【2019-2020】高考数学大一轮复习第五章数列第二节等差数列教师用书理
高考数学一轮复习之数列第二节-等差数列
第二节 等差数列高考目标:1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数的关系.一.知识梳理1.等差数列的定义2.等差数列的通项公式3.等差中项4.等差数列的常用性质 (1)通项公式的推广(2) 若{n a }是等差数列,且m+n=p+q, 则 q p n m a a a a +=+5.等差数列的前n 项和公式 d n n na S n 2)1(1-+=)(21n n a a nS +=6.等差数列的前n 项公式与函数的关系(最值)7.等差数列与等差数列各项的和有关的性质①等差数列依次每k 项的和仍成等差数列,其公差为原公差的2k 倍...,,232k k k k k S S S S S --;②若等差数列的项数为)(2+∈N n n ,则,奇偶nd S S =-1+=n na a S S 偶奇;③若等差数列的项数为()+∈-Nn n 12,则()n n a n S1212-=-,且n a S S =-偶奇,1-=n n S S 偶奇④两个等差数列}{},{n n b a 的前n 项和n n T S ,之间的关系为1212--=n n n n T S b a .二.典例解析类型一.等差数列中基本量的计算例1.(1)(09.山东)在等差数列}{n a 中,6,7253+==a a a ,则=6a .(2)(10.辽宁)设n S 为等差数列}{n a 的前n 项和,若24,363==S S ,则=9a . (3)设}{n a 为等差数列,n S 为等差数列}{n a 的前n 项和,已知75,1154==S a ,n T 为数列}{nS n的前n 项和,求n T习题1.已知等差数列}{n a 中,公差0>d ,又14,454132=+=⋅a a a a . (1)求数列}{n a 的通项公式; (2)记数列11+⋅=n n n a a b ,数列}{n b 的前n 项和记为n S ,求n S .习题2.(10.浙江)设d a ,1为实数,首项为1a ,公差为d 的等差数列}{n a 的前n 项和为n S ,满足01565=+S S .(1)若55=S ,求6S 及1a ; (2)求d 的取值范围.类型二.等差数列的判定例2.已知n S 为等差数列}{n a 的前n 项和, )(+∈=N n nS b nn .求证:数列}{n b 是等差数列.总结:四种方法判定是等差数列习题3. (09.湖北)已知数列}{n a 的前n 项和2211+⎪⎭⎫⎝⎛--=-n n n a S (n 为正整数).令n n n a b 2=,求证:数列}{n b 是等差数列,并求数列}{n a 的通项公式.习题4.已知数列}{n a 的前n 项和为n S ,且满足)2(021≥=+-n S S a n n n ,211=a . (1)求证: ⎭⎬⎫⎩⎨⎧n S 1是等差数列; (2)求n a 的表达式.类型三.等差数列的性质例3.(1)(10.全国Ⅱ)如果等差数列}{n a 中,12543=++a a a ,那么=+++721a a a .(2)等差数列}{n a 的前m 项和为30,前2m 项和为100,则它的前3m 项和为 . (3)已知两个等差数列}{n a 和}{n b 的前n 项和分别为n n B A ,,且3457++=n n B A n n ,则使得nnb a 为整数的正整数n 的个数是 .习题5.(1)在等差数列}{n a 中,27,39963741=++=++a a a a a a ,则数列}{n a 的前9项和=9S .(2)已知某等差数列共有10项,其奇数项之和为15,偶数项之和为30,则其公差为 .类型四.等差数列前n 项和的最值问题例 4.已知等差数列}{n a 满足)(2*21N n a a a n n n ∈+=++,它的前n 项和为n S ,且72,1063==S a ,若3021-=n n a b ,求数列}{n b 的前n 项和的最小值.习题6.等差数列}{n a 中,01<a ,129S S =,该数列前多少项的和最小?(多种方法)三.课后作业1.已知等差数列}{n a 的前n 项和为n S ,且满足12323=-S S ,则数列}{n a 的公差为 . 2.在等差数列}{n a 中,公差为d ,且5104S S =,则=da 1. 3.(09.辽宁)已知}{n a 为等差数列,且0,12347=-=-a a a ,则公差d 为 . 4.(09.湖南)设n S 是等差数列}{n a 的前n 项和,已知11,362==a a ,则=7S . 5.设等差数列}{n a 的前n 项和为n S ,若36,963==S S ,则=++987a a a .6.(09.海南.宁夏) 等差数列}{n a 的前n 项和为n S ,已知38,12211==+-+-m m m m S a a a ,则=m ( )A.38B.20C.10D.97.(10.福建理)设等差数列}{n a 的前n 项和为n S ,若6,11641-=+-=a a a ,则当n S 取最小值时,n = .8.数列}{n a 的前n 项和n S 满足2)1(41+=n n a S 且0>n a . (1)求1a ,2a ;(2)求数列}{n a 的通项公式;(3)令n n a b -=20,问:数列}{n b 的前多少项和最大? 9.在数列}{n a 中, )(33,3*111N n a a a n n n ∈+==++(1)设nnn a b 3=.证明:数列}{n b 是等差数列; (2)求数列}{n a 的前n 项和n S . 10.若数列}{n a 满足),(11*1为常数d N n d a a nn ∈=-+,则称数列}{n a 为调和数列.已知数列}1{nx 为调和数列, 且2002021=+++x x x ,则=+165x x .。
高考数学大一轮复习第五章数列第二节等差数列教师用书理4.doc
第二节 等差数列☆☆☆2017考纲考题考情☆☆☆自|主|排|查1.等差数列的有关概念 (1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ∈N *,n ≥2)或a n +1-a n =d (常数)(n ∈N *)。
(2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2。
2.等差数列的有关公式 (1)等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d 。
(2)等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =na 1+-2d 或S n =n a 1+a n2。
3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *)。
(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n 。
(3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d 。
(4)若{a n },{b n }是等差数列,公差为d ,则{pa n +qb n }也是等差数列。
(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列。
(6)数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列。
(7)S 2n -1=(2n -1)a n 。
(8)若n 为偶数,则S 偶-S 奇=nd2;若n 为奇数,则S 奇-S 偶=a 中(中间项)。
微点提醒1.用等差数列的定义判断数列是否为等差数列,要注意定义中的三个关键词:“从第2项起”“每一项与它的前一项的差”“同一个常数”。
2019-2020学年高考数学一轮复习-等差及等比数列的基本问题导学案
2019-2020学年高考数学一轮复习 等差及等比数列的基本问题导学案一、知识梳理教学重、难点三、作业完成情典题探究例1.在数列{}n a 中,nn n a a a 22,111+==+,设,21-=n nn a b 证明{}n b 是等差数列.例2. 已知等差数列}{n a 中,1042=+a a ,95=a ,数列}{n b 中,11a b =,n n n a b b +=+1. (I )求数列}{n a 的通项公式,写出它的前n 项和n S ; (II )求数列}{n b 的通项公式; (III )若12+⋅=n n n a a c ,求数列}{n c 的前n 项和n T .例3.在等差数列115,3,2,,22----的相邻两项之间插入一个数,使之组成一个新的等差数列,求新数列的通项.例4.等比数列{a n }的前n 项和记为S n ,已知a 1=1, a n +1=n +2n×S n (n ÎN *).证明:(1)数列{S nn}是等比数列;(2)S n +1=4a n . 演练方阵A 档(巩固专练)1 .设n S 为等比数列{}n a 的前n 项和,3420a a +=,则31S a ( ) A .2B .3C .4D .52 .等比数列{}n a 中,10a >,则“13a a <”是“36a a <”的( )A .充分而不必要条件B .必要而不充分条件C .充分必要条件D .既不充分也不必要条件3 .已知数列{}n a 中,12a =,120n n a a +-=,2log n n b a =,那么数列{}n b 的前10项和等于( ) A .130B .120C .55D .504 .已知{}n a 为等差数列,n S 为其前n 项和.若19418,7a a a ,则10S ( )A .55B .81C .90D .1005 .已知数列{}n a 满足*7(13)10,6(),6--+≤⎧=∈⎨>⎩N n n a n a n a n an ,若{}n a 是递减数列,则实数a的取值范围是( )A .⎝ ⎛⎭⎪⎫13,1B .⎝ ⎛⎭⎪⎫13,12C .⎝ ⎛⎭⎪⎫58,1D .⎝ ⎛⎭⎪⎫13,58 6 .已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于( )A .1B .53C .2D .37 .已知正项数列{}n a 中,11=a ,22=a ,222112(2)n n n a a a n +-=+≥,则6a 等于( )A .16B .8C .22D .48 .设n S 是公差不为0的等差数列{}n a 的前n 项和,且124,,S S S 成等比数列,则21a a 等于( ) A .1B .2C .3D .49.设等差数列{}n a 的公差不为0,其前n 项和是n S .若23S S =,0k S =,则k =______. 10.记实数12,,,n x x x 中的最大数为12max{,,,}n x x x ,最小数为12min{,,,}n x x x .设△ABC 的三边边长分别为,,a b c ,且a b c ≤≤,定义△ABC 的倾斜度为max{,,}min{,a b c a t b c a b =⋅,}b cc a.(ⅰ)若△ABC 为等腰三角形,则t =______;(ⅱ)设1a =,则t 的取值范围是______.B 档(提升精练)1.已知等差数列b a ,,1,等比数列5,2,3++b a ,则该等差数列的公差为( )A .3或3-B .3或1-C .3D .3-2.对于函数)(x f y =,部分x 与y 的对应关系如下表:x12 3 4 5 6 7 8 9 y7 4 5 8 1 3 5 2 6数列}{n x 满足21=x ,且对任意*n ∈N ,点),(1+n n x x 都在函数)(x f y =的图象上,则201320124321x x x x x x ++++++ 的值为( )A .9394B .9380C .9396D .94003.设n S 为等比数列{}n a 的前n 项和,3420a a +=,则31S a ( ) A .2B .3C .4D .54.等差数列{}n a 中,2343,9,a a a =+= 则16a a 的值为( )A .14B .18C .21D .275.在等差数列{}n a 中,7916+=a a ,41=a ,则12a 的值是( )A .15B .30C .31D .646.设等比数列{}n a 的公比为q ,前n 项和为n S ,且10a >.若232S a >,则q 的取值范围是( )A .1(1,0)(0,)2- B.1(,0)(0,1)2- C .1(,1)(,)2-∞-+∞D .1(,)(1,)2-∞-+∞7.已知{}n a 为等差数列,n S 为其前n 项和.若19418,7a a a ,则10S ( )A .55B .81C .90D .1008.设集合M 是R 的子集,如果点0x ∈R 满足:00,,0a x M x x a ∀>∃∈<-<,称0x 为集合M的聚点.则下列集合中以0为聚点的有:①{|}1nn n ∈+N ; ②{|,0}x x x ∈≠R ; ③*2{|}n n ∈N ; ④Z ( )A .②③B .②④C .①③D .①③④9.在数列{}n a 中 ,111,,)2n n a a a y x +==点(在直线上,则4a 的值为( )A .7B .8C .9D .1610.已知{}n a 为等差数列,其前n 项和为n S ,若36a =,312S =,则公差d 等于( )A .1B .53C .2D .3C 档(跨越导练)1.在等差数列{}n a 中,13a =,42a =,则4731n a a a ++++等于 .2.设等比数列{}n a 的各项均为正数,其前n 项和为n S .若11a =,34a =,63k S =,则k =______.3.已知数列121,,,9a a 是等差数列,数列1231,,,,9b b b 是等比数列,则212b a a +的值为 .4.数列{}n a 满足12,a =且对任意的*,N m n ∈,都有n mn ma a a +=,则3_____;a ={}n a 的前n 项和n S =_____.5.设等比数列{}n a 的前n 项和为n S ,若22a =,514a =,则4S 的值为 ( )A. 152B.516C.516-D.52-6.已知等差数列{a n }的公差0d ≠,该数列的前n 项和为n S ,且满足2352S a a ==.(Ⅰ)求数列{a n }的通项公式;(Ⅱ)设11b a =,*12()n an n b b n +-=∈N ,求数列{b n }的通项公式.7.在等差数列{}n a 中,2723a a +=-,3829a a +=-.(Ⅰ)求数列{}n a 的通项公式;(Ⅱ)设数列{}n n a b +是首项为1,公比为c 的等比数列,求{}n b 的前n 项和n S .8.设数列}{n a 的首项211-=a ,前n 项和为n S ,且对任意*,N m n ∈都有)53()53(--=m m n n S S mn ,数列}{n a 中的部分项∈k a k b }({N *)成等比数列,且.4,221==b b (Ⅰ) 求数列}与{n n b a }{与的通项公式;(Ⅱ)令11)(+=n b n f ,并用x 代替n 得函数)(x f ,设)(x f 的定义域为R ,记))((...)2()1()0(*N n n n f n f n f f c n ∈++++=,求∑=+ni i i c c 111.9. 数列{n a }中,18a =,42a =,且满足2120n n n a a a ++-+=(1)求数列的通项公式; (2)设12||||||n n S a a a =+++,求n S .10.已知{}n a 为等比数列,其前n 项和为n S ,且2n n S a =+*()n ∈N .(Ⅰ)求a 的值及数列{}n a 的通项公式;(Ⅱ)若(21)n n b n a =-,求数列{}n b 的前n 项和n T .成长足迹课后检测学习(课程)顾问签字:负责人签字:教学主管签字:主管签字时间:等差及等比数列的综合问题答案典题探究例1解析: 1112211222n n n nn n n n n a a a b b ++-+===+=+,∴{}n b 是首项为1,公差为1的等差数列.例2解析:(I )设d n a a n )1(1-+=,由题意得11=a ,2=d ,所以12-=n a n ,212)1(n d n n na S n =-+=;(II )111==a b ,121-+=+=+n b a b b n n n n ,所以112+=b b ,313123++=+=b b b ,22)1(1)32(21221+-=-+=-++++=n n n n b b n (2≥n )又1=n 时12122a n n ==+-, 所以数列}{n b 的通项222+-=n n b n ;(III )121121)12)(12(221+--=+-=⋅=+n n n n a a c n n n)121121()5131()3111(21+--++-+-=+++=n n c c c T n n1221211+=+-=n nn例3解析:原数列的公差133(5)22d =---=,所以新数列的公差13'24d d ==,其通项为:a n n n n =-+-=--534134234234()即 a =34n例4解(1)S n +1n +1S n n=nS n +1(n +1)S n =n (S n +a n +1)(n +1)S n =n (S n +n +2n S n )(n +1)S n =n (1+n +2n )n +1=2n +2n +1=2 所以数列{S nn}是等比数列.(2)由(1)得S nn=S 1×2n -1=2n -1, 所以S n =n ×2n -1,所以S n +1=(n +1)×2n 又a n =n +1n -1S n -1=n +1n -1×(n -1)×2n -2=(n +1)×2n -2=14(n +1)×2n =14S n +1, 所以S n +1=4a n . 演练方阵A 档(巩固专练)1 答案 B 2.答案 B 3. 答案C 4. 答案 D 5. 答案D6. 【答案】C解:因为36a =,312S =,所以13133()3(6)1222a a a S ++===,解得12a =,所使用316222a a d d ==+=+,解得2d =,选C. 7. 【答案】D【解析】由222112(2)n n n a a a n +-=+≥可知数列2{}n a 是等差数列,且以211a =为首项,公差2221413d a a =-=-=,所以数列的通项公式为213(1)32n a n n =+-=-,所以26362=16a =⨯-,即64a =。
2020年高考理科数学一轮总复习:等差数列及其前n项和教师版
2020年高考理科数学一轮总复习等差数列及其前n 项和[基础梳理]1.等差数列的有关概念 (1)定义:①文字语言:从第2项起,每一项与它的前一项的差都等于同一个常数. ②符号语言:a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项. 2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d .(2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.(4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.1.两个重要技巧(1)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .(2)若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元. 2.三个必备结论(1)若等差数列{a n }的项数为偶数2n ,则①S 2n =n (a 1+a 2n )=…=n (a n +a n +1);②S偶-S 奇=nd ,S 奇S 偶=a n a n +1.(2)若等差数列{a n }的项数为奇数2n +1,则①S 2n +1=(2n +1)a n +1;②S 奇S 偶=n +1n .(3)在等差数列{a n }中,若a 1>0,d <0,则满足⎩⎨⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值S m ;若a 1<0,d >0,则满足⎩⎨⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值S m .3.两个函数等差数列{a n },当d ≠0时,a n =dn +(a 1-d ),是关于n 的一次函数; S n =d 2n 2+(a 1-d2)n 是无常数项的二次函数. [四基自测]1.(教材改编)已知数列{a n }中,a n =3n +4,若a n =13,则n 等于( ) A .3 B .4 C .5 D .6答案:A2.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4 答案:B3.(教材改编)已知等差数列{a n }的前n 项和为S n ,若a 4=18-a 5,则S 8=( ) A .18 B .36 C .54 D .72 答案:D4.在100以内的正整数中有________个能被6整除的数. 答案:165.已知等差数列5,427,347,…,则前n 项和S n =________. 答案:514(15n -n 2)考点一 等差数列的性质及基本量的运算◄考基础——练透 角度1 用等差数列的基本量a 1和d 进行计算[例1] (1)(2018·高考全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=( ) A .-12 B .-10 C .10D .12解析:设等差数列{a n }的公差为d ,由3S 3=S 2+S 4,得3⎣⎢⎡⎦⎥⎤3a 1+3×(3-1)2×d =2a 1+2×(2-1)2×d +4a 1+4×(4-1)2×d ,将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10. 故选B. 答案:B(2)已知等差数列{a n }的各项都为整数,且a 1=-5,a 3a 4=-1,则|a 1|+|a 2|+…+|a 10|=( ) A .70 B .58 C .51D .40解析:设等差数列{a n }的公差为d , 由各项都为整数得d ∈Z ,因为a 1=-5,所以a 3a 4=(-5+2d )(-5+3d )=-1,化简得6d 2-25d +26=0,解得d =2或d =136(舍去),所以a n =2n -7,所以|a 1|+|a 2|+…+|a 10|=5+3+1+1+3+…+13=9+7×(1+13)2=58.故选B.答案:B角度2 用等差数列性质进行计算[例2] (1)已知等差数列{a n }的前n 项和为S n ,若a 2+a 3+a 10=9,则S 9=( ) A .3 B .9 C .18D .27 解析:设等差数列{a n }的首项为a 1,公差为d .∵a 2+a 3+a 10=9,∴3a 1+12d =9,即a 1+4d =3,∴a 5=3,∴S 9=9×(a 1+a 9)2=9×2a52=27.故选D.答案:D(2)(2019·河北唐山第二次模拟)设{a n}是任意等差数列,它的前n项和、前2n项和与前4n项和分别为X,Y,Z,则下列等式中恒成立的是()A.2X+Z=3Y B.4X+Z=4YC.2X+3Z=7Y D.8X+Z=6Y解析:设数列{a n}的前3n项的和为R,则由等差数列的性质得X,Y-X,R-Y,Z-R成等差数列,所以2(Y-X)=X+R-Y,解之得R=3Y-3X,又因为2(R-Y)=Y-X+Z-R,把R=3Y-3X代入得8X+Z=6Y,故选D.答案:D等差数列的计算技巧1.已知等差数列{a n}中,a2=1,前5项和S5=-15,则数列{a n}的公差为()A.-3 B.-5 2C.-2 D.-4 解析:设等差数列{a n}的首项为a1,公差为d,因为⎩⎨⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15,解得d =-4,故选D.答案:D2.在等差数列{a n }中,a 1+a 5=8,a 4=7,则a 5=( ) A .11 B .10 C .7D .3解析:∵a 1+a 5=2a 3=8,∴a 3=4, 又∵a 3+a 5=2a 4, ∴a 5=2a 4-a 3=14-4=10. 故选B. 答案:B3.等差数列{a n }中,3(a 3+a 5)+2(a 7+a 10+a 13)=24,则该数列的前13项和为( ) A .13 B .26 C .52D .156解析:3(a 3+a 5)+2(a 7+a 10+a 13)=24,∴6a 4+6a 10=24,∴a 4+a 10=4,∴S 13=13(a 1+a 13)2=13(a 4+a 10)2=13×42=26,故选B.答案:B考点二 等差数列的判定与证明◄考能力——知法 角度1 用等差数列定义证明[例3] (2019·南京模拟)已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 是等差数列.(2)求a n 的表达式.解析:(1)证明:因为a n =S n -S n -1(n ≥2),又a n =-2S n ·S n -1,所以S n -1-S n =2S n ·S n -1,S n ≠0.因此1S n -1S n -1=2(n ≥2).故由等差数列的定义知⎩⎨⎧⎭⎬⎫1S n 是以1S 1=1a 1=2为首项,2为公差的等差数列.(2)由(1)知1S n=1S 1+(n -1)d =2+(n -1)×2=2n ,即S n =12n .由于当n ≥2时,有a n =-2S n ·S n -1=-12n (n -1),又因为a 1=12,不适合上式. 所以a n =⎩⎪⎨⎪⎧12(n =1),-12n (n -1)(n ≥2).角度2 用等差中项法证明[例4] 已知等比数列{a n }的公比为q ,前n 项和为S n . (1)若S 3,S 9,S 6成等差数列,求证:a 2,a 8,a 5成等差数列;(2)若a m +2是a m +1和a m 的等差中项,则S m ,S m +2,S m +1成等差数列吗? 解析:(1)证明:由S 3,S 9,S 6成等差数列,得S 3+S 6=2S 9.若q =1,则3a 1+6a 1=18a 1,解得a 1=0,这与{a n }是等比数列矛盾,所以q ≠1, 于是有a 1(1-q 3)1-q +a 1(1-q 6)1-q =2a 1(1-q 9)1-q ,整理得q 3+q 6=2q 9.因为q ≠0且q ≠1,所以q 3=-12,a 8=a 2q 6=14a 2,a 5=a 2q 3=-12a 2, 所以2a 8=a 2+a 5,即a 8-a 2=a 5-a 8,故a 2,a 8,a 5成等差数列.(2)依题意,得2a m +2=a m +1+a m ,则2a 1q m +1=a 1q m +a 1q m -1.在等比数列{a n }中,a 1≠0,q ≠0,所以2q 2=q +1,解得q =1或q =-12.当q =1时,S m +S m +1=ma 1+(m +1)a 1=(2m +1)a 1,S m +2=(m +2)a 1. 因为a 1≠0,所以2S m +2≠S m +S m +1,此时S m ,S m +2,S m +1不成等差数列. 当q =-12时,S m +2=a 1[1-⎝ ⎛⎭⎪⎫-12m +2]1-⎝ ⎛⎭⎪⎫-12=2a 13[1-(-12)m +2] =2a 13 [1-14×(-12)m ],S m +S m +1=a 1[1-⎝ ⎛⎭⎪⎫-12m ]1-(-12)+a 1[1-⎝ ⎛⎭⎪⎫-12m +1]1-(-12)=2a 13[1-(-12)m +1-(-12)m +1] =2a 13[2-12×(-12)m ],所以2S m +2=S m +S m +1.故当q =1时,S m ,S m +2,S m +1不成等差数列;当q =-12时,S m ,S m +2,S m +1成等差数列.判定数列{a n }是等差数列的常用方法(1)定义法:对任意n ∈N *,a n +1-a n 是同一个常数.(证明用) (2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1.(证明用) (3)通项公式法:数列的通项公式a n 是n 的一次函数.(4)前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0.提醒:判断是否为等差数列,最终一般都要转化为定义法判断.将本例1条件变为“数列{a n }的前n 项和为S n (n ∈N *),2S n -na n =n ,”求证:{a n }为等差数列.证明:因为2S n -na n =n ,①所以当n ≥2时,2S n -1-(n -1)a n -1=n -1,② 所以①-②得:(2-n )a n +(n -1)a n -1=1, (1-n )a n +1+na n =1,所以2a n =a n -1+a n +1(n ≥2), 所以数列{a n }为等差数列.考点三 等差数列前n 项和及综合问题◄考素养——懂理[例5] (1)(2018·高考全国卷Ⅱ)记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.①求{a n }的通项公式; ②求S n ,并求S n 的最小值.解析:①设{a n }的公差为d ,由题意得3a 1+3d =-15. 由a 1=-7得d =2.所以{a n }的通项公式为a n =a 1+(n -1)d =2n -9. ②由①得S n =a 1+a n2·n =n 2-8n =(n -4)2-16. 所以当n =4时,S n 取得最小值,最小值为-16.(2)已知数列{a n }满足a 1=2,n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *).①求证数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求其通项公式;②设b n =2a n -15,求数列{|b n |}的前n 项和T n . 解析:①∵n (a n +1-n -1)=(n +1)(a n +n )(n ∈N *), ∴na n +1-(n +1)a n =2n (n +1),∴a n +1n +1-a nn =2, ∴数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,其公差为2,首项为2,∴a nn =2+2(n -1)=2n .②由①知a n =2n 2,∴b n =2a n -15=2n -15, 则数列{b n }的前n 项和S n =n (-13+2n -15)2=n 2-14n .令b n =2n -15≤0,解得n ≤7.∴n ≤7时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b n =-S n =-n 2+14n . n ≥8时,数列{|b n |}的前n 项和T n =-b 1-b 2-…-b 7+b 8+…+b n =-2S 7+S n =-2×(72-14×7)+n 2-14n =n 2-14n +98.∴T n =⎩⎨⎧14n -n 2,n ≤7,n 2-14n +98,n ≥8.关于等差数列前n 项和问题,主要是求和方法及性质的应用,其关键点为: (1)定性质,根据已知条件判断出数列具有哪些特性.(2)定方法,根据已知条件或具有的性质,确定解决问题的方法. ①_x0001_求和:用哪个公式,需要哪些量.②求S n 最值:(ⅰ)借助S n 的二次函数法; (ⅱ)借用通项的邻项变号法a 1>0,d <0,满足⎩⎨⎧ a m ≥0a m +1≤0S n 取得最大值S m ;a 1<0,d >0,满足⎩⎨⎧a m ≤0a m +1≥0,S n 取得最小值S m .1.在等差数列{a n }中,a 1+a 3+a 5=105,a 2+a 4+a 6=99,以S n 表示{a n }的前n 项和,则使S n 达到最大值的n 是( ) A .21 B .20 C .19D .18解析:由a 1+a 3+a 5=3a 3=105,∴a 3=35. a 2+a 4+a 6=3a 4=99,∴a 4=33,∴d =a 4-a 3=-2. ∴a n =a 4+(n -4)×d =33+(n -4)×(-2)=-2n +41. ∴a 20>0,a 21<0,∴当n =20时,S 20最大,故选B. 答案:B2.已知数列{a n }满足2a n +1=a n +a n +2(n ∈N *),它的前n 项和为S n ,且a 3=10,S 6=72,若b n =12a n -30,设数列{b n }的前n 项和为T n ,求T n 的最小值. 