现代数字信号处理期末复习考试
数字信号处理复习题及参考答案
数字信号处理期末复习题一、单项选择题(在每个小题的四个备选答案中选出一个正确答案,并将正确答案的号码写在题干后面的括号内,每小题1分,共20分)1.要从抽样信号不失真恢复原连续信号,应满足下列条件的哪几条( ① )。
(Ⅰ)原信号为带限(Ⅱ)抽样频率大于两倍信号谱的最高频率(Ⅲ)抽样信号通过理想低通滤波器①.Ⅰ、Ⅱ②.Ⅱ、Ⅲ③.Ⅰ、Ⅲ④.Ⅰ、Ⅱ、Ⅲ2.在对连续信号均匀采样时,若采样角频率为Ωs,信号最高截止频率为Ωc,则折叠频率为( ④ )。
①Ωs②.Ωc③.Ωc/2④.Ωs/23.若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R3(n),则当输入为u(n)-u(n-2)时输出为( ② )。
①.R3(n) ②.R2(n)③.R3(n)+R3(n-1) ④.R2(n)-R2(n-1)4.已知序列Z变换的收敛域为|z|>1,则该序列为( ② )。
①.有限长序列②.右边序列③.左边序列④.双边序列5.离散系统的差分方程为y(n)=x(n)+ay(n-1),则系统的频率响应( ③ )。
①当|a|<1时,系统呈低通特性②.当|a|>1时,系统呈低通特性③.当0<a<1时,系统呈低通特性④.当-1<a<0时,系统呈低通特性6.序列x(n)=R5(n),其8点DFT记为X(k),k=0,1,…,7,则X(0)为( ④ )。
①.2 ②.3③.4 ④.57.下列关于FFT的说法中错误的是( ① )。
①.FFT是一种新的变换②.FFT是DFT的快速算法③.FFT基本上可以分成时间抽取法和频率抽取法两类④.基2 FFT要求序列的点数为2L(其中L为整数)8.下列结构中不属于FIR滤波器基本结构的是( ③ )。
①.横截型②.级联型③.并联型④.频率抽样型9.已知某FIR滤波器单位抽样响应h(n)的长度为(M+1),则在下列不同特性的单位抽样响应中可以用来设计线性相位滤波器的是( ① )。
现代数字信号处理期末复习
“现代数字信号处理”复习思考题变换1. 给出DFT的定义和主要性质。
2. DTFT与DFT之间有什么关系?3. 写出FT、DTFT、DFT的数学表达式。
离散时间系统分析1. 说明IIR滤波器的直接型、级联型和并联型结构的主要特点。
2. 全通数字滤波器、最小相位滤波器有何特点?3. 线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如何?4. 简述FIR离散时间系统的Lattice结构的特点。
5. 简述IIR离散时间系统的Lattice结构的特点。
采样1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标?维纳滤波1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。
2.写出最优滤波器的均方误差表示式。
3.试说明最优滤波器满足正交性原理,即输出误差与输入信号正交。
4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。
5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。
6.维纳滤波理论对信号和系统作了哪些假设和限制?自适应信号处理1.如何确定LMS算法的值,值与算法收敛的关系如何?2.什么是失调量?它与哪些因素有关?3.RLS算法如何实现?它与LMS算法有何区别?4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少?5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。
功率谱估计1. 为什么偏差为零的估计不一定是正确的估计?2. 什么叫一致估计?它要满足哪些条件?3. 什么叫维拉-辛钦(Wiener-Khinteche)定理?4. 功率谱的两种定义。
5. 功率谱有哪些重要性质?6. 平稳随机信号通过线形系统时输入和输出之间的关系。
7. AR模型的正则方程(Yule-Walker方程)的导出。
