2008年安徽省高考数学试卷(理科)及答案

合集下载

2008年高考理科数学试题及参考答案(安徽卷)

2008年高考理科数学试题及参考答案(安徽卷)

摘要〕毛泽东用历史唯物主义的原理和方法研究了命运问题,取得了有重大理论价值和实践价值的成果。

他揭示了命运范畴的内涵,论述了中国的命运的主体矛盾,阐明了中国共产党掌握命运的方法,指示了各社会主体处理国家命运和本主体命运的关系的原则,实际上形成了马克思主义的“命运掌握论”。

〔关键词〕毛泽东;命运范畴;主体矛盾;命运掌握论毛泽东在他的著作中,多次提出并论述了“命运”范畴;而非显性地说来,他还广泛涉及“命运”范畴的内涵和真谛,命运掌握的原理和方法。

毫不夸张地说,毛泽东的“命运掌握论”是对于历史唯物主义原理的新开拓和新创造。

一、对“命运”范畴内涵的揭示中国和西方自古以来的哲学家中,有不少人直接地研究了“命运”范畴,给出了这样那样的定义。

但是,马克思和他在欧洲的后继者们却未面对“命运”、论述“命运”,只有生活在国情极为复杂的现代中国、研究着中国社会向何处去的问题、探索着中国革命实践的发展轨迹的毛泽东才能提出“命运”范畴,一步一步地揭示着“命运”范畴链条上的各个逻辑环节,接近于下出了马克思主义的“命运”定义。

回读毛泽东的一系列著作,“命运”范畴中所包含的以下逻辑环节就展现在我们面前:(一)“命运”范畴内容链的前提性环节是“实践的客观条件系统”,毛泽东称之为“国情”中国的命运如何,首先取决于中国的国情。

毛泽东指出:只有认清中国社会的性质,才能认清中国革命的对象、中国革命的任务、中国革命的动力、中国革命的性质、中国革命的前途和转变,而前途问题、转变问题,正是命运问题。

解决命运问题的“基本的根据”正在于以“社会的性质”为内容的“国情”。

按照这个观点,今天我们可以说,未来的中国是现实的中国的一种发展,我们对现实中国的国情有全面的认识,我们才能掌握未来中国的命运。

(二)“命运”范畴的第二个逻辑环节是现实中包含的多种可能性,毛泽东实际上形成了一个新概念:“客观可能性空间”命运之所以存在,较为直观地看,那是因为现实事物的未来发展具有不确定性,深入一步分析,便知这种不确定性来源于现实中的多种可能性的并存。

高中数学2008年普通高等学校招生全国统一考试(安徽卷)(理科)试题

高中数学2008年普通高等学校招生全国统一考试(安徽卷)(理科)试题

高中数学2008年普通高等学校招生全国统一考试(安徽卷)(理科) 试题 2019.091,曲线xe y =在点(2,e 2)处的切线与坐标轴所围三角形的面积为( )A .229eB .22eC .2e D .22e2,在一个口袋中装有5个白球和3个黑球,这些球除颜色外完全相同,从中摸出3个球,至少摸到2个黑球的概率等于( )A .72B .83C .73D .2893,将7个人(含甲、乙)分成三个组,一组3人,另两组2 人,不同的分组数为a ,甲、乙分到同一组的概率为p ,则a 、p 的值分别为( )A .a=105 p=521B .a=105 p=421C .a=210 p=521 D .a=210 p=4214,已知随机变量ξ服从正态分布2(2)N σ,,(4)0.84P ξ=≤,则(0)P ξ=≤( )A .0.16B .0.32C .0.68D .0.845,一袋中装有大小相同,编号分别为12345678,,,,,,,的八个球,从中有放回地每次取一个球,共取2次,则取得两个球的编号和不小于15的概率为( )A.132B.164C.332D.3646,设随机变量ξ服从标准正态分布(01)N ,,已知( 1.96)0.025Φ-=,则(|| 1.96)P ξ<=( )A .0.025B .0.050C .0.950D .0.9757,设有一个回归方程x y32ˆ-=,则变量x 增加一个单位时( ) A .y 平均增加3个单位 B .y 平均增加2个单位 C .y 平均减少2个单位 D .y 平均减少3个单位8,下列函数是正态分布密度函数的是A .()σσπ2221)(r x ex f -=B .2222)(x e x f -=ππC .()412221)(-=x ex f πD .2221)(x ex f π=9,如图,三行三列的方阵中有9个数(123123)ij a i j ==,,;,,,从中任取三个数,则至少有两个数位于同行或同列的概率是( )A .37B .47C .114D .131410,一个均匀小正方体的六个面中,三个面上标以数0,两个面上标以数1,一个面上标以数2,将这个小正方体抛掷2次,则向上的数之积的数学期望是 。

2008高考理科数学(含答案)

2008高考理科数学(含答案)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅱ)第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.设向量(12)(23)==,,,a b ,若向量λ+a b 与向量(47)=--,c 共线,则=λ . 14.设曲线ax y e =在点(01),处的切线与直线210x y ++=垂直,则a = . 15.已知F 是抛物线24C y x =:的焦点,过F 且斜率为1的直线交C 于A B ,两点.设FA FB >,则FA 与FB 的比值等于 .16.平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件① ; 充要条件② . (写出你认为正确的两个充要条件)三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 在ABC △中,5cos 13B =-,4cos 5C =. (Ⅰ)求sin A 的值;(Ⅱ)设ABC △的面积332ABC S =△,求BC 的长. 18.(本小题满分12分) 购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000元的赔偿金.假定在一年度内有10 000人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000元的概率为41010.999-.(Ⅰ)求一投保人在一年度内出险的概率p ;(Ⅱ)设保险公司开办该项险种业务除赔偿金外的成本为50 000元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(本小题满分12分)如图,正四棱柱1111ABCD A BC D -中,124AA AB ==,点E 在1CC 上且EC E C 31=. (Ⅰ)证明:1AC ⊥平面BED ; (Ⅱ)求二面角1A DE B --的大小.20.(本小题满分12分)设数列{}n a 的前n 项和为n S .已知1a a =,13n n n a S +=+,*n ∈N .(Ⅰ)设3n n n b S =-,求数列{}n b 的通项公式; (Ⅱ)若1n n a a +≥,*n ∈N ,求a 的取值范围.21.(本小题满分12分)设椭圆中心在坐标原点,(20)(01)A B ,,,是它的两个顶点,直线)0(>=k kx y 与AB 相交于点D ,与椭圆相交于E 、F 两点.(Ⅰ)若6ED DF =,求k 的值;(Ⅱ)求四边形AEBF 面积的最大值. 22.(本小题满分12分) 设函数sin ()2cos xf x x=+.(Ⅰ)求()f x 的单调区间;(Ⅱ)如果对任何0x ≥,都有()f x ax ≤,求a 的取值范围.AB CD EA 1B 1C 1D 12008年普通高等学校招生全国统一考试 理科数学试题(必修+选修Ⅱ)参考答案和评分参考评分说明:1.本解答给出了一种或几种解法供参考,如果考生的解法与本解答不同,可根据试题的主要 考查内容比照评分参考制订相应的评分细则.2.对计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和 难度,可视影响的程度决定后继部分的给分,但不得超过该部分正确解答应得分数的一半;如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数.选择题不给中间分.一、选择题1.B 2.A 3.C 4.C 5.D 6.D 7.B 8.B 9.B 10.C 11.A 12.C 二、填空题13.2 14.2 5.3+16.两组相对侧面分别平行;一组相对侧面平行且全等;对角线交于一点;底面是平行四边形.注:上面给出了四个充要条件.如果考生写出其他正确答案,同样给分. 三、解答题 17.解:(Ⅰ)由5cos 13B =-,得12sin 13B =, 由4cos 5C =,得3sin 5C =.所以33sin sin()sin cos cos sin 65A B C B C B C =+=+=. ··············································· 5分 (Ⅱ)由332ABC S =△得133sin 22AB AC A ⨯⨯⨯=, 由(Ⅰ)知33sin 65A =,故65AB AC ⨯=, ················································································································ 8分又sin 20sin 13AB B AC AB C ⨯==, 故2206513AB =,132AB =. 所以sin 11sin 2AB A BC C ⨯==. ····························································································· 10分18.解:各投保人是否出险互相独立,且出险的概率都是p ,记投保的10 000人中出险的人数为ξ, 则4~(10)B p ξ,.(Ⅰ)记A 表示事件:保险公司为该险种至少支付10 000元赔偿金,则A 发生当且仅当0ξ=, ··································································································································· 2分 ()1()P A P A =-1(0)P ξ=-=4101(1)p =--,又410()10.999P A =-,故0.001p =. ························································································································ 5分 (Ⅱ)该险种总收入为10000a 元,支出是赔偿金总额与成本的和. 支出 1000050000ξ+,盈利 10000(1000050000)a ηξ=-+,盈利的期望为 1000010000500E aE ηξ=--, ······················································ 9分由43~(1010)B ξ-,知,31000010E ξ-=⨯,4441010510E a E ηξ=--⨯4443410101010510a -=-⨯⨯-⨯.0E η≥4441010105100a ⇔-⨯-⨯≥1050a ⇔--≥ 15a ⇔≥(元).故每位投保人应交纳的最低保费为15元.········································································· 12分19.解法一:依题设知2AB =,1CE =.(Ⅰ)连结AC 交BD 于点F ,则BD AC ⊥.由三垂线定理知,1BD AC ⊥.···························································································· 3分在平面1ACA 内,连结EF 交1AC 于点G ,由于1AA ACFC CE== 故1Rt Rt A AC FCE △∽△,1AAC CFE ∠=∠, CFE ∠与1FCA ∠互余.于是1AC EF ⊥. 1AC 与平面BED 内两条相交直线BD EF ,都垂直, 所以1AC ⊥平面BED . ······································································································· 6分 (Ⅱ)作GH DE ⊥,垂足为H ,连结1A H .由三垂线定理知1A H DE ⊥,故1A HG ∠是二面角1A DE B --的平面角. ······································································ 8分EFCE CF CG EF ⨯==EG ==. 13EG EF =,13EF FD GH DE ⨯=⨯=又1AC ==11AG AC CG =-=.11tan A GA HG HG∠== 所以二面角1A DE B --的大小为 ······························································· 12分 解法二:以D 为坐标原点,射线DA 为x 轴的正半轴, 建立如图所示直角坐标系D xyz -.依题设,1(220)(020)(021)(204)B C E A ,,,,,,,,,,,.(021)(220)DE DB == ,,,,,,11(224)(204)AC DA =--=,,,,,. ······················································································· 3分AB CDEA 1B 1C 1D 1 FH G(Ⅰ)因为10AC DB = ,10AC DE =, 故1AC BD ⊥,1AC DE ⊥. 又DB DE D = ,所以1AC ⊥平面DBE . ········································································································ 6分 (Ⅱ)设向量()x y z =,,n 是平面1DA E 的法向量,则DE ⊥ n ,1DA ⊥n .故20y z +=,240x z +=.令1y =,则2z =-,4x =,(412)=-,,n . ··································································· 9分1AC ,n 等于二面角1A DE B --的平面角,111cos AC AC AC ==,n n n . 所以二面角1A DE B --的大小为arccos 42. ······························································ 12分 20.解:(Ⅰ)依题意,113n n n n n S S a S ++-==+,即123n n n S S +=+,由此得1132(3)n n n n S S ++-=-. ·························································································· 4分 因此,所求通项公式为13(3)2n n n n b S a -=-=-,*n ∈N .① ·············································································· 6分 (Ⅱ)由①知13(3)2n n n S a -=+-,*n ∈N , 于是,当2n ≥时,1n n n a S S -=-1123(3)23(3)2n n n n a a ---=+-⨯---⨯ 1223(3)2n n a --=⨯+-,12143(3)2n n n n a a a --+-=⨯+-22321232n n a --⎡⎤⎛⎫=+-⎢⎥ ⎪⎝⎭⎢⎥⎣⎦, 当2n ≥时,21312302n n n a a a -+⎛⎫⇔+- ⎪⎝⎭≥≥9a ⇔-≥.又2113a a a =+>.综上,所求的a 的取值范围是[)9-+∞,. ········································································· 12分 21.(Ⅰ)解:依题设得椭圆的方程为2214x y +=, 直线AB EF ,的方程分别为22x y +=,(0)y kx k =>. ··············································· 2分 如图,设001122()()()D x kx E x kx F x kx ,,,,,,其中12x x <, 且12x x ,满足方程22(14)4k x +=,故21x x =-=.①由6ED DF = 知01206()x x x x -=-,得021215(6)77x x x x =+==;由D 在AB 上知0022x kx +=,得0212x k=+. 所以212k =+, 化简得2242560k k -+=,解得23k =或38k =. ············································································································ 6分 (Ⅱ)解法一:根据点到直线的距离公式和①式知,点E F ,到AB 的距离分别为1h ==2h==. ·····································································9分又AB==AEBF的面积为121()2S AB h h=+12===≤当21k=,即当12k=时,上式取等号.所以S的最大值为 ·······························12分解法二:由题设,1BO=,2AO=.设11y kx=,22y kx=,由①得2x>,21y y=->,故四边形AEBF的面积为BEF AEFS S S=+△△222x y=+ ······························································································································9分===当222x y=时,上式取等号.所以S的最大值为··················································12分22.解:(Ⅰ)22(2cos)cos sin(sin)2cos1()(2cos)(2cos)x x x x xf xx x+--+'==++.·····································2分当2π2π2π2π33k x k -<<+(k ∈Z )时,1cos 2x >-,即()0f x '>; 当2π4π2π2π33k x k +<<+(k ∈Z )时,1cos 2x <-,即()0f x '<.因此()f x 在每一个区间2π2π2π2π33k k ⎛⎫-+ ⎪⎝⎭,(k ∈Z )是增函数, ()f x 在每一个区间2π4π2π2π33k k ⎛⎫++ ⎪⎝⎭,(k ∈Z )是减函数. ···································· 6分 (Ⅱ)令()()g x ax f x =-,则22cos 1()(2cos )x g x a x +'=-+ 2232cos (2cos )a x x =-+++211132cos 33a x ⎛⎫=-+- ⎪+⎝⎭.故当13a ≥时,()0g x '≥. 又(0)0g =,所以当0x ≥时,()(0)0g x g =≥,即()f x ax ≤. ······························ 9分 当103a <<时,令()sin 3h x x ax =-,则()cos 3h x x a '=-. 故当[)0arccos3x a ∈,时,()0h x '>. 因此()h x 在[)0arccos3a ,上单调增加.故当(0arccos3)x a ∈,时,()(0)0h x h >=, 即sin 3x ax >.于是,当(0arccos3)x a ∈,时,sin sin ()2cos 3x xf x ax x =>>+.当0a ≤时,有π1π0222f a ⎛⎫=>⎪⎝⎭ ≥. 因此,a 的取值范围是13⎡⎫+∞⎪⎢⎣⎭,. ····················································································· 12分。

