃∈+≠3. 不等式的解集为( )304x x +≥-A. B. []3,4-[)3,4-C.D.()(),33,∞∞--⋃+(](),34,-∞-+∞ 4. 函数的定义域是()211x y x -=+-A .B. [)4,-+∞()4,-+∞C.D.[)()4,00,-+∞ [)()4,11,-+∞ 5. 函数的大致图象为( )()21e xx f x +=A.B.C.D.6. 已知,则的大小关系是( )120232023202212024,log 2022,log 2023a b c ===,,a b c A. B. a b c >>b a c >>C. D. c a b >>a c b>>7. 函数上单调递减,则a 的取值范围为()()f x =[]1,1-A. B. C. D.1a ≤-1a <-31a -≤≤-31a -<<-8. 设,,则下列不等式中不恒成立的是( ).0a >0b >A. B.12a a+≥222(1)ab a b +≥+-D. ≥3322a b ab+≥二、选择题:本大题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9. 下列函数在其定义域上既是奇函数又是增函数的是( )A. B. 1y x=e e xxy -=-C.D.3y x =2log y x=10. 下列四个命题中正确的是( )A. 若,则B. 若,则,a b c d >>a d b c->-22a m a n >m n>C. 若,则D. 若,则110a b <<2b ab>a b >11a b a>-11. 下列说法正确的是()A. “万事俱备,只欠东风”,则“东风”是“赤壁之战东吴打败曹操”的必要不充分条件B. 若是的必要不充分条件,是的充要条件,则是的充分不必要条件p q p r q r C. 方程有唯一解的充要条件是20ax x a ++=12a =±D.表示不超过的最大整数,表示不小于的最小整数,则“”是“”的[]x x xx []a b=a b ≥充要条件三、填空题:本大题共3小题,每小题5分,共15分.12. 已知函数则______.()()16log ,2,21,2x x f x f x x ≤⎧=⎨->⎩(4)f =13. 若“,使得”是假命题,则实数m 的取值范围是______.x ∃∈R 2210x mx -+<14. 已知函数是偶函数,则__________.e ()1x mxf x x =+-m =四、解答题:本大题共5小题,共77分.解答应写出必要的文字说明、证明过程及演算步骤.15. 设集合..{}52A x x =-<{}121B x x m =<<+(1)若,求实数的取值范围;A B =∅ m (2)若“”是“”的充分不必要条件,求实数的取值范围.x A ∈x B ∈m 16. 已知函数,点,是图象上的两点.()21x bf x ax +=+()1,5A ()2,4B ()f x (1)求,的值;a b (2)求函数在上的最大值和最小值.()f x []1,317. 已知函数.()2109f x x x =-+(1)求不等式的解集;()0f x >(2)若,不等式恒成立,求的取值范围.0x >()f x ax≥a18. 若定义在上的奇函数满足,当时,.R ()f x ()()2=f x f x -[]0,1x ∈()22f x x x=-(1)求的值;()2024f (2)当时,求函数的解析式.[]3,4x ∈()f x 19. 已知为偶函数、为奇函数,且满足.()f x ()g x 1()()2xf xg x --=(1)求,;()f x ()g x (2)若方程有解,求实数m 的取值范围.2()[()]29mf x g x m =++。
江西省上进联考2024-2025学年高三上学期10月月考数学试题