8. 用有限长数据估计自相关函数的估计质量如何?9. 周期图法谱估计的缺点是什么?为什么会产生这些缺点?10. 改进的周期图法谱估计有哪些方法?它们的根据是什么?11. 既然隐含加窗有不利作用,为什么改进周期图法谱估计是还要引用各种窗?12. 经典谱估计和现代谱估计的主要差别在哪里?13. 为什么AR模型谱估计应用比较普遍?14. 对于高斯随机过程最大熵谱估计可归结为什么样的模型?15. 为什么Levison-Durbin快速算法的反射系数的模小于1?16. 什么是前向预测?什么是后向预测?17. AR模型谱估计自相关法的主要缺点是什么?18. Burg算法与Levison-Durbin算法的区别有哪些?。
(完整word版)数字信号处理期末试卷(含答案)全..(word文档良心出品)
数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。
A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。
A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。
A.N B.N 2 C.N 3 D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。
数字信号处理期末试卷(共七套)
第一套试卷学号 姓名 成绩一、 选择题(每题3分,共5题) 1、)63()(π-=n j en x ,该序列是 。
A.非周期序列B.周期6π=N C.周期π6=N D. 周期π2=N2、序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A.a Z <B.a Z ≤C.a Z >D.a Z ≥3、若一线性移不变系统当输入为x(n)=δ(n)时输出为y(n)=R 3(n),则当输入为u(n)-u(n -2)时输出为 。
A.R 3(n)B.R 2(n)C.R 3(n)+R 3(n -1)D.R 2(n)+R 2(n -1) 4、)()(101n R n x =,)()(72n R n x =,用DFT 计算二者的线性卷积,为使计算量尽可能的少,应使DFT 的长度N 满足 。
A.16>NB.16=NC.16<ND.16≠N5.已知序列Z 变换的收敛域为|z |<1,则该序列为 。
A.有限长序列 B.右边序列 C.左边序列 D.双边序列 二、填空题(每题3分,共5题)1、离散时间信号,其时间为 的信号,幅度是 。
2、线性移不变系统的性质有__ ____、___ ___和分配律。
3、要想抽样后能够不失真的还原出原信号,则抽样频率必须 ,这就是奈奎斯特抽样定理。
4、序列R 4(n)的Z 变换为_____ _,其收敛域为____ __。
5、对两序列x(n)和y(n),其线性相关定义为 。
三、10)(-≤≥⎩⎨⎧-=n n ba n x nn求该序列的Z 变换、收敛域、零点和极点。
(10分)四、求()()112111)(----=z z Z X ,21<<z 的反变换。
(8分)五、已知两个有限长序列如下图所示,要求用作图法求。
(10分)六、已知有限序列的长度为8,试画出按频率抽选的基-2 FFT算法的蝶形运算流图,输入为顺序。
(10分)七、问答题:数字滤波器的功能是什么?它需要那几种基本的运算单元?写出数字滤波器的设计步骤。
数字信号处理期末试卷(含答案)
________ 次复乘法,运算效率为__
_。
6、FFT利用 来减少运算量。
7、数字信号处理的三种基本运算是: 。
8、FIR滤波器的单位取样响应
是圆周偶对称的,N=6,
,其幅度特性有什么特性? ,相位有何特 性? 。 9、数字滤波网络系统函数为
。
4、 已知
,
的反变换
。 3、
,变换区间
,则
。 4、
,
,
是
和
的8点循环卷积,则
。
5、用来计算N=16点DFT直接计算需要_
2FFT算法,需要
次复乘法
6、基2DIF-FFT 算法的特点是
7、有限脉冲响应系统的基本网络结构有
8、线性相位FIR滤波器的零点分布特点是
9、IIR系统的系统函数为
次复加法,采用基
转换为
时应使s平面的左半平面映射到z平面的
。
A.单位圆内 B.单位圆外 C.单位圆上 D.单位圆与实轴的交
点
6、 分析问答题(每题5分,共2题)
3、 某线性时不变因果稳定系统单位取样响应为
(长度为N),则该系统的频率特性、复频域特性、离散频率特性分 别怎样表示,三者之间是什么关系? 4、 用
对连续信号进行谱分析时,主要关心哪两个问题以及怎样解决二者的 矛盾?
十一、(7分)信号 包含一个原始信号 和两个回波信号: 求一个能从 恢复 的可实现的滤波器.
