流体力学 9非牛顿流体
非牛顿流体原理
非牛顿流体原理非牛顿流体是指在流动过程中,其黏度随着剪切速率的变化而变化的流体。
与牛顿流体不同,非牛顿流体在受力作用下,其黏度并不保持不变,而是会随着流动状态的改变而发生变化。
这种流体的特性在实际生活和工业生产中都有着重要的应用,因此对于非牛顿流体的原理和特性的研究具有重要意义。
首先,我们来介绍一下非牛顿流体的分类。
根据其流动特性,非牛顿流体可分为剪切稀化流体和剪切增稠流体两种类型。
剪切稀化流体是指在受到外力作用时,其黏度会随着剪切速率的增加而减小的流体,如淀粉浆、墨水等;而剪切增稠流体则是指在受到外力作用时,其黏度会随着剪切速率的增加而增加的流体,如果冻、牙膏等。
这两种类型的非牛顿流体在实际应用中具有不同的特点和用途。
其次,我们来探讨一下非牛顿流体的原理。
非牛顿流体的黏度变化与其内部微观结构和分子间相互作用有着密切的关系。
在剪切稀化流体中,当外力作用下,流体内部的颗粒会发生重排和分散,从而导致黏度的降低;而在剪切增稠流体中,外力作用会导致流体内部的颗粒聚集和排列,从而使得黏度增加。
这种原理使得非牛顿流体具有了特殊的流变特性,可以根据具体的应用需求来调控其流动性能。
除此之外,非牛顿流体还具有一些特殊的流动特性。
例如,在非牛顿流体的流动过程中,会出现剪切变稀、剪切变稠等现象,这种非线性的流变特性使得非牛顿流体在实际应用中具有了更广泛的用途。
同时,非牛顿流体还表现出了记忆效应和时间依赖性,这也为其在一些特殊领域的应用提供了可能。
总的来说,非牛顿流体的原理和特性对于我们深入理解流体力学和实际应用具有着重要的意义。
通过对非牛顿流体的研究,我们可以更好地利用其特殊的流变特性,开发出更加符合实际需求的流体材料和工艺。
因此,对于非牛顿流体的深入研究和应用具有着重要的意义,也将会在未来的科技发展中发挥着重要的作用。
非牛顿流体定义
非牛顿流体指的是流动性质不符合牛顿流体力学规律的物质。
牛顿流体是指在不同应力下流动行为始终保持稳定的物质,其流动性质由牛顿流体模型描述,即剪切应力与应变速率成正比。
而非牛顿流体在不同应力条件下的流动性质会发生变化,不满足牛顿流体模型。
非牛顿流体可以分为多种类型,其中一些常见的类型包括:
1.塑性流体:塑性流体在低应力下表现为固体,需要达到一定应力(称为屈服应力)才能开始流动,如半固体状的泥浆和黏土等。
2.剪切稀化流体:剪切稀化流体在受到剪切应力时,黏度会下降而变得更容易流动,常见于某些悬浮物质和凝胶。
3.剪切增稠流体:剪切增稠流体在受到剪切应力时,黏度会增加而变得更粘稠,如某些淀粉溶液和涂料。
4.塑性颗粒流体:塑性颗粒流体指含有颗粒或颗粒聚集体的流体,其流变行为受到颗粒间相互作用的影响,如浆料和悬浊液等。
非牛顿流体的研究在许多领域具有重要意义,例如化工、食品工程、医学等。
了解和掌握非牛顿流体的特性对于相关工艺和应用的设计和优化非常重要。
流体力学中的非牛顿流体
流体力学中的非牛顿流体流体力学是研究物质在流动状态下力的作用和运动规律的学科。
在流体力学中,我们通常将流体分为牛顿流体和非牛顿流体。
本文将重点介绍非牛顿流体的特性、流动行为以及其在工程和科学领域中的应用。
一、非牛顿流体的特性非牛顿流体是指其粘度随着应力或剪切速率的改变而变化的流体。
与牛顿流体相比,非牛顿流体表现出更复杂的流动行为。
根据其流变特性,非牛顿流体可以分为剪切变稀型和剪切变稠型。
剪切变稀型的非牛顿流体是指其粘度随剪切速率的增加而减小的流体。
常见的剪切变稀型非牛顿流体包括血液、糊状物和溶胶等。
这些流体在流动过程中,随着剪切力的增加,粒子之间的相互作用减弱,从而导致粘度的降低。
剪切变稀型流体的特性使其在工程领域中得到广泛应用,如石油钻井、医疗器械以及食品加工等。
剪切变稠型的非牛顿流体是指其粘度随剪切速率的增加而增加的流体。
常见的剪切变稠型非牛顿流体有浆料、高聚物溶液和胶体等。
这些流体在流动过程中,由于粒子之间的相互作用增强,导致粘度的增加。
剪切变稠型流体广泛应用于涂料、油漆和火箭发动机燃料等领域。
二、非牛顿流体的流动行为非牛顿流体的流动行为与牛顿流体有所不同。
牛顿流体遵循牛顿流体模型,其粘度独立于剪切速率,流动行为符合牛顿第二定律。
而非牛顿流体则不满足牛顿流体模型,其剪切应力和剪切速率之间的关系是非线性的。
非牛顿流体的流动行为通常由流变学进行描述。
流变学是研究物质应力-应变关系的科学,其中应力指流体内部单位面积上的力,应变指流体的变形程度。
通过流变学可以确定非牛顿流体的粘度与剪切速率之间的关系。
在非牛顿流体的流动过程中,通常存在剪切层滞后和剪切变薄等现象。
