基本不等式的应用(适合高二 必修五)
人教新课标版数学高二必修五教案基本不等式的应用(一)
3.4.2基本不等式的应用(一)3.4.2基本不等式2ba ab +≤的应用(1课时)一、知识与技能1.利用基本不等式证明一些简单不等式,巩固强化基本不等式2ba ab +≤;2.从不等式的证明过程去体会分析法与综合法的证明思路;3.对不等式证明过程的严谨而又规范的表达.二、过程与方法1.采用探究法,按照联想、类比、思考、交流、逻辑分析、抽象应用的方法进行启发式教学;2.教师提供问题、素材,并及时点拨,发挥老师的主导作用和学生的主体作用;3.设计较典型的具有挑战性的问题,激发学生去积极思考,从而培养他们的数学学习兴趣.三、情感态度与价值观1.通过具体问题的解决,让学生去感受、体验不等式的证明过程需要从理性的角度去思考,通过设置思考项,让学生探究,层层铺设,使学生感受数学、走进数学、培养学生严谨的数学学习习惯和良好的思维习惯;2.学习过程中,通过对问题的探究思考,广泛参与,培养学生严谨的思维习惯,主动、积极的学习品质,从而提高学习质量;3.通过对富有挑战性问题的解决,激发学生顽强的探究精神和严肃认真的科学态度,同时去感受数学的应用性,体会数学的奥秘,数学的简洁美,数学推理的严谨美,从而激发学生的学习兴趣.教学重点1.利用基本不等式证明一些简单不等式,巩固强化基本不等式2b a ab +≤; 2.对不等式证明过程的严谨而又规范的表达; 3.从不等式的证明过程去体会分析法与综合法的证明思路.教学难点1.利用基本不等式证明一些简单不等式,巩固强化基本不等式2b a ab +≤; 2.对不等式证明过程的严谨而又规范的表达;3.从不等式的证明过程去体会分析法与综合法的证明思路.投影仪、胶片、三角板、刻度尺导入新课师 前一节课,我们通过问题背景,抽象出了不等式a 2+b 2≥2ab (a 、b ∈R),然后以数形结合思想为指导,从代数、几何两个背景推导出基本不等式2b a ab +≤.本节课,我们将利用基本不等式2b a ab +≤ 来尝试证明一些简单的不等式.(此时,老师用投影仪给出下列问题)推进新课 问题1.已知x 、y 都是正数,求证: (1)2≥+yx x y ; (2)(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3.师 前面我们研究了可以用不等式和实数的基本性质来证明不等式,请同学们思考一下,第一小问是否可以用不等式和实数的基本性质来证明此不等式呢?(思考两分钟)生 不可以证明.师 是否可以用基本不等式证明呢?生 可以.(让学生板演,老师根据学生的完成情况作点评)解:∵x 、y 都是正数,∴0>y x ,0>x y .∴22=•≥+xy y x x y y x ,即2≥+xy y x . 师 这位同学板演得很好.下面的同学都完成了吗?(齐声:完成)[合作探究]师 请同学继续思考第二小问该如何证明?它是否能用一次基本不等式就能证明呢?(引导同学们积极思考)生 可以用三次基本不等式再结合不等式的基本性质.师 这位同学分析得非常好.他对要证不等式的特征观察的很细致、到位.生 ∵x ,y 都是正数,∴x 2>0,y 2>0,x 3>0,y 3>0.∴x +y ≥2xy >0,x 2+y 2≥2x 2y 2>0, x 3+y 3≥2x 3y 3>0.∴可得(x +y )(x 2+y 2)(x 3+y 3)≥2xy ·222y x ·222y x =8x 3y 3,即(x +y )(x 2+y 2)(x 3+y 3)≥8x 3y 3.师 这位同学表达得非常好,思维即严谨又周到.(在表达过程中,对条件x ,y 都是正数往往忽视)师 在运用定理:ab b a ≥+2时,注意条件a 、b 均为正数,往往可以激发我们想到解题思路,再结合不等式的性质(把握好每条性质成立的条件)进行变形,进而可以得证.(此时,老师用投影仪给出下列问题)问题3.求证:2)2(222b a b a +≤+.(此处留的时间可以长一些,意在激发学生自主探究问题,把探究的思维空间切实留给学生)师 利用完全平方公式,结合重要不等式:a 2+b 2≥2ab ,恰当变形,是证明本题的关键.(让学生板演,老师根据学生的完成情况作点评)解:∵a 2+b 2≥2ab ,∴2(a 2+b 2)≥a 2+b 2+2ab =(a +b )2.∴2(a 2+b 2)≥(a +b )2.不等式两边同除以4,得222b a +≥2)2(b a +,即2)2(222b a b a +≤+. 师 下面同学都是用这种思路解答的吗?生 也可由结论到条件去证明,即用作差法.师 这位同学答得非常好,思维很活跃,具体的过程让同学们课后去完成.[课堂练习]1.已知a 、b 、c 都是正数,求证:(a +b )(b +c )(c +a )≥8ab c.分析:对于此类题目,选择定理:ab b a ≥+2(a >0,b >0)灵活变形,可求得结果.∵a 、b 、c 都是正数,∴a +b ≥2ab >0,b +c≥2bc >0,c+a ≥2ac >0.∴(a +b )(b +c )(c +a )≥2ab ·2bc ·2ac =8ab c,即(a +b )(b +c )(c +a )≥8ab c.[合作探究]2.已知(a +b )(x +y )>2(ay +bx ),求证:2≥--+--y x b a b a y x . (老师先分析,再让学生完成)师 本题结论中,注意yx b a b a y x ----与互为倒数,它们的积为1,可利用公式a +b ≥2ab ,但要注意条件a 、b 为正数.故此题应从已知条件出发,经过变形,说明yx b a b a y x ----与为正数开始证题. (在教师引导下,学生积极参与下列证题过程)生 ∵(a +b )(x +y )>2(ay +bx ),∴ax +ay +bx +by >2ay +2bx .∴ax -ay +by -bx >0.∴(ax -bx )-(ay -by )>0.∴(a -b )(x -y )>0,即a -b 与x -y 同号.∴yx b a b a y x ----与均为正数. ∴22=--•--≥----y x b a b a y x y x b a b a y x 与 (当且仅当y x b a b a y x --=--时取“=”).∴2≥--+--yx b a b a y x . 师生共析 我们在运用重要不等式a 2+b 2≥2ab 时,只要求a 、b 为实数就可以了.而运用定理:“2b a +≥ab ”时,必须使a 、b 满足同为正数.本题通过对已知条件变形(恰当地因式分解),从讨论因式乘积的符号来判断yx b a b a y x ----与是正还是负,是我们今后解题中常用的方法.课堂小结 师 本节课我们研究了什么问题?同学们在本节课的研究过程中有什么收获呢?生 我们以基本不等式为基础,证明了另外一些重要、常用的不等式,并且在证明过程中进一步巩固了证明不等式常用的思想方法.(教师提出对重要、常用不等式的掌握要求)师 本节课我们用到重要不等式a 2+b 2≥2ab ;两正数a 、b 的算术平均数(2b a +),几何平均数(ab )及它们的关系)2(ab b a ≥+证明了一些不等式,它们成立的条件不同,前者只要求a 、b 都是实数,而后者要求a 、b 都是正数.它们既是不等式变形的基本工具,又是求函数最值的重要工具(下一节我们将学习它们的应用).我们还可以用它们下面的等价变形来解决问题:222b a ab +≤,2)2(b a ab +≤. 师 同学们课后要进一步领会这些重要不等式成立的前提条件如何用.为下一节课基本不等式的实际应用打下坚实的基础.布置作业课本第116页,B组第1题.基本不等式2b a ab +≤的应用(一) 复习引入 例1 方法归纳基本不等式 例2 2b a ab +≤ 方法引导 小结 实例剖析(知识方法应用)示范解题利用基本不等式证明一些简单不等式,巩固强化基本不等式2b a ab +≤.以数学知识为载体,对学生的逻辑思维能力,各种思想方法的掌握,进而提高学生的数学素质与数学素养,这是高中数学教学的一项主要任务.在本节课的教学过程中,对一些不等式的证明不是直接给出,而是以设问方式的变化,引导学生思考,通过由特殊到一般的探索规律去解决问题.。
高中数学《基本不等式的应用》课件
课堂互动探究
随堂达标自测Leabharlann 课后课时精练数学 ·必修5
探究2 利用基本不等式求条件最值问题 例 2 (1)若正实数 x,y 满足 2x+y+6=xy,则 xy 的最 小值是____1_8___; (2)实数 x,y 满足 x2+y2+xy=1,则 x+y 的最大值是
23 _____3___.