解析:∵2a n +1=a n +a n +2,∴a n +1-a n =a n +2-a n +1, 故数列{a n }为等差数列.设数列{a n }的首项为a 1,公差为d ,由a 3=10,S 6=72得,⎩⎨⎧a 1+2d =10,6a 1+15d =72,解得a 1=2,d =4.故a n =4n -2,则b n =12a n -30=2n -31, 令⎩⎨⎧ b n ≤0,b n +1≥0,即⎩⎨⎧2n -31≤0,2(n +1)-31≥0, 解得292≤n ≤312, ∵n ∈N *,∴n =15,即数列{b n }的前15项均为负值,∴T 15最小. ∵数列{b n }的首项是-29,公差为2, ∴T 15=15×(-29+2×15-31)2=-225,∴数列{b n }的前n 项和T n 的最小值为-225.数学建模——传统文化中的数列的学科素养在传统文化中,涉及很多等差数列的模型,经过转化用等差数列的知识求解,体现了数学建模,数学运算的素养.[例1] 《张丘建算经》卷上第22题——“女子织布”问题:某女子善于织布,一天比一天织得快,而且每天增加的数量相同.已知第一天织布5尺,30天共织布390尺,则该女子织布每天增加( ) A.47尺 B.1629尺 C.815尺 D.1631尺解析:设该女子织布每天增加d 尺,由题意知S 30=30×5+30×292d =390,解得d =1629.故该女子织布每天增加1629尺.故选B. 答案:B[例2] 中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( ) A.174斤B .184斤C.191斤 D .201斤解析:用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解得a 1=65.∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤,故选B.答案:B课时规范练1.在单调递增的等差数列{a n }中,若a 3=1,a 2a 4=34,则a 1=( )A .-1B .0 C.14 D.12解析:由题知,a 2+a 4=2a 3=2,又∵a 2a 4=34,数列{a n }单调递增,∴a 2=12,a 4=32.∴公差d =a 4-a 22=12.∴a 1=a 2-d =0.答案:B2.等差数列{a n }中,a 1=1,a n =100(n ≥3).若{a n }的公差为某一自然数,则n 的所有可能取值为( )A .3,7,9,15,100B .4,10,12,34,100C .5,11,16,30,100D .4,10,13,43,100解析:由等差数列的通项公式得,公差d =a n -a 1n -1=99n -1.又因为d ∈N ,n ≥3,所以n -1可能为3,9,11,33,99,n 的所有可能取值为4,10,12,34,100,故选B. 答案:B3.设S n 是等差数列{a n }的前n 项和,若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11解析:因为{a n }是等差数列,∴a 1+a 5=2a 3,即a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5(a 1+a 5)2=5a 3=5,故选A. 答案:A4.等差数列{a n }的前n 项和为S n ,若S 8-S 4=36,a 6=2a 4,则a 1=( )A .-2B .0C .2D .4解析:设等差数列{a n }的公差为d ,∵S 8-S 4=36,a 6=2a 4,∴⎩⎪⎨⎪⎧ ⎝ ⎛⎭⎪⎫8a 1+8×72d -⎝ ⎛⎭⎪⎫4a 1+4×32d =36,a 1+5d =2a 1+6d ,解得⎩⎨⎧a 1=-2,d =2.故选A. 答案:A5.若等差数列{a n }的前5项之和S 5=25,且a 2=3,则a 7=( )A .12B .13C .14D .15 解析:由S 5=(a 2+a 4)·52,得25=(3+a 4)·52,解得a 4=7,所以7=3+2d ,即d =2,所以a 7=a 4+3d =7+3×2=13.答案:B6.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( )A .100B .99C .98D .97解析:由题意可知,⎩⎨⎧a 1+4d =3,a 1+9d =8,解得a 1=-1,d =1,所以a 100=-1+99×1=98.答案:C7.已知等差数列{a n }中,a n ≠0,若n ≥2且a n -1+a n +1-a 2n =0,S 2n -1=38,则n 等于__________.解析:∵{a n }是等差数列,∴2a n =a n -1+a n +1,又∵a n -1+a n +1-a 2n =0,∴2a n-a 2n =0,即a n (2-a n )=0.∵a n ≠0,∴a n =2.∴S 2n -1=(2n -1)a n =2(2n -1)=38, 解得n =10.答案:108.中位数为1 010的一组数构成等差数列,其末项为2 015,则该数列的首项为________.解析:设数列首项为a 1,则a 1+2 0152=1 010,故a 1=5. 答案:59.已知等差数列的前三项依次为a,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值.(2)已知数列{b n }满足b n =S n n ,证明数列{b n }是等差数列,并求其前n 项和T n .解析:(1)设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a=8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k .由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2. 10.已知数列{a n }满足a 1=1,a n =a n -12a n -1+1(n ∈N *,n ≥2),数列{b n }满足关系式b n =1a n(n ∈N *). (1)求证:数列{b n }为等差数列;(2)求数列{a n }的通项公式.解析:(1)证明:∵b n =1a n,且a n =a n -12a n -1+1,∴b n+1=1a n+1=1a n2a n+1=2a n+1a n,∴b n+1-b n=2a n+1a n-1a n=2.又∵b1=1a1=1,∴数列{b n}是以1为首项,2为公差的等差数列.(2)由(1)知数列{b n}的通项公式为b n=1+(n-1)×2=2n-1,又b n=1a n,∴a n=1b n=12n-1.∴数列{a n}的通项公式为a n=12n-1.。
2019届高三数学(理)一轮复习教师用书:第五章数列
第五章 数 列第一节数列的概念与简单表示法1.数列的有关概念n n 若数列{a n }的前n 项和为S n ,则a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.5.数列的分类1.判断下列结论是否正确(请在括号中打“√”或“×”) (1)根据数列的前几项归纳出数列的通项公式可能不止一个.( ) (2)1,1,1,1,…,不能构成一个数列.( )(3)任何一个数列不是递增数列,就是递减数列.( )(4)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .( ) 答案:(1)√ (2)× (3)× (4)√2.已知数列{a n }的通项公式为a n =9+12n ,则在下列各数中,不是{a n }的项的是( ) A .21 B .33 C .152D .153解析:选C 由9+12n =152,得n =14312∉N *.3.在数列{a n }中,a 1=1,a n =1+1a n -1(n ≥2),则a 4=( ) A.32 B.53 C.74D.85 解析:选B 由题意知,a 1=1,a 2=1+1a 1=2,a 3=1+1a 2=32,a 4=1+1a 3=53.4.已知数列{a n }满足a 1=1,a n =a n -1+2n (n ≥2),则a 7=( ) A .53 B .54 C .55D .109解析:选C 由题意知,a 2=a 1+2×2,a 3=a 2+2×3,……,a 7=a 6+2×7,各式相加得a 7=a 1+2(2+3+4+…+7)=55.5.数列1,23,35,47,59,…的一个通项公式a n =________.解析:由已知得,数列可写成11,23,35,…,故通项公式可以为a n =n 2n -1.答案:n2n -16.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式是________________. 解析:当n =1时,a 1=S 1=2-3=-1,当n ≥2时,a n =S n -S n -1=(2n -3)-(2n -1-3)=2n -2n -1=2n -1.又a 1=-1不适合上式,故a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2考点一 由a n 与S n 的关系求通项a n (基础送分型考点——自主练透)[考什么·怎么考]n n 1.已知S n =3n +2n +1,则a n =____________. 解析:因为当n =1时,a 1=S 1=6; 当n ≥2时,a n =S n -S n -1=(3n +2n +1)-[3n -1+2(n -1)+1]=2·3n -1+2,由于a 1不适合此式,所以a n =⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥2.答案:⎩⎪⎨⎪⎧6,n =1,2·3n -1+2,n ≥22.(2017·全国卷Ⅲ改编)设数列{a n }满足a 1+3a 2+…+(2n -1)a n =2n ,则a n =____________.解析:因为a 1+3a 2+…+(2n -1)a n =2n ,故当n≥2时,a1+3a2+…+(2n-3)a n-1=2(n-1).两式相减得(2n-1)a n=2,所以a n=22n-1(n≥2).又由题设可得a1=2,满足上式,从而{a n}的通项公式为a n=22n-1(n∈N*).答案:22n-1(n∈N*)[题型技法]已知Sn求a n的3步骤(1)先利用a1=S1求出a1;(2)用n-1替换S n中的n得到一个新的关系,利用a n=S n-S n-1(n≥2)便可求出当n≥2时a n的表达式;(3)注意检验n=1时的表达式是否可以与n≥2的表达式合并.考法(二)由S n与a n的关系,求a n,S n3.设数列{a n}的前n项和为S n,且S n=2(a n-1)(n∈N*),则a n=()A.2n B.2n-1C.2n D.2n-1解析:选C当n=1时,a1=S1=2(a1-1),可得a1=2,当n≥2时,a n=S n-S n-1=2a n-2a n-1,∴a n=2a n-1,∴数列{a n}为首项为2,公比为2的等比数列,所以a n=2n.4.(2015·全国卷Ⅱ)设S n是数列{a n}的前n项和,且a1=-1,a n+1=S n S n+1,则S n=________.解析:∵a n+1=S n+1-S n,a n+1=S n S n+1,∴S n+1-S n=S n S n+1.∵S n≠0,∴1S n-1S n+1=1,即1S n+1-1S n=-1.又1S1=-1,∴⎩⎨⎧⎭⎬⎫1S n是首项为-1,公差为-1的等差数列.∴1S n=-1+(n-1)×(-1)=-n,∴S n=-1n.答案:-1n[题型技法]Sn与a n关系问题的求解思路根据所求结果的不同要求,将问题向不同的两个方向转化.(1)利用a n=S n-S n-1(n≥2)转化为只含S n,S n-1的关系式,再求解.(2)利用S n-S n-1=a n(n≥2)转化为只含a n,a n-1的关系式,再求解.考点二 由递推关系式求数列的通项公式 (基础送分型考点——自主练透)[考什么·怎么考]1.在数列{a n }中,a 1=1,a n =n -1n a n -1(n ≥2),则数列{a n }的通项公式为__________. 解析:∵a n =n -1n a n -1(n ≥2),∴a n -1=n -2n -1a n -2,a n -2=n -3n -2a n -3,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n .当n =1时,a 1=1,上式也成立.∴a n =1n (n ∈N *).答案:a n =1n(n ∈N *)[方法点拨] 叠乘法求通项公式的4步骤方法(二) 叠加法求通项公式2.设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列{a n }的通项公式为________________.解析:由题意有a 2-a 1=2,a 3-a 2=3,…,a n -a n -1=n (n ≥2). 以上各式相加,得a n -a 1=2+3+…+n =(n -1)(2+n )2=n 2+n -22.又∵a 1=1,∴a n =n 2+n2(n ≥2).∵当n =1时也满足上式,∴a n =n 2+n2(n ∈N *).答案:a n =n 2+n2(n ∈N *)[方法点拨] 叠加法求通项公式的4步骤方法(三) 构造法求通项公式3.已知数列{a n }满足a 1=1,a n +1=3a n +2,则数列{a n }的通项公式为________________. 解析:∵a n +1=3a n +2,∴a n +1+1=3(a n +1), ∴a n +1+1a n +1=3, ∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1,∴a n =2·3n -1-1(n ∈N *).答案:a n =2·3n -1-1(n ∈N *)[方法点拨] 构造法求通项公式的3步骤[怎样快解·准解]1.正确选用方法求数列的通项公式 (1)对于递推关系式可转化为a n +1a n=f (n )的数列,并且容易求数列{f (n )}前n 项的积时,采用叠乘法求数列{a n }的通项公式.(2)对于递推关系式可转化为a n +1=a n +f (n )的数列,通常采用叠加法(逐差相加法)求其通项公式.(3)对于递推关系式形如a n +1=pa n +q (p ≠0,1,q ≠0)的数列,采用构造法求数列的通项. 2.避免2种失误(1)利用叠乘法,易出现两个方面的问题:一是在连乘的式子中只写到a 2a 1,漏掉a 1而导致错误;二是根据连乘求出a n 之后,不注意检验a 1是否成立.(2)利用构造法求解时应注意数列的首项的正确求解以及准确确定叠加、叠乘后最后一个式子的形式.考点三 数列的性质及应用 (重点保分型考点——师生共研)1.已知数列{a n }满足a n +1=11-a n,若a 1=12,则a 2 018=( )A .-1 B.12 C .1D .2解析:选D 由a 1=12,a n +1=11-a n ,得a 2=11-a 1=2,a 3=11-a 2=-1,a 4=11-a 3=12,a 5=11-a 4=2,…, 于是可知数列{a n }是以3为周期的周期数列,因此a 2 018=a 3×672+2=a 2=2. 2.已知数列{a n }满足a n =n +13n -16(n ∈N *),则数列{a n }的最小项是第________项.解析:因为a n =n +13n -16,所以数列{a n }的最小项必为a n <0,即n +13n -16<0,3n -16<0,从而n <163.又n ∈N *,所以当n =5时,a n 的值最小.答案:5[解题师说]1.解决数列周期性问题的方法先根据已知条件求出数列的前几项,确定数列的周期,再根据周期性求值. 2.判断数列单调性的2种方法(1)作差比较法:比较a n +1-a n 与0的大小.(2)作商比较法:比较a n +1a n 与1的大小,注意a n 的符号.3.求数列最大项或最小项的方法(1)利用不等式组⎩⎪⎨⎪⎧a n -1≤a n ,a n ≥a n +1(n ≥2)找到数列的最大项;(2)利用不等式组⎩⎪⎨⎪⎧a n -1≥a n ,a n ≤a n +1(n ≥2)找到数列的最小项.[冲关演练]1.已知数列{a n}满足a1=1,a n+1=a2n-2a n+1(n∈N*),则a2 018=()A.1 B.0C.2 018 D.-2 018解析:选B∵a1=1,a n+1=a2n-2a n+1=(a n-1)2,∴a2=(a1-1)2=0,a3=(a2-1)2=1,a4=(a3-1)2=0,…,可知数列{a n}是以2为周期的数列,∴a2 018=a2=0,选B.2.等差数列{a n}的公差d<0,且a21=a211,则数列{a n}的前n项和S n取得最大值时的项数n的值为()A.5 B.6C.5或6 D.6或7解析:选C由a21=a211,可得(a1+a11)(a1-a11)=0,因为d<0,所以a1-a11≠0,所以a1+a11=0,又2a6=a1+a11,所以a6=0.因为d<0,所以{a n}是递减数列,所以a1>a2>…>a5>a6=0>a7>a8>…,显然前5项和或前6项和最大,故选C.(一)普通高中适用作业A级——基础小题练熟练快1.已知数列1,2,7,10,13,…,则219在这个数列中的项数是()A.16B.24C.26 D.28解析:选C因为a1=1=1,a2=2=4,a3=7,a4=10,a5=13,…,所以a n =3n-2.令a n=3n-2=219=76,解得n=26.2.数列{a n}的前n项和S n=2n2-3n(n∈N*),若p-q=5,则a p-a q=()A.10 B.15C.-5 D.20解析:选D当n≥2时,a n=S n-S n-1=2n2-3n-[2(n-1)2-3(n-1)]=4n-5,当n=1时,a1=S1=-1,符合上式,所以a n=4n-5,所以a p-a q=4(p-q)=20.3.(2017·河南许昌二模)已知数列{a n}满足a1=1,a n+2-a n=6,则a11的值为() A.31 B.32C.61 D.62解析:选A∵数列{a n}满足a1=1,a n+2-a n=6,∴a3=6+1=7,a5=6+7=13,a7=6+13=19,a9=6+19=25,a11=6+25=31.4.(2018·云南检测)设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D.⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *),所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.5.(2018·湖南湘潭一中、长沙一中等六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析:选A ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18,∴a 5=a 3·a 2=132. 6.数列{a n }满足a n +a n +1=12(n ∈N *),a 2=2,S n 是数列{a n }的前n 项和,则S 21为( )A .5 B.72 C.92D.132解析:选B ∵a n +a n +1=12,a 2=2,∴a n =⎩⎪⎨⎪⎧-32,n 为奇数,2, n 为偶数.∴S 21=11×⎝⎛⎭⎫-32+10×2=72. 7.已知数列{a n }的前n 项和S n =n 2+2n +1(n ∈N *),则a n =________. 解析:当n ≥2时,a n =S n -S n -1=2n +1, 当n =1时,a 1=S 1=4≠2×1+1,因此a n =⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥2.答案:⎩⎪⎨⎪⎧4,n =1,2n +1,n ≥28.已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析:各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式为a n =(-1)n·2n -32n ,n ∈N *.答案:a n =(-1)n·2n -32n ,n ∈N *9.数列{a n }的前n 项和为S n ,若S n +S n -1=2n -1(n ≥2,n ∈N *),且S 2=3,则a 1+a 3的值为________.解析:∵S n +S n -1=2n -1(n ≥2),令n =2, 得S 2+S 1=3,由S 2=3得a 1=S 1=0, 令n =3,得S 3+S 2=5,所以S 3=2,则a 3=S 3-S 2=-1,所以a 1+a 3=0+(-1)=-1. 答案:-110.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:28B 级——中档题目练通抓牢1.若a 1=12,a n =4a n -1+1(n ≥2),则a n >100时,n 的最小值为( )A .3B .4C .5D .6解析:选C 由a 1=12,a n =4a n -1+1(n ≥2)得,a 2=4a 1+1=4×12+1=3,a 3=4a 2+1=4×3+1=13,a 4=4a 3+1=4×13+1=53,a 5=4a 4+1=4×53+1=213>100.2.(2018·咸阳模拟)已知正项数列{a n }中,a 1+a 2+…+a n =n (n +1)2(n ∈N *),则数列{a n }的通项公式为( )A .a n =nB .a n =n 2C .a n =n2D .a n =n 22解析:选B ∵a 1+a 2+…+a n =n (n +1)2, ∴a 1+a 2+…+a n -1=n (n -1)2(n ≥2), 两式相减得a n =n (n +1)2-n (n -1)2=n (n ≥2), ∴a n =n 2(n ≥2).又当n =1时,a 1=1×22=1,a 1=1,适合上式,∴a n =n 2,n ∈N *.故选B.3.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和数值最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和数值最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223, ∵k ∈N *,∴k =7.∴满足条件的n 的值为7.4.在数列{a n }中,a n >0,且前n 项和S n 满足4S n =(a n +1)2(n ∈N *),则数列{a n }的通项公式为________.解析:当n =1时,4S 1=(a 1+1)2,解得a 1=1; 当n ≥2时,由4S n =(a n +1)2=a 2n +2a n +1, 得4S n -1=a 2n -1+2a n -1+1,两式相减得4S n -4S n -1=a 2n -a 2n -1+2a n -2a n -1=4a n ,整理得(a n +a n -1)(a n -a n -1-2)=0,因为a n >0,所以a n -a n -1-2=0,即a n -a n -1=2, 又a 1=1,故数列{a n }是首项为1,公差为2的等差数列, 所以a n =1+2(n -1)=2n -1. 答案:a n =2n -15.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵中的第10行第3个数为97. 答案:976.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞).7.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R),有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.解:(1)依题意,Δ=a 2-4a =0, 所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0. 又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0, 所以数列{c n }的变号数为3. C 级——重难题目自主选做1.已知数列{a n }的通项公式为a n =(n +2)⎝⎛⎫910n (n ∈N *),则数列{a n }的最大项是( ) A .a 6或a 7 B .a 7或a 8 C .a 8或a 9D .a 7解析:选B 因为a n +1-a n =(n +3)⎝⎛⎭⎫910n +1-(n +2)⎝⎛⎭⎫910n =⎝⎛⎭⎫910n ·7-n 10,当n <7时,a n+1-a n >0,即a n +1>a n ;当n =7时,a n +1-a n =0,即a n +1=a n ;当n >7时,a n +1-a n <0,即a n +1<a n ,则a 1<a 2<…<a 7=a 8>a 9>a 10>…,所以此数列的最大项是第7项或第8项,即a 7或a 8.故选B.2.(2018·成都诊断)在数列{a n }中,a 1=1,a n =n 2n 2-1a n -1(n ≥2,n ∈N *),则a n =________.解析:由题意知a n a n -1=n 2n 2-1=n 2(n -1)(n +1),所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×2222-1×3232-1×…×n 2n 2-1=22×32×42×…×n 2(2-1)×(2+1)×(3-1)×(3+1)×(4-1)×(4+1)×…×(n -1)×(n +1) =22×32×42×…×n 21×3×2×4×3×5×…×(n -1)×(n +1)=2nn +1. 答案:2nn +1(二)重点高中适用作业A 级——保分题目巧做快做1.已知数列1,2,7,10,13,…,则219在这个数列中的项数是( ) A .16 B .24 C .26D .28解析:选C 因为a 1=1=1,a 2=2=4,a 3=7,a 4=10,a 5=13,…,所以a n=3n -2.令a n =3n -2=219=76,解得n =26.2.(2018·郑州模拟)已知数列{a n }满足a 1=1,a n +2-a n =6,则a 11的值为( ) A .31 B .32 C .61D .62解析:选A ∵数列{a n }满足a 1=1,a n +2-a n =6, ∴a 3=6+1=7,a 5=6+7=13,a 7=6+13=19, a 9=6+19=25,a 11=6+25=31.3.数列{a n }的前n 项和S n =2n 2-3n (n ∈N *),若p -q =5,则a p -a q =( ) A .10 B .15 C .-5D .20解析:选D 当n ≥2时,a n =S n -S n -1=2n 2-3n -[2(n -1)2-3(n -1)]=4n -5,当n =1时,a 1=S 1=-1,符合上式,所以a n =4n -5,所以a p -a q =4(p -q )=20.4.(2018·湖南湘潭一中、长沙一中等六校联考)已知数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,那么a 5=( )A.132B.116C.14D.12解析:选A ∵数列{a n }满足:∀m ,n ∈N *,都有a n ·a m =a n +m ,且a 1=12,∴a 2=a 1a 1=14,a 3=a 1·a 2=18,∴a 5=a 3·a 2=132. 5.若数列{a n }满足:a 1=19,a n +1=a n -3(n ∈N *),则数列{a n }的前n 项和最大时,n 的值为( )A .6B .7C .8D .9解析:选B ∵a 1=19,a n +1-a n =-3,∴数列{a n }是以19为首项,-3为公差的等差数列, ∴a n =19+(n -1)×(-3)=22-3n . 设{a n }的前k 项和最大,则有⎩⎪⎨⎪⎧ a k ≥0,a k +1≤0k ∈N *,∴⎩⎪⎨⎪⎧22-3k ≥0,22-3(k +1)≤0,∴193≤k ≤223,∵k ∈N *,∴k =7. ∴满足条件的n 的值为7.6.(2018·河北唐山一模)设数列{a n }的前n 项和为S n ,且S n =a 1(4n -1)3,若a 4=32,则a 1=________.解析:∵S n =a 1(4n -1)3,a 4=32,∴S 4-S 3=255a 13-63a 13=32,∴a 1=12. 答案:127.已知数列{a n }为12,14,-58,1316,-2932,6164,…,则数列{a n }的一个通项公式是________.解析:各项的分母分别为21,22,23,24,…,易看出从第2项起,每一项的分子都比分母少3,且第1项可变为-2-32,故原数列可变为-21-321,22-322,-23-323,24-324,…故其通项公式为a n =(-1)n·2n -32n ,n ∈N *.答案:a n =(-1)n·2n -32n ,n ∈N *8.在一个数列中,如果∀n ∈N *,都有a n a n +1a n +2=k (k 为常数),那么这个数列叫做等积数列,k 叫做这个数列的公积.已知数列{a n }是等积数列,且a 1=1,a 2=2,公积为8,则a 1+a 2+a 3+…+a 12=________.解析:依题意得数列{a n }是周期为3的数列,且a 1=1,a 2=2,a 3=4,因此a 1+a 2+a 3+…+a 12=4(a 1+a 2+a 3)=4×(1+2+4)=28.答案:289.已知数列{a n }的前n 项和S n =-12n 2+kn ,k ∈N *,且S n 的最大值为8.试确定常数k ,并求数列{a n }的通项公式.解:因为S n =-12n 2+kn =-12(n -k )2+12k 2,其中k 是常数,且k ∈N *,所以当n =k时,S n 取最大值12k 2,故12k 2=8,k 2=16,因此k =4,从而S n =-12n 2+4n .当n =1时,a 1=S 1=-12+4=72;当n ≥2时,a n =S n -S n -1=⎝⎛⎭⎫-12n 2+4n --12(n -1)2+4(n -1)=92-n .当n =1时,92-1=72=a 1,所以a n =92-n .10.已知数列{a n }的通项公式是a n =n 2+kn +4.(1)若k =-5,则数列中有多少项是负数?n 为何值时,a n 有最小值?并求出最小值; (2)对于n ∈N *,都有a n +1>a n ,求实数k 的取值范围. 解:(1)由n 2-5n +4<0,解得1<n <4. 因为n ∈N *,所以n =2,3,所以数列中有两项是负数,即为a 2,a 3. 因为a n =n 2-5n +4=⎝⎛⎭⎫n -522-94, 由二次函数性质,得当n =2或n =3时,a n 有最小值,其最小值为a 2=a 3=-2. (2)由a n +1>a n ,知该数列是一个递增数列,又因为通项公式a n =n 2+kn +4,可以看作是关于n 的二次函数,考虑到n ∈N *,所以-k 2<32,解得k >-3.所以实数k 的取值范围为(-3,+∞). B 级——拔高题目稳做准做1.(2018·云南检测)设数列{a n }的通项公式为a n =n 2-bn ,若数列{a n }是单调递增数列,则实数b 的取值范围为( )A .(-∞,-1]B .(-∞,2]C .(-∞,3)D.⎝⎛⎦⎤-∞,92 解析:选C 因为数列{a n }是单调递增数列,所以a n +1-a n =2n +1-b >0(n ∈N *),所以b <2n +1(n ∈N *),所以b <(2n +1)min =3,即b <3.2.已知数列{a n }满足a n +1=a n +2n ,且a 1=33,则a nn 的最小值为( ) A .21 B .10 C.212D.172解析:选C 由已知条件可知,当n ≥2时, a n =a 1+(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =33+2+4+…+2(n -1)=n 2-n +33,又n =1时,a 1=33满足此式. 所以a n n =n +33n -1. 令f (n )=a n n =n +33n -1,则f (n )在[1,5]上为减函数,在[6,+∞)上为增函数.