剪切层滞后是指在流动过程中,不同位置处的流体粘度不同,形成剪切层。
而剪切变薄是指在流动过程中,流体的某一部分变得更稀薄。
三、非牛顿流体的应用非牛顿流体的特性使其在工程和科学领域中得到广泛应用。
以下列举了一些常见的应用领域:1. 医学领域:血液作为一种剪切变稀型的非牛顿流体,在心血管系统中的流动行为对于疾病诊断和治疗具有重要意义。
非牛顿流体
所以:p头
8Q2 22de4
31
钻头水眼有效直径 若有n1个d1, n2个d2 , 则水眼有效直径:
de n1d12 n2d22
31
工程流体力学
六、钻井泵的泵压和功率的计算
• 钻井泵的泵压计算公式:
p泵 gE0 g(hL地面 hL杆 hL挺 hL头 hL环 hL局
24
24
工程流体力学
25
25
工程流体力学
四、水头损失的计算
1、流态的判别:(同牛顿流体用雷诺数)
1)、圆管综合雷诺数:
vd Re综 (1 0d )
6v
Re综 2000 Re综 2000
结构流 紊流
26
26
工程流体力学
2)塑性流体在环形空间流动时的综合雷诺数:
Re 环
vd (1 0d当
其流变方程以幂定律形式表示:
k(du)n
dy
稠度系数
流性指数
凡是流变规律符合幂定律形式的流体,称为幂律流体。
9
9
工程流体力学
流性指数n反映了拟塑 性流体的流变性偏离牛顿流 体的程度。
1)当n=1时,为牛顿流体流变 方程。
2)当n<1时,拟塑性流体, n 越小,表明拟塑性流体和牛 顿流体的流变性差别越大。 K越大,粘度越大。故拟塑 性流体两大特性参数:n,k
4
4
工程流体力学
二、牛顿流体的流变性
1. 流变方程: du
dy
2. 特点:
(1)受到外力作用就流动;
(2)在恒温恒压下, 与 du 的比值为常数
即粘度为常数;
dy
(3)流变曲线是通过原点的直线,其斜率为 动力粘度的倒数,即 tan 1
第九章_非牛顿流体的运动
三、流变性与时间有关的非牛顿流体
1、触变性流体和震凝性流体
流变性与时间有关的纯粘性非牛顿流体包括触变性流体 和震凝性流体。
触变性流体:恒定剪切速率下,表观粘度(或剪切应力) 随剪切时间而变小,经过一段时间t0后,形成平衡结构, 表观粘度趋近于常数。如图9-2所示。
震凝性流体:与触变性相反,恒定的剪切速率下表观粘 度随时间而增大,一般也在一定时间后达到结构上的动 平衡状态。如图9-3所示。
一、非牛顿流体的分类 1、材料的分类
因为非牛顿流体力学研究的流体,有的既具有固体
的性质(弹性),又有流体的性质(粘性), 所以我们先
从流变学观点对材料进行分类。
第九章 非牛顿流体的流动 第九章 非牛顿流体的流动
(1)超硬刚体 绝对刚体,也称欧几里得刚体。粘度无限大,在任何外 力下不发生形变。 (2)弹性体 在外力作用下发生形变,外力解除后,形变完全恢复。 (3)超流动体 帕斯卡液体,粘度无限小,任何微小的力都能引起大的 流动。例如:液态氦 (4)流体 任何微小的外力都能引起永久变形(不可逆流动)。
塑性流体也称为宾汉流体,其流变方程称为宾汉方程。 根据塑性流体的流变曲线,可以写出如下关系式:
0 p
式中: 0
du dy
—为极限动切应力,Pa;
p —称为结构粘度(或称塑性粘度),Pa.s。
第九章 非牛顿流体的流动 第九章 非牛顿流体的流动
1、塑性流体:宾汉(Bingham)方程
若管路为水平放置,即
=0°,sin 0 ,则
p1 p2 d
4L
p1 p2 R
2L
式中:R ——管子半径。
第九章 非牛顿流体的流动 第九章 非牛顿流体的流动
非牛顿流体
非牛顿流体非牛顿流体,又称假流体,是指在外力作用下其黏度随应力变化的物质。
相比牛顿流体,非牛顿流体在不同应力下表现出不同的流动行为,从而引发了许多有趣的研究和应用。
非牛顿流体的研究起源于物理学家艾萨克·牛顿对流体力学的研究中发现的其黏度不随剪切速率变化的物质,即牛顿流体。
然而,在实际应用中,许多流体并不符合牛顿流体的特性。
有些流体在剪切力作用下表现出凝固行为,这被称为剪切稀化;而另一些流体则表现出溶解行为,称为剪切稠化。
剪切稀化是指在外力作用下,一些非牛顿流体的黏度随着剪切速率的增加而减小。
这种流体的黏度随着外力的增加而发生变化,具有了一种可逆性。
这种流体的一个典型例子是玉米浆。
当玉米浆处于静止状态时,其黏度较高,表现出稠糊状;而当玉米浆受到剪切力作用时,其黏度会大幅度减小,变得更加流动。
剪切稠化则是指在外力作用下,一些非牛顿流体的黏度随剪切速率的增加而增加。
与剪切稀化相反,这种流体的黏度随着外力的增加而变得更加粘稠。
一个典型的例子是底漆涂料。