附录:
矩形窗(rectangular window) 汉宁窗(Hann window) 汉明窗(Hamming window) 布莱克曼窗(Blackman window)
表1 一些常用的窗函数
表2 一些常用窗函数的特性
数字信号处理期末复习题及答案
,其中
zk A0 e j0 W0 e j0
k
2 2 A W M 或者 N 时, ,当 M N , 0 1 , 0 0 , 0 1 , 0
CZT 的取样点数目和取样点位置与 DFT 完全相同。
6. 序列 xn sin 3n / 5 的周期为 7. 序列 。 ,其收敛域为 。
j
, 单位取样响应为 h( n) (0.5) u ( n) 4(2) u ( n 1) 。
n n
(4) 设线性时不变系统的频率响应为 H (e )
1 ,若输入序列 1 0.5e j
x(n) 1.5cos( n 0.5 ) ,则系统的输出序列为 y (n) cos( n 0.5 ) 。
y (n) IDFT X (k ) H (k ) ;0 n 31 ,则 y (n) 中相等于 x(n) 与 h(n) 线性卷积中的点有 26 点,其序号从 6 到 31 。
(9) 模拟信号以 16 k Hz 进行取样,计算 1024 点 DFT (k 0,1, ,1023) ,则 k 512 所对应的 模拟频率为 8kHz ;其频率分辨率为 15.625 Hz 。 (10) 以 2 为基数,按时间抽选计算 1024 点 DFT ,共需完成 5120 个蝶形运算。
(5) 数字滤波器的零点为 z=-0.2 和 z=0.4,极点为 z=-0.7±j0.6,增益为 0.5,则滤波器是否稳 定(填写是或否) 是 ,其传输函数为 H ( z )
0.5 0.1z 1 0.04 z 2 1 1.4 z 1 0.65 z 2
则 X R ( ) 关于 具有(填 (6) 若实序列 x( n) 的离散时间傅氏变换为 X ( ) X R ( ) jX I ( ) , 写奇或偶) 偶 对称性,其对应的时域序列为(用 x(n) 表示)
数字信号处理期末试卷(含答案)
数字信号处理期末试卷(含答案)数字信号处理期末试卷一、填空题:(每空1分,共18分)1、数字频率ω是模拟频率Ω对采样频率fs的归一化,其值是连续Ω与数字频率ω之间的映射变换关系为Ω=2tan(ωT/2)。
用双线性变换法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Ω=2fsarctan(ω/fs)。
2、双边序列z变换的收敛域形状为圆环或空集。
3、某序列的DFT表达式为X(k)=∑x(n)Wkn,由此可以看出,该序列时域的长度为N,变换后数字频域上相邻两个频率样点之间的间隔是2π/M。
4、线性时不变系统离散时间因果系统的系统函数为H(z)=(8(z^2-z-1))/(2z^2+5z+2),则系统的极点为z=1/2,z=-2;系统的稳定性为不稳定。
系统单位冲激响应h(n)的初值h(0)=4;终值h(∞)不存在。
5、如果序列x(n)是一长度为64点的有限长序列(0≤n≤63),序列h(n)是一长度为128点的有限长序列(0≤n≤127),记y(n)=x(n)*h(n)(线性卷积),则y(n)为64+128-1=191点的序列,如果采用基2FFT算法以快速卷积的方式实现线性卷积,则FFT的点数至少为256点。
6、用冲激响应不变法将一模拟滤波器映射为数字滤波器时,模拟频率Ω与数字频率ω之间的映射变换关系为Ω=2fsarctan(ω/fs)。
7、当线性相位FIR数字滤波器满足偶对称条件时,其单位冲激响应h(n)满足的条件为h(n)=h(N-1-n),此时对应系统的频率响应H(ejω)=H(ω)ejφ(ω),则其对应的相位函数为φ(ω)=-N/2ω。
8、巴特沃什滤波器、切比雪夫滤波器、椭圆滤波器是三种常用低通原型模拟滤波器。
二、判断题(每题2分,共10分)1、模拟信号也可以与数字信号一样在计算机上进行数字信号处理,只要加一道采样的工序就可以了。
(×)2、已知某离散时间系统为y(n)=T[x(n)]=x(5n+3),则该系统为线性时不变系统。
数字信号处理期末试题及答案