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)(后附答案解析)

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)(后附答案解析)

2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)一、选择题(共12小题,每小题5分,满分60分) 1.(5分)函数的定义域为( )A .{x |x ≥0}B .{x |x ≥1}C .{x |x ≥1}∪{0}D .{x |0≤x ≤1}2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图象可能是( )A .B .C .D .3.(5分)在△ABC 中,=,=.若点D 满足=2,则=( )A .B .C .D .4.(5分)设a ∈R ,且(a +i )2i 为正实数,则a=( )A .2B .1C .0D .﹣15.(5分)已知等差数列{a n }满足a 2+a 4=4,a 3+a 5=10,则它的前10项的和S 10=() A .138B .135C .95D .236.(5分)若函数y=f (x )的图象与函数y=ln 的图象关于直线y=x 对称,则f (x )=( )A .e 2x ﹣2B .e 2xC .e 2x +1D .e 2x +27.(5分)已知曲线y=在点(3,2)处的切线与直线ax +y +1=0垂直,则a的值为( )A .2B .C .﹣D .﹣28.(5分)为得到函数的图象,只需将函数y=sin2x 的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 .14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.2008年全国统一高考数学试卷(理科)(全国卷Ⅰ)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)函数的定义域为( )A.{x|x≥0}B.{x|x≥1}C.{x|x≥1}∪{0}D.{x|0≤x≤1}【考点】33:函数的定义域及其求法.【分析】偶次开方的被开方数一定非负.x(x﹣1)≥0,x≥0,解关于x的不等式组,即为函数的定义域.【解答】解:由x(x﹣1)≥0,得x≥1,或x≤0.又因为x≥0,所以x≥1,或x=0;所以函数的定义域为{x|x≥1}∪{0}故选:C.【点评】定义域是高考必考题通常以选择填空的形式出现,通常注意偶次开方一定非负,分式中分母不能为0,对数函数的真数一定要大于0,指数和对数的底数大于0且不等于1.另外还要注意正切函数的定义域.2.(5分)汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s看作时间t的函数,其图象可能是( )A.B.C.D.【考点】3A:函数的图象与图象的变换.【专题】16:压轴题;31:数形结合.【分析】由已知中汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,汽车的行驶路程s看作时间t的函数,我们可以根据实际分析函数值S(路程)与自变量t(时间)之间变化趋势,分析四个答案即可得到结论.【解答】解:由汽车经过启动后的加速行驶阶段,路程随时间上升的速度越来越快,故图象的前边部分为凹升的形状;在汽车的匀速行驶阶段,路程随时间上升的速度保持不变故图象的中间部分为平升的形状;在汽车减速行驶之后停车阶段,路程随时间上升的速度越来越慢,故图象的前边部分为凸升的形状;分析四个答案中的图象,只有A答案满足要求,故选:A.【点评】从左向右看图象,如果图象是凸起上升的,表明相应的量增长速度越来越慢;如果图象是凹陷上升的,表明相应的量增长速度越来越快;如果图象是直线上升的,表明相应的量增长速度保持不变;如果图象是水平直线,表明相应的量保持不变,即不增长也不降低;如果图象是凸起下降的,表明相应的量降低速度越来越快;如果图象是凹陷下降的,表明相应的量降低速度越来越慢;如果图象是直线下降的,表明相应的量降低速度保持不变.3.(5分)在△ABC中,=,=.若点D满足=2,则=( )A.B.C.D.【考点】9B:向量加减混合运算.【分析】把向量用一组向量来表示,做法是从要求向量的起点出发,尽量沿着已知向量,走到要求向量的终点,把整个过程写下来,即为所求.本题也可以根据D点把BC分成一比二的两部分入手.【解答】解:∵由,∴,∴.故选:A.【点评】用一组向量来表示一个向量,是以后解题过程中常见到的,向量的加减运算是用向量解决问题的基础,要学好运算,才能用向量解决立体几何问题,三角函数问题,好多问题都是以向量为载体的4.(5分)设a∈R,且(a+i)2i为正实数,则a=( )A.2B.1C.0D.﹣1【考点】A4:复数的代数表示法及其几何意义.【分析】注意到a+bi(a,b∈R)为正实数的充要条件是a>0,b=0【解答】解:(a+i)2i=(a2+2ai﹣1)i=﹣2a+(a2﹣1)i>0,a=﹣1.故选D.【点评】本题的计算中,要注意到相应变量的范围.5.(5分)已知等差数列{a n}满足a2+a4=4,a3+a5=10,则它的前10项的和S10=( )A.138B.135C.95D.23【考点】83:等差数列的性质;85:等差数列的前n项和.【专题】11:计算题.【分析】本题考查的知识点是等差数列的性质,及等差数列前n项和,根据a2+a4=4,a3+a5=10我们构造关于基本量(首项及公差)的方程组,解方程组求出基本量(首项及公差),进而代入前n项和公式,即可求解.【解答】解:∵(a3+a5)﹣(a2+a4)=2d=6,∴d=3,a1=﹣4,∴S10=10a1+=95.故选:C.【点评】在求一个数列的通项公式或前n项和时,如果可以证明这个数列为等差数列,或等比数列,则可以求出其基本项(首项与公差或公比)进而根据等差或等比数列的通项公式,写出该数列的通项公式,如果未知这个数列的类型,则可以判断它是否与某个等差或等比数列有关,间接求其通项公式.6.(5分)若函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称,则f(x)=( )A.e2x﹣2B.e2x C.e2x+1D.e2x+2【考点】4R:反函数.【专题】11:计算题.【分析】由函数y=f(x)的图象与函数y=ln的图象关于直线y=x对称知这两个函数互为反函数,故只要求出函数y=f(x)的反函数即可,欲求原函数的反函数,即从原函数y=ln中反解出x,后再进行x,y互换,即得反函数的解析式.【解答】解:∵,∴,∴x=(e y﹣1)2=e2y﹣2,改写为:y=e2x﹣2∴答案为A.【点评】本题主要考查了互为反函数图象间的关系及反函数的求法.7.(5分)已知曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,则a 的值为( )A.2B.C.﹣D.﹣2【考点】6H:利用导数研究曲线上某点切线方程.【专题】53:导数的综合应用.【分析】求出函数的导数,切线的斜率,由两直线垂直的条件,即可得到a的值.【解答】解:∵y=,∴y′==,∴曲线y=在点(3,2)处的切线的斜率k=﹣,∵曲线y=在点(3,2)处的切线与直线ax+y+1=0垂直,∴直线ax+y+1=0的斜率k′=﹣a×=﹣1,即a=﹣2.故选:D.【点评】本题考查导数的几何意义的求法,考查导数的运算,解题时要认真审题,仔细解答,注意直线与直线垂直的性质的灵活运用.8.(5分)为得到函数的图象,只需将函数y=sin2x的图象( )A.向左平移个长度单位B.向右平移个长度单位C.向左平移个长度单位D.向右平移个长度单位【考点】HJ:函数y=Asin(ωx+φ)的图象变换.【专题】11:计算题.【分析】先根据诱导公式将函数化为正弦的形式,再根据左加右减的原则进行平移即可得到答案.【解答】解:∵,只需将函数y=sin2x的图象向左平移个单位得到函数的图象.故选:A.【点评】本题主要考查诱导公式和三角函数的平移.属基础题.9.(5分)设奇函数f(x)在(0,+∞)上为增函数,且f(1)=0,则不等式<0的解集为( )A.(﹣1,0)∪(1,+∞)B.(﹣∞,﹣1)∪(0,1)C.(﹣∞,﹣1)∪(1,+∞)D.(﹣1,0)∪(0,1)【考点】3N:奇偶性与单调性的综合.【专题】16:压轴题.【分析】首先利用奇函数定义与得出x与f(x)异号,然后由奇函数定义求出f(﹣1)=﹣f(1)=0,最后结合f(x)的单调性解出答案.【解答】解:由奇函数f(x)可知,即x与f(x)异号,而f(1)=0,则f(﹣1)=﹣f(1)=0,又f(x)在(0,+∞)上为增函数,则奇函数f(x)在(﹣∞,0)上也为增函数,当0<x<1时,f(x)<f(1)=0,得<0,满足;当x>1时,f(x)>f(1)=0,得>0,不满足,舍去;当﹣1<x<0时,f(x)>f(﹣1)=0,得<0,满足;当x<﹣1时,f(x)<f(﹣1)=0,得>0,不满足,舍去;所以x的取值范围是﹣1<x<0或0<x<1.故选:D.【点评】本题综合考查奇函数定义与它的单调性.10.(5分)若直线=1与圆x2+y2=1有公共点,则( )A.a2+b2≤1B.a2+b2≥1C.D.【考点】J9:直线与圆的位置关系.【分析】用圆心到直线的距离小于或等于半径,可以得到结果.【解答】解:直线与圆有公共点,即直线与圆相切或相交得:d≤r,∴,故选:D.【点评】本题考查点到直线的距离公式,直线和圆的位置关系,是基础题.11.(5分)已知三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC 内的射影为△ABC的中心,则AB1与底面ABC所成角的正弦值等于( )A.B.C.D.【考点】LP:空间中直线与平面之间的位置关系.【专题】11:计算题;31:数形结合;4R:转化法;5G:空间角.【分析】法一:由题意可知三棱锥A1﹣ABC为正四面体,设棱长为2,求出AB1及三棱锥的高,由线面角的定义可求出答案;法二:先求出点A1到底面的距离A1D的长度,即知点B1到底面的距离B1E的长度,再求出AE的长度,在直角三角形AEB1中求AB1与底面ABC所成角的正切,再由同角三角函数的关系求出其正弦.【解答】解:(法一)因为三棱柱ABC﹣A1B1C1的侧棱与底面边长都相等,A1在底面ABC内的射影为△ABC的中心,设为D,所以三棱锥A1﹣ABC为正四面体,设棱长为2,则△AA1B1是顶角为120°等腰三角形,所以AB1=2×2×sin60°=2,A1D==,所以AB1与底面ABC所成角的正弦值为==;(法二)由题意不妨令棱长为2,点B1到底面的距离是B1E,如图,A1在底面ABC内的射影为△ABC的中心,设为D,故DA=,由勾股定理得A1D==故B1E=,如图作A1S⊥AB于中点S,过B1作AB的垂线段,垂足为F,F=A1S=,AF=3,BF=1,B在直角三角形B1AF中用勾股定理得:AB1=2,所以AB1与底面ABC所成角的正弦值sin∠B1AE==.故选:B.【点评】本题考查了几何体的结构特征及线面角的定义,还有点面距与线面距的转化,考查了转化思想和空间想象能力.12.(5分)如图,一环形花坛分成A,B,C,D四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( )A.96B.84C.60D.48【考点】C6:等可能事件和等可能事件的概率.【专题】16:压轴题.【分析】这道题比起前几年出的高考题要简单些,只要分类清楚没有问题,分为三类:分别种两种花、三种花、四种花,分这三类来列出结果.【解答】解:分三类:种两种花有A42种种法;种三种花有2A43种种法;种四种花有A44种种法.共有A42+2A43+A44=84.故选:B.【点评】本题也可以这样解:按A﹣B﹣C﹣D顺序种花,可分A、C同色与不同色有4×3×(1×3+2×2)=84.二、填空题(共4小题,每小题5分,满分20分)13.(5分)若x,y满足约束条件,则z=2x﹣y的最大值为 9 .