底漆涂料在施加较低的剪切力之前,呈现出较低的黏度,但随着施加的剪切力增加,其黏度会显著增加,变得更加粘稠。
非牛顿流体的研究对许多领域都有重要的应用价值。
例如在食品工业中,非牛顿流体的研究可用于改善食品的质感和口感。
通过调整非牛顿流体的黏度,可以改变食品的口感和浓稠度,从而提升食品的美观和口味。
此外,在油漆和涂料工业中,非牛顿流体的研究也具有重要的应用价值。
通过理解非牛顿流体的流动行为,可以控制油漆和涂料的黏度,从而提高涂层的质量和稳定性。
此外,非牛顿流体还可以应用于石油工业,例如在油井钻探和输送过程中,非牛顿流体可以提供更好的润滑和减少摩擦。
非牛顿流体的研究也为医学和生物学领域提供了许多有益的应用。
例如,在血液流变学中,非牛顿流体的研究可以帮助科学家更好地了解血液在血管中的流动行为,从而为心血管疾病的诊断和治疗提供依据。
此外,非牛顿流体的研究还可以应用于药物传输和药剂学中,以帮助科学家更好地设计给药系统,提高药物的传递效率和疗效。
非牛顿流体公式
非牛顿流体公式引言:流体力学是物理学的一个重要分支,研究液体和气体等流体的运动规律和性质。
在流体力学中,流体通常被分为牛顿流体和非牛顿流体两类。
本文将重点探讨非牛顿流体的特性和公式。
一、什么是非牛顿流体非牛顿流体是指其流动特性不能仅通过牛顿黏度来描述的流体。
与牛顿流体不同,非牛顿流体的黏度随剪切应力、剪切速率等因素的变化而变化。
非牛顿流体的流动行为更加复杂,常见的非牛顿流体有胶体、液晶、聚合物溶液等。
二、非牛顿流体的公式1. 幂律流体模型幂律流体模型是描述非牛顿流体黏度与剪切应力关系的一种常用模型。
其公式为:τ = K·γ^n其中,τ表示剪切应力,K是比例系数,γ表示剪切速率,n为流变指数。
幂律流体模型适用于描述剪切应力与剪切速率非线性关系的流体,如聚合物溶液等。
2. 卡门-科西流体模型卡门-科西流体模型是另一种常用的非牛顿流体模型,可以较好地描述剪切应力与剪切速率的关系。
其公式为:τ = η(γ)·γ其中,τ表示剪切应力,η(γ)表示动力黏度,γ表示剪切速率。
卡门-科西流体模型适用于描述剪切应力与剪切速率呈线性关系的流体,如胶体等。
3. 安德拉德-波伊西流体模型安德拉德-波伊西流体模型是一种复杂的非牛顿流体模型,可以描述剪切应力与剪切速率的非线性关系。
其公式为:τ = η(γ)·γ + η'(γ)·γ^2其中,τ表示剪切应力,η(γ)表示一次动力黏度,η'(γ)表示二次动力黏度,γ表示剪切速率。
安德拉德-波伊西流体模型适用于描述剪切应力与剪切速率非线性关系更为复杂的流体。
三、非牛顿流体的特性1. 剪切稀化非牛顿流体的黏度随剪切速率的增加而减小,这种现象称为剪切稀化。
剪切稀化是非牛顿流体独特的特性之一,常见于含有高分子聚合物的溶液。
2. 剪切增稠与剪切稀化相反,有些非牛顿流体的黏度随剪切速率的增加而增大,这种现象称为剪切增稠。
剪切增稠常见于胶体体系和液晶等非牛顿流体。
《工程流体力学》第九章非牛顿流体的流动
2 w
2
2
0
(
w
)
p 4L p
(R r0 )2 (r r0 )2
当 r r0时,流核区的流速:
v0
p
4L p
(R
r0 )2
流动规律
2、流量:流核的流量+梯度区的流量
Q Q0 Q1
Q0
r02v0
r02
p
4L p
(R
r0 )2
《工程流体力学》
第九章 非牛顿流体的流动
主讲人:肖东
石油工程学院
9-1 基本概念
一、非牛顿流体的定义 二、非牛顿流体的分类 三、流变方程
基本概念
一、非牛顿流体概论 1.定义: 凡是应力和应变速度之间的关系不满足牛顿内 摩擦定律的流体称之非牛顿流体。
2.流变学:研究材料流动和变形的科学 固体流变学
所以: 0
p0 R 2L
这样,宾汉流体在圆管内流动的条件是:压差 p p0
流动规律
比较以上各式可得: 0 p0 r0 w p R
因
du dy
f ( ) 1 p
(
0)
由此可得:
1、速度分布
u R w
w 1
p
(
0 )d
r
2 p w
d 2
4
G sin
dL
0
而 G d 2 L
4
( p1 p2 )d d sin
4L
4
研究方法
当管路水平放置
( p1 p2 )d ( p1 p2 )R
非牛顿流体PPT
4.湍流减阻
非牛顿流体显示出的另一奇妙性质是湍流减阻人们观察 到,如果在牛顿流体中加入少量的聚合物,则在给定的速 率下,可以看到显著的压差降.两种不同浓度的聚乙烯的 氧化物溶液的管摩擦系数f对于雷诺数R的关系曲线湍流 一直是困扰流体力学界未解决的难题,然而在牛顿流体中 加入少量高聚物添加剂,却出现了减阻效应.有人报告在加 入高聚物添加剂后,测得猝发周期加大了,认为是高分子 链的作用.