又f (5)=535,f (6)=212,则f (5)>f (6), 故f (n )=a n n 的最小值为212.3.(2018·成都质检)在数列{a n }中,a 1=1,a n =n 2n 2-1a n -1(n ≥2,n ∈N *),则a n =________.解析:由题意知a n a n -1=n 2n 2-1=n 2(n -1)(n +1),所以a n =a 1×a 2a 1×a 3a 2×…×a na n -1=1×2222-1×3232-1×…×n 2n 2-1=22×32×42×…×n 2(2-1)×(2+1)×(3-1)×(3+1)×(4-1)×(4+1)×…×(n -1)×(n +1) =22×32×42×…×n 21×3×2×4×3×5×…×(n -1)×(n +1)=2nn +1. 答案:2nn +14.已知数列{a n }的通项公式为a n =(-1)n ·2n +1,该数列的项排成一个数阵(如图),则该数阵中的第10行第3个数为________.a 1 a 2 a 3 a 4 a 5 a 6 ……解析:由题意可得该数阵中的第10行第3个数为数列{a n }的第1+2+3+…+9+3=9×102+3=48项,而a 48=(-1)48×96+1=97,故该数阵中的第10行第3个数为97. 答案:975.已知二次函数f (x )=x 2-ax +a (a >0,x ∈R),有且只有一个零点,数列{a n }的前n 项和S n =f (n )(n ∈N *).(1)求数列{a n }的通项公式;(2)设c n =1-4a n(n ∈N *),定义所有满足c m ·c m +1<0的正整数m 的个数,称为这个数列{c n }的变号数,求数列{c n }的变号数.解:(1)依题意,Δ=a 2-4a =0,所以a =0或a =4. 又由a >0得a =4, 所以f (x )=x 2-4x +4. 所以S n =n 2-4n +4.当n =1时,a 1=S 1=1-4+4=1; 当n ≥2时,a n =S n -S n -1=2n -5.所以a n =⎩⎪⎨⎪⎧1,n =1,2n -5,n ≥2.(2)由题意得c n =⎩⎪⎨⎪⎧-3,n =1,1-42n -5,n ≥2. 由c n =1-42n -5可知,当n ≥5时,恒有c n >0. 又c 1=-3,c 2=5,c 3=-3,c 4=-13,c 5=15,c 6=37,即c 1·c 2<0,c 2·c 3<0,c 4·c 5<0, 所以数列{c n }的变号数为3.6.已知{a n }是公差为d 的等差数列,它的前n 项和为S n ,S 4=2S 2+4,在数列{b n }中,b n =1+a na n.(1)求公差d 的值;(2)若a 1=-52,求数列{b n }中的最大项和最小项的值;(3)若对任意的n ∈N *,都有b n ≤b 8成立,求a 1的取值范围. 解:(1)∵S 4=2S 2+4,∴4a 1+3×42d =2(2a 1+d )+4,解得d =1. (2)∵a 1=-52,∴数列{a n }的通项公式为a n =-52+(n -1)×1=n -72,∴b n =1+a n a n =1+1a n=1+1n -72.∵函数f (x )=1+1x -72在⎝⎛⎭⎫-∞,72和⎝⎛⎭⎫72,+∞上分别是单调减函数, ∴b 3<b 2<b 1<1,当n ≥4时,1<b n ≤b 4,∴数列{b n }中的最大项是b 4=3,最小项是b 3=-1. (3)由b n =1+1a n,得b n =1+1n +a 1-1.又函数f (x )=1+1x +a 1-1在(-∞,1-a 1)和(1-a 1,+∞)上分别是单调减函数,且x <1-a 1时,y <1;当x >1-a 1时,y >1.∵对任意的n ∈N *,都有b n ≤b 8, ∴7<1-a 1<8,∴-7<a 1<-6, ∴a 1的取值范围是(-7,-6).第二节等差数列及其前n 项和1.等差数列的有关概念(1)定义:如果一个数列从第2项起,每一项与它的前一项的差都等于同一个常数,那么这个数列就叫做等差数列.这个常数叫做等差数列的公差,符号表示为a n +1-a n =d (n ∈N *,d 为常数).(2)等差中项:数列a ,A ,b 成等差数列的充要条件是A =a +b2,其中A 叫做a ,b 的等差中项.2.等差数列的有关公式 (1)通项公式:a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)2d =n (a 1+a n )2. 3.等差数列的常用性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n . (3)若{a n }是等差数列,公差为d ,则{a 2n }也是等差数列,公差为2d . (4)若{a n },{b n }是等差数列,则{pa n +qb n }也是等差数列.(5)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列.4.与等差数列各项的和有关的性质(1)若{a n }是等差数列,则⎩⎨⎧⎭⎬⎫S n n 也成等差数列,其首项与{a n }首项相同,公差是{a n }公差的12. (2)若{a n }是等差数列,S m ,S 2m ,S 3m 分别为{a n }的前m 项,前2m 项,前3m 项的和,则S m ,S 2m -S m ,S 3m -S 2m 成等差数列.(3)关于等差数列奇数项和与偶数项和的性质.①若项数为2n ,则S 偶-S 奇=nd ,S 奇S 偶=a na n +1. ②若项数为2n -1,则S 偶=(n -1)a n ,S 奇=na n ,S 奇-S 偶=a n ,S 奇S 偶=n n -1. (4)两个等差数列{a n },{b n }的前n 项和S n ,T n 之间的关系为a n b n=S 2n -1T 2n -1.1.判断下列结论是否正确(请在括号中打“√”或“×”)(1)若一个数列从第二项起每一项与它的前一项的差都是常数,则这个数列是等差数列.( )(2)等差数列{a n }的单调性是由公差d 决定的.( )(3)等差数列的前n 项和公式是常数项为0的二次函数.( ) (4)已知等差数列{a n }的通项公式a n =3-2n ,则它的公差为-2.( ) 答案:(1)× (2)√ (3)× (4)√2.在等差数列{}a n 中,若a 2=4,a 4=2,则a 6=( ) A .-1 B .0 C .1D .6解析:选B ∵{}a n 为等差数列,∴2a 4=a 2+a 6,∴a 6=2a 4-a 2=2×2-4=0.3.(2017·全国卷Ⅲ)等差数列{a n }的首项为1,公差不为0.若a 2,a 3,a 6成等比数列,则{a n }前6项的和为( )A .-24B .-3C .3D .8 解析:选A 设等差数列{a n }的公差为d , 因为a 2,a 3,a 6成等比数列,所以a 2a 6=a 23, 即(a 1+d )(a 1+5d )=(a 1+2d )2. 又a 1=1,所以d 2+2d =0. 又d ≠0,则d =-2,所以{a n }前6项的和S 6=6×1+6×52×(-2)=-24.4.已知数列⎩⎨⎧⎭⎬⎫1a n 是等差数列,且a 1=1,a 4=4,则a 10=( )A .-45B .-54C.413D.134解析:选A 设等差数列⎩⎨⎧⎭⎬⎫1a n 的公差为d ,由题意可知,1a 4=1a 1+3d =14,解得d =-14,所以1a 10=1a 1+9d =-54,所以a 10=-45. 5.已知等差数列{a n }的公差d ≠0,且a 3+a 9=a 10-a 8,若a n =0,则n =________. 解析:因为a 3+a 9=a 10-a 8,所以a 1+2d +a 1+8d =a 1+9d -(a 1+7d ), 解得a 1=-4d ,所以a n =-4d +(n -1)d =(n -5)d , 令(n -5)d =0(d ≠0),可解得n =5. 答案:56.在等差数列{a n }中,a n >0,a 7=12a 4+4,S n 为数列{a n }的前n 项和,则S 19=________.解析:设等差数列{a n }的公差为d ,由a 7=12a 4+4,得a 1+6d =12(a 1+3d )+4,即a 1+9d =8,所以a 10=8,因此S 19=19(a 1+a 19)2=19×a 10=19×8=152. 答案:152考点一 等差数列的基本运算 (基础送分型考点——自主练透)[考什么·怎么考]n 527A .12 B .13 C .14D .15解析:选B 设等差数列{a n }的公差为d , 由S 5=5(a 2+a 4)2,得5(3+a 4)2=25,解得a 4=7,所以7=3+2d ,解得d =2,所以a 7=a 4+3d =7+3×2=13.2.(2017·全国卷Ⅰ)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A .1B .2C .4D .8解析:选C 设等差数列{a n }的公差为d ,则由⎩⎪⎨⎪⎧a 4+a 5=24,S 6=48,得⎩⎪⎨⎪⎧a 1+3d +a 1+4d =24,6a 1+6×52d =48,即⎩⎪⎨⎪⎧2a 1+7d =24,2a 1+5d =16,解得d =4. 3.(2018·福州质检)设等差数列{a n }的公差d ≠0,且a 2=-d ,若a k 是a 6与a k +6的等比中项,则k =( )A .5B .6C .9D .11解析:选C 因为a k 是a 6与a k +6的等比中项, 所以a 2k =a 6a k +6.又等差数列{a n }的公差d ≠0,且a 2=-d , 所以[a 2+(k -2)d ]2=(a 2+4d )[a 2+(k +4)d ], 所以(k -3)2=3(k +3),解得k =9,或k =0(舍去),故选C.4.设S n 为等差数列{a n }的前n 项和,若a 12=-8,S 9=-9,则S 16=________. 解析:设等差数列{a n }的首项为a 1,公差为d , 由已知,得⎩⎪⎨⎪⎧a 12=a 1+11d =-8,S 9=9a 1+9×82d =-9,解得⎩⎪⎨⎪⎧a 1=3,d =-1. ∴S 16=16×3+16×152×(-1)=-72.答案:-72[怎样快解·准解]1.等差数列运算中方程思想的应用(1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想解决问题.[易错提醒] 在求解数列基本量运算中,要注意公式使用时的准确性与合理性,更要注意运算的准确性.在遇到一些较复杂的方程组时,要注意整体代换思想的运用,使运算更加便捷.2.等差数列前n 项和公式的应用方法根据不同的已知条件选用两个求和公式,若已知首项和公差,则使用公式S n =na 1+n (n -1)2d ;若已知通项公式,则使用公式S n =n (a 1+a n )2,同时注意与性质“a 1+a n =a 2+a n -1=a 3+a n -2=…”的结合使用.考点二 等差数列的判定与证明 (重点保分型考点——师生共研)(2018·贵州适应性考试)已知数列{a n }满足a 1=1,且na n +1-(n +1)a n =2n 2+2n . (1)求a 2,a 3;(2)证明数列⎩⎨⎧⎭⎬⎫a n n 是等差数列,并求{a n }的通项公式.[思维路径](1)要求数列的项,可根据已知首项和递推关系式,令n =1,2可解得.(2)证明⎩⎨⎧⎭⎬⎫a n n 是等差数列,其关键应推出a n +1n +1-a n n 为常数,对所给条件进行必要的变形即可.解:(1)由已知,得a 2-2a 1=4, 则a 2=2a 1+4,又a 1=1,所以a 2=6. 由2a 3-3a 2=12,得2a 3=12+3a 2,所以a 3=15.(2)证明:由已知na n +1-(n +1)a n =2n 2+2n , 得na n +1-(n +1)a n n (n +1)=2,即a n +1n +1-a nn=2,所以数列⎩⎨⎧⎭⎬⎫a n n 是首项a 11=1,公差d =2的等差数列.则a nn =1+2(n -1)=2n -1,所以a n =2n 2-n .[解题师说]等差数列的判定与证明方法用定义证明等差数列时,容易漏掉对起始项的检验,从而产生错解.比如,对于满足a n-a n-1=1(n≥3)的数列{a n}而言并不能判定其为等差数列,因为不能确定起始项a2-a1是否等于1.[冲关演练]1.(2018·陕西质检)已知数列{a n}的前n项和S n=an2+bn(a,b∈R)且a2=3,a6=11,则S7等于()A.13B.49C.35 D.63解析:选B由S n=an2+bn(a,b∈R)可知数列{a n}是等差数列,所以S7=7(a1+a7)2=7(a2+a6)2=49.2.已知数列{a n}中,a1=2,a n=2-1a n-1(n≥2,n∈N*),设b n=1a n-1(n∈N*).求证:数列{b n}是等差数列.证明:∵a n=2-1a n-1(n≥2),∴a n+1=2-1a n.∴b n+1-b n=1a n+1-1-1a n-1=12-1a n-1-1a n-1=a n-1a n-1=1,∴{b n}是首项为b1=12-1=1,公差为1的等差数列.考点三等差数列的性质及前n项和的最值(重点保分型考点——师生共研)1.在等差数列{a n}中,a1=29,S10=S20,则数列{a n}的前n项和S n的最大值为() A.S15B.S16C.S15或S16D.S17解析:选A∵a1=29,S10=S20,∴10a1+10×92d=20a1+20×192d,解得d=-2,∴S n=29n+n(n-1)2×(-2)=-n2+30n=-(n-15)2+225.∴当n=15时,S n取得最大值.2.(2018·石家庄一模)已知函数f(x)的图象关于直线x=-1对称,且f(x)在(-1,+∞)上单调,若数列{a n}是公差不为0的等差数列,且f(a50)=f(a51),则数列{a n}的前100项的和为❶❷() A.-200 B.-100C.-50 D.0[学审题]①由函数的对称性及单调性知f(x)在(-∞,-1)上也单调;②结合函数的性质知a50+a51=-2.解析:选B因为函数f(x)的图象关于直线x=-1对称,又函数f(x)在(-1,+∞)上单调,所以f(x)在(-∞,-1)上也单调,且数列{a n}是公差不为0的等差数列.又f(a50)=f(a51),所以a50+a51=-2,所以S100=100(a1+a100)2=50(a50+a51)=-100.[解题师说]1.应用等差数列的性质解题的2个注意点(1)如果{a n}为等差数列,m+n=p+q,则a m+a n=a p+a q(m,n,p,q∈N*).因此,若出现a m-n,a m,a m+n等项时,可以利用此性质将已知条件转化为与a m(或其他项)有关的条件;若求a m项,可由a m=12(a m-n+a m+n)转化为求a m-n,a m+n或a m+n+a m-n的值.(2)要注意等差数列通项公式及前n项和公式的灵活应用,如a n=a m+(n-m)d,d=a n -a m n -m,S 2n -1=(2n -1)a n ,S n =n (a 1+a n )2=n (a 2+a n -1)2(n ,m ∈N *)等.2.求等差数列前n 项和S n 最值的2种方法(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn ,通过配方或借助图象求二次函数最值的方法求解.(2)邻项变号法:①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧ a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m ;②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m .3.理清等差数列的前n 项和与函数的关系 等差数列的前n 项和公式为S n =na 1+n (n -1)2d 可变形为S n =d 2n 2+⎝⎛⎭⎫a 1-d 2n ,令A =d2,B =a 1-d2,则S n =An 2+Bn .当A ≠0,即d ≠0时,S n 是关于n 的二次函数,(n ,S n )在二次函数y =Ax 2+Bx 的图象上,即为抛物线y =Ax 2+Bx 上一群孤立的点.利用此性质可解决前n 项和S n 的最值问题.[冲关演练]1.(2018·岳阳模拟)在等差数列{a n }中,如果a 1+a 2=40,a 3+a 4=60,那么a 7+a 8=( ) A .95 B .100 C .135D .80解析:选B 由等差数列的性质可知,a 1+a 2,a 3+a 4,a 5+a 6,a 7+a 8构成新的等差数列,于是a 7+a 8=(a 1+a 2)+(4-1)[(a 3+a 4)-(a 1+a 2)]=40+3×20=100.2.设等差数列{a n }的前n 项和为S n ,且a 1>0,a 3+a 10>0,a 6a 7<0,则满足S n >0的最大自然数n 的值为( )A .6B .7C .12D .13解析:选C 因为a 1>0,a 6a 7<0,所以a 6>0,a 7<0,等差数列的公差小于零,又a 3+a 10=a 1+a 12>0,a 1+a 13=2a 7<0,所以S 12>0,S 13<0,所以满足S n >0的最大自然数n 的值为12.3.设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),则数列{a n }的项数为________.解析:由题意知a 1+a 2+…+a 6=36,① a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216,∴a 1+a n =36, 又S n =n (a 1+a n )2=324, ∴18n =324,∴n =18. 答案:18(一)普通高中适用作业A 级——基础小题练熟练快1.(2018·兰州诊断考试)已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=( )A .36B .72C .144D .288解析:选B 法一:∵a 8+a 10=2a 1+16d =28,a 1=2, ∴d =32,∴S 9=9×2+9×82×32=72.法二:∵a 8+a 10=2a 9=28,∴a 9=14, ∴S 9=9(a 1+a 9)2=72. 2.(2018·安徽两校阶段性测试)若等差数列{a n }的前n 项和为S n ,且满足a 2+S 3=4,a 3+S 5=12,则a 4+S 7的值是( )A .20B .36C .24D .72解析:选C 由a 2+S 3=4及a 3+S 5=12,得⎩⎪⎨⎪⎧ 4a 1+4d =4,6a 1+12d =12,解得⎩⎪⎨⎪⎧a 1=0,d =1,∴a 4+S 7=8a 1+24d =24.3.(2018·西安质检)已知数列{a n }满足a 1=15,且3a n +1=3a n -2.若a k ·a k +1<0,则正整数k =( )A .21B .22C .23D .24解析:选C 由3a n +1=3a n -2⇒a n +1-a n =-23⇒{a n }是等差数列,则a n =473-23n .∵a k ·a k+1<0,∴⎝⎛⎭⎫473-23k ⎝⎛⎭⎫453-23k <0,∴452<k <472,又∵k ∈N *,∴k =23.4.(2018·东北三校联考)已知数列{a n }的首项为3,{b n }为等差数列,且b n =a n +1-a n (n ∈N *),若b 3=-2,b 2=12,则a 8=( )A .0B .-109C .-181D .121解析:选B 设等差数列{b n }的公差为d ,则d =b 3-b 2=-14,因为a n +1-a n =b n ,所以a 8-a 1=b 1+b 2+…+b 7=7(b 1+b 7)2=7b 4=7×(-2-14)=-112,又a 1=3,所以a 8=-109.5.(2018·云南11校跨区调研)在数列{a n }中,a 1=3,a n +1=3a n a n +3,则a 4=( )A.34 B .1 C.43D.32解析:选A 依题意得1a n +1=a n +33a n =1a n +13,1a n +1-1a n =13,故数列⎩⎨⎧⎭⎬⎫1a n 是以1a 1=13为首项、13为公差的等差数列,则1a n =13+n -13=n 3,a n =3n ,a 4=34.6.(2018·东北四市高考模拟)已知数列{a n }满足a n +1-a n =2,a 1=-5,则|a 1|+|a 2|+…+|a 6|=( )A .9B .15C .18D .30解析:选C 由a n +1-a n =2可得数列{a n }是等差数列,公差d =2,又a 1=-5,所以a n =2n -7,所以|a 1|+|a 2|+|a 3|+|a 4|+|a 5|+|a 6|=5+3+1+1+3+5=18.7.(2016·北京高考)已知{a n }为等差数列,S n 为其前n 项和.若a 1=6,a 3+a 5=0,则S 6=________.解析:∵a 3+a 5=2a 4,∴a 4=0. ∵a 1=6,a 4=a 1+3d ,∴d =-2. ∴S 6=6a 1+6×(6-1)2d =6×6-30=6.答案:68.等差数列{a n }中,已知a 5>0,a 4+a 7<0,则{a n }的前n 项和S n 的最大值为________.解析:∵⎩⎪⎨⎪⎧ a 4+a 7=a 5+a 6<0,a 5>0,∴⎩⎪⎨⎪⎧a 5>0,a 6<0,∴S n 的最大值为S 5. 答案:S 59.若等差数列{a n }的前17项和S 17=51,则a 5-a 7+a 9-a 11+a 13=________. 解析:因为S 17=a 1+a 172×17=17a 9=51,所以a 9=3. 根据等差数列的性质知a 5+a 13=a 7+a 11, 所以a 5-a 7+a 9-a 11+a 13=a 9=3. 答案:310.在等差数列{a n }中,公差d =12,前100项的和S 100=45,则a 1+a 3+a 5+…+a 99=________.解析:因为S 100=1002(a 1+a 100)=45,所以a 1+a 100=910, a 1+a 99=a 1+a 100-d =25,则a 1+a 3+a 5+…+a 99=502(a 1+a 99)=502×25=10. 答案:10B 级——中档题目练通抓牢1.(2018·湖南五市十校联考)已知S n 是数列{a n }的前n 项和,且S n +1=S n +a n +3,a 4+a 5=23,则S 8=( )A .72B .88C .92D .98解析:选C 法一:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,又a 4+a 5=23=2a 1+7d =2a 1+21,∴a 1=1,S 8=8a 1+8×72d =92.法二:由S n +1=S n +a n +3,得a n +1-a n =3,故数列{a n }是公差为3的等差数列,S 8=8(a 1+a 8)2=8(a 4+a 5)2=92. 2.(2018·广东潮州二模)在我国古代著名的数学专著《九章算术》里有一段叙述:今有良马与驽马发长安至齐,齐去长安一千一百二十五里,良马初日行一百零三里,日增一十三里;驽马初日行九十七里,日减半里,良马先至齐,复还迎驽马,二马相逢,问:几日相逢( )A .8日B .9日C .12日D .16日解析:选B 设n 日相逢,则依题意得103n +n (n -1)2×13+97n +n (n -1)2×⎝⎛⎭⎫-12=1125×2,整理得n 2+31n -360=0,解得n =9(负值舍去),故选B.3.等差数列{a n }的前n 项和为S n ,其中n ∈N *,则下列命题错误的是( ) A .若a n >0,则S n >0 B .若S n >0,则a n >0C .若a n >0,则{S n }是单调递增数列D .若{S n }是单调递增数列,则a n >0解析:选D 由等差数列的性质可得:∀n ∈N *,a n >0,则S n >0,反之也成立.a n >0,d >0,则{S n }是单调递增数列.因此A 、B 、C 正确.对于D ,{S n }是单调递增数列,则d >0,而a n >0不一定成立.4.在等差数列{a n }中,a 1=7,公差为d ,前 n 项和为S n ,当且仅当n =8 时S n 取得最大值,则d 的取值范围为________.解析:由题意,当且仅当n =8时S n 有最大值, 可得⎩⎪⎨⎪⎧d <0,a 8>0,a 9<0,即⎩⎪⎨⎪⎧d <0,7+7d >0,7+8d <0,解得-1<d <-78.答案:⎝⎛⎭⎫-1,-78 5.设等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,则m =________. 解析:因为等差数列{a n }的前n 项和为S n ,S m -1=-2,S m =0,S m +1=3,所以a m =S m -S m -1=2,a m +1=S m +1-S m =3,数列的公差d =1,a m +a m +1=S m +1-S m-1=5,即2a 1+2m -1=5, 所以a 1=3-m . 由S m =(3-m )m +m (m -1)2×1=0, 解得m =5. 答案:56.(2018·广西三市第一次联考)已知数列{a n }的前n 项和为S n ,且S n =2n -1(n ∈N *). (1)求数列{a n }的通项公式;(2)设b n =log 4a n +1,求{b n }的前n 项和T n . 解:(1)当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=2-1=1,满足a n =2n -1,∴数列{a n }的通项公式为a n =2n -1(n ∈N *).(2)由(1)得,b n =log 4a n +1=n +12,。
高考数学一轮复习课件5.2等差数列
• (1)(2012·辽宁高考)在等差数列{an}中, 已知a4+a8=16,则该数列前11项和S11= ()
•A.58 D.176
B.88
C.143
•(2)设等差数列{an}的前n项和为Sn,已知前6 项和为36,最后6项的和为180,Sn=324(n >6),则a9+a10=
【尝试解答】 (1)S11=11(a12+a11)=11(a42+a8)= 88.
法二 同法一得d=-53.
又由S10=S15,得a11+a12+a13+a14+a15=0. ∴5a13=0,即a13=0. ∴当n=12或13时,Sn有最大值, 且最大值为S12=S13=130.
求等差数列前n项和的最值常用的方法
(1)先求an,再利用
an≥0
aห้องสมุดไป่ตู้+1≤0
或
an≤0
an+1≥
0
求出其正负转折
•【思路点拨】 (1)由S2=a3求{an}的公差d, 进而代入求a2与Sn; •(2)易求d=-2,从而可求an;求出Sn后,根 据方程Sk=-35,求k值.
【尝试解答】 (1)由 S2=a3,得 a1+a2=a3,
∴d=a3-a2=a1=12,
因此 a2=a1+d=1,Sn=n42+n4.
【答案】
【解析】 设自上第一节竹子容量为a1,则第9节 容量为a9,且数列{an}为等差数列.
则aa71++aa82++aa93=+3aa4=1+42a11+d=6d4=. 3,
解之得a1=1232,d=676,故a5=a1+4d=6676.
【答案】
67 66
数学一轮复习第五章数列第2讲等差数列及其前n项和学案含解析
第2讲等差数列及其前n项和[考纲解读]1。
理解等差数列的概念及等差数列与一次函数的关系.(重点)2.掌握等差数列的通项公式与前n项和公式,并熟练掌握其推导方法,能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题.(重点、难点)[考向预测]从近三年高考情况来看,本讲一直是高考的热点.预测2021年高考将会以等差数列的通项公式及其性质、等差数列的前n项和为考查重点,也可能将等差数列的通项、前n项和及性质综合考查,题型以客观题或解答题的形式呈现,试题难度一般不大,属中档题型.1.等差数列的有关概念(1)定义:一般地,如果一个数列从错误!第2项起,每一项与它前一项的错误!差都等于错误!同一个常数,那么这个数列就叫做等错误!公差,通常用字母d表示.数学语言表示为错误!a n+1-a n=d(n∈N*),d为常数.(2)等差中项:若a,A,b成等差数列,则A叫做a和b的等差中项,且A=错误!错误!.2.等差数列的通项公式与前n项和公式(1)若等差数列{a n}的首项是a1,公差是d,则其通项公式为a n=错误!a1+(n-1)d,可推广为a n=a m+错误!(n-m)d(n,m∈N*).(2)等差数列的前n项和公式S n=n a1+a n2=错误!na1+错误!d(其中n∈N*).3.等差数列的相关性质已知{a n}为等差数列,d为公差,S n为该数列的前n项和.(1)等差数列{a n}中,当m+n=p+q时,错误!a m+a n=a p+a q (m,n,p,q∈N*).特别地,若m+n=2p,则错误!2a p=a m+a n(m,n,p∈N*).(2)相隔等距离的项组成的数列是等差数列,即a k,a k+m,a k+2m,…仍是等差数列,公差为错误!md(k,m∈N*).(3)S n,S2n-S n,S3n-S2n,…也成等差数列,公差为错误!n2d。
(4)错误!也成等差数列,其首项与{a n}首项相同,公差为错误!错误! d。
高考数学一轮复习第五章数列推理与证明第2讲等差数列课件理
考点(kǎo di等ǎn)差1数列的基本(jīběn)运算 例 1:(1)(2017 年新课标Ⅰ)记 Sn为等差数列(děnɡ chā shù liè){an}的前n项 和.若a4+a5=24,S6=48,则{an}的公差为( )
第十一页,共四十三页。
解析:方法一,设公差为 d,a4+a5=a1+3d+a1+4d=2a1 +7d=列{an}的前 n 项和为 Sn,a1=15,且满足2ann-+13=
2na-n 5+1,已知 n,m∈N*,n>m,则 Sn-Sm 的最小值为(
第2讲 等差数列(děnɡ chā shù liè)
第一页,共四十三页。
1.理解(lǐjiě)等差数列的概念.
2.掌握等差数列的通项公式与前n项和公式. 3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解
决相应的问题.
4.了解等差数列与一次函数的关系.
第二页,共四十三页。
1.等差数列的定义
7.等差数列的最值
在等差数列{an}中,若a1>0,d<0,则Sn存在最大值;若
a1<0,d>0,则Sn存在(cúnzài)最_小_____值.
第六页,共四十三页。
1.(2015 年重庆(zhònɡ qìnɡ))在等差数列{an}中,若a2=4,a4=2,则a6 =( B )
A.-1
第七页,共四十三页。
第十六页,共四十三页。
考点(kǎo diǎ等n) 差2 数列的基本性质(xìngzhì)及应用 例2:(1)已知等差数列{an}的前n项和为Sn,若S10=1,S30=5,则S40 =( ) A. 思路点拨:思路1,设等差数列{an}的首项为a1,公差为d,根据 (gēnjù)题意列方程组求得a1,d,进而可用等差数列前n项和公式求S40; 思路2,设{an}的前n项和Sn=An2+Bn,由题意列出方程组求得A, B,从而得Sn,进而得S40;
2023年新教材高考数学一轮复习第五章数列第二节等差数列课件
[提速度]
1.(2022·枣庄质检)已知等差数列{an}的项数为奇数,其中所有奇数项之和为319,
所有偶数项之和为290,则该数列的中间项为
()
A.28
B.29
C.30
D.31
解析:由结论(8),设项数为奇数2n-1,S奇-S偶=an=319-290=29, 故选B.
答案:B
2.已知Sn是等差数列{an}的前n项和,若a1=-2 020,2S2002200 -2S2001144 =6,则S2 023=
b1+2 b5=192+ 2 64=128.故选C.
答案:C
2.已知等差数列{an}满足a4+a6=22,a1·a9=57,则该等差数列的公差为 ( )
A.1或-1
B.2
C.-2
D.2或-2
解析:由a1+a9=a4+a6=22,a1·a9=57,所以a1,a9是方程x2-22x+57=0的两 实数根,解得aa19= =31,9 或aa19= =13,9, 所以公差d=a9-8 a1=2或-2.故选D. 答案:D
第二节 等差数列
(1)理解等差数列的概念和通项公式的意义;(2)探索并掌握等差数列的前n项 和公式,理解等差数列的通项公式与前n项和公式的关系;(3)体会等差数列与一 元一次函数的关系.
