在直角坐标系中xoy中,直线l交y轴于点M

合集下载

中考数学专题《一次函数与几何综合》高分必刷原卷

中考数学专题《一次函数与几何综合》高分必刷原卷

(培优特训)专项19.3 一一次函数与几何综合高分必刷1.(2023春•普兰店区期中)已知△ABC中,∠C=90°,AC=3,CD=4,BD =AD.点F从点A出发,沿AC﹣CD运动,速度为1cm/s,同时点E从点B 出发,沿BD﹣DA运动,运动速度为1cm/s,一个点到达终点,另一点也停止运动.(1)求BD的长;(2)设△AEF的面积为S,点P、Q运动时间为t,求S与的函数关系式,并写出的取值范围.2.(2023春•鼓楼区期中)如图1,已知直线l1:y=ax﹣6a交x轴于点A,交轴y于点B,直线l2:y=bx﹣18a交x轴于点C,交y轴于点D,交直线l1于点E.(1)求点A的坐标;(2)若点B为线段AE的中点,求证:EC=EA;(3)如图2,已知P(0,m),将线段P A绕点P逆时针方向旋转90°至PF,连接OF,求证:点F在某条直线上运动,并求OF的最小值.3.(2023春•苍南县期中)如图,在平面直角坐标系中,▱OABC的顶点A落在x轴上,点B的坐标为(7,4),AB=2,点D是OC的中点,点E是线段AD上一动点,EF⊥BC于点F,连结DF.(1)求点A、C的坐标.(2)求直线AD的函数表达式.(3)若△DEF是等腰三角形,求CF的长.4.(2023•佳木斯一模)如图,将矩形纸片OABC放在平面直角坐标系中,O为坐标原点.点A在y轴上,点C在x轴上,OA,OB的长是x2﹣16x+60=0的两个根,P是边AB上的一点,将△OAP沿OP折叠,使点A落在OB上的点Q处.(1)求点B的坐标;(2)求直线PQ的解析式;(3)点M在直线OP上,点N在直线PQ上,是否存在点M,N,使以A,C.M,N为顶点的四边形是平行四边形?若存在,请直接写出点N的坐标;若不存在,请说明理由.5.(2023春•顺德区校级月考)如图,请根据图象所提供的信息解答下列问题:(1)当x时,kx+b≥mx﹣n;(2)不等式kx+b<0的解集是;(3)求两个一次函数表达式;(4)若直线l1分别交x轴、y轴于点M、A,直线l2分别交x轴、y轴于点B、N,求点M的坐标和四边形OMPN的面积.6.(2023春•北碚区校级期中)如图,在平面直角坐标系中,直线y=2x﹣2与x 轴、y轴分别交于点A、点B,与直线CD:y=kx+b(k≠0)交于点P,OC =OD=4OA.(1)求直线CD的解析式;(2)连接OP、BC,若直线AB上存在一点Q,使得S△PQC =S四边形OBCP,求点Q的坐标;(3)将直线CD向下平移1个单位长度得到直线,直线l与x轴交于点E,点N为直线l上的一点,在平面直角坐标系中,是否存在点M,使以点O,E,N,M为顶点的四边形是矩形?若存在,请直接写出点M的坐标;若不存在,请说明理由.7.(2023春•宜兴市期中)如图,在平面直角坐标系中,已知A(0,4),点B、C都在x轴上,BC=12,AD∥BC,CD所在直线的函数表达式为y=﹣x+9,E是BC的中点,点P是BC边上一个动点.(1)当PB=时,以点P、A、D、E为顶点的四边形为平行四边形;(2)点P在BC边上运动过程中,以点P、A、D、E为顶点的四边形能否构成菱形?试说明理由.8.(2023春•工业园区校级期中)如图,在平面直角坐标系中,点A、点B分别在x轴与y轴上,直线AB的解析式为,以线段AB、BC为边作平行四边形ABCD.(1)如图1,若点C的坐标为(3,7),判断四边形ABCD的形状,并说明理由;(2)如图2,在(1)的条件下,P为CD边上的动点,点C关于直线BP的对称点是Q,连接PQ,BQ.①当∠CBP=°时,点Q位于线段AD的垂直平分线上;②连接AQ,DQ,设CP=x,设PQ的延长线交AD边于点E,当∠AQD=90°时,求证:QE=DE,并求出此时x的值.9.(2023•沈阳一模)如图,在平面直角坐标系中,直线y=kx+b与x轴交于点B(﹣5,0),与y轴交于点A,直线过点A,与x轴交于点C,点P 是x轴上方一个动点.(1)求直线AB的函数表达式;(2)若点P在线段AB上,且S△APC =S△AOB,求点P的坐标;(3)当S△PBC =S△AOB时,动点M从点B出发,先运动到点P,再从点P运动到点C后停止运动.点M的运动速度始终为每秒1个单位长度,运动的总时间为t(秒),请直接写出t的最小值.10.(2023春•鼓楼区期中)如图1,已知函数与x轴交于点A,与y轴交于点B,点C与点A关于y轴对称.(1)求直线BC的函数解析式;(2)设点M是x轴上的一个动点,过点M作y轴的平行线,交直线AB于点P,交直线BC于点Q.①若△PQB的面积为,求点M的坐标;②连接BM,如图2,若∠BMP=∠BAC,求点P的坐标.11.(2023春•顺德区校级期中)一次函数y=kx+b的图象经过点A(﹣2,0)、B(﹣1,1),且和一次函数y=﹣2x+a的图象交于点C,如图所示.(1)填空:不等式kx+b<0的解集是;(2)若不等式kx+b>﹣2x+a的解集是x>1,求点C的坐标;(3)在(2)的条件下,点P是直线y=﹣2x+a上一动点.且在点C上方,当∠P AC=15°时,求点P的坐标.12.(2023春•重庆期中)如图,已知函数y=x+1的图象与y轴交于点A,一次函数y=kx+b的图象经过点B(0,﹣1),与x轴以及y=x+1的图象分别交于点C,D,且点D的坐标为(1,n).(1)则k=,b=,n=;(2)求四边形AOCD的面积;(3)在x轴上是否存在点P,使得以点P,C,D为顶点的三角形是直角三角形,请求出点P的坐标.13.(2023春•崇川区校级月考)模型建立:如图1,等腰直角三角形ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过A作AD⊥ED于D,过B作BE⊥ED于E.(1)求证:△BEC≌△CDA;(2)模型应用:已知直线l1:y=﹣x﹣4与y轴交于A点.将直线l1绕着A 点逆时针旋转45°至l2,如图2,求l2的函数解析式.14.(2023春•崇川区校级月考)如图,在平面直角坐标系中,直线l1:y=﹣x+4分别与x轴,y轴交于点B,C.直线l2:y=x.(1)直接写出点B,C的坐标:B,C.(2)若D是直线l2上的点,且△COD的面积为6,求直线CD的函数表达式;(3)在(2)的条件下,且当点D在第一象限时,设P是射线CD上的点,在平面内存在点Q.使以O,C,P,Q为顶点的四边形是菱形,请直接求点Q的坐标.15.(2023•城固县模拟)如图,A、B两个长方体水箱放置在同一水平桌面上,开始时水箱A中没有水,水箱B盛满水,现以6dm3/min的流量从水箱B中抽水注入水箱A中,直至水箱A注满水为止.设注水时间为t(min),水箱A 的水位高度为y A(dm),水箱B中的水位高度为y B(dm).(抽水水管的体积忽略不计)(1)分别求出y A,y B与t之间的函数表达式;(2)当水箱A与水箱B中的水的体积相等时,求出此时两水箱中水位的高度差.16.(2022秋•常州期末)在平面直角坐标系中,一次函数的图象l1与x轴交于点A,一次函数y=x+6的图象l2与x轴交于点B,与l1交于点P.直线l3过点A且与x轴垂直,C是l3上的一个动点.(1)分别求出点A、P的坐标;(2)设直线PC对应的函数表达式为y=kx+b,且满足函数值y随x的增大而增大.若△PCA的面积为15,分别求出k、b的值;(3)是否存在点C,使得2∠PCA+∠P AB=90°?若存在,直接写出点C的坐标;若不存在,请说明理由.17.(2023春•靖江市期中)如图,平面直角坐标系中,已知点A(0,a)在y 轴正半轴上,点B(0,b)(a>b),点C(c,0)在x轴正半轴上,且a2﹣2ab+b2(1)如图1,求证:AB=OC;(2)如图2,当a=3,b=1时,过点B的直线与AC成45°夹角,试求该直线与AC交点的横坐标;(3)如图3,当b<0时,点D在OC的延长线上,且CD=OB,连接AD,射线BC交AD于点E.当点B在y轴负半轴上运动时,∠AEB的度数是否为定值?如果是,请求出∠AEB的度数;如果不是,请说明理由.18.(2023春•沙坪坝区校级期中)如图,在平面直角坐标系xOy中,直线AB:与直线CD:y=kx﹣2相交于点M(4,a),分别交坐标轴于点A,(1)求直线CD的解析表达式;(2)如图,点P是直线CD上的一个动点,当△PBM的面积为20时,求点P的坐标;(3)直线AB上有一点F,在平面直角坐标系内找一点N,使得以BF为一边,以点B,D,F,N为顶点的四边形是菱形,请直接写出符合条件的点N的坐标.19.(2023春•揭西县校级月考)在平面直角坐标系中,直线y1=kx+b经过点P (2,2)和点Q(0,﹣2),与x轴交于点A,与直线y2=mx+n交于点P.(1)求出直线y1=kx+b的解析式;(2)当m<0时,直接写出y1<y2时自变量x的取值范围;(3)直线y2=mx+n绕着点P任意旋转,与x轴交于点B,当△P AB是等腰三角形时,请直接写出符合条件的所有点B的坐标.20.(2023春•溧阳市校级月考)如图,四边形OABC是矩形,点A、C在坐标轴上,△ODE是由△OCB绕点O顺时针旋转90°得到的,点D在x轴上,直线BD交y轴于点F,交OE于点H,线段BC、OC的长是2和4;(1)求直线BD的表达式;(2)求△OFH的面积;(3)点M在坐标轴上,平面内是否存在点N,使以点D、F、M、N为顶点的四边形是矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.21.(2023春•江都区月考)如图,在平面直角坐标系中,直线y=﹣x+3与x 轴、y轴相交于A、B两点,动点C在线段OA上,将线段CB绕着点C顺时针旋转90°得到CD,此时点D恰好落在直线AB上时,过点D作DE⊥x轴于点E.(1)求证:△BOC≌△CED;(2)求点D的坐标;(3)若点P在y轴上,点Q在直线AB上,是否存在以C、D、P、Q为顶点的四边形是平行四边形?若存在,直接写出所有满足条件的Q点坐标;若不存在,请说明理由.22.(2023春•新城区校级月考)如图,在平面直角坐标系中,直线l1的解析式为y=x,直线l2的解析式为,与x轴、y轴分别交于点A、点B,直线l1与l2交于点C.(1)若直线l2上存在点P(不与B重合),满足S△COP=S△COB,求出点P的坐标;(2)在y轴右侧有一动直线平行于y轴,分别与l1,l2交于点M、N,且点M 在点N的下方,y轴上是否存在点Q,使△MNQ为等腰直角三角形?若存在,请直接写出满足条件的点Q的坐标;若不存在,请说明理由.23.(2022秋•宿豫区期末)如图,直线l分别与x轴、y轴交于点A(4,0)、B (0,5),把直线l沿y轴向下平移3个单位长度,得到直线m,且直线m分别与x轴、y轴交于点C、D.(1)求直线l对应的函数表达式;(2)求四边形ABDC的面积.24.(2022秋•临淄区期末)如图,在直角坐标系中,四边形ABCD的顶点坐标分别为A(﹣1,0),B(0,2),C(2,3),D(4,0).(1)求直线BC的表达式;(2)线段AB与BC相等吗?请说明理由;(3)求四边形ABCD的面积;(4)已知点M在x轴上,且△MBC是等腰三角形,求点M的坐标.25.(2022秋•金牛区期末)如图1,在平面直角坐标系xOy中,直线AB:y=2x+b 与x轴交于点A(﹣2,0),与y轴交于点B.(1)求直线AB的解析式;(2)若直线CD:y=﹣x+与x轴、y轴、直线AB分别交于点C、D、E,求△BDE面积;(3)如图2,在(2)的条件下,点F为线段AC上一动点,将△EFC沿直线EF翻折得到△EFN,EN交x轴于点M.当△MNF为直角三角形时,求点N 的坐标.26.(2022秋•婺城区期末)如图,直线y=x+4与x轴、y轴分别交于点A、点B,点P是射线BO上的动点,过点B作直线AP的垂线交x轴于点Q,垂足为点C,连结OC.(1)当点P在线段BO上时,①求证:△AOP≌△BOQ;②若点P为BO的中点,求△OCQ的面积.(2)在点P的运动过程中,是否存在某一位置,使得△OCQ成为等腰三角形?若存在,求点P的坐标;若不存在,请说明理由.27.(2022秋•郫都区期末)在直角坐标系xOy中,直线l1:y=﹣x+4与x轴、y 轴分别交于点A,点B.直线l2:y=mx+m(m>0)与x轴,y轴分别交于点C,点D,直线l1与l2交于点E.(1)若点E坐标为(,n).ⅰ)求m的值;ⅱ)点P在直线l2上,若S△AEP=3S△BDE,求点P的坐标;(2)点F是线段CE的中点,点G为y轴上一动点,是否存在点F使△CFG 为以FC为直角边的等腰直角三角形.若存在,求出m的值,若不存在,请说明理由.28.(2022秋•市中区期末)如图,直线y=kx+b经过点,点B(0,25),与直线交于点C,点D为直线AB上一动点,过D点作x轴的垂线交直线OC于点E.(1)求直线AB的表达式和点C的坐标;(2)当时,求△CDE的面积;(3)连接OD,当△OAD沿着OD折叠,使得点A的对应点A'落在直线OC 上,直接写出此时点D的坐标.29.(2022秋•新都区期末)如图1,在平面直角坐标系中,点A的坐标为(4,4),点B的坐标为(﹣4,0).(1)求直线AB的表达式;(2)点M是坐标轴上的一点,若以AB为直角边构造Rt△ABM,请求出满足条件的所有点M的坐标;(3)如图2,以A为直角顶点作∠CAD=90°,射线AC交x轴的正半轴于点C,射线AD交y轴的负半轴于点D,当∠CAD绕点A旋转时,求OC﹣OD 的值.30.(2022秋•皇姑区期末)如图,在平面直角坐标系中,直线AD:y=﹣x+4交y轴于点A,交x轴于点D.直线AB交x轴于点B(﹣3,0),点P为直线AB上的动点.(1)求直线AB的关系式;(2)连接PD,当线段PD⊥AB时,直线AD上有一点动M,x轴上有一动点N,直接写出△PMN周长的最小值;(3)若∠POA=∠BAO,直接写出点P的纵坐标.31.(2022秋•新都区期末)如图所示,直线l1:y=x﹣1与y轴交于点A,直线l2:y=﹣2x﹣4与x轴交于点B,直线l1与l2交于点C.(1)求点A,C的坐标;(2)点P在直线l1上运动,求出满足条件S△PBC=S△ABC且异于点A的点P的坐标;(3)点D(2,0)为x轴上一定点,当点Q在直线l1上运动时,请直接写出|DQ﹣BQ|的最大值.32.(2022秋•鸡西期末)如图,直角三角形ABC在平面直角坐标系中,直角边BC在y轴上,AB,BC的长分别是一元二次方程x2﹣14x+48=0的两个根,AB<BC,且BC=2OB,P为BC上一点,且∠BAP=∠C.(1)求点A的坐标;(2)求直线AP的解析式;(3)M为x轴上一点,在平面内是否存在点N,使以A,C,M,N为顶点的四边形为矩形?若存在,请直接写出点N的坐标;若不存在,请说明理由.33.(2022秋•锦江区校级期末)如图,直线y=kx+b与x轴、y轴分别交于点A 和点B,点C在线段AO上,将△ABC沿BC所在直线折叠后,点A恰好落在y轴上点D处,若OA=4,OD=2.(1)求直线AB的解析式.(2)求S△ABC :S△OCD的值.(3)直线CD上是否存在点P使得∠PBC=45°,若存在,请直接写出P的坐标.34.(2022秋•福田区校级期末)已知:如图,一次函数的图象分别与x 轴、y轴相交于点A、B,且与经过点C(2,0)的一次函数y=kx+b的图象相交于点D.点D的横坐标为4,直线CD与y轴相交于点E.(1)直线CD的函数表达式为:;(2)点Q为线段DE上的一个动点,连接BQ.①若直线BQ将△BDE的面积分为1:2两部分,求点Q的坐标;②点Q是否存在某个位置,将△BQD沿着直线BQ翻折,使得点D恰好落在直线AB下方的坐标轴上?若存在,请直接写出点Q的坐标;若不存在,请说明理由.35.(2022秋•抚州期末)如图,在平面直角坐标系xOy中,直线AP交x轴于点P(p,0),与y轴交于点A(0,a),且a,p满足=0.(1)求直线AP的解析式;(2)如图1,直线x=﹣2与x轴交于点N,点M在x轴上方且在直线x=﹣2上,若△MAP的面积等于6,请求出点M的坐标;(3)如图2,已知点C(﹣2,4),若点B为射线AP上一动点,连接BC,在坐标轴上是否存在点Q,使△BCQ是以BC为底边,点Q为直角顶点的等腰直角三角形,若存在,请直接写出点Q坐标;若不存在,请说明理由.36.(2022秋•天桥区期末)如图1,在平面直角坐标系xOy中,点O是坐标原点,直线AB:y=kx+与直线AC:y=﹣2x+b交于点A,两直线与x轴分别交于点B(﹣3,0)和C(2,0).(1)求直线AB和AC的表达式.(2)点P是y轴上一点,当P A+PC最小时,求点P的坐标.(3)如图2,点D为线段BC上一动点,将△ABD沿直线AD翻折得到△ADE,线段AE交x轴于点F,若△DEF为直角三角形,求点D坐标.37.(2023•桐乡市校级开学)如图,一次函数y=x+6的图象与x轴交于点A,与y轴交于点B,OC⊥AB于点C,点P在直线AB上运动,点Q在y轴的正半轴上运动.(1)求点A,B的坐标;(2)求OC的长;(3)若以O,P,Q为顶点的三角形与△OCP全等,求点Q的坐标.38.(2022秋•秦都区期末)如图,平面直角坐标系中,直线AB与x轴交于点A (﹣3,0)与y轴交于点B(0,6),点C是直线AB上的一点,它的坐标为(m,4),经过点C作直线CD∥x轴交y轴于点D.(1)求点C的坐标;(2)已知点P是直线CD上的动点,①若△POC的面积为4,求点P的坐标;②若△POC为直角三角形,请求出所有满足条件的点P的坐标.39.(2022秋•南海区期末)如图,在平面直角坐标系中,直线y=x+1分别交x 轴,y轴于点A、B.另一条直线CD与直线AB交于点C(a,6),与x轴交于点D(3,0),点P是直线CD上一点(不与点C重合).(1)求a的值.(2)当△APC的面积为18时,求点P的坐标.(3)若直线MN在平面直角坐标系内运动,且MN始终与AB平行,直线MN 交直线CD于点M,交y轴于点N,当∠BMN=90°时,求△BMN的面积.40.(2023•丰顺县校级开学)问题提出:如图,等腰Rt△ABC中,∠ACB=90°,CB=CA,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,求证:△BEC≌△CDA;问题探究:如图2,在平面直角坐标系中,一次函数与x轴交于点A,与y轴交于点B,以AB为腰在第二象限作等腰直角△ABC,∠BAC=90°,求点C的坐标;问题解决:古城西安已经全面迎来地铁时代!继西安地铁2号线于2011年9月16日通车试运行以来,共有八条线路开通运营,极大促进了西安市的交通运输,目前还有多条线路正在修建中.如图,地铁某线路原计划按OA﹣AB的方向施工,由于在AB方向发现一处地下古建筑,地铁修建须绕开此区域.经实地勘测,若将AB段绕点A顺时针或逆时针方向旋转45°至AC或AD方向,则可以绕开此区域.已知OA长为1千米,以点O为原点,OA所在直线为x轴,1千米为单位长度,建立平面直角坐标系,且射线AB与直线y=﹣2x平行,请帮助施工队计算出AC和AD所在直线的解析式.41.(2022秋•碑林区校级期末)(1)模型建立:如图1,在等腰直角三角形ABC中,∠ACB=90°,CA=CB,直线ED经过点C,过点A作AD⊥ED于点D,过点B作BE⊥ED于点E,请直接写出图中相等的线段(除CA=CB);模型应用:(2)如图2,在平面直角坐标系xOy中,直线与x,y轴分别交于A、B两点,C为第一象限内的点,若△ABC是以AB为直角边的等腰直角三角形,请求出点C的坐标和直线BC的表达式;探究提升:(3)如图3,在平面直角坐标系xOy中,A(3,0),点B在y轴上运动,将AB绕点A顺时针旋转90°至AC,连接OC,求CA+OC的最小值,及此时点B坐标.42.(2023•南岸区校级开学)如图,已知直线l1:y=﹣x+b与直线l2:y=kx+3相交于y轴的B点,且分别交x轴于点A、C,已知OC=OA.(1)如图,求点C的坐标及k的值;(2)如图,若E为直线l1上一点,且E点的横坐标为,点P为y轴上一个动点,求当|PC﹣PE|最大时,点P的坐标;(3)若M为x轴上一点,当△ABM是等腰三角形时,直接写出点M的坐标.43.(2022秋•驿城区校级期末)(1)操作思考:如图1,在平面直角坐标系中,等腰直角△ACB的直角顶点C在原点,将其绕着点O旋转,若顶点A恰好落在点(1,2)处.则:①OA的长为;②点B的坐标为.(直接写结果)(2)感悟应用:如图2,在平面直角坐标系中,将等腰直角△ACB如图放置,直角顶点C(﹣1,0),点A(0,4),试求直线AB的函数表达式.(3)拓展研究:如图3,在直角坐标系中,点B(4,3),过点B作BA⊥y 轴,垂足为点A,作BC⊥x轴,垂足为点C,P是线段BC上的一个动点,点Q是直线y=2x﹣8上一动点,存在以点P为直角顶点的等腰直角△APQ,请直接写出点P的坐标.。

2020年江苏省常州市中考数学试卷(含解析版)

2020年江苏省常州市中考数学试卷(含解析版)

2020年江苏省常州市中考数学试卷一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)2的相反数是()A.﹣2B.﹣C.D.22.(2分)计算m6÷m2的结果是()A.m3B.m4C.m8D.m123.(2分)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥4.(2分)8的立方根为()A.B.C.2D.±25.(2分)如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+16.(2分)如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°7.(2分)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.68.(2分)如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4C.3D.6二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在答题卡相应位置上)9.(2分)计算:|﹣2|+(π﹣1)0=.10.(2分)若代数式有意义,则实数x的取值范围是.11.(2分)地球的半径大约为6400km.数据6400用科学记数法表示为.12.(2分)分解因式:x3﹣x=.13.(2分)若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是.14.(2分)若关于x的方程x2+ax﹣2=0有一个根是1,则a=.15.(2分)如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=°.16.(2分)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是.17.(2分)如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.18.(2分)如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)先化简,再求值:(x+1)2﹣x(x+1),其中x=2.20.(8分)解方程和不等式组:(1)+=2;(2).21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.23.(8分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?25.(8分)如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.26.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.27.(10分)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH 的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.28.(10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD =∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.2020年江苏省常州市中考数学试卷参考答案与试题解析一、选择题(本大题共8小题,每小题2分,共16分.在每小题所给出的四个选项中,只有一项是正确的)1.(2分)2的相反数是()A.﹣2B.﹣C.D.2【分析】利用相反数的概念:只有符号不同的两个数叫做互为相反数,进而得出答案.【解答】解:2的相反数是﹣2.故选:A.【点评】此题主要考查了相反数的概念,正确把握定义是解题关键.2.(2分)计算m6÷m2的结果是()A.m3B.m4C.m8D.m12【分析】利用同底数幂的除法运算法则计算得出答案.【解答】解:m6÷m2=m6﹣2=m4.故选:B.【点评】此题主要考查了同底数幂的除法运算,正确掌握运算法则是解题关键.3.(2分)如图是某几何体的三视图,该几何体是()A.圆柱B.三棱柱C.四棱柱D.四棱锥【分析】该几何体的主视图与左视图均为矩形,俯视图为正方形,易得出该几何体的形状.【解答】解:该几何体的主视图为矩形,左视图为矩形,俯视图是一个正方形,则可得出该几何体是四棱柱.故选:C.【点评】主要考查的是三视图的相关知识,解得此题时要有丰富的空间想象力.4.(2分)8的立方根为()A.B.C.2D.±2【分析】根据立方根的定义求出的值,即可得出答案.【解答】解:8的立方根是==2,故选:C.【点评】本题考查了对立方根的定义的理解和运用,注意:a的立方根是.5.(2分)如果x<y,那么下列不等式正确的是()A.2x<2y B.﹣2x<﹣2y C.x﹣1>y﹣1D.x+1>y+1【分析】根据不等式的性质逐个判断即可.【解答】解:A、∵x<y,∴2x<2y,故本选项符合题意;B、∵x<y,∴﹣2x>﹣2y,故本选项不符合题意;C、∵x<y,∴x﹣1<y﹣1,故本选项不符合题意;D、∵x<y,∴x+1<y+1,故本选项不符合题意;故选:A.【点评】本题考查了不等式的性质,能熟记不等式的性质的内容是解此题的关键.6.(2分)如图,直线a、b被直线c所截,a∥b,∠1=140°,则∠2的度数是()A.30°B.40°C.50°D.60°【分析】先根据邻补角互补求得∠3,然后再根据两直线平行、内错角相等即可解答.【解答】解:∵∠1+∠3=180°,∠1=40°,∴∠3=180°﹣∠1=180°﹣140°=40°∵a∥b,∴∠2=∠3=40°.故选:B.【点评】本题考查了平行线的性质,掌握“两直线平行、内错角相等”是解答本题的关键.7.(2分)如图,AB是⊙O的弦,点C是优弧AB上的动点(C不与A、B重合),CH⊥AB,垂足为H,点M是BC的中点.若⊙O的半径是3,则MH长的最大值是()A.3B.4C.5D.6【分析】根据直角三角形斜边中线的性质以及直径是圆中最大的弦,即可求得MH的最大值是3.【解答】解:∵CH⊥AB,垂足为H,∴∠CHB=90°,∵点M是BC的中点.∴MH=BC,∵BC的最大值是直径的长,⊙O的半径是3,∴MH的最大值为3,故选:A.【点评】本题考查了直角三角形斜边中线的性质,明确BC的最大值为⊙O的直径的长是解题的关键.8.(2分)如图,点D是▱OABC内一点,CD与x轴平行,BD与y轴平行,BD=,∠ADB=135°,S△ABD=2.若反比例函数y=(x>0)的图象经过A、D两点,则k的值是()A.2B.4C.3D.6【分析】根据三角形面积公式求得AE=2,易证得△AOM≌△CBD(AAS),得出OM =BD=,根据题意得出△ADE是等腰直角三角形,得出DE=AE=2,设A(m,),则D(m﹣2,3),根据反比例函数系数k的几何意义得出关于m的方程,解方程求得m=3,进一步求得k=6.【解答】解:作AM⊥y轴于M,延长BD,交AM于E,设BC与y轴的交点为N,∵四边形OABC是平行四边形,∴OA∥BC,OA=BC,∴∠AOM=∠CNM,∵BD∥y轴,∴∠CBD=∠CNM,∴∠AOM=∠CBD,∵CD与x轴平行,BD与y轴平行,∴∠CDB=90°,BE⊥AM,∴∠CDB=∠AMO,∴△AOM≌△CBD(AAS),∴OM=BD=,∵S△ABD==2,BD=,∴AE=2,∵∠ADB=135°,∴∠ADE=45°,∴△ADE是等腰直角三角形,∴DE=AE=2,∴D的纵坐标为3,设A(m,),则D(m﹣2,3),∵反比例函数y=(x>0)的图象经过A、D两点,∴k=m=(m﹣2)×3,解得m=3,∴k=m=6.故选:D.【点评】本题考查了反比例函数系数k的几何意义,反比例函数图象上点的坐标特征,平行四边形的性质,等腰直角三角形的判定和性质,三角形的面积等,表示出A、D的坐标是解题的关键.二、填空题(本大题共10小题,每小题2分,共20分.不需写出解答过程,请把笞案直接填写在答题卡相应位置上)9.(2分)计算:|﹣2|+(π﹣1)0=3.【分析】首先计算乘方和绝对值,然后计算加法,求出算式的值是多少即可.【解答】解:|﹣2|+(π﹣1)0=2+1=3,故答案为:3.【点评】此题主要考查了实数的运算,要熟练掌握,解答此题的关键是要明确:在进行实数运算时,和有理数运算一样,要从高级到低级,即先算乘方、开方,再算乘除,最后算加减,有括号的要先算括号里面的,同级运算要按照从左到右的顺序进行.另外,有理数的运算律在实数范围内仍然适用.10.(2分)若代数式有意义,则实数x的取值范围是x≠1.【分析】分式有意义时,分母x﹣1≠0,据此求得x的取值范围.【解答】解:依题意得:x﹣1≠0,解得x≠1,故答案为:x≠1.【点评】本题考查了分式有意义的条件.(1)分式有意义的条件是分母不等于零.(2)分式无意义的条件是分母等于零.11.(2分)地球的半径大约为6400km.数据6400用科学记数法表示为 6.4×103.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:将6400用科学记数法表示为6.4×103.故答案为:6.4×103.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.12.(2分)分解因式:x3﹣x=x(x+1)(x﹣1).【分析】本题可先提公因式x,分解成x(x2﹣1),而x2﹣1可利用平方差公式分解.【解答】解:x3﹣x,=x(x2﹣1),=x(x+1)(x﹣1).故答案为:x(x+1)(x﹣1).【点评】本题考查了提公因式法,公式法分解因式,先提取公因式后再利用平方差公式继续进行因式分解,分解因式一定要彻底.13.(2分)若一次函数y=kx+2的函数值y随自变量x增大而增大,则实数k的取值范围是k>0.【分析】根据一次函数的性质,如果y随x的增大而增大,则一次项的系数大于0,据此求出k的取值范围.【解答】解:∵一次函数y=kx+2,函数值y随x的值增大而增大,∴k>0.故答案为:k>0.【点评】本题考查的是一次函数的性质,解答本题要注意:在一次函数y=kx+b(k≠0)中,当k>0时y随x的增大而增大.14.(2分)若关于x的方程x2+ax﹣2=0有一个根是1,则a=1.【分析】把x=1代入方程得出1+a﹣2=0,求出方程的解即可.【解答】解:∵关于x的方程x2+ax﹣2=0有一个根是1,∴把x=1代入方程得:1+a﹣2=0,解得:a=1,故答案为:1.【点评】本题考查了一元二次方程的解和解一元一次方程,能得出关于a的一元一次方程是解此题的关键.15.(2分)如图,在△ABC中,BC的垂直平分线分别交BC、AB于点E、F.若△AFC是等边三角形,则∠B=30°.【分析】根据垂直平分线的性质得到∠B=∠BCF,再利用等边三角形的性质得到∠AFC =60°,从而可得∠B的度数.【解答】解:∵EF垂直平分BC,∴BF=CF,∴∠B=∠BCF,∵△ACF为等边三角形,∴∠AFC=60°,∴∠B=∠BCF=30°.故答案为:30.【点评】本题考查了垂直平分线的性质,等边三角形的性质,三角形外角的性质,解题的关键是利用垂直平分线的性质得到∠B=∠BCF.16.(2分)数学家笛卡尔在《几何》一书中阐述了坐标几何的思想,主张取代数和几何中最好的东西,互相以长补短.在菱形ABCD中,AB=2,∠DAB=120°.如图,建立平面直角坐标系xOy,使得边AB在x轴正半轴上,点D在y轴正半轴上,则点C的坐标是(2,).【分析】根据直角三角形的性质可得OA和OD的长,根据菱形的性质和坐标与图形的性质可得答案.【解答】解:∵四边形ABCD是菱形,且AB=2,∴CD=AD=AB=2,∵∠DAB=120°,∴∠OAD=60°,Rt△AOD中,∠ADO=30°,∴OA=AD==1,OD==,∴C(2,),故答案为:(2,).【点评】此题主要考查了含30度角的直角三角形的性质,菱形的性质,坐标与图形的性质等知识,解题的关键是确定OD的长.17.(2分)如图,点C在线段AB上,且AC=2BC,分别以AC、BC为边在线段AB的同侧作正方形ACDE、BCFG,连接EC、EG,则tan∠CEG=.【分析】根据正方形的性质以及锐角三角函数的定义即可求出答案.【解答】解:连接CG,在正方形ACDE、BCFG中,∠ECA=∠GCB=45°,∴∠ECG=90°,设AC=2,BC=1,∴CE=2,CG=,∴tan∠GEC==,故答案为:.【点评】本题考查正方形,解题的关键是熟练运用正方形的性质以及锐角三角函数的定义,本题属于基础题型.18.(2分)如图,在△ABC中,∠B=45°,AB=6,D、E分别是AB、AC的中点,连接DE,在直线DE和直线BC上分别取点F、G,连接BF、DG.若BF=3DG,且直线BF与直线DG互相垂直,则BG的长为4或2.【分析】如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H,证明四边形DGBT是平行四边形,求出DH,TH即可解决问题.【解答】解:如图,过点B作BT⊥BF交ED的延长线于T,过点B作BH⊥DT于H.∵DG⊥BF,BT⊥BF,∴DG∥BT,∵AD=DB,AE=EC,∴DE∥BC,∴四边形DGBT是平行四边形,∴BG=DT,DG=BT,∠BDH=∠ABC=45°,∵AD=DB=3,∴BH=DH=3,∵∠TBF=∠BHF=90°,∴∠TBH+∠FBH=90°,∠FBH+∠F=90°,∴∠TBH=∠F,∴tan∠F=tan∠TBH===,∴=,∴TH=1,∴DT=TH+DH=1+3=4,∴BG=4.当点F在ED的延长线上时,同法可得DT=BG=3﹣1=2.故答案为4或2.【点评】本题考查相似三角形的性质,平行四边形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造特殊四边形解决问题.三、解答题(本大题共10小题,共84分.请在答题卡指定区域内作答,如无特殊说明,解答应写出文字说明、演算步骤或推理过程)19.(6分)先化简,再求值:(x+1)2﹣x(x+1),其中x=2.【分析】先根据完全平方公式和单项式乘以多项式法则算乘法,再合并同类项,最后代入求出即可.【解答】解:(x+1)2﹣x(x+1)=x2+2x+1﹣x2﹣x=x+1,当x=2时,原式=2+1=3.【点评】本题考查了整式的混合运算和求值,能正确根据整式的运算法则进行化简是解此题的关键.20.(8分)解方程和不等式组:(1)+=2;(2).【分析】(1)方程两边都乘以x﹣1得出方程x﹣2=2(x﹣1),求出方程的解,再进行检验即可;(2)先求出每个不等式的解集,再求出不等式组的解集即可.【解答】解:(1)方程两边都乘以x﹣1得:x﹣2=2(x﹣1),解得:x=0,检验:把x=0代入x﹣1得:x﹣1≠0,所以x=0是原方程的解,即原方程的解是:x=0;(2),∵解不等式①得:x<3,解不等式②得:x≥﹣2,∴不等式组的解集是:﹣2≤x<3.【点评】本题考查了解分式方程和解一元一次不等式组,能把分式方程转化成整式方程是解(1)的关键,能根据不等式的解集找出不等式组的解集是解(2)的关键.21.(8分)为了解某校学生对球类运动的喜爱情况,调查小组就打排球、打乒乓球、打篮球、踢足球四项球类运动对该校学生进行了“你最喜爱的球类运动”的抽样调查,并根据调查结果绘制成如图统计图.(1)本次抽样调查的样本容量是100;(2)补全条形统计图;(3)该校共有2000名学生,请你估计该校最喜爱“打篮球”的学生人数.【分析】(1)根据打排球的人数和所占的百分比即可求出样本容量;(2)用总人数乘以打乒乓球的人数所占的百分比求出打乒乓球的人数,再用总人数减去其他项目的人数求出踢足球的人数,从而补全统计图;(3)用该校的总人数乘以“打篮球”的人数所占的百分比即可.【解答】解:(1)本次抽样调查的总人数是:25÷25%=100(人),则样本容量是100;故答案为:100;(2)打乒乓球的人数有:100×35%=35(人),踢足球的人数有:100﹣25﹣35﹣15=25(人),补全统计图如下:(3)根据题意得:2000×=300(人),答:估计该校最喜爱“打篮球”的学生人数有300人.【点评】本题考查的是条形统计图和扇形统计图的综合运用.读懂统计图,从不同的统计图中得到必要的信息是解决问题的关键.条形统计图能清楚地表示出每个项目的数据;扇形统计图直接反映部分占总体的百分比大小.22.(8分)在3张相同的小纸条上分别标上1、2、3这3个号码,做成3支签,放在一个不透明的盒子中.(1)搅匀后从中随机抽出1支签,抽到1号签的概率是;(2)搅匀后先从中随机抽出1支签(不放回),再从余下的2支签中随机抽出1支签,求抽到的2支签上签号的和为奇数的概率.【分析】(1)共有3种可能出现的结果,其中“抽到1号”的有1种,可求出概率;(2)用列表法表示所有可能出现的结果,找出“和为奇数”的情况,进而求出相应的概率.【解答】解:(1)共有3种可能出现的结果,其中“抽到1号”的有1种,因此“抽到1号”的概率为,故答案为:;(2)用列表法表示所有可能出现的结果情况如下:共有6种可能出现的结果,其中“和为奇数”的有4种,∴P(和为奇数)==.【点评】本题考查列表法和树状图求随机事件发生的概率,列举出所有可能出现的结果情况,是正确解答的关键.23.(8分)已知:如图,点A、B、C、D在一条直线上,EA∥FB,EA=FB,AB=CD.(1)求证:∠E=∠F;(2)若∠A=40°,∠D=80°,求∠E的度数.【分析】(1)首先利用平行线的性质得出,∠A=∠FBD,根据AB=CD即可得出AC=BD,进而得出△EAC≌△FBD解答即可;(2)根据全等三角形的性质和三角形内角和解答即可.【解答】证明:(1)∵EA∥FB,∴∠A=∠FBD,∵AB=CD,∴AB+BC=CD+BC,即AC=BD,在△EAC与△FBD中,,∴△EAC≌△FBD(SAS),∴∠E=∠F;(2)∵△EAC≌△FBD,∴∠ECA=∠D=80°,∵∠A=40°,∴∠E=180°﹣40°﹣80°=60°,答:∠E的度数为60°.【点评】此题主要考查了全等三角形的判定与性质等知识,解题时注意:两边及其夹角分别对应相等的两个三角形全等.根据已知得出△EAC≌△FBD是解题关键.24.(8分)某水果店销售苹果和梨,购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元.(1)求每千克苹果和每千克梨的售价;(2)如果购买苹果和梨共15千克,且总价不超过100元,那么最多购买多少千克苹果?【分析】(1)设每千克苹果的售价为x元,每千克梨的售价为y元,根据“购买1千克苹果和3千克梨共需26元,购买2千克苹果和1千克梨共需22元”,即可得出关于x,y的二元一次方程组,解之即可得出结论;(2)设购买m千克苹果,则购买(15﹣m)千克梨,根据总价=单价×数量结合总价不超过100元,即可得出关于m的一元一次不等式,解之取其最大值即可得出结论.【解答】解:(1)设每千克苹果的售价为x元,每千克梨的售价为y元,依题意,得:,解得:.答:每千克苹果的售价为8元,每千克梨的售价为6元.(2)设购买m千克苹果,则购买(15﹣m)千克梨,依题意,得:8m+6(15﹣m)≤100,解得:m≤5.答:最多购买5千克苹果.【点评】本题考查了二元一次方程组的应用以及一元一次不等式的应用,解题的关键是:(1)找准等量关系,正确列出二元一次方程组;(2)根据各数量之间的关系,正确列出一元一次不等式.25.(8分)如图,正比例函数y=kx的图象与反比例函数y=(x>0)的图象交于点A(a,4).点B为x轴正半轴上一点,过B作x轴的垂线交反比例函数的图象于点C,交正比例函数的图象于点D.(1)求a的值及正比例函数y=kx的表达式;(2)若BD=10,求△ACD的面积.【分析】(1)把把点A(a,4)代入反比例函数关系式可求出a的值,确定点A的坐标,进而求出正比例函数的关系式;(2)根据BD=10,求出点B的横坐标,求出OB,代入求出BC,根据三角形的面积公式进行计算即可.【解答】解:(1)把点A(a,4)代入反比例函数y=(x>0)得,a==2,∴点A(2,4),代入y=kx得,k=2,∴正比例函数的关系式为y=2x,答:a=2,正比例函数的关系式为y=2x;(2)当BD=10=y时,代入y=2x得,x=5,∴OB=5,当x=5代入y=得,y=,即BC=,∴CD=BD﹣BC=10﹣=,∴S△ACD=××(5﹣2)=12.6,【点评】本题考查反比例函数、一次函数图象上点的坐标特征,把点的坐标代入是常用方法.26.(10分)如图1,点B在线段CE上,Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.(1)点F到直线CA的距离是1;(2)固定△ABC,将△CEF绕点C按顺时针方向旋转30°,使得CF与CA重合,并停止旋转.①请你在图1中用直尺和圆规画出线段EF经旋转运动所形成的平面图形(用阴影表示,保留画图痕迹,不要求写画法).该图形的面积为;②如图2,在旋转过程中,线段CF与AB交于点O,当OE=OB时,求OF的长.【分析】(1)如图1中,作FD⊥AC于D.证明△ABC≌△CDF(AAS)可得结论.(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.根据S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF计算即可.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△EOH中,利用勾股定理构建方程求解即可.【解答】解:(1)如图1中,作FD⊥AC于D,∵Rt△ABC≌Rt△CEF,∠ABC=∠CEF=90°,∠BAC=30°,BC=1.∴∠ACB=60°,∠FCE=∠BAC=30°,AC=CF,∴∠ACF=30°,∴∠BAC=∠FCD,在△ABC和△CDF中,,∴△ABC≌△CDF(AAS),∴FD=BC=1,故答案为1;(2)线段EF经旋转运动所形成的平面图形如图所示,此时点E落在CF上的点H处.S阴=S△EFC+S扇形ACF﹣S扇形CEH﹣S△AHC=S扇形ACF﹣S扇形ECH=﹣=.故答案为.(3)如图2中,过点E作EH⊥CF于H.设OB=OE=x.在Rt△ECF中,∵EF=1,∠ECF=30°,EH⊥CF,∴EC=EF=,EH=,CH=EH=,在Rt△BOC中,OC==,∴OH=CH﹣OC=﹣,在Rt△EOH中,则有x2=()2+(﹣)2,解得x=或﹣(不合题意舍弃),∴OC==,∵CF=2EF=2,∴OF=CF﹣OC=2﹣=.【点评】本题考查作图﹣旋转变换,解直角三角形,全等三角形的性质,扇形的面积等知识,解题的关键是学会利用参数构建方程解决问题,属于中考常考题型.27.(10分)如图1,⊙I与直线a相离,过圆心I作直线a的垂线,垂足为H,且交⊙I于P、Q两点(Q在P、H之间).我们把点P称为⊙I关于直线a的“远点“,把PQ•PH 的值称为⊙I关于直线a的“特征数”.(1)如图2,在平面直角坐标系xOy中,点E的坐标为(0,4).半径为1的⊙O与两坐标轴交于点A、B、C、D.①过点E画垂直于y轴的直线m,则⊙O关于直线m的“远点”是点D(填“A”.“B”、“C”或“D”),⊙O关于直线m的“特征数”为6;②若直线n的函数表达式为y=x+4.求⊙O关于直线n的“特征数”;(2)在平面直角坐标系xOy中,直线l经过点M(1,4),点F是坐标平面内一点,以F为圆心,为半径作⊙F.若⊙F与直线1相离,点N(﹣1,0)是⊙F关于直线1的“远点”.且⊙F关于直线l的“特征数”是4,求直线l的函数表达式.【分析】(1)①根据远点,特征数的定义判断即可.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.解直角三角形求出PH,PQ的长即可解决问题.(2)如图2﹣1中,设直线l的解析式为y=kx+b.分两种情形k>0或k<0,分别求解即可解决问题.【解答】解:(1)①由题意,点D是⊙O关于直线m的“远点”,⊙O关于直线m的特征数=DB•DE=2×5=20,故答案为D,20.②如图1﹣1中,过点O作OH⊥直线n于H,交⊙O于Q,P.设直线y=x+4交x轴于F(﹣,0),交y轴于E(0,4),∴OE=4,OF=∴tan∠FEO==,∴∠FEO=30°,∴OH=OE=2,∴PH=OH+OP=3,∴⊙O关于直线n的“特征数”=PQ•PH=2×3=6.(2)如图2﹣1中,设直线l的解析式为y=kx+b.当k>0时,过点F作FH⊥直线l于H,交⊙F于E,N.由题意,EN=2,EN•NH=4,∴NH=,∵N(﹣1,0),M(1,4),∴MN==2,∴HM===,∴△MNH是等腰直角三角形,∵MN的中点K(0,2),∴KN=HK=KM=,∴H(﹣2,3),把H(﹣2,3),M(1,4)代入y=kx+b,则有,解得,∴直线l的解析式为y=x+,当k<0时,同法可知直线i经过H′(2,1),可得直线l的解析式为y=﹣3x+7.综上所述,满足条件的直线l的解析式为y=x+或y=﹣3x+7.【点评】本题属于圆综合题,考查了一次函数的性质,解直角三角形,远点,特征数的定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.28.(10分)如图,二次函数y=x2+bx+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,抛物线过点C(1,0),且顶点为D,连接AC、BC、BD、CD.(1)填空:b=﹣4;(2)点P是抛物线上一点,点P的横坐标大于1,直线PC交直线BD于点Q.若∠CQD =∠ACB,求点P的坐标;(3)点E在直线AC上,点E关于直线BD对称的点为F,点F关于直线BC对称的点为G,连接AG.当点F在x轴上时,直接写出AG的长.【分析】(1)将点C坐标代入解析式可求解;(2)分两种情况讨论,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,可得点E(1,3),CE=BE=3,AE=1,可得∠EBC=∠ECB=45°,tan∠ACE =,∠BCF=45°,由勾股定理逆定理可得∠BCD=90°,可求∠ACE=∠DBC,可得∠ACB=∠CFD,可得点F与点Q重合,即可求点P坐标;当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,先求直线BD解析式,点F坐标,由中点坐标公式可求点Q 坐标,求出CQ解析式,联立方程组,可求点P坐标;(3)设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,先求出∠CNH=45°,由轴对称的性质可得EN=NF,∠ENB =∠FNB=45°,由“AAS”可证△EMN≌△NKF,可得EM=NK=,MN=KF,可求CF=6,由轴对称的性质可得点G坐标,即可求解.【解答】解:(1)∵抛物线y=x2+bx+3的图象过点C(1,0),∴0=1+b+3,∴b=﹣4,故答案为:﹣4;(2)∵b=4,∴抛物线解析式为y=x2﹣4x+3∵抛物线y=x2﹣4x+3的图象与y轴交于点A,过点A作x轴的平行线交抛物线于另一点B,∴点A(0,3),3=x2﹣4x,∴x1=0(舍去),x2=4,∴点B(4,3),∵y=x2﹣4x+3=(x﹣2)2﹣1,∴顶点D坐标(2,﹣1),如图1,当点Q在点D上方时,过点C作CE⊥AB于E,设BD与x轴交于点F,∵点A(0,3),点B(4,3),点C(1,0),CE⊥AB,∴点E(1,3),CE=BE=3,AE=1,∴∠EBC=∠ECB=45°,tan∠ACE=,∴∠BCF=45°,∵点B(4,3),点C(1,0),点D(2,﹣1),∴BC==3,CD==,BD==2,∵BC2+CD2=20=BD2,∴∠BCD=90°,∴tan∠DBC====tan∠ACE,∴∠ACE=∠DBC,∴∠ACE+∠ECB=∠DBC+∠BCF,∴∠ACB=∠CFD,又∵∠CQD=∠ACB,∴点F与点Q重合,∴点P是直线CF与抛物线的交点,∴0=x2﹣4x+3,∴x1=1,x2=3,∴点P(3,0);当点Q在点D下方上,过点C作CH⊥DB于H,在线段BH的延长线上截取HF=QH,连接CQ交抛物线于点P,∵CH⊥DB,HF=QH,∴CF=CQ,∴∠CFD=∠CQD,∴∠CQD=∠ACB,∵CH⊥BD,∵点B(4,3),点D(2,﹣1),∴直线BD解析式为:y=2x﹣5,∴点F(,0),∴直线CH解析式为:y=﹣x+,∴,解得,∴点H坐标为(,﹣),∵FH=QH,∴点Q(,﹣),∴直线CQ解析式为:y=﹣x+,联立方程组,解得:或,∴点P(,﹣);综上所述:点P的坐标为(3,0)或(,﹣);(3)如图,设直线AC与BD的交点为N,作CH⊥BD于H,过点N作MN⊥x轴,过点E作EM⊥MN,连接CG,GF,。