产生原因:在通过狭窄的流道时,聚合物熔体受到拉伸,产生弹性形变,且 来不及松弛。离开模口时,外力对分子链的作用解除,弹性形变回复,伸展 的大分子链又回复到原来的卷曲状态,使挤出物的直径增加。
模片胀大现象在口模设计中十分重要.聚合物熔体从一根矩形截面的管口流出 时,管截面长边处的胀大比短边处的胀大更加显著,在管截面的长边中央胀得最 大.因此,如果要求产品的截面是矩形的,口模的形状就不能是矩形。
生活中的非牛顿流体
非牛顿流体在食品工业中也很普遍,如番茄汁,淀粉液,蛋 清,苹果浆,菜汤,浓糖水,酱油,果酱,炼乳,琼脂,土豆浆, 熔化巧克力,面团,米粉团,以及鱼糜、肉糜等各种糜状 食品物料.
综上所述,在日常生活和工业生产中常遇到的各种高分 子溶液,熔体,膏体,凝胶,交联体系,悬浮体系等复杂性质的 流体,差不多都是非牛顿流体.有时为了工业生产的目的, 在某种牛顿流体中,需加入一些聚合物,在改进其性能的 同时也将变成为非牛顿流体,如为提高石油产量使用的压 裂液,新型润滑剂等.
2.爬杆效应
1944年Weissenberg在英国伦敦帝国学院公开表演了一 个有趣的实验.在一只有粘弹性流体(非牛顿流体的一-种) 的烧杯里,旋转实验杆.对于牛顿流体,由于离心力的作用, 液面将呈凹形;而对于粘弹性流体,却向杯中心运动,并沿 杆向上爬,液面变成凸形.甚至在实验杆的旋转速度很低 时,也可以观察到这一现象.
流体力学中的流体中的非牛顿流体
流体力学中的流体中的非牛顿流体流体力学中的非牛顿流体非牛顿流体是指在流动过程中,其粘度随着剪切应力或剪切速率的变化而变化的流体。
相比于牛顿流体,非牛顿流体在流动性质上更加复杂,因此在流体力学的研究中具有重要的意义。
本文将对非牛顿流体的特点、分类及其在流体力学中的应用进行探讨。
一、非牛顿流体的特点非牛顿流体具有以下几个特点:1. 粘度随剪切应力变化:牛顿流体的粘度是恒定的,而非牛顿流体的粘度随着剪切应力的变化而变化。
在低剪切应力下,非牛顿流体的粘度较低,流动性较好;而在高剪切应力下,非牛顿流体的粘度较高,流动性较差。
2. 粘度随剪切速率变化:除了受剪切应力的影响外,非牛顿流体的粘度还与剪切速率有关。
通常情况下,非牛顿流体的粘度随着剪切速率的增加而降低。
3. 存在流变学行为:非牛顿流体在流动过程中可能出现流变学行为,包括剪切稀化、剪切增稠、剪切硬化等。
剪切稀化指的是流体粘度随着剪切应力的增加而减小;剪切增稠则相反,指的是流体粘度随着剪切应力的增加而增加;剪切硬化是指流体的粘度在一定范围内保持不变。
二、非牛顿流体的分类根据粘度随剪切应力变化的特点,非牛顿流体可以分为剪切变稀流体和剪切变稠流体。
1. 剪切变稀流体:剪切变稀流体是指在剪切应力作用下,流体的粘度随着剪切应力的增加而降低的流体。
常见的剪切变稀流体有溶液、乳液等。
2. 剪切变稠流体:剪切变稠流体则相反,指的是在剪切应力作用下,流体的粘度随着剪切应力的增加而增加的流体。
例如,淀粉浆料、气凝胶等都属于剪切变稠流体。
三、非牛顿流体在流体力学中的应用非牛顿流体在流体力学中有广泛的应用,涉及科学研究、工程技术等多个领域。
1. 食品工业:非牛顿流体在食品工业中具有重要的应用价值。
例如,蛋黄酱、胶体状食品等都属于非牛顿流体。
了解和掌握非牛顿流体的流动特性可以优化食品的生产过程,提高产品的质量。
2. 建筑工程:非牛顿流体在建筑工程中也有一定的应用。
例如,混凝土、石膏浆料等都是非牛顿流体。
流体力学-非牛顿流体力学
1 Vdv V Vr n dA F dt cv cs
d rz K 本够关系 dr
n 1
d dr
边界条件,r=R 处,V=0
h1 h2 r p1 p2 rz 2rl r lg 0 l
4
17/15
第三节
控制方程
1 dt
宾汉流体在圆管中的层流运动
V Vr n dA
cs
Vdv cv
F
本够关系 rz y 边界条件,r=R 处,V=0
gJr 2 y r C, 4
d dr
罗伯逊-史蒂夫模型
罗伯逊-史蒂夫模型属三参数模型, 表达式繁琐,实际使用得很少
d K C dr
n
C为速度梯度修正值
8/15
第一节
非牛顿流体的流变特性_分类
依时性非牛顿流体 对剪切速率变化的响应是滞后的, 由于流体结构的变化极其缓慢,因此 其变化过程不可逆。
1.1无时间依存性的非牛顿流体
速度分布
n 1 3n 1 r n 1 n 1 R
13/15
第二节
水头损失
拟塑性流体在圆管中的层流运动_
压力降
2 KL 3n 1 n hhl JL n 1 gR n
L2 hhl D 2g
n
8 K 6n 2 n D n
n2
n
拟塑性流体雷诺数
2 n
64 Re p