目录
CONTENTS
1
知识 逐点夯实
2
考点 分类突破
3
课时过关检测
01 知识 逐点夯实 课前自修
重点准 逐点清 结论要牢记
等差数列的判定与证明方法 方法
解读
适合题型
定义法 对于数列{an},an-an-1(n≥2,n∈N *)为同一常
数⇔{an}是等差数列
解答题中的
2020版高考数学第五章数列第2节等差数列及其前n项和讲义理(含解析)新人教A版
第2节 等差数列及其前n 项和考试要求 1.理解等差数列的概念;2.掌握等差数列的通项公式与前n 项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用等差数列的有关知识解决相应的问题;4.体会等差数列与一次函数的关系.知 识 梳 理1.等差数列的概念(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列.数学语言表达式:a n +1-a n =d (n ∈N *,d 为常数).(2)若a ,A ,b 成等差数列,则A 叫做a ,b 的等差中项,且A =a +b2.2.等差数列的通项公式与前n 项和公式(1)若等差数列{a n }的首项是a 1,公差是d ,则其通项公式为a n =a 1+(n -1)d . (2)前n 项和公式:S n =na 1+n (n -1)d 2=n (a 1+a n )2.3.等差数列的性质(1)通项公式的推广:a n =a m +(n -m )d (n ,m ∈N *).(2)若{a n }为等差数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k +a l =a m +a n .(3)若{a n }是等差数列,公差为d ,则a k ,a k +m ,a k +2m ,…(k ,m ∈N *)是公差为md 的等差数列. (4)若S n 为等差数列{a n }的前n 项和,则数列S m ,S 2m -S m ,S 3m -S 2m ,…也是等差数列.(5)若S n 为等差数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 也为等差数列.[微点提醒]1.已知数列{a n }的通项公式是a n =pn +q (其中p ,q 为常数),则数列{a n }一定是等差数列,且公差为p .2.在等差数列{a n }中,a 1>0,d <0,则S n 存在最大值;若a 1<0,d >0,则S n 存在最小值.3.等差数列{a n }的单调性:当d >0时,{a n }是递增数列;当d <0时,{a n }是递减数列;当d =0时,{a n }是常数列.4.数列{a n }是等差数列⇔S n =An 2+Bn (A ,B 为常数).基 础 自 测1.判断下列结论正误(在括号内打“√”或“×”)(1)数列{a n }为等差数列的充要条件是对任意n ∈N *,都有2a n +1=a n +a n +2.( ) (2)等差数列{a n }的单调性是由公差d 决定的.( )(3)数列{a n }为等差数列的充要条件是其通项公式为n 的一次函数.( ) (4)等差数列的前n 项和公式是常数项为0的二次函数.( ) 解析 (3)若公差d =0,则通项公式不是n 的一次函数. (4)若公差d =0,则前n 项和不是二次函数. 答案 (1)√ (2)√ (3)× (4)×2.(必修5P46A2改编)设数列{a n }是等差数列,其前n 项和为S n ,若a 6=2且S 5=30,则S 8等于( ) A.31B.32C.33D.34解析 由已知可得⎩⎪⎨⎪⎧a 1+5d =2,5a 1+10d =30,解得⎩⎪⎨⎪⎧a 1=263,d =-43,∴S 8=8a 1+8×72d =32.答案 B3.(必修5P68A8改编)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=450,则a 2+a 8=________. 解析 由等差数列的性质,得a 3+a 4+a 5+a 6+a 7=5a 5=450,∴a 5=90,∴a 2+a 8=2a 5=180. 答案 1804.(2018·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若3S 3=S 2+S 4,a 1=2,则a 5=( ) A.-12B.-10C.10D.12解析 设等差数列{a n }的公差为d ,则3(3a 1+3d )=2a 1+d +4a 1+6d ,即d =-32a 1.又a 1=2,∴d =-3,∴a 5=a 1+4d =2+4×(-3)=-10. 答案 B5.(2019·上海黄浦区模拟)已知等差数列{a n }中,a 2=1,前5项和S 5=-15,则数列{a n }的公差为( ) A.-3B.-52C.-2D.-4解析 设等差数列{a n }的首项为a 1,公差为d ,因为⎩⎪⎨⎪⎧a 2=1,S 5=-15,所以⎩⎪⎨⎪⎧a 1+d =1,5a 1+5×42d =-15, 解得d =-4. 答案 D6.(2019·苏北四市联考)在等差数列{a n }中,已知a 3+a 8>0,且S 9<0,则S 1,S 2,…,S 9中最小的是______.解析 在等差数列{a n }中, ∵a 3+a 8>0,S 9<0,∴a 5+a 6=a 3+a 8>0,S 9=9(a 1+a 9)2=9a 5<0,∴a 5<0,a 6>0,∴S 1,S 2,…,S 9中最小的是S 5. 答案 S 5考点一 等差数列基本量的运算【例1】 (1)(一题多解)(2017·全国Ⅰ卷)记S n 为等差数列{a n }的前n 项和.若a 4+a 5=24,S 6=48,则{a n }的公差为( )A.1B.2C.4D.8(2)(2019·潍坊检测)设等差数列{a n }的前n 项和为S n ,S 11=22,a 4=-12,若a m =30,则m =( ) A.9B.10C.11D.15解析 (1)法一 设等差数列{a n }的公差为d , 依题意得⎩⎪⎨⎪⎧(a 1+3d )+(a 1+4d )=24,6a 1+6×52d =48,所以d =4. 法二 等差数列{a n }中,S 6=(a 1+a 6)×62=48,则a 1+a 6=16=a 2+a 5,又a 4+a 5=24,所以a 4-a 2=2d =24-16=8,则d =4.(2)设等差数列{a n }的公差为d ,依题意得⎩⎪⎨⎪⎧S 11=11a 1+11×(11-1)2d =22,a 4=a 1+3d =-12,解得⎩⎪⎨⎪⎧a 1=-33,d =7, ∴a m =a 1+(m -1)d =7m -40=30,∴m =10. 答案 (1)C (2)B规律方法 1.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,知其中三个就能求另外两个,体现了用方程的思想来解决问题.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法.【训练1】 (1)等差数列log 3(2x ),log 3(3x ),log 3(4x +2),…的第四项等于( ) A.3 B.4 C.log 318 D.log 324(2)(一题多解)设等差数列{a n }的前n 项和为S n ,S 3=6,S 4=12,则S 6=________. 解析 (1)∵log 3(2x ),log 3(3x ),log 3(4x +2)成等差数列, ∴log 3(2x )+log 3(4x +2)=2log 3(3x ),∴log 3[2x (4x +2)]=log 3(3x )2,则2x (4x +2)=9x 2, 解之得x =4,x =0(舍去).∴等差数列的前三项为log 38,log 312,log 318, ∴公差d =log 312-log 38=log 332,∴数列的第四项为log 318+log 332=log 327=3.(2)法一 设数列{a n }的首项为a 1,公差为d , 由S 3=6,S 4=12,可得⎩⎪⎨⎪⎧S 3=3a 1+3d =6,S 4=4a 1+6d =12,解得⎩⎪⎨⎪⎧a 1=0,d =2,所以S 6=6a 1+15d =30.法二 由{a n }为等差数列,故可设前n 项和S n =An 2+Bn , 由S 3=6,S 4=12可得⎩⎪⎨⎪⎧S 3=9A +3B =6,S 4=16A +4B =12,解得⎩⎪⎨⎪⎧A =1,B =-1,即S n =n 2-n ,则S 6=36-6=30.答案 (1)A (2)30考点二 等差数列的判定与证明 典例迁移【例2】 (经典母题)若数列{a n }的前n 项和为S n ,且满足a n +2S n S n -1=0(n ≥2),a 1=12.(1)求证:⎩⎨⎧⎭⎬⎫1S n 成等差数列;(2)求数列{a n }的通项公式.(1)证明 当n ≥2时,由a n +2S n S n -1=0, 得S n -S n -1=-2S n S n -1,所以1S n -1S n -1=2,又1S 1=1a 1=2,故⎩⎨⎧⎭⎬⎫1S n 是首项为2,公差为2的等差数列. (2)解 由(1)可得1S n =2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=12n -12(n -1)=n -1-n 2n (n -1)=-12n (n -1).当n =1时,a 1=12不适合上式.故a n=⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.【迁移探究1】 本例条件不变,判断数列{a n }是否为等差数列,并说明理由. 解 因为a n =S n -S n -1(n ≥2),a n +2S n S n -1=0, 所以S n -S n -1+2S n S n -1=0(n ≥2). 所以1S n -1S n -1=2(n ≥2).又1S 1=1a 1=2,所以⎩⎨⎧⎭⎬⎫1S n 是以2为首项,2为公差的等差数列.所以1S n =2+(n -1)×2=2n ,故S n =12n.所以当n ≥2时,a n =S n -S n -1=12n -12(n -1)=-12n (n -1),所以a n +1=-12n (n +1),又a n +1-a n =-12n (n +1)--12n (n -1)=-12n ⎝ ⎛⎭⎪⎫1n +1-1n -1=1n (n -1)(n +1).所以当n ≥2时,a n +1-a n 的值不是一个与n 无关的常数,故数列{a n }不是一个等差数列. 【迁移探究2】 本例中,若将条件变为a 1=35,na n +1=(n +1)a n +n (n +1),试求数列{a n }的通项公式. 解 由已知可得a n +1n +1=a n n +1,即a n +1n +1-a n n =1,又a 1=35, ∴⎩⎨⎧⎭⎬⎫a n n 是以a 11=35为首项,1为公差的等差数列,∴a n n =35+(n -1)·1=n -25,∴a n =n 2-25n . 规律方法 1.证明数列是等差数列的主要方法:(1)定义法:对于n ≥2的任意自然数,验证a n -a n -1为同一常数. (2)等差中项法:验证2a n -1=a n +a n -2(n ≥3,n ∈N *)都成立. 2.判定一个数列是等差数列还常用到结论:(1)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列.(2)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列.问题的最终判定还是利用定义.【训练2】 (2017·全国Ⅰ卷)记S n 为等比数列{a n }的前n 项和.已知S 2=2,S 3=-6. (1)求{a n }的通项公式;(2)求S n ,并判断S n +1,S n ,S n +2是否成等差数列. 解 (1)设{a n }的公比为q ,由题设可得⎩⎪⎨⎪⎧a 1(1+q )=2,a 1(1+q +q 2)=-6,解得⎩⎪⎨⎪⎧q =-2,a 1=-2. 故{a n }的通项公式为a n =(-2)n. (2)由(1)可得S n =a 1(1-q n )1-q =-23+(-1)n 2n +13.由于S n +2+S n +1=-43+(-1)n 2n +3-2n +23.=2⎣⎢⎡⎦⎥⎤-23+(-1)n ·2n +13=2S n , 故S n +1,S n ,S n +2成等差数列. 考点三 等差数列的性质及应用 多维探究角度1 等差数列项的性质【例3-1】 (2019·临沂一模)在等差数列{a n }中,a 1+3a 8+a 15=120,则a 2+a 14的值为( ) A.6B.12C.24D.48解析 ∵在等差数列{a n }中,a 1+3a 8+a 15=120, 由等差数列的性质,a 1+3a 8+a 15=5a 8=120, ∴a 8=24,∴a 2+a 14=2a 8=48. 答案 D角度2 等差数列和的性质【例3-2】 设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( ) A.63B.45C.36D.27解析 由{a n }是等差数列,得S 3,S 6-S 3,S 9-S 6为等差数列, 即2(S 6-S 3)=S 3+(S 9-S 6), 得到S 9-S 6=2S 6-3S 3=45, 所以a 7+a 8+a 9=45. 答案 B规律方法 1.项的性质:在等差数列{a n }中,若m +n =p +q (m ,n ,p ,q ∈N *),则a m +a n =a p +a q .2.和的性质:在等差数列{a n }中,S n 为其前n 项和,则 (1)S 2n =n (a 1+a 2n )=…=n (a n +a n +1); (2)S 2n -1=(2n -1)a n .【训练3】 (1)已知S n 是等差数列{a n }的前n 项和,若a 1=-2 015,S 2 0152 015-S 2 0092 009=6,则S 2 019=________.(2)(2019·荆州一模)在等差数列{a n }中,若a 3+a 4+a 5=3,a 8=8,则a 12的值是( ) A.15B.30C.31D.64(3)等差数列{a n }与{b n }的前n 项和分别为S n 和T n ,若S n T n =3n -22n +1,则a 7b 7等于( )A.3727B.1914C.3929D.43解析 (1)由等差数列的性质可得⎩⎨⎧⎭⎬⎫S n n 也为等差数列. 设其公差为d ,则S 2 0152 015-S 2 0092 009=6d =6,∴d =1.故S 2 0192 019=S 11+2 018d =-2 015+2 018=3, ∴S 2 019=3×2 019=6 057.(2)由a 3+a 4+a 5=3及等差数列的性质, ∴3a 4=3,则a 4=1.又a 4+a 12=2a 8,得1+a 12=2×8. ∴a 12=16-1=15.(3)a 7b 7=2a 72b 7=a 1+a 13b 1+b 13=a 1+a 132×13b 1+b 132×13=S 13T 13=3×13-22×13+1=3727. 答案 (1)6 057 (2)A (3)A 考点四 等差数列的前n 项和及其最值【例4】 (2019·衡水中学质检)已知数列{a n }的前n 项和为S n ,a 1≠0,常数λ>0,且λa 1a n =S 1+S n 对一切正整数n 都成立. (1)求数列{a n }的通项公式;(2)设a 1>0,λ=100,当n 为何值时,数列⎩⎨⎧⎭⎬⎫lg 1a n 的前n 项和最大? 解 (1)令n =1,得λa 21=2S 1=2a 1,a 1(λa 1-2)=0, 因为a 1≠0,所以a 1=2λ,当n ≥2时,2a n =2λ+S n ,2a n -1=2λ+S n -1,两式相减得2a n -2a n -1=a n (n ≥2). 所以a n =2a n -1(n ≥2),从而数列{a n }为等比数列,a n =a 1·2n -1=2nλ. (2)当a 1>0,λ=100时,由(1)知,a n =2n100,则b n =lg 1a n =lg 1002n =lg 100-lg 2n=2-n lg 2,所以数列{b n }是单调递减的等差数列,公差为-lg 2, 所以b 1>b 2>…>b 6=lg 10026=lg 10064>lg 1=0,当n ≥7时,b n ≤b 7=lg 10027<lg 1=0,所以数列⎩⎨⎧⎭⎬⎫lg 1a n 的前6项和最大.规律方法 求等差数列前n 项和S n 的最值的常用方法:(1)函数法:利用等差数列前n 项和的函数表达式S n =an 2+bn (a ≠0),通过配方或借助图象求二次函数的最值.(2)利用等差数列的单调性,求出其正负转折项,进而求S n 的最值. ①当a 1>0,d <0时,满足⎩⎪⎨⎪⎧a m ≥0,a m +1≤0的项数m 使得S n 取得最大值为S m (当a m +1=0时,S m +1也为最大值);②当a 1<0,d >0时,满足⎩⎪⎨⎪⎧a m ≤0,a m +1≥0的项数m 使得S n 取得最小值为S m (当a m +1=0时,S m +1也为最小值).【训练4】 (1)等差数列{a n }的公差d ≠0,且a 3,a 5,a 15成等比数列,若a 5=5,S n 为数列{a n }的前n 项和,则数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为( )A.3B.3或4C.4或5D.5(2)已知等差数列{a n }的首项a 1=20,公差d =-2,则前n 项和S n 的最大值为________.解析 (1)由题意知⎩⎪⎨⎪⎧(a 1+2d )(a 1+14d )=25,a 1+4d =5,由d ≠0,解得a 1=-3,d =2,∴S nn=na 1+n (n -1)2dn=-3+n -1=n -4,则n -4≥0,得n ≥4,∴数列⎩⎨⎧⎭⎬⎫S n n 的前n 项和取最小值时的n 为3或4.(2)因为等差数列{a n }的首项a 1=20,公差d =-2,S n =na 1+n (n -1)2d =20n -n (n -1)2×2=-n 2+21n =-⎝ ⎛⎭⎪⎫n -2122+⎝ ⎛⎭⎪⎫2122,又因为n ∈N *,所以n =10或n =11时,S n 取得最大值,最大值为110. 答案 (1)B (2)110[思维升华]1.证明等差数列可利用定义或等差中项的性质,另外还常用前n 项和S n =An 2+Bn 及通项a n =pn +q 来判断一个数列是否为等差数列. 2.等差数列基本量思想(1)在解有关等差数列的基本量问题时,可通过列关于a 1,d 的方程组进行求解. (2)若奇数个数成等差数列,可设中间三项为a -d ,a ,a +d .若偶数个数成等差数列,可设中间两项为a -d ,a +d ,其余各项再依据等差数列的定义进行对称设元.(3)灵活使用等差数列的性质,可以大大减少运算量. [易错防范]1.用定义法证明等差数列应注意“从第2项起”,如证明了a n +1-a n =d (n ≥2)时,应注意验证a 2-a 1是否等于d ,若a 2-a 1≠d ,则数列{a n }不为等差数列.2.利用二次函数性质求等差数列前n 项和最值时,一定要注意自变量n 是正整数.基础巩固题组 (建议用时:40分钟)一、选择题1.已知等差数列{a n }前9项的和为27,a 10=8,则a 100=( ) A.100B.99C.98D.97解析 设等差数列{a n }的公差为d ,由已知,得⎩⎪⎨⎪⎧9a 1+36d =27,a 1+9d =8,所以⎩⎪⎨⎪⎧a 1=-1,d =1, 所以a 100=a 1+99d =-1+99=98. 答案 C2.(2019·淄博调研)设S n 是等差数列{a n }的前n 项和,若a 6a 5=911,则S 11S 9=( )A.1B.-1C.2D.12 解析 由于S 11S 9=11a 69a 5=119×911=1. 答案 A 3.(2019·中原名校联考)若数列{a n }满足1a n +1-1a n =d (n ∈N *,d 为常数),则称数列{a n }为调和数列,已知数列⎩⎨⎧⎭⎬⎫1x n 为调和数列,且x 1+x 2+…+x 20=200,则x 5+x 16=( )A.10B.20C.30D.40解析 依题意,11x n +1-11x n=x n +1-x n =d , ∴{x n }是等差数列.又x 1+x 2+…+x 20=20(x 1+x 20)2=200. ∴x 1+x 20=20,从而x 5+x 16=x 1+x 20=20.答案 B4.(2019·北京海淀区质检)中国古诗词中,有一道“八子分绵”的数学名题:“九百九十六斤绵,赠分八子作盘缠,次第每人多十七,要将第八数来言”.题意是:把996斤绵分给8个儿子作盘缠,按照年龄从大到小的顺序依次分绵,年龄小的比年龄大的多17斤绵,那么第8个儿子分到的绵是( )A.174斤B.184斤C.191斤D.201斤解析 用a 1,a 2,…,a 8表示8个儿子按照年龄从大到小得到的绵数,由题意得数列a 1,a 2,…,a 8是公差为17的等差数列,且这8项的和为996,∴8a 1+8×72×17=996,解之得a 1=65. ∴a 8=65+7×17=184,即第8个儿子分到的绵是184斤.答案 B5.已知等差数列{a n }的前n 项和为S n ,a 1=9,S 99-S 55=-4,则S n 取最大值时的n 为( ) A.4 B.5 C.6 D.4或5 解析 由{a n }为等差数列,得S 99-S 55=a 5-a 3=2d =-4, 即d =-2,由于a 1=9,所以a n =-2n +11,令a n =-2n +11<0,得n >112, 所以S n 取最大值时的n 为5.答案 B二、填空题6.已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为________.解析 设项数为2n ,则由S 偶-S 奇=nd 得,25-15=2n 解得n =5,故这个数列的项数为10.答案 107.已知数列{a n }满足a 1=1,a n -a n +1=2a n a n +1,则a 6=________. 解析 将a n -a n +1=2a n a n +1两边同时除以a n a n +1,1a n +1-1a n =2. 所以⎩⎨⎧⎭⎬⎫1a n 是以1a 1=1为首项,2为公差的等差数列, 所以1a 6=1+5×2=11,即a 6=111. 答案 1118.设S n 是等差数列{a n }的前n 项和,S 10=16,S 100-S 90=24,则S 100=________. 解析 依题意,S 10,S 20-S 10,S 30-S 20,…,S 100-S 90依次成等差数列,设该等差数列的公差为d .又S 10=16,S 100-S 90=24,因此S 100-S 90=24=16+(10-1)d =16+9d ,解得d =89,因此S 100=10S 10+10×92d =10×16+10×92×89=200. 答案 200三、解答题9.等差数列{a n }中,a 3+a 4=4,a 5+a 7=6.(1)求{a n }的通项公式;(2)设b n =[a n ],求数列{b n }的前10项和,其中[x ]表示不超过x 的最大整数,如[0.9]=0,[2.6]=2.解 (1)设数列{a n }首项为a 1,公差为d ,由题意得⎩⎪⎨⎪⎧2a 1+5d =4,a 1+5d =3.解得⎩⎪⎨⎪⎧a 1=1,d =25.所以{a n }的通项公式为a n =2n +35. (2)由(1)知,b n =⎣⎢⎡⎦⎥⎤2n +35. 当n =1,2,3时,1≤2n +35<2,b n =1; 当n =4,5时,2≤2n +35<3,b n =2; 当n =6,7,8时,3≤2n +35<4,b n =3; 当n =9,10时,4≤2n +35<5,b n =4. 所以数列{b n }的前10项和为1×3+2×2+3×3+4×2=24.10.已知等差数列的前三项依次为a ,4,3a ,前n 项和为S n ,且S k =110.(1)求a 及k 的值;(2)设数列{b n }的通项公式b n =S n n ,证明:数列{b n }是等差数列,并求其前n 项和T n .(1)解 设该等差数列为{a n },则a 1=a ,a 2=4,a 3=3a ,由已知有a +3a =8,得a 1=a =2,公差d =4-2=2,所以S k =ka 1+k (k -1)2·d =2k +k (k -1)2×2=k 2+k , 由S k =110,得k 2+k -110=0,解得k =10或k =-11(舍去),故a =2,k =10.(2)证明 由(1)得S n =n (2+2n )2=n (n +1), 则b n =S n n =n +1,故b n +1-b n =(n +2)-(n +1)=1,即数列{b n }是首项为2,公差为1的等差数列,所以T n =n (2+n +1)2=n (n +3)2.能力提升题组(建议用时:20分钟)11.(2019·济宁模拟)设数列{a n }满足a 1=1,a 2=2,且2na n =(n -1)a n -1+(n +1)a n +1(n ≥2且n ∈N *),则a 18=( )A.259B.269C.3D.289 解析 令b n =na n ,则2b n =b n -1+b n +1(n ≥2),所以{b n }为等差数列,因为b 1=1,b 2=4,所以公差d =3,则b n =3n -2,所以b 18=52,则18a 18=52,所以a 18=269. 答案 B12.(2019·青岛诊断)已知等差数列{a n },{b n }的前n 项和分别为S n ,T n (n ∈N *),若S n T n =2n -1n +1,则a 12b 6=( ) A.154B.158C.237D.3 解析 由题意不妨设S n =n (2n -1),T n =n (n +1),所以a 12=S 12-S 11=12×23-11×21=45,b 6=T 6-T 5=6×(6+1)-5×(5+1)=42-30=12,所以a 12b 6=4512=154. 答案 A13.设数列{a n }的通项公式为a n =2n -10(n ∈N *),则|a 1|+|a 2|+…+|a 15|=________. 解析 由a n =2n -10(n ∈N *)知{a n }是以-8为首项,2为公差的等差数列,又由a n =2n -10≥0得n ≥5,∴n ≤5时,a n ≤0,当n >5时,a n >0,∴|a 1|+|a 2|+…+|a 15|=-(a 1+a 2+a 3+a 4)+(a 5+a 6+…+a 15)=20+110=130. 答案 13014.(2019·长沙雅礼中学模拟)设S n 为等差数列{a n }的前n 项和,已知a 1+a 13=26,S 9=81.(1)求{a n }的通项公式;(2)令b n =1a n +1a n +2,T n =b 1+b 2+…+b n ,若30T n -m ≤0对一切n ∈N *成立,求实数m 的最小值.解 (1)∵等差数列{a n }中,a 1+a 13=26,S 9=81,∴⎩⎪⎨⎪⎧2a 7=26,9a 5=81,解得⎩⎪⎨⎪⎧a 7=13,a 5=9, ∴d =a 7-a 57-5=13-92=2,∴a n =a 5+(n -5)d =9+2(n -5)=2n -1.(2)∵b n =1a n +1a n +2=1(2n +1)(2n +3) =12⎝ ⎛⎭⎪⎫12n +1-12n +3, ∴T n =12⎝ ⎛⎭⎪⎫13-15+15-17+…+12n +1-12n +3 =12⎝ ⎛⎭⎪⎫13-12n +3, ∵12⎝ ⎛⎭⎪⎫13-12n +3随着n 的增大而增大,知{T n }单调递增. 又12n +3>0,∴T n <16,∴m ≥5, ∴实数m 的最小值为5.新高考创新预测15.(多填题)设S n 为等差数列{a n }的前n 项和,满足S 2=S 6,S 55-S 44=2,则a 1=________,公差d =________.解析 由{a n }为等差数列,得数列⎩⎨⎧⎭⎬⎫S n n 是首项为a 1,公差为d 2的等差数列,∵S 55-S 44=2,∴d 2=2⇒d =4,又S 2=S 6⇒2a 1+4=6a 1+6×52×4⇒a 1=-14. 答案 -14 4。
高考数学(理)一轮复习教师用书:第五章 数列 Word版含解析
第1课时 数列的概念与简单表示法1.数列的有关概念 (1)数列的定义按照一定顺序排列的一列数称为数列.数列中的每一个数叫做这个数列的项. (2)数列的分类数列有三种表示法,它们分别是列表法、图象法和解析式法. 2.数列的通项公式 (1)数列的通项公式如果数列{a n }的第n 项与序号n 之间的关系可以用一个式子来表达,那么这个公式叫做这个数列的通项公式.(2)已知数列{a n }的前n 项和S n ,则a n =⎩⎨⎧S 1,n =1,S n -S n -1,n ≥2.3.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)a n 与{a n }是不同的概念.(√)(2)所有的数列都有通项公式,且通项公式在形式上一定是唯一的.(×) (3)数列是一种特殊的函数.(√)(4)根据数列的前几项归纳出的数列的通项公式可能不止一个.(√) (5)如果数列{a n }的前n 项和为S n ,则对∀n ∈N *,都有a n +1=S n +1-S n .(√) (6)若已知数列{a n }的递推公式为a n +1=12a n -1,且a 2=1,则可以写出数列{a n }的任何一项.(√)(7)数列:1,0,1,0,1,0,…,通项公式只能是a n =1+(-1)n +12.(×)(8)数列的前n 项和S n =3n 2-2n +1,则a n =6n -5.(×) (9)正奇数的数列的通项公式为a n =2n +1.(×)(10)数列⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫n n -99,只有最大项,无最小项.(×)考点一 由数列的前几项求通项公式例1] 根据数列的前几项,写出下列各数列的一个通项公式. (1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…; (4)32,1,710,917,…; (5)0,1,0,1,…; (6)9,99,999,999 9,….解:(1)符号问题可通过(-1)n 或(-1)n +1表示,其各项的绝对值的排列规律为:后面的数的绝对值总比前面数的绝对值大6,故通项公式为a n =(-1)n (6n -5). (2)将数列变形为89(1-0.1),89(1-0.01),89(1-0.001),…, ∴a n =89⎝ ⎛⎭⎪⎫1-110n .(3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,原数列可化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n -32n .(4)将数列统一为32,55,710,917,…,对于分子3,5,7,9,…,是序号的2倍加1,可得分子的通项公式为b n =2n +1,对于分母2,5,10,17,…,联想到数列1,4,9,16,…,即数列{}n 2,可得分母的通项公式为c n =n 2+1,因此可得它的一个通项公式为a n=2n +1n 2+1.(5)a n =⎩⎪⎨⎪⎧0 (n 为奇数),1 (n 为偶数).或a n =1+(-1)n 2或a n =1+cos n π2.(6)这个数列的前4项可以写成10-1,100-1,1 000-1,10 000-1,所以它的一个通项公式a n =10n -1.方法引航] 1.据所给数列的前几项求其通项公式时,需仔细观察分析,抓住以下几方面的特征:(1)分式中分子、分母的特征; (2)相邻项的变化特征; (3)拆项后的特征; (4)各项符号特征.2.观察、分析要有目的,观察出项与项数之间的关系、规律,利用我们熟知的一些基本数列(如自然数列、奇偶数列等)转换而使问题得到解决. 3.判断通项公式是否适合数列,利用代值检验.写出下面各数列的一个通项公式: (1)3,5,7,9,…;(2)12,34,78,1516,3132,…; (3)-1,32,-13,34,-15,36,…; (4)3,33,333,3 333,….解:(1)各项减去1后为正偶数,所以a n =2n +1.(2)每一项的分子比分母少1,而分母组成数列21,22,23,24,…,所以a n =2n -12n .(3)奇数项为负,偶数项为正,故通项公式中含因子(-1)n ;各项绝对值的分母组成数列1,2,3,4,…;而各项绝对值的分子组成的数列中,奇数项为1,偶数项为3,即奇数项为2-1,偶数项为2+1,所以a n =(-1)n ·2+(-1)nn .也可写为a n =⎩⎪⎨⎪⎧-1n ,n 为正奇数,3n ,n 为正偶数.(4)将数列各项改写为93,993,9993,9 9993,…,分母都是3,而分子分别是10-1,102-1,103-1,104-1,…, 所以a n =13(10n -1).考点二 a n 与S n 的关系及应用例2] (1)已知数列{a n }的前n 项和S n =n 2+1,则a n =________. 解析:当n =1时,a 1=S 1=2,当n ≥2时,a n =S n -S n -1=n 2+1-(n -1)2+1]=2n -1,故a n =⎩⎪⎨⎪⎧2,n =1,2n -1,n ≥2.答案:⎩⎨⎧2,n =12n -1,n ≥2(2)已知数列{a n }的首项a 1=2,其前n 项和为S n .若S n +1=2S n +1,则a n =________. 解析:由已知S n +1=2S n +1得S n =2S n -1+1(n ≥2),两式相减得a n +1=2a n ,又S 2=a 1+a 2=2a 1+1,得a 2=3,所以数列{a n }从第二项开始为等比数列,因此其通项公式为a n =⎩⎪⎨⎪⎧2, n =1,3·2n -2,n ≥2.答案:⎩⎨⎧2, n =13·2n -2,n ≥2(3)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( ) A .2n -1B.⎝ ⎛⎭⎪⎫32n -1 C.⎝ ⎛⎭⎪⎫23n -1D.12n -1 解析:由已知S n =2a n +1得S n =2(S n +1-S n ),即2S n +1=3S n ,S n +1S n=32,而S 1=a 1=1,所以S n =⎝ ⎛⎭⎪⎫32n -1,故选B.答案:B方法引航] 已知S n 求a n 时应注意的问题(1)应重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论;特别注意a n =S n -S n -1中需n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写”. (3)由S n -S n -1=a n ,推得a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应分段表示(“分写”),1.将本例(1)的条件S n 改为S n =2n 2-3n ,求a n . 解:a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. 2.将本例(2)的条件改为S n =2a n +1,求a n . 解:由S n =2a n +1得 S n -1=2a n -1+1.(n ≥2)∴S n -S n -1=2a n -2a n -1,即a n =2a n -2a n -1 ∴a n =2a n -1,(n ≥2)由题意得,a 1=2a 1+1,∴a 1=-1 ∴{a n }是以a 1=-1,q =2的等比数列. ∴a n =-1×2n -1=-2n -1.3.设S n 是正项数列{a n }的前n 项和,且a n 和S n 满足:4S n =(a n +1)2(n =1,2,3,…),则S n =________.解析:由题意可知,S n =⎝ ⎛⎭⎪⎫a n 2+122,当n =1时,a 1=1.a n =S n -S n -1=⎝ ⎛⎭⎪⎫a n 2+122-⎝⎛⎭⎪⎫a n -12+122=⎝ ⎛⎭⎪⎫a n 2+a n -12+1·⎝ ⎛⎭⎪⎫a n 2-a n -12 =⎝⎛⎭⎪⎫a 2n -a 2n -14+⎝ ⎛⎭⎪⎫a n 2-a n -12 整理得,a n +a n -12=a 2n -a 2n -14⇒a n -a n -1=2.所以a n =2n -1.解得S n =(1+2n -1)n 2=n 2.答案:n 2考点三 数列的递推公式及应用例3] (1)已知数列{a n }满足a 1=0,a 2=1,a n +2=3a n +1-2a n ,则a 5=________. 解析:由已知可得,这个数列的前五项依次为: a 1=0,a 2=1,a 3=3,a 4=7,a 5=15. 答案:15(2)已知数列{a n }满足a n +1=a n +3n +2,且a 1=2,则a n =________. 