【考点】7C:简单线性规划.【专题】11:计算题;13:作图题.【分析】首先作出可行域,再作出直线l0:y=2x,将l0平移与可行域有公共点,直线y=2x﹣z在y轴上的截距最小时,z有最大值,求出此时直线y=2x﹣z经过的可行域内的点的坐标,代入z=2x﹣y中即可.【解答】解:如图,作出可行域,作出直线l0:y=2x,将l0平移至过点A处时,函数z=2x﹣y有最大值9.【点评】本题考查线性规划问题,考查数形结合思想.14.(5分)已知抛物线y=ax2﹣1的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 2 .【考点】K8:抛物线的性质.【专题】11:计算题.【分析】先根据抛物线y=ax2﹣1的焦点坐标为坐标原点,求得a,得到抛物线方程,进而可知与坐标轴的交点的坐标,进而可得答案.【解答】解:由抛物线y=ax2﹣1的焦点坐标为坐标原点得,,则与坐标轴的交点为(0,﹣1),(﹣2,0),(2,0),则以这三点围成的三角形的面积为故答案为2【点评】本题主要考查抛物线的应用.考查了学生综合运用所学知识,解决实际问题的能力.15.(5分)在△ABC中,AB=BC,.若以A,B为焦点的椭圆经过点C ,则该椭圆的离心率e= .【考点】K4:椭圆的性质.【专题】11:计算题;16:压轴题.【分析】设AB=BC=1,,则,由此可知,从而求出该椭圆的离心率.【解答】解:设AB=BC=1,,则,∴,.答案:.【点评】本题考查椭圆的性质及应用,解题时要注意的正确计算.16.(5分)等边三角形ABC与正方形ABDE有一公共边AB,二面角C﹣AB﹣D 的余弦值为,M,N分别是AC,BC的中点,则EM,AN所成角的余弦值等于 .【考点】LM:异面直线及其所成的角;MJ:二面角的平面角及求法.【专题】11:计算题;16:压轴题.【分析】先找出二面角的平面角,建立边之间的等量关系,再利用向量法将所求异面直线用基底表示,然后利用向量的所成角公式求出所成角即可.【解答】解:设AB=2,作CO⊥面ABDE,OH⊥AB,则CH⊥AB,∠CHO为二面角C﹣AB﹣D的平面角,结合等边三角形ABC与正方形ABDE可知此四棱锥为正四棱锥,则,=故EM,AN所成角的余弦值故答案为:【点评】本小题主要考查异面直线所成的角,考查空间想象能力、运算能力和推理论证能力,属于基础题.三、解答题(共6小题,满分70分)17.(10分)设△ABC的内角A,B,C所对的边长分别为a,b,c,且acosB﹣bcosA=c.(Ⅰ)求的值;(Ⅱ)求tan(A﹣B)的最大值.【考点】GP:两角和与差的三角函数;HP:正弦定理.【分析】本题考查的知识点是正弦定理及两角和与差的正切函数,(Ⅰ)由正弦定理的边角互化,我们可将已知中,进行转化得到sinAcosB=4cosAsinB,再利用弦化切的方法即可求的值.(Ⅱ)由(Ⅰ)的结论,结合角A,B,C为△ABC的内角,我们易得tanA=4tanB>0,则tan(A﹣B)可化为,再结合基本不等式即可得到tan(A﹣B)的最大值.【解答】解:(Ⅰ)在△ABC中,,由正弦定理得即sinAcosB=4cosAsinB,则;(Ⅱ)由得tanA=4tanB>0当且仅当时,等号成立,故当时,tan(A﹣B)的最大值为.【点评】在解三角形时,正弦定理和余弦定理是最常用的方法,正弦定理多用于边角互化,使用时要注意一般是等式两边是关于三边的齐次式.18.(12分)四棱锥A﹣BCDE中,底面BCDE为矩形,侧面ABC⊥底面BCDE,BC=2,,AB=AC.(Ⅰ)证明:AD⊥CE;(Ⅱ)设CE与平面ABE所成的角为45°,求二面角C﹣AD﹣E的大小.【考点】LY:平面与平面垂直;MJ:二面角的平面角及求法.【专题】5F:空间位置关系与距离.【分析】(1)取BC中点F,证明CE⊥面ADF,通过证明线面垂直来达到证明线线垂直的目的.(2)在面AED内过点E作AD的垂线,垂足为G,由(1)知,CE⊥AD,则∠CGE 即为所求二面角的平面角,△CGE中,使用余弦定理求出此角的大小.【解答】解:(1)取BC中点F,连接DF交CE于点O,∵AB=AC,∴AF⊥BC.又面ABC⊥面BCDE,∴AF⊥面BCDE,∴AF⊥CE.再根据,可得∠CED=∠FDC.又∠CDE=90°,∴∠OED+∠ODE=90°,∴∠DOE=90°,即CE⊥DF,∴CE⊥面ADF,∴CE⊥AD.(2)在面ACD内过C点作AD的垂线,垂足为G.∵CG⊥AD,CE⊥AD,∴AD⊥面CEG,∴EG⊥AD,则∠CGE即为所求二面角的平面角.作CH⊥AB,H为垂足.∵平面ABC⊥平面BCDE,矩形BCDE中,BE⊥BC,故BE⊥平面ABC,CH⊂平面ABC ,故BE⊥CH,而AB∩BE=B,故CH⊥平面ABE,∴∠CEH=45°为CE与平面ABE所成的角.∵CE=,∴CH=EH=.直角三角形CBH中,利用勾股定理求得BH===1,∴AH=AB﹣BH=AC﹣1;直角三角形ACH中,由勾股定理求得AC2=CH2+AH2=3+(AC﹣1)2,∴AB=AC=2.由面ABC⊥面BCDE,矩形BCDE中CD⊥CB,可得CD⊥面ABC,故△ACD为直角三角形,AD===,故CG===,DG==,,又,则,∴,即二面角C﹣AD﹣E的大小.【点评】本题主要考查通过证明线面垂直来证明线线垂直的方法,以及求二面角的大小的方法,属于中档题.19.(12分)已知函数f(x)=﹣x2+ax+1﹣lnx.(Ⅰ)当a=3时,求函数f(x)的单调递增区间;(Ⅱ)若f(x)在区间(0,)上是减函数,求实数a的取值范围.【考点】3D:函数的单调性及单调区间;3E:函数单调性的性质与判断.【专题】16:压轴题.【分析】(1)求单调区间,先求导,令导函数大于等于0即可.(2)已知f(x)在区间(0,)上是减函数,即f′(x)≤0在区间(0,)上恒成立,然后用分离参数求最值即可.【解答】解:(Ⅰ)当a=3时,f(x)=﹣x2+3x+1﹣lnx∴解f′(x)>0,即:2x2﹣3x+1<0函数f(x)的单调递增区间是.(Ⅱ)f′(x)=﹣2x+a﹣,∵f(x)在上为减函数,∴x∈时﹣2x+a﹣≤0恒成立.即a≤2x+恒成立.设,则∵x∈时,>4,∴g′(x)<0,∴g(x)在上递减,∴g(x)>g()=3,∴a≤3.【点评】本题考查函数单调性的判断和已知函数单调性求参数的范围,此类问题一般用导数解决,综合性较强.20.(12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.【考点】C6:等可能事件和等可能事件的概率;CH:离散型随机变量的期望与方差.【分析】(1)由题意得到这两种方案的化验次数,算出在各个次数下的概率,写出化验次数的分布列,求出方案甲所需化验次数不少于依方案乙所需化验次数的概率.(2)根据上一问乙的化验次数的分布列,利用期望计算公式得到结果.【解答】解:(Ⅰ)若乙验两次时,有两种可能:①先验三只结果为阳性,再从中逐个验时,恰好一次验中概率为:②先验三只结果为阴性,再从其它两只中验出阳性(无论第二次试验中有没有,均可以在第二次结束),∴乙只用两次的概率为.若乙验三次时,只有一种可能:先验三只结果为阳性,再从中逐个验时,恰好二次验中概率为在三次验出时概率为∴甲种方案的次数不少于乙种次数的概率为:(Ⅱ)ξ表示依方案乙所需化验次数,∴ξ的期望为Eξ=2×0.6+3×0.4=2.4.【点评】期望是概率论和数理统计的重要概念之一,是反映随机变量取值分布的特征数,学习期望将为今后学习概率统计知识做铺垫.同时,它在市场预测,经济统计,风险与决策等领域有着广泛的应用,为今后学习数学及相关学科产生深远的影响.21.(12分)双曲线的中心为原点O,焦点在x轴上,两条渐近线分别为l1,l2,经过右焦点F垂直于l1的直线分别交l1,l2于A,B两点.已知||、||、||成等差数列,且与同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB被双曲线所截得的线段的长为4,求双曲线的方程.【考点】KB:双曲线的标准方程;KC:双曲线的性质.【专题】11:计算题;16:压轴题.【分析】(1)由2个向量同向,得到渐近线的夹角范围,求出离心率的范围,再用勾股定理得出直角三角形的2个直角边的长度比,联想到渐近线的夹角,求出渐近线的斜率,进而求出离心率.(2)利用第(1)的结论,设出双曲线的方程,将AB方程代入,运用根与系数的关系及弦长公式,求出待定系数,即可求出双曲线方程.【解答】解:(1)设双曲线方程为,由,同向,∴渐近线的倾斜角范围为(0,),∴渐近线斜率为:,∴.∵||、||、||成等差数列,∴|OB|+|OA|=2|AB|,∴|AB|2=(|OB|﹣|OA|)(|OB|+|OA|)=(|OB|﹣|OA|)•2|AB|,∴,∴,可得:,而在直角三角形OAB中,注意到三角形OAF也为直角三角形,即tan∠AOB=,而由对称性可知:OA的斜率为k=tan,∴,∴2k2+3k﹣2=0,∴;∴,∴,∴.(2)由第(1)知,a=2b,可设双曲线方程为﹣=1,∴c=b.由于AB的倾斜角为+∠AOB,故AB的斜率为tan(+∠AOB )=﹣cot(∠AOB)=﹣2,∴AB的直线方程为y=﹣2(x﹣b),代入双曲线方程得:15x2﹣32bx+84b2=0,∴x1+x2=,x1•x2=,∴4=•=•,即16=﹣112b2,∴b2=9,所求双曲线方程为:﹣=1.【点评】做到边做边看,从而发现题中的巧妙,如据,联想到对应的是2渐近线的夹角的正切值,属于中档题.22.(12分)设函数f(x)=x﹣xlnx.数列{a n}满足0<a1<1,a n+1=f(a n).(Ⅰ)证明:函数f(x)在区间(0,1)是增函数;(Ⅱ)证明:a n<a n+1<1;(Ⅲ)设b∈(a1,1),整数.证明:a k+1>b.【考点】6B:利用导数研究函数的单调性;RG:数学归纳法.【专题】16:压轴题.【分析】(1)首先求出函数的导数,然后令f′(x)=0,解出函数的极值点,最后根据导数判断函数在区间(0,1)上的单调性,从而进行证明.(2)由题意数列{a n}满足0<a1<1,a n+1=f(a n),求出a n+1=a n﹣a n lna n,然后利用归纳法进行证明;(3)由题意f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣b﹣a k,然后进行讨论求解.【解答】解:(Ⅰ)证明:∵f(x)=x﹣xlnx,∴f′(x)=﹣lnx,当x∈(0,1)时,f′(x)=﹣lnx>0故函数f(x)在区间(0,1)上是增函数;(Ⅱ)证明:(用数学归纳法)(i)当n=1时,0<a1<1,a1lna1<0,a2=f(a1)=a1﹣a1lna1>a1,∵函数f(x)在区间(0,1)是增函数且函数f(x)在x=1处连续,∴f(x)在区间(0,1]是增函数,a2=f(a1)=a1﹣a1lna1<1,即a1<a2<1成立,(ⅱ)假设当x=k(k∈N+)时,a k<a k+1<1成立,即0<a1≤a k<a k+1<1,那么当n=k+1时,由f(x)在区间(0,1]是增函数,0<a1≤a k<a k+1<1,得f(a k)<f(a k+1)<f(1),而a n+1=f(a n),则a k+1=f(a k),a k+2=f(a k+1),a k+1<a k+2<1,也就是说当n=k+1时,a n<a n+1<1也成立,根据(ⅰ)、(ⅱ)可得对任意的正整数n,a n<a n+1<1恒成立.(Ⅲ)证明:由f(x)=x﹣xlnx,a n+1=f(a n)可得a k+1=a k﹣a k lna k=,1)若存在某i≤k,满足a i≤b,则由(Ⅱ)知:a k+1﹣b>a i﹣b≥0,2)若对任意i≤k,都有a i>b,则a k+1=a k﹣a k lna k==≥a1﹣b1﹣ka1lnb=0,即a k+1>b成立.【点评】此题主要考查多项式函数的导数,函数单调性的判定,函数最值,函数、方程与不等式等基础知识及数学归纳法的应用,一般出题者喜欢考查学生的运算求解能力、推理论证能力及分析与解决问题的能力,要出学生会用数形结合的思想、分类与整合思想,化归与转化思想、有限与无限的思想来解决问题.。