江西省上进联考2024-2025学年高三上学期10月月考数学试题一、单选题1.已知集合{}{}4,3,0,6,3A B x x =--=∈≤Z ,则A B ⋂的非空真子集的个数为( ) A .2B .3C .4D .62.已知命题:,20240p x x ∀∈+>R ,命题():3,sin 30q x x ∃<-+=,则( ) A .p 和q 都是真命题 B .p ⌝和q 都是真命题 C .p 和q ⌝都是真命题D .p ⌝和q ⌝都是真命题3.将函数()()sin 3(0π)f x x ϕϕ=+<<的图象向左平移π4个单位长度后得到奇函数()g x 的图象,则ϕ=( ) A .π12B .π4C .5π12 D .π24.已知函数()2e 3,0,25,0x x x f x x ax a x ⎧+≤=⎨++>⎩在R 上单调,则a 的取值范围是( )A .1,5⎛⎤-∞ ⎥⎝⎦B .10,5⎡⎤⎢⎥⎣⎦C .1,5⎡⎫+∞⎪⎢⎣⎭D .[)0,+∞5.已知22sin cos 3cos 4θθθθ++=,则tan θ=( ) A .1B.C .2 D6.在ABC V 中,内角A ,B ,C 的对边分别为a ,b ,c ,满足23bc a =,且72b c a +=,则si n A =( )ABC .23D .387.已知3212log 61a a +=+-,则a =( ) A .39log 2B .32C .3log 4D .28.已知a ,b 为正数,若x b ∀>-,有函数()()1x af x x b -=+≥,则18a b+的最小值为( )A .9+B .9+C .9D .二、多选题9.已知a b c >>,则( ) A .22a c b c ->-B .22a c b c ->-C .()()cos 2cos 2a c b c +>+D .33a b >10.已知函数()e xf x a bx c =++的两个零点分别为1,1-,且()00f <,则( )A .1e e 2c a -+=-⋅B .0a >C .2e 0b a +<D .0a b c ++<11.若存在实数b 使得方程430x mx nx b +++=有四个不等的实根,则mn 的值可能为( )A .2024-B .2025C .0D .6-三、填空题12.已知扇形的圆心角为3rad ,面积为24,则该扇形的弧长为.13.已知函数()3log (3sin 1f x x =+,则)(f m fm +=.14.函数()()28ln sin sin 2f x x x =+在区间π0,2⎛⎫ ⎪⎝⎭上的零点个数为个.四、解答题15.已知函数()π24f x x ⎛⎫=+ ⎪⎝⎭.(1)求()f x 的单调递增区间; (2)当5π0,8x ⎡⎤∈⎢⎥⎣⎦时,求()f x 的最值.16.已知集合{}(){}21,lg 310A x a x a B x y x x =≤≤+==--.(1)当1a =时,求()B A ⋂R ð;(2)若“x A ∈”是“x B ∈R ð”的充分不必要条件,求a 的取值范围. 17.已知函数()3sin 2e xx x f x -+=.(1)求曲线()y f x =在点()()0,0f 处的切线方程; (2)求()f x 的最值.18.记ABC V 的内角A ,B ,C 所对的边分别为a ,b ,c ,且24a b c +==. (1)求C 的取值范围;(2)若ABC V 为锐角三角形,设(),1AN AB BM BA λλλ==>u u u r u u u r u u u u r u u u r ,探究是否存在λ,使得tan tan CMA CNB ∠⋅∠为定值?若存在,求出该定值;若不存在,请说明理由.19.定义:设函数()f x 的图象上一点 x 0,f x 0 处的切线为00,l l 在 x 0,f x 0 处的垂线1l 也与()f x 的图象相切于另一点 x 1,f x 1 ,则称0l 和1l 为()f x 的一组“垂切线”,0x 为“垂切点”.已知三次函数()30,f x x bx l =+和1l 为()f x 的一组“垂切线”,其中0x 为()f x 的垂切点,1l 与()f x 相切于点 x 1,f x 1 .(1)求曲线y =f x 在点 x 0,f x 0 处的切线方程;(用0x 和b 表示)(2)若对任意1x 都存在π0,,2α⎡⎫∈⎪⎢⎣⎭使21cos m x α=,求正数m 的取值范围;(3)证明:点 x 0,f x 0 和 x 1,f x 1 参考公式:()()()()232333221100100110100011232,x x x x x x x x x x x x x x x x -+=-+-=-++.。
江苏省扬州中学2024-2025学年高三上学期10月月考数学试题