数字信号处理期末试卷(A )一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1B.δ(ω)C.2πδ(ω)D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是( )A. 3B. 4C. 6D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( )A. y (n-2)B.3y (n-2)C.3y (n )D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2)B. y(n)= cos(n+1)x (n)C. y(n)=x (2n)D.y(n)=x (- n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( )A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列B.无限长序列C.反因果序列D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI 系统的单位抽样响应h(n),在n<0时,h(n)= ( )A.0 B .∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
完整word版,数字信号处理期末试题及答案汇总,推荐文档
数字信号处理卷一一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 。
2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 。
4.抽样序列的Z 变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LTI 系统输入为x(n) ,系统单位序列响应为h(n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z →∞时,X(Z)= 。
二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是 ( )A.1 B.δ(ω) C.2πδ(ω) D.2π2.序列x 1(n )的长度为4,序列x 2(n )的长度为3,则它们线性卷积的长度是 ( )A. 3 B. 4 C. 6 D. 73.LTI 系统,输入x (n )时,输出y (n );输入为3x (n-2),输出为 ( ) A. y (n-2) B.3y (n-2) C.3y (n ) D.y (n )4.下面描述中最适合离散傅立叶变换DFT 的是 ( )A.时域为离散序列,频域为连续信号B.时域为离散周期序列,频域也为离散周期序列C.时域为离散无限长序列,频域为连续周期信号D.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号 ( )A.理想低通滤波器 B.理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器 6.下列哪一个系统是因果系统 ( )A.y(n)=x (n+2) B. y(n)= cos(n+1)x (n) C. y(n)=x (2n) D.y(n)=x (- n) 7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括 ( ) A. 实轴B.原点C.单位圆D.虚轴8.已知序列Z 变换的收敛域为|z |>2,则该序列为 ( )A.有限长序列 B.无限长序列 C.反因果序列 D.因果序列9.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是 ( )A.N≥MB.N≤MC.N≤2MD.N≥2M10.设因果稳定的LTI系统的单位抽样响应h(n),在n<0时,h(n)= ( ) A.0 B.∞ C. -∞ D.1三、判断题(每题1分, 共10分)1.序列的傅立叶变换是频率ω的周期函数,周期是2π。
现代数字信号处理期末试题
现代数字信号处理期末试题现代数字信号处理期末试题1.短时Fourier变换、小波变换和Gabor变换都是时频信号分析的(线性变换)或(线性时频)表示,而Wigner-Ville分布则属于时频信号分析的(非线性变换)。
2. 简述小波变换的概念及其优点。
答:小波变换从基函数角度出发,吸取傅里叶变换中的三角基(进行频率分析)与短时傅里叶变换中的时移窗函数的特点,形成振荡、衰减的基函数,因为它的定义域有限,故称为小波。
小波基函数是时间t、尺度因子a和时移参数b的函数。
小波变换的优点:⑴小波分解可以覆盖整个频域(提供了一个数学上完备的描述)。
⑵小波变换通过选取合适的滤波器,可以极大的减小或去除所提取得不同特征之间的相关性。
⑶小波变换具有“变焦”特性,在低频段可用高频率分辨率和低时间分辨率(宽分析窗口),在高频段,可用低频率分辨率和高时间分辨率(窄分析窗口)。
⑷小波变换实现上有快速算法(Mallat小波分解算法)。
3. 相对于Mallat塔形算法而言,第二代小波方法的优势在哪里?答:1.它不依赖于傅里叶变换,完全在时域中完成对双正交小波的构造,具有结构化设计和自适应构造方面的有点2.构造方法灵活,可以从一些简单的小波函数,通过提升改善小波函数的特性,从而构造出具有期望特性的小波3.不再是某一给定小波函数的伸缩和平移,它适合于不等间隔采样问题的小波构造4.算法简单,运算速度快,占用内存少,执行效率高,可以分析任意长度的信号。