2008年安徽省高考数学(理)试卷及答案

2008年安徽省高考数学(理)试卷及答案

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数 32(1)i i +=( )A .2B .-2C .2i D . 2i -2.集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( ) A .}{2,1A B =-- B .()(,0)R C A B =-∞ C .(0,)A B =+∞ D .}{()2,1R C A B =--3.在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB = ,(1,3)AC = ,则BD =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)4.已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖5.将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( )A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π6.设88018(1),x a a x a x +=+++ 则0,18,,a a a 中奇数的个数为( )A .2B .3C .4D .57.0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件8.若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[33-D .(,33-9.在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称。

2008年高考试题——数学理(安徽卷)

2008年高考试题——数学理(安徽卷)

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至 第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮控干净后,再选涂其他答案标号。

3.答第Ⅰ卷时,必须使用0.5毫米的黑色笔迹签字笔在答题卡上书写,要求字体工事、笔迹清晰。

作图题可先铅笔在答题卡规定的位臵绘出,确认后再用0.5毫米的黑色笔迹字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、早稿纸上答题无效。

4.考试结束,务必将试题和答题卡一并上交。

参考公式:如果事件A 、B 互斥,那么()()()P A B P A P B +=+ 如果事件A 、B 相互独立,那么()()()P A B P A P B = 如果随机变量~(,)B n p ξ,那么(1-)D np p ξ= 球的表面积公式2S =4R π ;球的体积公式34V =3R π,其中R 表示球的半径第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数()231i i += 【 】 (A)2 (B)-2 (C)2i (D )-2i (2)集合{}{}|lg ,1,2,1,1,2A y R y x x B =∈=>=--,则下列结论中正确的是 【 】 (A){}2,1A B =-- (B)()(),0R A B =-∞ ð (C)()0,A B =+∞ (D)(){}2,1R A B =-- ð(3)在平行四边形ABCD 中,AC 为一条对角线,若A B =(2,4),A C =(1,3) ,B D= 【 】(A)(-2,-4) (B)(-3,-5) (C)(3,5) (D)(2,4)(4)已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是 【 】 (A)若,m n αα∥∥,则m n ∥ (B)若,αγβγ⊥⊥,则αβ∥ (C)若,m n ββ∥∥,则αβ∥ (B)若,m n αα⊥⊥,则m n ∥(5)将函数y=sin 23x π⎛⎫+⎪⎝⎭的图象按向量a 平移后所得的图象关于点,012π⎛⎫-⎪⎝⎭中心对称,则向量a 的坐标可能为 【 】 (A),012π⎛⎫-⎪⎝⎭ (B),06π⎛⎫- ⎪⎝⎭ (C),012π⎛⎫⎪⎝⎭(D),06π⎛⎫ ⎪⎝⎭ (6)设()880181...x a a x a x +=+++,则018,,...,a a a 中奇数的个数为 【 】 (A)2 (B)3 (C)4 (D)5(7)0a <是方程2210ax x ++=至少有一个负数根的 【 】 (A)必要不充分条件 (B)充分不必要条件(C)充分必要条件 (D)既不充分也不必要条件(8)若过点()4,0A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为 【 】(A)⎡⎣(B)((C),33⎡-⎢⎣⎦ (D)33⎛⎫- ⎪ ⎪⎝⎭ (9)在同一平面直角坐标系中,函数()y g x =的图象与x y e =的图象关于直线y x =对称,而函数()y fx =的图象与()y g x =的图象关于y 轴对称,若()1f m =-,则m 的值为 【 】 (A)-e (B )-1e(C)e (D)1e(10)设两个正态分布N(μ1, σ21)(σ 1 >0)和N(μ2, σ22)(σ2>0)的密度函数图象如图所示,则有 【 】(A) 1212,μμσσ<< (B) 1212,μμσσ<> (C) 1212,μμσσ>< (D) 1212,μμσσ>> (11)若函数()(),f x g x 分别为R上的奇函数、偶函数,且满足()()xfx g x e -=,则有【 】 (A)()()()230f f g << (B)()()()032g f f << (C)()()()203f g f << (B)()()()023g f f <<(12)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是 【 】 (A)2283C A (B)2686C A (C)2286C A (D)2285C A2008年普通高等学校招生全国统一考试(安徽卷)数 学(理 科)第Ⅱ卷 (非选择题 共90分)考生注意事项:请用0.5毫米黑色签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2008高考安徽理科数学试卷word(200868)

2008高考安徽理科数学试卷word(200868)

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试卷卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致. 2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫M 黑色墨水签字笔在答题卡上书写.在试卷卷上作答无效. 4. 考试结束,监考员将试卷卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么()()()P A B P A P B =球的体积公式 34π3V R =如果随机变量(,),B n p ξ那么 其中R 表示球的半径(1)D np p ξ=-第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. (1).复数32(1)i i +=( ) A .2B .-2C .2i D .2i -(2).集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( ) A .}{2,1A B =--B .()(,0)R C A B =-∞C .(0,)AB =+∞D .}{()2,1R C A B =--(3).在平行四边形ABCD 中,AC 为一条对角线,若(2,4)AB =,(1,3)AC =,则AB =( )A . (-2,-4)B .(-3,-5)C .(3,5)D .(2,4)(4).已知,m n 是两条不同直线,,,αβγ是三个不同平面,下列命题中正确的是( )A .,,m n m n αα若则‖‖‖B .,,αγβγαβ⊥⊥若则‖C .,,m m αβαβ若则‖‖‖D .,,m n m n αα⊥⊥若则‖(5).将函数sin(2)3y x π=+的图象按向量α平移后所得的图象关于点(,0)12π-中心对称,则向量α的坐标可能为( ) A .(,0)12π-B .(,0)6π-C .(,0)12πD .(,0)6π(6).设88018(1),x a a x a x +=+++则0,18,,a a a 中奇数的个数为( )A .2B .3C .4D .5(7).0a <是方程2210ax x ++=至少有一个负数根的( ) A .必要不充分条件 B .充分不必要条件C .充分必要条件D .既不充分也不必要条件(8).若过点(4,0)A 的直线l 与曲线22(2)1x y -+=有公共点,则直线l 的斜率的取值范围为( )A .[B .(C .[,33-D .(33-(9).在同一平面直角坐标系中,函数()y g x =的图象与xy e =的图象关于直线y x =对称。

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(安徽卷)(理科)2770

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(安徽卷)(理科)2770

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(安徽卷)(理科) 测试题 2019.91,在平行四边形ABCD 中,AC 为一条对角线,若,,则( ) A .(-2,-4)B .(-3,-5)C .(3,5)D .(2,4)2,已知是两条不同直线,是三个不同平面,下列命题中正确的是( )A .B .C .D .3,将函数的图象按向量平移后所得的图象关于点中心对称,则向量的坐标可能为( )A .B .C .D . 4,设则中奇数的个数为( )A .2B .3C .4D .55,是方程至少有一个负数根的( ) A .必要不充分条件 B .充分不必要条件 C .充分必要条件 D .既不充分也不必要条件6,若过点的直线与曲线有公共点,则直线的斜率的取值范围为( ) A . B .C .D .7,在同一平面直角坐标系中,函数的图象与的图象关于直线对称。

而函数的图象与的图象关于轴对称,若,则的值是( )A .B .C .D .8,设两个正态分布和的密度函数图像如(2,4)AB =(1,3)AC =BD =,m n ,,αβγ,,m n m n αα若则‖‖‖,,αγβγαβ⊥⊥若则‖,,m m αβαβ若则‖‖‖,,m n m n αα⊥⊥若则‖sin(2)3y x π=+α(,0)12π-α(,0)12π-(,0)6π-(,0)12π(,0)6π88018(1),x a a x a x +=+++0,18,,a a a 0a <2210ax x ++=(4,0)A l 22(2)1x y -+=l [([(()y g x =xy e =y x =()y f x =()y g x =y ()1f m =-m e -1e -e 1e 2111()(0)N μσσ>,2222()(0)N μσσ>,图所示。

则有( )A .B .C .D . 9,若函数分别是上的奇函数、偶函数,且满足,则有( )A .B .C .D .10,12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是( ) A .B .C .D .测试题答案1, 解:因为)5,3(,)1,1(--=-==--=-=AB AD BD AD AB AC BC ,选B 。

2008年高考理科数学试题及答案-全国卷1

2008年高考理科数学试题及答案-全国卷1

2008年普通高等学校招生全国统一考试(全国1卷)理科数学(必修+选修Ⅰ)一、选择题 1.函数y =)A .{}|0x x ≥ B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB =c ,AC =b .若点D 满足2BD DC =,则AD =( ) A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数ln1y =的图像关于直线y x =对称,则()f x =( )A .e2x-1B .e 2xC .e2x+1D . e2x+27.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12- D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( ) A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .B .C .D .A .(10)(1)-+∞,,B .(1)(01)-∞-,,C .(1)(1)-∞-+∞,,D .(10)(01)-,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b+≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .48二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. (注意:在试题卷上作答无效.........) 13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于 .三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) 设ABC △的内角A B C ,,所对的边长分别为a 、b 、c ,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值.18.(本小题满分12分)四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围. 20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止. 方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望.CDE AB21.(本小题满分12分)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA 同向.(Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<;(Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +>.2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)参考答案一、选择题 1、C2、A3、A4、D5、C6、B7、D8、A9.D10.D .11.B .12.B.二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.答案:9.14. 答案:2.15.答案:38. 16.答案:16. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得 a=CBc b C A c sin sin ,sin sin =acosB-bcosA=(A CBB C A cos sin sin cos sin sin ⋅-⋅)c=c B A A B B A ⋅+-)sin(cos sin cos sin =c B A B A B A B A ⋅+-sin cos cos sin sin cos cos sin =1cot tan )1cot (tan +-B A cB A 依题设得c B A c B A 531cot tan )1cot (tan =+-,解得tanAcotB=4(II)由(I )得tanA=4tanB ,故A 、B 都是锐角,于是tanB>0 tan(A-B)=B A BA tan tan 1tan tan +-=B B 2tan 41tan 3+ ≤43, 且当tanB=21时,上式取等号,因此tan(A-B)的最大值为4318.解:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE , 从而∠ODC=∠CED ,于是CE ⊥OD , 由三垂线定理知,AD ⊥CE(II )由题意,BE ⊥BC ,所以BE ⊥侧面ABC ,又BE ⊂侧面ABE ,所以侧面ABE ⊥侧面ABC 。

2008年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)

2008年全国统一高考数学试卷(理科)(全国卷ⅱ)(含解析版)