解析:∵a n +1-a n =3n +2, ∴a n -a n -1=3n -1(n ≥2),∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(3n -1)+(3n -4)+…+5+2=n (3n +1)2(n ≥2).当n =1时,a 1=2也符合上式, ∴a n =32n 2+n 2. 答案:32n 2+n 2(3)在数列{a n }中,a 1=1,前n 项和S n =n +23a n ,则{a n }的通项公式为________. 解析:由题设知,a 1=1.当n >1时,a n =S n -S n -1=n +23a n -n +13a n -1. ∴a na n -1=n +1n -1. ∴a na n -1=n +1n -1,…,a 4a 3=53,a 3a 2=42,a 2a 1=3.以上n -1个式子的等号两端分别相乘,得到a n a 1=n (n +1)2,又∵a 1=1,∴a n =n (n +1)2. 答案:n (n +1)2(4)数列{a n }中,a 1=1,a n +1=3a n +2,则它的一个通项公式为a n =________. 解析:∵a n +1=3a n +2,∴a n +1+1=3(a n +1),∴a n +1+1a n +1=3,∴数列{a n +1}为等比数列,公比q =3, 又a 1+1=2,∴a n +1=2·3n -1, ∴a n =2·3n -1-1. 答案:2·3n -1-1方法引航] 已知数列的递推关系,求数列的通项时,通常用累加、累乘、构造法求解.当出现a n =a n -1+m 时构造等差数列;当出现a n =xa n -1+y 时,构造等比数列;当出现a n =a n -1+f (n )时,用累加法求解;当出现a na n -1=f (n )时,用累乘法求解.1.如果数列{a n }满足a 1=2,a n +1=a n +2n ,则数列{a n }的通项公式a n =________. 解析:∵a n +1=a n +2n ,∴a n +1-a n =2n . ∴a 2-a 1=2×1; a 3-a 2=2×2; …a n -a n -1=2×(n -1)(n ≥2). 以上各式相加,得:a n -a 1=21+2+3+…+(n -1)]=n 2-n .∴a n =n 2-n +a 1=n 2-n +2(n ≥2),a 1=2也适合. ∴a n =n 2-n +2. 答案:n 2-n +22.已知数列{a n }满足a 1=1,a n =n -1n a n -1(n ≥2),则a n =________. 解析:(1)∵a n =n -1n a n -1(n ≥2), ∴a n -1=n -2n -1a n -2,…,a 2=12a 1.以上(n -1)个式子相乘得 a n =a 1·12·23·…·n -1n =a 1n =1n . 答案:1n3.(2017·河北保定高三调研)在数列{a n }中,已知a 1=1,a n +1=2a n +1,则其通项公式为a n =( )A .2n -1B .2n -1+1C .2n -1D .2n -2解析:选A.由题意知a n +1+1=2(a n +1),∴数列{a n +1}是以2为首项,2为公比的等比数列,∴a n +1=2n ,∴a n =2n -1.易错警示] 数列与函数混淆致误典例] 已知数列{a n }满足a 1=33,a n +1-a n =2n ,则a nn 的最小值为________. 正解]∵a n +1-a n =2n ,∴a n -a n -1=2(n -1), ∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(2n -2)+(2n -4)+…+2+33=n 2-n +33(n ≥2), 又a 1=33适合上式,∴a n =n 2-n +33,∴a n n =n +33n -1.令f (x )=x +33x -1(x >0),则f ′(x )=1-33x 2,令f ′(x )=0得x =33.∴当0<x <33时,f ′(x )<0, 当x >33时,f ′(x )>0,即f (x )在区间(0,33)上递减;在区间(33,+∞)上递增. 又5<33<6,且f (5)=5+335-1=535,f (6)=6+336-1=212, ∴f (5)>f (6),∴当n =6时,a n n 有最小值212. 答案]212易误]a n n =n +33n -1≥233-1为最小值时,即把n 和x 认为等同的,而此时n =33∈N *是不可以的.警示]a n =f (n )是n 的函数,其定义域为N *,而不是R .高考真题体验]1.(2016·高考浙江卷)设数列{a n }的前n 项和为S n .若S 2=4,a n +1=2S n +1,n ∈N *,则a 1=________,S 5=________.解析:法一:∵a n +1=2S n +1,∴a 2=2S 1+1,即S 2-a 1=2a 1+1,又∵S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,由S 2=4,可求出S 3=13,S 4=40,S 5=121. 法二:由a n +1=2S n +1,得a 2=2S 1+1,即S 2-a 1=2a 1+1,又S 2=4,∴4-a 1=2a 1+1,解得a 1=1.又a n +1=S n +1-S n ,∴S n +1-S n =2S n +1,即S n +1=3S n +1,则S n +1+12=3⎝ ⎛⎭⎪⎫S n +12,又S 1+12=32,∴⎩⎨⎧⎭⎬⎫S n +12是首项为32,公比为3的等比数列,∴S n +12=32×3n -1,即S n =3n -12,∴S 5=35-12=121.答案:1 1212.(2015·高考江苏卷)设数列{a n }满足a 1=1,且a n +1-a n =n +1(n ∈N *),则数列⎩⎨⎧⎭⎬⎫1a n 前10项的和为________.解析:由已知得,a 2-a 1=1+1,a 3-a 2=2+1,a 4-a 3=3+1,…,a n -a n -1=n -1+1(n ≥2),则有a n -a 1=1+2+3+…+n -1+(n -1)(n ≥2),因为a 1=1,所以a n =1+2+3+…+n (n ≥2),即a n =n 2+n 2(n ≥2),又当n =1时,a 1=1也适合上式,故a n =n 2+n 2(n ∈N *),所以1a n =2n 2+n =2⎝ ⎛⎭⎪⎫1n -1n +1,从而1a 1+1a 2+1a 3+…+1a 10=2×⎝ ⎛⎭⎪⎫1-12+2×⎝ ⎛⎭⎪⎫12-13+2×⎝ ⎛⎭⎪⎫13-14+…+2×⎝ ⎛⎭⎪⎫110-111=2×⎝ ⎛⎭⎪⎫1-111=2011. 答案:20113.(2013·高考课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n =________.解析:由S n =23a n +13得:当n ≥2时, S n -1=23a n -1+13,∴当n ≥2时,a n =-2a n -1, 又n =1时,S 1=a 1=23a 1+13,a 1=1,∴a n =(-2)n -1. 答案:(-2)n -14.(2015·高考课标卷Ⅱ)设S n 是数列{a n }的前n 项和,且a 1=-1,a n +1=S n S n +1,则S n =________.解析:由已知得a n +1=S n +1-S n =S n S n +1,两边同时除以S n S n +1得1S n -1S n +1=1,即1S n +1-1S n=-1.又1S 1=-1,所以⎩⎨⎧⎭⎬⎫1S n 是首项为-1,公差为-1的等差数列,所以1S n =-1+(n -1)×(-1)=-n ,即S n =-1n . 答案:-1n课时规范训练 A 组 基础演练1.数列0,1,0,-1,0,1,0,-1,…的一个通项公式是a n 等于( ) A.(-1)n +12B .cosn π2 C .cos n +12π D .cos n +22π解析:选D.令n =1,2,3,…,逐一验证四个选项,易得D 正确. 2.设数列{a n }的前n 项和S n =n 2,则a 8的值为( ) A .15 B .16 C .49 D .64解析:选A.由a 8=S 8-S 7=64-49=15,故选A. 3.在数列{a n }中,a 1=1,a n =1a n -1+1,则a 4等于( )A.53B.43 C .1 D.23解析:选A.由a 1=1,a n =1a n -1+1得,a 2=1a 1+1=2,a 3=1a 2+1=12+1=32,a 4=1a3+1=23+1=53.4.若数列{a n }的通项公式是a n =(-1)n (3n -2),则a 1+a 2+…+a 10等于( ) A .15 B .12 C .-12 D .-15解析:选A.由题意知,a 1+a 2+…+a 10 =-1+4-7+10+…+(-1)10×(3×10-2)=(-1+4)+(-7+10)+…+(-1)9×(3×9-2)+(-1)10×(3×10-2)] =3×5=15.5.设数列{a n }满足:a 1=2,a n +1=1-1a n,记数列{a n }的前n 项之积为T n ,则T 2 019的值为( ) A .-12B .-1 C.12D .2解析:选B.由a 1=2,a 2=12,a 3=-1,a 4=2,a 5=12可知,数列{a n }是周期为3的数列,且a 1·a 2·a 3=-1,从而T 2 019=(-1)673=-1.6.若S n 为数列{a n }的前n 项和,且S n =n n +1,则1a 5等于( )A.56B.65 C.130D .30解析:选D.当n ≥2时,a n =S n -S n -1=nn +1-n -1n =1n (n +1),所以1a 5=5×6=30.7.已知数列{a n }的前n 项和S n 满足:S n +S m =S n +m ,且a 1=1,那么a 10等于( ) A .1 B .9 C .10 D .55解析:选A.∵S n +S m =S n +m ,a 1=1,∴S 1=1. 可令m =1,得S n +1=S n +1,∴S n +1-S n =1. 即当n ≥1时,a n +1=1,∴a 10=1.8.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6等于( ) A .3×44B .3×44+1 C .45D .45+1解析:选A.当n ≥1时,a n +1=3S n ,则a n +2=3S n +1, ∴a n +2-a n +1=3S n +1-3S n =3a n +1,即a n +2=4a n +1, ∴该数列从第二项开始是以4为公比的等比数列.又a 2=3S 1=3a 1=3,∴a n =⎩⎪⎨⎪⎧1(n =1),3×4n -2(n ≥2).∴当n =6时,a 6=3×46-2=3×44.9.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A .2n -1 B.⎝⎛⎭⎪⎫n +1n n -1C .n 2D .n解析:选D.法一:由已知整理得(n +1)a n =na n +1,∴a n +1n +1=a nn ,∴数列⎩⎨⎧⎭⎬⎫a n n 是常数列,且a n n =a 11=1,∴a n =n . 法二(累乘法):当n ≥2时,a na n -1=n n -1.a n -1a n -2=n -1n -2,…,a 3a 2=32,a 2a 1=21,两边分别相乘得a na 1=n .又∵a 1=1,∴a n =n .10.已知数列{a n }的前n 项和S n =2a n -1,则满足a nn ≤2的正整数n 的集合为( ) A .{1,2} B .{1,2,3,4} C .{1,2,3} D .{1,2,4}解析:选B.因为S n =2a n -1,所以当n ≥2时, S n -1=2a n -1-1,两式相减得a n =2a n -2a n -1, 整理得a n =2a n -1,所以{a n }是公比为2的等比数列, 又因为a 1=2a 1-1,解得a 1=1, 故{a n }的通项公式为a n =2n -1.而a nn ≤2,即2n -1≤2n ,故所有满足的正整数n =1,2,3,4.B 组 能力突破1.将石子摆成如图所示的梯形形状.称数列5,9,14,20,…为“梯形数”.根据图形的构成,此数列的第2 018项与5的差,即a 2 018-5=( )A .2 018×1 012B .2 024×2 017C .1 009×2 018D .1 012×2 017 解析:选D.∵a n -a n -1=n +2(n ≥2),a 1=5.∴a 2 018=(a 2 018-a 2 017)+(a 2 017-a 2 016)+…+(a 2-a 1)+a 1=2 020+2 019+…+4+5=(2 020+4)×2 0172+5=1 012×2 017+5.∴a 2 018-5=1 012×2 017.2.设数列{a n }的前n 项和为S n ,且a 1=1,{S n +na n }为常数列,则a n =( ) A.13n -1B.2n (n +1)C.6(n +1)(n +2)D.5-2n 3 解析:选B.由题意知,S n +na n =2,当n ≥2时,S n -1+(n -1)a n -1=2,∴(n +1)a n =(n -1)a n -1从而a 2a 1·a 3a 2·a 4a 3·…·a n a n -1=13·24·…·n -1n +1,则a n=2n (n +1),当n =1时上式成立,所以a n =2n (n +1),故选B.3.已知数列{n 2n 2+1},则0.98是它的第________项.解析:n 2n 2+1=0.98=4950,∴n =7.答案:74.已知数列{a n }的前n 项和S n =2n -3,则数列{a n }的通项公式为________. 解析:当n ≥2时,a n =S n -S n -1=2n -1,当n =1时,a 1=S 1=-1,所以a n =⎩⎪⎨⎪⎧-1,n =1,2n -1,n ≥2.答案:a n =⎩⎨⎧-1,n =1,2n -1,n ≥25.在数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5=________.解析:由题意知:a 1·a 2·a 3·…·a n -1=(n -1)2, ∴a n =⎝⎛⎭⎪⎫n n -12(n ≥2),∴a 3+a 5=⎝ ⎛⎭⎪⎫322+⎝ ⎛⎭⎪⎫542=6116. 答案:61166.已知数列{a 2n }满足a 1=1,a n +1=a 2n -2a n +1(n ∈N *),则a 2 018=________.解析:∵a 1=1,∴a 2=(a 1-1)2=0, a 3=(a 2-1)2=1,a 4=(a 3-1)2=0,…,可知数列{a n }是以2为周期的周期数列,∴a 2 018=a 2=0. 答案:0第2课时 等差数列及其前n 项和1.等差数列的定义(1)如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d 表示,定义表达式为a n -a n -1=d (常数)(n ∈N *,n ≥2)或a n +1-a n =d (常数)(n ∈N *). (2)等差中项若三个数a ,A ,b 成等差数列,则A 叫做a 与b 的等差中项,且有A =a +b2. 2.等差数列的有关公式 (1)等差数列的通项公式如果等差数列{a n }的首项为a 1,公差为d ,那么它的通项公式是a n =a 1+(n -1)d . (2)等差数列的前n 项和公式设等差数列{a n }的公差为d ,其前n 项和S n =na 1+n (n -1)2d 或S n =n (a 1+a n )2.3.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*).(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n.(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d.(4)若{a n},{b n}是等差数列,公差为d,则{pa n+qb n}也是等差数列.(5)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(6)数列S m,S2m-S m,S3m-S2m,…也是等差数列.(7)S2n-1=(2n-1)a n.(8)若n为偶数,则S偶-S奇=nd 2;若n为奇数,则S奇-S偶=a中(中间项).4.判断下列结论的正误(正确的打“√”,错误的打“×”)(1)若一个数列从第2项起每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)数列{a n}为等差数列的充要条件是对任意n∈N*,都有2a n+1=a n+a n+2.(√)(3)等差数列{a n}的单调性是由公差d决定的.(√)(4)等差数列的前n项和公式是常数项为0的二次函数.(×)(5)已知数列{a n}的通项公式是a n=pn+q(其中p,q为常数),则数列{a n}一定是等差数列.(√)(6)在等差数列{a n}中,若a m+a n=a p+a q,则一定有m+n=p+q.(×)(7)数列{a n},{b n}都是等差数列,则数列{a n+b n}也一定是等差数列.(√)(8)等差数列{a n}的首项为a1,公差为d,取出数列中的所有奇数项,组成一个新的数列,一定还是等差数列.(√)(9)数列{a n}满足a n+1-a n=n,则数列{a n}是等差数列.(×)(10)等差数列{a n}中,a n-1-a n也是常数,也可以作为公差.(×)考点一等差数列基本量的计算例1](1)等差数列{a n}n13a6等于() A.8B.10C.12 D.14解析:由题意知a 1=2,由S 3=3a 1+3×22×d =12, 解得d =2,所以a 6=a 1+5d =2+5×2=12,故选C. 答案:C(2)在等差数列{a n }中,a 1+a 5=8,a 4=7,则a 5=( ) A .11 B .10 C .7 D .3解析:设数列{a n }的公差为d ,则有⎩⎪⎨⎪⎧ 2a 1+4d =8,a 1+3d =7,解得⎩⎪⎨⎪⎧a 1=-2,d =3,所以a 5=-2+4×3=10. 答案:B(3)中位数为1 010的一组数构成等差数列,其末项为2 017,则该数列的首项为________.解析:设数列首项为a 1,则a 1+2 0172=1 010,故a 1=3.答案:3(4)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36. ①求d 及S n ;②求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 解:①由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2.从而a n =2n -1, S n =n 2(n ∈N *).②由①得a m +a m +1+a m +2+…+a m +k=(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65. 由m ,k ∈N *知2m +k -1≥k +1>1, 故⎩⎪⎨⎪⎧ 2m +k -1=13,k +1=5,解得⎩⎪⎨⎪⎧m =5,k =4.即所求m 的值为5,k 的值为4.方法引航](1)等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解.(2)等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想.1.(2017·河北石家庄质检)已知等差数列{a n }满足a 2=3,S n -S n -3=51(n >3),S n =100,则n 的值为( ) A .8 B .9 C .10 D .11解析:选C.由S n -S n -3=51得,a n -2+a n -1+a n =51, 所以a n -1=17,又a 2=3,S n =n (a 2+a n -1)2=100,解得n =10.2.数列{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=________. 解析:由题意知10a 1+10×92d =11a 1+11×102d .又∵d =-2,∴10a 1-90=11a 1-110, ∴a 1=20. 答案:203.已知一等差数列的前四项和为124,后四项和为156,各项和为210,则此等差数列的项数是__________. 解析:设数列{}a n 为该等差数列, 依题意得a 1+a n =124+1564=70.∵S n =210,S n =n (a 1+a n )2,∴210=70n2,∴n =6. 答案:64.(2017·江苏无锡一模)已知数列{a n }中,a 1=1,a 2=2,当整数n >1时,S n +1+S n -1=2(S n +S 1)都成立,则S 15=________.解析:由S n +1+S n -1=2(S n +S 1)得(S n +1-S n )-(S n -S n -1)=2S 1=2,即a n +1-a n =2(n ≥2),所以数列{a n }从第二项起构成等差数列,则S 15=1+2+4+6+8+…+28=211. 答案:211考点二 等差数列的判定或证明例2] (1)(2017·河南内黄月考)已知函数y =f (x )对任意的实数x 都有1f (x +2)=1f (x +1)+1,且f (1)=1,则f (2 018)=( ) A.12 017B.12 018 C .2 016 D .2 017解析:由已知可得1f (x +2)-1f (x +1)=1,所以⎩⎪⎨⎪⎧⎭⎪⎬⎪⎫1f (n )为等差数列,又1f (1)=1,d =1,则1f (x )=x ,即1f (2 018)=2 018,故f (2 018)=12 018. 答案:B(2)已知S n 为等差数列{a n }的前n 项和,b n =S nn (n ∈N *).求证:数列{b n }是等差数列. 证明:设等差数列{a n }的公差为d , 则S n =na 1+12n (n -1)d , ∴b n =S n n =a 1+12(n -1)d .法一:b n +1-b n =a 1+12nd -a 1-12(n -1)d =d2(常数), ∴数列{b n }是等差数列.法二:b n +1=a 1+12nd ,b n +2=a 1+12(n +1)d , ∴b n +2+b n =a 1+12(n +1)d +a 1+12(n -1)d=2a 1+nd =2b n +1. ∴数列{b n }是等差数列.[方法引航] 判定数列{a n }是等差数列的常用方法(1)定义法:对任意n ∈N *,a n +1-a n 是同一个常数;(2)等差中项法:对任意n ≥2,n ∈N *,满足2a n =a n +1+a n -1;(3)通项公式法:数列的通项公式a n 是n 的一次函数;(4)前n 项和公式法:数列的前n 项和公式S n 是n 的二次函数,且常数项为0.1.在数列{a n }中,若a 1=1,a 2=12,2a n +1=1a n +1a n +2(n ∈N *),则该数列的通项为( )A .a n =1nB .a n =2n +1C .a n =2n +2D .a n =3n解析:选A.由题意可知1a n +1是1a n 与1a n +2的等差中项, ∴⎩⎨⎧⎭⎬⎫1a n 是以1为首项,公差d =1a 2-1a 1=2-1=1的等差数列. ∴1a n=1+(n -1)×1=n ,∴a n =1n 选A. 2.已知数列{a n }的前n 项和为S n ,且满足a 1=12,a n =-2S n S n -1(n ≥2).(1)求证:数列⎩⎨⎧⎭⎬⎫1S n 是等差数列;(2)求S n 和a n .解:(1)证明:当n ≥2时, a n =S n -S n -1=-2S n S n -1,① ∵S 1=a 1≠0,由递推关系知S n ≠0(n ∈N *), 由①式得1S n -1S n -1=2(n ≥2).∴⎩⎨⎧⎭⎬⎫1S n 是首项为1S 1=1a 1=2,公差为2的等差数列.(2)由(1)知1S n=2+2(n -1)=2n ,∴S n =12n .当n ≥2时,a n =S n -S n -1=-12n (n -1),当n =1时,a 1=S 1=12不适合上式, ∴a n =⎩⎪⎨⎪⎧12,n =1,-12n (n -1),n ≥2.考点三 等差数列的性质及应用例3] (1)(2016·n 27,a 10=8,则a 100=( )A .100B .99C .98D .97解析:∵{a n }是等差数列,设其公差为d , S 9=9(a 1+a 9)2=9a 5=27,∴a 5=3,又∵a 10=8,∴d =a 10-a 55=8-35=1∴a 100=a 5+(n -5)×d =3+(100-5)×1=98. 答案:C(2)在等差数列{a n }中,若a 3+a 4+a 5+a 6+a 7=25,则a 2+a 8=________.解析:利用等差数列的性质可得a 3+a 7=a 4+a 6=2a 5,从而a 3+a 4+a 5+a 6+a 7=5a 5=25,故a 5=5,所以a 2+a 8=2a 5=10. 答案:10(3)在等差数列{a n }中,a 1=29,S 10=S 20,则数列{a n }的前n 项和S n 的最大值为( ) A .S 15B .S 16C .S 15或S 16D .S 17 解析:∵a 1=29,S 10=S 20,∴10a 1+10×92d =20a 1+20×192d ,解得d =-2, ∴S n =29n +n (n -1)2×(-2)=-n 2+30n =-(n -15)2+225. ∴当n =15时,S n 取得最大值. 答案:A方法引航] 1.根据题意分析选用等差数列的性质,若涉及通项a n ,则选用通项的有关性质,若涉及前n 项和S n ,则选用S n 的性质 2.求等差数列前n 项和的最值的方法(1)运用配方法转化为二次函数,借助二次函数的单调性以及数形结合的思想,从而使问题得解.(2)通项公式法:求使a n ≥0(a n ≤0)成立时最大的n 值即可.一般地,等差数列{a n }中,若a 1>0,且S p =S q (p ≠q ),则:①若p +q 为偶数,则当n =p +q2时,S n 最大;②若p +q 为奇数,则当n =p +q -12或n =p +q +12时,S n 最大.1.设数列{a n },{b n }都是等差数列.若a 1+b 1=7,a 3+b 3=21,则a 5+b 5=________. 解析:∵(a 1+a 5)+(b 1+b 5)=2(a 3+b 3)=42, ∴a 5+b 5=42-7=35. 答案:352.在本例(3)中,若将已知条件改为a 1>0,S 5=S 12,如何求解S n 的最大值? 解:法一:设等差数列{a n }的公差为d ,由S 5=S 12得5a 1+10d =12a 1+66d ,d =-18a 1<0.所以S n =na 1+n (n -1)2d =na 1+n (n -1)2·⎝ ⎛⎭⎪⎫-18a 1=-116a 1(n 2-17n )=-116a 1⎝ ⎛⎭⎪⎫n -1722+28964a 1,因为a 1>0,n ∈N *,所以当n =8或n =9时,S n 有最大值. 法二:设等差数列{a n }的公差为d ,同法一得 d =-18a 1<0.设此数列的前n 项和最大,则⎩⎪⎨⎪⎧a n ≥0,a n +1≤0,即⎩⎪⎨⎪⎧a n =a 1+(n -1)·⎝ ⎛⎭⎪⎫-18a 1≥0,a n +1=a 1+n ·⎝ ⎛⎭⎪⎫-18a 1≤0,解得⎩⎪⎨⎪⎧n ≤9,n ≥8,即8≤n ≤9,又n ∈N *,所以当n =8或n =9时,S n 有最大值.法三:设等差数列{a n }的公差为d ,同法一得d =-18a 1<0, 由于S n =na 1+n (n -1)2d =d 2n 2+⎝ ⎛⎭⎪⎫a 1-d 2n ,设f (x )=d 2x 2+⎝ ⎛⎭⎪⎫a 1-d 2x ,则函数y =f (x )的图象为开口向下的抛物线,由S 5=S 12知,抛物线的对称轴为x =5+122=172(如图所示), 由图可知,当1≤n ≤8时,S n 单调递增;当n ≥9时,S n 单调递减.又n ∈N *,所以当n =8或n =9时,S n 最大.3.在本例(3)中,若将条件a 1=29,S 10=S 20改为a 3=12,S 12>0,S 13<0,如何求解?解:因为a 3=a 1+2d =12,所以a 1=12-2d , 所以⎩⎪⎨⎪⎧S 12=12a 1+66d >0,S 13=13a 1+78d <0,即⎩⎪⎨⎪⎧144+42d >0,156+52d <0, 解得-247<d <-3.故公差d 的取值范围为⎝ ⎛⎭⎪⎫-247,-3.法一:由d <0可知{a n }为递减数列,因此,在1≤n ≤12中,必存在一个自然数n ,使得a n ≥0,a n +1<0, 此时对应的S n 就是S 1,S 2,…,S 12中的最大值. 由于⎩⎪⎨⎪⎧S 12=6(a 6+a 7)>0,S 13=13a 7<0,于是a 7<0,从而a 6>0,因此S 6最大.法二:由d <0可知{a n }是递减数列, 令⎩⎪⎨⎪⎧a n =a 3+(n -3)d ≥0,a n +1=a 3+(n -2)d <0, 可得⎩⎪⎨⎪⎧n ≤3-12d ,n >2-12d .由-247<d <-3,可得⎩⎨⎧n ≤3-12d <3+123=7,n >2-12d >2+12247=5.5,所以5.5<n <7,故n =6,即S 6最大.方法探究]等差数列的设定方法及分段求和典例] 已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和. 解] (1)设等差数列{a n }的公差为d , 则a 2=a 1+d ,a 3=a 1+2d . 由题意得⎩⎪⎨⎪⎧3a 1+3d =-3,a 1(a 1+d )(a 1+2d )=8,解得⎩⎪⎨⎪⎧ a 1=2,d =-3或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5或a n =-4+3(n -1)=3n -7. 故a n =-3n +5或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列; 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件. 故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5;当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n |=5+(3×3-7)+(3×4-7)+…+(3n -7) =5+(n -2)[2+(3n -7)]2=32n 2-112n +10.当n =2时,满足此式.综上,S n =⎩⎨⎧4, n =1,32n 2-112n +10,n ≥2.回顾反思] 若三个数成等差数列可设为a ,a +d ,a +2d 或a -d ,a ,a +d ,若四个数成等差数列可设为a ,a +d ,a +2d ,a +3d 或a -3d ,a -d ,a +d ,a +3d .高考真题体验]1.(2015·高考课标全国卷Ⅱ)设S n 是等差数列{a n }的前n 项和.若a 1+a 3+a 5=3,则S 5=( )A .5B .7C .9D .11解析:选A.∵a 1+a 5=2a 3,a 1+a 3+a 5=3a 3=3,∴a 3=1,∴S 5=5×(a 1+a 5)2=5a 3=5.2.(2013·高考课标卷Ⅰ)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( ) A .3 B .4 C .5 D .6解析:选C.∵{a n }是等差数列,S m -1=-2,S m =0, ∴a m =S m -S m -1=2.∵S m +1=3,∴a m +1=S m +1-S m =3, ∴d =a m +1-a m =1.又S m =m (a 1+a m )2=m (a 1+2)2=0,∴a 1=-2,∴a m =-2+(m -1)·1=2,∴m =5.3.(2014·高考大纲全国卷)数列{}a n 满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. (1)设b n =a n +1-a n ,证明{}b n 是等差数列; (2)求{}a n 的通项公式.解:(1)证明:由a n +2=2a n +1-a n +2得 a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2.又b 1=a 2-a 1=1,所以{}b n 是首项为1,公差为2的等差数列. (2)由(1)得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是k =1n (a k +1-a k )=k =1n (2k -1),所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{}a n 的通项公式为a n =n 2-2n +2.4.(2016·高考全国甲卷)S n 为等差数列{a n }的前n 项和,且a 1=1,S 7=28.记b n =lg a n ],其中x ]表示不超过x 的最大整数,如0.9]=0,lg 99]=1. (1)求b 1,b 11,b 101;(2)求数列{b n }的前1 000项和. 解:(1)设{a n }的公差为d , 据已知有7+21d =28,解得d =1. 所以{a n }的通项公式为a n =n .b 1=lg 1]=0,b 11=lg 11]=1,b 101=lg 101]=2.(2)因为b n=⎩⎪⎨⎪⎧0, 1≤n <10,1,10≤n <100,2,100≤n <1 000,3,n =1 000,所以数列{b n }的前1 000项和为1×90+2×900+3×1=1 893.课时规范训练 A 组 基础演练1.在等差数列{}a n 中,a 2=3,a 3+a 4=9,则a 1a 6的值为( ) A .14 B .18 C .21 D .27解析:选A.依题意得⎩⎪⎨⎪⎧a 1+d =3,2a 1+5d =9,由此解得d =1,a 1=2,a 6=a 1+5d =7,a 1a 6=14.2.已知等差数列{a n }满足a 1+a 2+a 3+…+a 101=0,则有( ) A .a 1+a 101>0 B .a 2+a 100<0 C .a 3+a 99=0 D .a 51=51解析:选C.由题意,得a 1+a 2+a 3+…+a 101=a 1+a 1012×101=0. 所以a 1+a 101=a 2+a 100=a 3+a 99=0.3.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }的公差为( ) A .1 B .2 C .3 D .4解析:选B.法一:设等差数列{a n }的公差为d , 由题意得⎩⎪⎨⎪⎧2a 1+4d =10,a 1+3d =7.解得⎩⎪⎨⎪⎧a 1=1,d =2.∴d =2.法二:∵在等差数列{a n }中,a 1+a 5=2a 3=10, ∴a 3=5.又a 4=7,∴公差d =7-5=2.4.记S n 为等差数列{a n }前n 项和,若S 33-S 22=1,则其公差d =( ) A.12B .2 C .3 D .4解析:选B.由S 33-S 22=1,得a 1+a 2+a 33-a 1+a 22=1,即a 1+d -⎝ ⎛⎭⎪⎫a 1+d 2=1,∴d =2.5.已知等差数列{a n }中,a 2=6,a 5=15,若b n =a 2n ,则数列{b n }的前5项和等于( ) A .30 B .45 C .90 D .186解析:选C.因为⎩⎪⎨⎪⎧a 2=a 1+d =6a 5=a 1+4d =15,所以a 1=3,d =3, b n =a 2n =a 1+(2n -1)d =6n ,S 5=5(b 1+b 5)2=5(6+6×5)2=90,因此选C 项.6.已知等差数列{a n }的前n 项和为S n ,且a 3+a 8=13,S 7=35,则a 7=________. 解析:设数列{a n }的公差为d ,则由已知得(a 1+2d )+(a 1+7d )=13 ①,S 7=7(a 1+a 1+6d )2=35 ②.联立①②,解方程组得a 1=2,d =1,∴a 7=a 1+6d =8. 答案:87.若2,a ,b ,c,9成等差数列,则c -a =________. 解析:由题意得该等差数列的公差d =9-25-1=74,所以c -a =2d =72.答案:728.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大.解析:根据题意知a 7+a 8+a 9=3a 8>0,即a 8>0. 