北京市上学期初中八年级期末考试数学试卷(含答案解析)

北京市上学期初中八年级期末考试数学试卷(含答案解析)

北京市上学期初中八年级期末考试数学试卷试卷满分:100分,考试时间:100分钟一、选择题(本题共30分,每小题3分)下面各题均有四个选项,其中只有一个..是符合题意的. 1. 2017年6月北京国际设计周面向社会公开征集“二十四节气”标识系统设计,以期通过现代设计的手段,尝试推动我国非物质文化遗产创新传承与发展.下面四幅作品分别代表“立春”、“芒种”、“白露”、“大雪”,其中是轴对称图形的是( ).2.科学家可以使用冷冻显微术以高分辨率测定溶液中的生物分子结构,使用此技术测定细菌蛋白结构的分辨率达到0.22纳米,也就是0.000 000 000 22米.将0.000 000 000 22用科学记数法表示为( ).A. 0.22×10-9B. 2.2×10-10C. 22×10-11D. 0.22×10-83.下列各式中,能用完全平方公式进行因式分解的是( ). A.x 2-2x-2 B.x 2+1 C.x 2-4x+4 D.x 2+4x+1 4.化简分式277()a ba b ++的结果是( ). A.7a b + B. 7a b + C. 7a b - D. 7a b- 5.在平面直角坐标系xOy 中,点M ,N ,P ,Q 的位置如图所示.若直线y=kx 经过第一、三象限,则直线y=kx-2可能经过的点是( ).A.点M B.点N C.点P D.点Q6.已知12xy=,则3x yy+的值为( ).A.7 B. 17C.52D.257.如图,在△ABC中,BC的垂直平分线分别交AC,BC于点D,E.若△ABC的周长为22,BE=4,则△ABD的周长为( ).A.14 B.18C.20 D.268.如图,在3×3的正方形网格中有四个格点A,B,C,D,以其中一个点为原点,网格线所在直线为坐标轴,建立平面直角坐标系,使其余三个点中存在两个点关于一条坐标轴对称,则原点可能是( ).A.点A B.点BC.点C D.点D9.某中学为了创建“最美校园图书屋”,新购买了一批图书,其中科普类图书平均每本书的价格是文学类图书平均每本书价格的1.2倍.已知学校用12000元购买文学类图书的本数比用这些钱购买科普类图书的本数多100本,那么学校购买文学类图书平均每本书的价格是多少元?设学校购买文学类图书平均每本书的价格是x元,则下面所列方程中正确的是( ).A .1200012000100 1.2x x =+ B .12000120001001.2x x =+ C .1200012000100 1.2x x =- D .12000120001001.2x x=- 10.如图,已知正比例函数y 1=ax 与一次函数212y x b =+的图象交于点P .下面有四个结论:①a<0;②b<0;③当x>0时,y 1>0;④当x<-2时,y 1>y 2.其中正确的是( ).A .①②B .②③C .①③D .①④二、填空题(本题共25分,第13题4分,其余每小题3分) 11.要使分式21x -有意义,则x 的取值范围是_________________. 12.点P(3,4)关于y 轴的对称点P'的坐标是______________.13.计算:(1) 223b a ⎛⎫⎪⎝⎭=_________________.(2)21054ab ac c÷=___________________. 14.如图,点B ,E ,C ,F 在同一条直线上,AB=DE ,∠B=∠DEF.要使△ABC ≌△DEF ,则需要再添加的一个条件是________________.(写出一个即可)15.如图,△ABC是等边三角形,AB =6,AD是BC边上的中线.点E在AC边上,且∠EDA=30°,则直线ED与AB的位置关系是_________________,ED的长为_______________.16.写出一个一次函数,使得它同时满足下列两个条件:①y随x的增大而减小;②图象经过点(1,-4).答:____________________.17.如图,在Rt△ABC中,∠B=90°.(1)作出∠BAC的平分线AM;(要求:尺规作图,保留作图痕迹,不写作法)(2)若∠BAC的平分线AM与BC交于点D,且BD=3,AC=10,则△DAC的面积为_____________________.18.小芸家与学校之间是一条笔直的公路,小芸从家步行前往学校的途中发现忘记带阅读分享要用的U盘,便停下给妈妈打电话,妈妈接到电话后,带上U盘马上赶往学校,同时小芸沿原路返回,两人相遇后,小芸立即赶往学校,妈妈沿原路返回家,并且小芸到达学校比妈妈到家多用了5分钟.若小芸步行的速度始终是每分钟100米,小芸和妈妈之间的距离y与小芸打完..后.步行..电话的时间x之间的函数关系如图所示,则妈妈从家出发__________分钟后与小芸相遇,相遇后妈妈回家的平均速度是每分钟________________米,小芸家离学校的距离为_________________米.三、解答题(本题共27分,第19、23题每小题6分,其余每小题5分) 19.分解因式:(1) 5a 2+10ab; (2)mx 2-12mx+36m. 解: 解:20.老师所留的作业中有这样一个分式的计算题:22511x x x +++-,甲、乙两位同学完成的过程分别如下:老师发现这两位同学的解答都有错误.请你从甲、乙两位同学中,选择一位同学的解答过程,帮助他分析错因,并加以改正. (1)我选择________同学的解答过程进行分析.(填“甲”或“乙”)该同学的解答从第____________步开始出现错误,错误的原因是____________________ _________________________________________________________________________; (2)请重新写出完成此题的正确解答过程.22511x x x +++- 解:21.如图,在△ABC 中,点D 在AC 边上,AE ∥BC ,连接ED 并延长交BC 于点F .若AD=CD ,求证:ED=FD.证明: 22.解分式方程:2521393x x x +=+--. 解:23.已知一次函数y=kx+b ,当x=2时y 的值为1,当x=-1时y 的值为-5. (1)在所给坐标系中画出一次函数y=kx+b 的图象; (2)求k ,b 的值;(3)将一次函数y=kx+b 的图象向上平移4个单位长度,求所得到新的函数图象与x 轴,y 轴的交点坐标.解:(2)(3)四、解答题(本题共18分,第24题5分,第25题6分,第26题7分)24.阅读材料:课堂上,老师设计了一个活动:将一个4 4的正方形网格沿着网格线划分成两部分(分别用阴影和空白表示),使得这两部分图形是全等的,请同学们尝试给出划分的方法.约定:如果两位同学的划分结果经过旋转、翻折后能够重合,那么就认为他们的划分方法相同.小方、小易和小红分别对网格进行了划分,结果如图1、图2、图3所示.小方说:“我们三个人的划分方法都是正确的.但是将小红的整个图形(图3)逆时针旋转90°后得到的划分方法与我的划分方法(图1)是一样的,应该认为是同一种方法,而小易的划分方法与我的不同.”老师说:“小方说得对.”完成下列问题:(1)图4的划分方法是否正确?答:____________________________.(2)判断图5的划分方法与图2小易的划分方法是否相同,并说明你的理由;答:____________________________________________________________________.(3)请你再想出一种与已有方法不同的划分方法,使之满足上述条件,并在图6中画出来.25.如图,在平面直角坐标系xOy中,直线l1:y=3x+l与y轴交于点A.直线l2:y=kx+b 与直线y=-x平行,且与直线l1交于点B(1,m),与y轴交于点C.(1)求m的值,以及直线l2的表达式;(2)点P在直线l2:y=kx+b上,且PA=PC,求点P的坐标;(3)点D在直线l1上,且点D的横坐标为a,点E在直线l2上,且DE∥y轴.若DE =6,求a的值.解:(1)(2)(3)26.在△ABC中,∠A=60°,BD,CE是△ABC的两条角平分线,且BD,CE交于点F.(1)如图1,用等式表示BE,BC,CD这三条线段之间的数量关系,并证明你的结论;小东通过观察、实验,提出猜想:BE+CD=BC.他发现先在BC上截取BM,使BM=BE,连接FM,再利用三角形全等的判定和性质证明CM=CD即可.①下面是小东证明该猜想的部分思路,请补充完整:i)在BC上截取BM,使BM=BE,连接FM,则可以证明△BEF与_________________全等,判定它们全等的依据是______________;ii)由∠A= 60°,BD,CE是△ABC的两条角平分线,可以得出∠EFB=__________°;……②请直接利用....i),ii)已得到的结论,完成证明猜想BE+CD=BC的过程.证明:(2)如图2,若∠ABC=40°,求证:BF=CA.证明:附加题试卷满分:20分一、解答题(本题共12分,每小题6分)1.基础代谢是维持机体生命活动最基本的能量消耗,在身高、年龄、性别相同的前提下(不考虑其他因素的影响),可以利用某基础代谢估算公式,根据体重x(单位:kg)计算得到人体每日所需基础代谢的能量消耗y(单位:Kcal),且y是x的函数.已知六名身高约为170cm的15岁男同学的体重,以及计算得到的他们每日所需基础代谢的能量消耗,如下表所示:学生编号 A B C D E F体重x(kg)54 56 60 63 67 70每日所需基础代谢的能量消耗y( Kcal) 1596 1631 1701 1753.5 1823.5 1876请根据上表中的数据回答下列问题:(1)随着体重的增加,人体每日所需基础代谢的能量消耗______________;(填“增大”、“减小”或“不变”)(2)若一个身高约为170cm 的15岁男同学,通过计算得到他每日所需基础代谢的能量消耗为1792Kcal ,则估计他的体重最接近于( );A. 59kgB.62kgC.65kgD.68kg(3)当54≤x ≤70时,下列四个y 与x 的函数中,符合表中数据的函数是( ). A.y=x 2B.y=-10.5x+1071C.y=10x+1101D.y=17.5x+6512.我们把正n 边形(n ≥3)的各边三等分,分别以居中的那条线段为一边向外作正n 边形,并去掉居中的那条线段,得到一个新的图形叫做正n 边形的“扩展图形”,并将它的边数记为a n .如图1,将正三角形进行上述操作后得到其“扩展图形”,且a 3=12.图3、图4分别是正五边形、正六边形的“扩展图形”.(1)如图2,在5×5的正方形网格中用较粗的虚线画有一个正方形,请在图2中用实线画出此正方形的“扩展图形”;(2)已知a 3=12,a 4=20,a 5=30,则图4中a 6=_______________,根据以上规律,正n 边形的“扩展图形”中a n =___________________;(用含n 的式子表示)(3)已知345111111111,,,344556a a a =-=-=-……且345111197300n a a a a ++++=,则n=___________.二、解答题(本题8分)3.在平面直角坐标系xOy 中,直线l 1:12y x b =+与x 轴交于点A ,与y 轴交于点B ,且点C 的坐标为(4,-4).(1)点A 的坐标为___________,点B 的坐标为______________;(用含b 的式子表示) (2)当b=4时,如图1所示,连接AC ,BC ,判断△ABC 的形状,并证明你的结论; (3)过点C 作平行于y 轴的直线l 2,点P 在直线l 2上,当-5<b<4时,在直线l 1平移的过程中,若存在点P 使得△ABP 是以AB 为直角边的等腰直角三角形,请直接写出所有满足条件的点P的纵坐标.解:(2)△ABC的形状是____________________.证明:(3)点P的纵坐标为:__________________.参考答案一、选择题(本题共30分,每小题3分)题号 1 2 3 4 5 6 7 8 9 10 答案 D B C B A C A D B D二、填空题(本题共25分,第13题4分,其余每小题3分)11. x≠1 12. ( - 3,4) 13. (1)429ba;(2)8bc(各2分)14.答案不唯一.如:∠A=∠D. 15.平行,3.(第一个空1分,第二个空2分)16.答案不唯一.如:y=-4x.17.(1)如图所示;(2分)(2)15(1分)18. 8,60,2100(各1分)三、解答题(本题共27分,第19、23题每小题6分,其余每小题5分)19.解:(1) 5a2+ 10ab= 5a(a+2b);……………3分(2)mx2-12mx+36m= m(x2-12x+36) …………………………………………4分=m(x-6)2………………………………………………6分20.解:(1)选甲:一,理由合理即可,如:第—个分式的变形不符合分式的基本性质,分子漏乘x-1;………………………………………2分选乙:二,理由合理即可,如:与等式性质混淆,丢掉了分母;………………………………………2分 (2)22511x x x +++- 2(1)5(1)(1)(1)(1)x x x x x x -+=++-+-……………………3分225(1)(1)x x x x -++=+-33(1)(1)x x x +=+-……………………………………4分31x -………………………………5分 21.证明:如图, ∵AE ∥BC , ∴∠1=∠C ,∠E=∠2.…………………………………………2分在△AED 和△CFD 中, ∠1 =∠C, ∠E =∠2, AD=CD,∴△AED ≌△CFD.………………………………………………4分 ∴ED=FD.………………………………5分22.解:方程两边同乘(x+3)(x-3),得5(x-3)+2=x+3.…………………………2分 整理,得5x-15+2=x+3.……………………………………………3分 解得x=4.……………………………………………………4分经检验x=4是原分式方程的解.……………………………………………………5分 所以,原分式方程的解为x=4.23.解:(1)图象如图所示;……………………………………1分(2)∵当x=2时y的值为1,当x=-1时y的值为-5,∴ 2k +b=1,.…………………………3分解得k=2,……………………4分b=-3.(3)∵一次函数y=2x-3的图象向上平移4个单位长度后得到的新函数为y=2x+1,∴令y=0,12x=-;令x=0,y=1.∴新函数的图象与x轴,y轴的交点坐标分别为1(,0),(0,1)2-.……………………………6分四、解答题(本题共18分,第24题5分,第25题6分,第26题7分)24.解:(1)不正确;…………………………………………1分(2)相同,……………………………………………………2分理由合理即可,如:因为将图5沿直线翻折后得到的划分方法与图2的划分方法相同;……………………………………………………………………3分(3)答案不唯一,如:…………………………………………………………………………5分25.解:(1)∵点B(1,m,)在直线l1上,∴m=3×1+1=4.………………………………………………………………1分∵直线l2:y=kx+b与直线y=-x平行,∴k=-1.∵点B(1,4)在直线l2上,∴-1+b=4,解得b=5.∴直线l2的表达式为y=-x+5.………………………………2分(2)∵直线l1:y=3x+1与y轴交于点A,∴点A的坐标为(0,1).∵直线l2与y轴交于点C,∴点C的坐标为(0,5).∵PA=PC.∴点P在线段AC的垂直平分线上,∴点P的纵坐标为1+512=3.……………………………3分∵点P在直线l2上,∴-x+5=3,解得x=2.∴点P的坐标为(2,3).…………………………4分(3)∵点D在直线l1:y=3x+1上,且点D的横坐标为a,∴点D的坐标为(a,3a+1).∵点E在直线l2:y=kx+b上,且DE∥y轴,∴点E的坐标为(a,-a+5).∵DE=6.∴|3a+1-(-a+5)|=6.∴52a=或12-.………6分26.解:(1)①△BMF,边角边,60;……………………………………3分②证明:如图1.∵由i)知△BEF≌△BMF,∴∠2=∠1.∵由ii)知∠1=60°,︒=∠=∠︒=∠∴6013,602∴∠4=180°- ∠1 -∠2=60°.∴∠3=∠4.……………………4分∵CE是△ABC的角平分线,∴∠5=∠6.在△CDF和△CMF中,∠3 =∠4CF=CF,∠5=∠6.∴△CDF≌△CMF.∴CD=CM.∴BE+CD=BM+CM=BC.……………………5分(2)证明:作∠ACE的角平分线CN交AB于点N,如图2.∵∠A=60°,∠ABC=40°,∴∠ACB=180°-∠A -∠ABC=80°. ∵BD,CE分别是△ABC的角平分线,∴∠1=∠2=12∠ABC=20°,∠3 =∠ACE =12∠ACB = 40°.∵CN平分∠ACE,∴∠4=12∠ACE=20°.∴∠1=∠4.∵∠5 =∠2 +∠3 = 60°,∴∠5=∠A.∵∠6 = ∠1 +∠5,∠7 = ∠4 +∠A, ∴∠6=∠7.∴CE=CN.∵∠EBC=∠3 =40°,∴BE=CE.∴BE=CN.在△BEF和△CNA中 ,∠5=∠A∠1=∠4,BE=CN,∴△BEF≌△CNA.∴BF=CA.………………………………7分附加题一、解答题(本题共12分,每小题6分)1.解:(1)增大;……………………………………2分(2)C;……………………………………4分(3)D.…………………………6分2.解:(1)如图所示;……………………………………2分(2)42,n(n+1);…………………………………………4分(3)99.………………………………………………6分二、解答题(本题8分)3.解:(1)(-2b,0),(0,b);………………………………………………2分(2)等腰直角三角形;……………………………………………………3分证明:过点C作CD⊥y轴于点D,如图,则∠BDC=∠AOB=90°.∵点C的坐标为(4,-4),∴点D的坐标为(0,-4),CD=4.∵当b=4时,点A,B的坐标分别为(-8,0),(0,4),∴AO=8,BO=4,BD=8.∴AO=BD.BO=CD.在△AOB和△BDC中,AO=BD,∠AOB=∠BDC,BO=CD,∴△AOB≌△BDC. …………………………………4分∴∠1=∠2,AB=BC.∵∠1+∠3=90°,∴∠2+∠3=90°,即∠ABC=90°.∴△ABC是等腰直角三角形.…………………………5分(3) -12,83,8………………………………8分。

2023年中考数学总复习专题18二次函数与旋转变换综合问题(学生版)

2023年中考数学总复习专题18二次函数与旋转变换综合问题(学生版)

