第四章 经典线性回归模型(高级计量经济学清华大学 潘文清)概要
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
注意:
(1) 1阶偏导: SSR/b= -2X’(Y-Xb)
2阶偏导: 2SSR/2b=2X’X
由min(X’X)>0 知2X’X>0, 从而b=(X’X)-1(X’Y)是最小值 (2) 由1阶极值条件可以得到所谓正规方程(normal equations): X’(Y-Xb)=X’e=0 正规方程是OLS所特有的,而不论是否有E(i|X)=0
假设4(Spherical error variance) (a) [conditional homoskedasticity]: E(i2|X)=2>0, i=1,2,…,n (b) [conditional serial uncorrelatedness]: E(ij|X)=0, i, j=1,2,…,n
(i=1,2,…n)
(1) 由E(i|X)=0 易推出:E()=0, E(Xji)=0 或有: Cov(Xj, i)=0 (i, j=1,2,…n) (2) 由于可以有j≤i, 或j>i, 意味着i既不依赖过去的X, 也不依赖于未来的X。因此排除了动态模型。 例:对AR(1)模型: Yi=0+1Yi-1+i=Xi’+i 这里Xi=(1, Yi-1)’,显然E(Xii)=E(Xi)E(i)=0,但 E(Xi+1i)≠0。因此,E(i|X)≠0
第四章 经典线性回归模型(I)
Classical Linear Regression Model (I)
§4.1 经典线性回归模型 Classical Linear Regression Models
一、经典回归模型 Classical Regression Model
假设随机抽取一容量为n的样本(Yi, Xi), i=1,…,n, 其中,Yi是标量,Xi=(1,X1i,X2i,…,Xki)’,或
注意: (1) 假设4可写成
E(ij|X)=2ij,
其中, i= j时,ij=1; i≠j时,ij=0
矩阵形式: E(’)=2I
(2)由假设2,
Var(i|X)=E(i2|X)-E[(i|X)]2=E(i|X)=2
同理, Cov(i,j|X)=E(ij|X)=0
三、高斯-马尔科夫定理 Gauss-Markov Theorem
•Question: OLS估计量的统计性质如何? (1)[Unbiaseness] E(b|X)=, E(b)= E(b|X)=E[(+(X’X)-1X’)|X]=+(X’X)-1X’E(|X)= (2)[Vanishing Variance] Var(b|X)=E[(b-)(b-)’|X] =E[(X’X)-1X’’X(X’X)-1|X] =(X’X)-1E(’|X) =(X’X)-12I =2(X’X)-1 b中第i个元素的方差:Var(bi)= 2cii, cii为(X’X)-1 中主对角线第i个元素。
(3) 假设4意味着存在非条件同方差性wenku.baidu.com var(i)=2 类似地, Cov(i, j)=0 (4) 假设4并不意味着i与X是独立的。它充许i的 条件高阶矩(如:偏度、峰度)可依赖于X。
二、参数的估计 Estimation of
由假设1与假设2知: E(Y|X)=0+1X1+…+kXk=X’ 其中,X=(1, X1, …,Xk)’ 即线性模型Y=X’+关于E(Y|X) 正确设定。 因此,其最佳线性最小二乘近似解(beat linear LS approximation coefficient)*等于参数的真实值0。 即,min E(Y-X’)2 的解为 *=0=[E(XX’)]-1E(XY)
假设1(linearity): Yi=0+1X1i+…+kXki+i =Xi’+i (i=1,2,…n) 或 Y=X+ 其中,=(0, 1,…,k)’, =(1,2,…,n)’ 注意: 这里的线性性指Y关于参数是线性的。
假设2(strict Exogeneity): E(i|X)=E(i|X1,X2,…Xn)=0, 注意:
Y1 Y2 Y Y n
1 X 11 1 X 12 X 1 X 1n X k1 X k2 X kn
经典回归模型(classical regression model)建立在 如下假设之上:
(3) 计量经济学中,关于严格外生性有其他的定义。 如定义为i独立于X,或X是非随机的。这一定义排 除了条件异方差性。而我们这里的假设2是允许存在 条件异方差性的。 如果X是非随机的,则假设2变成
E(i|X)=E(i)=0
(4)假设2的向量形式:
E(|X)=0
注意: (1)本假设排除了解释变量间的多重共线性 (multicollinearity) (2) 本假设意味着X’X是非奇异的,或者说X必须 满秩于k+1。因此应有k+1≤n。 (3) 由于λ表述了矩阵X’X的相关信息,因此本假 设意味着当n∞时应有新信息进入X,即Xi不能老 是重复相同的值。
由类比法,对样本回归模型 Yi=Xi’b+ei i=1,2,…,n 其中,Xi=(1, X1i, …,Xki)’, b=(b0, b1, …,bk)’ 需求解极值问题 min (1/n)(ei)2 上述问题相当于求解残差平方和(sum of squared residuals, SSR)的极小值 min SSR(b)=ei2=(Yi-Xi’b)2=e’e=(Y-Xb)’(Y-Xb) 其中,e=(e1,e2,…,en)’ 在假设3下,解为: b=(X’X)-1(X’Y) 该方法称为普通最小二乘法(ordinary Least Squares)
• 一些有用的等式 (1) X’e=0 (2) b-=(X’X)-1X’ 因为 b=(X’X)-1X’Y=(X’X)-1X’(X+)=+(X’X)-1X’ (3) 定义nn方阵: P=X(X’X)-1X’ , M=In-P 则 P=P’ , M=M’ P2=P, M2=M 且 PX=X, MX=On(k+1) (4) e=MY=M SSR(b)=e’e=Y’MY=’M