4.EMD方法在机械设备故障诊断中的应用有(机车轮对轴承损伤定量识别方法)、(烟气轮机摩擦故障诊断)。
5. 随机信号特点?答:随机信号也称随机过程,随机信号在任何时间的取值都是不能先验证确定的随机变量。
虽然随机信号取值不能先验证确定,但这些取值却服从某种统计规律,换言之,随机信号或过程可以用概率分布特点(简称统计性能)统计的描述。
6. 简述经典功率谱估计与现代功率谱估计的差别。
答:功率谱反映了随机信号各频率成份功率能量的分布情况,可以揭示信号中隐含的周期性及靠得很近的谱峰等有用信息,在许多领域都发挥了重要作用。
数字信号处理期末试卷含答案
数字信号处理期末试卷(含答案) 数字信号处理期末试卷(含答案)一、选择题1.下列哪一项不是数字信号处理的应用领域? A. 图像处理 B. 语音识别 C.控制系统 D. 电路设计答案:D2.数字信号处理系统的输入信号一般是: A. 模拟信号 B. 数字信号 C. 混合信号 D. 无线信号答案:A3.下列哪一项可以实现信号的离散化? A. 采样 B. 傅里叶变换 C. 滤波 D.量化答案:A4.数字信号处理中的“频域”是指信号的: A. 幅度 B. 相位 C. 频率 D. 时间答案:C5.下列哪一项是数字信号处理的基本操作? A. 加法 B. 减法 C. 乘法 D. 除法答案:A二、填空题1.数字信号处理的基本步骤包括信号的采样、________、滤波和解调等。
答案:量化2.采样定理规定了采样频率应该是信号最高频率的________。
答案:两倍3.傅里叶变换可以将信号从时域变换到________。
答案:频域4.信号的频率和________有关。
答案:周期5.数字信号处理系统的输出信号一般是________信号。
答案:数字三、计算题1.对于一个模拟信号,采样频率为8 kHz,信号的最高频率为3 kHz,求采样定理是否满足?答案:采样定理要求采样频率大于信号最高频率的两倍,即8 kHz > 3 kHz * 2 = 6 kHz,因此采样定理满足。
2.对于一个信号的傅里叶变换结果为X(f) = 2δ(f - 5) + 3δ(f + 2),求该信号的时域表示。
答案:根据傅里叶变换的逆变换公式,可以得到时域表示为x(t) = 2e^(j2π5t) + 3e^(j2π(-2)t)。
3.对于一个数字信号,采样频率为10 kHz,信号的频率为2 kHz,求该信号的周期。
答案:数字信号的周期可以用采样频率除以信号频率来计算,即10 kHz / 2 kHz = 5。
四、简答题1.请简要介绍数字信号处理的基本原理。
答案:数字信号处理是将模拟信号转换为数字信号,并在数字域中对信号进行处理和分析的过程。
数字信号处理期末试卷(含答案)全
数字信号处理期末试卷(含答案)全数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器 2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( )A.y(n)=x 3(n)B.y(n)=x(n)x(n+2)C.y(n)=x(n)+2D.y(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。
A .M+NB.M+N-1C.M+N+1D.2(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。
A.N ≥MB.N ≤MC.N ≤2MD.N ≥2M 5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。
A.NB.N 2C.N 3D.Nlog 2N6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ):A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称关于=w π奇对称D 关于0=w 、π2奇对称关于=w π偶对称 8.适合带阻滤波器设计的是:() A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器;二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。
数字信号处理期末试卷含答案全
数字信号处理期末试卷(含答案)一、单项选择题(在每小题的四个备选答案中,选出一个正确答案,并将正确答案的序号填在括号内。
1.若一模拟信号为带限,且对其抽样满足奈奎斯特采样定理,则只要将抽样信号通过( )即可完全不失真恢复原信号。