江苏省扬州中学2024-2025学年高三上学期10月月考数学试题一、单选题1.已知角α终边上一点(3,4)(0)P t t t ≠,则sin α=( ) A .45B .45-C .45±D .不确定2.已知集合{}|04A x x =∈<<N ,{}1,0,1,2B =-,则集合A B ⋂的真子集个数为( ) A .7B .4C .3D .23.设a ,b 都是不等于1的正数,则“log 3log 31a b >>”是“33a b <”的( ) A .充要条件 B .充分不必要条件 C .必要不充分条件 D .既不充分也不必要条件4.函数()1cos ex x x f x -=的图象大致为( )A .B .C .D .5.已知函数2()(e e 2)1,()2x x f x a x g x x ax -=++-=-+,若()f x 与()g x 的图象在(1,1)x ∈-上有唯一交点,则实数a =( ) A .2B .4C .12D .16.在ABC V 中,角A ,B ,C 分别为a ,b ,c 三边所对的角,()()2222sin sin A B a b a b A B ++=--,则ABCV 的形状是( )A .等腰三角形但一定不是直角三角形B .等腰直角三角形C .直角三角形但一定不是等腰三角形D .等腰三角形或直角三角形7.已知不等式32ln(1)2a x x x +>-(其中0x >)的解集中恰有三个正整数,则实数a 的取值范围是( ) A .(3,8]B .[3,8)C .932,ln 4ln 5⎡⎫⎪⎢⎣⎭D .932,ln 4ln 5⎛⎤⎥⎝⎦8.已知定义在 0,+∞ 上且无零点的函数()f x 满足()()()1xf x x f x ='-,且()10f >,则( ) A .()()1122f f f ⎛⎫<< ⎪⎝⎭B .()()1212f f f ⎛⎫<< ⎪⎝⎭C .()()1212f f f ⎛⎫<< ⎪⎝⎭D .()()1212f f f ⎛⎫<< ⎪⎝⎭二、多选题9.下列命题正确的是( )A .命题:“()1,x ∀∈+∞,都有21x >”的否定为“(],1x ∃∈-∞,使得21x ≤”;B .设定义在R 上函数()()()()()3log 1,41,4x x f x f x x ⎧-≥⎪=⎨+<⎪⎩,则()11f =;C .函数()f x =[)1,+∞;D .已知2log 0.3a =,0.32b =,sin 2c =,则,,a b c 的大小关系为a c b <<.10.已知函数()f x 的定义域为R ,对任意实数x ,y 满足:()()()1f x y f x f y -=-+.且()10f =,当0x >时,()1f x <.则下列选项正确的是( ) A .()01f = B .()22f =-C .()1f x -为奇函数D .()f x 为R 上的减函数11.已知函数π()|sin |cos()6f x x x =+-,则 ( )A .函数()f x 的最小正周期为2πB .函数()f x 的图象为中心对称图形C .函数()f x 在5π(2π,)3--上单调递增 D .关于x 的方程()f x a =在[π,π]-上至多有3个解三、填空题12.22lg2lg3381527log 5log 210--+⋅+=.13.已知幂函数()f x 的图象过点()2,16-,则()()131f x f x +≤-的解集为.14.已知ABC V 的角A ,B ,C 满足tan tan tan [tan ][tan ][tan ]A B C A B C ≤++,其中符号[]x 表示不大于x 的最大整数,若A B C ≤≤,则tan tan B C +=.四、解答题15.已知函数()sin()0,0,||2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象,如图所示.(1)求函数()f x 的解析式;(2)将函数()f x 的图象向右平移3π个单位长度,再将得到的图象上各点的横坐标缩短为原来的12,纵坐标不变,得到函数()g x 的图象,当0,3x π⎡⎤∈⎢⎥⎣⎦时,求函数()g x 的值域. 16.为了提高学生的法律意识,某校组织全校学生参与答题闯关活动,共两关.现随机抽取100人,对第一关答题情况进行调查.