Re p
Dn K
什么是非牛顿流体
什么是非牛顿流体公司内部档案编码:[OPPTR-OPPT28-OPPTL98-OPPNN08]什么是非牛顿流体1 非牛顿流体的定义自然界最常见的流体以空气和水为代表,通常被认为是牛顿流体,熊老师在上课时讲过,它们的主要特征是切应力和切应变率之间的关系服从牛顿内摩擦定律或胡克定律,在流体力学的发展史上,经典流体力学的研究对象主要局限在牛顿流体的范畴,迄今为止已经形成了比较完整的理论体系。
但是,还有不少材料既不是虎克固体,也不是牛顿流体。
这些材料同时具有固体和流体的性质,哪种性质为主决定于进行观察时间的长短以及材料变形的大小。
有许多真实的材料样子像流体,即它们在受到应力时连续地改变它们的形状,但它们不能用牛顿关于常粘度的定律来描述,这类流体叫做非牛顿流体。
现在去医院作血液测试的项目之一,己不再是“血粘度检查”,而是“血液流变学捡查”(简称血流变),产生这样的变化就是因为血液不是牛顿流体,恒定不变的“粘度”不是它的一种属性。
牛顿于1687年发表了以水为工作介质的一维剪切流动的实验结果。
实验是在两平行平板间充满水时进行的,下平板固定不动,上平板在其自身平面内以等速U向右运动。
此时,附着于上、下平板的流体质点的速度,分别是U和0,两平板间的速度呈线性分布,斜率是粘度系数。
由此得到了着名的牛顿粘性定律。
斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量是应变率张量的线性函数、流体各向同性及流体静止时应变率为零的三项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及被广泛应用的N·S方程。
后来人们在进一步的研究中知道,牛顿粘性实验定律,对于描述像水和空气这样低分子量的简单流体是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与剪切应变率之间己不再满足线性关系。
为区别起见,人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。
2 常见的非牛顿流体早在人类出现之前,非牛顿流体就己存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体。
非牛顿流体原理
非牛顿流体原理在物理学中,流体可以分为牛顿流体和非牛顿流体两种类型。
牛顿流体遵循牛顿流体力学定律,也就是在外力作用下,流体的粘度保持恒定。
相比之下,非牛顿流体在外力作用下可以改变其粘度,其粘度与应力呈非线性关系。
本文将介绍非牛顿流体的原理及其应用。
1. 非牛顿流体的特点非牛顿流体的主要特点是其粘度随着剪切速率或剪切应力的改变而改变。
根据其粘度变化的规律不同,非牛顿流体可分为多种类型,如塑性流体、黏弹性流体和液晶流体等。
以下是每种类型的特点:•塑性流体:塑性流体在无剪切力作用下表现为固体,需要一定剪切力才能使其流动。
常见的例子是牙膏或润滑脂。
它们在静止时表现为固体,但在施加剪切力后会变为液体。
•黏弹性流体:黏弹性流体具有同时表现出液体和固体特性的特点。
它们的粘度会随着剪切速率或剪切应力的改变而改变。
当剪切速率较低时,它们表现出固体的特性,当剪切速率较高时,它们表现出液体的特性。
例如血液和酒精溶液。
•液晶流体:液晶流体是一种具有有序分子结构的流体。
它们的粘度可以通过施加电场或磁场来改变。
液晶流体常见于液晶显示器等技术中。
2. 非牛顿流体的原理非牛顿流体的粘度变化源于其内部微观结构的变化。
在牛顿流体中,其分子之间的相互作用力不随剪切力而改变。
而在非牛顿流体中,这种相互作用力会由于剪切力的作用而发生变化,从而引起粘度的变化。
具体来说,非牛顿流体的粘度变化可以归因于以下两种机制:•剪切稀化效应:当外力作用于非牛顿流体时,分子之间的排斥力增加,导致流体内部微观结构的破坏。
这会使流体的粘度降低,即发生剪切稀化。
剪切稀化效应常见于高分子溶液等流体中。
•剪切增稠效应:与剪切稀化相反,剪切增稠效应指的是在外力作用下,非牛顿流体内的微观结构变得更加有序,导致粘度增加,即发生剪切增稠。
这种效应通常发生在浓度较高的悬浮液和胶体溶液中。
3. 非牛顿流体的应用由于非牛顿流体具有粘度可调的特点,它们在许多领域中得到了广泛的应用。
非牛顿流体科学原理
非牛顿流体科学原理概述非牛顿流体是指在受到外部力作用时,其流动性质不符合牛顿流体的流动规律的一类流体。
与牛顿流体不同,非牛顿流体的粘度是一个变量,它可以随流动剪切应力的增加或减小而发生改变。
非牛顿流体在众多领域中都有广泛的应用,例如食品工业、石油工业和药物制造业等。