A.理想低通滤波器B.理想高通滤波器C.理想带通滤波器D.理想带阻滤波器2.下列系统(其中y(n)为输出序列,x(n)为输入序列)中哪个属于线性系统?( ) (n)=x 3(n) (n)=x(n)x(n+2) (n)=x(n)+2(n)=x(n 2)3..设两有限长序列的长度分别是M 与N ,欲用圆周卷积计算两者的线性卷积,则圆周卷积的长度至少应取( )。
A .M+N+N-1+N+1(M+N)4.若序列的长度为M ,要能够由频域抽样信号X(k)恢复原序列,而不发生时域混叠现象,则频域抽样点数N 需满足的条件是( )。
≥M ≤M ≤2M ≥2M5.直接计算N 点DFT 所需的复数乘法次数与( )成正比。
2 C6.下列各种滤波器的结构中哪种不是FIR 滤波器的基本结构( )。
A.直接型 B.级联型 C.并联型 D.频率抽样型7.第二种类型线性FIR 滤波器的幅度响应H(w)特点( ): A 关于0=w 、π、π2偶对称 B 关于0=w 、π、π2奇对称C 关于0=w 、π2偶对称 关于=w π奇对称D 关于0=w 、π2奇对称 关于=w π偶对称 8.适合带阻滤波器设计的是: ( ) A )n N (h )n (h ---=1 N 为偶数 B )n N (h )n (h ---=1 N 为奇数 C )n N (h )n (h --=1 N 为偶数 D )n N (h )n (h --=1 N 为奇数9.以下对双线性变换的描述中不正确的是( )。
A.双线性变换是一种非线性变换B.双线性变换可以用来进行数字频率与模拟频率间的变换C.双线性变换把s 平面的左半平面单值映射到z 平面的单位圆内D.以上说法都不对10.关于窗函数设计法中错误的是:A 窗函数的截取长度增加,则主瓣宽度减小;B 窗函数的旁瓣相对幅度取决于窗函数的形状,与窗函数的截取长度无关;C 为减小旁瓣相对幅度而改变窗函数的形状,通常主瓣的宽度会增加;D 窗函数法不能用于设计高通滤波器; 二、填空题(每空2分,共20分)1. 用DFT 近似分析连续信号频谱时, _________效应是指DFT 只能计算一些离散点上的频谱。
数字信号处理期末试卷(含答案)
一、 填空题(每题2分,共10题)1、 1、 对模拟信号(一维信号,是时间的函数)进行采样后,就是 信号,再进行幅度量化后就是 信号。
2、 2、 )()]([ωj e X n x FT =,用)(n x 求出)](Re[ωj e X 对应的序列为 。
3、序列)(n x 的N 点DFT 是)(n x 的Z 变换在 的N 点等间隔采样。
4、)()(5241n R x n R x ==,只有当循环卷积长度L 时,二者的循环卷积等于线性卷积。
5、用来计算N =16点DFT ,直接计算需要_________ 次复乘法,采用基2FFT 算法,需要________ 次复乘法,运算效率为__ _ .6、FFT 利用 来减少运算量. 7、数字信号处理的三种基本运算是: . 8、FIR 滤波器的单位取样响应)(n h 是圆周偶对称的,N=6, 3)3()2(2)4()1(5.1)5()0(======h h h h h h ,其幅度特性有什么特性? ,相位有何特性? 。
9、数字滤波网络系统函数为∑=--=N K kk z a z H 111)(,该网络中共有 条反馈支路。
10、用脉冲响应不变法将)(s H a 转换为)(Z H ,若)(s H a 只有单极点k s ,则系统)(Z H 稳定的条件是 (取s T 1.0=).二、 选择题(每题3分,共6题)1、 1、 )63()(π-=n j e n x ,该序列是 。
A 。
非周期序列B.周期6π=NC.周期π6=N D 。
周期π2=N2、 2、 序列)1()(---=n u a n x n ,则)(Z X 的收敛域为 。
A 。
a Z < B 。
a Z ≤ C 。
a Z > D.a Z ≥3、 3、 对)70()(≤≤n n x 和)190()(≤≤n n y 分别作20点DFT ,得)(k X 和)(k Y ,19,1,0),()()( =⋅=k k Y k X k F ,19,1,0)],([)( ==n k F IDFT n f ,n 在 范围内时,)(n f 是)(n x 和)(n y 的线性卷积。
(完整word版)数字信号处理期末考试复习(word文档良心出品)
《数字信号处理》期末考试复习题库一、选择题1. δ(n)的z 变换是( A )。
A. 1B.δ(w)C. 2πδ(w)D. 2π2. )(ωj e H 以数字角频率ω的函数周期为( B )。
A.2B. π2C. j π2D.不存在3. 序列x(n)=cos ⎪⎭⎫ ⎝⎛n 8π3的周期为( C ) A.3 B.8C.16D.不存在 4. 已知某序列Z 变换的收敛域为6>|z|>4,则该序列为( D )A.有限长序列B.右边序列C.左边序列D.双边序列5. 线性移不变系统的系统函数的收敛域为|Z|>5,则可以判断系统为( B )A.因果稳定系统B.因果非稳定系统C.非因果稳定系统D.非因果非稳定系统6. 下面说法中正确的是( B )A.连续非周期信号的频谱为非周期离散函数B.连续周期信号的频谱为非周期离散函数C.离散非周期信号的频谱为非周期离散函数D.离散周期信号的频谱为非周期离散函数7. 若离散系统为因果系统,则其单位取样序列( C )。