专题18二次函数与旋转变换综合问题【例1】(2022•凉山州)在平面直角坐标系xOy中,已知抛物线y=﹣x2+bx+c经过点A (﹣1,0)和点B(0,3),顶点为C,点D在其对称轴上,且位于点C下方,将线段DC绕点D按顺时针方向旋转90°,点C落在抛物线上的点P处.(1)求抛物线的解析式;(2)求点P的坐标;(3)将抛物线平移,使其顶点落在原点O,这时点P落在点E的位置,在y轴上是否存在点M,使得MP+ME的值最小,若存在,求出点M的坐标;若不存在,请说明理由.【例2】.(2022•梧州)如图,在平面直角坐标系中,直线y=﹣x﹣4分别与x,y轴交于点A,B,抛物线y=x2+bx+c恰好经过这两点.(1)求此抛物线的解析式;(2)若点C的坐标是(0,6),将△ACO绕着点C逆时针旋转90°得到△ECF,点A 的对应点是点E.①写出点E的坐标,并判断点E是否在此抛物线上;②若点P是y轴上的任一点,求BP+EP取最小值时,点P的坐标.【例3】.(2022•辽宁)如图,抛物线y=ax2﹣3x+c与x轴交于A(﹣4,0),B两点,与y 轴交于点C(0,4),点D为x轴上方抛物线上的动点,射线OD交直线AC于点E,将射线OD绕点O逆时针旋转45°得到射线OP,OP交直线AC于点F,连接DF.(1)求抛物线的解析式;(2)当点D在第二象限且=时,求点D的坐标;(3)当△ODF为直角三角形时,请直接写出点D的坐标.【例4】.(2022•河池)在平面直角坐标系中,抛物线L1:y=ax2+2x+b与x轴交于两点A,B(3,0),与y轴交于点C(0,3).(1)求抛物线L1的函数解析式,并直接写出顶点D的坐标;(2)如图,连接BD,若点E在线段BD上运动(不与B,D重合),过点E作EF⊥x轴于点F,设EF=m,问:当m为何值时,△BFE与△DEC的面积之和最小;(3)若将抛物线L1绕点B旋转180°得抛物线L2,其中C,D两点的对称点分别记作M,N.问:在抛物线L2的对称轴上是否存在点P,使得以B,M,P为顶点的三角形为等腰三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.一.解答题(共20小题)1.(2022•碑林区校级三模)如图,在平面直角坐标系中,抛物线W1与x轴交于A,B两点,与y轴交于点C(0,﹣6),顶点为D(﹣2,2).(1)求抛物线W1的表达式;(2)将抛物线W1绕原点O旋转180°得到抛物线W2,抛物线W2的顶点为D′,在抛物线W2上是否存在点M,使S△D′AD=S△D′DM?若存在,请求出点M的坐标;若不存在,请说明理由.2.(2022•双流区模拟)如图,抛物线C:y=ax2+6ax+9a﹣8与x轴相交于A,B两点(点A 在点B的左侧),已知点B的横坐标是2,抛物线C的顶点为D.(1)求a的值及顶点D的坐标;(2)点P是x轴正半轴上一点,将抛物线C绕点P旋转180°后得到抛物线C1,记抛物线C1的顶点为E,抛物线C1与x轴的交点为F,G(点F在点G的右侧).当点P与点B重合时(如图1),求抛物线C1的表达式;(3)如图2,在(2)的条件下,从A,B,D中任取一点,E,F,G中任取两点,若以取出的三点为顶点能构成直角三角形,我们就称抛物线C1为抛物线C的“勾股伴随同类函数”.当抛物线C1是抛物线C的勾股伴随同类函数时,求点P的坐标.3.(2022•灞桥区校级模拟)已知:如图,在平面直角坐标系xOy中,直线y=x+6与x 轴、y轴的交点分别为A、B,其中点C是x轴上一点,OC=3.(1)求过A、B、C三点的抛物线L的解析式;(2)将抛物线L绕着点O旋转180°得到抛物线L1,抛物线L1与x轴交于F点、E点(点F在点E的左侧),与y轴交于点M,则抛物线L1的对称轴上是否存在一点Q,使|QF﹣QM|的值最大?若存在,求出点Q的坐标及其最大值,若不存在,请说明理由.4.(2022•莲湖区二模)已知抛物线W1:y=ax2﹣bx﹣3与x轴交于A(﹣1,0)、B(3,0)两点与y轴交于点C,顶点为D.(1)求抛物线W1的表达式;(2)将抛物线W1绕原点O旋转180°后得到抛物线W2,W2的顶点为D',点M为W2上的一点,当△D'DM的面积等于△ABC的面积时,求点M的坐标.5.(2022•深圳三模)已知抛物线y=ax2+c过点A(﹣2,0)和D(﹣1,3)两点,交x轴于另一点B.(1)求抛物线解析式;(2)如图1,点P是BD上方抛物线上一点,连接AD,BD,PD,当BD平分∠ADP时,求P点坐标;(3)将抛物线图象绕原点O顺时针旋转90°形成如图2的“心形”图案,其中点M,N 分别是旋转前后抛物线的顶点,点E、F是旋转前后抛物线的交点.①直线EF的解析式是;②点G、H是“心形”图案上两点且关于EF对称,则线段GH的最大值是.6.(2022•无锡二模)二次函数y=ax2+bx+4的图象与x轴交于两点A、B,与y轴交于点C,且A(﹣1,0)、B(4,0).(1)求此二次函数的表达式;(2)①如图1,抛物线的对称轴m与x轴交于点E,CD⊥m,垂足为D,点F(﹣,0),动点N在线段DE上运动,连接CF、CN、FN,若以点C、D、N为顶点的三角形与△FEN相似,求点N的坐标;②如图2,点M在抛物线上,且点M的横坐标是1,将射线MA绕点M逆时针旋转45°,交抛物线于点P,求点P的坐标;(3)已知Q在y轴上,T为二次函数对称轴上一点,且△QOT为等腰三角形,若符合条件的Q恰好有2个,直接写出T的坐标.7.(2022•沙湾区模拟)如图,抛物线f(x):y=a(x+1)(x﹣5)与x轴交于点A、B(点A 位于点B左边),与y轴交于点C(0,.(1)求抛物线f(x)的解析式;(2)作点C关于x轴的对称点C',连接线段AC,作∠CAB的平分线AE交抛物线于点E,将抛物线f(x)沿对称轴向下平移经过点C'得到抛物线f'(x).在射线AE上取点F,连接FC,将射线FC绕点F逆时针旋转120°交抛物线f'(x)于点P.当△ACF为等腰三角形时,求点P的横坐标.8.(2022•灌南县二模)如图,抛物线y=ax2+bx+3经过点A(1,0),B(3,0)两点,与y轴交于点C,其顶点为M,连接MA,MC,AC,过点C作y轴的垂线l.(1)求该抛物线的表达式;(2)直线l上是否存在点N,使得S△MBN=2S△MAC?若存在,求出点N的坐标;若不存在,请说明理由.(3)如图2,若将原抛物线绕点C逆时针旋转45°,求新抛物线与y轴交点P坐标.9.(2022•红花岗区三模)如图(1),△ABC中,AC=BC=6,∠C=90°,点P在线段AC 上,从C点向A点运动,∠PBE=90°,BP=BE,PE交BC于点D,完成下列问题:(1)①点E到BC边的距离为;②若CD=x,△BDE的面积为S,则S与x的函数关系式为;(不写自变量取值范围)(2)当△BDE的面积为15时,若PC<AC,以C为原点,AC、BC所在直线分别为x、y轴建立坐标系如图(2),抛物线C1过点A、D、B;①点Q在抛物线C1上,且位于线段PB的下方,过点Q作QN⊥PB,垂足为点N,是否存在点Q,使得QN最长,若存在,请求出QN的长度和Q点坐标;若不存在,请说明理由;②将抛物线C1绕原点C旋转180°,得到抛物线C2,当﹣2a≤x≤﹣a时(a>0),抛物线C2有最大值2a,求a值.10.(2022•乳源县三模)如图,对称轴为直线x=﹣1的抛物线y=a(x﹣h)2+k(a≠0)图象与x轴交于点A、B(点A在点B的左侧),与y轴交于点C,其中点B的坐标为(2,0),点C的坐标为(0,4).(1)求该抛物线的解析式;(2)如图1,若点P为抛物线上第二象限内的一个动点,点M为线段CO上一动点,当△APC的面积最大时,求△APM周长的最小值;(3)如图2,将原抛物线绕点A旋转180°,得新抛物线y',在新抛物线y'的对称轴上是否存在点Q使得△ACQ为等腰三角形?若存在,请直接写出点Q的坐标;若不存在,说明理由.11.(2021秋•亭湖区期末)如图,在平面直角坐标系中,抛物线y=x2+bx+c经过点A(0,﹣3),与x轴的交点为B、C,直线l:y=2x+2与抛物线相交于点C,与y轴相交于点D,P是直线l下方抛物线上一动点.(1)求抛物线的函数表达式;(2)过点P作线段PM∥x轴,与直线l相交于点M,当PM最大时,求点P的坐标及PM的最大值;(3)把抛物线绕点O旋转180°,再向上平移使得新抛物线过(2)中的P点,E是新抛物线与y轴的交点,F为原抛物线对称轴上一点,G为平面直角坐标系中一点,直接写出所有使得以B、E、F、G为顶点、BF为边的四边形是菱形的点G的坐标,并把求其中一个点G的坐标的过程写出来.12.(2021秋•北京期中)定义:如果抛物线C1的顶点在抛物线C2上,同时,抛物线C2的顶点在抛物线C1上,则称抛物线C1与C2关联.例如,如图,抛物线y=x2的顶点(0,0)在抛物线y=﹣x2+2x上,抛物线y=﹣x2+2x的顶点(1,1)也在抛物线y=x2上,所以抛物线y=x2与y=﹣x2+2x关联.(1)已知抛物线C1:y=(x+1)2﹣2,分别判断抛物线C2:y=﹣x2+2x+1和抛物线C3:y=2x2+2x+1与抛物线C1是否关联;(2)抛物线M1:的顶点为A,动点P的坐标为(t,2),将抛物线M1绕点P(t,2)旋转180°得到抛物线M2,若抛物线M1与M2关联,求抛物线M2的解析式;(3)抛物线M1:的顶点为A,点B是与M1关联的抛物线的顶点,将线段AB绕点A按顺时针方向旋转90°得到线段AB1,若点B1恰好在y轴上,请直接写出点B1的纵坐标.13.(2021•锡山区一模)如图,抛物线y=x2+bx+c的顶点为M,对称轴是直线x=1,与x轴的交点为A(﹣3,0)和B,将抛物线y=x2+bx+c绕点B逆时针方向旋转90°,点M1、A1为点M、A旋转后的对应点,旋转后的抛物线与y轴相交于C,D两点.(1)写出点B的坐标及求原抛物线的解析式;(2)求证A,M,A1三点在同一直线上;(3)设点P是旋转后抛物线上DM1之间的一动点,是否存在一点P,使四边形PM1MD 的面积最大?如果存在,请求出点P的坐标及四边形PM1MD的面积;如果不存在,请说明理由.14.(2022秋•道里区校级期中)如图,在平面直角坐标系中,点O为坐标原点,直线y=x+3交x轴于点A,y轴于点D,抛物线y=x2+bx﹣3与x轴交于A,B两点,交y轴于点C.(1)求抛物线的解析式;(2)P在第三象限抛物线上,P点横坐标为t,连接AP、DP,△APD的面积为s,求s 关于t的函数关系式;(不要求写自变量t的取值范围)(3)在(2)的条件下,PD绕点P逆时针旋转,与线段AD相交于点E,且∠EPD=2∠PDC,过点E作EF⊥PD交PD于G,y轴于点F,连接PF,若,求线段PF的长.15.(2022秋•大兴区期中)在平面直角坐标系xOy中,已知四边形OABC是平行四边形,点A(4,0),∠AOC=60°,点C的纵坐标为,点D是边BC上一点,连接OD,将线段OD绕点O逆时针旋转60°得到线段OE.给出如下定义:如果抛物线y=ax2+bx(a≠0)同时经过点A,E,则称抛物线y=ax2+bx(a≠0)为关于点A,E的“伴随抛物线”.(1)如图1,当点D与点C重合时,点E的坐标为,此时关于点A,E的“伴随抛物线”的解析式为;(2)如图2,当点D在边BC上运动时,连接CE.①当CE取最小值时,求关于点A,E的“伴随抛物线”的解析式;②若关于点A,E的“伴随抛物线”y=ax2+bx(a≠0)存在,直接写出a的取值范围.16.(2020秋•天心区期末)如图1,在平面直角坐标系xOy中,抛物线C:y=﹣x2+bx+c 与x轴相交于A,B两点,顶点为D,其中A(﹣4,0),B(4,0),设点F(m,0)是x轴的正半轴上一点,将抛物线C绕点F旋转180°,得到新的抛物线C'.(1)求抛物线C的函数解析式;(2)若抛物线C'与抛物线C在y轴的右侧有两个不同的公共点,求m的取值范围;(3)如图2,P是第一象限内抛物线C上一点,它到两坐标轴的距离相等,点P在抛物线C'上的对应点P',设M是C上的动点,N是C'上的动点,试探究四边形PMP'N能否成为正方形?若能,求出m的值;若不能,请说明理由.17.(2022•大庆模拟)如图1,在平面直角坐标系xOy中,直线l:与x轴、y轴分别交于点A和点B(0,﹣1),抛物线经过点B,且与直线l的另一个交点为C(4,n).(1)求n的值和抛物线的解析式;(2)点D在抛物线上,且点D的横坐标为t(0<t<4).DE∥y轴交直线l于点E,点F 在直线l上,且四边形DFEG为矩形(如图2).若矩形DFEG的周长为p,求p与t的函数关系式以及p的最大值;(3)M是平面内一点,将△AOB绕点M沿逆时针方向旋转90°后,得到△A1O1B1,点A、O、B的对应点分别是点A1、O1、B1.若△A1O1B1的两个顶点恰好落在抛物线上,请直接写出点A1的横坐标.18.(2022•苏州一模)如图,二次函数y=x2+bx+4的图象与x轴交于点A、B,与y轴交于点C,点A的坐标为(﹣8,0),P是抛物线上一点(点P与点A、B、C不重合).(1)b=,点B的坐标是;(2)连接AC、BC,证明:∠CBA=2∠CAB;(3)点D为AC的中点,点E是抛物线在第二象限图象上一动点,作DE,把点A沿直线DE翻折,点A的对称点为点G,点E运动时,当点G恰好落在直线BC上时,求E 点的坐标.19.(2022•大连模拟)已知抛物线G:y=(m+1)x2+2(n﹣1)x+n+1(m≠﹣1,m为常数)的对称轴与直线y=kx+k(k>0,k为常数)相交于x轴上一点P.(1)求m与n的数量关系;(2)若直线y=kx+k与y轴交于点Q,且OQ=OP,①把直线y=kx+k绕点Q顺时针旋转45°得到的直线与抛物线G相交于A、B两点,若AB=4,求m的值;②将直线y=kx+k向上平移2k个单位,得到的直线与抛物线G的两个交点的横坐标x1,x2满足﹣2<x1<x2<2,求m的取值范围.20.(2021•兰州)如图1,二次函数y=a(x+3)(x﹣4)图象交坐标轴于点A,B(0,﹣2),点P为x轴上一动点.(1)求二次函数y=a(x+3)(x﹣4)的表达式;(2)过点P作PQ⊥x轴分别交线段AB,抛物线于点Q,C,连接AC.当OP=1时,求△ACQ的面积;(3)如图2,将线段PB绕点P逆时针旋转90°得到线段PD.当点D在抛物线上时,求点D的坐标.。

(完整)中考数学压轴题精选及答案

(完整)中考数学压轴题精选及答案

一、解答题1.在平面直角坐标系中,抛物线2y ax bx c =++与x 轴交于点(1,0)A -和点B ,与y 轴交于点C ,顶点D 的坐标为(1,4)-.(1)直接写出抛物线的解析式;(2)如图1,若点P 在抛物线上且满足,求点P 的坐标; (3)如图2,M 是直线BC 上一个动点,过点M 作MN x ⊥轴交抛物线于点N ,Q 是直线AC 上一个动点,当为等腰直角三角形时,直接写出此时点M 及其对应点Q 的坐标2.在平面直角坐标系中,二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,与y 轴交于点C .(1)求二次函数的解析式;(2)点P 是直线AC 上方的抛物线上一动点,当ACP △面积最大时,求出点P 的坐标;(3)点M 为抛物线上一动点,在x 轴上是否存在点Q ,使以A C M Q 、、、为顶点的四边形是平行四边形?若存在,直接写出点Q 的坐标;若不存在,说明理由.3.在平面直角坐标系xOy 中,⊙O 的半径为1.对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到⊙O 的弦B ′C ′(B ′,C ′分别是B ,C 的对应点),则称线段BC 是⊙O 的以点A 为中心的“关联线段”.(1)如图,点A ,B 1,C 1,B 2,C 2,B 3,C 3的横、纵坐标都是整数.在线段B 1C 1,B 2C 2,B 3C 3中,⊙O 的以点A 为中心的“关联线段”是 ;(2)△ABC 是边长为1的等边三角形,点A (0,t ),其中t ≠0.若BC 是⊙O 的以点A 为中心的“关联线段”,求t 的值;(3)在△ABC 中,AB =1,AC =2.若BC 是⊙O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.4.综合与探究如图,在平面直角坐标系中,点()0,10A ,点B 是x 轴的正半轴上的一个动点,连接AB ,取AB 的中点M ,将线段MB 绕着点B 按顺时针方向旋转90°,得到线段BC .过点B 作x 轴的垂线交直线AC 于点D .设点B 坐标是(),0t(1)当6t =时,点M 的坐标是 ;(2)用含t 的代数式表示点C 的坐标;(3)是否存在点B ,使四边形AOBD 为矩形?若存在,请求出点B 的坐标;若不存在,请说明理由;(4)在点B 的运动过程中,平面内是否存在一点N ,使得以A 、B 、N 、D 为顶点的四边形是菱形?若存在,请直接写出点N 的纵坐标(不必要写横坐标);若不存在,请说明理由.5.如图(1),在菱形ABCD 中,∠ABC =60°,点E 在边CD 上(不与点C ,D 重合),连结AE ,交BD 于点F .(1)如图(2),若点M 在BC 边上,且DE =CM ,连结AM ,EM .求证:三角形AEM 为等边三角形;(2)设DF x BF=,求tan ∠AFB 的值(用x 的代数式表示); (3)如图(3),若点G 在线段BF 上,且FG =2BG ,连结AG 、CG ,DF x BF =,四边形AGCE 的面积为S 1,ABG 的面积为S 2,求12S S 的最大值.6.如图,在平面直角坐标系中,ABC 的边AB 在x 轴上,且OB OA >,以AB 为直径的圆过点C .若点C 的坐标为()0,4,10AB =,(1)求抛物线的解析式;(2)点P 为该函数在第一象限内的图象上一点(不与BC 重合),过点P 作PQ BC ⊥,垂足为点Q ,连接PC .若以点P 、C 、Q 为顶点的三角形与COA 相似,求点P 的坐标;(3)若ACB ∠平分线所在的直线l 交x 轴与点E ,过点E 任作一直线l '分别交射线CA ,CB (点C 除外)于点M ,N .则11CM CN+的是否为定值?若是,求出该定值;若不是,请说明理由.7.如图1,⊙I 与直线a 相离,过圆心I 作直线a 的垂线,垂足为H ,且交⊙I 于P 、Q 两点(Q 在P 、H 之间).我们把点Q 称为⊙I 关于直线a 的“近点”,点P 称为⊙I 关于直线a 的“远点”把PQ ·QH 的值称为⊙I 关于直线a 的“特征数”.(1)如图2,在平面直角坐标系xOy 中,点E 的坐标为(0,3).半径为1的⊙O 与两坐标轴交于点A 、B 、C 、D .①过点E 画垂直于y 轴的直线m ,则⊙O 关于直线m 的“近点”“远点”分别是点_____和_____(填“A ”、“B ”、“C ”或“D ”),⊙O 关于直线m 的“特征数”为_____;②若直线n 的函数表达式为33y x =-+.求⊙O 关于直线n 的“特征数”;(2)在平面直角坐标系xOy 中,直线l 经过点M (1,2),点F 是坐标平面内一点,以F 5为半径作⊙F .若⊙F 与直线l 相离,点N (1-,0)是⊙F 关于直线l 的“近点”.且⊙F 关于直线l 的“特征数”是6,求直线l 的函数表达式.8.如图,抛物线y=-x2+bx+c与x轴交于A,B两点,其中A(3,0),B(-1,0),与y轴交于点C,抛物线的对称轴交x轴于点D,直线y=kx+b1经过点A、C,连接CD.(1)分别求抛物线和直线AC的解析式;(2)在直线AC下方的抛物线上,是否存在一点P,使得△ACP的面积是△ACD面积的2倍,若存在,请求出点P的坐标;若不存在,请说明理由;(3)在抛物线的对称轴上是否存在一点Q,使线段AQ绕Q点顺时针旋转90°得到线段QA1,且点A1恰好落在该抛物线上?若存在,求出点Q的坐标;若不存在,请说明理由.9.已知:如图,在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b(b>0)交x轴于点A,交y轴于点C,以OA,OC为边作矩形ABCO,矩形ABCO的面积是36.(1)求直线AC的解析式.(2)点P为线段AB上一点,点Q为第一象限内一点,连接PO,PQ,∠OPQ=90°,且OP=PQ,设AP的长为t,点Q的横坐标为d,求d与t的函数关系式.(不要求写出自变量t的取值范围)(3)在(2)的条件下,过点Q作QE∥PO交AB的延长线于点E,作∠POC的平分线OF 交PE于点F,交PQ于点K,若KQ=2EF,求点Q的坐标.10.如图,平面直角坐标系中,点O为原点,抛物线交x轴于()2,05,0B两点,交y轴于点C.A-、()(1)求抛物线解析式;(2)点P在第一象限内的抛物线上,过点P作x轴的垂线,垂足为点H,连AP交y轴于点E,设P点横坐标为t,线段EC长为d,求d与t的函数解析式;(3)在(2)条件下,点M在CE上,点Q在第三象限内抛物线上,连接PC、PQ、PM,PQ与y轴交于W,若,,,求点Q的坐标.11.已知:如图1,点A(a,b),AB x⊥轴于点B2++-+=.a b a b24(8)0(1)试判断△AOB的形状,并说明理由;(2)如图2,若点C为线段AB的中点,连OC并作OD OC⊥,且OD OC=,连AD交x轴于点E,试求点E的坐标;(3)如图3,若点M为点B的左边x轴负半轴上一动点,以AM为一边作45∠=︒交MANy轴负半轴于点N,连MN,在点M运动过程中,试猜想式子OM MN ON+-的值是否发生变化?若不变,求这个不变的值;若发生变化,试求它变化的范围.12.直角三角板ABC的斜边AB的两个端点在⊙O上,已知∠BAC=30°,直角边AC与⊙O 相交于点D,且点D是劣弧AB的中点.(1)如图1,判断直角边BC所在直线与⊙O的位置关系,并说明理由;(2)如图2,点P是斜边AB上的一个动点(与A、B不重合),DP的延长线交⊙O于点Q,连接QA、QB.①AD=6,PD=4,则AB= ;PQ= ;②当点P在斜边AB上运动时,求证:QA+QB=3QD.13.如图,已知四边形ABCD内接于⊙O,直径DF交BC于点G.(1)如图1,求证:∠BAD-∠BCF=90°;(2)如图2,连接AC,当∠BAC=∠CFD+∠ACD时,求证:CA=CB;(3)如图3,在(2)的条件下,AC交DF于点H,∠BAC=∠DGB,45CGBG,AC=9,求△CDH的面积.14.同学们学过正方形与等腰三角形发现它们都是轴对称图形,它们之间有很多相似,在正边形ABCD中,E是对角线AC上一点(不与点A、C重合),以AD、AE为邻边作平行四边形AEGD,GE交CD于点M,连接CG.(1)如图1,当12AE AC<时,过点E作EF BE⊥交CD于点F,连接GF并延长交AC于点H.求证:EB EF=;(2)在ABC中,AB AC=,90BAC∠=︒.过点A作直线AP,点C关于直线AP的对称点为点D,连接BD,CD直线BD交直线AP于点E.如图2,①依题意补全图形;②请用等式表示线段EB,ED,BC之间的数量关系,并予以证明.15.如图,在平面直角坐标系中,抛物线y=x2+bx+c与x轴交于点A和点B(1,0),与y轴交于点C(0,﹣3).(1)求抛物线的函数表达式.(2)若点P为第三象限内抛物线上一动点,作PD⊥x轴于点D,交AC于点E,过点E作AC 的垂线与抛物线的对称轴和y轴分别交于点F、G,设点P的横坐标为m.①求PE2的最大值;②连接DF、DG,若∠FDG=45°,求m的值.16.【问题提出】如图①,在△ABC中,若AB=8,AC=4,求BC边上的中线AD的取值范围.【问题解决】解决此问题可以用如下方法:延长AD 到点E ,使DE =AD ,再连结BE (或将△ACD 绕着点D 逆时针旋转180°得到△EBD ),把AB 、AC ,2AD 集中在△ABE 中,利用三角形三边的关系即可判断.由此得出中线AD 的取值范围是__________【应用】如图②,如图,在△ABC 中,D 为边BC 的中点、已知AB =10,AC =6,AD =4,求BC 的长.【拓展】如图③,在△ABC 中,∠A =90°,点D 是边BC 的中点,点E 在边AB 上,过点D 作D F⊥DE 交边AC 于点F ,连结EF .已知BE =5,CF =6,则EF 的长为__________.17.已知二次函数()20y x bx c a =++≠的图象与x 轴的交于A 、B (1,0)两点,与y 轴交于点()03C -,.(1)求二次函数的表达式及A 点坐标;(2)D 是二次函数图象上位于第三象限内的点,若点D 的横坐标为m ,ACD △的面积为S ,求S 与m 之间的函数关系式,并写出ACD △的面积取得最大值时点D 的坐标;(3)M 是二次函数图象对称轴上的点,在二次函数图象上是否存在点N .使以M 、N 、B 、O 为顶点的四边形是平行四边形?若有,请写出点N 的坐标(不写求解过程).18.如图,在平面直角坐标系中,已知二次函数图像222(1)2y x a x a a =-+++的顶点为P ,点B 39(2,)16- 是一次函数5119216y x =+上一点.(1)当a =0时,求顶点P 坐标;(2)若a >0,且一次函数2y x b =-+的图象与此抛物线没有交点,请你写出一个符合条件的一次函数关系式(只需写一个,不必写出过程);(3)作直线OC :12y x =与一次函数5119216y x =+交于点C .连结OB ,当抛物线与△OBC 的边有两个交点时,求a 的取值范围.19.已知O 为ABC ∆的外接圆,AC BC =,点D 是劣弧AB 上一点(不与点A ,B 重合),连接DA ,DB ,DC .(1)如图1,若AB 是直径,将ACD ∆绕点C 逆时针旋转得到BCE ∆.若4CD =,求四边形ADBC 的面积;(2)如图2,若AB AC =,半径为2,设线段DC 的长为x .四边形ADBC 的面积为S . ①求S 与x 的函数关系式;②若点M ,N 分别在线段CA ,CB 上运动(不含端点),经过探究发现,点D 运动到每一个确定的位置.DMN ∆的周长有最小值t ,随着点D 的运动,t 的值会发生变化.求所有t 值中的最大值,并求此时四边形ADBC 的面积S .20.如图,在ABCD 中,90ABD ∠=︒,5cm AD =,8cm BD =.点P 从点A 出发,沿折线AB BC -向终点C 运动,点P 在AB 边、BC 边上的运动速度分别为1cm/s 、5cm /s .在点P 的运动过程中,过点P 作AB 所在直线的垂线,交边AD 或边CD 于点Q ,以PQ 为一边作矩形PQMN ,且2QM PQ =,MN 与BD 在PQ 的同侧.设点P 的运动时间为t (秒),矩形PQMN 与ABCD 重叠部分的面积为()2cm S .(1)求边AB 的长.(2)当04t <<时,PQ = ,当48t <<时,PQ = .(用含t 的代数式表示)(3)当点M 落在BD 上时,求t 的值.(4)当矩形PQMN 与ABCD 重叠部分图形为四边形时,求S 与t 的函数关系式.【参考答案】参考答案**科目模拟测试一、解答题1.(1)223y x x =--;(2),; (3),;,;,;,; ,;,. 【解析】【分析】(1)根据顶点的坐标,设抛物线的解析式为y =a (x ﹣1)2﹣4,将点A (﹣1,0)代入,求出a 即可得出答案;(2)利用待定系数法求出直线BD 解析式为y =2x ﹣6,过点C 作CP 1∥BD ,交抛物线于点P 1,再运用待定系数法求出直线CP 1的解析式为y =2x ﹣3,联立方程组即可求出P 1(4,5),过点B 作y 轴平行线,过点C 作x 轴平行线交于点G ,证明△OCE ≌△GCF(ASA),运用待定系数法求出直线CF解析式为y=12x﹣3,即可求出P2(52,﹣74);(3)利用待定系数法求出直线AC解析式为y=﹣3x﹣3,直线BC解析式为y=x﹣3,再分以下三种情况:①当△QMN是以NQ为斜边的等腰直角三角形时,②当△QMN是以MQ为斜边的等腰直角三角形时,③当△QMN是以MN为斜边的等腰直角三角形时,分别画出图形结合图形进行计算即可.(1)解:∵顶点D的坐标为(1,﹣4),∴设抛物线的解析式为y=a(x﹣1)2﹣4,将点A(﹣1,0)代入,得0=a(﹣1﹣1)2﹣4,解得:a=1,∴y=(x﹣1)2﹣4=x2﹣2x﹣3,∴该抛物线的解析式为y=x2﹣2x﹣3;(2)解:∵抛物线对称轴为直线x=1,A(﹣1,0),∴B(3,0),设直线BD解析式为y=kx+e,∵B(3,0),D(1,﹣4),∴,解得:,∴直线BD解析式为y=2x﹣6,过点C作CP1∥BD,交抛物线于点P1,设直线CP1的解析式为y=2x+d,将C(0,﹣3)代入,得﹣3=2×0+d,解得:d=﹣3,∴直线CP1的解析式为y=2x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=2x﹣3,解得:x1=0(舍),x2=4,故P1(4,5),过点B作y轴平行线,过点C作x轴平行线交于点G,∵OB=OC,∠BOC=∠OBG=∠OCG=90°,∴四边形OBGC是正方形,设CP1与x轴交于点E,则2x﹣3=0,解得:x=32,∴E(32,0),在x轴下方作∠BCF=∠BCE交BG于点F,∵四边形OBGC是正方形,∴OC=CG=BG=3,∠COE=∠G=90°,∠OCB=∠GCB=45°,∴∠OCB﹣∠BCE=∠GCB﹣∠BCF,即∠OCE=∠GCF,∴△OCE≌△GCF(ASA),∴FG=OE=32,∴BF=BG﹣FG=3﹣32=32,∴F(3,﹣32),设直线CF解析式为y=k1x+e1,∵C(0,﹣3),F(3,﹣32),∴,解得:,∴直线CF解析式为y=12x﹣3,结合抛物线y=x2﹣2x﹣3,可得x2﹣2x﹣3=12x﹣3,解得:x1=0(舍),x2=52,∴P2(52,﹣74),综上所述,符合条件的P点坐标为:(4,5)或(52,﹣74);(3)解:(3)设直线AC解析式为y=m1x+n1,直线BC解析式为y=m2x+n2,∵A(﹣1,0),C(0,﹣3),∴,解得:,∴直线AC解析式为y=﹣3x﹣3,∵B(3,0),C(0,﹣3),∴,解得:,∴直线BC解析式为y=x﹣3,设M(t,t﹣3),则N(t,t2﹣2t﹣3),∴MN=|t2﹣2t﹣3﹣(t﹣3)|=|t2﹣3t|,①当△QMN是以NQ为斜边的等腰直角三角形时,此时∠NMQ=90°,MN=MQ,如图2,∵MQ∥x轴,∴Q(﹣13t,t﹣3),∴|t2﹣3t|=|t﹣(﹣13t)|,∴t2﹣3t=±43t,解得:t=0(舍)或t=53或t=133,∴,;,;②当△QMN是以MQ为斜边的等腰直角三角形时,此时∠MNQ=90°,MN=NQ,如图3,∵NQ∥x轴,∴Q(,t2﹣2t﹣3),∴NQ=|t﹣|=13|t2+t|,∴|t2﹣3t|=13|t2+t|,解得:t=0(舍)或t=5或t=2,∴M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);③当△QMN是以MN为斜边的等腰直角三角形时,此时∠MQN=90°,MQ=NQ,如图4,过点Q作QH⊥MN于H,则MH=HN,∴H(t,),∴Q(,),∴QH=|t﹣|=16|t2+5t|,∵MQ=NQ,∴MN=2QH,∴|t2﹣3t|=2×16|t2+5t|,解得:t=7或1,∴M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3);综上所述,点M及其对应点Q的坐标为:,;,;M3(5,2),Q3(﹣5,12);M4(2,﹣1),Q4(0,﹣3);M5(7,4),Q5(﹣7,18);M6(1,﹣2),Q6(0,﹣3).【点睛】本题是二次函数综合题,主要考查了待定系数法求一次函数和二次函数解析式,求一次函数与二次函数图象交点坐标,全等三角形判定和性质,正方形判定和性质,等腰直角三角形性质等,本题属于中考压轴题,综合性强,难度较大,熟练掌握待定系数法、等腰直角三角形性质等相关知识,运用数形结合思想、分类讨论思想是解题关键.2.(1)224233y x x =--+;(2)35(,)22P -(3)存在,12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【解析】【分析】(1)根据待定系数法求抛物线解析式;(2)设224(,)33P t t --根据(1)的结论求得C 的坐标,进而求得AC 的解析式,过P 作PD ⊥x 轴交AC 于点D ,进而求得PD 的长,根据12APC C A S PD x x =⋅⋅-△求得APC S 的表达式,进而根据二次函数的性质求得取得最大值时,t 的值,进而求得P 点的坐标;(3)分情况讨论,①//CM AQ ,②//AC MQ ,根据抛物线的性质以及平行四边形的性质先求得M 的坐标进而求得Q 点的坐标.【详解】(1)二次函数22y ax bx =++的图象与x 轴交于()()3,0,1,0A B -两点,则093202a b a b =-+⎧⎨=++⎩解得2343a b ⎧=-⎪⎪⎨⎪=-⎪⎩∴抛物线解析式为224233y x x =--+ (2)抛物线224233y x x =--+与y 轴交于点C ,令0x =,则2y = (0,2)C ∴设直线AC 的解析式为y kx b =+,由(3,0)A -,(0,2)C ,则302k b b -+=⎧⎨=⎩解得232k b ⎧=⎪⎨⎪=⎩ ∴直线AC 的解析式为223y x =+, 如图,过P 作PD ⊥x 轴交AC 于点D ,设224(,)33P t t --,则2(,2)3D t t +, 2224222223333PD t t t t t ⎛⎫∴=--+-+=-- ⎪⎝⎭∴12APC C A S PD x x =⋅⋅-△212(2)323t t =⨯--⨯2239324t t t ⎛⎫=--=-++ ⎪⎝⎭ ∴当32t =-时,APC S 取得最大值,此时222423435223332322t t ⎛⎫⎛⎫--+=-⨯--⨯-+= ⎪ ⎪⎝⎭⎝⎭ ∴35(,)22P - (3)存在,理由如下抛物线解析式为224233y x x =--+()228133x =-++ ∴抛物线的对称轴为直线1x =①如图,当//CM AQ 时,Q 点在x 轴上,//CM x 轴∴,M C 关于抛物线的对称轴直线1x =对称,(0,2)C(2,2)M ∴-2CM ∴=122AQ AQ ∴==(3,0)A -12(1,0),(5,0)Q Q ∴--②当//AC MQ 时,如图,设M 的纵坐标为n ,四边形ACQM 是平行四边形,点A ,Q 在x 轴上,则,AQ MC 的交点也在x 轴上, 202n +∴= 解得2n =-设(,2)M m -,2242233x x ∴-=--+ 解得17x =-(17,2)M ∴--A 点到C 点是横坐标加3,纵坐标加2∴M 点到Q 点也是横坐标加3,纵坐标加2 即(173,0)Q -±34(27,0),(27,0)Q Q ∴综上所述,存在点Q ,使得以A C M Q 、、、为顶点的四边形是平行四边形,Q 点的坐标为12(1,0),(5,0)Q Q --,34(27,0),(27,0)Q Q .【点睛】本题考查了二次函数综合,待定系数法,二次函数最值,二次函数的图象与性质,平行四边形的性质,综合运用以上知识是解题的关键.3.(1)B 2C 2;(233-3)OA 最小值为1,相应的3BC =OA 最大值为2,相应的6BC =【解析】【分析】(1)结合题意,根据旋转和圆的性质分析,即可得到答案;(2)根据题意,分B C ''在x 轴上方和x 轴上方两种情况;根据等边三角形、勾股定理、全等三角形的性质,得32AD OD ==,从而完成求解; (3)结合题意,得当AC '为⊙O 的直径时,OA 取最小值;当A 、B '、O 三点共线时,OA 取最大值;根据勾股定理、等腰三角形的性质计算,即可得到答案.【详解】(1)线段B 1C 1绕点A 旋转得到的11B C '',均不能成为⊙O 的弦∴线段B 1C 1不是⊙O 的以点A 为中心的“关联线段”;线段B 2C 2绕点A 旋转得到的22B C '',如下图:∴线段B 2C 2是⊙O 的以点A 为中心的“关联线段”;线段B 3C 3绕点A 旋转得到的33B C '',均不能成为⊙O 的弦∴线段B 3C 3不是⊙O 的以点A 为中心的“关联线段”;故答案为:B 2C 2;(2)∵△ABC 是边长为1的等边三角形,点A (0,t ),⊙O 的半径为1 ∴//B C x ''轴分B C ''在x 轴上方和x 轴上方两种情况:当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:∵1OB OC ''==∴1122B D B C '''== ∴2232OD OB B D ''=-=∵△ABC 是边长为1的等边三角形,即△AB C ''是边长为1的等边三角形, ∴AC D OC D ''∠=∠,AD B C ''⊥ ∴AC D OC D ''△≌△∴32AD OD == ∴3AO AD OD =+=∴3t =;当B C ''在x 轴上方时,B C ''与y 轴相交于点D ,见下图:同理,3AO AD OD =+=∴()0,3A -;∴t 3=-;∴3t =或3-;(3)当AC '为⊙O 的直径时,OA 取最小值,如下图:∴OA 最小值为1,90AB C ''∠=︒ ∴223BC B C AC AB ''''==-=;当A 、B '、O 三点共线时,OA 取最大值,2OA AC '== ,如下图:作AE OC '⊥交OC '于点E ,作C F AO '⊥交AO 于点F ,如下图∵2OA AC '==∴1122OE OC '==∴2215AE AO OE - ∵11222AE OC OB C F '''⨯=⨯⨯ ∴1152C F AE '==∴2214OF OC C F ''=-=∴34B F OB OF ''=-=∴262BC B C C F B F ''''==+=∴OA 最小值为1,相应的3BC =;OA 最大值为2,相应的62BC =. 【点睛】本题考查了旋转、圆、等边三角形、勾股定理、全等三角形、等腰三角形的知识;解题的关键是熟练掌握旋转、圆周角、等腰三角形三线合一、勾股定理的性质,从而完成求解.4.(1)(3,5)M ,(2)1(5,)2C t t +;(3)(20,0)B ;(4)154或10. 【解析】 【分析】(1)利用中点坐标公式计算即可.(2)如图1中,作ME OB ⊥于E ,CF x ⊥轴于F .证明()MEB BFC AAS ∆≅∆,利用全等三角形的性质即可解决问题.(3)如图2中,存在.由题意当CF OA =时,可证四边形AOBD 是矩形,构建方程即可解决问题.(4)分三种情形:①如图3中,当AD BD =时,以AB 为对角线可得菱形ADBN ,此时点N 在y 轴上.②如图4中,当AD AB =时,以BD 为对角线可得菱形ABND .此时点N 的纵坐标为6.③因为BD AB ≠,所以不存在以AD 为对角线的菱形. 【详解】解:(1)如图1中,(0,10)A ,(6,0)B ,AM BM =, (3,5)M ∴,(2)如图1中,作ME OB ⊥于E ,CF x ⊥轴于F .//ME OA ,AM BM =, 12OE EB t ∴==,152ME OA ==,90MEB CFB CBM ∠=∠=∠=︒,90MBE CBF ∴∠+∠=︒,90MBE BME ∠+∠=︒, BME CBF ∴∠=∠,()MEB BFC AAS ∴∆≅∆,5BF ME ∴==,12CF BE t ==,5OF OB BF t ∴=+=+, 1(5,)2C t t ∴+.(3)存在.如图2中,作ME OB ⊥于E ,CF x ⊥轴于F .理由:由题意当=10CF OA =时,//OA CF , ∴四边形AOFC 是平行四边形,90AOF ∠=︒,∴四边形AOFC 是矩形,90DAO AOB DBO ∴∠=∠=∠=︒,∴四边形AOBD 是矩形,又∵由(2)得12CF BE t ==, 即:1102t =,解得:20t =.(20,0)B ∴.(4)①如图3中,当AD BD =时,以AB 为对角线可得菱形ADBN ,此时点N 在y 轴上.AD BD =, BAD ABD ∴∠=∠,OAB ABD ∴∠=∠,OAB BAD ∴∠=∠. tan tan OAB BAD ∴∠=∠, ∴12OB BC OA BA ==,即1102t =,5t ∴=,5OB ∴=,设AN NB m ==,在Rt OBN △中,则有2225(10)m m =+-, 解得254m =, 25151044ON OA AN ∴=-=-=, ∴点N 的纵坐标为154. ②如图4中,当AD AB =时,以BD 为对角线可得菱形ABND .此时点N 的纵坐标为10.③BD AB ≠,∴不存在以AD 为对角线的菱形. 综上所述,满足条件的点N 的纵坐标为154或10. 【点睛】本题属于四边形综合题,考查了矩形的判定和性质,菱形的判定和性质,翻折变换,全等三角形的判定和性质等知识,解题的关键是学会添加常用辅助线,构造全等三角形解决问题,学会利用参数构建方程解决问题,属于中考压轴题.5.(1)证明见解析;(23333xx;(3)194【解析】 【分析】(1)如图,连接,AC 证明,ACB ACD 都为等边三角形,可得,AC AD = 再证明,ACM ADE ≌从而可得答案;(2)如图,记,AC BD 交于点,O 设,,DFa OFb 四边形ABCD 为菱形,60,ABC ∠=︒表示33,33OA OB a b 利用,2DF ax BF a b则2,1a xb x再利用三角函数的定义可得答案;(3)如图,设,DFESn 证明,DFE BFA ∽ 2,BFAnSx 再表示2222,,33ABGAGFn nSS S x x 结合菱形的轴对称的性质可得:2=,3CBG nS x 表示,AFDn S x可得2=,BCD ABDn n S Sxx 可得2212243334,3nn n S x x x x n S x 再利用二次函数的性质可得答案.【详解】证明:(1)如图,连接,AC 菱形ABCD 中,∠ABC =60°,,60,120,60,AB BC CDAD ABC ADC BAD BCD BAC CAD ACB,ACB ACD 都为等边三角形,,AC AD ∴=,60,DE CM ACM ADE,ACM ADE ≌ ,,AMAE MAC EAD 60,MACCAECAEEADAME ∴是等边三角形(2)如图,记,AC BD 交于点,O设,,DF a OF b 四边形ABCD 为菱形,60,ABC ∠=︒,,30,ACBD OB OD a b ABO33,33OAOB a b ,2DF a x BFa b1221,a b bx a a 11,22b ax 则2,1ax bx333tan 13a b OAa AFBOFbb32331,3133xxxx(3)如图,设,DFESn四边形ABCD 是平行四边形,,DFE BFA ∽22=,BFAn DF x S BF2,BFAn SxFG =2BG , 2222,,33ABGAGFn n SS S xx根据菱形的轴对称的性质可得:2=,3CBG n S x ,AFD ABFS DF x SBF2,AFDn n S x x x 2=,BCDABD n n SSxx1222224=333n n n n n nS nn x x x x x x, 2212243334,3n n n S x x x x n S x 30,a所以12S S 有最大值, 当31232x时,最大值为:1119334.424【点睛】本题考查的是菱形的性质,全等三角形的判定与性质,等边三角形的判定与性质,相似三角形的判定与性质,列二次函数关系式,二次函数的性质,锐角三角函数的应用,灵活运用以上知识解题是解本题的关键.6.(1)213442y xx =-++;(2)点P 的坐标为:(6,41,2);(3)11NC MC +=【解析】 【分析】(1)根据题意,先证明AOC ∆∽COB ∆,得到AO OCCO OB=,求出点A 、B 的坐标,然后利用待定系数法,即可求出抛物线解析式;(2)根据题意,可分为两种情况:AOC ∆∽PQC ∆或AOC ∆∽CQP ∆,结合解一元二次方程,相似三角形的判定和性质,分别求出点P 的坐标,即可得到答案;(3)过点E 作EI ⊥AC 于I ,EJ ⊥CN 于J ,然后由角平分线的性质定理,得到EI =EJ ,再证明△MEI ∽△MNC ,△NEJ ∽△NMC ,得到111NC MC EI+=,然后求出EI 一个定值,即可进行判断. 【详解】解:(1)∵以AB 为直径的圆过点C , ∴∠ACB =90°, ∵点C 的坐标为()0,4, ∴CO ⊥AB ,∴∠AOC =∠COB =90°,∴∠ACO +∠OCB =∠ACO +∠OAC =90°, ∴∠OCB =∠OAC , ∴AOC ∆∽COB ∆,∴AO OCCO OB=, ∵4CO =,10AO BO AB +==, ∴10AO OB =-, ∴1044OB OB-=, 解得:2OB =或8OB =, 经检验,满足题意, ∵OB OA >, ∴8OB =,∴点A 为(2-,0),点B 为(8,0).设抛物线的解析式为2y ax bx c =++,把点A 、B 、C 三点的坐标代入,有44206480c a b c a b c =⎧⎪-+=⎨⎪++=⎩,解得:14324a b c ⎧=-⎪⎪⎪=⎨⎪=⎪⎪⎩,∴抛物线的解析式为213442y x x =-++;(2)根据题意,如图:当AOC ∆∽PQC ∆时, ∴ACO PCQ ∠=∠, ∵90ACO OCB ∠+∠=︒, ∴90PCQ OCB ∠+∠=︒, ∴PC ⊥OC , ∴点P 的纵坐标为4,当4y =时,有2134442x x -++=,解得:16x =或20x =(舍去); ∴点P 的坐标为(6,4);当AOC ∆∽CQP ∆时,则此时BC 垂直平分OP ,作PG ⊥y 轴,垂足为G ,如上图, ∴90CQP AOC ∠=∠=︒,∴AC ∥OP , ∴∠ACO =∠POG , ∵90PGO AOC ∠=∠=︒, ∴AOC ∆∽PGO ∆, ∴AO OCPG GO=, 设点P 为(x ,213442x x -++), ∴PG x =,213442GO x x =-++,∴22413442x x x =-++, 解得:171x =±-, ∵点P 在第一象限, ∴171x =-,∴2134217242x x -++=-,∴点P 的坐标为(171-,2172-);综合上述,点P 的坐标为:(6,4)或(171-,2172-); (3)过点E 作EI ⊥AC 于I ,EJ ⊥CN 于J ,如图:∵CE 是∠ACB 的角平分线, ∴EI =EJ ,∵EI ∥CN ,EJ ∥CM ,∴△MEI ∽△MNC ,△NEJ ∽△NMC , ∴EI ME NC MN =,EJ NE MC MN =, ∴1EI EJ ME NENC MC MN MN +=+=, ∴1EI EI NC MC +=, ∴111NC MC EI+=, ∵△ACO ∽△AEI ,∴12AI AO EI CO ==,∵AC = ∵AC AI IC AI EI =+=+,12=,解得:EI =∴111NC MC EI +==∴11NC MC+是一个定值. 【点睛】本题考查了二次函数的综合应用,求二次函数的解析式,二次函数的性质,相似三角形的判定和性质,解一元二次方程,角平分线的性质定理等知识,解题的关键是熟练掌握题意,正确的作出辅助线,运用数形结合的思想进行解题.7.(1)①B ;D ;4;②1;(2)1522y x =-+或24y x =-+【解析】 【分析】(1)①根据“近点”、“远点”以及“ 特征数”的定义判断即可;②过点O 作OH ⊥直线n 于点H ,交O 于点Q ,P .先分别求得点E 、F 的坐标,进而可求得EF 的长,再利用等积法求得OH 的长,进而即可解决问题;(2)如图,先求得“近点”N 到直线l 的距离NH AOB AHN △∽△即可求得答案. 【详解】解:(1)①由题意,点B 是O 关于直线m 的“近点”, 点D 是O 关于直线m 的“远点”, ∵点E 的坐标为(0,3).⊙O 的半径为1, ∴OE =3,OB =OD =1,∴BE =OE -OB =2,DB =OB +OD =2,O 关于直线m 的特征数224DB BE =⋅=⨯=, 故答案为:B ;D ;4;②如图,过点O 作OH ⊥直线n 于点H ,交O 于点Q ,P ,设直线33y x =-+交x 轴于点F ,交y 轴于点E , 令y =0,则x =3;令x =0,则y =3, ∴(3F ,0),(0,3)E ,3OE ∴=,3OF =,22223(3)23EF OE OF ∴=+=+=,∵1122EOF S OE OF EF OH =⋅=⋅△, ∴11332322OH ⨯⨯=⨯⋅, 解得:32OH =, 12QH OH OQ ∴=-=, 又∵2PQ OQ OP =+=,O ∴关于直线n 的“特征数” 1212PQ QH =⋅=⨯=;(2)如图,设直线l 交x 轴于点A ,交y 轴于点B ,过点F 作FH ⊥直线l ,垂足为点H ,交⊙F 于N ,G ,∵⊙F 5,∴FN =FG 5,∴GN =FN +FG 5∵⊙F 关于直线l 的“特征数”是6, ∴GN·NH =6,NH =6, 解得:NH设直线l 的解析式是y kx b =+, ∵直线l 经过点M (1,2),∴将(1,2)代入y kx b =+,得:2k b +=, 2b k ∴=-,(2)y kx k ∴=+-,∴当0x =时,2y k =-,∴点B 坐标为(0,2-k ),|2|OB k ∴=-,当0y =时,(2)0kx k +-=, 解得:2k x k-=, ∴点A 坐标为(2k k-,0), 2||k OA k -∴=,22|(1)||1|k k AN k k--=--=+,AB ∴2||k k-= BAO NAH ∠=∠,90AOB AHN ∠=∠=︒, AOB AHN ∴△∽△,∴NH ANOB AB=,∴|2|522|1|||k k k k k-=--+, 整理,得:22520k k ++=,解得:12k =-或2k =-,∴直线l 的解析式为1522y x =-+或24y x =-+.【点睛】本题属于圆综合题,考查了一次函数的性质,相似三角形的判定和性质运用以及勾股定理的运用,远点,近点,特征数等新定义等知识,解题的关键是理解题意,学会用分类讨论的思想思考问题,属于中考压轴题.8.(1)y =-x 2+2x +3,y =-x +3;(2)存在,(-1,0)或(4,-5);(3)存在,(1,2)或(1,-3) 【解析】 【分析】(1)将点A ,B 坐标代入抛物线解析式中,求出b ,c 得出抛物线的解析式,进而求出点C 的坐标,再将点A ,C 坐标代入直线AC 的解析式中,即可得出结论;(2)利用抛物线的对称性得出BD AD =,进而判断出ABC 的面积和ACP △的面积相等,即可得出结论;(3)分点Q 在x 轴上方和在x 轴下方,构造全等三角形即可得出结论. 【详解】(1)把(30)A ,、(10)B -,代入2y x bx c =-++, 解得2b =、3c =∴抛物线的解析式为2y x 2x 3=-++则C 点为(0,3),又(30)A ,,代入1y kx b =+, 得1k =-,13b =, ∴直线AC 的解析式为3y x =-+, (2)如图,连接BC ,∵点D 是抛物线的对称轴与x 轴的交点, ∴AD BD =, ∴2ABCACDSS=,∵2ACP ACD S S =△△,∴ACP ABC S S =△△,此时,点P 与点B 重合, 即:(10)P -,, 过B 点作PB AC ∥交抛物线于点P ,则直线BP 的解析式为1y x =--①, ∵抛物线的解析式为2y x 2x 3=-++②,联立①②解得,10x y =-⎧⎨=⎩或45x y =⎧⎨=-⎩,∴P (4,﹣5),∴即点P 的坐标为(﹣1,0)或(4,﹣5); (3)由(1)可知,抛物线解析式为()214y x =--+ 把1x =代入直线AC 解析式3y x =-+得AC 与抛物线对称轴的交点(1,2)M ,如下图所示:22222BM AM ==+,4AB =即222BM AM AB +=则MAB △是等腰直角三角形,符合题意,M 点即为所求Q 点的一种情况,当Q 点在x 轴下方时,设Q 为(1,)m ,0m <, 因为线段AQ 绕Q 点顺时针旋转90°得到线段1QA 过A1作直线DQ 的垂线于E 点,则1ADQ QEA ≌ ∴2AD QE ==,1DQ EA m ==- ∴12(1)A m m --,∵点A1恰好落在抛物线2y x 2x 3=-++上, 代入,解得m=-3或2m = (舍去) ∴Q (1,-3)综上,Q 点坐标为(1,2)或(1,-3), 【点睛】本题考查的是二次函数的综合题,涉及解析式的求解,与三角形面积有关的问题,全等三角形的判定与性质,解题的关键是利用数形结合的思想,设点坐标并结合几何图形的性质列式求解.9.(1)直线AC 的解析式为y =﹣x +6;(2)d =4-t ;(3)Q (212,1). 【解析】 【分析】(1)先由解析式求出得A 、C 点的坐标,得OA =OC ,得四边形ABCO 为正方形,再根据正方形的面积求得边长,便可得b 的值;(2)过点Q 作QG ⊥AB 交AB 延长沿于点G ,证明Rt △AOP ≌Rt △GPQ (AAS ),得到AP =GQ ,进而求得结论便可;(3)过点P 作PH ⊥OF 于点H ,延长PH 交EQ 的延长线于点R ,EQ 的延长线与x 轴交于点N ,过Q 作QM ⊥x 轴于点M .证明Rt △AOP ≌Rt △GPQ (CCS ),得PK =QR ,∠R=∠OKP,再证明∠R=∠FPR,得EP=ER,再证FE=NR,设FE=NR=k,NQ=m,在Rt△PQE中,由勾股定理列出方程,得到k与m的关系,解Rt△PQE得tan∠PEQ,进而把这个函数值运用到△OAP中,求得t的值,再运用(2)中结论得Q的纵坐标d的值,再运用到△QNM中求得NM,NQ的值,进而求得ON,便可得Q的横坐标的值.【详解】解:(1)∵直线y=﹣x+b(b>0)交x轴于点A,交y轴于点C,A b C b,∴(,0),(0,)∴OA=OC=b,∴矩形ABCO为正方形,∵矩形ABCO的面积是36.∴b=6,即直线AC的解析式为y=﹣x+6;(2)如图,过点Q作QG⊥AB交AB延长沿于点G,∵∠OPQ=90°,∴∠APO+∠GPQ=90°,∵∠APO+∠AOP=90°,∴∠AOP=∠GPQ,∵在矩形ABCO,∠OAP=90°,QG⊥AB,∴∠QGP=∠OAP=90°,∵PQ=OP,∴Rt△AOP≌Rt△GPQ(AAS),∴AP=GQ,∵AP=t,∴GQ=t,∴d=4-t;(2)过点P作PH⊥OF于点H,延长PH交EQ的延长线于点R,EQ的延长线与y轴交于点N,过Q作QM⊥y轴于点M.则AP=t,QM=d,且d=6-t.∵OF 平分∠POC , ∴∠POF =∠COF =∠PFO , ∴PF =PO ,∵PH ⊥OF ,∠OPQ =90°, ∴∠OPH =∠FPH ,∠KPH =∠POH , 在△OPK 和△PQR 中, 90OPK PQR PO QP POK QPR ∠∠︒⎧⎪⎨⎪∠∠⎩====, ∴△OPK ≌△PQR (ASA ), ∴PK =QR ,∠R =∠OKP ,∵∠OKP +∠POK =∠POK +∠OPH =90°, ∴∠OKP =∠OPH , ∴∠R =∠OPH , ∵PO =PF ,PH ⊥OF , ∴∠OPH =∠FPH , ∴∠R =∠FPR , ∴EP =ER ,∵PE ∥ON ,OP ∥EN , ∴四边形OPEN 是平行四边形, ∴EN =PO =PF , ∴PE -PF =ER -EN , ∴FE =NR ,设FE =NR =k ,则KQ =2FE =2k , 又设NQ =m ,∴PK=QR=m+k,∴PQ=m+3k,∴PO=EN=PF=m+3k,∴QE=EN-QR=m+3k-m=3k,PE=PF+FE=4k+m,在Rt△PQE中,∵PE2=PQ2+QE2,∴(4k+m)2=(3k+m)2+(3k)2,∴k1=0(舍去),k2=m,∴PQ=4m,QE=3m,∴tan∠PEN=43 PQQE=,∵OP∥EN,∴∠OPA=∠PEN,∴tan∠APO=43,∵AO=6,∴AP=4.5,∴t=4.5,∴QM=d=6-t=1.5,∵PE∥OC,∴∠QNM=∠PEN,∴tan∠QNM=tan∠PEN=43,∴NM=9 tan8QMQNM=∠,∴m=NQ158 =,∴PE=ON=4k+m=5m=758,∴OM=ON+NM=212,∴Q(212,1).【点睛】本题是一次函数与四边形的综合题,主要考查了一次函数的图象与性质,全等三角形的性质与判定,正方形的性质,旋转的性质,解直角三角形的应用,等腰三角形的性质与判定,平行四边形的性质与判定,是一道综合性极强的题目,解决这类问题常用到数形结合、方程和转化等数学思想方法.构造全等三角形是解题的关键,也是问题的突破口.10.(1);(2);(3)【解析】 【分析】(1)由抛物线的二次项系数 再根据交点式可得抛物线为从而可得答案;(2)先画好图形,证明利用相似三角形的性质求解从而可得答案;(3)如图,过P 作轴于,K 过M 作于,N 证明即再求解则,再解方程可得 4,t = 再求解的解析式,再联立解析式解方程可得答案. 【详解】 解:(1) 抛物线交x 轴于()2,0A -、()5,0B 两点,所以可得抛物线为:(2)如图,过P 作于,H 连AP 交OC 于则,x 则令0,(3)如图,过P作轴于,K过M作于,N 由(2)得:,,轴,则轴,,即结合(1)可得:四边形为矩形,。