本文介绍了非牛顿流体的科学原理,包括其基本概念、流变学和流动性质。
基本概念牛顿流体首先,我们先了解一下牛顿流体的概念。
牛顿流体是最简单的一类流体,其粘度是常数,不随剪切应力的变化而改变。
牛顿流体的流动规律符合牛顿流体力学定律,即流体的切应力与剪切速率成正比。
例如,水和空气就是典型的牛顿流体。
非牛顿流体非牛顿流体与牛顿流体相比,其粘度是一个变数,取决于流动中的剪切应力。
非牛顿流体的流动规律不再满足牛顿流体力学定律。
根据流变学的定义,非牛顿流体可以分为剪切变稀(剪切应力增加而粘度降低)和剪切变稠(剪切应力增加而粘度增加)两种类型。
流变学流变学研究的是流体的流变性质,即流体随剪切应力的变化而产生的变形和应力关系。
对于非牛顿流体,流变学是研究其流动规律的基础。
剪切应力剪切应力是非牛顿流体流动过程中产生的应力。
在非牛顿流体中,剪切应力与变形速率之间的关系不再是线性的。
根据非牛顿流体的性质,剪切应力可以使流体发生变稀或变稠的现象。
流变曲线流变曲线是描述非牛顿流体剪切应力与剪切速率关系的图形。
通过测量不同剪切速率下的剪切应力,可以得到流变曲线。
根据流变曲线的形状,可以对非牛顿流体进行分类和分析。
流变模型流变模型是对非牛顿流体流变性质的数学描述。
根据不同的流变模型,可以预测非牛顿流体在不同剪切应力下的流动规律。
常见的流变模型包括幂律模型、卡塞格伦模型和本氏模型等。
流动性质非牛顿流体的流动性质与剪切应力有密切关系。
在不同的剪切应力下,非牛顿流体表现出不同的流动特性。
剪切稀化剪切稀化是指非牛顿流体在剪切应力增加时粘度降低的现象。
在剪切稀化流动中,非牛顿流体表现出流动性增强的特性。
什么是非牛顿流体
什么就是非牛顿流体1 非牛顿流体的定义自然界最常见的流体以空气与水为代表,通常被认为就是牛顿流体,熊老师在上课时讲过,它们的主要特征就是切应力与切应变率之间的关系服从牛顿内摩擦定律或胡克定律,在流体力学的发展史上,经典流体力学的研究对象主要局限在牛顿流体的范畴,迄今为止已经形成了比较完整的理论体系。
但就是,还有不少材料既不就是虎克固体,也不就是牛顿流体。
这些材料同时具有固体与流体的性质,哪种性质为主决定于进行观察时间的长短以及材料变形的大小。
有许多真实的材料样子像流体,即它们在受到应力时连续地改变它们的形状,但它们不能用牛顿关于常粘度的定律来描述,这类流体叫做非牛顿流体。
现在去医院作血液测试的项目之一,己不再就是“血粘度检查”,而就是“血液流变学捡查”(简称血流变),产生这样的变化就就是因为血液不就是牛顿流体,恒定不变的“粘度”不就是它的一种属性。
牛顿于1687年发表了以水为工作介质的一维剪切流动的实验结果。
实验就是在两平行平板间充满水时进行的,下平板固定不动,上平板在其自身平面内以等速U向右运动。
此时,附着于上、下平板的流体质点的速度,分别就是U与0,两平板间的速度呈线性分布,斜率就是粘度系数。
由此得到了著名的牛顿粘性定律。
斯托克斯1845年在牛顿这一实验定律的基础上,作了应力张量就是应变率张量的线性函数、流体各向同性及流体静止时应变率为零的三项假设,从而导出了广泛应用于流体力学研究的线性本构方程,以及被广泛应用的N·S方程。
后来人们在进一步的研究中知道,牛顿粘性实验定律,对于描述像水与空气这样低分子量的简单流体就是适合的,而对描述具有高分子量的流体就不合适了,那时剪应力与剪切应变率之间己不再满足线性关系。
为区别起见,人们将剪应力与剪切应变率之间满足线性关系的流体称为牛顿流体,而把不满足线性关系的流体称为非牛顿流体。
2 常见的非牛顿流体早在人类出现之前,非牛顿流体就己存在,因为绝大多数生物流体都属于现在所定义的非牛顿流体。
非牛顿流体是什么原理
非牛顿流体是什么原理非牛顿流体是指在受力作用下流动状态发生改变的流体,其黏度随剪切速率或剪切应力的变化而变化。
与牛顿流体不同,非牛顿流体的黏度是一个非线性的函数。
那么,非牛顿流体是如何实现这一特性的呢?这就涉及到非牛顿流体的原理。
首先,我们来看一下牛顿流体和非牛顿流体的区别。
牛顿流体的黏度是一个常数,不随剪切速率或剪切应力的变化而改变,例如水和空气都属于牛顿流体。
而非牛顿流体的黏度是一个变量,其流动性质取决于所受的外力大小和方向,例如血液、墨水和牛奶等。
非牛顿流体的原理可以从微观和宏观两个方面进行解释。
从微观角度来看,非牛顿流体的流动特性与其分子结构有关。
在非牛顿流体中,分子之间存在着各种作用力,如静电作用力、分子间引力和斥力等。
当外力作用于非牛顿流体时,分子之间的相互作用会发生改变,从而导致了流体的非线性黏度特性。