又a 8+a 9=a 7+a 10<0,∴a 9<0,∴当n =8时,{a n }的前n 项和最大. 答案:89.已知等差数列{a n }中,a 2=8,前10项和S 10=185.求数列{a n }的通项公式a n . 解:设数列{a n }的公差为d , 因为a 2=8,S 10=185,所以⎩⎨⎧a 1+d =810a 1+10×92d =185,解得⎩⎪⎨⎪⎧a 1=5d =3,所以a n =5+(n -1)×3=3n +2, 即a n =3n +2.10.已知数列{a n }的各项均为正数,前n 项和为S n ,且满足2S n =a 2n +n -4(n ∈N *).(1)求证:数列{a n }为等差数列; (2)求数列{a n }的通项公式.解:(1)证明:当n =1时,有2a 1=a 21+1-4, 即a 21-2a 1-3=0,解得a 1=3(a 1=-1舍去).当n ≥2时,有2S n -1=a 2n -1+n -5, 又2S n =a 2n +n -4,两式相减得2a n =a 2n -a 2n -1+1, 即a 2n -2a n +1=a 2n -1, 也即(a n -1)2=a 2n -1,因此a n -1=a n -1或a n -1=-a n -1. 若a n -1=-a n -1,则a n +a n -1=1. 而a 1=3,所以a 2=-2,这与数列{a n }的各项均为正数相矛盾, 所以a n -1=a n -1,即a n -a n -1=1,因此数列{a n }为首项为3,公差为1的等差数列.(2)由(1)知a 1=3,d =1, 所以数列{a n }的通项公式为a n =3+(n -1)×1=n +2,即a n =n +2.B 组 能力突破1.在等差数列{a n }中,a 1>0,a 10·a 11<0,若此数列的前10项和S 10=36,前18项和S 18=12,则数列{|a n |}的前18项和T 18的值是( ) A .24 B .48 C .60 D .84解析:选C.由a 1>0,a 10·a 11<0可知 d <0,a 10>0,a 11<0, ∴T 18=a 1+…+a 10-a 11-…-a 18 =S 10-(S 18-S 10)=60,故选C.2.已知数列{a n },若点(n ,a n )(n ∈N *)在直线y -2=k (x -5)上,则数列{a n }的前9项和S 9等于( ) A .18 B .20 C .22 D .24解析:选A.∵点(n ,a n )在直线y -2=k (x -5)上,∴a n -2=k (n -5),∴a n =kn -5k +2,∴a n +1-a n =k (n +1)-5k +2]-(kn -5k +2)=k ,∴{a n }是等差数列.当n =5时,a 5=2,∴S 9=9(a 1+a 9)2=9×2a 52=18.3.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S n +2-S n =36,则n =( ) A .5 B .6 C .7 D .8解析:选D.法一:S n =na 1+n (n -1)2d =n +n (n -1)=n 2,则S n +2=(n +2)2,由S n +2-S n =36,得(n +2)2-n 2=4n +4=36,所以n =8.法二:S n +2-S n =a n +1+a n +2=2a 1+(2n +1)d =2+2(2n +1)=36,解得n =8,所以选D.4.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有S n T n =2n -34n -3,则a 9b 5+b 7+a 3b 8+b 4的值为________. 解析:因为{a n },{b n }为等差数列, 所以a 9b 5+b 7+a 3b 8+b 4=a 92b 6+a 32b 6=a 9+a 32b 6=a 6b 6.因为S 11T 11=a 1+a 11b 1+b 11=2a 62b 6=2×11-34×11-3=1941,所以a 6b 6=1941.答案:19415.在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列. (1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.解:(1)由题意得,a 1·5a 3=(2a 2+2)2,由a 1=10,{a n }为公差为d 的等差数列得,d 2-3d -4=0, 解得d =-1或d =4.所以a n =-n +11(n ∈N *)或a n =4n +6(n ∈N *). (2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11,所以当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =a 1+a 2+…+a n =-12n 2+212n ; 当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=a 1+a 2+…+a 11-(a 12+a 13+…+a n ) =2(a 1+a 2+…+a 11)-(a 1+a 2+…+a 11+a 12+a 13+…+a n )=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n | =⎩⎪⎨⎪⎧-12n 2+212n ,n ≤11,12n 2-212n +110,n ≥12.第3课时 等比数列及其前n 项和1.等比数列的有关概念 (1)等比数列的有关概念一般地,如果一个数列从第2项起,每一项与它的前一项的比等于同一常数.这个数列叫等比数列,这个常数叫公比.用q 表示. (2)等比中项如果三个数a ,G ,b 成等比数列,则G 叫做a 和b 的等比中项,那么G a =bG ,即G 2=ab .2.等比数列的有关公式 (1)等比数列的通项公式设等比数列{a n }的首项为a 1,公比为q ,q ≠0,则它的通项公式a n =a 1·q n -1. (2)等比数列的前n 项和公式等比数列{a n }的公比为q (q ≠0),其前n 项和为S n ,当q =1时,S n =na 1;当q ≠1时,S n =a 1(1-q n )1-q =a 1-a n q 1-q .3.等比数列的性质(1)通项公式的推广:a n =a m ·q n -m (n ,m ∈N *).(2)若{a n }为等比数列,且k +l =m +n (k ,l ,m ,n ∈N *),则a k ·a l =a m ·a n .(3)若{a n },{b n }(项数相同)是等比数列,则{λa n }(λ≠0),⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n bn 仍是等比数列.(4)公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n .4.判断下列结论的正误(正确的打“√”,错误的打“×”) (1)常数列一定是等比数列.(×) (2)等比数列中不存在数值为0的项.(√)(3)满足a n +1=qa n (n ∈N *,q 为常数)的数列{a n }为等比数列.(×) (4)G 为a ,b 的等比中项⇔G 2=ab .(×)(5)若等比数列{a n }的首项为a 1,公比是q ,则其通项公式为a n =a 1q n .(×)(6)数列{a n }的通项公式是a n =a n,则其前n 项和为S n =a (1-a n)1-a.(×)(7)q >1时,等比数列{a n }是递增数列.(×)(8)在等比数列{a n }中,若a m ·a n =a p ·a q ,则m +n =p +q .(×) (9)若一个数列满足a n +1=q 2a n ,则{a n }为等比数列.(×)(10)若数列a ,a (1-a ),a (1-a )2,…是等比数列,则a ≠0且a ≠1 .(√)考点一 等比数列基本量的计算例1] (1)已知等比数列{a n }满足a 1=3,a 1+a 3+a 5=21,则a 3+a 5+a 7=( ) A .21 B .42 C .63 D .84解析:设{a n }的公比为q ,由a 1=3,a 1+a 3+a 5=21得 3+3q 2+3q 4=21,即q 2=2,所以a 3+a 5+a 7=(a 1+a 3+a 5)q 2=21×2=42. 答案:B(2)(2016·高考全国乙卷)设等比数列{a n }满足a 1+a 3=10,a 2+a 4=5,则a 1a 2…a n 的最大值为________.解析:由题意知,a 2+a 4=(a 1+a 3)q , 即5=10q ,解得q =12,将q =12代入a 1+a 3=10,解得a 1=8. ∴a 1a 2…a n =a n 1·q n (n -1)2=8n×⎝ ⎛⎭⎪⎫12n (n -1)2=2-n 22+7n 2.∵-n 22+7n 2=-12⎝ ⎛⎭⎪⎫n -722+498≤6,且n ∈N *. 当n =3或4时有最大值.∴a 1a 2…a n =2-n 22+7n2≤26=64,即最大值为64. 答案:64(3)(2017·河南开封模拟)正项等比数列{a n }中,a 2=4,a 4=16,则数列{a n }的前9项和等于________.解析:∵{a n }为正项等比数列,∴q 2=a 4a 2=164=4,∴q =2,S 9=a 1(1-q 9)1-q =2(1-29)1-2=210-2=1 022. 答案:1 022(4)在等比数列{a n }中,若a 4-a 2=6,a 5-a 1=15,则a 3=________. 解析:设等比数列{a n }的公比为q (q ≠0),则⎩⎪⎨⎪⎧a 1q 3-a 1q =6a 1q 4-a 1=15,两式相除,得q 1+q 2=25, 即2q 2-5q +2=0,解得q =2或q =12. 若q =2,则有a 124-a 1=15,∴a 1=1,a 3=4 若q =12,a 116-a 1=15,∴a 1=-16,a 3=-4. 答案:4或-4方法引航](1)方程思想.等比数列的通项公式和前n 项和公式联系着五个基本量,“知三求二”是一类最基本的运算,通过列方程(组)求出关键量a 1和q ,问题可迎刃而解.(2)分类讨论思想.等比数列的前n 项和公式涉及对公比q 的分类讨论,即分q =1和q ≠1两种情况,此处是常考易错点,一定要引起重视.(3)整体思想.应用等比数列前n 项和时,常把q n ,当成整体求解.1.(2017·吉林长春调研)等比数列{}a n 中,a 3=9,前三项和S 3=27,则公比q 的值为( ) A .1 B .-12C .1或-12D .-1或-12解析:选C.设数列{}a n 的公比为q ,因为a 3=9,所以a 1=9q 2,a 2=9q ,则S 3=9q 2+9q +9=27,即2q 2-q -1=0,解得q =1或q =-12,故选C.2.(2017·河南郑州质检)已知等比数列{}a n 的前n 项和为S n ,若a 25=2a 3a 6, S 5=-62,则a 1的值是__________.解析:设{}a n 的公比为q .由a 25=2a 3a 6得(a 1q 4)2=2a 1q 2·a 1q 5,∴q =2,∴S 5=a 1(1-25)1-2=-62,a 1=-2. 答案:-23.已知数列{a n }是递增的等比数列,a 1+a 4=9,a 2a 3=8,则数列{a n }的前n 项和等于________.解析:设等比数列的公比为q ,则有⎩⎪⎨⎪⎧a 1+a 1q 3=9,a 21·q 3=8,解得⎩⎪⎨⎪⎧a 1=1,q =2或⎩⎨⎧a 1=8,q =12.又{a n }为递增数列,∴⎩⎪⎨⎪⎧a 1=1,q =2,∴S n =1-2n 1-2=2n -1.答案:2n -1。
2024版高考数学总复习:等差数列教师用书
第二节等差数列考试要求:1.理解等差数列的概念和通项公式的意义.2.探索并掌握等差数列的前n项和公式,理解等差数列的通项公式与前n项和公式的关系.一、教材概念·结论·性质重现1.等差数列的定义如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,公差通常用字母d表示.递推公式为:a n+1-a n=d(n∈N*).注意定义中“从第2.等差数列的通项公式(1)首项为a1,公差为d的等差数列{a n}的通项公式为a n=a1+(n-1)d.(2)若已知a k,公差是d,则这个等差数列的通项公式是a n=a k+(n-k)d.当d≠0时,等差数列通项公式可以看成关于3.等差中项由三个数a,A,b组成的等差数列可以看成是最简单的等差数列.这时,A叫做a与b的等差中项.根据等差数列的定义可以知道,2A=a+b.4.等差数列的常用性质(1)通项公式的推广公式:a n=a m+(n-m)d(n,m∈N*)⇔d=��−���−�(n≠m).(2)若{a n}为等差数列,且m+n=p+q=2w,则a m+a n=a p+a q=2a w(m,n,p,q,w∈N*).(3)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为md的等差数列.(4)若{a n},{b n}是等差数列,则{pa n+qb n}也是等差数列.5.等差数列的前n项和公式及其性质(1)设等差数列{a n}的公差为d,其前n项和S n2na1.(2)数列S m,S2m-S m,S3m-S2m,…也是等差数列.(4)n为奇数时,S n=na中(a中=��+12),S奇=�+12a中,S偶=�−12a中,所以S奇-S偶=a中.n为偶数时,S偶-S奇=� 2.数列{a n }是等差数列⇔数列的前n 项和公式S n =2n 2+�1−2n ⇔S n =An 2+Bn (A ,B 为常数),所以当d ≠0时,等差数列前n 项和公式可以看成关于n 的二次函数,且常数项为0.1.判断下列说法的正误,对的画“√”,错的画“×”.(1)若一个数列从第二项起,每一项与它的前一项的差都是常数,则这个数列是等差数列.(×)(2)等差数列{a n }的单调性是由公差d 决定的.(√)(3)等差数列的前n 项和公式是常数项为0的二次函数.(×)(4)若{a n }是等差数列,公差为d ,则数列{a 3n }也是等差数列.(√)2.已知等差数列{a n }的前n 项和为S n ,若a 1=2,a 8+a 10=28,则S 9=()A.36B.72C.144D.288B 解析:因为a 8+a 10=2a 1+16d =28,a 1=2,所以d =32,所以S 9=9×2+9×82×32=72.3.已知等差数列{a n }满足:a 3=13,a 13=33,则数列{a n }的公差为()A.1B.2C.3D.4B 解析:公差d =�13−�313−3=2.4.一个等差数列的首项为125,从第10项起开始比1大,则这个等差数列的公差d 的取值范围是()A.d >875B.d <325C.875<d <325D.875<d ≤325D解析:由题意可得�10>1,�9≤1,即125+9 >1,125+8 ≤1,解得875<d ≤325.5.已知等差数列5,427,347,…,则前n 项和Sn =________.514(15n -n 2)解析:由题知公差d =-57,所以S n =na 1+��−1d =114(75n -5n 2)=514(15n -n 2).考点1等差数列的基本量运算——基础性1.(多选题)记S n 为等差数列{a n }的前n 项和.已知S 4=0,a 5=5,则下列选项正确的是()A.a 2+a 3=0B.a n =2n -5C.S n =n (n -4)D.d =-2ABC解析:由题意可知,�4=4�1+4×32=0,�5=�1+4 =5,解得�1=−3, =2.故a n =2n -5,S n =n 2-4n .故选ABC.2.记S n 为等差数列{a n }的前n 项和,若3S 3=S 2+S 4,a 1=2,则a 5=()A.-12B.-10C.10D.12B 解析:设等差数列{an }的公差为d ,由3S 3=S 2+S 4,得33�1=2a 1+4a 1,将a 1=2代入上式,解得d =-3,故a 5=a 1+(5-1)d =2+4×(-3)=-10.3.(2022·全国乙卷)记S n 为等差数列{a n }的前n 项和.若2S 3=3S 2+6,则公差d =________.2解析:因为2S 3=3S 2+6,所以2(a 1+a 2+a 3)=3(a 1+a 2)+6,因为{a n }为等差数列,所以6a 2=3a 1+3a 2+6,所以3(a 2-a 1)=3d =6,解得d =2.将条件用a 1使结果不对.考点2等差数列的判断与证明——综合性(2022·日照模拟)已知数列{a n },{b n }满足a 1=1,a n +1=1-14��,b n =22��−1,其中n ∈N *.求证:数列{b n }是等差数列,并求出数列{a n }的通项公式.证明:因为b n +1-b n =22��+1−1−22��−1=2211−1−22��−1=4��2��−1−22��−1=2,所以数列{b n }是公差为2的等差数列.又b 1=22�1−1=2,所以b n =2+(n -1)×2=2n ,所以2n =22��−1,解得a n =�+12�.(1)定义法:证明对任意正整数(2)等差中项法:证明对任意正整数已知数列{a n }的前n 项和为S n 且满足a n +2S n ·S n -1=0(n ≥2),a 1=12.(2)求数列{a n }的通项公式.(1)证明:因为a n +2S n ·S n -1=0(n ≥2),所以a n =-2S n ·S n -1.又a n =S n -S n -1(n ≥2),所以S n -1-S n =2S n ·S n -1(n ≥2).又S n ≠0,因此1��−1��−1=2(n ≥2).是以1�1=1�1=2为首项,2为公差的等差数列.(2)解:由(1)知1��=1�1+(n -1)d =2+(n -1)×2=2n ,即S n =12�.由于当n ≥2时,有a n =-2S n ·S n -1又因为a 1=12不适合上式,所以a n =12,�=1,−�≥2.考点3等差数列性质的应用——应用性考向1等差数列的项的性质(1)在等差数列{a n }中,已知a 3+a 8=6,则3a 2+a 16的值为()A.24B.18C.16D.12D解析:由题意知a 3+a 8=2a 1+9d ,3a 2+a 16=4a 1+18d =2(a 3+a 8)=12.故选D.(2)设S n 是等差数列{a n }的前n 项和,若�5�3=59,则�9�5=()A.1B.-1C.2D.12A解析:方法一:�9�5=9�1+�95�1+�5=9�55�3,因为�5�3=59,所以�9�5=1.故选A.方法二:因为�5�3=59⇒�1+4 �1+2=59⇒2a 1=-13d ,所以�9�5=9�1+�95�1+�5=92�1+8 52�1+4=9−5 5−9=1.等差数列中最常用的性质(1)d =��−���−�.(2)若m +n =p +q ,则a m +a n =a p +a q .一个正项等差数列{a n }的前n 项和为3,前3n 项和为21,则前2n 项和为()A.18B.12C.10D.6C 解析:因为{a n }是等差数列,所以S n ,S 2n -S n ,S 3n -S 2n 成等差数列,即2(S 2n -S n )=S n +(S 3n -S 2n ).因为S n =3,S 3n =21,所以2(S 2n -3)=3+21-S 2n ,解得S 2n =10.在等差数列{a n }中,S n 为其前n 项和,则(1)S m ,S 2m -S m ,S 3m -S 2m …成等差数列.(2)S 2n =n (a 1+a 2n )=…=n (a n +a n +1).(3)S 2n -1=(2n -1)a n .1.已知等差数列{a n }的前n 项和为S n ,若2a 11=a 9+7,则S 25=()A.1452B.145C.1752D.175D解析:因为2a 11=a 9+a 13=a 9+7,所以a 13=7,所以S 25a 13=175.故选D.2.已知等差数列{a n }的前n 项和为S n ,若S 10=1,S 30=5,则S 40=()A.7B.8C.9D.10B 解析:方法一:设等差数列{a n }的公差为d ,则10�1+10×92=1,30�1+30×292=5,解得 =1150,�1=7100,所以S 40=7100×40+40×392×1150=8.故选B.方法二:设等差数列前n 项和为S n =An 2+Bn ,由题意知100�+10�=1,900�+30�=5,解得�=1300,�=115.所以S n =�2300+�15,所以S 40=8.故选B.方法三:由等差数列的性质知S 10,S 20-S 10,S 30-S 20,S 40-S 30成等差数列,所以2(S 20-S 10)=S 10+(S 30-S 20),所以S 20=S 10+�303=1+53=83.所以d =(S 20-S10)-S 10=23,所以S 40-5=1+3×23=3,所以S 40=8.故选B.所以�1010,�2020,�3030,�4040,即110,�2020,16,�4040成等差数列,所以�4040=16+16−1102=15,所以S 40=8.故选B.考点4等差数列前n 项和的最值——综合性记S n 为等差数列{a n }的前n 项和,已知a 1=-7,S 3=-15.(1)求数列{a n }的通项公式;(2)求S n ,并求S n 的最小值.解:(1)设数列{a n }的公差为d ,由题意得3a 1+3d =-15.由a 1=-7得d =2,所以数列{a n }的通项公式为a n =a 1+(n -1)d =2n -9.(2)由(1)得S n =�1+��2·n =n 2-8n =(n -4)2-16,所以当n =4时,S n 取得最小值,最小值为-16.1.等差数列{如果a 1>0,如果a 1<0,在等差数列{a n }中,a 1=7,公差为d ,前n 项和为S n ,当且仅当n =8时,S n 取得最大值,则d 的取值范围为________.−1,−解析:由题意,当且仅当n =8时S n 有最大值,可得 <0,�8>0,�9<0,即 <0,7+7 >0,7+8 <0,解得-1<d <-78.在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15.求当n 取何值时,S n 取得最大值,并求出它的最大值.[四字程序]读想算思n 取何值时,S n 取得最大值1.S n 的表达式.2.求最值的方法1.求通项公式a n .2.求前n 项和S n转化与化归等差数列,a 1=20,S 10=S 151.利用等差数列的项的符号.2.利用二次函数的性质1.a n =-53n +653.2.S n =-56n 2+1256n 1.数列的单调性.2.二次函数的性质思路参考:先求出公差d ,再由a n 确定S n 取得最大值时n 的值.解:因为a 1=20,S 10=S 15,所以10×20+10×92d =15×20+15×142d ,所以d =-53.由a n =20+(n -1)×−53=-53n +653.因为a 1=20>0,d =-53<0,所以数列{a n }是递减数列.由a n =-53n +653≤0,得n ≥13,即a 13=0.当n ≤12时,a n >0;当n ≥14时,a n <0.所以当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×−53思路参考:先求出公差d ,再由S n 的表达式确定其最大值.解:因为a 1=20,S 10=S 15,所以10×20+10×92d =15×20+15×142d ,所以d =-53.S n =20n +��−1·53=-56n 2+1256n =-56�−252+312524.因为n ∈N *,所以当n =12或13时,S n有最大值,且最大值为S 12=S 13=130.思路参考:利用等差数列的性质求解.解:由S 10=S 15得S 15-S 10=a 11+a 12+a 13+a 14+a 15=0,所以5a 13=0,即a 13=0.又d =�13−�113−1=-53,所以当n =12或13时,S n 有最大值.所以S 12=12×20+12×112×−53思路参考:结合二次函数知识解答.解:因为等差数列{a n }的前n 项和S n 是关于n 的二次函数,且S 10=S 15,所以10×20+10×92d =15×20+15×142d ,所以d =-53.又10+152=12.5,所以n =12或13时,S n 取得最大值.所以S 12=12×20+12×112×−531.基于课程标准,解答本题一般需要具备良好的数学阅读技能、运算求解能力、推理能力和表达能力.本题的解答体现了逻辑推理、数学运算的核心素养,试题的解答过程展现了数学文化的魅力.2.基于高考数学评价体系,本题创设了数学探索创新情景,通过知识之间的联系和转化,将最值转化为熟悉的数学模型.本题的切入点十分开放,可以从不同的角度解答题目,体现了基础性;同时,解题的过程需要知识之间的转化,体现了综合性.等差数列{a n }中,设S n 为其前n 项和,且a 1>0,S 3=S 11,则当n 为多少时,S n 最大?解:(方法一)由S 3=S 11,得3a 1+3×22d =11a 1+11×102d ,则d =-213a 1.从而S n =2n 2+�1−2=-�113(n -7)2+4913a 1.又a 1>0,所以-�113<0.故当n =7时,S n 最大.(方法二)由于S n =an 2+bn 是关于n 的二次函数,由S 3=S 11,可知S n =an 2+bn 的图象关于n =3+112=7对称.由方法一可知二次项系数a =-�113<0,故当n =7时,S n 最大.(方法三)由方法一可知,d =-213a 1.要使S n 最大,则有��≥0,��+1≤0,即�1+�−1−213�1≥0,�1+�−213�1≤0,解得6.5≤n ≤7.5,故当n =7时,S n 最大.(方法四)由S 3=S 11,可得2a 1+13d =0,即(a1+6d)+(a1+7d)=0,故a7+a8=0.又由a1>0,S3=S11可知d<0,所以a7>0,a8<0,所以当n=7时,S n最大.课时质量评价(四十)A组全考点巩固练1.在等差数列{a n}中,a1+a8+a6=15,则此等差数列的前9项之和为()A.5B.27C.45D.90C解析:依题意a1+a8+a6=15,即3a1+12d=15,即3a5=15,所以a5=5.(a1+a9)=9a5=45.故选C.所以S9=922.(2022·威海三模)等差数列{a n}的前n项和为S n,若a3=4,S9=18,则公差d=() A.1B.-1C.2D.-2B解析:因为S9a5=18,所以a5=2,所以2d=a5-a3=2-4=-2,解得d=-1.3.一百零八塔是中国现存的大型古塔群之一,位于银川市南60公里的青铜峡水库西岸崖壁下,佛塔依山势自上而下,按1,3,3,5,5,7,9,11,13,15,17,19的奇数排列成十二行,塔体分为4种类型:第1层塔身覆钵式,2~4层为八角鼓腹锥顶状,5~6层呈葫芦状,7~12层呈宝瓶状,现将一百零八塔按从上到下,从左到右的顺序依次编号1,2,3,4,…,108.则编号为26的佛塔所在层数和塔体形状分别为()一百零八塔全景A.第5行,呈葫芦状B.第6行,呈葫芦状C.第7行,呈宝瓶状D.第8行,呈宝瓶状C解析:因为1+3+3+5+5+7=24,故编号为26的佛塔在第7行,呈宝瓶状.故选C.4.已知等差数列{a n}的前n项和为S n,2S8=S7+S10,则S21=()A.21B.11C.-21D.0D解析:由2S 8=S 7+S 10,得S 8-S 7=S 10-S 8,所以a 8=a 9+a 10,则a 10+a 9-a 8=a 11=0,所以S 21=2·�11·212=21a 11=0.故选D.5.(2022·长春模拟)在等差数列{a n }中,已知|a 6|=|a 11|,且公差d >0,则其前n 项和取最小值时的n 的值为()A.6B.7C.8D.9C 解析:因为|a 6|=|a 11|且公差d >0,所以a 6=-a 11,所以a 6+a 11=a 8+a 9=0,且a 8<0,a 9>0,所以a 1<a 2<…<a 8<0<a 9<a 10<…,所以使S n 取最小值的n 的值为8.故选C.6.(多选题)等差数列{a n }的前n 项和为S n ,公差d =1.若a 1+3a 5=S 7,则以下结论一定正确的是()A.a 5=1B.S n 的最小值为S 3C.S 1=S 6D.S n 存在最大值AC 解析:因为a 1+3a 5=S 7,所以a 1+3(a 1+4d )=7a 1+7×62d ,又因为d =1,解得a 1=-3.对选项A,a 5=a 1+4d =1,故A 正确;对选项B,a n =-3+n -1=n -4,因为a 1=-3<0,a 3=-1<0,a 4=0,a 5=1>0,所以S n 的最小值为S 3或S 4,故B 错误;对选项C,S 6-S 1=a 2+a 3+a 4+a 5+a 6=5a 4,又因为a 4=0,所以S 6-S 1=0,即S 1=S 6,故C 正确;对选项D,因为a 1=-3<0,d =1>0,所以S n 无最大值,故D 错误.7.设等差数列{a n }的前n 项和为S n ,若a 6=2a 3,则�11�5=______.225解析:�11�5=2�1+�115�1+�5=11�65�3=225.8.设等差数列{a n },{b n }的前n 项和分别为S n ,T n ,若对任意正整数n 都有����=2�−34�−3,则�9�5+�7+�3�8+�4的值为________.1941解析:因为{a n },{b n }为等差数列,所以�9�5+�7+�3�8+�4=�92�6+�32�6=�9+�32�6=�6�6.因为�11�11=�1+�11�1+�11=2�62�6=2×11−34×11−3=1941,所以�9�5+�7+�3�8+�4=1941.9.已知等差数列{a n }的前三项的和为-9,前三项的积为-15.(1)求等差数列{a n }的通项公式;(2)若{a n }为递增数列,求数列{|a n |}的前n 项和S n .解:(1)设公差为d ,则依题意得a 2=-3,则a 1=-3-d ,a 3=-3+d ,所以(-3-d )(-3)(-3+d )=-15,得d 2=4,d =±2,所以a n =-2n +1或a n =2n -7.(2)由题意得a n =2n -7,所以|a n |=7−2�,�≤3,2�−7,�≥4,①n ≤3时,Sn =-(a 1+a 2+…+a n =6n -n 2;②n ≥4时,S n =-a 1-a 2-a 3+a 4+…+a n =−2(�1+a 2+a 3)+(a 1+a 2+…+a n )=18-6n +n 2.综上,数列{|a n |}的前n 项和S n =−�2+6�,�≤3,�2−6�+18,�≥4.B 组新高考培优练10.(2022·广西模拟)将1到200中被3整除余1且被4整除余2的数按从小到大的顺序排成一列,构成数列{a n },则a 12=()A.130B.132C.142D.144C 解析:被3整除余1且被4整除余2的数按从小到大的顺序排成一列,这样的数构成首项为10,公差为12的等差数列,所以a n =10+12(n -1)=12n -2,故a 12=10+12(12-1)=142.故选C.11.德国数学家高斯是近代数学奠基者之一,有“数学王子”之称,在历史上有很大的影响.他幼年时就表现出超人的数学天赋,10岁时,他在进行1+2+3+…+100的求和运算时,就提出了倒序相加法的原理,该原理基于所给数据前后对应项的和呈现一定的规律生成,因此,此方法也称之为高斯算法.已知某数列通项a n =2�−1002�−101,则a 1+a 2+…+a 100=()A.98B.99C.100D.101C 解析:由题意,a n +a 101-n =2�−1002�−101101−�=2�−1002�−101+2�−1022�−101=2,所以a 1+a 100=a 2+a 99=…=a 50+a 51,所以a 1+a 2+…+a 100=(a 1+a 100)+(a 2+a 99)+…+(a 50+a 51)=50×2=100.12.(多选题)已知数列{a n }是公差不为0的等差数列,前n 项和为S n ,满足a 1+5a 3=S 8,下列选项正确的有()A.a 10=0B.S 10最小C.S 7=S 12D.S 20=0AC 解析:根据题意,数列{a n }是等差数列,若a 1+5a 3=S 8,即a 1+5a 1+10d =8a 1+28d ,变形可得a 1=-9d .又由a n =a 1+(n -1)d =(n -10)d ,则有a 10=0,故A 一定正确;不能确定a 1和d 的符号,不能确定S 10最小,故B 不正确;又由S n =na 1nd =2×(n 2-19n ),则有S 7=S 12,故C 一定正确;则S 20=20a 1+20×192d =-180d +190d =10d .因为d ≠0,所以S 20≠0,则D 不正确.故选AC.13.已知数列{a n }满足a 1=2,a 2=3,且a n +2-a n =1+−1�,�∈�∗,则该数列的前9项之和为________.34解析:因为a n +2-a n =1+(-1)n ,n ∈N *,所以,当n 为奇数时,a n +2-a n =0,则数列{a 2n+1}是常数列,a 2n +1=a 1=2,当n 为偶数时,a n +2-a n =2,则数列{a 2n }是以a 2=3为首项,2为公差的等差数列,所以a 1+a 2+…+a 9=(a 1+a 3+a 5+a 7+a 9)+(a 2+a 4+a 6+a 8)=2×5+3×4+4×32×2=34.14.已知圆的方程为x 2+y 2-6x =0,过点P (1,2)的该圆的三条弦的长a 1,a 2,a3构成等差数列,则数列a 1,a 2,a 3的公差的最大值是________.2解析:如图,由x 2+y 2-6x =0,得(x -3)2+y 2=9,所以圆心坐标C (3,0),半径R =3.由圆的性质可知,过点P (1,2)的该圆的弦的最大值为圆的直径,等于6,最小值为过点P 且垂直于CP 的弦的弦长.因为|CP |=3−12+0−22=22,所以|AB |=232−222=2,即a 1=2,a 3=6.所以公差d 的最大值为�3−�12=6−22=2.15.设数列{a n }的前n 项和为S n ,且S n =2n -1.数列{b n }满足b 1=2,b n +1-2b n =8a n .(1)求数列{a n }的通项公式;b n }的通项公式.(1)解:当n =1时,a 1=S 1=21-1=1;当n ≥2时,a n =S n -S n -1=(2n -1)-(2n -1-1)=2n -1.当n =1时显然满足上式,所以a n =2n -1.(2)证明:因为b n +1-2b n =8a n ,所以b n +1-2b n =2n +2,即��+12�+1−��2�=2.又�121=1,1,公差为2的等差数列.所以��2�=1+2(n -1)=2n -1.所以b n =(2n -1)×2n .16.在数列{a n },{b n }中,设S n 是数列{a n }的前n 项和,已知a 1=1,a n +1=a n +2,3b 1+5b 2+…+(2n +1)b n =2n ·a n +1,n ∈N *.(1)求a n 和S n ;(2)当n ≥k 时,b n ≥8S n 恒成立,求整数k 的最小值.解:(1)因为a n +1=a n +2,所以a n +1-a n =2,所以{a n }是等差数列.又a 1=1,所以a n =2n -1,从而S n n 2.(2)因为a n =2n -1,所以3b 1+5b 2+7b 3+…+(2n +1)b n =2n ·(2n -1)+1,①当n ≥2时,3b 1+5b 2+7b 3+…+(2n -1)b n -1=2n -1·(2n -3)+1.②①-②可得(2n +1)b n =2n -1·(2n +1)(n ≥2),即b n =2n -1.而b 1=1也满足上式,故b n =2n -1.令b n ≥8S n ,则2n -1≥8n 2,即2n -4≥n 2.又210-4<102,211-4>112,结合指数函数增长的性质,可知整数k 的最小值是11.。
高考数学一轮总复习第五章数列2等差数列课件高三全册数学课件
(3)设等差数列{an},{bn}的公差分别为 d1,d2,则 pan+1+ qbn+1-(pan+qbn)=p(an+1-an)+q(bn+1-bn)=pd1+qd2(与 n 值无 关的常数),即数列{pan+qbn}也是等差数列.
钱.( C )
5
3
A.3
B.2
4
5
C.3
D.4
第二十三页,共四十八页。
解析:设甲、乙、丙、丁、戊分别为 a-2d,a-d,a,a+d, a+2d,由题意可得:
a-2d+a-d+a+a+d+a+2d=5, a-2d+a-d=a+a+d+a+2d, 联立解得 a=1,d=-16. ∴这个问题中,甲所得为 1-2×(-16)=43(钱). 故选 C.