2008 年全国统一高考数学试卷(理科)(全国卷Ⅱ)一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}2.(5 分)设a,b∈R 且b≠0,若复数(a+bi)3是实数,则()A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b23.(5分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称4.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a5.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣86.(5分)从20 名男同学,10 名女同学中任选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的概率为()A.B.C.D.7.(5 分)(1﹣)6(1+)4的展开式中x 的系数是()A.﹣4 B.﹣3 C.3 D.48.(5分)若动直线x=a 与函数f(x)=sinx 和g(x)=cosx 的图象分别交于M,N 两点,则|MN|的最大值为()A.1 B.C.D.29.(5 分)设a>1,则双曲线的离心率e 的取值范围是()A.B.C.(2,5)D.10.(5分)已知正四棱锥S﹣ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE、SD 所成的角的余弦值为()A.B.C.D.11.(5 分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0 与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C.D.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,若向量与向量共线,则λ=.14.(5分)设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0 垂直,则a=.15.(5 分)已知F 是抛物线C:y2=4x 的焦点,过F 且斜率为1 的直线交C 于A,B 两点.设|FA|>|FB|,则|FA|与|FB|的比值等于.16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①;充要条件②.(写出你认为正确的两个充要条件)三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosB=﹣,cosC=.(1)求sinA 的值(2)设△ABC 的面积S△ABC=,求BC 的长.18.(12 分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000 元的赔偿金.假定在一年度内有10 000 人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000 元的概率为1﹣0.999 .(I)求一投保人在一年度内出险的概率p;(II)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).19.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.20.(12 分)设数列{a n}的前n 项和为S n.已知a1=a,a n+1=S n+3n,n∈N*.(I)设b n=S n﹣3n,求数列{b n}的通项公式;(II)若a n+1≥a n,n∈N*,求a 的取值范围.21.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.22.(12 分)设函数.(I)求f(x)的单调区间;(II)如果对任何x≥0,都有f(x)≤ax,求a 的取值范围.2008 年全国统一高考数学试卷(理科)(全国卷Ⅱ)参考答案与试题解析一、选择题(共12 小题,每小题5 分,满分60 分)1.(5 分)设集合M={m∈Z|﹣3<m<2},N={n∈Z|﹣1≤n≤3},则M∩N=()A.{0,1} B.{﹣1,0,1}C.{0,1,2} D.{﹣1,0,1,2}【考点】1E:交集及其运算.【分析】由题意知集合M={m∈z|﹣3<m<2},N={n∈z|﹣1≤n≤3},然后根据交集的定义和运算法则进行计算.【解答】解:∵M={﹣2,﹣1,0,1},N={﹣1,0,1,2,3},∴M∩N={﹣1,0,1},故选:B.【点评】此题主要考查集合和交集的定义及其运算法则,是一道比较基础的题.2.(5 分)设a,b∈R 且b≠0,若复数(a+bi)3是实数,则()A.b2=3a2B.a2=3b2C.b2=9a2D.a2=9b2【考点】A5:复数的运算.【分析】复数展开,化为a+bi(a、b∈R)的形式,虚部为0 即可.【解答】解:(a+bi)3=a3+3a2bi﹣3ab2﹣b3i=(a3﹣3ab2)+(3a2b﹣b3)i,因是实数且b≠0,所以3a2b﹣b3=0⇒b2=3a2故选:A.【点评】本题考查复数的基本运算,是基础题.3.(5 分)函数f(x)=﹣x 的图象关于()A.y 轴对称B.直线y=﹣x 对称C.坐标原点对称D.直线y=x 对称【考点】3M:奇偶函数图象的对称性.【分析】根据函数f(x)的奇偶性即可得到答案.【解答】解:∵f(﹣x)=﹣+x=﹣f(x)∴是奇函数,所以f(x)的图象关于原点对称故选:C.【点评】本题主要考查函数奇偶性的性质,是高考必考题型.4.(5 分)若x∈(e﹣1,1),a=lnx,b=2lnx,c=ln3x,则()A.a<b<c B.c<a<b C.b<a<c D.b<c<a【考点】4M:对数值大小的比较.【分析】根据函数的单调性,求a 的范围,用比较法,比较a、b 和a、c 的大小.【解答】解:因为a=lnx 在(0,+∞)上单调递增,故当x∈(e﹣1,1)时,a∈(﹣1,0),于是b﹣a=2lnx﹣lnx=lnx<0,从而b<a.又a﹣c=lnx﹣ln3x=a(1+a)(1﹣a)<0,从而a<c.综上所述,b<a<c.故选:C.【点评】对数值的大小,一般要用对数的性质,比较法,以及0 或1 的应用,本题是基础题.5.(5 分)设变量x,y 满足约束条件:,则z=x﹣3y 的最小值()A.﹣2 B.﹣4 C.﹣6 D.﹣8【考点】7C:简单线性规划.【专题】11:计算题.【分析】我们先画出满足约束条件:的平面区域,求出平面区域的各角点,然后将角点坐标代入目标函数,比较后,即可得到目标函数z=x﹣3y 的最小值.【解答】解:根据题意,画出可行域与目标函数线如图所示,由图可知目标函数在点(﹣2,2)取最小值﹣8故选:D.【点评】用图解法解决线性规划问题时,分析题目的已知条件,找出约束条件和目标函数是关键,可先将题目中的量分类、列出表格,理清头绪,然后列出不等式组(方程组)寻求约束条件,并就题目所述找出目标函数.然后将可行域各角点的值一一代入,最后比较,即可得到目标函数的最优解.6.(5分)从20 名男同学,10 名女同学中任选3 名参加体能测试,则选到的3 名同学中既有男同学又有女同学的概率为()A.B.C.D.【考点】C6:等可能事件和等可能事件的概率.【分析】由题意知本题是一个古典概型,试验发生的所有事件从30 名同学中任选3 名参加体能测试共有C303 种结果,而满足条件的事件是选到的3 名同学中既有男同学又有女同学共有C201C102+C202C101 种结果.代入公式得到结果.【解答】解:由题意知本题是一个古典概型,;3020 10 20 10 ∵试验发生的所有事件从 30 名同学中任选 3 名参加体能测试共有 C 3 种结果,满足条件的事件是选到的 3 名同学中既有男同学又有女同学共有C 1C 2+C 2C 1 种结果,∴由古典概型公式得到,故选:D .【点评】本题考查的是古典概型,可以从它的对立事件来考虑,概率教学的核心问题是让学生了解随机现象与概率的意义,加强与实际生活的联系,以科学的态度评价身边的一些随机现象.7.(5 分)(1﹣)6(1+)4 的展开式中 x 的系数是() A .﹣4B .﹣3C .3D .4【考点】DA :二项式定理. 【专题】11:计算题.【分析】展开式中 x 的系数由三部分和组成: 的常数项与展开式的 x 的系数积 的展开式的 x 的系数与的常数项的积;的的系数与的的系数积.利用二项展开式的通项求得各项系数.【解答】解: 的展开式的通项为∴展开式中常数项为 C 60,含 x 的项的系数为 C 62,含的项的系数为﹣C 61的展开式的通项为∴ 的展开式中的 x 的系数为 C 42,常数项为 C 40,含的项的系数为 C 41故的展开式中 x 的系数是:C 60C 42+C 62C 40﹣C 61C 41=6+15﹣24=﹣3 故选:B .【点评】本题考查二项展开式的通项公式是解决二项展开式的特定项问题的工具.8.(5 分)若动直线 x=a 与函数 f (x )=sinx 和 g (x )=cosx 的图象分别交于 M , N 两点,则|MN |的最大值为( )A .1B .C .D .2【考点】H2:正弦函数的图象;H7:余弦函数的图象. 【分析】可令 F (x )=|sinx ﹣cosx |求其最大值即可. 【解答】解:由题意知:f (x )=sinx 、g (x )=cosx 令 F (x )=|sinx ﹣cosx |= |sin (x ﹣)|当 x ﹣=+kπ,x=+kπ,即当 a=+kπ 时,函数 F (x )取到最大值故选:B .【点评】本题主要考查三角函数的图象和函数解析式的关系.属基础题.9.(5 分)设 a >1,则双曲线的离心率 e 的取值范围是()A .B .C .(2,5)D .【考点】KC :双曲线的性质. 【专题】11:计算题. 【分析】根据题设条件可知 ,然后由实数 a的取值范围可以求出离心率 e 的取值范围.【解答】解:,因为是减函数,所以当a>1 时,所以2<e2<5,即,故选:B.【点评】本题的高考考点是解析几何与函数的交汇点,解题时要注意双曲线性质的灵活运用.10.(5分)已知正四棱锥S﹣ABCD 的侧棱长与底面边长都相等,E 是SB 的中点,则AE、SD 所成的角的余弦值为()A.B.C.D.【考点】LM:异面直线及其所成的角.【专题】11:计算题;35:转化思想.【分析】由于是正方体,又是求角问题,所以易选用向量量,所以建立如图所示坐标系,先求得相关点的坐标,进而求得相关向量的坐标,最后用向量夹角公式求解.【解答】解:建立如图所示坐标系,令正四棱锥的棱长为2,则A(1,﹣1,0),D(﹣1,﹣1,0),S(0,0,),E,= ,=(﹣1,﹣1,﹣)∴cos<>=故选:C.【点评】本题主要考查多面体的结构特征和空间角的求法,同时,还考查了转化思想和运算能力,属中档题.11.(5 分)等腰三角形两腰所在直线的方程分别为x+y﹣2=0 与x﹣7y﹣4=0,原点在等腰三角形的底边上,则底边所在直线的斜率为()A.3 B.2 C.D.【考点】IQ:与直线关于点、直线对称的直线方程.【专题】16:压轴题.【分析】利用原点在等腰三角形的底边上,可设底边方程y=kx,用到角公式,再借助草图,选项判定结果即可.【解答】解:l1:x+y﹣2=0,k1=﹣1,,设底边为l3:y=kx 由题意,l3 到l1 所成的角等于l2 到l3 所成的角于是有,解得k=3 或k=﹣,因为原点在等腰三角形的底边上,所以k=3.k= ,原点不在等腰三角形的底边上(舍去),故选:A.【点评】两直线成角的概念及公式;本题是由教材的一个例题改编而成.(人教版P49 例7)解题过程值得学习.12.(5 分)已知球的半径为2,相互垂直的两个平面分别截球面得两个圆,若两圆的公共弦长为2,则两圆的圆心距等于()A.1 B.C.D.2【考点】LG:球的体积和表面积.【专题】11:计算题;5F:空间位置关系与距离.【分析】求解本题,可以从三个圆心上找关系,构建矩形利用对角线相等即可求解出答案.【解答】解:设两圆的圆心分别为O1、O2,球心为O,公共弦为AB,其中点为E,则OO1EO2 为矩形,于是对角线O1O2=OE,而OE==,∴O1O2=故选:C.【点评】本题考查球的有关概念,两平面垂直的性质,是基础题.二、填空题(共4 小题,每小题5 分,满分20 分)13.(5 分)设向量,若向量与向量共线,则λ= 2 .【考点】96:平行向量(共线).【分析】用向量共线的充要条件:它们的坐标交叉相乘相等列方程解.【解答】解:∵a=(1,2),b=(2,3),∴λα+b=(λ,2λ)+(2,3)=(λ+2,2λ+3).∵向量λα+b 与向量c=(﹣4,﹣7)共线,∴﹣7(λ+2)+4(2λ+3)=0,∴λ=2.故答案为2【点评】考查两向量共线的充要条件.14.(5分)设曲线y=e ax在点(0,1)处的切线与直线x+2y+1=0 垂直,则a= 2 .