另一方面,从宏观角度来看,非牛顿流体的流动特性与其内部结构和流动状态有关。
非牛顿流体通常具有复杂的内部结构,如聚合物溶液、胶体溶液和悬浮液等。
这些内部结构在受力作用下会发生变化,从而影响了流体的流动性质。
例如,当外力作用于聚合物溶液时,聚合物链会发生拉伸和扭曲,导致了流体黏度的变化。
除了内部结构,非牛顿流体的流动状态也会对其流动特性产生影响。
例如,当非牛顿流体处于屈服状态时,其流动性质会发生突变,表现出了塑性流动的特性。
而在其他流动状态下,非牛顿流体可能表现出了剪切稀化或剪切增稠的特性。
总的来说,非牛顿流体的原理是一个涉及到微观和宏观多个方面的复杂问题。
其流动特性取决于内部结构、流动状态和外力作用等多个因素的综合影响。
因此,对于非牛顿流体的研究不仅有助于深化我们对流体力学的理解,还具有重要的理论和应用价值。
希望本文对非牛顿流体的原理有所帮助,谢谢阅读。
流体力学中的非牛顿流体研究
流体力学中的非牛顿流体研究流体力学是研究流体静力学和流体动力学的学科。
在流体动力学的研究中,牛顿流体一直是最常见的研究对象。
牛顿流体根据牛顿黏度定律,流体的剪切应力与剪切速率成线性关系。
然而,在实际生活和工程应用中,我们经常会遇到一些不符合牛顿黏度定律的流体,即非牛顿流体。
非牛顿流体是指剪切应力和剪切速率之间不成线性关系的流体。
非牛顿流体可以分为两种类型:剪切变稀和剪切变稠。
剪切变稀指的是当剪切速率增加时,流体的黏度减小。
而剪切变稠则相反,当剪切速率增加时,流体的黏度增大。
在实际应用中,非牛顿流体的研究对于许多工程和科学领域都有重要意义。
举一个例子来说,食品工业中的一些液体食品,如酸奶和果酱,就属于非牛顿流体。
对于生产商来说,了解和控制这些流体的流动性质对于产品质量的保证至关重要。
另外,非牛顿流体在药品、化妆品以及涂料等领域也有广泛应用。
那么,为什么会有非牛顿流体的存在呢?这主要与流体的微观结构有关。
一般来说,液体是由分子组成的,分子之间存在着相互作用力,比如范德华力。
当流体受到外力作用时,分子之间的相互作用力会发生改变,从而导致流体的黏度发生变化。
在非牛顿流体的研究中,一种常见的模型是Bingham模型。
Bingham模型认为在流体开始运动之前,流体是属于固体状态的,需要克服一定的应力才能开始流动。
一旦流体开始运动,流体的黏度会逐渐减小,接近于常数。
Bingham模型可以用来解释一些特殊的非牛顿流体,如浆状物料和膏霜等。
除了Bingham模型,还有许多其他的非牛顿流体模型,如卡塞格伦模型、乳液模型和双曲正切模型等。
这些模型各自适用于不同类型的非牛顿流体,并对流体的流动性质进行了描述和预测。
在实际研究中,非牛顿流体的性质常常通过试验和数值模拟来研究。
例如,通过旋转圆柱或平板设备对流体进行剪切试验,获取流体的剪切应力-剪切速率曲线。
基于这些试验数据,可以建立数学模型,进而预测和优化流体的流动行为。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
在一定的剪切速率下,剪切应力随剪切作用时间的延续 而增大的流体。
(1)触变性流体
• 在恒定的剪切速率下,其剪切应力随剪切作用时间的延续而 下降;
• 经过一段时间的剪切后, 才趋于稳定;
• 触变曲线 ;f (t)
对于非牛顿流体,需要用两个或更多的参数来表达其粘 稠程度,为了借用牛顿流体的计算方法,很多文献上采用了 “表观粘度”的概念。
表观粘度:剪切应力与剪切速率的比值。非牛顿流体的 表观粘度是随剪切速率而变化的。
a
du
dy
表观粘度与剪切速率的关系
塑性流体:表观粘度 a随剪切速率 d u的/d增y 大而减小。
与时间无关:剪切速率改变,平衡结构无滞后 地随之变化,变化是瞬时的、可逆的变化; 与时间有关:流变特性对剪切速率变化的响应 是滞后的,与剪切力作用时间长短有关,变化 过程不可逆。
流变曲线
5
3——幂函数
1——直线
4——幂函数
du
O
dy
1——牛顿流体; 2——塑性流体(宾汉流体); 3——假塑性流体(拟塑性流体); 4——胀塑性流体;
• 剪切应力为剪切速率和剪切持续时间的函数
f
d d
u y
,t
• 流变曲线是以一定的剪切持续时间为参变量的一组 d曲u线。
dy
• 在工程计算中,常用的是剪切趋于稳定时(即时间趋于 无穷大)的流变曲线,称为平衡流变曲线。
触变曲线
某原油的触变曲线,《油气储运工艺》蔡春知
t 15℃ d u 3s1 dy
a
0
du
dy
假塑性流体 (n :1) 表观粘度随剪切速率的增大而减小。n1 Nhomakorabeaa
K
du dy
胀塑性流体 (n :1)表观粘度随剪切速率的增大而增大。