A. 当n>0时, h(n)=0B. 当n>0时, h(n)≠0C. 当n<0时, h(n)=0D. 当n<0时, h(n)≠08. 从奈奎斯特采样定理得出,要使实信号采样后能够不失真还原,采样频率fs 与信号最高频率fm 关系为( A )。
A. fs ≥2fmB. fs ≤2fmC. fs ≥fmD. fs ≤fm9. 序列x (n )的长度为4,序列h (n )的长度为3,则它们线性卷积的长度和5 点圆周卷积的长度分别是( B ) 。
A. 5, 5B. 6, 5C. 6, 6D. 7, 510. 若离散系统的所有零极点都在单位圆以内,则该系统为( A )。
A. 最小相位超前系统B. 最大相位超前系统C. 最小相位延迟系统D. 最大相位延迟系统11. 处理一个连续时间信号,对其进行采样的频率为3kHz ,要不失真的恢复该连续信号,则该连续信号的最高频率可能是为( B )A. 6kHzB. 1.5kHzC. 3kHzD. 2kHz12.下列序列中______为共轭对称序列。
数字信号处理期末试卷(含答案)
h ( n)e
n 0
4
jn
h(0) h(1)e j h(2)e j 2 h(3)e j 3 h(4)e j 4
2 e j e j 3 2e j 4 2(1 e j 4 ) (e j e j 3 ) 2e j 2 (e j 2 e j 2 ) e j 2 (e j e j ) e j 2 [4 j sin( 2 ) 2 j sin( )]
4、线性时不变系统离散时间因果系统的系统函数为 H ( z ) 的极点为
1 z1 , z 2 2 2
8( z 2 z 1) , 则系统 2 z 2 5z 2
;系统的稳定性为 不存在
不稳定 。
。系统
单位冲激响应 h(n) 的初值 h(0) 4 ;终值 h()
5、如果序列 x(n) 是一长度为 64 点的有限长序列 (0 n 63) ,序列 h(n) 是一长 度为 128 点的有限长序列 (0 n 127) ,记 y(n) x(n) h(n) (线性卷积) ,则
2 tan( ) T 2
数字滤波器时,模拟频率 与数字频率 之间的映射变换关系为 或 2 arctan(
T )。 2
7、当线性相位 FIR 数字滤波器满足偶对称条件时,其单位冲激响应 h(n) 满足的 条件为 h(n) h( N 1 n) ,此时对应系统的频率响应 H (e j ) H ()e j ( ) ,则其 对应的相位函数为 ( )
(2) H (e j ) e j 2 e 2 [4 sin(2 ) 2 sin( )] e
H () 4 sin(2) 2 sin() , ( )
数字信号处理期末考试资料
《数字信号处理》考试复习资料 一、填空题1.单位采样序列的定义式10()00n n n δ=⎧=⎨≠⎩ 。
单位阶跃序列的定义式⎩⎨⎧<≥=)0(0)0(1)(n n n u2.对一个低通带限信号进行均匀理想采样,当采样频率 大于等于 信号最高频率的两倍时,采样后的信号可以精确地重建原信号。
3.对于右边序列的Z 变换的收敛域是x R ->一个圆的外部 或者 z。
4.根据对不同信号的处理可将滤波器分为 模拟 滤波器和 数字 滤波器。
5.FIR 数字滤波器满足第一类线性相位的充要条件是()(1)h n h N n =--。
6.在实际应用中,在对于相位要求不敏感的场合,如一些检测信号、语音通信等,可以选用IIR (无限冲激响应)数字 滤波器,这样可以充分发挥其经济高效的特点。
7、基2—FFT 算法基本运算单元是 蝶形 运算,一般要求N =2,2M M 为正整数 或者 的正整数幂。
8.若十进制数“1”的二进制表示为“001”,则将它码位倒序后,所表示的十进制数为 4 。
9.满足 叠加原理(或齐次性和可加性) 的系统称为线性系统.10.正弦序列3()cos()74x n A n ππ=+的周期为 14 点,余弦序列2()cos()74x n A n ππ=+的周期为 7 点,正弦序列32()sin()53x n A n ππ=+ 的周期为 10 点.(qp =ωπ2为有理数,周期为p )11、单位阶跃序列()u n 的Z 变换的收敛域为1z >.12.对线性非时变系统,稳定性的充要条件是()n h n ∞=-∞<∞∑,因果性的充要条件是000()0()0n h n n n h n n <=<-=当时,或当时,。
13.在设计IIR 数字滤波器的时候,经常采用的方法是利用现有的 模拟滤波器 设计方法及其相应的转换方法得到数字滤波器.14.已知一个长度为N 的序列()x n ,它的离散傅里叶变换()[()]X k DFT x n ==1()01N kn Nn x n Wk N -=≤≤-∑。