(2)(2019·全国卷Ⅲ)记 Sn 为等差数列{an}的前 n 项和.若 a1≠0,a2
=3a1,则SS150=____4____.
第十六页,共四十八页。
【解析】 (1)解法 1:设等差数列{an}的公差为 d,
∵Sa45= =05, ,
∴4a1+4×2 3d=0, a1+4d=5,
解得da=1=2-,3,
(1)在等差数列{an}中,a2=2,a3=4,则 a10= 18 .
(2)已知等差数列{an}的前 n 项和为 Sn,若 a1=-5,S9=27,则公
差 d= 2 .
(3)在等差数列{an}中,若 a3+a4+a5+a6+a7=450,则 a2+a8
= 180 . (4)在等差数列{an}中,S6=4,S18=24,则 S12= 12 .
【名师金典】(教师用书)版高考数学大一轮复习 第五章 数列
第五章 数列第一节 数列的概念与简单表示法[考情展望] 1.以数列的前n 项为背景写数列的通项.2.考查由数列的通项公式或递推关系,求数列的某一项.3.考查已知数列的递推关系或前n 项和S n 求通项a n.一、数列的有关概念判断数列递增(减)的方法 (1)作差比较法:①若a n +1-a n >0,则数列{a n }为递增数列. ②若a n +1-a n =0,则数列{a n }为常数列. ③若a n +1-a n <0,则数列{a n }为递减数列.(2)作商比较法:不妨设a n >0. ①若a n +1a n>1,则数列{a n }为递增数列. ②若a n +1a n=1,则数列{a n }为常数列. ③若a n +1a n<1,则数列{a n }为递减数列. 三、数列的表示方法数列有三种表示方法,它们分别是列表法、图象法和解析法. 四、a n 与S n 的关系若数列{a n }的前n 项和为S n ,通项公式为a n ,则a n =⎩⎪⎨⎪⎧S 1, n =,S n -S n -1, n已知S n 求a n 的注意点利用a n =S n -S n -1求通项时,注意n ≥2这一前提条件,易忽略验证n =1致误,当n =1时,a 1若适合通项,则n =1的情况应并入n ≥2时的通项;否则a n 应利用分段函数的形式表示.1.已知数列{a n }的前4项分别为2,0,2,0,则下列各式不可以作为数列{a n }的通项公式的一项是( )A .a n =1+(-1)n +1B .a n =2sinn π2C .a n =1-cos n πD .a n =⎩⎪⎨⎪⎧2,n 为奇数0,n 为偶数【答案】 B2.在数列{a n }中,a 1=1,a n =2a n -1+1,则a 5的值为( ) A .30 B .31 C .32 D .33 【答案】 B3.已知数列{a n }的通项公式为a n =nn +1,则这个数列是( )A .递增数列B .递减数列C .常数列D .摆动数列【答案】 A4.数列{a n }的前n 项和S n =n 2+1,则a n = .【答案】 ⎩⎪⎨⎪⎧2n =2n -n5.若数列⎩⎨⎧⎭⎬⎫nn +⎝ ⎛⎭⎪⎫23n 中的最大项是第k 项,则k = . 【答案】 46.(2013·课标全国卷Ⅰ)若数列{a n }的前n 项和S n =23a n +13,则{a n }的通项公式是a n= .【答案】 (-2)n -1考向一 [083] 由数列的前几项归纳数列的通项公式根据数列的前几项,写出下列各数列的一个通项公式.(1)-1,7,-13,19,…; (2)0.8,0.88,0.888,…;(3)12,14,-58,1316,-2932,6164,…. 【尝试解答】 (1)符号可通过(-1)n表示,后面的数的绝对值总比前面的数的绝对值大6,故通项公式为a n =(-1)n(6n -5).(2)数列变为89(1-0.1),89(1-0.01),89(1-0.001),…,∴a n =89⎝ ⎛⎭⎪⎫1-110n .(3)各项的分母分别为21,22,23,24,…,易看出第2,3,4项的分子分别比分母少3.因此把第1项变为-2-32,原数列化为-21-321,22-322,-23-323,24-324,…,∴a n =(-1)n·2n -32n .规律方法1 1.求数列的通项时,要抓住以下几个特征.(1)分式中分子、分母的特征;(2)相邻项的变化特征;(3)拆项后的特征;(4)各项符号特征等,并对此进行归纳、化归、联想.2.根据数列的前几项写出数列的一个通项公式是不完全归纳法,它蕴含着“从特殊到一般”的思想,由不完全归纳得出的结果是不可靠的,要注意代值检验,对于正负符号变化,可用(-1)n或(-1)n +1来调整.考向二 [084] 由递推关系求通项公式根据下列条件,求数列的通项公式a n .(1)在数列{a n }中,a 1=1,a n +1=a n +2n; (2)在数列{a n }中,a n +1=n +2na n ,a 1=4; (3)在数列{a n }中,a 1=3,a n +1=2a n +1.【尝试解答】 (1)由a n +1-a n =2n,把n =1,2,3,…,n -1(n ≥2)代入,得(n -1)个式子,累加即可得(a 2-a 1)+(a 3-a 2)+…+(a n -a n -1) =2+22+23+…+2n -1,所以a n -a 1=-2n -11-2,即a n -a 1=2n-2,所以a n =2n-2+a 1=2n-1. 当n =1时,a 1=1也符合, 所以a n =2n-1(n ∈N *). (2)由递推关系a n +1=n +2n a n ,a 1=4,有a n +1a n =n +2n, 于是有a 2a 1=3,a 3a 2=42,a 4a 3=53,…,a n -1a n -2=nn -2,a n a n -1=n +1n -1,将这(n -1)个式子累乘,得a n a 1=n n +2.所以当n ≥2时,a n =n n +2a 1=2n (n +1).当n =1时,a 1=4符合上式,所以a n =2n (n +1)(n ∈N *).(3)由a n +1=2a n +1得a n +1+1=2(a n +1),令b n =a n +1, 所以{b n }是以2为公比的等比数列. 所以b n =b 1·2n -1=(a 1+1)·2n -1=2n +1,所以a n =b n -1=2n +1-1(n ∈N *).规律方法2 递推式的类型对点训练 (2015·银川模拟)已知f (x )=1+x.各项均为正数的数列{a n }满足a 1=1,a n+2=f (a n ).若a 2 014=a 2 016,则a 20+a 11的值是 . 【答案】135+326考向三 [085] 由a n 与S n 的关系求通项a n已知数列{a n }的前n 项和S n ,求{a n }的通项公式:(1)S n =2n 2-3n ; (2)S n =3n+b .(b 为常数)【尝试解答】 (1)a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. (2)a 1=S 1=3+b , 当n ≥2时,a n =S n -S n -1 =(3n+b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧3+b , n =1,2·3n -1, n ≥2.规律方法3 已知S n 求a n 时的三个注意点(1)重视分类讨论思想的应用,分n =1和n ≥2两种情况讨论;特别注意a n =S n -S n -1中需n ≥2.(2)由S n -S n -1=a n 推得a n ,当n =1时,a 1也适合“a n 式”,则需统一“合写” . (3)由S n -S n -1=a n 推得a n ,当n =1时,a 1不适合“a n 式”,则数列的通项公式应分段表示(“分写”),即a n =⎩⎪⎨⎪⎧S 1,n =1,S n -S n -1,n ≥2.对点训练 (1)(2015·贵阳模拟)已知数列{a n }的前n 项和为S n ,a 1=1,S n =2a n +1,则S n =( )A .2n -1B.⎝ ⎛⎭⎪⎫32n -1C.⎝ ⎛⎭⎪⎫23n -1D.12n -1【答案】 B(2)已知数列{a n }的前n 项和S n ,求下面数列{a n }的通项公式a n . ①S n =2n 2-3n ;②S n =3n+b . 【解】 ①a 1=S 1=2-3=-1, 当n ≥2时,a n =S n -S n -1=(2n 2-3n )-[2(n -1)2-3(n -1)]=4n -5, 由于a 1也适合此等式,∴a n =4n -5. ②a 1=S 1=3+b ,当n ≥2时,a n =S n -S n -1 =(3n+b )-(3n -1+b )=2·3n -1.当b =-1时,a 1适合此等式. 当b ≠-1时,a 1不适合此等式. ∴当b =-1时,a n =2·3n -1;当b ≠-1时,a n =⎩⎪⎨⎪⎧ 3+b ,2·3n -1,n =1,n ≥2.易错易误之十 明确数列中项的特征,慎用函数思想解题 —————————— [1个示范例] ——————已知数列{a n }中,a n =n 2-kn (n ∈N *),且{a n }单调递增,则k 的取值范围是( )A .(-∞,2]B .(-∞,3)C .(-∞,2)D .(-∞,3]【解析】 ∵a n =n 2-kn (n ∈N *),且{a n }单调递增,∴a n +1-a n >0对∀n ∈N *都成立, 此处在求解时,常犯“a n 是关于n 的二次函数,若{a n }单调递增,则必有k2≤1,k ≤2”的错误.出错的原因是忽视了数列作为函数的特殊性即自变量是正整数.又a n +1-a n =(n +1)2-k (n +1)-n 2+kn =2n +1-k ,所以由2n +1-k >0,即k <2n +1恒成立可知k <(2n +1)min =3.,【防范措施】 1.明确函数单调性与数列单调性的关系 (1)若数列所对应的函数是单调的,则该数列一定单调.(2)若数列是单调的,其对应的函数未必单调,原因是数列是定义在n ∈N *上的特殊函数. 2.数列单调性的判断一般通过比较a n +1与a n 的大小来判断:若a n +1>a n ,则该数列为递增数列;若a n +1<a n ,则该数列为递减数列.———————— [1个防错练] ———————已知{a n }是递增数列,且对于任意的n ∈N *,a n =n 2+λn 恒成立,则实数λ的取值范围是 .【解析】 法一 (定义法)因为{a n }是递增数列,故对任意的n ∈N *,都有a n +1>a n ,即(n +1)2+λ(n +1)>n 2+λn ,整理,得2n +1+λ>0,即λ>-(2n +1)(*).因为n ≥1,故-(2n +1)≤-3,要使不等式(*)恒成立,只需λ>-3.法二 (函数法)设f (n )=a n =n 2+λn ,其对称轴为n =-λ2,要使数列{a n }为递增数列,只需满足n =-λ2<32即可,即λ>-3.【答案】 (-3,+∞)课时限时检测(二十九) 数列的概念与简单表示法(时间:60分钟 满分:80分)一、选择题(每小题5分,共30分)1.如图5-1-1,关于星星的图案中星星的个数构成一个数列,该数列的一个通项公式是( )图5-1-1A .a n =n 2-n +1 B .a n =n n -2 C .a n =n n +2D .a n =n n +2【答案】 C2.在数列{a n }中,a n =-2n 2+29n +3,则此数列最大项的值是( ) A .103 B.8658C.8258D .108 【答案】 D3.已知数列{a n }满足a 1=1,a n +1=a n +2n,则a 10=( ) A .1 024 B .1 023 C .2 048 D .2 047【答案】 B4.已知a 1=1,a n =n (a n +1-a n )(n ∈N *),则数列{a n }的通项公式是( ) A .2n -1 B.⎝ ⎛⎭⎪⎫n +1n n -1C .n 2D .n【答案】 D5.数列{a n }的前n 项和为S n ,若a 1=1,a n +1=3S n (n ≥1),则a 6=( ) A .3×44 B .3×44+1 C .45D .45+1【答案】 A6.对于数列{a n },“a n +1>|a n |(n =1,2,…)”是“{a n }为递增数列”的( ) A .必要不充分条件 B .充分不必要条件 C .充要条件D .既不充分也不必要条件 【答案】 B二、填空题(每小题5分,共15分)7.已知数列{a n }中,a 1=12,a n +1=1-1a n (n ≥2),则a 16= .【答案】 128.数列{a n }中,a 1=1,对于所有的n ≥2,n ∈N *,都有a 1·a 2·a 3·…·a n =n 2,则a 3+a 5= .【答案】61169.已知数列{a n }的前n 项和为S n ,对任意n ∈N *都有S n =23a n -13,且1<S k <9(k ∈N *),则a 1的值为 ,k 的值为 .【答案】 -1 4三、解答题(本大题共3小题,共35分)10.(10分)已知数列{a n }中,a 1=1,前n 项和S n =n +23a n .(1)求a 2,a 3;(2)求数列{a n }的通项公式. 【解】 (1)∵S n =n +23a n ,且a 1=1,∴S 2=43a 2,即a 1+a 2=43a 2,得a 2=3.由S 3=53a 3,得3(a 1+a 2+a 3)=5a 3,得a 3=6.(2)由题设知a 1=1. 当n ≥2时,有a n =S n -S n -1=n +23a n -n +13a n -1,整理得a n =n +1n -1a n -1,即a n a n -1=n +1n -1, 于是a 2a 1=3,a 3a 2=42,a 4a 3=53,…,a n a n -1=n +1n -1,以上n -1个式子的两端分别相乘,得a n a 1=n n +2,∴a n =n n +2,n ≥2.又a 1=1适合上式, 故a n =n n +2,n ∈N *.11.(12分)已知数列{a n }满足前n 项和S n =n 2+1,数列{b n }满足b n =2a n +1,且前n 项和为T n ,设c n =T 2n +1-T n .(1)求数列{b n }的通项公式; (2)判断数列{c n }的增减性.【解】 (1)a 1=2,a n =S n -S n -1=2n -1(n ≥2). ∴b n=⎩⎪⎨⎪⎧23,n =,1n ,n(2)∵c n =b n +1+b n +2+…+b 2n +1=1n +1+1n +2+…+12n +1,∴c n +1-c n =12n +2+12n +3-1n +1<0, ∴{c n }是递减数列.12.(13分)在数列{a n },{b n }中,a 1=2,a n +1-a n =6n +2,点(a nn,b n )在y =x 3+mx 的图象上,{b n }的最小项为b 3.(1)求数列{a n }的通项公式; (2)求m 的取值范围.【解】 (1)∵a n +1-a n =6n +2, ∴当n ≥2时,a n -a n -1=6n -4.∴a n =(a n -a n -1)+(a n -1-a n -2)+…+(a 2-a 1)+a 1 =(6n -4)+(6n -10)+…+8+2 =n -+n -2+2=3n 2-3n +2n -2+2 =3n 2-n ,显然a 1也满足a n =3n 2-n ,∴a n =3n 2-n . (2)∵点(a nn,b n )在y =x 3+mx 的图象上, ∴b n =(3n -1)3+m (3n -1).∴b 1=8+2m ,b 2=125+5m ,b 3=512+8m ,b 4=1 331+11m . ∵{b n }的最小项是b 3,∴⎩⎪⎨⎪⎧8+2m ≥512+8m ,125+5m ≥512+8m ,1 331+11m ≥512+8m ,∴-273≤m ≤-129.∵b n +1=(3n +2)3+m (3n +2),b n =(3n -1)3+m (3n -1), ∴b n +1-b n =3[(3n +2)2+(3n -1)2+(3n +2)(3n -1)]+3m =3(27n 2+9n +3+m ),当n ≥4时,27n 2+9n +3>273,∴27n 2+9n +3+m >0, ∴b n +1-b n >0,∴n ≥4时,b n +1>b n . 综上可知-273≤m ≤-129, ∴m 的取值范围为[-273,-129].第二节 等差数列[考情展望] 1.运用基本量法求解等差数列的基本量问题.2.在解答题中对所求结论的运算进行等差数列的判断与证明.3.在具体情景中能识别具有等差关系的数列,并会用等差数的性质解决相应问题.一、等差数列1.定义:a n +1-a n =d (常数)(n ∈N *).2.通项公式:a n =a 1+(n -1)d ,a n =a m +(n -m )d . 3.前n 项和公式:S n =na 1+n n -d 2=n a 1+a n2.4.a 、b 的等差中项A =a +b2.证明{a n }为等差数列的方法:(1)用定义证明:a n -a n -1=d (d 为常数,n ≥2)⇔{a n }为等差数列; (2)用等差中项证明:2a n +1=a n +a n +2⇔{a n }为等差数列; (3)通项法:a n 为n 的一次函数⇔{a n }为等差数列; (4)前n 项和法:S n =An 2+Bn 或S n =n a 1+a n2.二、等差数列的性质已知数列{a n }是等差数列,S n 是其前n 项和.(1)若m 、n 、p 、q 、k 是正整数,且m +n =p +q =2k , 则a m +a n =a p +a q =2a k .(2)a m ,a m +k ,a m +2k ,a m +3k ,…仍是等差数列,公差为kd . (3)数列S m ,S 2m -S m ,S 3m -S 2m ,…,也是等差数列.等差数列的性质(1)项的性质:在等差数列{a n }中,a m -a n =(m -n )d ⇔a m -a nm -n=d (m ≠n ),其几何意义是点(n ,a n ),(m ,a m )所在直线的斜率等于等差数列的公差.(2)和的性质:在等差数列{a n }中,S n 为其前n 项和,则 ①S 2n =n (a 1+a 2n )=…=n (a n +a n +1). ②S 2n -1=(2n -1)a n .③n 为偶数时,S 偶-S 奇=n2d ;n 为奇数时,S 奇-S 偶=a 中.1.在等差数列{a n }中,a 2=2,a 3=4,则a 10=( ) A .12 B .14 C .16 D .18 【答案】 D2.在等差数列{a n }中,a 2=1,a 4=5,则{a n }的前5项和S 5=( ) A .7 B .15 C .20 D .25 【答案】 B3.设{a n }为等差数列,公差d =-2,S n 为其前n 项和,若S 10=S 11,则a 1=( ) A .18 B .20 C .22 D .24 【答案】 B4.已知递增的等差数列{a n }满足a 1=1,a 3=a 22-4,则a n = . 【答案】 2n -15.(2013·重庆高考)若2,a ,b ,c,9成等差数列,则c -a = . 【答案】 726.(2013·广东高考)在等差数列{a n }中,已知a 3+a 8=10,则3a 5+a 7= . 【答案】 20考向一 [086] 等差数列的判定与证明在数列{a n }中,a 1=-3,a n =2a n -1+2n+3(n ≥2,且n ∈N *).(1)求a 2,a 3的值; (2)设b n =a n +32n(n ∈N *),证明:{b n }是等差数列.【尝试解答】 (1)∵a 1=-3,a n =2a n -1+2n+3(n ≥2). ∴a 2=2a 1+4+3=-6+4+3=1.a 3=2a 2+23+3=13.(2)证明:对于任意n ∈N *, ∵b n +1-b n =a n +1+32n +1-a n +32n=12n +1[(a n +1-2a n )-3]=12n +1[(2n +1+3)-3]=1,∴数列{b n }是首项为a 1+32=-3+32=0,公差为1的等差数列.规律方法1 用定义证明等差数列时,常采用的两个式子a n +1-a n =d 和a n -a n -1=d ,但它们的意义不同,后者必须加上“n ≥2”,否则n =1时,a 0无定义.对点训练 (2014·大纲全国卷)数列{a n }满足a 1=1,a 2=2,a n +2=2a n +1-a n +2. ①设b n =a n +1-a n ,证明{b n }是等差数列; ②求{a n }的通项公式.【证明】 ①由a n +2=2a n +1-a n +2得a n +2-a n +1=a n +1-a n +2,即b n +1=b n +2. 又b 1=a 2-a 1=1,所以{b n }是首项为1,公差为2的等差数列. ②由①得b n =1+2(n -1)=2n -1, 即a n +1-a n =2n -1.于是∑k =1n(a k +1-a k )=∑k =1n(2k -1),所以a n +1-a 1=n 2,即a n +1=n 2+a 1.又a 1=1,所以{a n }的通项公式为a n =n 2-2n +2.考向二 [087] 等差数列的基本运算(1)(2013·课标全国卷Ⅰ)设等差数列{a n }的前n 项和为S n ,若S m -1=-2,S m =0,S m +1=3,则m =( )A .3B .4C .5D .6 【答案】 C(2)(2013·四川高考)在等差数列{a n }中,a 1+a 3=8,且a 4为a 2和a 9的等比中项,求数列{a n }的首项、公差及前n 项和.【尝试解答】 设该数列的公差为d ,前n 项和为S n .由已知可得. 2a 1+2d =8,(a 1+3d )2=(a 1+d )(a 1+8d ), 所以a 1+d =4,d (d -3a 1)=0,解得a 1=4,d =0或a 1=1,d =3,即数列{a n }的首项为4,公差为0,或首项为1,公差为3.所以数列的前n 项和S n =4n 或S n =3n 2-n2.规律方法2 1.等差数列的通项公式及前n 项和公式,共涉及五个量a 1,a n ,d ,n ,S n ,知三求二,体现了方程思想的应用.2.数列的通项公式和前n 项和公式在解题中起到变量代换作用,而a 1和d 是等差数列的两个基本量,用它们表示已知和未知是常用方法,称为基本量法.对点训练 (2014·浙江高考)已知等差数列{a n }的公差d >0.设{a n }的前n 项和为S n ,a 1=1,S 2·S 3=36.①求d 及S n ;②求m ,k (m ,k ∈N *)的值,使得a m +a m +1+a m +2+…+a m +k =65. 【解】 ①由题意知(2a 1+d )(3a 1+3d )=36, 将a 1=1代入上式解得d =2或d =-5. 因为d >0,所以d =2,S n =n 2(n ∈N *).②由①得a m +a m +1+a m +2+…+a m +k =(2m +k -1)(k +1),所以(2m +k -1)(k +1)=65.由m ,k ∈N *知2m +k -1>k +1>1,故⎩⎪⎨⎪⎧2m +k -1=13,k +1=5,所以⎩⎪⎨⎪⎧m =5,k =4.考向三 [088] 等差数列的性质及应用(1)在等差数列{a n }中,已知a 4+a 8=16,则该数列前11项和S 11=( )A .58B .88C .143D .176 【答案】 B(2)设等差数列{a n }的前n 项和为S n ,已知前6项和为36,最后6项的和为180,S n =324(n >6),求数列{a n }的项数及a 9+a 10.【尝试解答】 由题意知a 1+a 2+…+a 6=36,①a n +a n -1+a n -2+…+a n -5=180,②①+②得(a 1+a n )+(a 2+a n -1)+…+(a 6+a n -5)=6(a 1+a n )=216, ∴a 1+a n =36, 又S n =n a 1+a n2=324,∴18n =324,∴n =18. 由a 1+a n =36,n =18.∴a 1+a 18=36,从而a 9+a 10=a 1+a 18=36.规律方法3 1.在等差数列{a n }中,若m +n =p +q =2k ,则a m +a n =a p +a q =2a k 是常用的性质,本例(1)、(2)都用到了这个性质.2.掌握等差数列的性质,悉心研究每个性质的使用条件及应用方法,认真分析项数、序号、项的值的特征,这是解题的突破口.对点训练 (1)已知等差数列{a n }的公差为2,项数是偶数,所有奇数项之和为15,所有偶数项之和为25,则这个数列的项数为( )A .10B .20C .30D .40(2)已知等差数列{a n }的前n 项和为S n ,且S 10=10,S 20=30,则S 30= . 【答案】 (1)A (2)60考向四 [089] 等差数列前n 项和的最值在等差数列{a n }中,已知a 1=20,前n 项和为S n ,且S 10=S 15,求当n 取何值时,S n 取得最大值,并求出它的最大值.【尝试解答】 法一 ∵a 1=20,S 10=S 15, ∴10×20+10×92d =15×20+15×142d ,∴d =-53.∴a n =20+(n -1)×⎝ ⎛⎭⎪⎫-53=-53n +653. 令a n ≥0得n ≤13,即当n ≤12时,a n >0;n ≥14时,a n <0. ∴当n =12或13时,S n 取得最大值,且最大值为S 12=S 13=12×20+12×112×⎝ ⎛⎭⎪⎫-53=130. 法二 同法一得d =-53.又由S 10=S 15,得a 11+a 12+a 13+a 14+a 15=0. ∴5a 13=0,即a 13=0.∴当n =12或13时,S n 有最大值, 且最大值为S 12=S 13=130.规律方法4 求等差数列前n 项和的最值常用的方法(1)先求a n ,再利用⎩⎪⎨⎪⎧a n ≥0a n +1≤0或⎩⎪⎨⎪⎧a n ≤0a n +1≥0求出其正负转折项,最后利用单调性确定最值.(2)①利用性质求出其正负转折项,便可求得前n 项和的最值.②利用等差数列的前n 项和S n =An 2+Bn (A ,B 为常数)为二次函数,根据二次函数的性质求最值.对点训练 已知{a n }是一个等差数列,且a 2=1,a 5=-5. (1)求{a n }的通项a n ;(2)求{a n }前n 项和S n 的最大值.【解】 (1)设{a n }的公差为d ,由已知条件⎩⎪⎨⎪⎧a 1+d =1,a 1+4d =-5,解出a 1=3,d =-2,所以a n =a 1+(n -1)d =-2n +5. (2)S n =na 1+n n -2d =-n 2+4n =4-(n -2)2,所以n =2时,S n 取到最大值4.规范解答之八 等差数列的通项与求和问题 ————————— [1个示范例] ———————(12分)(2013·浙江高考)在公差为d 的等差数列{a n }中,已知a 1=10,且a 1,2a 2+2,5a 3成等比数列.(1)求d ,a n ;(2)若d <0,求|a 1|+|a 2|+|a 3|+…+|a n |.【规范解答】 (1)由题意得,a 1·5a 3=(2a 2+2)2,由a 1=10,{a n }为公差为d 的等差数列得,d 2-3d -4=0,2分 解得d =-1或d =4.所以a n =-n +11(n ∈N *)或a n =4n +6(n ∈N *). 5分(2)设数列{a n }的前n 项和为S n .因为d <0,由(1)得d =-1,a n =-n +11,6分所以当n ≤11时,|a 1|+|a 2|+|a 3|+…+|a n |=S n =-12n 2+212n ;当n ≥12时,|a 1|+|a 2|+|a 3|+…+|a n |=-S n +2S 11=12n 2-212n +110.综上所述,|a 1|+|a 2|+|a 3|+…+|a n | =⎩⎪⎨⎪⎧-12n 2+212n , n ≤11,12n 2-212n +110, n ≥12.12分【名师寄语】 1.涉及求数列{|a n |}前n 项和的题目,其解题的关键是找到数列{a n }的正负界点,因此借助绝对值的性质,去掉绝对值符号是解题的着眼点.2.要正确区分“|a 1|+|a 2|+|a 3|+…+|a n |”与“a 1+a 2+a 3+…+a n ”的差异,明确两者间的转换关系,切忌逻辑混乱.————————— [1个规范练] ———————已知等差数列{a n }前三项的和为-3,前三项的积为8. (1)求等差数列{a n }的通项公式;(2)若a 2,a 3,a 1成等比数列,求数列{|a n |}的前n 项和.【解】 (1)设等差数列{a n }的公差为d ,易求a 2=-1, 则a 3=a 2+d ,a 1=a 2-d ,由题意得⎩⎪⎨⎪⎧a 1=-1-d ,-1+d -1-d -=8,解之得⎩⎪⎨⎪⎧a 1=2,d =-3.或⎩⎪⎨⎪⎧a 1=-4,d =3.所以由等差数列通项公式可得a n =2-3(n -1)=-3n +5,或a n =-4+3(n -1)=3n -7.故a n =-3n +5,或a n =3n -7.(2)当a n =-3n +5时,a 2,a 3,a 1分别为-1,-4,2,不成等比数列,不合题设条件. 当a n =3n -7时,a 2,a 3,a 1分别为-1,2,-4,成等比数列,满足条件.故|a n |=|3n -7|=⎩⎪⎨⎪⎧-3n +7,n =1,2,3n -7,n ≥3.记数列{|a n |}的前n 项和为S n .当n =1时,S 1=|a 1|=4;当n =2时,S 2=|a 1|+|a 2|=5. 当n ≥3时,S n =S 2+|a 3|+|a 4|+…+|a n | =5+(3×3-7)+(3×4-7)+…+(3n -7) =5+n -+n -2=32n 2-112n +10. 当n =2时,满足此式. 综上,S n =⎩⎪⎨⎪⎧4,n =1,32n 2-112n +10,n >1.课时限时检测(三十) 等差数列 (时间:60分钟 满分:80分)一、选择题(每小题5分,共30分)1.等差数列{a n }中,a 1+a 5=10,a 4=7,则数列{a n }中的公差为( ) A .1 B .2 C .3 D .4 【答案】 B2.设S n 为等差数列{a n }的前n 项和,若a 1=1,公差d =2,S k +2-S k =24,则k =( ) A .8 B .7 C .6 D .5【答案】 D3.设等差数列{a n }的前n 项和为S n .若a 1=-11,a 4+a 6=-6,则当S n 取最小值时,n 等于( )A .6B .7C .8D .9【答案】 A4.设等差数列{a n }的前n 项和为S n ,若S 3=9,S 6=36,则a 7+a 8+a 9等于( )A .63B .45C .36D .27 【答案】 B5.(2013·辽宁高考)下面是关于公差d >0的等差数列{a n }的四个命题:p 1:数列{a n }是递增数列;p 2:数列{na n }是递增数列;p 3:数列⎩⎨⎧⎭⎬⎫a n n 是递增数列;p 4:数列{a n +3nd }是递增数列.其中的真命题为( ) A .p 1,p 2 B .p 3,p 4 C .p 2,p 3 D .p 1,p 4 【答案】 D6.在等差数列{a n }中,a 1=-2 012,其前n 项和为S n ,若S 1212-S 1010=2,则S 2 012的值等于( )A .-2 011B .-2 012C .-2 010D .-2 013 【答案】 B二、填空题(每小题5分,共15分)7.等差数列{a n }的前n 项和为S n ,若a m -1+a m +1-a 2m =0,S 2m -1=38,则m = . 【答案】 108.等差数列{a n }的前n 项和为S n ,且6S 5-5S 3=5,则a 4= . 【答案】 139.已知等差数列{a n }中,a 1,a 99是函数f (x )=x 2-10x +16的两个零点,则12a 50+a 20+a 80= .【答案】252三、解答题(本大题共3小题,共35分)10.