2023年辽宁省沈阳市第一二六中学中考数学压轴题专项训练

2023年辽宁省沈阳市第一二六中学中考数学压轴题专项训练

辽宁省沈阳市第一二六中学中考数学压轴题专项训练(学生版)中考数学压轴题(1)一次函数、反比例函数与几何综合1.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A,与y轴交于点B(0,9),与直线OC交于点C(8,3).(1)求直线AB的函数表达式;(2)过点C作CD⊥x轴于点D,将△ACD沿射线CB平移得到的三角形记为△A′C′D′,点A,C,D的对应点分别为A′,C′,D′,若△A′C′D′与△BOC重叠部分的面积为S,平移的距离CC′=m,当点A′与点B重合时停止运动.①若直线C′D′交直线OC于点E,则线段C′E的长为(用含有m的代数式表示);②当0<m<时,S与m的关系式为;③当S=时,m的值为.2.如图,平面直角坐标系中,O是坐标原点,直线y=kx+15(k≠0)经过点C(3,6),与x 轴交于点A,与y轴交于点B.线段CD平行于x轴,交直线y=x于点D,连接OC,AD.(1)填空:k=,点A的坐标是(,);(2)求证:四边形OADC是平行四边形;(3)动点P从点O出发,沿对角线OD以每秒1个单位长度的速度向点D运动,直到点D为止;动点Q同时从点D出发,沿对角线DO以每秒1个单位长度的速度向点O运动,直到点O为止.设两个点的运动时间均为t秒.①当t=1时,△CPQ的面积是.②当点P,Q运动至四边形CP AQ为矩形时,请直接写出此时t的值.3.在平面直角坐标系中,直线y=kx+4(k≠0)交x轴于点A(8,0),交y轴于点B.(1)k的值是;(2)点C是直线AB上的一个动点,点D和点E分别在x轴和y轴上.①如图,点E为线段OB的中点,且四边形OCED是平行四边形时,求▱OCED的周长;②当CE平行于x轴,CD平行于y轴时,连接DE,若△CDE的面积为,请直接写出点C的坐标.4.如图,直线y=x+6分别与x轴、y轴交于点A、B,点C为线段AB上一动点(不与A、B重合),以C为顶点作∠OCD=∠OAB,射线CD交线段OB于点D,将射线OC绕点O顺时针旋转90°交射线CD 于点E,连结BE.(1)证明:=;(用图1)(2)当△BDE为直角三角形时,求DE的长度;(用图2)(3)点A关于射线OC的对称点为F,求BF的最小值.(用图3)5.如图,△AOB是等边三角形,过点A作y轴的垂线,垂足为C,点C的坐标为(0,).P是直线AB上在第一象限内的一动点,过点P作y轴的垂线,垂足为D,交AO于点E,连接AD,作DM⊥AD交x轴于点M,交AO于点F,连接BE,BF.(1)填空:若△AOD是等腰三角形,则点D的坐标为;(2)当点P在线段AB上运动时(点P不与点A,B重合),设点M的横坐标为m.①求m值最大时点D的坐标;②是否存在这样的m值,使BE=BF?若存在,求出此时的m值;若不存在,请说明理由.6.如图,在平面直角坐标系中,四边形ABCD,A在y轴的正半轴上,B,C在x轴上,AD∥BC,BD平分∠ABC,交AO于点E,交AC于点F,∠CAO=∠DBC.若OB,OC的长分别是一元二次方程x2﹣5x+6=0的两个根,且OB>OC.请解答下列问题:(1)求点B,C的坐标;(2)若反比例函数y=(k≠0)图象的一支经过点D,求这个反比例函数的解析式;(3)平面内是否存在点M,N(M在N的上方),使以B,D,M,N为顶点的四边形是边长比为2:3的矩形?若存在,请直接写出在第四象限内点N的坐标;若不存在,请说明理由.7.如图,直线MN与x轴,y轴分别相交于A,C两点,分别过A,C两点作x轴,y轴的垂线相交于B点,且OA,OC(OA>OC)的长分别是一元二次方程x2﹣14x+48=0的两个实数根.(1)求C点坐标;(2)求直线MN的解析式;(3)在直线MN上存在点P,使以点P,B,C三点为顶点的三角形是等腰三角形,请直接写出P点的坐标.8.如图,在平面直角坐标系中,点A坐标为(6,0),点B坐标为(2,﹣2),直线AB与y轴交于点C.(1)求直线AB的函数表达式及线段AC的长;(2)点B关于y轴的对称点为点D.①请直接写出点D的坐标为;②在直线BD上找点E,使△ACE是直角三角形,请直接写出点E的横坐标为.9.在平面直角坐标系中,y关于x的一次函数y=x+5﹣c(c为常数),其图象与y轴交于点A,与x轴交于点B.(1)当c=4时,求线段OA的长;(2)若△OAB的面积为18.①求出满足条件的一次函数表达式;②若点A在y轴正半轴,点B在x轴负半轴上,且点C在直线AB上,当S△OAC=5S△OBC时,请直接写出点C的坐标.10.如图,在平面直角坐标系中,一次函数y=x+12的图象分别交x,y轴于点A和B,与经过点C(,0),D(0,﹣3)的直线交于点E.(1)求直线CD的函数解析式及点E的坐标;(2)点P是线段DE上的动点,连接BP.①当BP分△BDE面积为1:2时,请直接写出点P的坐标;②将△BPE沿着直线BP折叠,点E对应点E',当点E'落在坐标轴上时,直接写出点P的坐标.11.如图,在平面直角坐标系中,直线AB与y轴交于点A,与x轴交于点B,OB=2OA,点N在线段OB 上,过点N作NM⊥AB于M,当动点D从点A匀速运动到点M时,动点E恰好从点B匀速运动点O;当点D运动到线段AM中点时,动点E恰好运动到点N,设AD=x,OE=y,且.(1)求线段OA的长;(2)求线段BM的长;(3)连接DE,当△DEB的面积最大时,直接写出x的值.12.如图,在平面直角坐标系中,矩形OABC的边OA在x轴的正半轴上,OC在y轴的正半轴上,OA=3,OC=.动点P从C点出发沿折线CB﹣BA向终点A运动、在边CB上以每秒1个单位长度的速度匀速运动,在边BA上以每秒个单位长度的速度匀速运动.过点P作线段PD与射线OA相交于点D,且∠PDO=60°,连接PO,BO,PD与BO相交于点E.设点P的运动时间为t,△OPD与△OAB重合部分的面积为S.(1)直接写出点B的坐标(,);(2)当点P与点C重合时,求OD的长;(3)当点P在边BA上运动时,求BP的长(用含t的代数式表示);(4)直接写出S关于t的函数关系式及自变量t的取值范围.13.如图,在平面直角坐标系中,菱形OABC的边OA在x轴的正半轴上,点B,C在第一象限,∠C=120°,边OA=8.点P从原点O出发,沿x轴正半轴以每秒1个单位长度的速度做匀速运动:点Q从点A出发,沿边AB→BC→CO以每秒2个单位长度的速度做匀速运动.过点P作直线EP垂直于x轴并交折线OCB于E,交对角线OB于F,点P和点Q同时出发,分别沿各自路线运动,点Q运动到原点O时,P 和Q两点同时停止运动.(1)请直接填写点A的坐标(,),B的坐标(,),C的坐标(,);(2)当t=1时,求线段EF的长;(3)求t为何值时,点E与点Q重合;(4)设△AEQ的面积为S,当4≤t≤8,请直接写出s与t的函数关系式.14.如图,在平面直角坐标系xOy中,直线AB的表达式为y=kx+2,且经过点(1,4),与x轴、y轴分别交于点A、B,将直线AB向下平移4个单位得到直线l.(1)求直线l的表达式;(2)将△AOB绕点O逆时针旋转90°后得到△A′OB′(点A的对应点是点A′,点B的对应点是点B′),求直线A′B′与直线AB的交点坐标;(3)设直线l与x轴交于点C,点D为该平面直角坐标系内的点,如果以点A、B、C、D为顶点的四边形是平行四边形,求点D的坐标.15.如图,在平面直角坐标系中,直线y=﹣3x+3与x轴交于点A,与y轴交于点B,将线段AB绕点A顺时针旋转90°,得到线段AC,过点B,C作直线,交x轴于点D.(1)点C的坐标为;求直线BC的表达式;(2)若点E为线段BC上一点,且△ABE的面积为,求点E的坐标;(3)在(2)的条件下,在平面内是否存在点P,使以点A,B,E,P为顶点的四边形为平行四边形,直接写出点P的坐标16.已知,在平面直角坐标系中,点O为坐标原点,直线y=kx+3与x轴交于点B,与y轴交于点A,OA =OB.(1)如图1,求直线AB的解析式;(2)如图2,点C是第一象限内一点,BC⊥OB,AD⊥AC交x轴负半轴于点D,若点D的横坐标为t,线段BC的长为d,求d与t的函数关系式(不要求写出自变量t的取值范围);(3)如图3,在(2)的条件下,当d=﹣2t时,点E是线段AB上,点F在线段OA上,OF=BE,连接CE,作FG∥x轴,连接CG交线段AB于点H,连接DF、AG,若∠ECG=45°,DF=AG,求点H的坐标.17.如图,直线y=kx+b与x轴交于点A(4,0),与y轴交于点B(0,2),P是x轴上的动点.(1)求k的值.(2)连结PB,当∠PBA=90°时,求OP的长.(3)过点P作AB的平行线,交y轴于点M,点Q在直线x=2上.是否存在点Q,使得△PMQ是等腰直角三角形?若存在,请直接写出所有符合条件的点Q的坐标,若不存在,请说明理由.18.如图,在平面直角坐标系中,直线l1:y=kx+1交y轴于点A,交x轴于点B(4,0),过点E(2,0)的直线l2平行于y轴,交直线l1于点D,点P是直线l2上一动点(异于点D),连接P A、PB.(1)求直线l1的解析式;(2)设P(2,m),求△ABP的面积S的表达式(用含m的代数式表示);(3)当△ABP的面积为3时,则以点B为直角顶点作等腰直角△BPC,请直接写出点C的坐标.19.如图1,在平面直角坐标系中,已知直线l:y=kx+b与x轴交于点A,与y轴交于点B,直线CD相交于点D,其中AC=14,C(﹣6,0),D(2,8).(1)求直线l函数表达式;(2)如图2,点P为线段CD延长线上的一点,连接PB,当△PBD的面积为7时,将线段BP沿着y 轴方向平移,使得点P落在直线AB上的点P'处,求点P'到直线CD的距离;(3)若点E为直线CD上的一点,在平面直角坐标系中是否存在点F,使以点A、D、E、F为顶点的四边形为菱形,若存在请直接写出点F的坐标;若不存在,请说明理由.20.如图,在平面直角坐标系中,直线l1的解析式为y=﹣x,直线l2与l1交于点A(a,﹣a),与y轴交于点B(0,b),其中a,b满足﹣a=3.(1)求直线l2的解析式.(2)在平面直角坐标系中第二象限有一点P(m,5),使得S△AOP=S△AOB,请求出点P的坐标.(3)已知平行于y轴左侧有一动直线,分别与l1,l2交于点M、N,且点M在点N的下方,点Q为y 轴上一动点,且△MNQ为等腰直角三角形,请求出满足条件的点Q的坐标.21.如图1,已知直线y=2x+2与y轴,x轴分别交于A,B两点,以B为直角顶点在第二象限作等腰Rt△ABC(1)求点C的坐标,并求出直线AC的关系式;(2)如图2,直线CB交y轴于E,在直线CB上取一点D,连接AD,若AD=AC,求证:BE=DE.(3)如图3,在(1)的条件下,直线AC交x轴于点M,P(﹣,k)是线段BC上一点,在x轴上是否存在一点N,使△BPN面积等于△BCM面积的一半?若存在,请求出点N的坐标;若不存在,请说明理由.22.把正方形纸片放在直角坐标系中,如图所示,正方形纸片ABCD的边长为3,点E、F分别在BC、CD 上,将AB、AD分别沿AE、AF折叠,点B、D恰好都落在点G处,已知3BE=BC.(1)请直接写出D、E两点的坐标,并求出直线EF的解析式;(2)在直线EF上是否存在点M,使得△AFM的面积是△AEF的面积的一半,若存在,请求出点M的坐标,若不存在,请说明理由.(3)若点P、Q分别是线段AG、AF上的动点,则EP+PQ的最小值是多少?并求出此时点Q的坐标.23.在平面直角坐标系中,点A的坐标为(﹣,0),点B在直线l:上,过点B作AB的垂线,过原点O作直线l的垂线,两垂线相交于点C.(1)如图,点B,C分别在第三、二象限内,BC与AO相交于点D.①若BA=BO,求证:CD=CO.②若∠CBO=45°,求四边形ABOC的面积.(2)是否存在点B,使得以A,B,C为顶点的三角形与△BCO相似?若存在,求OB的长;若不存在,请说明理由.24.如图,平面直角坐标系中,直线AC解析式为y=mx+b与y轴交于点A,与x轴交于点C,直线BE解析式为y=nx+b﹣10交y轴于点E,与x轴交于点B.(1)求线段AE长;(2)连接AB,K为线段AB上一点,F为线段AC上一点,连接FK交y轴于点G,若直线FK解析式为y=﹣x+k,求tan∠AGK的值;(3)在(2)的条件下,若∠ABE=45°,∠ACB=2∠EBO,AC=15,取AG中点H,连接KH,若KH =3,求F点坐标.25.如图在平面直角坐标系中,点O为坐标原点,直线y=﹣x+b分别交x轴,y轴于点A、B,OA=4,∠OBA的外角平分线交x轴于点D.(1)求点D的坐标;(2)点P是线段BD上一点(不与B、D重合),过点P作PC⊥BD交x轴于点C,设点P的横坐标为t,△BCD的面积为S,求S与t之间的函数解析式(不要求写出自变量t的取值范围);(3)在(2)的条件下,PC的延长线交y轴于点E,当PC=PB时,将射线EP绕点E旋转45°交直线AB于点F,求F点坐标.26.如图1,在平面直角坐标系中,直线l1:y=﹣x+2与x轴交于点A,与y轴交于点B,与直线l2交于点C(m,3),直线l2与x轴交于点D(﹣2,0).(1)求直线l2的解析式;(2)如图2,点P在线段CD上,连接AP,3S△APD=2S△ACD,过点P的直线交x轴负半轴于点M,交y轴正半轴于点N,请问:+是否为定值?若是,求出定值;若不是,请说明理由.(3)当点E在直线l1上运动时,平面内是否存在一点F,使得以点C、D、E、F为顶点的四边形是菱形?若存在,求出点E的坐标;若不存在,请说明理由.27.在正方形ABCD中,点E是直线BC上一点,∠AEF=90°,且EF交正方形外角的平分线CF于点F.(1)如图1,若点E是BC的中点.求证:AE=EF;(2)如图2,若点E是BC边上任意一点(不含B,C),结论“AE=EF”还成立吗?若成立,请证明;若不成立,请说明理由;(3)如图3,若点E是BC延长线上任意一点,结论“AE=EF”还成立吗?若成立,请证明若不成立,请说明理由;(4)如图4,在平面直角坐标系xOy中,点O与点B重合,正方形的边长为4,若点F恰好落在直线y =x+7上,请直接写出此时点E的坐标.28.如图,在平面直角坐标系xOy中,点A在y轴的正半轴上,点B在x轴的正半轴上,OA=OB=10.(1)求直线AB的解析式;(2)若点P是直线AB上的动点,当S△OBP=S△OAP时,求点P的坐标;(3)将直线AB向下平移10个单位长度得到直线l,点M,N是直线l上的动点(M,N的横坐标分别是x M,x N,且x M<x N),MN=4,求四边形ABNM的周长的最小值,并说明理由.29.如图1,在平面直角坐标系中,O为坐标原点,直线y=ax+10a分别交x轴、y轴于点A、B,△AOB 的面积为25.(1)求a的值;(2)如图2,点D为AB上一点(D不与A、B重合),C为x轴正半轴一点,连接CD交y轴于点E,C、D关于点E对称,设点D的横坐标为t,∠DCA的正切值为s,求s关于t的函数关系式;(3)如图3,在(2)的条件下,F为DE上一点,K为CF的中点,连接BK,2∠ACD=90°﹣∠BKF,P为第一象限一点,CP⊥OC,连接FP、FB,将FP沿FB翻折交BD于点Q,FQ=FP,当s=时,求直线PQ的解析式.30.直线y=kx+10k交x轴、y轴于A、B两点.(1)如图1,求点A坐标;(2)如图2,点D为第三象限内一点,连接DB交x轴于点C,若BA=BD,∠DAC=∠ABD,设点D 的横坐标为t,求AC长(用t的代数式来表示);(3)如图3,在(2)的条件下,作射线DO,当DO∥AB时,在射线DO上是否存在一点E,使得∠AEB =45°,若存在,请求出直线BE的解析式;若不存在,请说明理由.31.如图1,在平面直角坐标系xOy中,已知直线AB:y=﹣x+3与直线CD:y=kx﹣2相交于点M(4,a),分别交坐标轴于点A、B、C、D,点P是线段CD延长线上的一个点,△PBM的面积为15.(1)求直线CD解析式和点P的坐标;(2)如图2,当点P为线段CD上的一个动点时,将BP绕点B逆时针旋转90°得到BQ,连接PQ与OQ.点Q随着点P的运动而运动,请求出点Q运动所形成的线段所在直线的解析式,以及OQ的最小值.(3)在(1)的条件下,直线AB上有任意一点F,平面直角坐标系内是否存在点N,使得以点B、D、F、N为顶点的四边形是菱形,如果存在,请直接求出点N的坐标;如果不存在,请说明理由.32.如图,直线y=k(x﹣6)交x轴正半轴于点A,交y轴正半轴于点B,且△AOB的面积等于27.(1)求直线AB的解析式;(2)P为线段AB上一点,过点B作BD∥x轴,交OP延长线于点D,设点P的横坐标为m,线段BD 的长为d,求d与m的函数关系式;(3)在(2)的条件下,过点P作PE⊥x轴,垂足为E,连接AE交OP于点F,Q为PE延长线上一点,若DE+EF=AF,∠AQD=45°,求PQ的长.33.如图,在平面直角坐标系xOy中,直线l1:y=x+m与y轴交于点A(0,3),直线l2:y=x﹣与x轴交于点B,点M,N分别是直线l1,l2在第一象限内的动点,且∠MON=60°,连接MN.(1)直接写出m的值,点B的坐标,∠OAM及∠OBN的度数;(2)求AM•BN的值;(3)当△MON是直角三角形时,直接写出点M的坐标.34.如图,在平面直角坐标系中,矩形OABC的边OC、OA分别在x轴、y轴上,点B的坐标为(8,4),连接AC.动点P从点A出发,以每秒个单位长度的速度沿对角线AC向终点C匀速运动,动点Q从点C出发,以每秒4个单位长度的速度沿C→O→A路线,向终点A匀速运动,两点同时出发,一点到达终点,另一点即停,连接PQ.设运动时间为t秒(t>0).(1)用含t的代数式表示:CQ=;CP=;(2)当点Q在边OC上,且△PQC为直角三角形时,直接写出t的值:t=;(3)过点P作PE⊥AB交AB于点E,连接EQ交对角线AC于点F,①t=时,S△EFP:S△EF A=2:3;②当0<t<2时,t=,EQ取得最小值;当2<t<3时,QE的最小值为.35.如图,在平面直角坐标系中,直线y=3x+6与x轴交于点B,与y轴交于点A,点C(3,0),连接AC 作点O关于直线AB的对称点E,线段OE交直线AB于点F,过点E作EH⊥x轴于点H,连接EB.(1)求证:△EHO∽△BOA;(2)①设HE=a,用含a的代数式表示HO=;②求a的值,并直接写出直线BE的表达式;(3)点M在直线BE上,连接AM,以线段AM为边作正方形AMPN(点A、M、P、N以逆时针方向排序),点Q在平面内,当四边形BCNQ为菱形时,连接PQ,请直接写出PQ的长度.36.如图,在平面直角坐标系中,矩形ABCO的顶点B的坐标是(6,4),动点P从点A出发,以每秒1个单位的速度沿线段AB运动,动点Q从点C出发,以每秒2个单位的速度沿线段OC运动,连接OB,连接PQ与线段PQ相交于点D,两点同时出发,当点Q到达点O时,P、Q同时停止运动,设运动时间为t(t>0).(1)AP=,OQ=;(请用含t的代数式表示)(2)当时,求t的值;(3)在P、Q运动的过程中,将矩形AOCB沿PQ折叠,点A,点O的对应点分别是点E,点F,①当点F恰好落在线段OB上时,直接写出此时的t值;②连接PF,连接OF,当∠PFO=45°时,直接写出此时点F的坐标.37.如图1,在坐标系中的△ABC,点A、B在x轴,点C在y轴,且∠ACB=90°,∠B=30°,AC=4,D是AB的中点.(1)求直线BC的表达式.(2)如图2,若E、F分别是边AC,CD的中点,矩形EFGH的顶点都在△ACD的边上.①请直接写出下列线段的长度:EF=,FG=.②将矩形EFGH沿射线AB向右平移,设矩形移动的距离为m,矩形EFGH与△CBD重叠部分的面积为S,当S=时,请直接写出平移距离m的值.(3)如图3,在(2)的条件下,在矩形EFGH平移过程中,当点F在边BC上时停止平移,再将矩形EFGH绕点G按顺时针方向旋转,当点H落在直线CD上时,此时矩形记作E1F1GH1,由H1向x轴作垂线,垂足为Q,则=.38.如图,点A、B在x轴上,点C在y轴上,且OA=2,OB=4,OC=8,直线MN过AB的中点且与y 轴平行,与直线BC交于点M,与x轴交于点N.(1)求点M的坐标.(2)若点P是直线MN上的一个动点,直接写出点P的坐标,使以P、C、M为顶点的三角形与△MNB 相似.(3)D为CO的中点,一个动点G从D点出发,先到达x轴上的点E,再走到直线MN上的点F,最后返回到点C.要使动点G走过的路程最短,请直接写出点E、F的坐标,并直接写出最短路程.(4)点Q是y轴上的一点,点R在x轴上,直接写出使△MQR为等腰直角三角形的Q的坐标.39.如图,在平面直角坐标系中,直线l1:y=x+与过点A(3,0)的直线l2交于点C(1,m),与x 轴交于点B.(1)点B坐标,直线l2的表达式;(2)点P是直线l2上的一个动点,过点P作EF⊥x轴于点E,交直线l1于点F,利用(1)中的结论,解答下列各问:①若PF=AB,求点P的横坐标;②过点P作PQ⊥l1于点Q,若PQ=2PE,请直接写出点P的坐标;③直线l1与y轴交于点D,过点B作y轴的平行线l3,在x轴上方的l3上有一点G,在线段BD上有一点H,若DH=BG,请直接写出OG+OH的最小值.40.在平面直角坐标系中,一次函数y=kx+b(k≠0)的图象经过点A(6,0)和点B(0,9).与直线y=x相交于点C,过点C作CE⊥x轴于点E,将△OCE沿射线OC平移,移动后的三角形记为△O′C′E′(点O,C,E的对应点分别记为点O′,C′,E′),点O′与点C重合时运动停止.(1)求直线AB的表达式及点C的坐标;(2)①如图,当点E′落在线段AB上时,设点E′的横坐标为a,求a的值;②设△O′C′E′与△ACE重叠部分面积为S,△OCE沿射线OC平移的距离OO′为t,直接写出S=时,t的值.41.如图①,在矩形OABC中,OA=4,OC=3,分别以OC、OA所在的直线为x轴、y轴,建立如图所示的坐标系,连接OB,反比例函数y=(x>0)的图象经过线段OB的中点D,并与矩形的两边交于点E和点F,直线l:y=kx+b经过点E和点F.(1)求反比例函数的解析式;(2)在第一象限内,请直接写出关于x的不等式kx+b≤的解集:.(3)如图②,将线段OB绕点O顺时针旋转一定角度,使得点B的对应点H恰好落在x轴的正半轴上,连接BH,作OM⊥BH,点N、点G为线段OM.上的动点,且GN=.①的值为;②求四边形CGNH周长的最小值.42.已知,矩形OCBA在平面直角坐标系中的位置如图所示,点C在x轴的正半轴上,点A在y轴的正半轴上,已知点B的坐标为(4,2),反比例函数y=的图象经过AB的中点D,且与BC交于点E,设直线DE的解析式为y=mx+n,连接OD,OE.(1)求反比例函数y=的表达式和点E的坐标;(2)点M为y轴正半轴上一点,若△MBO的面积等于△ODE的面积,求点M的坐标;(3)点P为x轴上一点,点Q为反比例函数y=图象上一点,是否存在点P、Q使得以点P,Q,D,E为顶点的四边形为平行四边形?若存在,直接写出点Q的坐标;若不存在,请说明理由.43.如图1,矩形OABC的顶点A、C分别落在x轴、y轴的正半轴上,点B(4,3),反比例函数y=(x >0)的图象与AB、BC分别交于D、E两点,BD=1,点P是线段OA上一动点.(1)求反比例函数关系式和点E的坐标;(2)如图2,连接PE、PD,求PD+PE的最小值;(3)如图3,当∠PDO=45°时,求线段OP的长.44.如图,在平面直角坐标系中,一次函数y=﹣x+1与反比例函数y=的图象在第四象限相交于点A(2,﹣1),一次函数的图象与x轴相交于点B.(1)求反比例函数的表达式及点B的坐标;(2)当一次函数值小于反比例函数值时,请直接写出x的取值范围是;(3)点C是第二象限内直线AB上的一个动点,过点C作CD∥x轴,交反比例函数y=的图象于点D,若以O,B,C,D为顶点的四边形为平行四边形,请直接写出点C的坐标为.45.如图,一次函数y=kx+b(k>0)的图象与反比例函数y=(x>0)的图象交于点A,与x轴交于点B,与y轴交于点C,AD⊥x轴于点D,CB=CD,点C关于直线AD的对称点为点E.(1)点E是否在这个反比例函数的图象上?请说明理由;(2)连接AE、DE,若四边形ACDE为正方形.①求k、b的值;②若点P在y轴上,当|PE﹣PB|最大时,求点P的坐标.46.如图,一次函数y=x+1的图象与反比例函数y=(x>0)的图象交于点A(a,3),与y轴交于点B.(1)求a,k的值;(2)直线CD过点A,与反比例函数图象交于点C,与x轴交于点D,AC=AD,连接CB.①求△ABC的面积;②点P在反比例函数的图象上,点Q在x轴上,若以点A,B,P,Q为顶点的四边形是平行四边形,请求出所有符合条件的点P坐标.47.如图,在平面直角坐标系xOy中,一次函数y=﹣x+5的图象与反比例函数y=(k>0)的图象交于A、B两点(点A在点B左边),交x轴于点C,延长AO交反比例函数y=(k>0)的图象于点E,点F为第四象限内一点,∠AFE=90°,连接OF.(1)填空:FO AO(填“>”、“=”或“<”);(2)连接CF,若AF平分∠OAC.①若△AFC的面积为10,求k的值;②连接BF,四边形AOFB能否为菱形?若能,直接写出符合条件的k的值;若不能,说明理由.48.如图1,在平面直角坐标系中,直线l:y=﹣2x+2与x轴交于点A,将直线l绕着点A顺时针旋转45°后,与y轴交于点B,过点B作BC⊥AB,交直线l于点C.(1)求点A和点C的坐标;(2)如图2,将△ABC以每秒3个单位的速度沿y轴向上平移t秒,若存在某一时刻t,使A、C两点的对应点D、F恰好落在某反比例函数的图象上,此时点B对应点E,求出此时t的值;(3)在(2)的情况下,若点P是x轴上的动点,是否存在这样的点Q,使得以P、Q、E、F四个点为顶点的四边形是菱形?若存在,请直接写出符合题意的点Q的坐标;若不存在,请说明理由.49.如图,矩形OABC的顶点A、C分别在x、y轴的正半轴上,点B在反比例函数y=的第一象限内的图象上,OA=6,OC=10,动点P在x轴的上方,且满足S△P AO=.(1)若点P在这个反比例函数的图象上,求点P的坐标;(2)连接PO、P A,求PO+P A的最小值;(3)若点Q是平面内一点,使得以A、B、P、Q为顶点的四边形是菱形,则请你直接写出满足条件的所有点Q的坐标.50.如图,在平面直角坐标系中,四边形ABCO为矩形,B(5,4),D(﹣3,0),点P从点A出发,以每秒1cm的速度沿AB方向向终点B运动;点Q从点D出发,以每秒2cm的速度沿DC方向向终点C运动,已知动点P、Q同时出发,当点P、Q有一点到达终点时,P、Q都停止运动,设运动时间为t秒.(1)用含t的代数式表示:BP=cm,CQ=cm;(2)函数y=的图象在第一象限内的一支双曲线经过点P,且与线段BC交于点M,若出△POM的面积为7.5cm2,试求此时t的值;(3)点P、Q在运动过程的中,是否存在某一时刻t,使坐标平面上存在点E,以P、Q、C、E为顶点的四边形刚好是菱形?若存在,请求出所有满足条件的t的值,若不存在,请说明理由.51.在平面直角坐标系中,直线y=x+2与x轴交于点A,与y轴交于点B,并与反比例函数y=(k≠0)的图象在第一象限相交于点C,且点B是AC的中点.(1)如图1,求反比例函数y=(k≠0)的解析式;(2)如图2,若矩形FEHG的顶点E在直线AB上,顶点F在点C右侧的反比例函数y=(k≠0)图象上,顶点H,G在x轴上,且EF=4.①求点F的坐标;②若点M是反比例函数的图象第一象限上的动点,且在点F的左侧,连结MG,并在MG左侧作正方形GMNP.当顶点N或顶点P恰好落在直线AB上,直接写出对应的点M的横坐标.52.如图(一),平面直角坐标系中,已知A(2,0)、B(0,4),以AB为直角边作等腰直角△ABC,其中∠BAC=90°,AC=AB,点C在第一象限内.双曲线y=经过点C.(1)求双曲线y=的表达式;(2)过点B的直线BE交x轴于点E,交线段AC于点D,若∠DBC=∠OBA.求直线BE的解析式;(3)在(2)的条件下,直线BE沿y轴正方向平移,恰好经过点C时,与双曲线k的另一个交点为F (m,n),如图(二).①连接FB、FD,则四边形ABFD的面积是;②连接OF,求OF的长度.53.如图,在平面直角坐标系中,一次函数y1=x﹣2的图象与反比例函数(k≠0)的图象交于A(﹣2,a)、B(m,2)两点,与y轴交于点C,与x轴交于点D,连接OA、OB.(1)求反比例函数(k≠0)的表达式;(2)求△AOB的面积;(3)点N为坐标轴上一点,点M为y2的图象上一点,当以点C、D、M、N为顶点的四边形是平行四边形时,请直接写出所有满足条件的N点的坐标.54.如图,一次函数y1=k1x+4与反比例函数y2=的图象交于点A(2,m)和B(﹣6,﹣2),与y轴交于点C.(1)求一次函数与反比例函数的表达式;(2)过点A作AD⊥x轴于点D,点P是反比例函数在第一象限的图象上一点,设直线OP与线段AD交于点E,当S四边形ODAC:S△ODE=5:1时,求点P的坐标;(3)在(2)的条件下,点M是直线OP上的一个动点,当△MBC是以BC为斜边的直角三角形时,求点M的坐标.55.如图,等边△OAB和等边△AEF的一边都在x轴上,双曲线y=(k>0)经过OB的中点C和AE的中点D.已知等边△OAB的边长为4.(1)求k的值;(2)求等边△AEF的边长;(3)将等边△AEF绕点A任意旋转,得到等边△AE'F',P是E'F'的中点(如图2所示),连结BP,直接写出BP的最大值.56.如图,在平面直角坐标系中,直线y=3x+b经过点A(﹣1,0),与y轴正半轴交于B点,与反比例函数y=(x>0)交于点C,且AC=3AB,BD∥x轴交反比例函数y=(x>0)于点D.(1)求b、k的值;(2)如图1,若点E为线段BC上一点,设E的横坐标为m,过点E作EF∥BD,交反比例函数y=(x >0)于点F.若EF=BD,求m的值.(3)如图2,在(2)的条件下,连接FD并延长,交x轴于点G,连接OD,在直线OD上方是否存在。