21
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
解析 (1)解法一:设 xy=t(t>0), 由 xy=2x+y+6≥2 2xy+6, 即 t2≥2 2t+6,(t-3 2)(t+ 2)≥0, ∴t≥3 2,则 xy≥18. 当且仅当 2x=y,2x+y+6=xy,即 x=3,y=6 时等号成 立,∴xy 的最小值为 18.
□ (2)如果 x,y>0,x+y=S(定值),当 04 x=y 时,
□ □ xy 有最
05 大 值
06 14S2 .(简记:和定积有最大
值)
3
课前自主预习
课堂互动探究
随堂达标自测
课后课时精练
数学 ·必修5
(3)利用基本不等式求最值,必须满足三条:
□07 一正、二定、三相等 .
即①x,y 都是正数(x,y 为非正数,则结论不成立); ②积 xy(或和 x+y)为定值; ③x 与 y 必须能够相等. 利用算术平均数与几何平均数的关系求某些函数的最 值是最常见的方法之一,而求最值时又极易忽略上述条件, 这一点希望注意.
过点 A(11,12),则函数 f(x)的最小值是____8____. (3)函数 f(x)=1-x11-x(x>0)的最大值是____43____.
(4)若 a>0,b>0,且1a+1b= ab,则 a3+b3 的最小值为 ___4__2___.
北师大版数学高二-必修5素材 3.3基本不等式都有哪些应用
2a b +≤有哪些应用(0,0)2a b a b +>>的应用进行分类解析,供学习时参考. 一、证明不等式 例1.已知0,0,1a b a b c >>++=,求证:111(1)(1)(1)8.a b c ---≥证明:0,0,1a b a b c >>++=,所以1110a b c b c a a a +++-=-=≥>,1110a b c a c b b b +++-=-=≥>,1110a b c a b c c c +++-=-=≥>, 将以上三式相乘,得111(1)(1)(1)8.a b c---≥点评:创设条件,利用基本不等式a b +≥. 二、求最大(小)值例2.(1)若0,0x y >>,且281x y+=,则xy 有( ) (A )最大值64 (B )最大值164(C )最大值16 (D )最小值是64 (2)在下面等号右侧两个分数的分母括号内,各填上一个自然数,并使这两个自然数的和最小:.)(9)(11+=解:(1)0,0x y >>,且281x y +=,所以281x y =+≥8≥,当且仅当28x y =,且281x y+=,即4,16x y ==时取等号,16xy ∴≥,选(D ). (2)设这两个自然数分别是x ,y ,利用整体代换,得)91()(y x y x y x +⋅+=+)9(10y x x y ++=169210=⋅+≥yx x y ,当且仅当y x x y 9+,且191=+yx ,即12,4==y x 时,y x +最小,故应填的两个数分别为4和12. 点评:创设条件,利用基本不等式可求某些函数的最值.三、比较大小例3.设0a >,试比较1a -与11a-的大小解:1a -11(1)220a a a --=+-≥=,当且仅当1a =时取等号, 故1a -11a≥-,当且仅当1a =时取等号.另解:1a -211(1)20.aa a --=+-=≥ 点评:利用基本不等式,可以比较实数的大小.四、求参数的取值范围例4.在ABC ∆中,222sin sin 5sin A B C +=,则sin C 的取值范围是_____.解:由已知条件及正弦定理,得222sin sin 5sin A B C +=即2225a b c +=, 2222222444cos 225a b c c c C ab ab a b +-∴==≥=+,当且仅当a b =时取等号, 2161cos 25C ∴>≥,即21611sin 25C ∴>-≥,30sin .5C ∴<≤ 点评:利用基本不等式可以求某些参数的取值范围.五、解应用题例5.某工厂要建造一个长方体无盖贮水池,其容积为40803m ,深为3m ,如果池底和池壁的造价每平方米分别为150元和120元,问怎样设计水池能使水池的总造价最低,最低总造价是多少元?解:设水池底面一边长为xm ,则另一边长为48003m x,水池的总造价为 48004800150120(2323)33S x x =⨯+⨯+⨯⨯1600240000720()x x=++240000720297600.≥+⨯= 当且仅当1600x x=,即40x =时,y 有最小值297600. 因此当水池的底面是边长为40米的正方形时,水池的总造价最低,最低为297600元. 跟踪练习:1.已知a 、b ,且满足1a b +=,则11a b+与4的大小关系是____. (A )(2,)+∞ (B )[2,)+∞ (C )(4,)+∞ (D )[4,)+∞2.(1999年全国卷改编)若正数a 、b 满足3++=b a ab ,则a b +的取值范围是._______答案与略解1.由于1a b +=,1122 4.a b a b b a a b a b a b ++∴+=+=++≥+= 当且仅当12a b ==时取“=”号,故114a b +≥,(当且仅当12a b ==时取“=”号). 2.设a b t +=,由2)2(b a ab +≤,得2()2t ab ≤,即233()2t a b ab -++=≤, 整理,得3t +233()2t t -+≤,。
高中数学 必修5 31.基本不等式的应用
31.基本不等式的应用
教学目标 班级____姓名________
1.掌握基本不等式.
2.能运用基本不等式解决实际问题.
教学过程
运用基本不等式解决实际问题.
例1:某房地产开发公司计划在一楼区内建造一个长方形公园ABCD ,公园由长方形1111D C B A 的休闲区和环公园人行道组成.已知休闲区1111D C B A 的面积为4000平方米,人行道的宽分
别为4米和10米(如图所示).
(1)若休闲区的长宽之比x C B B A =1
111(1>x ),求公园ABCD 所占面积S 关于x 的函数)(x S 的解析式;
(2)要使公园所占面积最小,则休闲区1111D C B A 的长和宽该如何设计?
练1:某车间分批生产某种产品,每批的生产准备费用为800元,若每批生产x 件,则平均仓储时间为8
x 天,且每件产品每天的仓储费用为1元,为使平均到每件产品的生产准备费用与仓储费用之和最小,每批应生产多少产品?。
高二数学基本不等式的实际应用(新201907)
《高中数学》
必修5
3.4.2《基本不等式 -实际应用》
审校:王伟
教学目标
• 掌握建立不等式模型解决实 际问题.
• 教学重点:
• 掌握建立不等式模型解决实 际问题
;上海自动化仪表公司于1993年末改制设立,首家向国内发行A股,上海自动化仪表股份有限公司 上海
自动化仪器股份有限公司 向国外发行B股的从事仪器仪表经营生产的上市股份制公司。是国家大型一档企业、“中国500
家最大工业企业”和“全国工业企业技术开发实力百强”之一;是上海市“高新技术企业”,也是国内规模最大、产品
门类最全、系统成套能力最强的自动化仪表制造企业。
;
众兵露刃庭下 ” 嘉平元年(249年)二月 其余蒙古军则从万州渡过长江 诏太子曰:“有间此三公者 在开庆元年(1259年)的鄂州之战 晚年深以满盈自惧 赵王司马伦 本鄱阳人也 《新五代史·唐本纪第四》:冬 2018-02-11127 张预:孙子曰:“因利而制权 为 昔赵高极意 食邑 三千户 今三公之官皆备 将梁硕击败 成帝下诏追赠陶侃为大司马 群臣奏事不得称名 又名潜 北渡沔水 仓库空虚 则荆州无东门矣!不见听 斩首千余级 见杀 出而复回者数四 刘弘任他们为参军 数诣张华 他纵身一跃登上采石矶头 他的仇人以马援此信为据 反为所败 [60] 孟宗政同意 刘秀见他言之有理 广开淮阳 百尺二渠 《张郃传》中 请求将西于分成封溪 望海二县 八十余年 平定陇西 泽怒 拥旆戎场 镇 定两州都脱离晋王而依附朱温 ”司马懿说:“因为君非折简之客啊!并授予他大将军的官位 京都不守 连仆从也受到未曾想到的招待 如果大王行事得道 泽计 敌众十倍于我 长孺传给了茂陵丁君都 《晋书·列传第三十六·卷六十六》:遣参军王贡告捷于王敦 就会失去荆州啊 [38] .整天严肃端坐 派水师
高二数学基本不等式的实际应用共27页
6、法律的基础有两个,而且只有两个……公平和实用。——伯克 7、有两种和平的暴力,那就是法律和礼节。——歌德
8、法律就是秩序,有好的法律才有好的秩序。——亚里士多德 9、上帝把法律和公平凑合在一起,可是人类却把它拆开。——查·科尔顿 10、一切法律都是无用的,因为好人用不着它们,而坏人又不会因为它们而变得规矩起来。——德谟耶克斯
在一个限速为40km/h的弯道上,甲、 乙两辆汽车相向而行,发现情况不对,同 时刹车,但还是相碰了.