【考点】6H:利用导数研究曲线上某点切线方程.【专题】11:计算题.【分析】根据导数的几何意义求出函数f(x)在x=0 处的导数,从而求出切线的斜率,再根据两直线垂直建立等式关系,解之即可.【解答】解:∵y=e ax∴y′=αe ax∴曲线y=e ax在点(0,1)处的切线方程是y﹣1=a(x﹣0),即ax﹣y+1=0∵直线ax﹣y+1=0 与直线x+2y+1=0 垂直∴﹣a=﹣1,即a=2.故答案为:2【点评】本题主要考查了利用导数研究曲线上某点切线方程,以及两直线垂直的应用等有关问题,属于基础题.15.(5 分)已知F 是抛物线C:y2=4x 的焦点,过F 且斜率为1 的直线交C 于A,B 两点.设|FA|>|FB|,则|FA|与|FB|的比值等于.【考点】K8:抛物线的性质.【专题】11:计算题;16:压轴题.【分析】先设点A,B 的坐标,求出直线方程后与抛物线方程联立消去y 得到关于x 的一元二次方程,求出两根,再由抛物线的定义得到答案.【解答】解:设A(x1,y1)B(x2,y2)由,,(x1>x2)∴由抛物线的定义知故答案为:【点评】本题主要考查直线与抛物线的位置关系,抛物线定义的应用16.(5 分)平面内的一个四边形为平行四边形的充要条件有多个,如两组对边分别平行,类似地,写出空间中的一个四棱柱为平行六面体的两个充要条件:充要条件①三组对面分别平行的四棱柱为平行六面体;充要条件②平行六面体的对角线交于一点,并且在交点处互相平分;.(写出你认为正确的两个充要条件)【考点】29:充分条件、必要条件、充要条件;L2:棱柱的结构特征.【专题】16:压轴题;21:阅读型.【分析】本题考查的知识点是充要条件的定义及棱柱的结构特征及类比推理,由平行六面体与平行四边形的定义相似,故我们可以类比平行四边形的性质,类比推断平行六面体的性质.【解答】解:类比平行四边形的性质:两组对边分别平行的四边形为平行四边形,则我们类比得到:三组对面分别平行的四棱柱为平行六面体.类比平行四边形的性质:两条对角线互相平分,则我们类比得到:平行六面体的对角线交于一点,并且在交点处互相平分;故答案为:三组对面分别平行的四棱柱为平行六面体;平行六面体的对角线交于一点,并且在交点处互相平分;【点评】类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).三、解答题(共6 小题,满分70 分)17.(10 分)在△ABC 中,cosB=﹣,cosC=.(1)求sinA 的值(2)设△ABC 的面积S△ABC=,求BC 的长.【考点】HT:三角形中的几何计算.【专题】11:计算题.【分析】(Ⅰ)由cosB,cosC 分别求得sinB 和sinC,再通过sinA=sin(B+C),利用两角和公式,进而求得sinA.(Ⅱ)由三角形的面积公式及(1)中的sinA,求得AB•AC的值,再利用正弦定理求得AB,再利用正弦定理进而求得BC.【解答】解:(Ⅰ)由,得,由,得.所以.(Ⅱ)由得,由(Ⅰ)知,故AB×AC=65,又,故,.所以.【点评】本题主要考查了正弦定理及三角形的面积公式在解三角形中的应用.属基础题.18.(12 分)购买某种保险,每个投保人每年度向保险公司交纳保费a 元,若投保人在购买保险的一年度内出险,则可以获得10 000 元的赔偿金.假定在一年度内有10 000 人购买了这种保险,且各投保人是否出险相互独立.已知保险公司在一年度内至少支付赔偿金10 000 元的概率为1﹣0.999 .(I)求一投保人在一年度内出险的概率p;(II)设保险公司开办该项险种业务除赔偿金外的成本为50 000 元,为保证盈利的期望不小于0,求每位投保人应交纳的最低保费(单位:元).【考点】C8:相互独立事件和相互独立事件的概率乘法公式;CH:离散型随机变量的期望与方差.【专题】11:计算题.【分析】(1)由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000 人中出险的人数为ξ,由题意知ξ服从二项分布一投保人在一年度内出险的对立事件是没有一个人出险.(2)写出本险种的收入和支出,表示出它的盈利期望,根据为保证盈利的期望不小于0,列出不等式,解出每位投保人应交纳的最低保费.【解答】解:由题意知各投保人是否出险互相独立,且出险的概率都是p,记投保的10000 人中出险的人数为ξ,由题意知ξ~B(104,p).(I)记A 表示事件:保险公司为该险种至少支付10000 元赔偿金,则发生当且仅当ξ=0,=1﹣P(ξ=0)=1﹣(1﹣p)104,又P(A)=1﹣0.999104,故p=0.001.(II)该险种总收入为10000a 元,支出是赔偿金总额与成本的和.支出10000ξ+50000,盈利η=10000α﹣(10000ξ+50000),盈利的期望为Eη=10000α﹣10000Eξ﹣50000,由ξ~B(104,10﹣3)知,Eξ=10000×10﹣3,Eη=104a﹣104Eξ﹣5×104=104a﹣104×104×10﹣3﹣5×104.Eη≥0⇔104a﹣104×10﹣5×104≥0⇔a﹣10﹣5≥0⇔a≥15(元).∴每位投保人应交纳的最低保费为15 元.【点评】解决离散型随机变量分布列问题时,主要依据概率的有关概念和运算,同时还要注意题目中离散型随机变量服从什么分布,若服从特殊的分布则运算要简单的多.19.(12 分)如图,正四棱柱ABCD﹣A1B1C1D1 中,AA1=2AB=4,点E 在CC1 上且C1E=3EC.(I)证明:A1C⊥平面BED;(II)求二面角A1﹣DE﹣B 的大小.【考点】LW:直线与平面垂直;MJ:二面角的平面角及求法.【专题】14:证明题;15:综合题;35:转化思想.【分析】法一:(Ⅰ)要证A1C⊥平面BED,只需证明A1C 与平面BED 内两条相交直线BD,EF 都垂直;(Ⅱ)作GH⊥DE,垂足为H,连接A1H,说明∠A1HG 是二面角A1﹣DE﹣B 的平面角,然后解三角形,求二面角A1﹣DE﹣B 的大小.法二:建立空间直角坐标系,(Ⅰ)求出,证明A1C⊥平面DBE.(Ⅱ)求出平面DA1E 和平面DEB 的法向量,求二者的数量积可求二面角A1﹣DE﹣B 的大小.【解答】解:解法一:依题设知AB=2,CE=1.(I)连接AC 交BD 于点F,则BD⊥AC.由三垂线定理知,BD⊥A1C.(3分)在平面A1CA 内,连接EF 交A1C 于点G,由于,故Rt△A1AC∽Rt△FCE,∠AA1C=∠CFE,∠CFE 与∠FCA1 互余.于是A1C⊥EF.A1C 与平面BED 内两条相交直线BD,EF 都垂直,所以A1C⊥平面BED.(6 分)(II)作GH⊥DE,垂足为H,连接A1H.由三垂线定理知A1H⊥DE,故∠A1HG 是二面角A1﹣DE﹣B 的平面角.(8分),. ,又,..所以二面角 A 1﹣DE ﹣B 的大小为.((12 分))解法二:以 D 为坐标原点,射线 DA 为 x 轴的正半轴,建立如图所示直角坐标系 D ﹣xyz .依题设,B (2,2,0),C (0,2,0),E (0,2,1),A 1(2,0,4).,.(3 分)(Ⅰ)因为,,故 A 1C ⊥BD ,A 1C ⊥DE . 又 DB ∩DE=D ,所以 A 1C ⊥平面 DBE .(6 分)(Ⅱ)设向量=(x ,y ,z )是平面 DA 1E 的法向量,则,.故 2y +z=0,2x +4z=0.令 y=1,则 z=﹣2,x=4,=(4,1,﹣2).(9 分) 等于二面角 A 1﹣DE ﹣B 的平面角,所以二面角 A 1﹣DE ﹣B 的大小为.(12 分),.n n n n ﹣n +1 n n +1 n n nnn nn +1 n n +1 nn n nn ﹣1【点评】本题考查直线与平面垂直的判定,二面角的求法,考查空间想象能力,逻辑思维能力,是中档题.20.(12 分)设数列{a n }的前 n 项和为 S n .已知 a 1=a ,a n +1=S n +3n ,n ∈N *.(I ) 设 b n =S n ﹣3n ,求数列{b n }的通项公式; (II ) 若 a n +1≥a n ,n ∈N *,求 a 的取值范围.【考点】81:数列的概念及简单表示法;8H :数列递推式. 【专题】11:计算题;16:压轴题.【分析】(Ⅰ)依题意得 S =2S +3n ,由此可知 S ﹣3n +1=2(S ﹣3n ).所以 b =S ﹣3n =(a ﹣3)2n ﹣1,n ∈N *.( Ⅱ ) 由题设条件知 S =3n + ( a ﹣ 3 ) 2n ﹣ 1 , n ∈ N * , 于是, a =S ﹣ S 1=,由此可以求得 a 的取值范围是[﹣9,+∞).【解答】解:(Ⅰ)依题意,S n +1﹣S n =a n +1=S n +3n ,即 S n +1=2S n +3n ,由此得 S ﹣3n +1=2S +3n ﹣3n +1=2(S ﹣3n ).(4 分) 因此,所求通项公式为 b =S ﹣3n =(a ﹣3)2n ﹣1,n ∈N *.①(6 分) (Ⅱ)由①知 S =3n +(a ﹣3)2n ﹣1,n ∈N *,于是,当 n ≥2 时,a =S ﹣S =3n +(a ﹣3)×2n ﹣1﹣3n ﹣1﹣(a ﹣3)×2n ﹣2=2×3n ﹣1+(a ﹣3)2n ﹣2, a ﹣a =4×3n ﹣1+(a ﹣3)2n ﹣2= ,当 n ≥2 时, ⇔a ≥﹣9.又 a 2=a 1+3>a 1.综上,所求的 a 的取值范围是[﹣9,+∞).(12 分)【点评】本题考查数列的综合运用,解题时要仔细审题,注意挖掘题设中的隐含条件.21.(12 分)设椭圆中心在坐标原点,A(2,0),B(0,1)是它的两个顶点,直线y=kx(k>0)与AB 相交于点D,与椭圆相交于E、F 两点.(I)若,求k 的值;(II)求四边形AEBF 面积的最大值.【考点】96:平行向量(共线);KH:直线与圆锥曲线的综合.【专题】11:计算题;16:压轴题.【分析】(1)依题可得椭圆的方程,设直线AB,EF 的方程分别为x+2y=2,y=kx,D(x0,kx0),E(x1,kx1),F(x2,kx2),且x1,x2 满足方程(1+4k2)x2=4,进而求得x2 的表达式,进而根据求得x0 的表达式,由D 在AB 上知x0+2kx0=2,进而求得x0 的另一个表达式,两个表达式相等求得k.(Ⅱ)由题设可知|BO|和|AO|的值,设y1=kx1,y2=kx2,进而可表示出四边形AEBF 的面积进而根据基本不等式的性质求得最大值.【解答】解:(Ⅰ)依题设得椭圆的方程为,直线AB,EF 的方程分别为x+2y=2,y=kx(k>0).如图,设D(x0,kx0),E(x1,kx1),F(x2,kx2),其中x1<x2,且x1,x2 满足方程(1+4k2)x2=4,故.①由知x0﹣x1=6(x2﹣x0),得;由D 在AB 上知x0+2kx0=2,得.所以,化简得24k2﹣25k+6=0,解得或.(Ⅱ)由题设,|BO|=1,|AO|=2.由(Ⅰ)知,E(x1,kx1),F(x2,kx2),不妨设y1=kx1,y2=kx2,由①得x2>0,根据E 与F 关于原点对称可知y2=﹣y1>0,故四边形AEBF 的面积为S=S△OBE +S△OBF+S△OAE+S△OAF=•(﹣y1)==x2+2y2===,当x2=2y2时,上式取等号.所以S 的最大值为.【点评】本题主要考查了直线与圆锥曲线的综合问题.直线与圆锥曲线的综合问题是支撑圆锥曲线知识体系的重点内容,问题的解决具有入口宽、方法灵活多样等,而不同的解题途径其运算量繁简差别很大.22.(12 分)设函数.(I)求f(x)的单调区间;(II)如果对任何x≥0,都有f(x)≤ax,求a 的取值范围.【考点】3R:函数恒成立问题;6B:利用导数研究函数的单调性.【专题】11:计算题;16:压轴题.【分析】(1)先确定函数的定义域然后求导数fˊ(x),在函数的定义域内解不等式fˊ(x)>0 和fˊ(x)<0,求出单调区间.(2)令g(x)=ax﹣f(x),根据导数研究单调性的方法,即转化成研究对任何x≥0,都有g(x)≥0 恒成立,再利用分类讨论的方法求出a 的范围.【解答】解:(Ⅰ).(2 分)当(k∈Z)时,,即f'(x)>0;当(k∈Z)时,,即f'(x)<0.因此f(x)在每一个区间(k∈Z)是增函数,f(x)在每一个区间(k∈Z)是减函数.(6分)(Ⅱ)令g (x )=ax ﹣ f (x ),则= = .故当时,g'(x)≥0.又g(0)=0,所以当x≥0 时,g(x)≥g(0)=0,即f(x)≤ax.(9 分)当时,令h(x)=sinx﹣3ax,则h'(x)=cosx﹣3a.故当x∈[0,arccos3a)时,h'(x)>0.因此h(x)在[0,arccos3a)上单调增加.故当x∈(0,arccos3a)时,h(x)>h(0)=0,即sinx>3ax.于是,当x∈(0,arccos3a)时,.当a≤0 时,有.因此,a 的取值范围是.(12 分)【点评】本小题主要考查函数的导数、单调性、不等式等基础知识,考查综合利用数学知识分析问题、解决问题的能力.。