(10分)(2013·课标全国卷Ⅱ)已知等差数列{a n }的公差不为零,a 1=25,且a 1,a 11,a 13成等比数列.(1)求{a n }的通项公式; (2)求a 1+a 4+a 7+…+a 3n -2.【解】 (1)设{a n }的公差为d ,由题意得a 211=a 1a 13, 即(a 1+10d )2=a 1(a 1+12d ). 于是d (2a 1+25d )=0.又a 1=25,所以d =0(舍去),d =-2. 故a n =-2n +27.(2)令S n =a 1+a 4+a 7+…+a 3n -2.由(1)知a 3n -2=-6n +31,故{a 3n -2}是首项为25,公差为-6的 等差数列. 从而S n =n 2(a 1+a 3n -2)=n2(-6n +56)=-3n 2+28n .11.(12分)已知公差大于零的等差数列{a n }的前n 项和为S n ,且满足a 3·a 4=117,a 2+a 5=22.(1)求通项a n ; (2)若数列{b n }满足b n =S nn +c,是否存在非零实数c 使得{b n }为等差数列?若存在,求出c 的值;若不存在,请说明理由.【解】 (1)由等差数列的性质,得a 2+a 5=a 3+a 4=22, ∴a 3,a 4是方程x 2-22x +117=0的根,且a 4>a 3, ∴a 3=9且a 4=13, 从而a 1=1,公差d =4, 故通项a n =1+4(n -1)=4n -3. (2)由(1)知S n =n+4n -2=2n 2-n ,所以b n =S nn +c =2n 2-nn +c .法一 所以b 1=11+c ,b 2=62+c ,b 3=153+c(c ≠0). 令2b 2=b 1+b 3,解得c =-12.当c =-12时,b n =2n 2-nn -12=2n ,当n ≥2时,b n -b n -1=2.故当c =-12时,数列{b n }为等差数列.法二 当n ≥2时, b n -b n -1=2n 2-nn +c-n -2-n-n -1+c=2n 2+c -n -3c n 2+c -n +c c -,欲使{b n }为等差数列,只需4c -2=2(2c -1)且-3c =2c (c -1)(c ≠0),解得c =-12.故当c =-12时,数列{b n }为等差数列.12.(12分)在数列{a n }中,a 1=1,3a n a n -1+a n -a n -1=0(n ≥2).(1)证明数列⎩⎨⎧⎭⎬⎫1a n 是等差数列;(2)求数列{a n }的通项; (3)若λa n +1a n +1≥λ对任意n ≥2的整数恒成立,求实数λ的取值范围.【解】 (1)证明 由3a n a n -1+a n -a n -1=0(n ≥2)得, 1a n -1a n -1=3(n ≥2),∴数列⎩⎨⎧⎭⎬⎫1a n 是以1为首项,3为公差的等差数列.(2)由(1)可得,1a n=1+3(n -1)=3n -2.∴a n =13n -2. (3)λa n +1a n +1≥λ对n ≥2的整数恒成立,即λ3n -2+3n +1≥λ对n ≥2(n ∈N *)恒成立. 整理得λ≤n +n -n -(n ≥2,n ∈N *),令C n =n +n -n -,Cn +1-C n =n +n +3n-n +n -n -=n +n -3n n -因为n ≥2,所以C n +1-C n >0,∴{C n }为单调递增数列,C 2最小,且C 2=283,故λ的取值范围为⎝ ⎛⎦⎥⎤-∞,283.第三节 等比数列[考情展望] 1.运用基本量法求解等比数列问题.2.以等比数列的定义及等比中项为背景,考查等比数列的判定.3.客观题以等比数列的性质及基本量的运算为主,突出“小而巧”的特点,解答题注重函数与方程、分类讨论等思想的综合应用.一、等比数列证明{a n }是等比数列的两种常用方法(1)定义法:若a n a n -1=q (q 为非零常数且n ≥2且n ∈N *),则{a n }是等比数列. (2)中项公式法:在数列{a n }中,a n ≠0且a 2n +1=a n ·a n +2(n ∈N *),则数列{a n }是等比数列. 二、等比数列的性质1.对任意的正整数m 、n 、p 、q ,若m +n =p +q =2k ,则a m ·a n =a p ·a q =a 2k . 2.通项公式的推广:a n =a m qn -m(m ,n ∈N *)3.公比不为-1的等比数列{a n }的前n 项和为S n ,则S n ,S 2n -S n ,S 3n -S 2n 仍成等比数列,其公比为q n;当公比为-1时,S n ,S 2n -S n ,S 3n -S 2n 不一定构成等比数列.4.若数列{a n },{b n }(项数相同)是等比数列,则{λa n },⎩⎨⎧⎭⎬⎫1a n ,{a 2n },{a n ·b n },⎩⎨⎧⎭⎬⎫a n b n (λ≠0)仍是等比数列.等比数列的单调性1.已知{a n }是等比数列,a 2=2,a 5=14,则公比q 等于( )A .-12B .-2C .2 D.12【答案】 D2.设S n 为等比数列{a n }的前n 项和,8a 2+a 5=0,则S 5S 2=( )A .-11B .-8C .5D .11【答案】 A3.公比为2的等比数列{a n }的各项都是正数,且a 3a 11=16,则log 2a 10=( ) A .4 B .5C .6D .7 【答案】 B4.(2014·江苏高考)在各项均为正数的等比数列{a n }中,若a 2=1,a 8=a 6+2a 4,则a 6的值是 .【答案】 45.(2013·大纲全国卷)已知数列{a n }满足3a n +1+a n =0,a 2=-43,则{a n }的前10项和等于( )A .-6(1-3-10)B.19(1-310) C .3(1-3-10) D .3(1+3-10)【答案】 C6.(2013·江西高考)等比数列x,3x +3,6x +6,…的第四项等于( ) A .-24 B .0 C .12 D .24【答案】 A考向一 [090] 等比数列的基本运算(1)(2013·北京高考)若等比数列{a n }满足a 2+a 4=20,a 3+a 5=40,则公比q = ;前n 项和S n = .(2)等比数列{a n }的前n 项和为S n ,已知S 1,S 3,S 2成等差数列. ①求{a n }的公比q ;②若a 1-a 3=3,求S n . 【尝试解答】 (1)2,2n +1-2(2)①∵S 1,S 3,S 2成等差数列, ∴a 1+(a 1+a 1q )=2(a 1+a 1q +a 1q 2).由于a 1≠0,故2q 2+q =0,又q ≠0,从而q =-12.②由已知可得a 1-a 1(-12)2=3,故a 1=4,从而S n =4⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n 1-⎝ ⎛⎭⎪⎫-12=83⎣⎢⎡⎦⎥⎤1-⎝ ⎛⎭⎪⎫-12n .规律方法1 1.等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a 1,n ,q ,a n ,S n ,一般可以“知三求二”,体现了方程思想的应用.2.在使用等比数列的前n 项和公式时,应根据公比q 的情况进行分类讨论,此外在运算过程中,还应善于运用整体代换思想简化运算.对点训练 (1)已知等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,则数列{a n }的通项公式a n = .【答案】 2n(2)已知数列{a n }是公差不为零的等差数列,a 1=2,且a 2,a 4,a 8成等比数列. ①求数列{a n }的通项公式; ②求数列{3a n }的前n 项和.【解】 ①设数列{a n }的公差为d (d ≠0),由题意得a 24=a 2·a 8,即(a 1+3d )2=(a 1+d )(a 1+7d ).又a 1=2,所以d =2或d =0(舍去).∴a n =2n .②由①可知3a n =32n=9n. 故数列{3a n }的前n 项和为-9n1-9=98(9n-1). 考向二 [091] 等比数列的判定与证明成等差数列的三个正数的和等于15,并且这三个数分别加上2、5、13后成为等比数列{b n }中的b 3、b 4、b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.【尝试解答】 (1)设成等差数列的三个正数分别为a -d ,a ,a +d . 依题意,得a -d +a +a +d =15,解得a =5. 所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,(7-d )(18+d )=100, 解之得d =2或d =-13(舍去), ∴b 3=5,公比q =2,因此b 1=54.故b n =54·2n -1=5·2n -3.(2)证明 由(1)知b 1=54,公比q =2,∴S n =54-2n1-2=5·2n -2-54, 则S n +54=5·2n -2,因此S 1+54=52,S n +54S n -1+54=5·2n -25·2n -3=2(n ≥2).∴数列{S n +54}是以52为首项,公比为2的等比数列.规律方法2 1.本题求解常见的错误:(1)计算失误,不注意对方程的根(公差d )的符号进行判断;(2)不能灵活运用数列的性质简化运算.2.要判定一个数列不是等比数列,则只需判定其任意的连续三项不成等比即可. 对点训练 (2015·武汉模拟)成等差数列的三个正数的和等于15,并且这三个数分别加上2,5,13后成为等比数列{b n }中的b 3,b 4,b 5.(1)求数列{b n }的通项公式;(2)数列{b n }的前n 项和为S n ,求证:数列⎩⎨⎧⎭⎬⎫S n +54是等比数列.【解】 (1)设成等差数列的三个正数分别为a -d ,a ,a +d ,依题意,得a -d +a +a +d =15,解得a =5.所以{b n }中的b 3,b 4,b 5依次为7-d,10,18+d . 依题意,有(7-d )(18+d )=100, 解得d =2或d =-13(舍去). 故{b n }的第3项为5,公比为2, 由b 3=b 1·22,即5=b 1·22, 解得b 1=54.所以{b n }是以54为首项,2为公比的等比数列,其通项公式为b n =54·2n -1=5·2n -3.(2)证明:数列{b n }的前n 项和S n =54-2n1-2=5·2n -2-54,即S n +54=5·2n -2. 所以S 1+54=52,S n +1+54S n +54=5·2n -15·2n -2=2.因此⎩⎨⎧⎭⎬⎫S n +54是以52为首项,2为公比的等比数列.考向三[092] 等比数列的性质及应用(1)设等比数列{a n }的前n 项和为S n ,若S 6∶S 3=1∶2,则S 9∶S 3等于( )A .1∶2B .2∶3C .3∶4D .1∶3(2)在等比数列{a n }中,若a 7+a 8+a 9+a 10=158,a 8a 9=-98,则1a 7+1a 8+1a 9+1a 10= .【答案】 (1)C (2)-53规律方法3 在解决等比数列的有关问题时,要充分挖掘隐含条件,利用性质,特别是“若m +n =p +q ,则a m ·a n =a p ·a q ”,可以减少运算量,提高解题速度.对点训练 (1)(2015·兰州模拟)各项均为正数的等比数列{a n }的前n 项和为S n ,若S n=2,S 3n =14,则S 4n 等于( )A .80B .30C .26D .16(2)(2014·广东高考)若等比数列{a n }的各项均为正数,且a 10a 11+a 9a 12=2e 5,则ln a 1+ln a 2+…+ln a 20= .【答案】 (1)B (2)50思想方法之十三 分类讨论思想在等比数列求和中的应用分类讨论的实质是将整体化为部分来解决.其求解原则是不复重,不遗漏,讨论的方法是逐类进行.在数列的学习中,也有多处知识涉及分类讨论思想 ,具体如下所示: (1)前n 项和S n 与其通项a n 的关系:a n =⎩⎪⎨⎪⎧a 1 n =1,S n -S n -1 n ≥2;(2)等比数列的公比q 是否为1;(3)在利用公式S n 求和时,数列的项的个数为偶数还是奇数等等. 求解以上问题的关键是找准讨论的切入点,分类求解.————————— [1个示范例] ———————(理)(2013·天津高考)已知首项为32的等比数列{a n }不是递减数列,其前n 项和为S n (n ∈N *),且S 3+a 3,S 5+a 5,S 4+a 4成等差数列.(1)求数列{a n }的通项公式;(2)设T n =S n -1S n(n ∈N *),求数列{T n }的最大项的值与最小项的值.【解】 (1)设等比数列{a n }的公比为q ,因为S 3+a 3,S 5+a 5,S 4+a 4成等差数列,所以S 5+a 5-S 3-a 3=S 4+a 4-S 5-a 5,即4a 5=a 3,于是q 2=a 5a 3=14.又{a n }不是递减数列且a 1=32,所以q =-12.故等比数列{a n }的通项公式为a n =32×⎝ ⎛⎭⎪⎫-12n -1=(-1)n -1·32n .(2)由(1)得S n=1-⎝ ⎛⎭⎪⎫-12n=⎩⎪⎨⎪⎧1+12n,n 为奇数,1-12n,n 为偶数.当n 为奇数时,S n 随n 的增大而减小,所以1<S n ≤S 1=32,故0<S n -1S n ≤S 1-1S 1=32-23=56. 当n 为偶数时,S n 随n 的增大而增大,所以34=S 2≤S n <1,故0>S n -1S n ≥S 2-1S 2=34-43=-712. 所以数列{T n }最大项的值为56,最小项的值为-712.————————— [1个对点练] ———————已知数列{d n }满足d n =n ,等比数列{a n }为递增数列,且a 25=a 10,2(a n +a n +2)=5a n +1,n ∈N *.(1)求a n ;(2)令c n =1-(-1)na n ,不等式c k ≥2014(1≤k ≤100,k ∈N *)的解集为M ,求所有d k +a k (k ∈M )的和.【解】 (1)设{a n }的首项为a 1,公比为q ,所以(a 1q 4)2=a 1q 9,解得a 1=q , 又因为2(a n +a n +2)=5a n +1,所以2(a n +a n q 2)=5a n q ,则2(1+q 2)=5q,2q 2-5q +2=0,解得q =12(舍)或q =2,所以a n =2×2n -1=2n.(2)则c n =1-(-1)n a n =1-(-2)n,d n =n ,当n 为偶数,c n =1-2n ≥2014,即2n≤-2013,不成立; 当n 为奇数,c n =1+2n ≥2014,即2n≥2013, 因为210=1024,211=2048,所以n =2m +1,5≤m ≤49 则{d k }组成首项为11,公差为2的等差数列 {a k }(k ∈M )组成首项为211,公比为4的等比数列 则所有d k +a k (k ∈M )的和为+2+211-4451-4=2475+2101-20483=2101+53773.课时限时检测(三十一) 等比数列(时间:60分钟 满分:80分)一、选择题(每小题5分,共30分)1.已知等比数列{a n }中,a 1+a 2+a 3=40,a 4+a 5+a 6=20,则前9项之和等于( ) A .50 B .70 C .80 D .90 【答案】 B2.若等比数列{a n }满足a n a n +1=16n,则公比为( ) A .2 B .4 C .8 D .16 【答案】 B3.(2013·课标全国卷Ⅰ)设首项为1,公比为23的等比数列{a n }的前n 项和为S n ,则( )A .S n =2a n -1B .S n =3a n -2C .S n =4-3a nD .S n =3-2a n【答案】 D4.已知数列{a n },则“a n ,a n +1,a n +2(n ∈N *)成等比数列”是“a 2n +1=a n a n +2”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件 【答案】 A5.已知数列{a n }为等比数列,S n 是它的前n 项和.若a 2·a 3=2a 1,且54为a 4与2a 7的等差中项,则S 5=( )A .35B .33C .31D .29 【答案】 C6.已知数列{a n }满足log 3a n +1=log 3a n +1(n ∈N *)且a 2+a 4+a 6=9,则log 13(a 5+a 7+a 9)的值是( )A .-5B .-15C .5 D.15【答案】 A二、填空题(每小题5分,共15分)7.若等比数列{a n }满足a 2a 4=12,则a 1a 23a 5= .【答案】 148.等比数列{a n }的公比q >0,已知a 2=1,a n +2+a n +1=6a n ,则{a n }的前4项和S 4= .【答案】1529.设公比为q (q >0)的等比数列{a n }的前n 项和为S n ,若S 2=3a 2+2,S 4=3a 4+2,则q = .【答案】 32三、解答题(本大题共3小题,共35分)10.(10分)(2013·重庆高考)设数列{a n }满足:a 1=1,a n +1=3a n ,n ∈N +. (1)求{a n }的通项公式及前n 项和S n ;(2)已知{b n }是等差数列,T n 为其前n 项和,且b 1=a 2,b 3=a 1+a 2+a 3,求T 20. 【解】 (1)由题意知{a n }是首项为1,公比为3的等比数列, 所以a n =3n -1,S n =1-3n1-3=12(3n-1).(2)b 1=a 2=3,b 3=1+3+9=13,b 3-b 1=10=2d ,所以公差d =5,故T 20=20×3+20×192×5=1 010.11.(12分)等比数列{a n }的各项均为正数,且2a 1+3a 2=1,a 23=9a 2a 6. (1)求数列{a n }的通项公式;(2)设b n =log 3a 1+log 3a 2+…+log 3a n ,求数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和.【解】 (1)设数列{a n }的公比为q . 由a 23=9a 2a 6得a 23=9a 24,所以q 2=19.由条件可知q >0,故q =13.由2a 1+3a 2=1得2a 1+3a 1q =1,所以a 1=13.故数列{a n }的通项公式为a n =13n .(2)b n =log 3a 1+log 3a 2+…+log 3a n =-(1+2+…+n )=-n n +2.故1b n =-2nn +=-2⎝ ⎛⎭⎪⎫1n -1n +1,1b 1+1b 2+…+1b n=-2⎣⎢⎡⎦⎥⎤⎝ ⎛⎭⎪⎫1-12+⎝ ⎛⎭⎪⎫12-13+…+⎝ ⎛⎭⎪⎫1n -1n +1=-2n n +1. 所以数列⎩⎨⎧⎭⎬⎫1b n 的前n 项和为-2nn +1.12.(13分)已知数列{a n }中,a 1=1,a 2=2,且a n +1=(1+q )a n -qa n -1(n ≥2,q ≠0). (1)设b n =a n +1-a n (n ∈N *),证明:{b n } 是等比数列; (2)求数列{a n }的通项公式;(3)若a 3是a 6与a 9的等差中项,求q 的值,并证明:对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.【解】 (1)证明 由题设a n +1=(1+q )a n -qa n -1(n ≥2), 得a n +1-a n =q (a n -a n -1),即b n =qb n -1,n ≥2. 由b 1=a 2-a 1=1,q ≠0,所以{b n }是首项为1,公比为q 的等比数列. (2)由(1),a 2-a 1=1,a 3-a 2=q ,…,a n -a n -1=q n -2(n ≥2)将以上各式相加,得a n -a 1=1+q +…+q n -2(n ≥2),即a n =a 1+1+q +…+qn -2(n ≥2).所以当n ≥2时,a n =⎩⎪⎨⎪⎧1+1-q n -11-q , q ≠1,n , q =1.上式对n =1显然成立.(3)由(2),当q =1时,显然a 3不是a 6与a 9的等差中项,故q ≠1.由a 3-a 6=a 9-a 3可得q 5-q 2=q 2-q 8,由q ≠0得q 3-1=1-q 6,①整理得(q 3)2+q 3-2=0,解得q 3=-2.于是q =-32.另一方面,a n -a n +3=q n +2-q n -11-q =q n -11-q (q 3-1),a n +6-a n =q n -1-q n +51-q =q n -11-q(1-q 6).由①可得a n -a n +3=a n +6-a n ,所以对任意的n ∈N *,a n 是a n +3与a n +6的等差中项.第四节 数列求和[考情展望] 1.考查等差、等比数列的求和.2.以数列求和为载体,考查数列求和的各种方法和技巧.一、公式法与分组求和法 1.公式法直接利用等差数列、等比数列的前n 项和公式求和 (1)等差数列的前n 项和公式:S n =n a 1+a n 2=na 1+n n -2d ;(2)等比数列的前n 项和公式:S n =⎩⎪⎨⎪⎧na 1,q =1,a 1-a n q 1-q=a 1-q n1-q ,q ≠1.2.分组求和法一个数列的通项公式是由若干个等差数列或等比数列或可求和的数列组成,则求和时可用分组求和法,分别求和而后相加减.二、错位相减法如果一个数列的各项是由一个等差数列和一个等比数列的对应项之积构成的,这个数列的前n 项和可用错位相减法.三、裂项相消法把数列的通项拆成两项之差,在求和时中间的一些项可以相互抵消,从而求得其和.常用的拆项方法 (1)1nn +k =1k ⎝ ⎛⎭⎪⎫1n -1n +k。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
教学资料范本【2019-2020】高考数学大一轮复习第五章数列第二节等差数列教师用书理编辑:__________________时间:__________________第二节等差数列☆☆☆20xx考纲考题考情☆☆☆考纲要求真题举例命题角度1.理解等差数列的概念;2.掌握等差数列的通项公式与前n项和公式;3.能在具体的问题情境中识别数列的等差关系,并能用有关知识解决相应的问题;4.了解等差数列与一次函数、二次函数的关系。
20xx,全国卷Ⅰ,3,5分(等差数列基本量的计算)20xx,全国卷Ⅱ,17,12分(等差数列通项公式、求和)20xx,北京卷,12,5分(等差数列的基本量计算)20xx,浙江卷,6,5分(等差数列的创新应用)1.以考查等差数列的通项、前n项和及性质为主,等差数列的证明也是考查的热点;2.题型主要以选择题、填空题的形式考查等差数列的基本运算与简单性质。
解答题往往与等比数列、数列求和、不等式等问题综合考查。
微知识小题练自|主|排|查1.等差数列的有关概念(1)等差数列的定义一般地,如果一个数列从第2项起,每一项与它的前一项的差等于同一个常数,那么这个数列就叫做等差数列,这个常数叫做等差数列的公差,通常用字母d表示,定义表达式为an-a n-1=d(常数)(n∈N*,n≥2)或a n+1-a n=d(常数)(n∈N* )。
(2)等差中项若三个数a,A,b成等差数列,则A叫做a与b的等差中项,且有A=a+b 2。
2.等差数列的有关公式(1)等差数列的通项公式如果等差数列{a n}的首项为a1,公差为d,那么它的通项公式是a n=a1+(n-1 )d。
(2)等差数列的前n项和公式设等差数列{a n}的公差为d,其前n项和S n=na1+2d或S n=2。
3.等差数列的常用性质(1)通项公式的推广:a n=a m+(n-m)d(n,m∈N*)。
(2)若{a n}为等差数列,且k+l=m+n(k,l,m,n∈N*),则a k+a l=a m+a n。
(3)若{a n}是等差数列,公差为d,则{a2n}也是等差数列,公差为2d。
(4)若{a n},{b n}是等差数列,公差为d,则{pa n+qb n}也是等差数列。
(5)若{a n}是等差数列,公差为d,则a k,a k+m,a k+2m,…(k,m∈N*)是公差为m d的等差数列。
(6)数列S m,S2m-S m,S3m-S2m,…也是等差数列。
(7)S2n-1=(2n-1)a n。
(8)若n为偶数,则S偶-S奇=nd 2;若n为奇数,则S奇-S偶=a中(中间项)。
微点提醒1.用等差数列的定义判断数列是否为等差数列,要注意定义中的三个关键词:“从第2项起”“每一项与它的前一项的差”“同一个常数”。
2.等差数列的前n项和公式有两种表达形式,要根据题目给出的条件判断使用哪一种表达形式。
3.等差数列与函数的关系:(1)通项公式:当公差d≠0时,等差数列的通项公式a n=a1+(n-1)d=dn+a1-d是关于n的一次函数,且斜率为公差d。
若公差d>0,则为递增数列,若公差d< 0,则为递减数列。
(2)前n项和:当公差d≠0时,S n=na1+2d=d2n2+⎝⎛⎭⎪⎫a1-d2n是关于n的二次函数且常数项为0。
小|题|快|练一 、走进教材1.(必修5P38例1改编)已知等差数列-5,-2,1,…,则该数列的第20项为_ _______。
【解析】依题意得,该等差数列的首项为-5,公差为3,所以a20=-5+19×3=52,故第20项为52。
【答案】522.(必修5P46B组T2改编)若某等差数列的前n项和、前2n项和、前3n项和分别是A,B,C,则A、B、C之间的关系是________。
【解析】在等差数列中,S n,S2n-S n,S3n-S2n也成等差数列,即A,B-A,C-B也成等差数列,即2(B-A)=A+(C-B),所以C=3(B-A)。
【答案】C=3(B-A)二、双基查验1.(20xx·全国卷Ⅰ)已知等差数列{a n}前9项的和为27,a10=8,则a100=()A.100 B.99C.98 D.97【解析】设等差数列{a n}的公差为d,因为{a n}为等差数列,且S9=9a5=27,所以a5=3。
又a10=8,解得5d=a10-a5=5,所以d=1,所以a100=a5+95d=98。
故选C。
【答案】 C2.在等差数列{a n}中,a2+a6=3π2,则sin⎝⎛⎭⎪⎫2a4-π3=()A.32B.12C.-32D.-12【解析】∵a2+a6=3π2,∴2a4=3π2。
∴sin ⎝ ⎛⎭⎪⎫2a4-π3=sin ⎝⎛⎭⎪⎫3π2-π3=-cos π3=-12。
故选D。
【答案】 D3.已知等差数列{a n }的前n 项和为S n ,且满足S33-S22=1,则数列{a n }的公差是( )A.12 B.1 C.2 D.3【解析】 由S33-S22=1,得a1+a2+a33-a1+a22=(a 1+d )-2a1+d 2=d 2=1,所以d =2。
故选C。
【答案】 C4.在数列{a n }中,若a 1=1,a n +1=a n +2(n ≥1),则该数列的通项a n =________。
【解析】 由a n +1=a n +2知{a n }为等差数列其公差为2。
故a n =1+(n -1)×2=2n -1。
【答案】 2n -15.若等差数列{a n }满足a 7+a 8+a 9>0,a 7+a 10<0,则当n =________时,{a n }的前n 项和最大。
【解析】因为数列{a n }是等差数列,且a 7+a 8+a 9=3a 8>0,所以a 8>0。
又a 7+a 10=a 8+a 9<0,所以a 9<0。
故当n =8时,其前n 项和最大。
【答案】 8微考点 大课堂考点一 等差数列的基本运算【典例1】(20xx·广州联考)已知等差数列{a n }的前n 项和为S n ,且a 3+a 6=4,S 5=-5。
(1)求数列{a n }的通项公式;(2)若T n =|a 1|+|a 2|+|a 3|+…+|a n |,求T 5的值和T n 的表达式。
【解析】(1)设等差数列{a n}的公差为d ,由题意知⎩⎨⎧2a1+7d=45a1+5×42d=-5,解得⎩⎨⎧a1=-5d=2,故a n =2n -7(n ∈N *)。
(2)由a n =2n -7<0,得n <72,即n ≤3,所以当n ≤3时,a n =2n -7<0,当n ≥4时,a n =2n -7>0。
易知S n =n 2-6n ,S 3=-9,S 5=-5,所以T 5=-(a 1+a 2+a 3)+a 4+a 5=-S 3+(S 5-S 3)=S 5-2S 3=13。
当n ≤3时,T n =-S n =6n -n 2;当n ≥4时,T n =-S 3+(S n -S 3)=S n -2S 3=n 2-6n +18。
故T n =⎩⎨⎧6n-n2,n≤3n2-6n+18,n≥4。
【答案】 (1)a n =2n -7(n ∈N *) (2)T 5=13 T n =⎩⎨⎧6n-n2,n≤3n2-6n+18,n≥4反思归纳1.等差数列运算问题的一般求法是设出首项a 1和公差d ,然后由通项公式或前n 项和公式转化为方程(组)求解。
2.等差数列的通项公式及前n 项和公式共涉及五个量a 1,a n ,d ,n ,S n ,已知其中三个就能求出另外两个,体现了用方程组解决问题的思想。
【变式训练】(1)(20xx·北京高考)已知{a n }为等差数列,S n 为其前n 项和。
若a 1=6,a 3+a 5=0,则S 6=________。
(2)(20xx·江苏高考)已知{a n }是等差数列,S n 是其前n 项和。
若a 1+a 2=-3,S 5=10,则a 9的值是________。
【解析】 (1)设等差数列{a n }的公差为d ,由已知得⎩⎨⎧a1=6,2a1+6d=0,解得⎩⎨⎧a1=6,d=-2,所以S 6=6a 1+12×6×5d =36+15×(-2)=6。
(2)设等差数列{a n }的公差为d ,则a 1+a 2=a 1+(a 1+d )2=-3,S 5=5a 1+10d =10,解得a 1=-4,d =3,则a 9=a 1+8d =-4+24=20。
【答案】 (1)6 (2)20 考点二等差数列的判定与证明【典例2】 (20xx·兰州模拟)已知数列{a n }中,a 1=35,a n =2-1an-1(n ≥2,n ∈N *),数列{b n }满足b n =1an-1(n ∈N *)。
(1)求证:数列{b n }是等差数列; (2)求数列{a n }中的通项公式a n 。
【解析】 (1)证明:因为a n =2-1an-1(n ≥2,n ∈N *), b n =1an-1。
所以n ≥2时,b n -b n -1=1an-1-1an-1-1=1⎝⎛⎭⎪⎫2-1an-1-1-1an-1-1=an-1an-1-1-1an-1-1=1。
又b 1=1a1-1=-52, 所以数列{b n }是以-52为首项,1为公差的等差数列。
(2)由(1)知,b n =n -72,则a n =1+1bn =1+22n-7。
【答案】 (1)数列{b n }是以-52为首项,1为公差的等差数列(2)a n =1+22n-7反思归纳 等差数列的四种判断方法:(1)定义法:a n +1-a n =d (d 是常数)⇔{a n }是等差数列。
(2)等差中项法:2a n +1=a n +a n +2(n ∈N *)⇔{a n }是等差数列。
(3)通项公式:a n =pn +q (p ,q 为常数)⇔{a n }是等差数列。
(4)前n 项和公式:S n =An 2+Bn (A ,B 为常数)⇔{a n }是等差数列。
【变式训练】已知数列{a n }的各项均为正数,前n 项和为S n ,且S n =2(n ∈N *)。
(1)求证:数列{a n }是等差数列; (2)设b n =1Sn,T n =b 1+b 2+…+b n ,求T n 。
【解析】 (1)证明:S n =2(n ∈N *),①S n -1=2(n ≥2)。
②①-②得a n =a2n +an-a 2n -1-an-12(n ≥2),整理得(a n +a n -1)(a n -a n -1)=a n +a n -1(n ≥2)。