事后现场勘查测得甲车的刹车距离略超过 12m,乙车的刹车距离略超过10m, 又知甲、乙两种车型的刹车距离s(m)与 车速x(km/h)之间分别有如下关系: s甲 =0.1x+0.01x2,s乙 =0.05x+0.005x2, 问:甲、乙两车有无超速现象?
练习 1.用一根长为100m的绳子能围成一个面 积大于600m2的矩形吗?当长、宽分别为 多少米时,所围成的矩形的面积最大?
解:设矩形的一边长为x(m),则另一 边的长为50-x(m),0<x<50.
由题意,得x(50-x)>600,
即x2-50x+600<0.解得20<x<30.
所以,当矩形的一边长在(20,30)的范 围内取值时,能围成一个面积大于600m2 的矩形. 用S表示矩形的面积,则
由x>0,解得
x 4 15 1 15
0
x≤
23 3
1
因此 4151x≤2 31
15
3
因为 41510.0333.3%
15 2310.15515.5%
3
所以该乡镇居民生活如果在2019年达到 小康水平,那么他们的食品消费额的年增 长率就应在3.3%到15.5%的范围内取值, 也就是说,平均每年的食品消费额至多是 增长15.5%。
苏教版数学高二-必修五课件 基本不等式的应用
反思与感悟
解析答案
跟踪训练3 一批货物随17列货车从A市以v千米/时匀速直达B市,已知两地
铁路线长400千米,为了安全,两列货车的间距不得小于
v
2
千米,那么
20
这批货物全部运到B市,最快需要__8__小时.
解析 设这批货物从A市全部运到B市的时间为t,
则 t=400+v162v02=4v00+1460v0≥2
(3)在求最值的一些问题中,有时看起来可以运用基本不等式求最值, 但由于其中的等号取不到,所以运用基本不等式得到的结果往往是错误的, 这时通常可以借助函数 y=x+px(p>0)的单调性求得函数的最值. 2.求解应用题的方法与步骤: (1)审题;(2)建模(列式);(3)解模;(4)作答.
返回
ห้องสมุดไป่ตู้
故③既够用,浪费也最少.
解析答案
4.函数f(x)=x(4-2x)的最大值为____2____.
解析 ①当x∈(0,2)时, x,4-2x>0, f(x)=x(4-2x)≤122x+42-2x2=2, 当且仅当2x=4-2x, 即x=1时,等号成立. ②当x≤0或x≥2时, f(x)<0, 故f(x)max=2.
4v00×14600v=8(小时),
当且仅当4v00=14600v,即 v=100 时,等号成立,
此时t=8小时.
解析答案
返回
当堂检测
12345
1.下列函数中,最小值为4的函数是____③____.
①y=x+4x;
②y=sin x+sin4 x(0<x<π);
③y=ex+4e-x;
④y=log3x+logx81.
第3章 § 3.4基本不等式 ab≤a+2 b (a≥0,b≥0)
高中数学人教A版必修5课件:3.4.2 基本不等式的应用
1.复习巩固基本不等式. 2.能利用基本不等式证明一些简单的不等式,并会解决有关的实 际应用问题.
利用基本不等式解应用题的步骤 剖析:(1)审清题意,读懂题; (2)恰当地设出未知数; (3)建立数学模型,即从实际问题中抽象出函数的关系式,并指明 函数的定义域,把实际问题转化为求函数最值的问题; (4)在函数的定义域内,利用基本不等式求出函数的最值; (5)根据实际问题写出答案. 名师点拨 不等式的应用题大都与函数相关联,在求最值时,基本 不等式是经常使用的工具,但若对自变量有限制,一定要注意等号 能否取到.若取不到,则必须利用函数的单调性去求函数的最值.
1
������ ������ ������ ������ + ≥5+4 · = 5+4=9. ������ ������ ������ ������ 1 1 1 + ������ 1 + ������ ≥ 9 当且仅当������
= ������ = 2 时,等号成立 .
题型一
题型二
题型三
反思 1.利用基本不等式证明不等式,关键是所证不等式中必须有 “和”式或“积”式,通过将“和”式转化为“积”式或将“积”式转化为“和” 式,从而达到放缩的效果. 2.注意多次运用基本不等式时等号能否取到. 3.解题时要注意技巧,当不能直接利用基本不等式时,可将原不等 式进行组合、构造,以满足能使用基本不等式的形式.
1 1 1
1
1
1
1
1
1
������
������
������
������
1 ≥9. ������
题型一
题型二
题型三
题型二
实际应用题
高二数学必修5第三章《基本不等式基本不等式及其变形公式的应用(第三课时)》新授课详细教案
第三章 不等式3.4基本不等式2a bab +≤(第三课时)【创设情景 引入新知】前一节课我们学习了利用基本不等式解一些简单的实际应用问题,求一些简单的最值问题,在应用的过程中,我们对基本不等式2ba ab +≤的结构特征已是充分认识,并能够灵活把握.基本不等式不仅应用广泛,而且由基本不等式还可以推导出许多变形公式,为下一步的学习好应用提供了更多的思路和方法,那么你知道基本不等式有哪些变通形式?怎么灵活应用呢?另外,有一些代数式的积或和都不是定值,应该怎么求最值呢?对一些不等式我们能否利用基本不等式进行证明呢?本节课,我们将对基本不等式展开一些在求有关函数值域、最值的应用,更重要的是对基本不等式展开一些实际应用.【探索问题 形成概念】基本不等式的变通公式: 变式1:将基本不等式2a bab +≥两边平方可得22()a b ab +≥; 变式2:在不等式222a bab +≥两边同加上22a b +,再除以4,可得,22222()a b a b ++≥; 变式3:将不等式2(0,0)a b ab a b +≥>>两边同乘以ab ,可得2abab a b≥+,再让我再想想吧?将2ab a b+的分子、分母同除ab ,得211ab a b≥+.综合上述几种变式得出,2222211a b a b ab a b++≥≥≥+.(一)利用基本不等式求积或和都不是定值的函数的最值问题利用基本不等式求最值时,如果无定值,要先配、凑出定值,再利用基本不等式求解. 【例题】(1)已知3x <,求43()f x x x =+-的最大值;(2)已知01x << ,求 21x x -的最大值.【思路】(1)用基本不等式求最值时,构造积为定值,各项必须为正数,若为负数,则添负号变正.(2)构造和为定值,利用基本不等式求最值. 【解答】(1)330,.x x <∴-<4433334433233331()()()()f x x x x x x x x x ∴=+=+-+--⎡⎤=-+-+≤-⨯-+⎢⎥--⎣⎦=-当且仅当433()x x =--,即x =1时取等号.()f x ∴的最大值为-1.(2)2222201111122,()x x x x xx x <<+-∴-=-≤=当且仅当221xx =-,即22x =时取等号. ()f x ∴的最大值为12.【反思】对于某些问题,从形式上看不具备应用基本不等式的条件,可设法变形拼凑出应用基本不等式的条件,然后用基本不等式求解.(二)形如0()by at t t=+>型函数无法使用基本不等式求最值思考两个正数的积为定值,它们的和一定有最小值吗?不一定.应用基本不等式求最值时还要求等号能取到. 【例题】求函数2232x y x +=+的最小值.【思路】由于分子变量的次幂是分母变量次幂的2倍,因此可化为1y t t=+型函数求解. 【错误解法】22223122222min,.x y x x x y +==++≥++∴=但是22x +与212x +不可能相等,即“=”取不到,因此最小值不是2.【正确解法】222231222x y x x x +==++++,令22t x =+,则2t ≥,所以原式为12()y t t t=+≥.而函数1y t t=+在01(,)t ∈上为减函数,在1(,)t ∈+∞上为增函数,2t ≥,则当2t =时,y 取最小值,且132222min y =+=,此时0x =,故当0x =时,y 取最小值322.【反思】当形如0()by at t t=+>型函数无法使用基本不等式求最值时,可用函数的单调性求解,而函数0()b y at t t =+>在0,b a ⎛⎫⎪ ⎪⎝⎭上为减函数,在,b a ⎛⎫+∞⎪ ⎪⎝⎭上为增函数.(三)利用基本不等式证明不等式证明不等式是均值不等式的一个基本应用,注意分析不等式的左右两边的结构特征,通过拆(添)项创设一个应用均值不等式的条件.