成都市中考核心考点-第九讲 函数与图形综合(24题)(B卷)

成都市中考核心考点-第九讲 函数与图形综合(24题)(B卷)
18成都图14成都图
2.(17成都)在平面直角坐标系 中,对于不在坐标轴上的任意一点 ,我们把点 称为点 的“倒影点”.直线 上有两点 ,它们的倒影点 均在反比例函数 的图像上.若 ,则 ____________.
3、(15成都)如果关于 的一元二次方程 有两个实数根,且其中一个根为另一个根的2倍,则称这样的方程为“倍根方程”,以下关于倍根方程的说法,正确的是.(写出所有正确说法的序号)
10成都图
7.(11成都)在平面直角坐标系 中,已知反比例函数 满足:当 时,y随x的增大而减小。若该反比例函数的图象与直线 都经过点P,且 ,则实数k=_________.
8.(10成都)如图,在 中, , , ,动点 从点 开始沿边 向 以 的速度移动(不与点 重合),动点 从点 开始沿边 向 以 的速度移动(不与点 重合).如果 、 分别从 、 同时出发,那么经过_____________秒,四边形 的面积最小.
5.(13成都)在平面直角坐标系 中,直线 ( 为常数)与抛物线 交于 , 两点,且 点在 轴左侧, 点的坐标为 ,连接 .有以下说法: ; 当 时, 的值随 的增大而增大; 当 时, ; 面积的最小值为 .其中正确的是_______.(写出所有正确说法的序号)
6.(12成都)如图,在平面直角坐标系xOy中,直线AB与x轴、y轴分别交于点A,B,与反比例函数 ( 为常数,且 )在第一象限的图象交于点E,F.过点E作EM⊥y轴于M,过点F作FN⊥x轴于N,直线F的面积为 ,则 =________.(用含 的代数式表示)
9.(18成华区一诊)如图,在平面直角坐标系中,矩形OABC的顶点A,C分别在x轴的负半轴,y轴的正半轴上,点B在第二象限.将矩形OABC绕点O顺时针旋转,使点B落在y轴上,得到矩形OA´B´C´,BC与OA´相交于点M.若经过点M的反比例函数y= (x<0)的图象交AB于点N矩形OABC的面积为S,tan∠A′OB′= ,则BN的长为。

【八年级上册数学培优竞赛-素养提升】专题09 一次函数中k、b的意义

【八年级上册数学培优竞赛-素养提升】专题09 一次函数中k、b的意义

专题09 一次函数中k 、b 的意义[专题解读]一次函数y=kx+b 中的系数k 、b 的正负性,决定图像的大致位置、y 随x 的变化情况、与坐标轴的交点坐标以及直线的倾斜程度,是研究函数图像及性质的重要依据.熟悉并掌握k 、b 的意义,可以帮助我们更深刻地理解一次函数.思维索引例1.已知关于 x 的一次函数y =(6+3m )x +(n -4). (1)当m 、n 满足什么条件时,函数图象经过原点;(2)当m 、n 满足什么条件时,函数图象与y 轴的交点在x 轴下方;(3)当m 、n 满足什么条件时,y 随着x 的增大而减小,且不经过第三象限; (4)当m 、n 满足什么条件时,函数的图象平行于直线y =3x -3;(5)若n =2m ,则不论m 取何实数这个函数的图象都过定点,试求这个定点的坐标.答案:(1) m≠-2, n=4; (2) m≠-2, n<4; (3) m<-2,n≥4; (4) m=-1, n≠1; (5)( 32,-8)例2.如图,直线y =(m +1)x +2(m -1) (m 为常数)与x 轴交于点A ,与y 轴交于点B,△ABC 是等边三角形(其中A ,B ,C 为逆时针标注的三个点). (1)当x =-2时,求y 的值;(2)△ABC 中的AB 边不可能在第几象限?并说明理由.答案:(1) y=-4; (2) AB 不可能在第一象限素养提升1.两条直线y=ax+b 与y= bx+a 在同一直角坐标系中的图象位置可能是()A B C D2.在平面直角坐标系xOy 中,A (1, 1),B (2,2),一次函数y = -2x +b 与线段AB 有公共点,则b 的取值范围是( )A.3≤b ≤6B. 3≤b ≤4C. 1≤b ≤2D. -2≤b ≤-1答案:A3.已知一次函数y=ax-x-a +1 (a 为常数),则其函数图象一定过象限( ) A.一、二 B.二、三 C.三、四 D.一、四 答案:D4.已知直线y =(m -3)x -3m +1不经过第一象限,则m 的取值范围是( ) A. m ≥31B. m ≤31 C. 31<m <3 D. 31≤m ≤3 答案:D5.一次函数y=kx +4的图象与x 轴正半轴、y 轴分别相交于点A ,B ,将△AOB 沿直线AB 翻折,得△ACB ,若BC 所在直线解析式y 随x 的增大而减小,则k 的取值范围是( ) A. k <0 B. k <-1 C. -1<k <0 D. -1≤k <0 答案:B6.一次函数y =(m 2-3)x +(1-m )和y =(m +2)x +(m 2+m -5)的图象分别与y 轴交于点P 和Q ,这两点关于x 轴对称,则m 的值 是 答案:27.已知关于x 的一次函数y=mx +2m -7 (m≠0)在-1≤x ≤5上的函数值总是为正数,则m 的取值范围是 答案: m>78.已知一次函数y=kx+b ,当-3≤x ≤1 时,对应y 的值为1≤y ≤9,则k+b 的值为 答案: 9或19.已知一次函数y 1=kx +2 (k ≠0)和y 2=x -3. 当x <1时,y 1>y 2, 则常数k 的取值范围为 答案: -4≤k <0或0<k≤110. A (0, 1),M (3,2),动点P 从点A 出发,沿y 轴以每秒1个单位长度的速度向上移动,且过点P 的直线l : y=-x+b 也随之移动,设移动时间为t 秒,当t =______时,点M 关于l 的对称点落在坐标轴上.答案: t=1或211.已知一次函数y=(4m+1)x-(m+1).(1)m为何值时,y随x的增大而增大?(2)m为何值时,图象经过第二、三、四象限?(3)m为何值时,与直线y=-3x+2平行?答案:(1)m>-14;(2)-1<m<-14;(3)m=-1.12.若两个一次函数y=k1x+b1(k1≠0),y=k2x+b2(k2≠0),则称函数y=(k1+k2)x+b1b2为这两个函数的组合函数.(1)一次函数y=3x+2与y=-4x+3的组合函数为 .(2)若一次函数y=ax-2,y=-x+b的组合函数为y=3x+2,求a,b的值;(3)若一次函数y=-x+b与y=kx-3的组合函数的图象不经过第三象限,求k、b的取值范围.答案:(1)y=-x+6;(2)a=4,b=-1;(3)k<1,b≤0.13.已知关于x的一次函数为y=(m-2)x+6.(1)若函数y随x增大而增大,求m的取值范围;(2)当一2≤x≤4时,y≤10,求m的取值范围.答案:(1)m>2;(2)2<m≤3或0≤m<2.14.已知关于x的一次函数y=mx+4m-2.(1)不论m取何实数这个函数的图象都过定点,试求这个定点的坐标;(2)求原点到一次函数图象的最大值.答案:(1)(-4,-2);(2).15.在平面直角坐标系xOy中,点A(0,4),B(3,0),以AB为边在第一象限内作正方形ABCD(A,B,C,D按照逆时针顺序排列),直线l:y=kx+3.(1)当直线l经过D点时,求k的值;(2)当直线l与正方形有两个交点时,直接写出k的取值范围.答案:(1)k=1;(2)k>-1;16.如图,已知一次函数y=kx+3(k<0)的图象与x轴、y轴分别相交于点A、B,且0B=20A,点P(a,b)是在该函数的图象上的一点.(1)求k的值;(2)若点P到x轴、y轴的距离之和等于2,求点P的坐标;(3)设a=1-m,如果在两个实数a与b之间(不包括a和b)有且只有一个整数,求实数m的取值范围.答案:(1)k=-2;(2)P(1,1)或(53,-13):(3)-12≤m≤12,且m≠0.。

八年级下期数学期中考试压轴题训练

八年级下期数学期中考试压轴题训练

八年级下期数学期中考试压轴题训练一.选择题(共14小题)1.如图,矩形ABCD的对角线AC,BD交于点O,AB=6,BC=8,过点O作OE⊥AC,交AD于点E,过点E作EF⊥BD,垂足为F,则OE+EF的值为()A.B.C.D.2.如图,正方形ABCD中,点E、F、H分别是AB、BC、CD的中点,CE、DF交于G,连接AG、HG.下列结论:①CE⊥DF;②AG=AD;③∠CHG=∠DAG;④HG=AD.其中正确的有()A.1个B.2个C.3个D.4个3.如图,矩形ABCD中,,点E是AD上的一点,AE=6,BE的垂直平分线交BC的延长线于点F,连接EF交CD于点G.若G是CD的中点,则BC的长是()A.12.5B.12C.10D.10.54.菱形ABCD中,AB=2,∠A=120°,点P、Q、K分别为线段BC,CD,BD上的任意一点,则PK+QK的最小值为()A.1B.3C.D.+15.如图,在▱ABCD中,∠BCD=60°,DC=6,点E、F分别在AD,BC上,将四边形ABFE沿EF折叠得四边形A′B′FE,A′E恰好垂直于AD,若AE=,则B′F的值为()A.3B.2﹣1C.3﹣D.6.如图,在平面直角坐标系中,已知正方形ABCO,A(0,3),点D为x轴上一动点,以AD为边在AD的右侧作等腰Rt△ADE,∠ADE=90°,连接OE,则OE的最小值为()A.B.C.2D.37.如图,已知矩形纸片ABCD,AB=4,BC=3,点P在BC边上,将△CDP沿DP折叠,点C落在点E处,PE、DE分别交AB于点O、F,且OP=OF,则DF的长为()A.B.C.D.8.若关于x的不等式组无解,则a的取值范围是()A.a>1B.a≥1C.a<1D.a≤19.有依次排列的2个整式:x,x+2,对任意相邻的两个整式,都用右边的整式减去左边的整式,所得之差写在这两个整式之间,可以产生一个新整式串:x,2,x+2,这称为第一次操作;将第一次操作后的整式串按上述方式再做一次操作,可以得到第二次操作后的整式串;以此类推.通过实际操作,四个同学分别得出一个结论:小琴:第二次操作后整式串为:x,2﹣x,2,x,x+2;小棋:第二次操作后,当|x|<2时,所有整式的积为正数;小书:第三次操作后整式串中共有8个整式;小画:第2022次操作后,所有的整式的和为2x+4046;四个结论正确的有()个.A.1B.2C.3D.410.如图1,在矩形ABCD中,动点P从点B出发,沿B→C→D→A的路径匀速运动到点A 处停止.设点P运动的路程为x,△P AB的面积为y,表示y与x的函数关系的图象如图2所示,则下列结论:①a=4;②b=20;③当x=9时,点P运动到点D处;④当y=9时,点P在线段BC或DA上,其中所有正确结论的序号是()A.①②③B.②③④C.①③④D.①③11.如图①,在平面直角坐标系中,矩形ABCD在第一象限,且AB∥y轴.直线M:y=﹣x沿x轴正方向平移,被矩形ABCD截得的线段EF的长度l与平移的距离a之间的函数图象如图②,那么矩形ABCD的面积为()A.10B.12C.15D.1812.已知:如图,在正方形ABCD外取一点E,连接AE,BE,DE.过点A作AE的垂线交DE于点P.若,PB=10,下列结论:①△APD≌△AEB;②∠AEB=135°;③;④S△APD+S△APB=33;⑤CD=11.其中正确结论的序号是()A.①②③④B.①④⑤C.①②④D.③④⑤13.如图,在平面直角坐标系xOy中,直线y=x+4与x轴、y轴分别交于点A、C,点B 是y轴正半轴上的一点,且位于C点下方,当∠CAB=∠BAO时,则点B的纵坐标是()A.B.C.D.14.如图所示,在平面直角坐标系中,函数y=|x﹣1|的图象由一次函数y=x﹣1和y=﹣x+1的图象与x轴的交点及x轴上方的部分组成.根据前面所讲内容,当自变量﹣1≤x≤2时,若函数y=|x﹣a|(其中a为常量)的最小值为a+5,则满足条件的a的值为()A.﹣3B.﹣5C.7D.﹣3或﹣5二.填空题(共19小题)15.如图,在Rt△ABC中,∠BAC=90°,且BA=3,AC=4,点D是斜边BC上的一个动点,过点D分别作DM⊥AB于点M,DN⊥AC于点N,连接MN,则线段MN的最小值为.16.如图,四边形ABCD是菱形,对角线AC,BD相交于点O,AC=6,BD=6,点P 是AC上一动点,点E是AB的中点,则PD+PE的最小值为.17.如图,正方形ABCD和正方形CGEF的边长分别是4和6,且点B,C,G在同一直线上,M是线段AE的中点,连接MF,则MF的长为.18.如图所示,是用4个全等的直角三角形与1个小正方形镶嵌而成的正方形图案,已知大正方形面积为49,小正方形面积为4,若用x,y表示直角三角形的两直角边(x>y),下列四个说法:①x2+y2=49,②x﹣y=2,③2xy+4=49,④x+y=9.其中说法正确的结论有.19.如图,△ABC中,AB=6,AC=4,AD、AE分别是其角平分线和中线,过点C作CG ⊥AD于F,交AB于G,连接EF,则线段EF的长为.20.如图,在平行四边形ABCD中,AO=,∠ACB=30°,AC⊥AB,点E在AC上,CE =1,点P是BC边上的一动点,连接PE、P A,则PE+P A的最小值是.21.如图,已知等腰Rt△ABC的直角边长为1,以它的斜边AC为直角边画第二个等腰Rt △ACD,再以斜边AD为直角边画第三个等腰Rt△ADE,…,依此类推,AC长为,AD长为2,第3个等腰直角三角形斜边AE长为,第4个等腰三角形斜边AF 长为,则第n个等腰直角三角形斜边长为.22.如图,在边长为4的正方形ABCD中,E为BC上一点,EF⊥AC于点F,EG⊥BD于点G,那么EF+EG=.23.如图,在正方形ABCD中,AB=2,延长AD到点E,使得DE=1,EF⊥AE,EF=AE.分别连接AF,CF,M为CF的中点,则AM的长为.24.已知关于x的不等式组只有3个整数解,则a的取值范围是.25.某地区有序推进疫苗接种工作,构筑新冠免疫“防护墙”.12月某天,某地区甲、乙、丙三个新冠疫苗接种点均配备了A,B,C三类疫苗,A,B,C三类疫苗每件盒数是定值.甲接种点配备A类、B类、C类疫苗分别为10件、30件、40件,乙接种点配备A类、B 类、C类疫苗分别为20件、30件、20件,且甲接种点和乙接种点配备疫苗的总盒数相同.若三类疫苗每件盒数之和为95盒,且各类疫苗每件盒数均是不大于50盒的整数,C 与B两类疫苗每件盒数之差大于4盒.则丙接种点分别配备A类、B类、C类疫苗分别为20件、10件、40件的总盒数为盒.26.已知四边形ABCD为菱形,∠BAD=60°,AB=4cm,P为AC上任一点,则的最小值是cm.27.矩形OABC在平面直角坐标系中的位置如图所示,点B的坐标为(3,4),D是OA的中点,点E在AB上,当△CDE的周长最小时,点E的坐标为.28.如图,在Rt△ABC中,∠C=90°,AC=3,BC=4,P为AB边上(不与A、B重合的一动点,过点P分别作PE⊥AC于点E,PF⊥BC于点F,则线段EF的最小值是.29.如图,正方形OABC的边长为6,点A、C分别在x轴,y轴的正半轴上,点D(2,0)在OA上,P是OB上一动点,则P A+PD的最小值为.30.如图,已知菱形ABCD的边长为,点M是对角线AC上的一动点,且∠ABC=120°,则∠DAC=°,MA+MB+MD的最小值是.31.如图,点P是正方形ABCD内一点,且点P到点A、B、C的距离分别为2、1、,则正方形ABCD的面积为.32.如图,菱形ABCD的面积为,∠A=120°,点M,N,P分别为线段BC,CD,BD上的任意一点,则PM+PN的最小值为.33.如图,在矩形ABCD中,AB=5,AD=3,动点P满足S△P AB=S矩形ABCD,则点P到A、B两点距离之和P A+PB的最小值为.三.解答题(共16小题)34.如图1,四边形ABCD是正方形,点E是边BC的中点,∠AEF=90°,且EF交正方形外角平分线CF于点F.(1)求证:AE=EF;(2)如图2,若把条件“点E是边BC的中点”改为“点E是边BC上的任意一点”,其余条件不变,(1)中的结论是否仍然成立?;(填“成立”或“不成立”);(3)如图3,若把条件“点E是边BC的中点”改为“点E是边BC延长线上的一点”,其余条件仍不变,那么结论AE=EF是否成立呢?若成立请证明,若不成立说明理由.35.如(图1),矩形OABC的边OA、OC在坐标轴上,点A坐标为(5,0),点C坐标为(0,3)点P是射线BA上的一动点,把矩形OABC沿着CP折叠,点B落在点D处.(1)填空:点B坐标为;(2)如图1,当点C、D、A共线时,AD=;(3)如(图2),当点P与点A重合时,CD与x轴交于点E,过点E作EF⊥AC,交BC 于点F,请判断四边形CEAF的形状,并说明理由.36.正方形OABC的边长为2,其中OA、OC分别在x轴和y轴上,如图1所示,直线l经过A、C两点.(1)若点P是直线l上的一点,当△OP A的面积是3时,请求出点P的坐标;(2)如图2,坐标系xOy内有一点D(﹣1,2),点E是直线l上的一个动点,请求出|BE+DE|的最小值和此时点E的坐标.(3)若点D关于x轴对称,对称到x轴下方,直接写出|BE﹣DE|的最大值.37.平面直角坐标系中有正方形AOBC,O为坐标原点,点A、B分别在y轴、x轴正半轴上,点P、E、F分别为边BC、AC、OB上的点,EF⊥OP于M.(1)如图1,若点E与点A重合,点A坐标为(0,8),OF=3,求P点坐标;(2)如图2,若点E与点A重合,且P为边BC的中点,求证:CM=2CP;(3)如图3,若点M为线段OP的中点,连接AB交EF于点N,连接NP,试探究线段OP与NP的数量关系,并证明你的结论.38.如图1,在平面直角坐标系中,A(a,0),B(0,b),且a、b(其中a<b)是方程x2﹣6x+8=0的两个根.(1)求直线AB的解析式;(2)若点M为直线y=mx在第一象限上一点,当以AB为直角边△ABM是等腰直角三角形时,求m的值;(3)如图3,过点A的直线y=kx﹣2k交y轴负半轴于点P,N点的横坐标为﹣1,过N 点的直线交AP于点M,给出两个结论:①的值是不变;②的值是不变,只有一个结论是正确,请你判断出正确的结论,并加以证明和求出其值.39.如图,平行四边形ABCD中,BC=BD.点F是线段AB的中点.过点C作CG⊥DB交BD于点G,CG延长线交DF于点H.且CH=DB.(1)如图1,若DH=1.①求证:△DFB≌△CDH②求FH的值;(2)如图2,连接FG.求证:DB=FG+HG.40.如图1所示,在平面直角坐标系中,动点A(0,a),B(b,0)分别在y轴、x轴的正半轴上,射线AC、BC是△OAB的两条外角平分线,且它们相交于定点C(3,3).(1)若点A的坐标为(0,2),求直线AC的解析式;(2)求证:a2+b2=(6﹣a﹣b)2;(3)在图1中,延长CA、CB分别交x轴、y轴于点D,E,得到的图形如图2所示.试探究△ODE的面积是否为定值?若是定值,求出该定值;若不是定值,请说明理由.41.平面直角坐标系中,矩形OABC的顶点O、A、C的坐标分别为O(0,0)、A(a,0)、C(0,b),且a、b满足b2﹣8b+16+2=0;(1)矩形的顶点B的坐标是(,);(2)若D是OC中点,沿AD折叠矩形OABC使O点落在E处,折痕为DA,连CE并延长交AB于F,求直线CE的解析式;(3)在(2)的条件下,平面内是否存在一点P,使得△OFP是以OF为直角边的等腰直角三角形.若存在,请写出点P的坐标;若不存在,请说明理由.42.直线与x轴交于点A,与y轴交于点B,菱形ABCD如图放置在平面直角坐标系中,其中点D在x轴负半轴上,直线y=x+m经过点C,交x轴于点E.(1)请直接写出点C,点D的坐标,并求出m的值;(2)点P(0,t)是线段OB上的一个动点(点P不与O、B重合),经过点P且平行于x轴的直线交AB于M,交CE于N.当四边形NEDM是平行四边形时,求点P的坐标;(3)点P(0,t)是y轴正半轴上的一个动点,Q是平面内任意一点,t为何值时,以点C、D、P、Q为顶点的四边形是菱形?43.定义:有一个内角为90°,且对角线相等的四边形称为准矩形.(1)如图1,准矩形ABCD中,∠ABC=90°,若AB=2,BC=4,则BD=;(2)如图2,正方形ABCD中,点E,F分别是边AD,AB上的点,且CF⊥BE,求证:四边形BCEF是准矩形;(3)如图3,准矩形ABCD中,∠ABC=90°,∠BAC=60°,AB=2,AC=DC,求这个准矩形的面积.44.在平面直角坐标系中,A(0,8),点B是直线y=x﹣8与x轴的交点.(1)写出点B的坐标(,);(2)点C是x轴正半轴上一动点,且不与点B重合,∠ACD=90°,且CD交直线y=x﹣8于D点,求证:AC=CD;(3)在第(2)问的条件下,连接AD,点E是AD的中点,当点C在x轴正半轴上运动时,点E随之而运动,点E到BD的距离是否为定值?若为定值,求出这个值,若不是定值,请说明理由.45.在平面直角坐标系xOy中,对于M、N两点给出如下定义:若点M到x,y轴的距离之和等于点N到x,y轴的距离之和,则称M、N两点为“平等点”,例如:M(1,2)、N (﹣2,﹣1)两点即为“平等点”.(1)已知点A的坐标为(4,2),①在点J(﹣2,﹣4)K(3,﹣4)L(3,﹣3)中,为点A的“平等点”的是.(填字母)②若点B在y轴上,且A、B两点为“平等点”,则点B的坐标为.(2)已知直线y=x+4与x轴、y轴分别交于C、D两点,E为线段CD上一点,F是直线y=3x上的点,若E、F两点为“平等点”,求点F的坐标.(3)如图,点P(m,n)位于第一象限,且m+n=6,第二象限的点Q为P的“平等点”,且∠POQ=90°,过P、Q两点作x轴的垂线,垂足分别为R、S.若直线y=﹣2x平分四边形PQSR的面积,求直线PQ的解析式.46.如图,在边长为4的正方形ABCD中,点E,F分别是边BC,CD上的点,且BE=DF =t,连接EF,AC,相交于点O,G为对角线AC延长线上一点.(1)求证:△AEF是等腰三角形.(2)当t为何值时,△AEF的周长比△EFC的周长大8.(3)当四边形AEGF为菱形时,设△AEF的面积为S1,△GFC的面积为S2,求S1﹣S2关于t的函数解析式,并写出当∠EAF=60°时,S1﹣S2的值.47.如图1,在平面直角坐标系xOy中,直线l:y=mx+m(m>1)与x轴、y轴分别交于A、B两点,点Q为x轴上一动点.(1)若OB=2OA,求直线l的解析式;(2)在(1)的条件下,若∠QBA=45°,求满足条件的点Q的坐标;(3)如图2,在x轴的负半轴上是否存在点Q,使得以BQ为边作正方形BQMN时,点M恰好落在直线l上,且正方形BQMN的面积被x轴分成了1:2的两部分?若存在,请求出点Q的坐标,若不存在,请说明理由.48.我们不妨约定:对角线互相垂直的凸四边形叫做“十字形”.(1)①在“平行四边形,矩形,菱形、正方形”中,一定是“十字形”的有;②若凸四边形ABCD是“十字形”,AC=a,BD=b,则该四边形的面积为;(2)如图1,以等腰Rt△ABC的底边AC为边作等边三角形△ACD,连接BD,交AC 于点O,当﹣1≤S四边形ABCD≤2﹣2时,求BD的取值范围;(3)如图2,以“十字形”ABCD的对角线AC与BD为坐标轴,建立如图所示的平面直角坐标系xOy,若计“十字形”ABCD的面积为S,记△AOB,△COD,△AOD,△BOC 的面积分别为:S1,S2,S3,S4,且同时满足四个条件:①=+;②=+;③“十字形”ABCD的周长为32;④∠ABC=60°;若E为OA的中点,F 为线段BO上一动点,连接EF,动点P从点E出发,以1cm/s的速度沿线段EF匀速运动到点F,再以2cm/s的速度沿线段FB匀速运动到点B,到达点B后停止运动,当点P 沿上述路线运动到点B所需要的时间最短时,求点P走完全程所需的时间及直线EF的解析式.49.如图,在平面直角坐标系中,矩形OABC的三个顶点A,O,C在坐标轴上,矩形的面积为12,对角线AC所在直线的解析式为y=kx﹣4k(k≠0).(1)求A,C的坐标;(2)若D为AC中点,过D的直线交y轴负半轴于E,交BC于F,且OE=1,求直线EF的解析式;(3)在(2)的条件下,在坐标平面内是否存在一点G,使以C,D,F,G为顶点的四边形为平行四边形?若存在,请直接写出点G的坐标;若不存在,请说明理由.。