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(安徽卷)(理科)2779

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(安徽卷)(理科)2779

2008年高考真题精品解析2008年普通高等学校招生全国统一考试(安徽卷)(理科) 测试题 2019.91,已知函数(Ⅰ)求函数的最小正周期和图象的对称轴方程(Ⅱ)求函数在区间上的值域2,如图,在四棱锥中,底面四边长为1的菱形,,, ,为的中点,为的中点 (Ⅰ)证明:直线;(Ⅱ)求异面直线AB 与MD 所成角的大小; (Ⅲ)求点B 到平面OCD 的距离。

3,为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物。

某人一次种植了n 株沙柳,各株沙柳成活与否是相互独立的,成活率为p ,设为成活沙柳的株数,数学期望,标准差为。

(Ⅰ)求n,p 的值并写出的分布列;(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率4,设函数(Ⅰ)求函数的单调区间;()cos(2)2sin()sin()344f x x x x πππ=-+-+()f x ()f x [,]122ππ-O ABCD -ABCD 4ABC π∠=OA ABCD ⊥底面2OA =M OA N BC MN OCD 平面‖ξ3E ξ=σξ2ξ1()(01)ln f x x x x x =>≠且()f x(Ⅱ)已知对任意成立,求实数的取值范围。

5,设数列满足为实数(Ⅰ)证明:对任意成立的充分必要条件是;(Ⅱ)设,证明:; (Ⅲ)设,证明:6,设椭圆过点,且着焦点为 (Ⅰ)求椭圆的方程;(Ⅱ)当过点的动直线与椭圆相交与两不同点时,在线段上取点,满足,证明:点总在某定直线上7,函数的定义域为 .8,在数列在中,,,,其中为常数,则的值是9,若为不等式组表示的平面区域,则当从-2连续变化到1时,动直线 扫过中的那部分区域的面积为测试题答案1, 解:(1)12axx >(0,1)x ∈a {}n a 3*010,1,,n n a a ca c c N c +==+-∈其中[0,1]n a ∈*n N ∈[0,1]c ∈103c <<1*1(3),n n a c n N -≥-∈103c <<222*1221,13n a a a n n N c ++>+-∈-2222:1(0)x y C a b a b +=>>M 1(F C (4,1)P l C ,A B AB Q AP QB AQ PB=Q 2()f x ={}n a 542n a n =-212n a a a an bn++=+*n N ∈,a b lim n n nnn a b a b →∞-+A 002x y y x ≤⎧⎪≥⎨⎪-≤⎩a x y a +=A ()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )22x x x x x x =++-+由函数图象的对称轴方程为(2)因为在区间上单调递增,在区间上单调递减, 所以 当时,取最大值 1又,当时,取最小值所以 函数 在区间上的值域为2,解:方法一(综合法)(1)取OB 中点E ,连接ME ,NE 又(2)为异面直线与所成的角(或其补角)221cos 22sin cos 22x x x x =++-1cos 22cos 22x x x =+-sin(2)6x π=-2T 2ππ==周期∴2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得∴()3x k k Z ππ=+∈5[,],2[,]122636x x πππππ∈-∴-∈-()sin(2)6f x x π=-[,]123ππ-[,]32ππ3x π=()f x 1()()1222f f ππ-=<=12x π=-()f x()f x [,]122ππ-[ME CD ME CD ∴,‖AB,AB ‖‖,NE OC MNE OCD ∴平面平面‖‖MN OCD ∴平面‖CD ‖AB,MDC ∠∴AB MD作连接所以 与所成角的大小为(3)点A 和点B 到平面OCD 的距离相等,连接OP,过点A 作 于点Q ,又 ,线段AQ 的长就是点A 到平面OCD 的距离,,所以点B 到平面OCD 的距离为方法二(向量法)作于点P,如图,分别以AB,AP,AO 所在直线为轴建立坐标系,(1)设平面OCD 的法向量为,则,AP CD P ⊥于MP⊥⊥平面A B CD ,∵OA ∴CDMP ,4ADP π∠=∵∴DP =MD ==1cos ,23DP MDP MDC MDP MD π∠==∠=∠=∴AB MD 3πAB 平面∵∴‖OCD,AQ OP ⊥,,,AP CD OA CD CD OAP AQ CD ⊥⊥⊥⊥平面∵∴∴,AQ OP AQ OCD⊥⊥平面∵∴2OP ====∵2AP DP ==2223OA AP AQ OP ===∴23AP CD ⊥,,x y z (0,0,0),(1,0,0),((0,0,2),(0,0,1),(1A B PD O M N 2222(1,,1),(0,,2),(2)44222MN OP OD =--=-=--(,,)n x y z =0,0n OP n OD ==即取,解得(2)设与所成的角为,, 与所成角的大小为(3)设点B 到平面OCD 的距离为,则为在向量上的投影的绝对值,由 , 得.所以点B 到平面OCD 的距离为3, 解:(1)由得,从而 的分布列为(2)记”需要补种沙柳”为事件A, 则 得或4, 解 (1)若 则 列表如下2022022y z x y z -=⎪⎪⎨⎪-+-=⎪⎩z =(0,n =22(1,,1)(0,4,2)0MN n =--=∵MN OCD ∴平面‖AB MD θ(1,0,0),(1)AB MD ==--∵1cos ,23AB MDAB MD πθθ===⋅∴∴AB MD 3πd d OB (0,n =(1,0,2)OB =-23OB n d n⋅==23233,()(1),2E np np p ξσξ===-=112p -=16,2n p ==ξ()(3),P A P ξ=≤16152021(),6432P A +++==156121()1(3)16432P A P ξ++=->=-='22ln 1(),ln x f x x x +=-'()0,f x =1x e =(2) 在 两边取对数, 得 ,由于所以 (1)由(1)的结果可知,当时, , 为使(1)式对所有成立,当且仅当,即5, 解 (1) 必要性 : , 又 ,即充分性 :设,对用数学归纳法证明当时,.假设 则,且,由数学归纳法知对所有成立(2) 设,当时,,结论成立当 时,,由(1)知,所以 且(3) 设,当时,,结论成立当时,由(2)知12axx >1ln 2ln a x x >01,x <<1ln 2ln a x x >(0,1)x ∈1()()f x f ee ≤=-(0,1)x ∈ln 2ae>-ln 2a e >-120,1a a c ==-∵∴2[0,1],011a c ∈≤-≤∵∴[0,1]c ∈[0,1]c ∈*n N ∈[0,1]n a ∈1n =10[0,1]a =∈[0,1](1)k a k ∈≥31111k k a ca c c c +=+-≤+-=31110k k a ca c c +=+-≥-=≥1[0,1]k a +∈∴[0,1]n a ∈*n N ∈103c <<1n =10a =2n ≥3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴103C <<∵1[0,1]n a -∈21113n n a a --++≤110n a --≥113(1)n n a c a --≤-∴21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-=∴1*1(3)()n n a c n N -≥-∈∴103c <<1n =2120213a c =>--2n ≥11(3)0n n a c -≥->21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴222222112212[3(3)(3)]n n na a a a a n c c c -+++=++>--+++∴6, 解 (1)由题意:,解得,所求椭圆方程为(2)方法一设点Q 、A 、B 的坐标分别为。

2008年高考理科数学试题及参考答案(全国卷Ⅰ)

2008年高考理科数学试题及参考答案(全国卷Ⅰ)

2008年普通高等学校招生全国统一考试理科数学(必修+选修Ⅰ)第Ⅰ卷一、选择题 1.函数y =)A .{}|0x x ≥B .{}|1x x ≥ C .{}{}|10x x ≥D .{}|01x x ≤≤2.汽车经过启动、加速行驶、匀速行驶、减速行驶之后停车,若把这一过程中汽车的行驶路程s 看作时间t 的函数,其图像可能是( )3.在ABC △中,AB = c ,AC = b .若点D 满足2BD DC = ,则AD =( )A .2133+b cB .5233-c b C .2133-b cD .1233+b c 4.设a ∈R ,且2()a i i +为正实数,则a =( ) A .2B .1C .0D .1-5.已知等差数列{}n a 满足244a a +=,3510a a +=,则它的前10项的和10S =( ) A .138B .135C .95D .236.若函数(1)y f x =-的图像与函数1y =的图像关于直线y x =对称,则()f x =( )A .e 2x-1B .e 2xC .e 2x+1D . e 2x+27.设曲线11x y x +=-在点(32),处的切线与直线10ax y ++=垂直,则a =( ) A .2B .12C .12-D .2-8.为得到函数πcos 23y x ⎛⎫=+⎪⎝⎭的图像,只需将函数sin 2y x =的图像( )A .B .C .D .A .向左平移5π12个长度单位 B .向右平移5π12个长度单位 C .向左平移5π6个长度单位D .向右平移5π6个长度单位9.设奇函数()f x 在(0)+∞,上为增函数,且(1)0f =,则不等式()()0f x f x x--<的解集为( )A .(10)(1)-+∞ ,,B .(1)(01)-∞- ,,C .(1)(1)-∞-+∞ ,,D .(10)(01)- ,,10.若直线1x ya b+=通过点(cos sin )M αα,,则( ) A .221a b +≤ B .221a b +≥ C .22111a b+≤D .22111a b +≥ 11.已知三棱柱111ABC A B C -的侧棱与底面边长都相等,1A 在底面ABC 内的射影为ABC △的中心,则1AB 与底面ABC 所成角的正弦值等于( )A .13BCD .2312.如图,一环形花坛分成A B C D ,,,四块,现有4种不同的花供选种,要求在每块里种1种花,且相邻的2块种不同的花,则不同的种法总数为( ) A .96 B .84 C .60 D .48二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上.13.13.若x y ,满足约束条件03003x y x y x ⎧+⎪-+⎨⎪⎩,,,≥≥≤≤则2z x y =-的最大值为 .14.已知抛物线21y ax =-的焦点是坐标原点,则以抛物线与两坐标轴的三个交点为顶点的三角形面积为 .15.在ABC △中,AB BC =,7cos 18B =-.若以A B ,为焦点的椭圆经过点C ,则该椭圆的离心率e = .16.等边三角形ABC 与正方形ABDE 有一公共边AB ,二面角C AB D --的余弦值为3,M 、N 分别是AC 、BC 的中点,则EM 、AN 所成角的余弦值等于 . 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.(本小题满分10分) (注意:在试题卷上作答无效.........) 设ABC △的内角A B C ,,所对的边长分别为a 、b 、c ,且3cos cos 5a Bb Ac -=. (Ⅰ)求tan cot A B 的值; (Ⅱ)求tan()A B -的最大值. 18.(本小题满分12分) (注意:在试题卷上作答无效.........) 四棱锥A BCDE -中,底面BCDE 为矩形,侧面ABC ⊥底面BCDE ,2BC =,CD =AB AC =.(Ⅰ)证明:AD CE ⊥;(Ⅱ)设CE 与平面ABE 所成的角为45,求二面角C AD E --的大小.19.(本小题满分12分)已知函数32()1f x x ax x =+++,a ∈R . (Ⅰ)讨论函数()f x 的单调区间;(Ⅱ)设函数()f x 在区间2133⎛⎫-- ⎪⎝⎭,内是减函数,求a 的取值范围.20.(本小题满分12分)已知5只动物中有1只患有某种疾病,需要通过化验血液来确定患病的动物.血液化验结果呈阳性的即为患病动物,呈阴性的即没患病.下面是两种化验方法:方案甲:逐个化验,直到能确定患病动物为止.CDE AB方案乙:先任取3只,将它们的血液混在一起化验.若结果呈阳性则表明患病动物为这3只中的1只,然后再逐个化验,直到能确定患病动物为止;若结果呈阴性则在另外2只中任取1只化验.(Ⅰ)求依方案甲所需化验次数不少于依方案乙所需化验次数的概率;(Ⅱ)ξ表示依方案乙所需化验次数,求ξ的期望. 21.(本小题满分12分)双曲线的中心为原点O ,焦点在x 轴上,两条渐近线分别为12l l ,,经过右焦点F 垂直于1l 的直线分别交12l l ,于A B ,两点.已知OA AB OB 、、成等差数列,且BF 与FA同向. (Ⅰ)求双曲线的离心率;(Ⅱ)设AB 被双曲线所截得的线段的长为4,求双曲线的方程. 22.(本小题满分12分) 设函数()ln f x x x x =-.数列{}n a 满足101a <<,1()n n a f a +=. (Ⅰ)证明:函数()f x 在区间(01),是增函数; (Ⅱ)证明:11n n a a +<<; (Ⅲ)设1(1)b a ∈,,整数11ln a bk a b-≥.证明:1k a b +> 参考答案一、选择题 1、C 2、A 3、A 4、D 5、C 6、B 7、D 8、A 9.D 10.D . 11.B . 12.B. 二、填空题:本大题共4小题,每小题5分,共20分.把答案填在题中横线上. 13.答案:9.14. 答案:2.15.答案:38. 16.答案:16. 三、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤. 17.解析:(Ⅰ)由正弦定理得a=CBc b C A c sin sin ,sin sin = acosB-bcosA=(A CBB C A cos sin sin cos sin sin ⋅-⋅)c =c B A AB B A ⋅+-)sin(cos sin cos sin=c B A B A BA B A ⋅+-sin cos cos sin sin cos cos sin=1cot tan )1cot (tan +-B A cB A依题设得c B A c B A 531cot tan )1cot (tan =+- 解得tanAcotB=4(II)由(I )得tanA=4tanB ,故A 、B 都是锐角,于是tanB>0 tan(A-B)=B A BA tan tan 1tan tan +-=B B 2tan 41tan 3+ ≤43, 且当tanB=21时,上式取等号,因此tan(A-B)的最大值为4318.解:(I)作AO ⊥BC ,垂足为O ,连接OD ,由题设知,AO ⊥底面BCDE ,且O 为BC 中点, 由21==DE CD CD OC 知,Rt △OCD ∽Rt △CDE , 从而∠ODC=∠CED ,于是CE ⊥OD , 由三垂线定理知,AD ⊥CE(II )由题意,BE ⊥BC ,所以BE ⊥侧面ABC ,又BE ⊂侧面ABE ,所以侧面ABE ⊥侧面ABC 。

2008高考安徽数学理科试卷

2008高考安徽数学理科试卷

π y sin[2( x m) ] sin(2 x 2m) ,因为图象关于点 ( ,0) 中心对称, 3 3 12
故x
Байду номын сангаас

12
代入得: sin[2(

k 0 得: m

12
12
)

3
2m] 0 ,

6
2m k (k Z ) ,
x
A. f (2) f (3) g (0) C. f (2) g (0) f (3)
B. g (0) f (3) f (2) D. g (0) f (2) f (3)
x x
【解析】 用 x 代换 x 得: f ( x) g ( x) e , 即 f ( x) g ( x) e , 解得 : f ( x) 选 D。 (12)12 名同学合影,站成前排 4 人后排 8 人,现摄影师要从后排 8 人中抽 2 人调整到前 排,若其他人的相对顺序不变,则不同调整方法的总数是 A. C8 A3
称”知 f ( x) ln( x), 则 ln( m) 1 , m
1 选 B。 e
2
(10) . 设两个正态分布 N ( 1, 1 )( 1 0) 和 N ( 2, 2 )( 2 0) 的密度函数图像如图所
2
示。则有(