在解决本类问题时注意以下几点: (1)均值不等式成立的前提条件;(2)通过加减项的方法配凑成算术平均数、几何平均数的形式; (3)注意“1”的代换;(4)灵活变换基本不等式的形式并注意其变形式的运用.【例题】已知,,a b c 为不全相等的正实数.求证222a b cab bc ac ++>++.【思路】先构造基本不等式的条件,再运用基本不等式证明,不要忘记判断等号成立的条件. 【证明】22222222200022222,,,,,,()(),a b c a b ab b c bc a c ac a b c ab bc ac >>>∴+≥+≥+≥∴++≥++ 即222,a b cab bc ac ++≥++又,,a b c 为不全等的正实数,故等号不成立. ∴222a b cab bc ac ++>++【反思】对要证明的不等式作适当变形,变出基本不等式的形式,然后利用基本不等式进行证明.如果本例条件不变,求证a b c ab bc ac ++>++.则可以类似的证明000,,,a b c >>>222,,,a b ab b c bc a c ac ∴+≥+≥+≥∴22()()a b c ab bc ac ++≥++即a b c ab bc ac ++≥++.由于,,a b c 为不全相等的正实数,故等号不成立. ∴a b c ab bc ac ++>++.【解疑释惑 促进理解】难点一、如何利用基本不等式求条件最值在条件最值中,一种方法是消元转化为函数最值,另一种方法是将要求最值的表达式变形,然后用基本不等式将要求最值的表达式放缩为一个定值. 【例题】已知x >0,y >0,且1x +9y =1,求x +y 的最小值;【错误解法】0,0x y >>,且191x y +=,∴()1992212x y x y xy x y xy ⎛⎫+=++≥= ⎪⎝⎭故 ()min 12x y += 。
高中数学 第三章 不等式 3.3 基本不等式都有哪些应用素材 北师大版必修5
2a b +≤有哪些应用(0,0)2a b a b +>>的应用进行分类解析,供学习时参考. 一、证明不等式 例1.已知0,0,1a b a b c >>++=,求证:111(1)(1)(1)8.a b c ---≥证明:0,0,1a b a b c >>++=Q ,所以1110a b c b c a a a +++-=-=≥>,1110a b c a c b b b +++-=-=≥>,1110a b c a b c c c +++-=-=≥>, 将以上三式相乘,得111(1)(1)(1)8.a b c ---≥点评:创设条件,利用基本不等式a b +≥.二、求最大(小)值例2.(1)若0,0x y >>,且281x y+=,则xy 有( ) (A )最大值64 (B )最大值164(C )最大值16 (D )最小值是64 (2)在下面等号右侧两个分数的分母括号内,各填上一个自然数,并使这两个自然数的和最小:.)(9)(11+=解:(1)Q 0,0x y >>,且281x y +=,所以281x y =+≥8≥,当且仅当28x y =,且281x y+=,即4,16x y ==时取等号,16xy ∴≥,选(D ). (2)设这两个自然数分别是x ,y ,利用整体代换,得)91()(y x y x y x +⋅+=+)9(10y x x y ++=169210=⋅+≥yx x y ,当且仅当y x x y 9+,且191=+yx ,即12,4==y x 时,y x +最小,故应填的两个数分别为4和12. 点评:创设条件,利用基本不等式可求某些函数的最值.三、比较大小例3.设0a >,试比较1a -与11a-的大小解:1a -11(1)220a a a --=+-≥=,当且仅当1a =时取等号, 故1a -11a≥-,当且仅当1a =时取等号.另解:1a -211(1)20.aa a --=+-=≥ 点评:利用基本不等式,可以比较实数的大小.四、求参数的取值范围例4.在ABC ∆中,222sin sin 5sin A B C +=,则sin C 的取值范围是_____. 解:由已知条件及正弦定理,得222sin sin 5sin A B C +=即2225a b c +=, 2222222444cos 225a b c c c C ab ab a b +-∴==≥=+,当且仅当a b =时取等号, 2161cos 25C ∴>≥,即21611sin 25C ∴>-≥,30sin .5C ∴<≤ 点评:利用基本不等式可以求某些参数的取值范围.五、解应用题例5.某工厂要建造一个长方体无盖贮水池,其容积为40803m ,深为3m ,如果池底和池壁的造价每平方米分别为150元和120元,问怎样设计水池能使水池的总造价最低,最低总造价是多少元?解:设水池底面一边长为xm ,则另一边长为48003m x,水池的总造价为 48004800150120(2323)33S x x =⨯+⨯+⨯⨯1600240000720()x x=++240000720297600.≥+⨯= 当且仅当1600x x=,即40x =时,y 有最小值297600. 因此当水池的底面是边长为40米的正方形时,水池的总造价最低,最低为297600元. 跟踪练习:1.已知a 、b ,且满足1a b +=,则11a b+与4的大小关系是____. (A )(2,)+∞ (B )[2,)+∞ (C )(4,)+∞ (D )[4,)+∞2.(1999年全国卷改编)若正数a 、b 满足3++=b a ab ,则a b +的取值范围是._______答案与略解1.由于1a b +=,Q 1122 4.a b a b b a a b a b a b ++∴+=+=++≥+= 当且仅当12a b ==时取“=”号,故114a b +≥,(当且仅当12a b ==时取“=”号). 2.设a b t +=,由2)2(b a ab +≤,得2()2t ab ≤,即233()2t a b ab -++=≤, 整理,得3t +233()2t t -+≤,。
基本不等式的应用(适合高二 必修五)
基本不等式的应用(适合高二必修五) 基本不等式的应用一、基本不等式1.若$a,b\in R$,则$a+b\geq 2ab$;若$a,b\in R$,则$ab\leq\frac{(a+b)^2}{4}$(当且仅当$a=b$时取“$=$”)。
2.若$a,b\in R$,则$\frac{a+b}{2}\geq \sqrt{ab}$;若$a,b\in R$,则$a+b\geq 2\sqrt{ab}$(当且仅当$a=b$时取“$=$”)。
3.若$x>1$,则$x+\frac{1}{x}\geq 2$(当且仅当$x=1$时取“$=$”);若$x<1$,则$x+\frac{1}{x}\leq -2$(当且仅当$x=-1$时取“$=$”)。
4.若$a,b>0$,则$\frac{a}{b}+\frac{b}{a}\geq 2$(当且仅当$a=b$时取“$=$”);若$ab\neq 0$,则$\frac{a}{b}+\frac{b}{a}\leq -2$(当且仅当$a=-b$时取“$=$”)。
5.若$a,b\in R$,则$a^2+b^2\geq \frac{(a+b)^2}{2}$(当且仅当$a=b$时取“$=$”)。
注:(1)当两个正数的积为定值时,可以求它们的和的最小值;当两个正数的和为定值时,可以求它们的积的最大值,正所谓“积定和最小,和定积最大”。
2)求最值的条件“一正,二定,三取等”。
3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用。
应用一:求最值例1:求下列函数的值域1)$y=3x^2+\frac{1}{2}$;2)$y=x+\frac{2}{x}$。
解:(1)$y=3x^2+\frac{1}{2}\geq \frac{1}{2}\cdot2\sqrt{3x^2\cdot \frac{1}{2}}=\sqrt{3}x$,所以值域为$[\sqrt{3},+\infty)$。
高二数学基本不等式的实际应用
2022-2021学年高二数学苏教版必修5学案:3.4.2 基本不等式的应用 Word版含答案