2020年中考数学压轴题专项训练:反比例函数的综合(含答案)

2020年中考数学压轴题专项训练:反比例函数的综合(含答案)

2020年数学中考压轴题专项训练:反比例函数的综合1.已知一次函数y=kx﹣(2k+1)的图象与x轴和y轴分别交于A、B两点,与反比例函数y=﹣的图象分别交于C、D两点.(1)如图1,当k=1,点P在线段AB上(不与点A、B重合)时,过点P作x轴和y轴的垂线,垂足为M、N.当矩形OMPN的面积为2时,求出点P的位置;(2)如图2,当k=1时,在x轴上是否存在点E,使得以A、B、E为顶点的三角形与△BOC相似?若存在,求出点E的坐标;若不存在,说明理由;(3)若某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,求k的值.解:(1)当k=1,则一次函数解析式为:y=x﹣3,反比例函数解析式为:y=﹣,∵点P在线段AB上∴设点P(a,a﹣3),a>0,a﹣3<0,∴PN=a,PM=3﹣a,∵矩形OMPN的面积为2,∴a×(3﹣a)=2,∴a=1或2,∴点P(1,﹣2)或(2,﹣1)(2)∵一次函数y=x﹣3与x轴和y轴分别交于A、B两点,∴点A(3,0),点B(0,﹣3)∴OA=3=OB,∴∠OAB=∠OBA=45°,AB=3,∵x﹣3=﹣∴x=1或2,∴点C(1,﹣2),点D(2,﹣1)∴BC==,设点E(x,0),∵以A、B、E为顶点的三角形与△BOC相似,且∠CBO=∠BAE=45°,∴,或,∴,或=,∴x=1,或x=﹣6,∴点E(1,0)或(﹣6,0)(3)∵﹣=kx﹣(2k+1),∴x=1,x=,∴两个函数图象的交点横坐标分别为1,,∵某个等腰三角形的一条边长为5,另两条边长恰好是两个函数图象的交点横坐标,∴1=,或5=∴k=2.如图,已知直线y=kx+b与反比例函数y=(x>0)的图象交于A(1,4)、B(4,1)两点,与x轴交于C点.(1)求一次函数与反比例函数的解析式;(2)根据图象直接回答:在第一象限内,当x取何值时,一次函数值大于反比例函数值?(3)点P是y=(x>0)图象上的一个动点,作PQ⊥x轴于Q点,连接PC,当S△CPQ =S时,求点P的坐标.△CAO解:(1)把A (1,4)代入y =(x >0),得m =1×4=4,∴反比例函数为y =;把A (1,4)和B (4,1)代入y =kx +b 得, 解得:, ∴一次函数为y =﹣x +5.(2)根据图象得:当1<x <4时,一次函数值大于反比例函数值;(3)设P (m ,),由一次函数y =﹣x +5可知C (5,0),∴S △CAO ==10,∵S △CPQ =S △CAO ,∴S △CPQ =5, ∴|5﹣m |•=5,解得m =或m =﹣(舍去), ∴P (,).3.如图,直线y =kx +b (b >0)与抛物线y =x 2相交于点A (x 1,y 1),B (x 2,y 2)两点,与x 轴正半轴相交于点D ,于y 轴相交于点C ,设△OCD 的面积为S ,且kS +8=0.(1)求b 的值.(2)求证:点(y 1,y 2)在反比例函数y =的图象上.(1)解:∵直线y=kx+b(b>0)与x轴正半轴相交于点D,于y轴相交于点C,∴D(0,b),C(﹣,0)∴由题意得OD=b,OC=﹣,∴S=∴k•()+8=0,∴b=4(b>0);(2)证明:∵,∴,∴x1•x2=﹣16∴,∴点(y1,y2)在反比例函数y=的图象上.4.如图,双曲线y=上的一点A(m,n),其中n>m>0,过点A作AB⊥x轴于点B,连接OA.(1)已知△AOB的面积是3,求k的值;(2)将△AOB绕点A逆时针旋转90°得到△ACD,且点O的对应点C恰好落在该双曲线上,求的值.解:(1)∵双曲线y=上的一点A(m,n),过点A作AB⊥x轴于点B,∴AB=n,OB=m,又∵△AOB的面积是3,∴mn=3,∴mn=6,∵点A在双曲线y=上,∴k=mn=6;(2)如图,延长DC交x轴于E,由旋转可得△AOB≌△ACD,∠BAD=90°,∴AD=AB=n,CD=OB=m,∠ADC=90°,∵AB⊥x轴,∴∠ABE=90°,∴四边形ABED是矩形,∴∠DEB=90°,∴DE=AB=n,CE=n﹣m,OE=m+n,∴C(m+n,n﹣m),∵点A,C都在双曲线上,∴mn=(m+n)(n﹣m),即m2+mn﹣n2=0,方程两边同时除以n2,得+﹣1=0,解得=,∵n>m>0,∴=.5.在平面直角坐标系xOy 中,对于点P (a ,b )和实数k (k >0),给出如下定义:当ka +b >0时,将以点P 为圆心,ka +b 为半径的圆,称为点P 的k 倍相关圆.例如,在如图1中,点P (1,1)的1倍相关圆为以点P 为圆心,2为半径的圆.(1)在点P 1(2,1),P 2(1,﹣3)中,存在1倍相关圆的点是 P 1 ,该点的1倍相关圆半径为 3 .(2)如图2,若M 是x 轴正半轴上的动点,点N 在第一象限内,且满足∠MON =30°,判断直线ON 与点M 的倍相关圆的位置关系,并证明.(3)如图3,已知点A 的(0,3),B (1,m ),反比例函数y =的图象经过点B ,直线l 与直线AB 关于y 轴对称.①若点C 在直线l 上,则点C 的3倍相关圆的半径为 3 .②点D 在直线AB 上,点D 的倍相关圆的半径为R ,若点D 在运动过程中,以点D 为圆心,hR 为半径的圆与反比例函数y =的图象最多有两个公共点,直接写出h 的最大值.解:(1)由题意知,k=1,(2,1),a=2,b=1,针对于P1∴ka+b=2+1=3>0,∴点P(2,1)的1倍相关圆为以点P为圆心,3为半径的圆,1(1,﹣3),a=1,b=﹣3,针对于P2∴ka+b=1﹣3=﹣2<0,∴点P(1,﹣3)不存在1倍相关圆2;3;故答案为:P1(2)如图2中,结论:直线ON与点M的倍相关圆的位置关系是相切.理由:设点M的坐标为(n,0),过M点作MP⊥ON于点P,∴点M的倍相关圆半径为n.∴OM=n.∵MP⊥ON,∴∠OPM=90°,∵∠MON=30°,∴MP=OM=n,∴点M的倍相关圆的半径为MP,∴直线ON与点M的倍相关圆相切;(3)①如图3中,记直线AB与x轴的交点为E,直线l与x轴的交点为F,∵B(1,m)在反比例函数y=的图象上,∴m=6,∴B(1,6)∵A(0,3),∴直线AB的解析式为y=3x+3,令y=0,则3x+3=0,∴x=﹣1,∴E(﹣1,0),∵直线l是直线AB关于y轴对称,∴点F与点E关于y轴对称,∴F(1,0),∴直线l的解析式为y=﹣3x+3,∵点C在直线l上,∴设C(c,﹣3c+3),由题意知,k=3,∴3c+(﹣3c+3)=3,∴点C的3倍相关圆的半径是3,故答案为:3;②∵点D在直线AB上,设D(d,3d+3),由题意知,k=,∴R=d+(3d+3)=d+3>0,∴d>﹣.6.如图,在平面直角坐标系中,直线y=2x+2与x轴、y轴分别交于A,B两点,与反比例函数y=的图象交于点M,且B为AM的中点.(1)求反比例函数y=的表达式;(2)过B做x轴的平行线,交反比例函数y=图象于点C,连接MC,AC.求△AMC的面积.解:(1)过点M作MH⊥y轴,垂足为H.∵AB=MB,∠MHB=∠AOB,∠MBH=∠ABO,∴△ABO≌△MBH(AAS),∴BH=BO,MH=AO,∵直线y=2x+2与x轴,y轴分别交于A,B两点,∴当y=0时,x=﹣1.当x=0时,y=2.∴A(﹣1,0),B(0,2).∴BH=BO=2,MH=AO=1.∴M(1,4).把M(1,4)代入中,得k=4.∴反比例函数的解析式为.(2)∵AB=BM,∴S△ABC =S△BCM.∵点C在反比例函数图象上,且BC∥x轴,∴点C纵坐标为2.把y=2代入,得x=2.∴点C坐标为(2,2),∴,∴S△AMC=4.7.已知:如图,在平面直角坐标系xOy中,点A(0,2),正方形OABC的顶点B在函数y =(k≠0,x<0)的图象上,直线l:y=﹣x+b与函数y=(k≠0,x<0)的图象交于点D,与x轴交于点E.(1)求k的值;(2)横、纵坐标都是整数的点叫做整点.①当一次函数y=﹣x+b的图象经过点A时,直接写出△DCE内的整点的坐标;②若△DCE内的整点个数恰有6个,结合图象,求b的取值范围.解:(1)依题意知:B(﹣2,2),∴反比例函数解析式为y=﹣.∴k的值为﹣4;(2)①∵一次函数y=﹣x+b的图象经过点A,∴b=2,∴一次函数的解析式为y=﹣x+2,解得,,,∴D(1﹣,1+),E(2,0),∴△DCE内的整点的坐标为(﹣1,1),(﹣1,2),(0,1);②当b=2时,△DCE内有3个整点,当b=3时,△DCE内有6个整点,∴b的取值范围是2<b≤3.8.如图,在平面直角坐标系xOy中,函数y=(x<0)的图象经过点A(﹣1,6).(1)求k的值;(2)已知点P(a,﹣2a)(a<0),过点P作平行于x轴的直线,交直线y=﹣2x﹣2于点M,交函数y=(x<0)的图象于点N.①当a=﹣1时,求线段PM和PN的长;②若PN≥2PM,结合函数的图象,直接写出a的取值范围.解:(1)∵函数y=(x<0)的图象经过点A(﹣1,6).∴k=﹣1×6=﹣6.(2)①当a=﹣1时,点P的坐标为(﹣1,2).∵直线y=﹣2x﹣2,反比例函数的解析式为y=﹣,PN∥x轴,∴把y=2代入y=﹣2x﹣2,求得x=﹣2,代入y=﹣求得x=﹣3,∴M(﹣2,2),N(﹣3,2),∴PM=1,PN=2.②∵当a=﹣1或a=﹣3时,PN=2PM,∴根据图象PN≥2PM,a的取值范围为a≤﹣3或﹣1≤a<0.9.如图,已知点D在反比例函数y=的图象上,过点D作DB⊥y轴,垂足为B(0,3),直线y=kx+b经过点A(5,0),与y轴交于点C,且BD=OC,OC:OA=2:5.(1)求反比例函数y=和一次函数y=kx+b的表达式;(2)连结AD,求∠DAC的正弦值.解:(1)∵BD=OC,OC:OA=2:5,点A(5,0),点B(0,3),∴OA=5,OC=BD=2,OB=3,又∵点C在y轴负半轴,点D在第二象限,∴点C的坐标为(0,﹣2),点D的坐标为(﹣2,3).∵点D(﹣2,3)在反比例函数的图象上,∴a=﹣2×3=﹣6,∴反比例函数的表达式为.将A(5,0)、C(0,﹣2)代入y=kx+b,得,解得:,∴一次函数的表达式为.(2)∵OA=BC=5,OC=BD=2,∠DBC=∠AOC=90°,∴△BDC≌△OCA(SAS),∴∠DCB=∠OAC,DC=CA,∴∠DCA=90°,∴△DCA是等腰直角三角形,∴∠DAC=45°,∴.10.如图,A为反比例函数y=(其中x>0)图象上的一点,在x轴正半轴上有一点B,OB=4.连接OA、AB,且OA=AB=2.(1)求k的值;(2)过点B作BC⊥OB,交反比例函数y=(x>0)的图象于点C.①连接AC,求△ABC的面积;②在图上连接OC交AB于点D,求的值.解:(1)过点A作AH⊥x轴,垂足为点H,AH交OC于点M,如图所示.∵OA=AB,AH⊥OB,∴OH=BH=OB=2,∴AH===6,∴点A的坐标为(2,6).∵A为反比例函数y=图象上的一点,∴k=2×6=12;(2)①∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH⊥OB,∴AH∥BC,∴点A到BC的距离=BH=2,=×3×2=3;∴S△ABC②∵BC⊥x轴,OB=4,点C在反比例函数y=上,∴BC==3.∵AH∥BC,OH=BH,∴MH=BC=,∴AM=AH﹣MH=.∵AM∥BC,∴△ADM∽△BDC,∴=.11.如图,反比例函数y=的图象与一次函数y=x+1的图象相交于点A(2,3)和点B.(1)求反比例函数的解析式和点B的坐标;(2)连接OA,OB,求△AOB的面积.(3)结合图象,请直接写出使反比例函数值小于一次函数值的自变量x的取值范围.解:(1)把A(2,3)代入得,∴k=6.∴反比例函数的解析式为.联立解得或,∴点B的坐标为(﹣3,﹣2).(2)设直线AB与y轴交于点C.可知C点的坐标为(0,1),∴OC=1.∴.(3)当﹣3<x<0或x>2时,反比例函数值小于一次函数值.12.如图1,直线y=x与双曲线y=交于A,B两点,根据中心对称性可以得知OA=OB.(1)如图2,直线y=2x+1与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试证明:AC=BD;(2)如图3,直线y=ax+b与双曲线y=交于A,B两点,与坐标轴交点C,D两点,试问:AC=BD还成立吗?(3)如果直线y=x+3与双曲线y=交于A,B两点,与坐标轴交点C,D两点,若DB+DC ≤5,求出k的取值范围.解:(1)如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.∵AE∥y轴,∴S△AOE =S△AEF=,∵BF∥x轴,∴S△BEF =S△OBF=,∴S△AEF =S△BEF,∴AB∥EF,∴四边形ACFE,四边形BDEF都是平行四边形,∴AC=EF,BD=EF,∴AC=BD.(2)如图1中,如图1中,作AE⊥x轴于E,BF⊥y轴于F,连接EF,AF,BE.∵AE∥y轴,∴S△AOE =S△AEF=,∵BF∥x轴,∴S△BEF =S△OBF=,∴S△AEF =S△BEF,∴AB∥EF,∴四边形ACFE,四边形BDEF都是平行四边形,∴AC=EF,BD=EF,∴AC=BD.(3)如图2中,∵直线y=x+3与坐标轴交于C,D,∴C(0,3),D(3,0),∴OC=OD=3,CD=3,∵CD+BD≤5,∴BD≤2,当BD=2时,∵∠CDO=45°,∴B(1,2),此时k=2,观察图象可知,当k≤2时,CD+BD≤5,13.综合与探究如图1,平面直角坐标系中,直线l:y=2x+4分别与x轴、y轴交于点A,B.双曲线y =(x>0)与直线l交于点E(n,6).(1)求k的值;(2)在图1中以线段AB为边作矩形ABCD,使顶点C在第一象限、顶点D在y轴负半轴上.线段CD交x轴于点G.直接写出点A,D,G的坐标;(3)如图2,在(2)题的条件下,已知点P是双曲线y=(x>0)上的一个动点,过点P作x轴的平行线分别交线段AB,CD于点M,N.请从下列A,B两组题中任选一组题作答.我选择①组题.A.①当四边形AGNM的面积为5时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.B.①当四边形AGNM成为菱形时,求点P的坐标;②在①的条件下,连接PB,PD.坐标平面内是否存在点Q(不与点P重合),使以B,D,Q为顶点的三角形与△PBD全等?若存在,直接写出点Q的坐标;若不存在,说明理由.解:(1)由已知可得A(﹣2,0),B(0,4),E(1,6),∴k=6;(2)∵AB⊥BC,∴BC的解析式为y=﹣x+4,联立,∴C(2,3),∵CD=AB=2,∴D(0,﹣1),∴CD的解析式为y=2x﹣1,∴G(,0);(3)A①设P(m,),∵MN∥x轴,∴M(﹣2,),N(+,),∴MN=,∵四边形AGNM的面积为5,∴×=5,∴m=3,∴P(3,2);②Q(3,1)、Q(﹣3,1)、Q(﹣3,2)时B,D,Q为顶点的三角形与△PBD全等.B①∵四边形AGNM成为菱形,MN=AM,∴=∴m=,∴P(,);②Q(﹣,)、Q(,3﹣)、Q(﹣,3﹣)时B,D,Q为顶点的三角形与△PBD全等.14.如图,直线AB与反比例函数y=(x>0)的图象交于点A,已知点A(3,4),B(0,﹣2),点C是反比例函数y=(x>0)的图象上的一个动点,过点C作x轴的垂线,交直线AB于点D.(1)求反比例函数的解析式;(2),求△ABC的面积;(3)在点C运动的过程中,是否存在点C,使BC=AC?若存在,请求出点C的坐标;若不存在,请说明理由.解:(1)∵反比例函数y=(x>0)的图象经过点A(3,4),∴k=xy=3×4=12,∴反比例函数的解析式为:y=;(2)作AE⊥y轴于点E,交CD于点F,则BE∥CD,∴==,∵点A的坐标为(3,4),∴EF=1,FA=2,∴点F的横坐标为1,∴点C的坐标为(1,12),设直线AB的解析式为:y=kx+b,则,解得,,∴直线AB的解析式为:y=2x﹣2,则点D的坐标为:(1,0),即CD=12,∴△ABC的面积=×12×1+×12×2=18;(3)不存在,理由如下:设点C的坐标为(m,),∵BC=AC,∴m2+(+2)2=(3﹣m)2+(﹣4)2,整理得,6m2﹣21m+144=0,△=212﹣4×6×144<0,则此方程无解,∴点C不存在.15.如图,在平面直角坐标系第一象限中,已知点A坐标为(1,0),点D坐标为(1,3),点G坐标为(1,1),动点E从点G出发,以每秒1个单位长度的速度匀速向点D方向运动,与此同时,x轴上动点B从点A出发,以相同的速度向右运动,两动点运动时间为t(0<t<2),以AD、AB分别为边作矩形ABCD,过点E作双曲线交线段BC于点F,作CD 中点M,连接BE、EF、EM、FM.(1)当t=1时,求点F的坐标.(2)若BE平分∠AEF,则t的值为多少?(3)若∠EMF为直角,则t的值为多少?解:(1)当t=1时, EG=1×1=1=AB∴点E(1,2)设双曲线解析式:y=∴k=1×2=2∴双曲线解析式:y=∵OB=OA+AB=2,∴当x=2时,y=1,∴点F(2,1)(2)∵EG=AB=t,∴点E(1,1+t),点B(1+t,0)设双曲线解析式:y=∴m=1+t∴双曲线解析式:y=当x=1+t时,y=1∴点F(1+t,1)∵BE平分∠AEF∴∠AEB=∠BEF,∵AD∥BC∴∠AEB=∠EBF=∠BEF∴EF=BF=1∴=t=1∴t=(3)延长EM,BC交于点N,∵EG=AB=t,∴点E(1,1+t),点B(1+t,0)∴DE=AD﹣AE=3﹣(1+t)=2﹣t,设双曲线解析式:y=∴n=1+t∴双曲线解析式:y=当x=1+t时,y=1∴点F(1+t,1)∵AD∥BC,∴∠ADC=∠NCD,∠DEM=∠MNC,且DM=CM,∴△DEM≌△CNM(AAS)∴EM=MN,DE=CN=2﹣t,∵CF=BC﹣BF=2∴NF=CF+CN=2﹣t+2=4﹣t,∵∠EMF为直角,∴∠EMF=∠NMF=90°,且EM=MN,MF=MF,∴△EMF≌△NMF(SAS),∴EF=NF,∴t=4﹣t∴t=4﹣4。

浙江省湖州市中考数学真题试题(含解析)

浙江省湖州市中考数学真题试题(含解析)

2018~2019学年湖州中考数学真题一、选择题(本题有10小题,每小题3分,共30分)下面每小题给出的四个选项中,只有一个是正确的.请选出各题中一个最符合题意的选项,并在答题卷上将相应题次中对应字母的方框涂黑,不选、多选、错选均不给分. 1.数2的倒数是 A. -2 B. 2C. 21-D.21【答案】D【解析】因为互为倒数的两个数之积为1,所以2的倒数是12,故选D.2.据统计,龙之梦动物世界在2019年“五一”小长假期间共接待游客约238000人次用科学记数法可将238000表示为 A.238×103B.23.8×104C.2.38×105D.0.238×106【答案】C【解析】238000=2.38×105,故选C. 3.计算aa a 11+-,正确的结果是 A.1B.21C. aD.a 1【答案】A 【解析】a a a 11+-=111==+-aaa a ,故选A.4.已知∠α=60°32’,则∠α的余角是 A.29°28’B.29°68’C.119°28’D.119°68’【答案】A【解析】解:∠α的余角为90°-60°32′=29°28′,故选:A .5.已知圆锥的底面半径为5cm ,母线长为13cm ,则这个圆锥的侧面积是 A. 60πcm 2B.65πcm2C.120πcm2D.130πcm2【答案】B【解析】圆锥的侧面积=21×13×2×π×5=65πcm 2.6.已知现有的10瓶饮料中有2瓶已过了保质期,从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是 A.101B.109C.51D.54【答案】C【解析】∵10瓶饮料中有2瓶已过了保质期,∴从这10瓶饮料中任取1瓶,恰好取到已过了保质期的饮料的概率是210= 15. 故选C.7.如图,已知正五边形ABCDE 内接于⊙O ,连结BD ,则∠ABD 的度数是(第7题图) A.60°B. 70°C.72°D.144°【答案】C【解析】∵五边形ABCDE 为正五边形,∴∠ABC =∠C =15(5−2)×180°=108°,∵CD =CB ,∴∠CBD =12(180°−108°)=36°,∴∠ABD =∠ABC -∠CBD =72°, 故选:C .8.如图,已知在四边形ABCD 中,∠BCD =90°,BD 平分∠ABC ,AB =6,BC =9,CD =4,则四边形ABCD 的面积是(第8题图)A.24B.30C. 36D. 42【答案】B【解析】如图,过点D 作DE ⊥AB 于E ,由BD 平分∠ABC 可知,DC =DE ,BC =BE ,∴四边形ABCD 的面积BC ∙CD -12(BE -AB )∙DE =36-6=30. 故选B.9.在数学拓展课上,小明发现:若一条直线经过平行四边形对角线的交点,则这条直线平分该平行四边形的面积.如图是由5个边长为1的小正方形拼成的图形,P 是其中4个小正方形的公共顶点,小强在小明的启发下,将该图形沿着过点P 的某条直线剪一刀,把它剪成了面积相等的两部分,则剪痕的长度是(第9题图)A.22B.5C.253D.10【答案】D【解答】如下图,EF 为剪痕,过点F 作FG ⊥EM 于G .∵EF 将该图形分成了面积相等的两部分,∴EF 经过正方形ABCD 对角线的交点, ∴AF =CN ,BF =DN .易证△PME ≌PDN ,∴EM =DN , 而AF =MG ,∴EG =EM +MG =DN +AF =DN +CN =DC =1.在Rt △FGE 中,EF =10132222=+=+EG FG . 故选:D.10.已知a ,b 是非零实数,b a >,在同一平面直角坐标系中,二次函数y 1=ax 2+bx 与一次函数y 2=ax +b 的大致图象不可能是A. B. C. D.【答案】D【解析】解答本题可采用赋值法. 取a=2,b=1,可知A选项是可能的;取a=2,b=-1,可知B选项是可能的;取a=-2,b=-1,可知C选项是可能的,那么根据排除法,可知D选项是不可能的.故选D.二、填空题(本题有6小题,每小题4分,共24分)11.分解因式:x2-9=_____________.【答案】(x+3)(x-3)【解析】根据平方差公式,有x2-9=(x+3)(x-3).12.已知一条弧所对的圆周角的度数是15°,则它所对的圆心角的度数是__________.【答案】30°【解析】根据圆周角定理:是一条弧所对圆周角等于它所对圆心角的一半,可知它所对的圆心角的度数是30°.13.学校进行广播操比赛,如图是20位评委给某班的评分情况统计图,则该班的平均得分是________分.【答案】9.1【解析】该班的平均得分= 5×8+8×9+7×105+8+7= 9.1.14.有一种落地晾衣架如图1所示,其原理是通过改变两根支撑杆夹角的度数来调整晾衣杆的高度.图2是支撑杆的平面示意图,AB 和CD 分别是两根不同长度的支撑杆,夹角∠BOD =α. 若AO =85cm ,BO =DO =65cm .问:当α=74°,较长支撑杆的端点A 离地面的高度h 约为________cm .(参考数据:sin 37≈0.6,cos 3≈0.8,sin 53≈0.8,cos 53≈0.6.)图1 图2【答案】12015.如图,已知在平面直角坐标系xoy 中,直线121-=x y 分别交x 轴,y 轴于点A 和点B ,分别交反比例函数()0,01>>=x k x ky ,()022<=x xk y 的图象于点C 和点D ,过点C 作CE ⊥x 轴于点E ,连结OC ,OD .若△COE 的面积与△DOB 的面积相等,则k 的值是_________.【答案】2【解答】如下图,过点D 作DF ⊥y 轴于F .由反比例函数比例系数的几何意义,可得S △COE=12k ,S △DOF =k.∵S △DOB =S △COE =12k ,∴S △DBF =S △DOF -S △DOB =12k=S △DOB ,∴OB=FB.易证△DBF ≌ABO ,从而DF =AO =2,即D 的横坐标为-2,而D 在直线AC 上, ∴D (-2, -2),∴k =12∙(-2)∙(-2)=2.16.七巧板是我国祖先的一项卓越创造,被誉为“东方魔板”.由边长为4√2的正方形ABCD 可以制作一副如图1所示的七巧板,现将这副七巧板在正方形EFGH 内拼成如图2所示的“拼搏兔”造型(其中点Q 、R 分别与图2中的点E 、G 重合,点P 在边EH 上),则“拼搏兔”所在正方形EFGH 的边长是__________.图1图2【答案】4 5【解析】如图3,连结CE 交MN 于O .观察图1、图2可知,EN =MN =4,CM =8,∠ENM =∠CMN =90°.图3∴△EON ∽△COM , ∴EN CN = ON OM = 12, ∴ON =13MN =43,OM =23MN =83.在Rt △ENO 中,OE =ON 2+EN 2=4103,同理可求得OG =8103, ∴GF =22(OE +OG )=2,即“拼搏兔”所在正方形EFGH 的边长是4 5.三、解答题(本题有8小题共66分) 17.(本小题6分)计算:()82123⨯+-. 【答案】8【解答】原式=-8+4=-4.18.(本小题6分)化简:(a +b )2-b (2a +b ).【答案】a 2【解答】原式=a 2+2ab +b 2-2ab -b 2=a 2.19.(本小题6分)已知抛物线y =2x 2-4x +c 与x 轴有两个不同的交点.(1)求c 的取值范围;(2)若抛物线y =2x 2-4x +c 经过点A (2,m )和点B (3,n ),试比较m 与n 的大小,并说明理由.【答案】略【解答】(1) b2-4ac=(-4)2-8c=16-8c.由题意,得b2-4ac>0,∴16-8c>0∴c的取值范围是c<2.(2) m<n. 理由如下:∵抛物线的对称轴为直线x=1,又∵a=2>0,∴当x≥1时,y随x的增大而增大.∵2<3,∴m<n.20.(本小题8分)我市自开展“学习新思想,做好接班人”主题阅读活动以来,受到各校的广泛关注和同学们的积极响应,某校为了解全校学生主题阅读的情况,随机抽查了部分学生在某一周主题阅读文章的篇数,并制成下列统计图表.某校抽查的学生文章阅读的篇数统计表某校抽查的学生文章阅读的篇数情况统计图文章阅读的篇数(篇) 3 4 5 6 7及以上人数(人) 20 28 m16 12请根据统计图表中的信息,解答下列问题:(1)求被抽查的学生人数和m的值;(2)求本次抽查的学生文章阅读篇数的中位数和众数;(3)若该校共有800名学生,根据抽查结果估计该校学生在这一周内文章阅读的篇数为4篇的人数.【答案】略【解答】(1) 被抽查的学生人数是16÷16%=100(人),m=100-20-28-16-12=24(人).(2) 中位数是5(篇),众数是4(篇).(3) ∵被抽查的100人中,文章阅读篇数为4篇的人数是28人, ∴800×28100=224(人),∴估计该校学生在这一周内文章阅读的篇数为4篇的人数是224人.21.(本小题8分)如图,已知在△ABC 中,D ,E ,F 分别是AB ,BC ,AC 的中点,连结DF ,EF ,BF.(1)求证:四边形BEFD 是平行四边形;(2)若∠AFB =90°,AB =6,求四边形BEFD 的周长.(1)证明:∵D ,E ,F 分别是AB ,BC ,AC 的中点, ∴DF ∥BC ,FE ∥AB ,∴四边形BEFD 是平行四边形.(2)解:∵∠AFB =90°,D 是AB 的中点,AB =6,∴DF =DB =DA =12AB =3.∴四边形BEFD 是菱形.∵DB =3,∴四边形BEFD 的周长为12.22.(本小题10分)某校的甲、乙两位老师同住一小区,该小区与学校相距2400米.甲从小区步行去学校,出发10分钟后乙再出发,乙从小区先骑公共自行车,途经学校义骑行若干米到达还车点后,立即步行走回学校.已知甲步行的速度比乙步行的速度每分钟快5米.设甲步行的时间为x (分),图1中线段OA 和折线B -C -D 分别表示甲、乙离开小区的路程y (米)与甲步行时间x (分)的函数关系的图象;图2表示甲、乙两人之间的距离s (米)与甲步行时间x (分)的函数关系的图象(不完整).根据图1和图2中所给信息,解答下列问题:(1)求甲步行的速度和乙出发时甲离开小区的路程;(2)求乙骑自行车的速度和乙到达还车点时甲、乙两人之间的距离;(3)在图2中,画出当25≤x ≤30时s 关于x 的函数的大致图象.(温馨提示:请画在答题卷相对应的图上)图1图2【答案】略【解答】(1)由题意,得:甲步行的速度是2400÷30=80(米/分),∴乙出发时甲离开小区的路程是80×10=800(米).(2)设直线OA的解析式为: y=kx(k≠0),∵直线OA过点A(30,2400),∴30k=2400,解得k=80,∴直线OA的解析式为:y=80x.∴当x=18时,y=80×18=1440,∴乙骑自行车的速度是1440÷(18-10)=180(米/分).∵乙骑自行车的时间为25-10=15(分),∴乙骑自行车的路程为180×15=2700(米).当x=25时,甲走过的路程是y=80x=80×25=2000(米),∴乙到达还车点时,甲、乙两人之间的距离是2700-2000=700(米).(3)图象如图所示:23.(本小题10分)已知在平面直角坐标系xOy中,直线l1分别交x轴和y轴于点A(-3,0),B(0,3).(1)如图1,已知⊙P经过点O,且与直线l1相切于点B,求⊙P的直径长;(2)如图2,已知直线l2:y=3x-3分别交x轴和y轴于点C和点D,点Q是直线l2上的一个动2为半径画圆.点,以Q为圆心,2①当点Q与点C重合时,求证:直线l1与⊙Q相切;②设⊙Q与直线l1相交于M,N两点, 连结QM,QN.问:是否存在这样的点Q,使得△QMN是等腰直角三角形,若存在,求出点Q的坐标;若不存在,请说明理由.图1 图2【答案】略【解答】(1)如图1,连结BP,过点P作PH⊥OB于点H,图3则BH =OH .∵AO =BO =3,∴∠ABO =45°,BH =12OB =2, ∵⊙P 与直线l 1相切于点B ,∴BP ⊥AB ,∴∠PBH =90°-∠ABO =45°.∴PB =2BH =322,从而⊙P 的直径长为3 2. (2)证明:如图4过点C 作CE ⊥AB 于点E ,图4将y =0代入y =3x -3,得x =1,∴点C 的坐标为(1,0).∴AC =4,∵∠CAE =45°,∴CE =22AC =2 2. ∵点Q 与点C 重合,又⊙Q 的半径为22,∴直线l 1与⊙Q 相切.②解:假设存在这样的点Q,使得△QMN是等腰直角三角形,∵直线l1经过点A(-3,0),B(0,3),∴l的函数解析式为y=x+3.记直线l2与l1的交点为F,情况一:如图5,当点Q在线段CF上时,由题意,得∠MNQ=45°.如图,延长NQ交x轴于点G,图5∵∠BAO=45°,∴∠NGA=180°-45°-45°=90°,即NG⊥x轴,∴点Q与N有相同的横坐标,设Q(m,3m-3),则N(m,m+3),∴QN=m+3-(3m-3).∵⊙Q的半径为22,∴m+3-(3m-3)=22,解得m=3-2,∴3m-3=6-22,∴Q的坐标为(3-2,6-22).情况二:当点Q 在线段CF 的延长线上时,同理可得m =3+2,Q 的坐标为(3+2,6+32). ∴存在这样的点Q 1(3-2,6-32)和Q 2(3+2,6+32),使得△QMN 是等腰直角三角形.24.(本小题12分)如图1,已知在平面直角坐标系xoy 中,四边形OABC 是矩形点A ,C 分别在x 轴和y 轴的正半轴上,连结AC ,OA =3,tan ∠OAC =∠3,D 是BC 的中点.(1)求C 的长和点D 的坐标;(2)如图2,M 是线段OC 上的点,OM =OC ,点P 是线段OM 上的一个动点,经过P ,D ,B 三点的抛物线交x 轴的正半轴于点E ,连结DE 交AB 于点F①将△DBF 沿DE 所在的直线翻折,若点B 恰好落在AC 上,求此时BF 的长和点E 的坐标; ②以线段DF 为边,在DF 所在直线的右上方作等边△DFG ,当动点P 从点O 运动到点M 时,点G 也随之运动,请直接写出点G 运动路径的长.图1图2【答案】略【解答】(1)解:∵A =3,t an ∠OAC =OC OA =33, ∴OC = 3.∵四边形OABC 是矩形,∴BC =A 0=3.∵D 是BC 的中点,∴CD =12BC =32,∴点D 的坐标为(32,3). (2) ①∵t an ∠OAC =33, ∴∠OAC =30°,∴∠ACB =∠OAC =30°.设将△DBF 翻折后,点B 落在AC 上的B ’处, 则DB ’=DB =DC ,∠BDF =∠BD ’F , ∴∠DB ’C =∠ACB =30°,∴∠BDB =60°,∴∠BDF =∠B ’DF =30°.∵∠B =90°,∴BF =BD ∙t an 30=32. ∵AB =3,∴AF =BF =32, ∵∠BFD =∠AFE ,∠B =∠FAE =90°, ∴△BFD ≌△AFE .∴AE =BD =32. ∴OE =OA +AE =92,∴点E 的坐标为(92,0). ②36.。