(1)求样本中学生分数的平均数x (每组数据取区间的中点值);(2)假设分数Z 近似服从正态分布2(,)N μσ,其中μ近似为样本的平均数x (每组数据取区间的中点值),2σ近似为样本方差2221s ≈,若该校有4000名学生参与答题活动,试估计分数在(30,72)内的学生数(结果四舍五入);(3)学校规定:分数在[60,100]内的为闯关成功,并对第一关闯关成功的学生记德育学分5分;只有第一关成功才能闯第二关,第二关闯关不成功的学生德育学分只记第一关学分;对两关均闯关成功的学生记德育学分10分.在闯过第一关的同学中,每位同学第二关闯关成功的概率均为34,同学之间第二关闯关是相互独立的.从第一关闯关成功的学生中随机抽取2人,记2人本次活动总分为随机变量X ,求X 的分布列与数学期望.(参考数据:若随机变量()2~,Z N μσ,则()0.6826,(22)P Z P Z μσμσμσμσ-<<+=-<<+=0.9544,(33)0.9974P Z μσμσ-<<+=)17.如图,在四棱锥P ABCD -中,PAD △为等边三角形,M 为PA 的中点,PD AB ⊥,平面PAD ⊥平面ABCD .(1)证明:平面CDM ⊥平面PAB ;(2)若AD BC ∥,2AD BC =,2AB =,直线PB 与平面MCD 棱锥P MCD -的体积.18.在ABC V 中,设角A ,B ,C 所对的边分别是a ,b ,c ,sin cos C b C a c +=+. (1)求角B ;(2)若b =ABC V 面积的最大值; (3)求2ac ab bcb --的取值范围.19.已知函数()()211ln ln 122f x x x ax x ⎛⎫=-+- ⎪⎝⎭,其中0a ≠. (1)讨论函数()f x 的单调性;(2)若0a >,证明:函数()f x 有唯一的零点; (3)若()0f x >,求实数a 的取值范围.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高2014级高三上期10月月考试题
数学(文)
考试时间:120分钟
一、选择题(每小题5分,共60分)
1. 已知集合2
{|20}A x x x =--≤,2{|log 1}B x x =>,则()R A
C B =( )
A .(0,2]
B .(0,2)
C .[1,2]-
D .(1,2]-
2. 若复数z 满足(34)|43|i z i -=+,则z 的虚部为 ( )
A.4-
B.45
-
C.4
D.
45
3. 若将函数2sin 2y x =的图像向左平移
12
π
个单位长度,则平移后图像的对称轴为( ) A.()26k x k Z ππ
=
-∈
B.()26
k x k Z ππ
=
+∈
C.()212
k x k Z ππ=-∈
D.()212
k x k Z ππ
=
+∈ 4. 已知正四棱柱1111D C B A ABCD -中,AB AA =1,E 为1AA 的中点,则异面直线BE 与1CD 所成
角的余弦值为( )
A.
1010 B.15
C.31010
D.
35
5. 已知3
13
23
4
25,3,2===c b a ,则( )
A.c a b <<
B.c b a <<
C.a c b <<
D.b a c <<
6. 如图所示,为测一树的高度,在地面上选取A 、B 两点,从A 、B 两点分别测得树尖的仰角为30°,
45°,且A 、B 两点之间的距离为60 m ,则树的高度为( ) A .m )(3315+B .m )(31530+
C. m )(33030+D .m )(33015+
7. 下列有关命题的说法正确的是( ).
A.2
,2
x R x x
∃∈≤-
B.R
θ
∀∈,函数()sin(2)
f x xθ
=+都不是偶函数
C.“对任意的x R
∈,210
x x
++>”的否定是“存在
x R
∈,2
00
10
x x
++< D.已知m,n表示两条不同的直线,α,β表示不同的平面,并且mα
⊥,nβ
⊂,则“αβ
⊥”是“//
m n”的必要不充分条件
8. 某几何体的三视图如右图所示,则该几何体的体积为
( ).
A.π8
16+B.π8
8+
C.π
16
16+D.π
16
8+
9.已知函数()()()
f x x a x b
=--(其中a b
>)的图像
如下图右所示,则函数()x
g x a b
=+的图像是()
10. 已知0
ω>,函数()sin()
4
f x x
π
ω
=+在(,)
2
π
π上单调递减,则ω
的取值范围是( )
A.