3.4.2 基本不等式的应用明目标、知重点 1.娴熟把握基本不等式及变形的应用.2.会用基本不等式解决简洁的最大(小)值问题.3.能够运用基本不等式解决生活中的应用问题.1.用基本不等式求最值的结论(1)设x ,y 为正实数,若x +y =s (和s 为定值),则当x =y 时,积xy 有最大值为s 24.(2)设x ,y 为正实数,若xy =p (积p 为定值),则当x =y 时,和x +y 有最小值为2p . 2.基本不等式求最值的条件 (1)x ,y 必需是正数;(2)求积xy 的最大值时,应看和x +y 是否为定值;求和x +y 的最小值时,应看积xy 是否为定值. (3)等号成立的条件是否满足.[情境导学]前一节课我们已经学习了基本不等式,本节我们就最值问题及生活中的实际例子争辩它的重要作用. 探究点一 利用基本不等式求最值思考1 已知x ,y 都是正数,若x +y =s (和为定值),那么xy 有最大值还是最小值?如何求?答 xy 有最大值.由基本不等式,得s =x +y ≥2xy ,所以xy ≤s 24,当x =y 时,积xy 取得最大值s 24.思考2 已知x ,y 都是正数,若xy =p (积为定值),那么x +y 有最大值还是最小值?如何求? 答 x +y 有最小值.由基本不等式,得x +y ≥2xy =2p .当x =y 时,x +y 取得最小值2p .例1 (1)若x >0,求函数y =x +4x的最小值,并求此时x 的值;(2)设0<x <32,求函数y =4x (3-2x )的最大值;(3)已知x >2,求x +4x -2的最小值;(4)已知x >0,y >0,且 1x +9y =1,求x +y 的最小值.解 (1)当x >0时,x +4x ≥2 x ·4x=4,当且仅当x =4x ,即x 2=4,x =2时取等号.∴函数y =x +4x (x >0)在x =2时取得最小值4.(2)∵0<x <32,∴3-2x >0,∴y =4x (3-2x )=2[2x (3-2x )] ≤2⎣⎢⎡⎦⎥⎤2x +(3-2x )22=92. 当且仅当2x =3-2x ,即x =34时,等号成立.∵34∈⎝⎛⎭⎫0,32. ∴函数y =4x (3-2x )(0<x <32)的最大值为92.(3)∵x >2,∴x -2>0,∴x +4x -2=x -2+4x -2+2≥2(x -2)·4x -2+2=6, 当且仅当x -2=4x -2,即x =4时,等号成立.所以x +4x -2的最小值为6.(4)方法一 ∵x >0,y >0,1x +9y=1,∴x +y =⎝⎛⎭⎫1x +9y (x +y )=y x +9xy +10 ≥6+10=16, 当且仅当y x =9x y ,又1x +9y =1,即x =4,y =12时,上式取等号.故当x =4,y =12时,(x +y )min =16. 方法二 由1x +9y =1,得(x -1)(y -9)=9(定值).可知x >1,y >9,∴x +y =(x -1)+(y -9)+10 ≥2(x -1)(y -9)+10=16,当且仅当x -1=y -9=3,即x =4,y =12时上式取等号,故当x =4,y =12时,(x +y )min =16.反思与感悟 在利用基本不等式求最值时要留意三点:一是各项均为正:二是寻求定值,求和式最小值时应使积为定值,求积式最大值时应使和为定值(恰当变形,合理拆分项或配凑因式是常用的解题技巧);三是考虑等号成立的条件.跟踪训练1 (1)已知x >0,求f (x )=12x+3x 的最小值;(2)已知x <3,求f (x )=4x -3+x 的最大值;(3)设x >0,y >0,且2x +8y =xy ,求x +y 的最小值.解 (1)∵x >0,∴f (x )=12x +3x ≥2 12x·3x =12,当且仅当3x =12x ,即x =2时取等号.∴f (x )的最小值为12. (2)∵x <3,∴x -3<0.∴f (x )=4x -3+x =4x -3+x -3+3=-⎣⎢⎡⎦⎥⎤43-x +3-x +3≤-243-x·(3-x )+3 =-1,当且仅当43-x =3-x ,即x =1时取等号.∴f (x )的最大值为-1.(3)方法一 由2x +8y -xy =0,得y (x -8)=2x .∵x >0,y >0,∴x -8>0,y =2xx -8,∴x +y =x +2xx -8=x +(2x -16)+16x -8 =(x -8)+16x -8+10≥2 (x -8)×16x -8+10=18.当且仅当x -8=16x -8,即x =12时,等号成立.∴x +y 的最小值是18.方法二 由2x +8y -xy =0及x >0,y >0, 得8x +2y=1. ∴x +y =(x +y )⎝⎛⎭⎫8x +2y =8y x +2x y +10≥2 8y x ·2x y+10=18. 当且仅当8y x =2xy ,即x =2y =12时等号成立.∴x +y 的最小值是18.探究点二 基本不等式在实际问题中的应用例2 某工厂要建筑一个长方体无盖贮水池,其容积为4 800 m 3,深为3 m ,假如池底每1 m 2的造价为150元,池壁每1 m 2的造价为120元,问怎样设计水池才能使总造价最低?最低总造价是多少元?解 设水池底面一边的长度为x m ,则另一边的长度为4 8003xm .又设水池总造价为y 元,依据题意,得y =150×4 8003+120×(2×3x +2×3×4 8003x)=240 000+720×⎝⎛⎭⎫x +1 600x ≥240 000+720×2 x ·1 600x=297 600(元),当且仅当x =1 600x,即x =40时,y 取得最小值297 600.答 水池底面为正方形且边长为40 m 时总造价最低,最低总造价为297 600元.反思与感悟 利用基本不等式解决实际问题时,一般是先建立关于目标量的函数关系,再利用基本不等式求解目标函数的最大(小)值及取最大(小)值的条件.跟踪训练2 用长为4a 的铁丝围成一个矩形,怎样才能使所围矩形的面积最大. 解 设矩形的长为x (0<x <2a ),则宽为2a -x ,矩形面积为S =x (2a -x ),且x >0,2a -x >0. 由基本不等式,得 x (2a -x )≤x +(2a -x )2=a .上式当且仅当x =2a -x ,即x =a 时,取“=”号. 由此可知,当x =a 时,S =x (2a -x )有最大值a 2. 答 将铁丝围成正方形时面积最大,最大面积为a 2.例3 过点(1,2)的直线l 与x 轴的正半轴、y 轴的正半轴分别交于A ,B 两点,当△AOB 的面积最小时,求直线l 的方程.解 设点A (a,0),B (0,b )(a ,b >0),则直线l 的方程为x a +yb=1.由题意,点(1,2)在此直线上,所以1a +2b=1.由基本不等式,得1=1a +2b ≥2 2ab⇒ab ≥8.于是,S △AOB =12ab ≥4,当且仅当1a =2b,从而a =2,b =4时,取“=”号.因此,△AOB 的面积最小时,直线l 的方程为x 2+y4=1,即2x +y -4=0.反思与感悟 应用题,先弄清题意(审题),建立数学模型(列式),再用所把握的数学学问解决问题(求解),最终要回应题意下结论(作答).跟踪训练3 如图,一份印刷品的排版面积(矩形)为A ,它的两边都留有宽为a 的空白,顶部和底部都留有宽为b 的空白.如何选择纸张的尺寸,才能使纸的用量最小?解 设纸张的长和宽分别是x ,y ,则(x -2a )(y -2b )=A ,从而y =Ax -2a +2b .于是纸张的面积为S =xy =Axx -2a +2bx =Ax -2Aa +2Aa x -2a +2bx=A +2Aa x -2a +2bx =2Aax -2a +2b (x -2a )+A +4ab≥24Aab +A +4ab =(A +2ab )2,当且仅当2Aax -2a=2b (x -2a ),即x =Aab +2a 时,S 有最小值(A +2ab )2, 此时y =A x -2a +2b =Aba +2b .答 纸张的长和宽分别为Aab+2a 和 Aba+2b 时,纸张的用量最小.1.设a >0,b >0,且不等式1a +1b +ka +b ≥0恒成立,则实数k 的最小值等于________.答案 -4解析 由1a +1b +ka +b ≥0得k ≥-(a +b )2ab ,而(a +b )2ab =b a +a b +2≥4,所以-(a +b )2ab ≤-4,因此要使k ≥-(a +b )2ab恒成立,应有k ≥-4,即实数k 的最小值等于-4.2.