2021北京西城初二上学期期末数学试卷(附答案)

2021北京西城初二上学期期末数学试卷(附答案)

2021北京西城初二(上)期末数 学2021.1第1~10题均有四个选项,符合题意的选项只有一个. 1. 3-2的计算结果为A. 6B.19C.16D. 92.下列图形中,是轴对称图形的是A BCD3.下列运算中正确的是A. a 2+a =a 3B. a 5•a 2=a 10 C. (a 2)3=a 8 D. (ab 2)2=a 2b 44.如图,在△ABC 和△DEF 中,∠C =∠F =90°,添加下列条件,不能..判定这两个三角形全等的是 A. ∠A =∠D ,∠B =∠E B. AC =DF ,AB =DE C. ∠A =∠D ,AB =DE D. AC =DF ,CB =FE5.化简分式2xy xx +的结果是 A.y x B.1y x+ C. 1y +D.y xx+6.如果m2+m=5,那么代数式m(m-2)+(m+2)2的值为A. 14B. 9C. -1D. -67.已知一次函数y=kx-6,且y随x的增大而减小.下列四个点中,可能是该一次函数图象与x轴交点的是A. (0,0)B. (2,0)C. (-2,0)D. (6,0)8.如图,在△ABC中,点D,E分别在边AB,BC上,点A与点E关于直线CD对称.若AB=7,AC=9,BC=12,则△DBE的周长为A. 9B. 10C. 11D. 129.在学校组织的秋季登山活动中,某班分成甲、乙两个小组同时开始攀登一座450m高的山.乙组的攀登速度是甲组的1.2倍,乙组到达顶峰所用时间比甲组少15 min.如果设甲组的攀登速度为x m/min,那么下面所列方程中正确的是A. 4504501.215x x=++B.450450151.2x x=-C. 4504501.215x x=⨯+D.450450151.2x x=+10.如图1,四边形ABCD是轴对称图形,对角线AC,BD所在直线都是其对称轴,且AC,BD相交于点E.动点P从四边形ABCD的某个顶点出发,沿图1中的线段匀速运动.设点P运动的时间为x,线段EP的长为y,图2是y与x的函数关系的大致图象,则点P的运动路径可能是图1 图2A. C→B→A→EB. C→D→E→AC. A→E→C→BD. A→E→D→C二、填空题(本题共18分,第15,17题每小题3分,其余每小题2分)11.若分式14x-有意义,则x的取值范围是__________.12.点A(1,-3)关于x轴对称的点的坐标为__________.13.计算:10a2b3÷(-5ab3)=__________.14.如图,△ABC≌△ADE,点D在边BC上,∠EAC=36°,则∠B=__________°.15.已知小腾家、食堂、图书馆在同一条直线上.小腾从家去食堂吃早餐,接着去图书馆查阅资料,然后回家.下面的图象反映了这个过程中小腾离家的距离y(单位:m)与时间x(单位:min)之间的对应关系.根据图象可知,小腾从食堂到图书馆所用时间为_________min;请你根据图象再写出一个结论:____________________________________.16.如图1,先将边长为a的大正方形纸片ABCD剪去一个边长为b的小正方形EBGF,然后沿直线EF将纸片剪开,再将所得的两个长方形按如图2所示的方式拼接(无缝隙,无重叠),得到一个大的长方形AEG C. 根据图1和图2的面积关系写出一个等式:__________________________.(用含a,b的式子表示)17. 如图,△ABC是等边三角形,AD⊥BC于点D,DE⊥AC于点E.若AD=12,则DE=________;△EDC与△ABC的面积关系是:EDCABCSS________.18. 如图,一次函数y=ax+b与y=cx+d的图象交于点P.下列结论中,所有正确结论的序号是 ________________.①b<0;②ac<0;③当x>1时,ax+b>cx+d;④a+b=c+d;⑤c>d.三、解答题(本题共52分,第19题8分,第20~24题每小题6分,第25,26题每小题7分) 19.分解因式:(1)x 3-25x ;(2)m (a -3)+2(3-a ).20.计算:21311211a a a a a a --+÷-+++.21.小红发现,任意一个直角三角形都可以分割成两个等腰三角形.已知:在△ABC 中,∠ACB =90°.求作:直线CD ,使得直线CD 将△ABC 分割成两个等腰三角形.下面是小红设计的尺规作图过程.作法:如图,① 作直角边CB 的垂直平分线MN ,与斜边AB 相交于点D ; ② 作直线C D.所以直线CD 就是所求作的直线. 根据小红设计的尺规作图过程,(1)使用直尺和圆规,补全图形(保留作图痕迹); (2)完成下面的证明.证明:∵直线MN 是线段CB 的垂直平分线,点D 在直线MN 上, ∴DC =D B.(_____________________)(填推理的依据) ∴∠______=∠______. ∵∠ACB =90°,∴∠ACD =90°―∠DCB , ∠A =90°―∠ ______. ∴∠ACD =∠A.∴DC =D A.(______________________________)(填推理的依据) ∴△DCB 和△DCA 都是等腰三角形.22.解方程:81 3(3)x xx x x++= --23.如图,AB∥CD,点E在CB的延长线上,∠A=∠E,AC=E D.(1)求证:BC=CD;(2)连接BD,求证:∠ABD=∠EB D.24.如图,在平面直角坐标系xOy中,直线l1:2433y x=-+与x轴交于点A,直线l2:y=2x+b与x轴交于点B,且与直线l1交于点C(-1,m).(1)求m和b的值;(2)求△ABC的面积;(3)若将直线l2向下平移t(t>0)个单位长度后,所得到的直线与直线l1的交点在第一象限,直接写出t的取值范围.25.给出如下定义:在平面直角坐标系xOy中,已知点P1(a,b),P2(c,b),P3(c,d),这三个点中任意两点间的距离的最小值称为点P1,P2,P3的“最佳间距”.例如:如图,点P1(-1,2),P2(1,2),P3(1,3)的“最佳间距”是1.(1)点Q1(2,1),Q2(4,1),Q3(4,4)的“最佳间距”是__________;(2)已知点O(0,0),A(-3,0),B(-3,y).①若点O,A,B的“最佳间距”是1,则y的值为________;②点O,A,B的“最佳间距”的最大值为________;(3)已知直线l与坐标轴分别交于点C(0,3)和D(4,0),点P(m,n)是线段CD上的一个动点.当点O (0,0),E(m,0),P(m,n)的“最佳间距”取到最大值时,求此时点P的坐标.26.课堂上,老师提出了这样一个问题:如图1,在△ABC中,AD平分∠BAC交BC于点D,且AB+BD=A C.求证:∠ABC=2∠AC B.小明的方法是:如图2,在AC上截取AE,使AE=AB,连接DE,构造全等三角形来证明结论.(1)小天提出,如果把小明的方法叫做“截长法”,那么还可以用“补短法”通过延长线段AB构造全等三角形进行证明.辅助线的画法是:延长AB至F,使BF=________,连接DF.请补全小天提出的辅助线的画法,并在图1中画出相应的辅助线;(2)小芸通过探究,将老师所给的问题做了进一步的拓展,给同学们提出了如下的问题:如图3,点D在△ABC的内部,AD,BD,CD分别平分∠BAC,∠ABC,∠ACB,且AB+BD=A C. 求证:∠ABC=2∠AC B.请你解答小芸提出的这个问题;(3)小东将老师所给问题中的一个条件和结论进行交换,得到的命题如下:如果在△ABC中,∠ABC=2∠ACB,点D在边BC上,AB+BD=AC,那么AD平分∠BA C.小东判断这个命题也是真命题,老师说小东的判断是正确的.请你利用图4对这个命题进行证明.附加题一、填空题(本题6分)1.我们可以将一些只含有一个字母且分子、分母的次数都为一次的分式变形,转化为 整数与新的分式的和的形式,其中新的分式的分子中不含字母,如:3(1)441111a a a a a +-+==+---,212(1)332111a a a a a -+-==-+++. 参考上面的方法,解决下列问题: (1)将1a a +变形为满足以上结果要求的形式:1aa +=________________; (2)① 将 3a +2 变形为满足以上结果要求的形式:321a a +-=________; ② 若321a a +-为正整数,且a 也为正整数,则a 的值为________. 二、解答题(本题共14分,第2题6分,第3题8分)2.如图,在平面直角坐标系xOy 中,直线y =kx +3与x 轴的负半轴交于点A ,与y 轴交于点B . 点C 在第四象限,BC ⊥BA ,且BC =BA .(1)点B 的坐标为________,点C 的横坐标为________;(2)设BC 与x 轴交于点D ,连接AC ,过点C 作CE ⊥x 轴于点E .若射线AO 平分∠BAC ,用等式表示线段AD 与CE 的数量关系,并证明.3.在平面直角坐标系xOy 中,对于任意两点M (x 1,y 1),N (x 2,y 2),定义如下:点M 与点N 的“直角距离”为 |x 1-x 2|+|y 1-y 2|,记作d MN .例如:点M (1,5)与N (7,2)的“直角距离”d MN =|1-7|+|5-2|=9. (1)已知点P 1(-1,0),P 2(32-,12),P 3(-12,14),P 4(-12,-12),则在这四个点中,与原点O 的“直角距离”等于1的点是________;(2)如图,已知点A (1,0),B (0,1),根据定义可知线段AB 上的任意一点与原点O 的“直角距离”都等于1.若点P与原点O的“直角距离”d OP=1,请在图中将所有满足条件的点P组成的图形补全;(3)已知直线y=kx+2,点C(t,0)是x轴上的一个动点.①当t=3时,若直线y=kx+2上存在点D,满足d CD=1,求k的取值范围;②当k=-2时,直线y=kx+2与x轴,y轴分别交于点E,F.若线段EF上任意一点H都满足1≤d CH≤4,直接写出t的取值范围.2021北京西城初二(上)期末数学参考答案一、选择题(本题共30分,每小题3分)11. x ≠4. 12.(1,3) 13. -2a . 14.72.15. 12; 答案不唯一,如:小腾家到图书馆的距离为1200米. 16. 答案不唯一,如:a 2-b 2=(a +b )(a -b ). 17. 6;18。

福建省泉州市永春县2022-2023九年级初三上学期期末数学试卷+答案

福建省泉州市永春县2022-2023九年级初三上学期期末数学试卷+答案

2022—2023学年第一学期九年级期末考试数学试题注意事项:1.答题前,考生务必在试题卷、答题卡规定位置填写本人的准考证号、姓名等信息。

考生要认真核对答题卡上粘贴的条形码上的“准考证号、姓名”与本人准考证号、姓名是否一致。

2.选择题每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦擦干净后,再选涂其他答案标号。

非选择题答案用0.5毫米黑色签字笔在各答题卡上相应位置书写作答,在试题卷上答题无效。

一、选择题:本题共10小题,每小题4分,共40分.在每小题给出的四个选项中,只有一项是符合要求的.1.有意义,则x 的可能值是( )A.5−B.0C.4D.6 2.若35a b =,则a b a−的值为( ) A.32− B.23 C.25− D.253.下列事件发生的概率为1的是( )A.抛一枚质地均匀的硬币,落地后正面朝上B.抛掷一枚质地均匀且六个面分别刻有1到6的点数的正方体骰子,朝上一面的点数为7C.从一个只有红球的袋子里摸出一个球是红球D.射击运动员只射击1次,就命中靶心4.下列与为同类二次根式的是( )5.方程2440x x +−=经过配方后的结果是( ) A.()228x −= B.()228x += C.()224x += D.()224x −= 6.如图是某商场自动扶梯的示意图,自动扶梯AB 的坡角(BAC ∠)为30.5°,乘客从扶梯底端升到顶端上升的高度BC 为5米,则自动扶梯AB 的长为( )A.5tan 30.5°米B.5sin 30.5°米C.5sin 30.5°米 D.5cos30.5°米7.一个等腰三角形的两条边长分别是方程210210x x −+=的两根,则该等腰三角形的周长是( )A.13B.17C.21D.13或17 8.若α、β是一元二次方程2350x x +−=的两个根,则22ααβ+−的值是( ) A.2 B.3 C.5 D.89.如图,在网格中,点A ,B ,C 都在格点上,则CAB ∠的正弦值是( )B.12 D.2 10.在平面直角坐标系中,已知ABC △与A B C ′′′△是位似图形,点(),1A a a +的对应点()2,21A a a ′+,点()3,0B 的对应点()6,1B ′−,点C 的对应点()6,5C ′,则点C 的坐标是( ) A.53,2B.()3,2C.()3,3D.5,22二、填空题:本题共6小题,每小题4分,共24分.11.=________. 12.某班级共有20位女同学和22位男同学,将每位同学的名字分别写在一张小纸条上,放入一个不透明的盒中搅匀.老师从盒中随机取出1张纸条,抽到男同学名字的概率是________.13.已知ABC DEF △△,且:2:3AC DF =,BC 与EF 边上的高分别记为1h 和2h ,则12:h h 等于________.14.如图,AB CD EF ∥∥,直线1l ,2l 与这三条平行线分别交于点A ,C ,E 和点B ,D ,F .已知3AC =,7AE =,5DF =,则BF 的长为________.。

2022-2023学年度初二数学第一学期期中考试试卷(含答案)

2022-2023学年度初二数学第一学期期中考试试卷(含答案)

2022-2023学年度第一学期期中考试试卷初二数学 2022.10班级: 姓名:一、 选择题(每小题3分,共30分)1.2020年初,新型冠状病毒引发肺炎疫情.一方有难,八方支援,危难时刻,全国多家医院纷纷选派医护人员驰援武汉.下面是四家医院标志的图案部分,其中是轴对称图形的是( )齐鲁医院 华西医院 湘雅医院 协和医院 A . B . C . D .2.下列长度的三条线段,能组成三角形的是( ) A .3,4,8B .5,6,10C .5,5,11D .6,7,133.如图所示,△ABC 中AB 边上的高线画法正确的是( )4.如图,在△ABC 中,∠A =45°,∠C =75°,BD 是△ABC 的角平分线,则∠BDC 的度数为( ) A .60° B .70° C.75° D.105°5.如图,在△ABC 中,∠C =90°,∠B =30°,边AB 的垂直平分线DE 交AB 于点E ,交BC 于点D ,CD =3,则BC 的长为( )A. 8B. 9C. 10D. 126.如图,已知MON ,以O 为圆心,任意长为半径画弧,与射线OM 、ON 分别交于A 、B ,再分别过点A 、B 作OM 、ON 的垂线,交点为P ,画射线OP ,可以判定△AOP ≌△BOP ,全等的依据是( ) A. SSS B. SAS C. AAS D. HL第4题 第5题 第6题 第7题D CABH C BAABC HH CBABC HAA B C D7.如图,∠AOB=60°,点P 在边OA 上,OP=10,点M ,N 在边OB 上,PM=PN ,若MN=2, 则OM 的长为( ) A. 5 B. 4 C. 4.5 D. 68.借助如图所示的“三等分角仪”能三等分某些度数的角,这个“三等分角仪”由两根有槽的棒OA ,OB 组成,两根棒在O 点相连并可绕O 转动,C 点固定,OC =CD =DE ,点D ,E 可在槽中滑动.若∠BDE =75°,则∠CDE 的度数是( )A .68°B .75°C .80°D .90°9.如图,点P 是∠AOB 内任意一点,且∠AOB=40°,点M 和点N 分别是射线OA 和射线OB 上的动点, 当△PMN 周长取最小值时,则∠MPN 的度数为( )A .140°B .100°C .50°D .40°10.如图,AE ⊥AB 且AE AB =,BC ⊥CD 且BC CD =,请按照图中所标数据,计算图中实线所围成的图形的面积是( )A. 30B. 32C. 35D. 38第8题 第9题 第10题二、填空题(每小题2分,共16分)11.八边形内角和是_________°,外角和是_________°. 12.等腰三角形的两边分别为4和7,则其周长是____________.13.如图,点P 是AD 上一点,∠ABP=∠ACP ,请再添加一个条件:_______________,使得△ABP ≌△ACP . 14. 如图,BD 是∠ABC 的平分线,点P 是射线BD 上一点,PE ⊥BA 于点E ,PE=2,点F 是射线BC 上一个动点,则线段PF 的最小值为________.15.如图,某轮船由西向东航行,在A 处测得小岛P 的方位是北偏东75°,又继续航行7海里后,在B 处测得小岛P 的方位是北偏东60°,则此时轮船与小岛P 的距离BP =__________海里.第13题 第14题 第15题16.如图,△ABC 的面积为10cm 2,AP 垂直∠ABC 的平分线BP 于P ,则△PBC 的面积为_________.17.在平面直角坐标系xOy 中,点A 的坐标为(4,﹣3),在坐标轴上确定一点P ,使△AOP 为等腰三角形,则满足条件的点P 的个数是_________.18.如图,在△ABC 中,∠ABC =45°,过点C 作CD ⊥AB 于点D ,过点B 作BM ⊥AC 于点M ,连接MD ,过点D 作DN ⊥MD ,交BM 于点N .CD 与BM 相交于点E ,若点E 是CD 的中点;下列结论:①BN=CM ;②∠AMD =45°;③NE ﹣EM =MC ;④EM :MC :NE =1:2:3.其中正确的结论有_________________.(填写序号即可)三、解答题(19、20题每题5分,21、22、23题4分,24、25、26题6分,27、28题7分,共54分) 19.如图,点A ,B ,C ,D 在一条直线上,且AB =CD ,若∠1=∠2,EC =FB .求证:∠E =∠F .20.《几何原本》是一部集前人思想和欧几里得个人创造性于一体的不朽之作,把人们公认的一些事实列成定义、公理和公设,用它们来研究各种几何图形的性质,从而建立了一套从定义、公理和公设出发,论证命题得到定理的几何学论证方法.在其第一卷中记载了这样一个命题:“在任意三角形中,大边对大角.”请补全上述命题的证明.已知:如图,在ABC △中,AC AB >. 求证:____________________________.证明:如图,由于AC AB >,故在AC 边上截取AD AB =,连接BD .(在上图中补全图形)AD AB =,ABD ∴=∠∠________.(_________________________________)(填推理的依据) ADB ∠是BCD 的外角,CBA∴∠=∠+∠.(__________________________________)(填推理的依据)ADB C DBC∴∠>∠.ADB C∴∠>∠.ABD C∠∠∠,ABC ABD DBC=+∴∠>∠.ABC ABD∴∠>∠.ABC C21.如图,在平面直角坐标系xOy中,△ABC的三个顶点的坐标分别是A(2,3),B(1,0),C(1,2).A B C;(1)在图中作出△ABC关于y轴对称的△111(2)如果要使以B、C、D为顶点的三角形与△ABC全等,写出所有符合条件的点D坐标.22.2019年12月18日,新版《北京市生活垃圾管理条例》正式发布,并在2020年5月1日起正式实施,这标志着北京市生活垃圾分类将正式步入法制化、常态化、系统化轨道.目前,相关配套设施的建设已经开启.如图,计划在某小区道路l上建一个智能垃圾分类投放点O,使得道路l附近的两栋住宅楼A,B到智能垃圾分类投放点O的距离相等.(1)请在图中利用尺规作图(保留作图痕迹,不写作法),确定点O的位置;(2)得到OA=OB的依据为:.23.如图:点E是∠ABC的边BA上一点,EF//BC.(1)在图中作出∠ABC的平分线BM,交EF于点M.(保留作图痕迹,不写作法和证明);(2)在(1)中,判断△BEM的形状,并证明.24.已知在△ABC 中,∠CAB 的平分线AD 与BC 的垂直平分线DE 交于点D ,DM ⊥AB 于M ,DN ⊥AC 的延长线于N .(1)求证:BM=CN ;(2)当∠BAC =70°时,求∠DCB 的度数.25.如图,已知△ABC 和△ADE 均为等边三角形,连接CD 、BE ,作AF ⊥CD 于点F ,AG ⊥BE 于点G 求证:(1)∠CDA =∠BEA ; (2)△AFG 为等边三角形.26.已知,如图,Rt △ABC 中,90BAC ∠=︒. (1)按要求作图:(保留作图痕迹) ①延长BC 到点D ,使CD BC =; ②延长CA 到点E ,使2AE CA =; ③连接AD ,BE .(2)猜想线段AD 与BE 的数量关系,并证明.27.如图,在平面直角坐标系xoy 中,直线l 经过点M (3,0),且平行于y 轴.给出如下定义:点P (x ,y )先关于y 轴对称得点1P ,再将点1P 关于直线l 对称得点P ',则称点P '是点P 关于y 轴和直线l 的二次反射点.(1)已知A (-4,0),B (-2,0),C (-3,1),则它们关于y 轴和直线l 的二次反射点',','A B C 的坐标分别是________________________________;(2)若点D 的坐标是(a ,0),其中a<0,点D 关于y 轴和直线l 的二次反射点是点D ',求线段DD '的长; (3)已知点E (4,0),点F (6,0),以线段EF 为边在x 轴上方作正方形EFGH 中,若点P (a ,1),Q (a +1,1)关于y 轴和直线l 的二次反射点为P ',Q ',且线段P Q ''与正方形EFGH 的边有公共点,求a 的取值范围.28.已知:线段AB及过点A的直线l.如果线段AC与线段AB关于直线l对称,连接BC交直线l于点D,以AC为边作等边△ACE,使得点E在AC的下方,作射线BE交直线l于点F,连接CF.(1)根据题意将图1补全;(2)如图1,如果∠BAD = α(30°<α<60°).①∠BAE= ,∠ABE= (用含有α代数式表示);②用等式表示线段F A,FE与FC的数量关系,并证明.lABB图1(3)如图2,如果60°<α<90°,直接写出线段F A,FE与FC的数量关系,不证明.lAB图22022-2023学年度第一学期八年级数学期中考试评分标准2022年10月 命题人:安瑞一、选择题(本题共20分,每小题2分)二、填空(本题共16分,每小题2分) 三、解答题(19、20题每题5分,21、22、23题4分,24、25、26题6分,27、28题7分,共54分) 19. 证明:∵∠1+∠DBF =180°,∠2+∠ACE =180°. 又∵∠1=∠2, ∴∠DBF =∠ACE , ∵AB =CD , ∴AB +BC =CD +BC , 即AC =DB ,在△ACE 和△DBF 中,∴△ACE ≌△DBF (SAS ), ∴∠E =∠F .20.ABC C ∠>∠∠ADB 等边对等角三角形的外角等于与它不相邻的两个内角的和21. (1)如图所示:(2)如图,D 的坐标为(0,3),(0,﹣1),(2,﹣1).22.(1)如图:点O 即为所求;(2)得到OA=OB 的依据为:线段的垂直平分线上的点到线段的两个端点的距离相等. 23.略 24. 略25.∵△ABC 和△ADE 均为等边三角形, ∴AD=AE ,AC=AB , ∠DAE=∠CAB60°, ∴∠DAE+∠3=∠CAB+∠3, 即∠DAC=∠EAB ,在△DAC 和△EAB 中 AD AE DAC EAB AC AB =⎧⎪∠=∠⎨⎪=⎩,∴△DAC ≌EAB (SAS) ,∴∠1=∠2 , ∵AF ⊥CD ,AG ⊥BE , ∴∠AFD=∠EGA=90°,在△ADF 和△AEG 中12AFD AGE AD AE ∠=∠⎧⎪∠=∠⎨⎪=⎩, ∴△AFD ≌△AGE (AAS), ∴AF=AG ,∠DAF=∠EAG ,∴∠DAF=∠FAE=∠EAG+∠FAE , 即 ∠FAG=△DAE=60°, ∴△AFG 为等边三角形.26.(1)如图所示,即为所求,(2)延长AC 到点F ,使CF =AF ,连接BF , 在ACD ∆和FCB ∆中CD CB ACD FCB AC FC =⎧⎪∠=∠⎨⎪=⎩()ACD FCB SAS ∴∆≅∆ AD FB ∴=∵CF AC =2AF AC ∴= 2AE CA =∴AF AE =90BAC ︒∠= AB EF ∴⊥∴AB 是EF 的垂直平分线, ∴BE BF = ∴AD =BF11 G F E D C B l A 27.28.解:(1)补全图形;(2)① 260α-︒,120.α︒-② 数量关系是FA = FC + FE ,证明如下:在FA 上截取FG = EF ,连接EG .由①得,∠ABE = 120°-α,∠BAD = α . ∴ ∠AFB = 180° -∠ABE -∠BAD = 60° . ∴ △EFG 为等边三角形.∴ EG = FE = FG ,∠GEF = 60°. 又∵ 等边三角形AEC ,∴ ∠AEC = 60°.∴ ∠AEC =∠GEF = 60°.∴ ∠AEC -∠GEC =∠GEF -∠GEC . 即 ∠AEG =∠CEF .又∵ 等边三角形AEC ,∴ AE = EC .∴ △AEG ≌△CEF .∴ AG = FC .∴ FA = AG + FG = FC + FE .(3)FA = FC - FE。

2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试卷(精选)

2022年必考点解析沪教版七年级数学第二学期第十五章平面直角坐标系综合测评试卷(精选)

七年级数学第二学期第十五章平面直角坐标系综合测评考试时间:90分钟;命题人:数学教研组考生注意:1、本卷分第I卷(选择题)和第Ⅱ卷(非选择题)两部分,满分100分,考试时间90分钟2、答卷前,考生务必用0.5毫米黑色签字笔将自己的姓名、班级填写在试卷规定位置上3、答案必须写在试卷各个题目指定区域内相应的位置,如需改动,先划掉原来的答案,然后再写上新的答案;不准使用涂改液、胶带纸、修正带,不按以上要求作答的答案无效。