3. 与时间有关的非牛顿流体
凡是流变特性随剪切作用时间的延续而变化的流体,都属于 与时间有关的非牛顿流体。 • 触变性流体:
• 例如,某些浓淀粉溶液、鸡蛋白。
4. 粘弹性非牛顿流体
剪切应力同时依赖于剪切速率和变形程度的非牛顿流体。 • 既具有与时间有关的非牛顿流体的全部流变性质; • 又具有部分弹性恢复效应的物料的性质。 • 豆荚植物胶、田菁粉、聚丙烯酰胺等。
既具有粘性,又具有弹性,表现为: • 挤出胀大现象; • 回弹现象; • 爬杆现象,无管虹吸现象等。 • 其粘度用一般粘度计无法测定。
剪切变形规律、流动规律都与牛顿流体有别。
流变特性:流体在温度一定及没有湍流的情况下,所承 受的剪切应力与产生的垂直于剪切面的剪切速率之间的关系, 即流体变形与外加应力之间的关系。
这种关系可用流变曲线或流变方程来表示。
用实验方法 建立
按流变曲线结合 理论分析
在非牛顿流体中,根据其流变特性是否随剪切的持续时 间或变形的程度不同而变化,分为与时间无关和与时间有关 两类。
流变方程:幂定律方程,
K
du dy
n
稠度系数,表明流体的 粘稠程度
流变行为指数,表明偏离牛 顿流体的程度。 胀塑性流体,(n 1)
流变曲线4——幂函数
表观粘度
动力粘性系数 , 也称为动力粘度。对于牛顿流体, 才
能严格地称为粘度,其值只随温度和压力变化而与剪切速率 无关。
• 高分子溶液、悬浮液,易凝原油在低于反常点时。
流变方程:在中等剪切速率范围内,实用的表达式是幂
定律方程
n
K
du dy
流变行为指数,表明偏离牛 顿流体的程度。
假塑性流体, (n 1)
稠度系数,表明流体的粘稠
程度
流变曲线3——幂函数
(3)胀塑性流体 • 其流变特性与假塑性流体相反; • 粘度随剪切速率的增加而增大,静止时则恢复原状。 • 浓淀粉溶液、色料和某些悬浮液等。
Chap 9 非牛顿流体
主要内容
1. 流变特性 2. 与时间无关的非牛顿流体 3. 与时间有关的非牛顿流体 4. 粘弹性非牛顿流体 5. 研究方法
1. 流变特性
牛顿内摩擦定律:
du d
d y dt
剪切应力 速度梯度 剪切变形角速度
满足牛顿内摩擦定律的流体称为牛顿流体。或应力与应变的 关系为线性的流体。
• 剪切应力与剪切速率呈直线关系变化。
• 油漆、油墨、牙膏、泥浆、沥青、稀润滑油脂和低温下的 易凝原油等
液体开始流动时的剪切应力称为极限剪切应力。流变方
程:
0
du dy
流变曲线2——直线
塑性粘度
(2)假塑性流体(拟塑性流体)
• 一受外力即可流动;
• 流变曲线通过坐标原点;
• 在中等剪切速率范围内,剪切应力与剪切速率的比值不是 定值,而是随剪切速率的增加,曲线的斜率减小,符合幂定 律的关系。
• 一受外力就开始流动;
• 在一定温度下,剪切应力与剪切速率的比值是常数,不随
剪切速率而变化。动力粘性系数 co,ns剪t 应力与变形速率
满足线性关系。
• 气体、水、轻质成品油和高温时的原油等。
不满足牛顿内摩擦定律的流体称为非牛顿流体,即剪应 力与变形速率不满足线性关系。
在工业中广泛存在着非牛顿流体,如: • 高含蜡或沥青质的易凝原油、 • 钻井用的钻井液、 • 采油用的增粘液或降粘液, • 各种高分子溶液。
5——屈服-假塑性流体(具有触变性,与时间有关)。
2、3、4属于:与时间无关的非牛顿流体。
2. 与时间无关的非牛顿流体
在一定的剪切速率下,其结构破坏和恢复在很短的时间内就 能平衡的复杂混合物,都属于此类。
(1)塑性流体(宾汉流体)
• 所加外力较小时,流体虽有一定的弹性变形,但并不流动, 只有外力增大到足以破坏其结构强度时,才开始流动;
触变性流体的流变曲线
平衡流变曲线 在一定剪切速率下,其剪切应力随外力作用时间 的延续而下降,最后达到平衡。
屈服-假塑性流体(触变性流体的一种)
温度低于和接近凝点的含蜡原油,以及具有一定结构强度的 假塑性流体都具有触变性,称为屈服-假塑性流体。
• 当外力足以破坏其结构强度时,才开始流动;
• 开始流动后,其流变曲线的斜率随剪切速率的增大而减小;
• 呈现触变性,在一定剪切速率下,其剪切应力随外力作用 时间的延续而下降,最后达到平衡。
流变方程: (n 1)
n
0
K
d d
u y
流变曲线5
(2)反触变性流体(震凝性非牛顿流体)
• 在恒定的剪切速率下,其剪切应力随剪切时间的延续而增 大到一个最大值,静止一段时间后又下降,甚至恢复其初始 值;
5. 研究方法
非牛顿流体的研究方法,与牛顿流体的研究方法类似。 在管流中,诸如体现质量守恒的连续性方程,体现能量守恒 的伯努利方程,以及划分流态的原则等都是一致的。 区别在于所依据的内摩擦定律不同。