已知x ≥52,则f (x )=x 2-4x +52x -4的最小值为________.答案 1解析 f (x )=x 2-4x +52x -4=(x -2)2+12(x -2)=12⎣⎢⎡⎦⎥⎤(x -2)+1x -2≥1. 当且仅当x -2=1x -2,即x =3时等号成立.3.将一根铁丝切割成三段做一个面积为2 m 2、外形为直角三角形的框架,在下列四种长度的铁丝中,选用最合理(够用且铺张最少)的是________. ①6.5 m ②6.8 m ③7 m ④7.2 m 答案 ③解析 设两直角边分别为a ,b ,直角三角形的框架的周长为l ,则12ab =2,∴ab =4,l =a +b +a 2+b 2≥2ab+2ab =4+22≈6.828(m).由于要求够用且铺张最少.4.已知0<x <1,则f (x )=2+log 2x +5log 2x的最大值是________. 答案 2-25解析 当0<x <1时,log 2x <0,所以f (x )=2+log 2x +5log 2x=2-⎣⎢⎡⎦⎥⎤(-log 2x )+5-log 2x ≤2-2 5. 当且仅当-log 2x =5-log 2x ,即(log 2x )2=5,亦即x =2-5时,等号成立.[呈重点、现规律] 1.用基本不等式求最值(1)利用基本不等式,通过恒等变形,以及配凑,造就“和”或“积”为定值,从而求得函数最大值或最小值.这种方法在应用的过程中要把握下列三个条件:①“一正”——各项为正数;②“二定”——“和”或“积”为定值;③“三相等”——等号确定能取到.这三个条件缺一不行.(2)利用基本不等式求最值的关键是获得定值条件,解题时应对比已知和欲求的式子运用适当的“拆项、添项、配凑、变形”等方法创建应用基本不等式的条件.(3)在求最值的一些问题中,有时看起来可以运用基本不等式求最值,但由于其中的等号取不到,所以运用基本不等式得到的结果往往是错误的,这时通常可以借助函数y =x +px (p >0)的单调性求得函数的最值.2.求解应用题的方法与步骤:(1)审题;(2)建模(列式);(3)解模;(4)作答.一、基础过关1.已知x >1,y >1且lg x +lg y =4,则lg x lg y 的最大值是________. 答案 4解析 ∵x >1,y >1,∴lg x >0,lg y >0, lg x lg y ≤⎝⎛⎭⎪⎫lg x +lg y 22=4,当且仅当lg x =lg y =2, 即x =y =100时取等号.2.已知点P (x ,y )在经过A (3,0),B (1,1)两点的直线上,则2x +4y 的最小值为________. 答案 42解析 ∵点P (x ,y )在直线AB 上,∴x +2y =3. ∴2x +4y ≥22x ·4y =22x +2y =4 2.3.设a ,b ∈R ,且a +b =3,则2a +2b 的最小值是________.答案 42解析 ∵2a >0,2b >0,∴2a +2b ≥22a +b (当且仅当a =b =32时取等号),即当a =32,b =32时,2a +2b 有最小值4 2.4.已知a >0,b >0,a +b =2,则1a +4b的最小值是______.答案 92解析 ∵a +b =2,∴a +b2=1.∴1a +4b =(1a +4b )(a +b 2)=52+(2a b +b 2a )≥52+2 2a b ·b 2a =92(当且仅当2a b =b2a,即b =2a 时,“=”成立),故y =1a +4b 的最小值为92. 5.周长为2+1的直角三角形面积的最大值为______.答案 14解析 设直角三角形的两条直角边边长分别为a 、b ,则2+1=a +b +a 2+b 2≥2ab +2ab ,解得ab ≤12,当且仅当a =b =22时取“=”,所以直角三角形面积S ≤14,即S 的最大值为14. 6.建筑一个容积为8 m 3,深为2 m 的长方体无盖水池,假如池底和池壁的造价每平方米分别为120元和80元,那么水池的最低总造价为________元. 答案 1 760解析 设水池的造价为y 元,长方形底的一边长为x m ,由于底面积为4 m 2,所以另一边长为4xm .那么y =120·4+2·80·⎝⎛⎭⎫2x +2·4x =480+320⎝⎛⎭⎫x +4x ≥480+320·2 x ·4x=1 760(元).当x =2,即底为边长为2 m 的正方形时,水池的造价最低,为1 760元. 7.设0<x <2,求函数y =3x (8-3x )的最大值. 解 ∵0<x <2,∴0<3x <6,8-3x >2>0, ∴y =3x (8-3x )≤3x +(8-3x )2=82=4,当且仅当3x =8-3x ,即x =43时,取等号.∴当x =43时,y =3x (8-3x )有最大值4.二、力气提升8.若xy 是正数,则⎝⎛⎭⎫x +12y 2+⎝⎛⎭⎫y +12x 2的最小值是________. 答案 4解析 ⎝⎛⎭⎫x +12y 2+⎝⎛⎭⎫y +12x 2 =x 2+y 2+14⎝⎛⎭⎫1x 2+1y 2+x y +yx =⎝⎛⎭⎫x 2+14x 2+⎝⎛⎭⎫y 2+14y 2+⎝⎛⎭⎫x y +yx ≥1+1+2=4. 当且仅当x =y =22或x =y =-22时取等号.9.设正实数x ,y ,z 满足x 2-3xy +4y 2-z =0,则当xy z 取得最大值时,2x +1y -2z 的最大值为________.答案 1解析 由已知得z =x 2-3xy +4y 2(*)则xy z =xy x 2-3xy +4y 2=1x y +4y x-3≤1,当且仅当x =2y 时取等号,把x =2y 代入(*)式,得z =2y 2,所以2x +1y -2z=1y +1y -1y2=-⎝⎛⎭⎫1y -12+1≤1. 10.设x >-1,则函数y =(x +5)(x +2)x +1的最小值是________.答案 9解析 ∵x >-1,∴x +1>0, 设x +1=t >0,则x =t -1,于是有y =(t +4)(t +1)t =t 2+5t +4t =t +4t+5≥2 t ·4t+5=9,当且仅当t =4t ,即t =2时取等号,此时x =1.∴当x =1时,函数y =(x +5)(x +2)x +1取得最小值9.11.某种生产设备购买时费用为10万元,每年的设备管理费共计9千元,这种生产设备的修理费各年为第一年2千元,其次年4千元,第三年6千元,而且以后以每年2千元的增量逐年递增,问这种生产设备最多使用多少年报废最合算?(即使用多少年的年平均费用最少)解 设使用x 年的年平均费用为y 万元.由已知,得y =10+0.9x +0.2x 2+0.2x2x,即y =1+10x +x10(x ∈N *).由基本不等式知y ≥1+2 10x ·x 10=3,当且仅当10x =x10,即x =10时取等号.因此使用10年报废最合算,年平均费用为3万元.12.某建筑公司用8 000万元购得一块空地,方案在该地块上建筑一栋至少12层、每层4 000平方米的楼房.经初步估量得知,假如将楼房建为x (x ≥12)层,则每平方米的平均建筑费用为Q (x )=3 000+50x (单位:元).为了使楼房每平方米的平均综合费用最小,该楼房应建为多少层?每平方米的平均综合费最小值是多少?(注:平均综合费用=平均建筑费用+平均购地费用,平均购地费用=购地总费用建筑总面积)解 设楼房每平方米的平均综合费用为f (x )元,依题意得f (x )=Q (x )+8 000×10 0004 000x=50x +20 000x+3 000(x ≥12,x ∈N ),f (x )=50x +20 000x +3 000≥2 50x ·20 000x+3 000=5 000(元).当且仅当50x =20 000x ,即x =20时上式取“=”因此,当x =20时,f (x )取得最小值5 000(元).所以为了使楼房每平方米的平均综合费用最小,该楼房应建为20层,每平方米的平均综合费用最小值为5 000元.三、探究与拓展13.如图所示,动物园要围成相同面积的长方形虎笼四间,一面可利用原有的墙,其他各面用钢筋网围成.(1)现有可围36 m 长网的材料,每间虎笼的长、宽各设计为多少时,可使每间虎笼面积最大?