数字信号处理期末试题及答案
数字信号处理期末试卷(A)一、填空题(每空1分, 共10分)1.序列()sin(3/5)x n n π=的周期为 .2.线性时不变系统的性质有 律、 律、 律。
3.对4()()x n R n =的Z 变换为 ,其收敛域为 .4.抽样序列的Z变换与离散傅里叶变换DFT 的关系为 。
5.序列x(n)=(1,-2,0,3;n=0,1,2,3), 圆周左移2位得到的序列为 。
6.设LT I系统输入为x(n) ,系统单位序列响应为h (n),则系统零状态输出y(n)= 。
7.因果序列x(n),在Z→∞时,X(Z)= .二、单项选择题(每题2分, 共20分)1.δ(n)的Z 变换是( )A 。
1B 。
δ(ω) C。
2πδ(ω)D.2π2.序列x1(n )的长度为4,序列x 2(n)的长度为3,则它们线性卷积的长度是( ) A。
3 B 。
4 C. 6D . 73.L TI系统,输入x(n)时,输出y(n);输入为3x(n-2),输出为 ( ) A。
y (n —2) B 。
3y(n—2) C.3y(n) D。
y (n)4.下面描述中最适合离散傅立叶变换DFT 的是( )A.时域为离散序列,频域为连续信号B 。
时域为离散周期序列,频域也为离散周期序列 ﻫC 。
时域为离散无限长序列,频域为连续周期信号ﻫD.时域为离散有限长序列,频域也为离散有限长序列5.若一模拟信号为带限,且对其抽样满足奈奎斯特条件,理想条件下将抽样信号通过 即可完全不失真恢复原信号( )A.理想低通滤波器 B 。
理想高通滤波器 C.理想带通滤波器 D.理想带阻滤波器6.下列哪一个系统是因果系统()A。
y(n)=x (n+2) B。
y(n)= cos(n+1)x(n) C. y(n)=x(2n)D.y(n)=x (— n)7.一个线性时不变离散系统稳定的充要条件是其系统函数的收敛域包括( )A. 实轴B。
原点C。
单位圆D.虚轴8.已知序列Z变换的收敛域为|z|〉2,则该序列为( )A。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
“现代数字信号处理”复习思考题
变换
1. 给出DFT的定义和主要性质。
2. DTFT与DFT之间有什么关系?
3. 写出FT、DTFT、DFT的数学表达式。
离散时间系统分析
1. 说明IIR滤波器的直接型、级联型和并联型结构的主要特点。
2. 全通数字滤波器、最小相位滤波器有何特点?
3. 线性相位FIR滤波器的h(n)应满足什么条件?其幅度特性如
何?
4. 简述FIR离散时间系统的Lattice结构的特点。
5. 简述IIR离散时间系统的Lattice结构的特点。
采样
1.抽取过程为什么要先进行滤波,此滤波器应逼近什么样的指标?
维纳滤波
1.画出Wiener滤波器结构,写出平稳信号下的滤波方程,导出Wiener-Hopf方程。
2.写出最优滤波器的均方误差表示式。
3.试说明最优滤波器满足正交性原理,即输出误差与输入信号正交。
4.试说明Wiener-Hopf方程和Yule-Walker方程的主要区别。
5.试说明随机信号的自相关阵与白噪声的自相关阵的主要区别。
6.维纳滤波理论对信号和系统作了哪些假设和限制?
自适应信号处理
1.如何确定LMS算法的值,值与算法收敛的关系如何?
2.什么是失调量?它与哪些因素有关?
3.RLS算法如何实现?它与LMS算法有何区别?
4.什么是遗忘因子,它在RLS算法中有何作用,取值范围是多少?5.怎样理解参考信号d(n)在自适应信号处理处理中的作用?既然他是滤波器的期望响应,一般在滤波前是不知道的,那么在实际应用中d(n)是怎样获得的,试举两个应用例子来加以说明。
功率谱估计
1. 为什么偏差为零的估计不一定是正确的估计?
2. 什么叫一致估计?它要满足哪些条件?
3. 什么叫维拉-辛钦(Wiener-Khinteche)定理?
4. 功率谱的两种定义。
5. 功率谱有哪些重要性质?
6. 平稳随机信号通过线形系统时输入和输出之间的关系。
7. AR模型的正则方程(Yule-Walker方程)的导出。
8. 用有限长数据估计自相关函数的估计质量如何?
9. 周期图法谱估计的缺点是什么?为什么会产生这些缺点?
10. 改进的周期图法谱估计有哪些方法?它们的根据是什么?
11. 既然隐含加窗有不利作用,为什么改进周期图法谱估计是还要
引用各种窗?
12. 经典谱估计和现代谱估计的主要差别在哪里?
13. 为什么AR模型谱估计应用比较普遍?
14. 对于高斯随机过程最大熵谱估计可归结为什么样的模型?
15. 为什么Levison-Durbin快速算法的反射系数的模小于1?
16. 什么是前向预测?什么是后向预测?
17. AR模型谱估计自相关法的主要缺点是什么?
18. Burg算法与Levison-Durbin算法的区别有哪些?。