13
[,]
24
B.
15
[,]
24
C.
1
(0,]
2
D.(0,2]
11. 定义在实数集R上的奇函数()
f x,对任意实数x都有
33
()()
44
f x f x
+=-,且满足()3
12,(2)
f f m
m
>-=-,则实数m的取值范围是 ( )
A.13
m
-<<B.03
m
<<C.3
m>或1
m<-D.03
m
<<或1
m<-
12. 已知函数
⎪⎩
⎪
⎨
⎧
≥
+
-
<
-
=
,4
6
,)
lg(
)
(
2x
x
x
x
x
x
f,关于x的函数2()()3
y f x bf x
=-+有8个不同的零点,则实数b的范围为()
A. ]
4
19
2(, B.
19
(23,]
4
C.]
4
17
,2( D.]
4
17
3
2(,
二、填空题(每小题5分,共20分)
13.已知角θ的顶点与原点重合,始边与x 轴的正半轴重合,终边在直线2y x =上,则
cos 2θ=________________
14.已知(2,1)a =-,(,3)b k =-,(1,2)c =,若(2)a b c -⊥,则||b =_______ 15.在正方体1111ABCD
A B C D 中,M 是线段11A C 的中点,若四面体M
ABD 的外接球体积为
π36,则正方体棱长为___________
16.已知平面向量,
,2=
,4=,4=⋅b a .若
为平面单位向量,则+的最大
值是______.
三、解答题(17题10分,其余各题12分,共70分) 17.(本小题满分10分)
在△ABC 中,角A ,B ,C 对应的边分别是a ,b ,c . 已知cos23cos()1A B C -+=. (Ⅰ)求角A 的大小;
(Ⅱ)若△ABC
的面积S =,5b =,求sin sin B C 的值.
18.(本小题满分12分)
如图,在三棱锥ABC P -中,平面⊥PAC 平面ABC ,AC PD ⊥于点D ,且22==AD DC ,
2:1:=EC PE PC E 上一点,为,
(Ⅰ)求证:;平面PAB DE // (Ⅱ);平面求证:平面ABC PDB ⊥ (Ⅲ)若32=
=AB PD ,, 60=∠ABC ,求三棱锥ABC P -的体积.
19.(本小题满分12分)
已知向量,),2(sin ),2cos ,(n x x m ==,设函数x f ⋅=)(,且)(x f y =的图像过点
),(312π
和点)
,(232-π
, (Ⅰ)求n m ,的值;
(Ⅱ)将)(x f y =的图像向左平移ϕ(πϕ<<0)个单位后得到函数)(x g y =的图像,若)
(x g y =
的图像上各最高点到点),(30的距离的最小值为1,求)(x g y =的单调增区间. 20.(本小题满分12分)
定义在R 上的函数
32()3f x ax bx cx =+++同时满足以下条件:①函数()f x 在(0,1)上是减
函数,在(1,)+∞上是增函数;②()f x '是偶函数;③函数()f x 在0x =处的切线与直线2y x =+垂直.
(Ⅰ)求函数()f x 的解析式;
(Ⅱ)设()4ln g x x m =-,若存在[1,]x e ∈使得()()g x f x '<,求实数m 的取值范围.
21.(本小题满分12分)
已知长方体1AC 中,棱1==BC AB ,棱21=BB ,连结C B 1,过B 点作C B 1的垂线交1CC 于
E , 交C B 1于
F .
(Ⅰ)求证:C A 1⊥平面EBD ; (Ⅱ)求点A 到平面C B A 11的距离;
(Ⅲ)求直线DE 与平面C B A 11所成角的正弦值.
22.(本小题满分12分)
设函数()()2
1x
f x x e kx =--(其中k ∈R ).
A B
C
D
F
E
A 1
B 1
C 1
D 1
(Ⅰ) 若0)(>x f 对),1(+∞∈x 恒成立,求实数k 的取值范围; (Ⅱ)当]1,2
1(∈k 时,求函数()f x 在[]0,k 上的最大值M .。