(2)若使每间虎笼面积为24 m 2,则每间虎笼的长、宽各设计为多少时,可使围成四间虎笼的钢筋网总长最小? 解 (1)设每间虎笼长x m ,宽为y m , 则由条件知:4x +6y =36,即2x +3y =18. 设每间虎笼面积为S ,则S =xy .方法一 由于2x +3y ≥22x ·3y =26xy ,∴26xy ≤18,得xy ≤272,即S ≤272,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧ 2x +3y =18,2x =3y ,解得⎩⎪⎨⎪⎧x =4.5,y =3.故每间虎笼长为4.5 m ,宽为3 m 时,可使面积最大.方法二 由2x +3y =18,得x =9-32y .∵x >0,∴0<y <6,S =xy =⎝⎛⎭⎫9-32y y =32(6-y )·y . ∵0<y <6,∴6-y >0,∴S ≤32·⎣⎢⎡⎦⎥⎤(6-y )+y 22=272. 当且仅当6-y =y ,即y =3时,等号成立,此时x =4.5. (2)由条件知S =xy =24.设钢筋网总长为l ,则l =4x +6y .方法一 ∵2x +3y ≥22x ·3y =26xy =24,∴l =4x +6y =2(2x +3y )≥48,当且仅当2x =3y 时,等号成立.由⎩⎪⎨⎪⎧ 2x =3y ,xy =24 解得⎩⎪⎨⎪⎧x =6,y =4.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.方法二 由xy =24,得x =24y .∴l =4x +6y =96y+6y =6⎝⎛⎭⎫16y +y ≥6×2 16y ·y =48.当且仅当16y =y ,即y =4时,等号成立,此时x =6.故每间虎笼长6 m ,宽4 m 时,可使钢筋网总长最小.。
高中数学 基本不等式的应用课件 苏教必修5
利用 基本 不等 式, 整体 解决
3 .已 知 x ,y ,z 为 正 实 数 ,满 足 x y 2 z 0 ,求 y 2 的 最 小 值 . x z
解 : 因 为 x, y,z为 正 实 数
x y 2z 0
x 2z y
y 2 x 2 z 2
xz
xz
x2 4 xz 4 z2 xz
习题练习
1 .求 函 数 yx2x x1 4x 1的 最 小 值 变 为 .求 y x 2x x 1 4 x 1 的 最 大 值 呢 ?
若改为x ≥ 4呢
2.求函数 y 6 x2 1 的最大值 x2 4
解: y6
x21
6
x21
x24 (x21)3
∵ x21 3 2 3 x21
x
(3)求
y x 1 x
(x 4)
的值域
解: (3)
y x1 x
在4, 上单调递增,
值域为
17 4
,
不能取等号时
要利用函数单 调性
练习. (1)求 yx12x0x12 的最大值
(2)已知x> 5 , 求函数 y= 4x2 1 的最
值
4
4x5
二y ax2 bx c 类型mx n 函数 求最值
.
xy
4.设x 5,则 2x2 的最小值为
.
x2
5 .已 知 x 0 ,y 0 ,x y x y 3 求xy和x+y的取值
范围
课堂小结
3 2
2
变式训练
当 点 (x ,y)在 直 线 x 3 y 2 0 上 移 动 时 , 求 y 3 x 2 7 y 1 的 最 小 值 .
解:y 3x 27 y 1 3x 33y 1 2 3x 33y 1 2 3x3y 1 231 7 当 且 仅 当3x =33 y即 x 3 y时 取 得 等 号 此 时 x 1, y 1 最 小 值 为7
苏教版高中数学必修5《基本不等式的应用》教学课件1
值为____________
❖ 4.已知为正数x, y ,且x 2y 1 ,则 1 1 的最小
值为__________
xy
答案:
❖ 1. x 1 1
❖ 2. x 3 2
5
❖ 3. 6
❖ 4. 3 2 2
例1 用长为4a的铁丝围成一个矩形,怎样才能
使 所 围 矩 形 的 面 积 最 大.
解 设矩形长为 x 0 x 2a,则宽为2a x,矩形
面积为 S x2a x,且 x 0,2a x 0.
由基本不等式, 得
x2a
x
x
2a
2
x
a.
上式当且仅当 x 2a x ,即 x a时,取""号.由此
可知,当 x a时, S x2a x有最大值 a2 .
答 将铁丝围成正方形时面积最大,最大面积为a2.
为
4800 3x
m,
即
1600 x
m.
y
150
x
1600
2120
3
x
1600
x
x
150 1600 720 x 1600 . x
因为 x 1600 2 1600 80 (当 x 40时,取""号 ), x
所以 y 150 1600 720 80 297600 元.
答 当水池设计成底面边长为40 m的正方形时,总
A
O
1
x
因此, AOB 的面积最小时,直线l的方程为
x 2
y 4
1,即2x
y
4
0.
另解:
由题知,直线 l 的斜率一定存在。设 l 的方程为
y 2 k(x 1)(k 0) 令 x 0 ,则 y k 2
人教A版高中数学必修五课件基本不等式的应用.pptx
例题讲解
例2.若正数x, y满足2x y xy,则2x y的最小值是 ______
条 方法点拨
件 最
①消元法是通法,但并非最简单的方法
值 问
②常数“1”的代换
题 ③基于求解对象,可直接转化
引申
若正数x, y满足2x y xy 1,求x( y 1)的最小值
空白演示
在此输入您的封面副标题
基本不等式及其应用
知识点复习
基本不等式
若a, b 0,则 ab a b (当且仅当a b时,等号成立) 2
常用的变形
ab a b a2 b2 , ab ( a b )2 a2 b2
2
2
2
2
复
习 基本不等式应用时,“结构为王”,掌握结论本身的同时也 要 应关注它的变形及使用 求
学生练习
1
(1)函数y
x 1 的最大值为 ___4__
x3 x1
方法点拨:配凑法
(2)已知a b 0, a b 1,则 4 1 的最小值为 _9__
a b 2b
方法点拨:常数“1”的代 换
例题讲解
例3.对任意的
(0,
2
),
不等式
1 sin 2
4
cos2
2x 1
恒成立,则实数x的取值范围是( D )
引入复习 f ( x) x 1 ( x 2)的最小值是2, 对吗? x
解 :Q x 0
f (x) x 1 2 x 1 2
x
x
当且仅当x 1 即x 1时,等号成立 x
f ( x)min 2
基本不等式求最值的条件
一正,二定,三等
题讲解
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
基本不等式的应用一.基本不等式1.(1)若R b a ∈,,则ab b a 222≥+ (2)若R b a ∈,,则222b a ab +≤(当且仅当b a =时取“=”)2. (1)若*,R b a ∈,则ab b a ≥+2(2)若*,R b a ∈,则ab b a 2≥+(当且仅当b a =时取“=”) (3)若*,R b a ∈,则22⎪⎭⎫ ⎝⎛+≤b a ab (当且仅当b a =时取“=”) 3.若0x >,则12x x +≥ (当且仅当1x =时取“=”);若0x <,则12x x+≤- (当且仅当1x =-时取“=”) 若0x ≠,则11122-2x x x x x x +≥+≥+≤即或 (当且仅当b a =时取“=”) 4.若0>ab ,则2≥+ab b a (当且仅当b a =时取“=”) 若0ab ≠,则22-2a b a b a bb a b a b a+≥+≥+≤即或 (当且仅当b a =时取“=”) 5.若R b a ∈,,则2)2(222b a b a +≤+(当且仅当b a =时取“=”) 注:(1)当两个正数的积为定植时,可以求它们的和的最小值,当两个正数的和为定植时,可以求它们的积的最小值,正所谓“积定和最小,和定积最大”. (2)求最值的条件“一正,二定,三取等”(3)均值定理在求最值、比较大小、求变量的取值范围、证明不等式、解决实际问题方面有广泛的应用. 应用一:求最值例1:求下列函数的值域(1)y =3x 2+12x 2 (2)y =x +1x解:(1)y =3x 2+12x2 ≥23x 2·12x2 = 6 ∴值域为[ 6 ,+∞)(2)当x >0时,y =x +1x≥2x ·1x=2; 当x <0时, y =x +1x = -(- x -1x )≤-2x ·1x=-2 ∴值域为(-∞,-2]∪[2,+∞)解题技巧: 技巧一:凑项 例1:已知54x <,求函数14245y x x =-+-的最大值。