第I卷(选择题 30分)一、单选题(10小题,每小题3分,共计30分)1、如图在平面直角坐标系中,点N与点F关于原点O对称,点F的坐标是(3,2),则点N的坐标是()A.(﹣3,﹣2)B.(﹣3,2)C.(﹣2,3)D.(2,3)2、平面直角坐标系内一点P(﹣3,2)关于原点对称的点的坐标是()A.(2,﹣3)B.(3,﹣2)C.(﹣2,﹣3)D.(2,3)3、在平面直角坐标系xOy中,点A(2,3)关于原点对称的点的坐标是()A.(2,-3)B.(-2,3)C.(3,2)D.(-2,-3)4、点P在第二象限内,P到x轴的距离是4,到y轴的距离是3,那么点P的坐标为()A.(-4,3)B.(4,-3)C.(-3,4)D.(3,-4)5、在平面直角坐标系中,点P (-2,3)关于x 轴对称的点的坐标是 ( )A .(3,﹣2)B .(2,﹣3)C .(﹣3,2)D .(﹣2,﹣3)6、已知A (3,﹣2),B (1,0),把线段AB 平移至线段CD ,其中点A 、B 分别对应点C 、D ,若C (5,x ),D (y ,0),则x +y 的值是( )A .﹣1B .0C .1D .27、若点P (2,b )在第四象限内,则点Q (b ,-2)所在象限是( )A .第一象限B .第二象限C .第三象限D .第四象限8、如图,在平面直角坐标系中,已知“蝴蝶”上有两点(3,7)A ,(7,7)B ,将该“蝴蝶”经过平移后点A 的对应点为(1,3)A ',则点B 的对应点B '的坐标为( )A .(9,11)B .(9,3)C .(3,5)D .(5,3)9、若平面直角坐标系中的两点A (a ,3),B (1,b )关于y 轴对称,则a +b 的值是( )A .2B .-2C .4D .-410、在平面直角坐标系中,点()3,4-,关于x 轴对称点的坐标是( )A .()3,4B .()3,4-C .()4,3-D .()4,4第Ⅱ卷(非选择题 70分)二、填空题(5小题,每小题4分,共计20分)1、若点M(32,a)关于y轴的对称点是点N(b,12),则()2022a b+=________.2、在平面直角坐标系中,将点P(3,﹣1)向上平移5个单位长度到点M,则点M关于原点对称的点的坐标是 _____.3、如图所示,在平面直角坐标系中,射线OA将由边长为1的7个小正方形组成的图案的面积分成相等的两部分,则点A的坐标为________.4、在平面直角坐标系中,轰炸机机群的一个飞行队形如图所示,若其中两架轰炸机的坐标分别表示为A(1,3)、B(3,1),则轰炸机C的坐标是_________.5、坐标平面内的点P(m,﹣2020)与点Q(2021,n)关于原点对称,则m+n=_________.三、解答题(10小题,每小题5分,共计50分)1、已知点P(3a﹣15,2﹣a).(1)若点P到x轴的距离是1,试求出a的值;(2)在(1)题的条件下,点Q如果是点P向上平移3个单位长度得到的,试求出点Q的坐标;(3)若点P位于第三象限且横、纵坐标都是整数,试求点P的坐标.2、如图,正方形网格中,每一个小正方形的边长都是1个单位长度,在平面直角坐标系内,ABC的三个顶点坐标分别为A(1,1),B(3,2),C(2,4).(1)画出ABC 关于原点O 对称的111A B C △,直接写出点1A 的坐标;(2)画出ABC 绕点O 逆时针旋转90°后的222A B C △,并写出点222,,A B C 的坐标.3、如图,在平面直角坐标系中,AO =CO =6,AC 交y 轴于点B ,∠BAO =30°,CO 的垂直平分线过点B 交x 轴于点E .(1)求AE 的长;(2)动点N 从E 出发,以1个单位/秒的速度沿射线EC 方向运动,过N 作x 轴的平行线交直线OC 于G ,交直线BE 于P ,设GP 的长为d ,运动时间为t 秒,请用含量t 的式子表示d ,并直接写出t 的取值范围;(3)在(2)的条件下,动点M 从A 以1个单位/秒的速度沿射线AE 运动,且点M 与点N 同时出发,MN 与射线OC 相交于点K ,是否存在某一运动时间t ,使得OK OM=2,若存在,请求出t 值;若不存在,请说明理由.4、如图,在直角坐标系中,点A (3,3),B (4,0),C (0,2).(1)画出△ABC关于原点O对称的△A1B1C1.(2)求△A1B1C1的面积.5、在平面直角坐标系xOy中,直线l:x=m表示经过点(m,0),且平行于y轴的直线.给出如下定义:将点P关于x轴的对称点1P,称为点P的一次反射点;将点1P关于直线l的对称点2P,称为点PM(3,-2),点M关于直线l:关于直线l的二次反射点.例如,如图,点M(3,2)的一次反射点为1M(-1,-2).x=1的二次反射点为2已知点A(-1,-1),B(-3,1),C(3,3),D(1,-1).(1)点A的一次反射点为,点A关于直线1l:x=2的二次反射点为;(2)点B 是点A 关于直线2l :x =a 的二次反射点,则a 的值为 ;(3)设点A ,B ,C 关于直线3l :x =t 的二次反射点分别为2A ,2B ,2C ,若△2A 2B 2C 与△BCD 无公共点,求t 的取值范围.6、如图,在平面直角坐标系中,已知ABC 的三个顶点都在网格的格点上.(1)在图中作出ABC 关于x 轴对称的111A B C △,并写出点B 的对应点1B 的坐标;(2)在图中作出ABC 关于y 轴对称的222A B C △,并写出点B 的对应点2B 的坐标.7、在平面直角坐标系中,△ABC 各顶点的坐标分别是A (2,5),B (1,2),C (4,1).(1)作△ABC 关于y 轴对称后的△A ′B ′C ′,并写出A ′,B ′,C ′的坐标;(2)在y 轴上有一点P ,当△PBB '和△ABC 的面积相等时,求点P 的坐标.8、在如图所示的正方形网格中,每个小正方形的边长为1,格点三角形(顶点是网格线的交点的三角形)ABC 的顶点A ,C 的坐标分别为(﹣4,5),(﹣1,3).(1)请在如图所示的网格平面内作出平面直角坐标系.(2)请作出△ABC 关于y 轴对称的△A ′B ′C ′.(3)求△ABC 的面积 .9、在平面直角坐标系中,ABC 的顶点坐标分别为(2,4),(1,1),(3,2)A B C .(1)ABC 关于y 轴的对称图形为111A B C △画出111A B C △,(点A 与点1A 对应,点B 与点1B 对应,点C 与点1C 对应);(2)连接1AA ,在1AA 的下方画出以1AA 为底的等腰直角1PAA ,并直接写出点P 的坐标.10、如图1,A(﹣2,6),C(6,2),AB⊥y轴于点B,CD⊥x轴于点D.(1)求证:△AOB≌△COD;(2)如图2,连接AC,BD交于点P,求证:点P为AC中点;(3)如图3,点E为第一象限内一点,点F为y轴正半轴上一点,连接AF,EF.EF⊥CE且EF=CE,点G为AF中点.连接EG,EO,求证:∠OEG=45°.-参考答案-一、单选题1、A【分析】根据点F点N关于原点对称,即可求解.【详解】解:∵F点与N点关于原点对称,点F的坐标是(3,2),∴N 点坐标为(﹣3,﹣2).故选:A【点睛】本题主要考查了关于原点对称的点的坐标特征,熟练掌握若两点关于原点对称,横纵坐标均互为相反数是解题的关键.2、B【分析】根据两个点关于原点对称时,它们的坐标符号相反,即点P (x ,y )关于原点O 的对称点是P '(﹣x ,﹣y ),进而得出答案.【详解】解答:解:点P (﹣3,2)关于原点对称的点的坐标是:(3,﹣2).故选:B .【点睛】此题主要考查了关于原点对称点的坐标性质,正确记忆横纵坐标的关系是解题关键.3、D【分析】根据“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”即可求得.【详解】解:点A (2,3)关于原点对称的点的坐标是()2,3--故选D【点睛】本题考查了关于原点对称的点的坐标特征,掌握“关于原点对称的两个点,横坐标、纵坐标分别互为相反数”是解题的关键.4、C【分析】根据第二象限内点的横坐标是负数,纵坐标是正数,点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度解答.【详解】解:∵点P在第二象限内,点P到x轴的距离是4,到y轴的距离是3,∴点P的横坐标是-3,纵坐标是4,∴点P的坐标为(-3,4).故选C.【点睛】本题考查了点的坐标,熟记点到x轴的距离等于纵坐标的长度,到y轴的距离等于横坐标的长度是解题的关键.5、D【分析】根据点关于x轴对称,横坐标不变,纵坐标变为相反数解答即可.【详解】解:点P(﹣2,3)关于x轴对称的点的坐标是(﹣2,﹣3).故选:D【点睛】本题考查了直角坐标系中关于x轴对称点的性质,正确记忆横纵坐标的关系是解题的关键.6、C【分析】由对应点坐标确定平移方向,再由平移得出x,y的值,即可计算x+y.【详解】∵A (3,﹣2),B (1,0)平移后的对应点C (5,x ),D (y ,0),∴平移方法为向右平移2个单位,∴x =﹣2,y =3,∴x +y =1,故选:C .【点睛】本题考查坐标的平移,掌握点坐标平移的性质是解题的关键,点坐标平移:横坐标左减右加,纵坐标下减上加.7、C【分析】根据点P (2,b )在第四象限内,确定b 的符号,即可求解.【详解】解:点P (2,b )在第四象限内,∴0b <,所以,点Q (b ,-2)所在象限是第三象限,故选:C .【点睛】本题主要考查了平面直角坐标系中各象限的点的坐标的符号特点,解决本题的关键是要熟练掌握点在各象限的符号特征.8、D【分析】先根据(37)A ,与点(1,3)A '对应,求出平移规律,再利用平移特征求出点B′坐标即可 【详解】解:∵(37)A ,与点(1,3)A '对应, ∴平移1-3=-2,3-7=-4,先向下平移4个单位,再向左平移2个单位,∵点B (7,7),∴点B′(7-2,7-4)即(5,3)B '.如图所示故选:D .【点睛】本题考查图形与坐标,点的平移特征,掌握点的平移特征是解题关键.9、A【分析】直接利用关于y 轴对称点的性质,横坐标互为相反数,纵坐标相同,进而得出答案.【详解】解:依题意可得a =-1,b =3∴a +b =2【点睛】此题主要考查了关于y轴对称点的性质,正确掌握横纵坐标的符号关系是解题关键.10、A【分析】平面直角坐标系中任意一点P(x,y),关于x轴的对称点的坐标是(x,-y),即关于横轴的对称点,横坐标不变,纵坐标变成相反数,这样就可以求出对称点的坐标.【详解】解:点A(3,-4)关于x轴的对称点的坐标是(3,4),故选:A.【点睛】本题主要考查了平面直角坐标系关于坐标轴成轴对称的两点的坐标之间的关系,是需要识记的内容.二、填空题1、1【分析】直接利用关于y轴对称点的性质(横坐标互为相反数,纵坐标不变)得出a,b的值,进而求出答案.【详解】解:∵点M(32,a)关于y轴的对称点是点N(b,12),∴b=-32,a=12,则()2022a b+=1.故答案为:1.此题主要考查了关于y 轴对称点的性质,得出a ,b 的值是解题关键.2、(3,4)--【分析】根据点的平移规律,可得平移后的点,根据关于原点对称的点的横、纵坐标都互为相反数,可得答案.【详解】将点(3,1)P -向上平移5个单位长度得到点(3,4)M ,点M 关于原点对称的点的坐标是(3,4)--,故答案为:(3,4)--.【点睛】本题考查了平移与坐标变换,利用关于原点对称的点的横、纵坐标都互为相反数是解题关键.3、(113,3)233,3) 【分析】过A 点作AB ⊥y 轴于B 点,作AC ⊥x 轴于C 点,由于射线OA 将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,所以两边的面积分别为3.5,△AOB 面积为5.5,即12OB ×AB =5.5,可解AB ,则A 点坐标可求.【详解】解:过A 点作AB ⊥y 轴于B 点,作AC ⊥x 轴于C 点,则AC=OB,AB=OC.∵正方形的边长为1,∴OB=3.∵射线OA将由边长为1的7个小正方形组成的图案的面面积分成相等的两部分,∴两边的面积分别为3.5.∴△AOB面积为3.5+2=5.5,即12OB×AB=5.5,1 2×3×AB=5.5,解得AB=113.所以点A坐标为(113,3).故答案为:(113,3).【点睛】本题主要考查了点的坐标、三角形面积,解题的关键是过某点作x轴、y轴的垂线,垂线段长度再转化为点的坐标.4、(1,2)--【分析】直接利用已知点坐标得出原点位置,进而得出答案.【详解】解:如图所示,建立平面直角坐标系,∴轰炸机C的坐标为(-1,-2),故答案为:(-1,-2).【点睛】此题主要考查了坐标确定位置,正确得出原点位置建立坐标系是解题关键..5、-1【分析】根据“关于原点对称的点,横坐标与纵坐标都互为相反数”求出m 、n 的值,然后相加计算即可得解.【详解】解:∵点P (m ,-2020)与点Q (2021,n )关于原点对称,∴m =﹣2021,n =2020,∴m +n =﹣1.故答案为:-1.【点睛】本题考查了关于原点对称的点的坐标,关于原点对称的点的横坐标互为相反数,纵坐标互为相反数.三、解答题1、(1)1a =或3a =;(2)(12,4)Q -或(6,2)Q -;(3)(6,1)P --或(3,2)P --.【分析】(1)根据“点P 到x 轴的距离是1”可得21a -=,由此即可求出a 的值;(2)先根据(1)的结论求出点P 的坐标,再根据点坐标的平移变换规律即可得;(3)先根据“点P 位于第三象限”可求出a 的取值范围,再根据“点P 的横、纵坐标都是整数”可求出a 的值,由此即可得出答案.【详解】解:(1)点P 到x 轴的距离是1,且(315,2)P a a --,21a ∴-=,即21a -=或21a -=-,解得1a =或3a =;(2)当1a =时,点P 的坐标为(12,1)P -,则点Q 的坐标为(12,13)Q -+,即(12,4)Q -,当3a =时,点P 的坐标为(6,1)P --,则点Q 的坐标为(6,13)Q --+,即(6,2)Q -,综上,点Q 的坐标为(12,4)Q -或(6,2)Q -;(3)点(315,2)P a a --位于第三象限,315020a a -<⎧∴⎨-<⎩,解得25a <<, 点P 的横、纵坐标都是整数,3a ∴=或4a =,当3a =时,3156,21a a -=--=-,则点P 的坐标为(6,1)P --,当4a =时,3153,22a a -=--=-,则点P 的坐标为(3,2)P --,综上,点P 的坐标为(6,1)P --或(3,2)P --.【点睛】本题考查了点到坐标轴的距离、象限内点的坐标特点、点的坐标平移规律和一元一次不等式组的解法等知识,属于基础题,熟练掌握平面直角坐标系的基本知识是解题关键.2、(1)作图见解析,(-1,﹣1);(2)作图见解析,(-1, 1),(-2, 3),(-4, 2);(1)根据A (1,1),B (3,2),C (2,4).即可画出△ABC 关于原点O 对称的的△A 1B 1C 1,进而可以写出点A 1的坐标;(2)根据旋转的性质即可画出△ABC 绕点O 逆时针旋转90°后的△A 2B 2C 2;进而可以写出点的坐标即可.【详解】解:(1)如图,△A 1B 1C 1即为所求,所以点A 1的坐标为:(-1,﹣1);(2)△A 2B 2C 2即为所求;点222,,A B C 的坐标分别为:(-1, 1),(-2, 3),(-4, 2);【点睛】本题考查了作图﹣旋转变换和中心对称变换,解决本题的关键是掌握旋转的性质.3、(1)12;(2)()()6203263t t d t t ⎧-≤≤⎪=⎨->⎪⎩;(3)当8t =或245t =时,使得2OK OM =.(1)由OA=OC=6,∠BAO=30°,得到∠OAC=∠OCA=30°,则∠COE=∠OAC+∠OCA=60°,再由BE是线段OC的垂直平分线平分线,得到OE=CE,则△COE是等边三角形,由此即可得到答案;(2)分三种情况:当直线PN在H点下方时(包括H点),当直线PN在H点上方,且在C点下方时(包括C点),当直线PN在C点上方时,三种情况讨论求解即可;(3)分N在EC上和EC的延长线上两种情况,构造全等三角形求解即可.【详解】解:(1)∵OA=OC=6,∠BAO=30°,∴∠OAC=∠OCA=30°,∴∠COE=∠OAC+∠OCA=60°,∵BE是线段OC的垂直平分线平分线,∴OE=CE,∴△COE是等边三角形,∴OE=OC=AO=6,∴AE=AO+OE=12;(2)如图1所示,过点C作CK⊥x轴于K,设OC与BE的交点为H,当直线PN在H点下方时(包括H点),∵BE是线段OC的垂直平分线,∴∠CEP=∠OEP,132OH HC OC===∵PN∥OE,∴∠NPE=∠OEP,∠CGN=∠COE=60°,∠CNG=∠CEO=60°,∴∠NPE=∠NEP,△CGN是等边三角形,∴NP=NE=t,NG=CN=CE-NE=6-t,∴PG=d=NG-NP=6-t-t=6-2t,∵当直线PN刚好经过H点时,此时CH=CN=3,即当t=3时,直线PN经过H点,∴当直线PN在H点下方或经过H点时,d=6-2t(0≤t≤3);如图2所示,当直线PN在H点上方,且在C点下方时(包括C点),同理可证NP=NE=t,NG=CN=CE-CN=6-t,∴PG=d=NP-NG=t-(6-t)=2t-6(3<t≤6);如图3所示,当直线PN在C点上方时同理可证NP =NE =t ,NG =CN =EN -CE =t -6, ∴PG =d =NP +NG =t +t -6=2t -6(t >6),∴综上所述,()()6203263t t d t t ⎧-≤≤⎪=⎨->⎪⎩;(3)如图3-1所示,当N 在CE 上时,过点N 作NR ∥x 轴交OC 于R , 同(2)可证△CRN 是等边三角形, ∴RN =CN =CR ,∵M 、N 运动的速度相同, ∴AM =NE , 又∵AO =EC , ∴MO =NR , ∵NR ∥MO ,∴∠RNK =∠OMK ,∠NRK =∠MOK , ∴△MOK ≌△NRK (ASA ), ∴OK =RK ,OM =RN , ∵2OKOM=,∴()()2226OK OM OA AM t ==-=-, ∵OC OR CR =+,∴26OK OM +=,即()4666t t -+-=,解得245t =;如图3-2所示,当C 在EC 的延长线上时, 同理可证()226OK OM t ==-,6CR t =-,∵()()24666OC OR CR OK CR t t =-=-=---=, 解得8t =,∴综上所述,当8t =或245t =时,使得2OK OM=.【点睛】本题主要考查了等边三角形的性质与判定,等腰三角形的性质与判定,平行线的性质,坐标与图形,三角形外角的性质,全等三角形的性质与判定,解题的关键在于能够利用数形结合的思想进行求解. 4、(1)图形见解析;(2)5 【分析】(1)根据关于原点对称的点的坐标特征,依次求出111A B C 、、的坐标即可; (2)利用割补法求△A 1B 1C 1面积. 【详解】(1)∵111()()(0,2)A B C --3,-3、-4,0、 ∴△ABC 关于原点O 对称的△A 1B 1C 1位置如图:(2)1111113424313112435222A B C S=⨯-⨯⨯-⨯⨯-⨯⨯=--=【点睛】此题考查了中心对称的知识,解答本题的关键是根据关于原点对称的点的坐标特征得到各点的对应点.5、(1)(-1,1);(5,1);(2)-2;(3)t <-2或t >1. 【分析】(1)根据一次反射点和二次反射点的定义求解即可;(2)根据二次反射点的意义求解即可;(3)根据题意得1A ,1B ,1C ,分t <0和t >0时△2A 2B 2C 与△BCD 无公共点,求出t 的取值范围即可. 【详解】解:(1)根据一次反射点的定义可知,A (-1,-1)一次反射点为(-1,1), 点A 关于直线1l :x =2的二次反射点为(5,1) 故答案为: (-1,1);(5,1).(2)∵A (-1,-1),B (-3,1),且点B 是点A 关于直线2l :x =a 的二次反射点, ∴1(3)a a --=-- 解得,2a =- 故答案为: -2.(3)由题意得,1A (-1,1),1B (-3,-1),1C (3,-3),点D (1,-1)在线段1A 1C 上.当t <0时,只需1A 关于直线x =t 的对称点2A 在点B 左侧即可,如图1. ∵当2A 与点B 重合时,t =-2,∴当t <-2时,△2A 2B 2C 与△BCD 无公共点.当t >0时,只需点D 关于直线x =t 的二次反射点2D 在点D 右侧即可,如图2,∵当2D 与点D 重合时,t =1,∴当t >1时,△2A 2B 2C 与△BCD 无公共点.综上,若△2A 2B 2C 与△BCD 无公共点,t 的取值范围是t <-2,或t >1.【点睛】本题考查了轴对称性质,动点问题,新定义二次反射点的理解和运用;解题关键是对新定义二次反射点的正确理解.6、(1)111A B C △为所求,图形见详解,点B 1(-5,-1);(2)222A B C △为所求,图形见详解,点B 2(5,1). 【分析】(1)根据ABC 关于x 轴对称的111A B C △,求出A 1(-6,-6),B 1(-5,-1),C 1(-1,-6),然后在平面直角坐标系中描点,顺次连接A 1B 1, B 1C 1,C 1A 1即可;(2)根据ABC 关于y 轴对称的222A B C △,求出A 2(6,6),点B 2(5,1),点C 2(1,6), 然后在平面直角坐标系中描点,顺次连接A 2B 2, B 2C 2,C 2A 2即可. 【详解】解:(1)根据点在平面直角坐标系中的位置,△ABC 三点坐标分别为A (-6,6),B (-5,1),C (-1,6),ABC 关于x 轴对称的111A B C △,关于x 轴对称点的特征是横坐标不变,纵坐标互为相反数, ∴111A B C △中点A 1(-6,-6),点B 1(-5,-1),点C 1(-1,-6), 在平面直角坐标系中描点A 1(-6,-6),B 1(-5,-1),C 1(-1,-6), 顺次连接A 1B 1, B 1C 1,C 1A 1,则111A B C △为所求,点B 1(-5,-1); (2)∵ABC 关于y 轴对称的222A B C △,∴点的坐标特征是横坐标互为相反数,纵坐标不变,∵△ABC 三点坐标分别为A (-6,6),B (-5,1),C (-1,6), ∴222A B C △中点A 2(6,6),点B 2(5,1),点C 2(1,6), 在平面直角坐标系中描点A 2(6,6),B 2(5,1),C 2(1,6), 顺次连接A 2B 2, B 2C 2,C 2A 2, 则222A B C △为所求,点B 2(5,1).【点睛】本题考查在平面直角坐标系中画称轴对称的图形,掌握画图方法,先求坐标,描点,顺次连接是解题关键.7、(1)见解析;A ′(﹣2,5),B '(﹣1,2),C '(﹣4,1);(2)P 的坐标为(0,7)或(0,﹣3) 【分析】(1)分别作出各点关于y轴的对称点,再顺次连接,并写出各点坐标即可;(2)根据三角形的面积公式,进而可得出P点坐标.【详解】解:(1)如图所示:A′(﹣2,5),B'(﹣1,2),C'(﹣4,1);(2)△ABC的面积=111 341313245 222⨯-⨯⨯-⨯⨯-⨯⨯=,∵BB'=2,∴P的坐标为(0,7)或(0,﹣3).【点睛】本题考查的是作图-轴对称变换,熟知轴对称的性质是解答此题的关键.8、(1)见解析;(2)见解析;(3)4.【分析】(1)根据点坐标直接确定即可;(2)根据轴对称的性质得到点A ′、B ′、C ′,顺次连线即可得到△A ′B ′C ′; (3)利用面积加减法计算. (1) 如图所示:(2)解:如图所示: (3)解:△ABC 的面积:3×4﹣12⨯4×2﹣12⨯2×1﹣12⨯2×3=12﹣4﹣1﹣3=4,故答案为:4. 【点睛】此题考查了确定直角坐标系,作轴对称图形,计算网格中图形的面积,正确掌握轴对称的性质及网格中图形面积的计算方法是解题的关键. 9、(1)作图见解析;(2)作图见解析,()0,2P 【分析】(1)分别求出A ,B ,C 关于y 轴对称的点,连接即可; (2)根据轴对称的性质计算即可; 【详解】(1)由题可知,A ,B ,C 关于y 轴对称的点为()12,4A -,()11,1B -,()13,2C -,作图如下;(2)根据题意可得:145PAA ∠=︒,设1AA 与y 轴交于点M ,则AMP 是等腰直角三角形, ∴2AM PM ==, ∴()0,2P ;【点睛】本题主要考查了轴对称的性质应用和等腰直角三角形的性质,准确作图计算是解题的关键. 10、(1)见解析;(2)见解析;(3)见解析 【分析】(1)根据SAS 即可证明AOB COD ≅△△;(2)过点C 作CH x ∥轴,交BD 于点H ,得出AB CH OD ∥∥,由平行线的性质得BAP HCP ∠=∠,由CD x ⊥轴得90DCH ODC ∠=∠=︒,由AOB COD ≅△△得OB OD =,故可得45ODB ∠=︒,从而得出45CHD CDH ∠=∠=︒,推出CH CD AB ==,根据AAS 证明ABP CHP ≅,得出AP CP =即可得证;(3)延长EG 到M ,使GM GE =,连接AM ,OM ,延长EF 交AO 于点J ,根据SAS 证明AGM FGE ≅,得出AM EF =,AMG GEF ∠=∠,故AM EJ ∥,由平行线的性质得出MAO AJE ∠=∠,进而推出MAO ECO ∠=∠,根据SAS 证明MAO ECO ≅,故OM OE =,AOM EOC ∠=∠,即可证明45OEG ∠=︒.【详解】(1)AB y ⊥轴于点B ,CD x ⊥轴于点D ,90ABO CDO ∴∠=∠=︒,(2,6)A -,()6,2C ,2AB CD ∴==,6OB OD ==,()AOB COD SAS ∴≅;(2)如图2,过点C 作CH x ∥轴,交BD 于点H ,AB CH OD ∴∥∥, BAP HCP ∴∠=∠,CD x ⊥轴,90DCH ODC ∴∠=∠=︒, AOB COD ≅,OB OD ∴=,45ODB ∴∠=︒,45CHD ODB ∠=∠=︒,904545CDH ∠=︒-︒=︒,在ABP △与CHP 中,APB CPH BAP HCP AB CH ∠=∠⎧⎪∠=∠⎨⎪=⎩, ()ABP CHP AAS ∴≅,AP CP ∴=,即点P 为AC 中点;(3)如图3,延长EG 到M ,使GM GE =,连接AM ,OM ,延长EF 交AO 于点J , AG GF =,AGE FGE ∠=∠,GM GE =,()AGM FGE SAS ∴≅,AM EF ∴=,AMG GEF ∠=∠,AM EJ ∴∥,MAO AJE ∴∠=∠,EF EC =,AM EC ∴=,90AOC CEJ ∠=∠=︒,180AJE EJO ∴∠+∠=︒,180EJO ECO ∠+=︒,∴∠=∠,MAO ECO=,AO CO∴≅,MAO ECO SAS()∴OM OE∠=∠,=,AOM EOC∴∠=∠=︒,MOE AOC90∠=︒.OEGMEO∴∠=︒,即4545【点睛】本题考查全等三角形的判定与性质,利用做辅助线作全等三角形是解决本题的关键.。

2020年浙江省杭州市中考数学一轮复习-一次函数练习(含答案解析)

2020年浙江省杭州市中考数学一轮复习-一次函数练习(含答案解析)

一次函数练习1、直线l的解析式为y=﹣2x+2,分别交x轴、y轴于点A,B.(1)写出A,B两点的坐标,并画出直线l的图象;(2)将直线l向上平移4个单位得到l1,l1交x轴于点C.作出l1的图象,l1的解析式是.(3)将直线l绕点A顺时针旋转90°得到l2,l2交l1于点D.作出l2的图象,tan∠CAD= .2、如图,在平面直角坐标系中,△ABC的三个顶点分别为A(﹣1,﹣2),B(﹣2,﹣4),C(﹣4,﹣1).(1)把△ABC向上平移3个单位后得到△A1B1C1,请画出△A1B1C1并写出点B1的坐标;(2)已知点A与点A2(2,1)关于直线l成轴对称,请画出直线l及△ABC关于直线l对称的△A2B2C2,并直接写出直线l的函数解析式.3、如图,直角坐标系xOy中,A(0,5),直线x=﹣5与x轴交于点D,直线y=﹣x﹣与x轴及直线x=﹣5分别交于点C,E,点B,E关于x轴对称,连接AB.(1)求点C,E的坐标及直线AB的解析式;(2)设面积的和S=S△CDE +S四边形ABDO,求S的值;(3)在求(2)中S时,嘉琪有个想法:“将△CDE沿x轴翻折到△CDB的位置,而△CDB与四边形ABDO拼接后可看成△AOC,这样求S便转化为直接求△AOC的面积不更快捷吗?”但大家经反复演算,发现S△AOC≠S,请通过计算解释他的想法错在哪里.4、为营造书香家庭,周末小亮和姐姐一起从家出发去图书馆借书,走了6分钟忘带借书证,小亮立即骑路边共享单车返回家中取借书证,姐姐以原来的速度继续向前行走,小亮取到借书证后骑单车原路原速前往图书馆,小亮追上姐姐后用单车带着姐姐一起前往图书馆.已知单车的速度是步行速度的3倍,如图是小亮和姐姐距家的路程y(米)与出发的时间x(分钟)的函数图象,根据图象解答下列问题:(1)小亮在家停留了分钟.(2)求小亮骑单车从家出发去图书馆时距家的路程y(米)与出发时间x(分钟)之间的函数关系式.(3)若小亮和姐姐到图书馆的实际时间为m分钟,原计划步行到达图书馆的时间为n分钟,则n﹣m= 分钟.5、一辆轿车从甲城驶往乙城,同时一辆卡车从乙城驶往甲城,两车沿相同路线匀速行驶,轿车到达乙城停留一段时间后,按原路原速返回甲城;卡车到达甲城比轿车返回甲城早0.5小时,轿车比卡车每小时多行驶60千米,两车到达甲城弧均停止行驶,两车之间的路程y(千米)与轿车行驶时间t(小时)的函数图象如图所示,请结合图象提供的信息解答下列问题:(1)请直接写出甲城和乙城之间的路程,并求出轿车和卡车的速度;(2)求轿车在乙城停留的时间,并直接写出点D的坐标;(3)请直接写出轿车从乙城返回甲城过程中离甲城的路程s(千米)与轿车行驶时间t(小时)之间的函数关系式(不要求写出自变量的取值范围).6、江汉平原享有“中国小龙虾之乡”的美称,甲、乙两家农贸商店,平时以同样的价格出售品质相同的小龙虾,“龙虾节”期间,甲、乙两家商店都让利酬宾,付款金额y甲、y乙(单位:元)与原价x(单位:元)之间的函数关系如图所示:(1)直接写出y甲,y乙关于x的函数关系式;(2)“龙虾节”期间,如何选择甲、乙两家商店购买小龙虾更省钱?7、如图,在平面直角坐标系中,四边形ABCD的边AD在x轴上,点C在y轴的负半轴上,直线BC∥AD,且BC=3,OD=2,将经过A、B两点的直线l:y=﹣2x﹣10向右平移,平移后的直线与x轴交于点E,与直线BC交于点F,设AE的长为t(t≥0).(1)四边形ABCD的面积为;(2)设四边形ABCD被直线l扫过的面积(阴影部分)为S,请直接写出S关于t的函数解析式;(3)当t=2时,直线EF上有一动点,作PM⊥直线BC于点M,交x轴于点N,将△PMF沿直线EF折叠得到△PTF,探究:是否存在点P,使点T恰好落在坐标轴上?若存在,请求出点P的坐标;若不存在,请说明理由.8、小慧根据学习函数的经验,对函数y=|x﹣1|的图象与性质进行了探究.下面是小慧的探究过程,请补充完整:(1)函数y=|x﹣1|的自变量x的取值范围是;(2)列表,找出y与x的几组对应值.x …﹣1 0 1 2 3 …y … b 1 0 1 2 …其中,b= ;(3)在平面直角坐标系xOy中,描出以上表中对对应值为坐标的点,并画出该函数的图象;(4)写出该函数的一条性质:.9、为响应绿色出行号召,越来越多市民选择租用共享单车出行,已知某共享单车公司为市民提供了手机支付和会员支付两种支付方式,下图描述了两种方式用支付金额y(元)与骑行时间x(时)之间的函数关系,根据图象回答下列问题,(1)求手机支付金额y(元)与骑行时间x(时)的函数关系式;(2)李老师经常骑行共享单车,请根据不同的骑行时间帮他确定选择哪种支付方式比较合算.10、如图,在平面直角坐标系中,直线l : 与x 轴、y 轴分别交于点M ,N ,高为3的等边三角形ABC ,边BC 在x 轴上,将此三角形沿着x 轴的正方向平移,在平移过程中,得到△A 1B 1C 1,当点B 1与原点重合时,解答下列问题: (1)求出点A 1的坐标,并判断点A 1是否在直线l 上; (2)求出边A 1C 1所在直线的解析式;(3)在坐标平面内找一点P ,使得以P 、A 1、C 1、M 为顶点的四边形是平行四边形,请直接写出P 点坐标.11、 如图,在平面直角坐标系中,四边形的顶点是坐标原点,点的坐标为,点的坐标为,点的坐标为,点分别为四边形边上的动点,动点从点开始,以每秒1个单位长度的速度沿路线向中点匀速运动,动点从点开始,以每秒两个单位长度的速度沿路线向终点匀速运动,点同时从点出发,当其中一点到达终点后,另一点也随之停止运动。

初二期末压轴题训练[1]

初二期末压轴题训练[1]

八年级(上)期末压轴题训练1.在平面直角坐标系xoy 中,直线m x y +-=经过点)0,2(A ,交y 轴于点B ,点D 为x 轴上一点,且1=∆ADB S(1)求m 的值 (2)求线段OD 的长 (3)当点E 在直线AB 上(点E 与点B 不重合),EDA BDO ∠=∠,求点E 的坐标2.如图1,在△ABC 中,B ACB ∠=∠2,BAC ∠的平分线AO 交BC 于点D ,点H 为AO 上一动点,过点H 作直线AO l ⊥于H ,分别交直线AB 、AC 、BC 于点N 、E 、M (1)当直线l 经过点C 时(如图2),证明:BN=CD(2) 当M 是BC 中点时,写出CE 和CD 之间的等量关系,并加以证明; (3)请直接写出BN 、CE 、CD 之间的等量关系3.已知一次函数y =kx +b ,y 随x 增大而增大,它的图象经过点(1,0)且与x 轴的夹角为45°, (1)确定这个一次函数的解析式;(2)假设已知中的一次函数的图象沿x 轴平移两个单位,求平移以后的直线及直线与y 轴的交点坐标.4.已知:如图,△ABC 和△DEF 都是等腰直角三角板,∠BAC =90°,∠EDF =90°.(1)请你利用这两块三角板画出BC 的中点(用示意图表示);(2)当我们把△DEF 的顶点E 与A 点重合时,使ED 、EF 与BC 相交,设交点为P 、G (点P 在点G 的左侧),你能否证明BP +CG 与PG 的关系,请你完成自己的证明.5.小聪和小明沿同一条路同时从学校出发到宁波天一阁查阅资料,学校与天一阁的路程是4千米,小聪骑自行车,小明步行,当小聪从原路回到学校时,小明刚好到达天一阁,图中折线O-A-B-C和线段OD分别表示两人离学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系,请根据图象回答下列问题:(1)小聪在天一阁查阅资料的时间为15分钟,小聪返回学校的速度为4/5千米/分钟;(2)请你求出小明离开学校的路程s(千米)与所经过的时间t(分钟)之间的函数关系;(3)当小聪与小明迎面相遇时,他们离学校的路程是多少千米?6.已知:△ABC中,AB=AC,AD⊥BC于D.(1)如图(1),若点M在线段AD上(点M不与点A重合),则∠AMB_________∠AMC(请填>,=或<);(2)如图2,若点M在线段BD上(点M不与点B,D重合),点N在线段CD上且ND=MD,则∠AMB_________∠ANC,∠AMC_________∠ANC(请填>,=或<);(3)如图3,若点M在△ABD的内部,是比较∠AMB与∠AMC的大小,并证明你的结论.7.如图,AD是△ABC的角平分线,H,G分别在AC,AB上,且HD=BD.(1)求证:∠B与∠AHD互补;(2)若∠B+2∠DGA=180°,请探究线段AG与线段AH、HD之间满足的等量关系,并加以证明.图3E DBA图2ED BA图1EDCBA8.如图,已知:点D 是△ABC 的边BC 上一动点,且AB =AC ,DA =DE ,∠BAC =∠ADE =α. ⑴如图1,当α=60°时,∠BCE = ;(图1) (图2) (图3)⑵如图2,当α=90°时,试判断∠BCE 的度数是否发生改变,若变化,请指出其变化范围;若不变化,请求出其值,并给出证明;⑶如图3,当α=120°时,则∠BCE = ;9.已知A (-1,0),B (0,-3),点C 与点A 关于坐标原点对称,经过点C 的直线与y 轴交于点D ,与直线AB 交于点E ,且E 点在第二象限. (1)求直线AB 的解析式;(2)若点D (0,1),过点B 作BF ⊥CD 于F ,连接BC ,求∠DBF 的度数及△BCE 的面积; (3)若点G (G 不与C 重合)是动直线CD 上一点,且BG=BA ,试探究∠ABG 与∠ACE 之间满足的等量关系,并加以证明.10.△ABC 为正三角形,点M 是射线BC 上任意一点,点N 是射线CA 上任意一点,且BM=CN ,直线BN 与AM 相交于Q 点,就下面给出的三种情况,如图中的①②③,先用量角器分别测量∠BQM 的大小,然后猜测∠BQM 等于多少度.并利用图③证明你的结论.11.已知:∠DAB=120°,AC平分∠DAB,∠B+∠D=180°.(1)如图1,当∠B=∠D时,求证:AB+AD=AC;(2)如图2,当∠B≠∠D时,猜想(1)中的结论是否发生改变并说明理由.12.已知:如图,在等腰直角三角形ABC中,∠ACB=90°,AC=BC,点D是△ABC内的一点,且AD=AC,若∠DAC=30°,试探究BD与CD的数量关系并加以证明.13.如图,直线l1的函数解析式为y=1/2x+1,且l1与x轴交于点D,直线l2经过定点A,B,直线l1与l2交于点C.(1)求直线l2的函数解析式;(2)求△ADC的面积.14.某工厂,甲负责加工A型零件,乙负责加工B型零件.已知甲加工60个A型零件所用时间和乙加工80个B型零件所用时间相同,每天甲、乙两人共加工两种零件35个,设甲每天加工x个A型零件(1)求甲、乙每天各加工多少个零件;(列分式方程解应用题)(2)根据市场预测估计,加工A型零件所获得的利润为m元/件(3≤m≤5),加工B型零件所获得的利润每件比A型少1元.求每天甲、乙加工两种零件所获得的总利润y(元)与m(元/件)的函数关系式,并求总利润y的最大值和最小值.15.如图1,在矩形ABCD中,AB=12cm,BC=6cm,点P从A点出发,沿A→B→C→D路线运动,到D 点停止;点Q从D点出发,沿D→C→B→A运动,到A点停止.若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时点P、点Q同时改变速度,点P的速度变为每秒b(cm),点Q的速度变为每秒c(cm).如图2是点P出发x秒后△APD的面积S1(cm2)与x(秒)的函数关系图象;图3是点Q出发x秒后△AQD的面积S2(cm2)与x(秒)的函数关系图象.根据图象:(1)求a、b、c的值;(2)设点P离开点A的路程为y1(cm),点Q到点A还需要走的路程为y2(cm),请分别写出改变速度后y1、y2与出发后的运动时间x(秒)的函数关系式,并求出P与Q相遇时x的值.度是否发生变化?若不变,请求出它的长度;若变化,确定其变化范围.19.王鹏和李明沿同一条路同时从学校出发到图书馆查阅资料,学校与图书馆的路程是4千米.王鹏骑自行车,李明步行.当王鹏从原路回到学校时,李明刚好到达图书馆.图中折线O A B C ---和线段OD 分别表示两人离学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系,请根据图象回答下列问题:(1)王鹏在图书馆查阅资料的时间为 分钟,王鹏返回学校的速度为 千米/分钟;(2)请求出李明离开学校的路程s (千米)与所经过的时间t (分钟)之间的函数关系式;(3)当王鹏与李明迎面相遇时,他们离学校的路程是多少千米?20.已知:如图,在ABC △中,AB AC =,BAC α∠=,且60120α<<°°.P 为ABC △内部一点,且PC AC =,120PCA α∠=-°.(1)用含α的代数式表示APC ∠,得APC ∠= ;(2)求证:BAP PCB ∠=∠;(3)求PBC ∠的度数.21.已知直线y kx b =+经过点223,5M ⎛⎫ ⎪⎝⎭、120,5N ⎛⎫⎪⎝⎭. (1)求直线MN 的解析式; (2)当0y >时,求x 的取值范围;(3)我们将横坐标、纵坐标均为整数的点称为整数点.直接写出此直线与两坐标轴围成的三角形的内部(不包含边界)的整数点的坐标.22.(1)如图1,BP 为ABC ∆的角平分线,PM AB ⊥于M ,PN BC ⊥于N ,30,23AB BC ==,请补全图形,并求ABP ∆与BPC ∆的面积的比值;(2)如图2,分别以ABC ∆的边AB 、AC 为边向外作等边三角形ABD 和等边三角形ACE ,CD 与BE 相交于点O ,判断AOD ∠与AOE ∠的数量关系,并证明;(3)在四边形ABCD 中,已知BC DC =,且AB AD ≠,对角线AC 平分BAD ∠,请直接写出B ∠和D ∠的数量关系.李明王鹏(分钟)PCBAOABC图1图2PCM EBAD23.如图,在平面直角坐标系xOy 中,长方形OABC 的顶点A C 、的坐标分别为(3,0),(0,5).(1)直接写出点B 的坐标;(2)若过点C 的直线CD 交AB 边于点D ,且把长方形OABC 的周长分为1:3两部分,求直线CD 的解析式;(3)设点P 沿O A B C ---的方向运动到点C (但不与点O C 、重合),求△OPC 的面积y 与点P 所行路程x 之间的函数关系式及自变量x 的取值范围.24.如图,等腰直角三角形ABC 中,90BAC ∠=°,D 、E 分别为AB 、AC 边上的点,AD AE =,AF BE ⊥交BC 于点F ,过点F 作FG CD ⊥交BE 的延长线于点G ,交AC 于点M .(1)求证:EGM △为等腰三角形;(2)判断线段BG 、AF 与FG 的数量关系并证明你的结论.25.在平面直角坐标系xoy 中,直线6y x =+与x 轴交于A ,与y 轴交于B ,BC ⊥AB 交x 轴于C .①求△ABC的面积. ②D 为OA 延长线上一动点,以BD .③点E 是y 轴正半轴上一点,且∠OAE =30°,OF N 是线段AO 上一动点,是判断是否存在这样的点M 、N ,使得OM +说明.F G EM DC A26. 如图,直线1l 与x 轴、y 轴分别交于A 、B 两点,直线2l 与直线1l 关于x 轴对称,已知直线1l 的解析式为3y x =+,(1)求直线2l 的解析式;(3分)(2)过A 点在△ABC 的外部作一条直线3l ,过点B 作BE ⊥3l 于E,过点C 作CF ⊥3l 于F 分别,请画出图形并求证:BE +CF =EF(3)△ABC 沿y 轴向下平移,AB 边交x 轴于点P ,过P 点的直线与AC 边的延长线相交于点Q ,与y 轴相交与点M ,且BP =CQ ,在△ABC 平移的过程中,①OM 为定值;②MC 为定值。

初二数学期末复习《一次函数的应用—动点问题》(附练习及答案)

初二数学期末复习《一次函数的应用—动点问题》(附练习及答案)

课 题一次函数的应用——动点问题教学目标1.学会结合几何图形的性质,在平面直角坐标系中列函数关系式。

2.通过对几何图形的探究活动和对例题的分析,感悟探究动点问题列函数关系式的方法,提高解决问题的能力。

重点、难点理解在平面直角坐标系中,动点问题列函数关系式的方法。

小结:1用函数知识求解动点问题,需要将问题给合几何图形的性质,建立函数模型求解,解要符合题意,要注意数与形结合。

2.以一次函数为背景的问题,要充分运用方程、转化、函数以及数形结合等思想来研究解决,注意自变量的取值范围例题1:如图,直线1l 的解析表达式为33y x =-+,且1l 与x 轴交于点D ,直线2l 经过点A B ,,直线1l ,2l 交于点C .(1)求点D 的坐标;(2)求直线2l 的解析表达式;(3)求ADC △的面积;(4)在直线2l 上存在异于点C 的另一点P ,使得ADP △与ADC △的面积相等,请直接..写出点P 的坐标.例题2:如图,在平面直角坐标系内,已知点A (0,6)、点B (8,0),动点P 从点A 开始在线段AO 上以每秒1个单位长度的速度向点O 移动,同时动点Q 从点B 开始在线段BA 上以每秒2个单位长度的速度向点A 移动,设点P 、Q 移动的时间为t 秒.(1) 求直线AB 的解析式;(2) 当t 为何值时,△APQ 的面积为524个平方单位?当堂巩固:如图,直线6y kx =+与x 轴、y 轴分别交于点E 、F ,点E 的坐标为(-8,0),点A 的坐标为(-6,0)。

(1)求k 的值;(2)若点P (x ,y )是第二象限内的直线上的一个动点,在点P 的运动过程中,试写出△OPA 的面积S 与x 的函数关系式,并写出自变量x 的取值范围;(3)探究:当点P 运动到什么位置时,△OPA 的面积为278,并说明理由。

课后检测: 1、如果一次函数y=-x+1的图象与x 轴、y 轴分别交于点A 点、B 点,点M 在x 轴上,并且使以点A 、B 、M 为顶点的三角形是等腰三角形,那么这样的点M 有( )。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档