解:因450x -<,所以首先要“调整”符号,又1(42)45x x --不是常数,所以对42x -要进行拆、凑项, 5,5404x x <∴->,11425434554y x x x x ⎛⎫∴=-+=--++ ⎪--⎝⎭231≤-+=当且仅当15454x x-=-,即1x =时,上式等号成立,故当1x =时,max 1y =。
评注:本题需要调整项的符号,又要配凑项的系数,使其积为定值。
技巧二:凑系数 例1. 当时,求(82)y x x =-的最大值。
解析:由知,,利用基本不等式求最值,必须和为定值或积为定值,此题为两个式子积的形式,但其和不是定值。
注意到2(82)8x x +-=为定值,故只需将(82)y x x =-凑上一个系数即可。
当,即x =2时取等号 当x =2时,(82)y x x =-的最大值为8。
评注:本题无法直接运用基本不等式求解,但凑系数后可得到和为定值,从而可利用基本不等式求最大值。
变式:设230<<x ,求函数)23(4x x y -=的最大值。
解:∵230<<x ∴023>-x ∴2922322)23(22)23(42=⎪⎭⎫ ⎝⎛-+≤-⋅=-=x x x x x x y 当且仅当,232x x -=即⎪⎭⎫⎝⎛∈=23,043x 时等号成立。
技巧三: 分离例3. 求2710(1)1x x y x x ++=>-+的值域。
解析一:本题看似无法运用基本不等式,不妨将分子配方凑出含有(x +1)的项,再将其分离。
当,即时,421)591y x x ≥+⨯+=+((当且仅当x =1时取“=”号)。
技巧四:换元解析二:本题看似无法运用基本不等式,可先换元,令t =x +1,化简原式在分离求最值。
22(1)7(1+10544=5t t t t y t t t t-+-++==++)当,即t =时,459y t t≥⨯=(当t =2即x =1时取“=”号)。
评注:分式函数求最值,通常直接将分子配凑后将式子分开或将分母换元后将式子分开再利用不等式求最值。
即化为()(0,0)()Ay mg x B A B g x =++>>,g (x )恒正或恒负的形式,然后运用基本不等式来求最值。
技巧五:注意:在应用最值定理求最值时,若遇等号取不到的情况,应结合函数()af x x x=+的单调性。
例:求函数224y x =+的值域。
24(2)x t t +=≥,则224y x =+2214(2)4x t t t x =+=+≥+因10,1t t t >⋅=,但1t t=解得1t =±不在区间[)2,+∞,故等号不成立,考虑单调性。
因为1y t t =+在区间[)1,+∞单调递增,所以在其子区间[)2,+∞为单调递增函数,故52y ≥。
所以,所求函数的值域为5,2⎡⎫+∞⎪⎢⎣⎭。
练习.求下列函数的最小值,并求取得最小值时,x 的值.(1)231,(0)x x y x x ++=> (2)12,33y x x x =+>- (3)12sin ,(0,)sin y x x x π=+∈2.已知01x <<,求函数y =.;3.203x <<,求函数y . 条件求最值1.若实数满足2=+b a ,则b a 33+的最小值是 .分析:“和”到“积”是一个缩小的过程,而且b a 33⋅定值,因此考虑利用均值定理求最小值, 解: b a 33和都是正数,b a 33+≥632332==⋅+ba ba当b a 33=时等号成立,由2=+b a 及b a 33=得1==b a 即当1==b a 时,b a 33+的最小值是6. 变式:若44log log 2x y +=,求11x y+的最小值.并求x ,y 的值 技巧六:整体代换:多次连用最值定理求最值时,要注意取等号的条件的一致性,否则就会出错。
2:已知0,0x y >>,且191x y+=,求x y +的最小值。
错解..:0,0x y >>,且191x y +=,∴()1912x y x y x y ⎛⎫+=++≥ ⎪⎝⎭故 ()min 12x y += 。
错因:解法中两次连用基本不等式,在x y +≥等号成立条件是x y =,在19xy+≥条件是19x y=即9y x =,取等号的条件的不一致,产生错误。
因此,在利用基本不等式处理问题时,列出等号成立条件是解题的必要步骤,而且是检验转换是否有误的一种方法。
正解:190,0,1x y x y >>+=,()1991061016y x x y x y x y x y⎛⎫∴+=++=++≥+= ⎪⎝⎭当且仅当9y xx y=时,上式等号成立,又191x y +=,可得4,12x y ==时,()min 16x y += 。
变式: (1)若+∈R y x ,且12=+y x ,求yx11+的最小值(2)已知+∈R y x b a ,,,且1=+yb x a ,求y x +的最小值技巧七、已知x ,y 为正实数,且x 2+y 22=1,求x 1+y 2 的最大值. 分析:因条件和结论分别是二次和一次,故采用公式ab ≤a 2+b 22 。
同时还应化简1+y 2中y 2前面的系数为 12, x 1+y 2 =x2·1+y 22 = 2 x ·12 +y 22下面将x ,12 +y 22 分别看成两个因式: x ·12 +y 22≤x 2+(12 +y 22 )22 =x 2+y 22 +12 2 =34即x 1+y 2 = 2 ·x12 +y 22 ≤ 342 技巧八:已知a ,b 为正实数,2b +ab +a =30,求函数y =1ab的最小值.分析:这是一个二元函数的最值问题,通常有两个途径,一是通过消元,转化为一元函数问题,再用单调性或基本不等式求解,对本题来说,这种途径是可行的;二是直接用基本不等式,对本题来说,因已知条件中既有和的形式,又有积的形式,不能一步到位求出最值,考虑用基本不等式放缩后,再通过解不等式的途径进行。
法一:a =30-2b b +1 , ab =30-2b b +1 ·b =-2 b 2+30bb +1由a >0得,0<b <15令t =b +1,1<t <16,ab =-2t 2+34t -31t =-2(t +16t )+34∵t +16t ≥2t ·16t=8∴ ab ≤18 ∴ y ≥ 118 当且仅当t =4,即b =3,a =6时,等号成立。
法二:由已知得:30-ab =a +2b ∵ a +2b ≥22 ab ∴ 30-ab ≥22 ab令u =ab 则u 2+2 2 u -30≤0, -5 2 ≤u ≤3 2∴ab ≤3 2 ,ab ≤18,∴y ≥118点评:①本题考查不等式ab ba ≥+2)(+∈R b a ,的应用、不等式的解法及运算能力;②如何由已知不等式230ab a b =++)(+∈R b a ,出发求得ab 的范围,关键是寻找到ab b a 与+之间的关系,由此想到不等式ab ba ≥+2)(+∈R b a ,,这样将已知条件转换为含ab 的不等式,进而解得ab 的范围. 变式:1.已知a >0,b >0,ab -(a +b )=1,求a +b 的最小值。
2.若直角三角形周长为1,求它的面积最大值。
技巧九、取平方5、已知x ,y 为正实数,3x +2y =10,求函数W =3x +2y 的最值.解法一:若利用算术平均与平方平均之间的不等关系,a +b 2 ≤a 2+b 22,本题很简单3x +2y ≤ 2(3x )2+(2y )2 = 23x +2y =2 5解法二:条件与结论均为和的形式,设法直接用基本不等式,应通过平方化函数式为积的形式,再向“和为定值”条件靠拢。
W >0,W 2=3x +2y +23x ·2y =10+23x ·2y ≤10+(3x )2·(2y )2 =10+(3x +2y )=20∴ W ≤20 =2 5变式: 求函数15()22y x <<的最大值。
解析:注意到21x -与52x -的和为定值。
2244(21)(52)8y x x ==+≤+-+-=又0y >,所以0y <≤当且仅当21x -=52x -,即32x =时取等号。
故max y = 评注:本题将解析式两边平方构造出“和为定值”,为利用基本不等式创造了条件。