A. 1 2 , 1 2 B. 1 2 , 1 2 C. D. 1 2 , 1 2 【 解析 】根据正态分布 N ( , ) 函数的性质:正态分布曲线是一条关于 x 对称,在
x 2 1 log 2 ( x 1)
的定义域为

高考安徽数学理科试卷含详细解答(全word版)080629

高考安徽数学理科试卷含详细解答(全word版)080629

2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至第4页.全卷满分150分,考试时间120分钟.考生注意事项:1. 答题前,务必在试题卷、答题卡规定的地方填写自己的座位号、姓名,并认真核对答题卡上所粘贴的条形码中“座位号、姓名、科类”与本人座位号、姓名、科类是否一致.2. 答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑.如需改动,用橡皮擦干净后,再选涂其他答案标号.3. 答第Ⅱ卷时,必须用0.5毫米黑色墨水签字笔在答题卡上书写.在试题卷上作答无效. 4. 考试结束,监考员将试题卷和答题卡一并收回. 参考公式:如果事件A B ,互斥,那么球的表面积公式 24πS R = ()()()P A B P A P B +=+其中R 表示球的半径 如果事件A B ,相互独立,那么()()()P A B P A P B =球的体积公式 34π3V R =如果随机变量(,),B n p ξ那么 其中R 表示球的半径(1)D np p ξ=-第I 卷(选择题共60分)一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.(1).复数 32(1)i i +=( )A .2B .-2C .2i D . 2i -解:=+23)1(i i 2)2)((=-i i ,选A 。

(2).集合{}|lg ,1A y R y x x =∈=>,}{2,1,1,2B =--则下列结论正确的是( )A .}{2,1AB =--B . ()(,0)R A B =-∞ðC .(0,)AB =+∞D . }{()2,1R A B =--ð解: }{0A y Ry =∈>,R (){|0}A y y =≤ð,又{2,1,1,2}B =--∴ }{()2,1R A B =--ð,选D 。

2008年高考理科数学试题及参考答案(安徽卷)

2008年高考理科数学试题及参考答案(安徽卷)

王某为某县劳动与社会保障局的一名科长,因违纪受到降级处分。

下列何种说法符合《公务员法》的规定( )A.王某对处分不服,可自接到处分决定之日起30日内向某县人事局提出申诉B.王某对处分不服申请复核时,复核期间应暂停对王某的处分C.王某受处分期间,不得晋升级别,但可以享受年终奖金D.处分解除后.王某的原级别即自行恢复×错误您的答案:B 正确答案:C答案详解:根据《公务员法》规定,公务员对涉及本人的下列人事处理不服的,可以自知道该人事处理之日起三十日内向原处理机关申请复核,王某为某县劳动与社会保障局的一名科长,不应向某县人事局提出申诉,A错误;公务员复核、申诉期间不停止人事处理的执行,B错误;公务员在受处分期间不得晋升职务和级别,其中受记过、记大过、降级、撤职处分的,不得晋升工资档次,但可以享受年终奖金,C正确;解除处分后,晋升工资档次、级别和职务不再受原处分的影响。

但是,解除降级、撤职处分的,不视为恢复原级别、原职务,D错误。

扩展阅读:关于公务员惩戒以及对不服的申诉,《公务员法》相关规定如下:第五十五条公务员因违法违纪应当承担纪律责任的,依照本法给予处分;违纪行为情节轻微,经批评教育后改正的,可以免予处分。

第五十六条处分分为:警告、记过、记大过、降级、撤职、开除。

第五十八条公务员在受处分期间不得晋升职务和级别,其中受记过、记大过、降级、撤职处分的,不得晋升工资档次。

受处分的期间为:警告,六个月;记过,十二个月;记大过,十八个月;降级、撤职,二十四个月。

受撤职处分的,按照规定降低级别。

第五十九条公务员受开除以外的处分,在受处分期间有悔改表现,并且没有再发生违纪行为的,处分期满后,由处分决定机关解除处分并以书面形式通知本人。

解除处分后,晋升工资档次、级别和职务不再受原处分的影响。

但是,解除降级、撤职处分的,不视为恢复原级别、原职务。

第九十条公务员对涉及本人的下列人事处理不服的,可以自知道该人事处理之日起三十日内向原处理机关申请复核;对复核结果不服的,可以自接到复核决定之日起十五日内,按照规定向同级公务员主管部门或者作出该人事处理的机关的上一级机关提出申诉;也可以不经复核,自知道该人事处理之日起三十日内直接提出申诉:(一)处分;(二)辞退或者取消录用;(三)降职;(四)定期考核定为不称职;(五)免职;(六)申请辞职、提前退休未予批准;(七)未按规定确定或者扣减工资、福利、保险待遇;(八)法律、法规规定可以申诉的其他情形。

2008年普通高等学校招生全国统一考试安徽卷

2008年普通高等学校招生全国统一考试安徽卷

试卷下载网 做最好的试卷平台2008年普通高等学校招生全国统一考试(安徽卷)数 学(理科)本试卷分第Ⅰ卷(选择题)和第Ⅱ卷(非选择题)两部分,第Ⅰ卷第1至第2页,第Ⅱ卷第3至 第4页。

全卷满分150分,考试时间120分钟。

考生注意事项:1.答题前,务必在试题卷、答题卡规定的地方填写自己的姓名、座位号,并认真对答题卡上所粘贴的条形码中姓名、座位号与本人姓名、座位号是否一致。

务必在答题卡背面规定的地方填写姓名和座位号后两位。

2.答第Ⅰ卷时,每小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

如需改动,用橡皮控干净后,再选涂其他答案标号。

3.答第Ⅰ卷时,必须使用0.5毫米的黑色笔迹签字笔在答题卡上书写,要求字体工事、笔迹清晰。

作图题可先铅笔在答题卡规定的位置绘出,确认后再用0.5毫米的黑色笔迹字笔描清楚。

必须在题号所指示的答题区域作答,超出答题区域书写的答案无效,在试题卷、早稿纸上答题无效。

4.考试结束,务必将试题和答题卡一并上交。

参考公式:如果事件A 、B 互斥,那么P (A +B )=P (A )+P (B ) 球的表面积公式S =4πR 2如果事件A 、B 相互独立,那么 其中R 表示球的半径P (A ·B )=P (A )·P (B ) 球的体积公式V =43πR 2 如果随机变量ξ~B (n 、p ),那么D ξ=np (1-p ). 第Ⅰ卷(选择题 共60分)一、选择题:本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的。

(1)复数i 3(1+i )=(A)2 (B)-2 (3)2i (4)-2i(2)集合A={y ∈R |y =lg x,x >1}、B={-2,-1,1,2},则下列结论中正确的是(A)A ∩B={-2,-1} (B){ C R A }∪B=(-∞,0)(C)A ∪B=(0,+ ∞) (D)(C R A) ∩B={-2,-1}(3)在平行四边形ABCD 中,AC 为一条对角线,若AB =(2,4),AC =(1,1) ,BD =(A)(-2,-4) (B)(-3,-5) (C)(3,5) (D)(2,4)(4)已知m,n 是两条不同直线,α、β、γ是三个不同平面,下列命题中正(A)若m ∥α,n ∥α,则m ∥n (B)若α⊥γ, β⊥γ,则α∥β(C)若m ∥α,m ∥β,则α∥β (B)若m ⊥α, n ⊥α,则m ∥n(5)将函数y=sin 23x π⎛⎫+ ⎪⎝⎭的图象按向量a 平移后所得的图象关于点,012π⎛⎫- ⎪⎝⎭中心对称,则向量a 的坐标可能为试卷下载网 做最好的试卷平台(A),012π⎛⎫- ⎪⎝⎭ (B),06π⎛⎫- ⎪⎝⎭ (C),012π⎛⎫ ⎪⎝⎭ (D),06π⎛⎫ ⎪⎝⎭ (6)设(1+x)8=a 0+a 1x+…+a 8x 8,则a 0,a 1,…,a 8中奇数的个数为(A)2 (B)3 (C)4 (D)5(7)a <0是方程ax 2+2x+1=0至少有一个负数根的(A)必要不充分条件 (B)充分不必要条件(C)充分必要条件 (D)既不充分也不必要条件(8)若过点A(4,0)的直线l 与曲线(x-2)2+y 2=1有公共点,则直线l 的斜率的取值范围为⎛ ⎝⎭(9)在同一平面直角坐标系中,函数y=g(x)的图象与y=0x 的图象关于直线y=x 对称,而函数y=f(x)的图象与y=g(x)的图象关于y 轴对称,若f(m)=-1,则m 的值为(A)-e (B )-1e (C)e (D)1e1 (10)设两个正态分布N(μ1, σ21)(σ 1 >0)和N(μ2, σ22)(σ2>0)的密度函数图象如图所示,则有(A) μ1<μ2, σ1<σ 2 (B) μ1<μ2, σ1>σ 2(C) μ1>μ2, σ1>σ 2 (D) μ1>μ2, σ1>σ 2(11)若函数f(x),g(x)分别为R 上的奇函数、偶函数,且满足f(x)-g(x)=e x ,则有(A)f(2)<f(3)<g(0) (B)g(0)<f(3)<f(2)(C)f(2)<g(0)<f(3) (B)g(0)<f(2)<f(3)(12)12名同学合影,站成了前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的种数是(A)C 26A 2 (B)C 21A 66 (C)C 26A 26 (D)C 26A 25试卷下载网 做最好的试卷平台2008年普通高等学校招生全国统一考试(安徽卷)数 学(理 科 )第 I I 卷 (非 选择题 共 90分)考生注意事项:请用0.5毫米黑色签字笔在答题卡上.....作答,在试题卷上答题无效.........。

2008年高考理科数学试题及参考答案(安徽卷)

2008年高考理科数学试题及参考答案(安徽卷)

2008年高考安徽理科数学试题参考答案一. 选择题1A 2D 3B 4D 5C 6A 7B 8C 9B 10A 11D 12C 二. 13: [3,)+∞ 14: 1 15: 74 16: 43π三. 解答题17解:(1)()cos(2)2sin()sin()344f x x x x πππ=-+-+1cos 22(sin cos )(sin cos )2x x x x x x =++-+221cos 22sin cos 2x x x x =++-1cos 22cos 222x x x =+- s i n (2)6x π=- 2T 2ππ∴==周期 由2(),()6223k x k k Z x k Z πππππ-=+∈=+∈得 ∴函数图象的对称轴方程为 ()3x k k Z ππ=+∈(2)5[,],2[,]122636x x πππππ∈-∴-∈- 因为()sin(2)6f x x π=-在区间[,]123ππ-上单调递增,在区间[,]32ππ上单调递减,所以 当3x π=时,()f x 去最大值 1又 1()()12222f f ππ-=-<= ,当12x π=-时,()f x 取最小值2-所以 函数 ()f x 在区间[,]122ππ-上的值域为[18 方法一(综合法)(1)取OB 中点E ,连接ME ,NEME CD ME CD ∴ ,‖AB,AB ‖‖又,NE OC MNE OCD ∴ 平面平面‖‖MN OCD ∴平面‖(2)CD ‖AB,MDC ∠∴为异面直线AB 与MD 所成的角(或其补角) 作,AP CDP ⊥于连接MP⊥⊥平面A BC D ,∵OA ∴CD MP,42ADP π∠=∵∴DP =MD =1cos ,23DP MDP MDC MDP MD π∠==∠=∠=∴ 所以 AB 与MD 所成角的大小为3π(3)AB 平面∵∴‖OCD,点A 和点B 到平面OCD 的距离相等,连接OP,过点A 作AQ OP ⊥ 于点Q ,,,,AP CD OA CD CD OAP AQ CD ⊥⊥⊥⊥平面∵∴∴又,AQ OP AQ OCD⊥⊥平面∵∴,线段AQ 的长就是点A 到平面OCD 的距离OP ====∵,2AP DP ==2232OA AP AQ OP === ∴,所以点B 到平面OCD 的距离为23 方法二(向量法)作AP CD ⊥于点P,如图,分别以AB,AP,AO所在直线为,,x y z轴建立坐标系(0,0,0),(1,0,0),((0,0,2),(0,0,1),(1A B P D O M N,(1)(11),(0,2),(2)44222MN OP OD =--=-=--设平面OCD 的法向量为(,,)n x y z =,则0,n OP n = 即202022yz x y z -=⎨⎪-+-=⎪⎩取z =解得n =(1,1)044MN n =--= ∵MN OCD ∴平面‖(2)设AB 与MD 所成的角为θ,(1,0,0),(1)22AB MD ==-- ∵1c o s ,23AB MD AB MD πθθ===⋅∴∴, AB 与MD 所成角的大小为3π (3)设点B 到平面OCD 的交流为d ,则d 为OB在向量n =上的投影的绝对值,由 (1,0,2)OB =- , 得23OB n d n ⋅==.所以点B 到平面OCD 的距离为2319 (1)由233,()(1),2E np np p ξσξ===-=得112p -=,从而16,2n p == ξ的分布列为ξ123456P164 664 1564 2064 1564 664 164(2)记”需要补种沙柳”为事件A, 则()(3),P A P ξ=≤ 得 16152021(),6432P A +++==或 156121()1(3)16432P A P ξ++=->=-=20 解 (1) '22ln 1(),ln x f x x x +=-若 '()0,f x = 则 1x e= 列表如下x 1(0,)e1e1(,1)e(1,)+∞'()f x+0 --()f x单调增极大值1()f e单调减单调减(2) 在 12axx > 两边取对数, 得1ln 2ln a x x>,由于01,x <<所以 1ln 2ln a x x> (1) 由(1)的结果可知,当(0,1)x ∈时, 1()()f x f e e ≤=-,为使(1)式对所有(0,1)x ∈成立,当且仅当ln 2ae >-,即ln 2a e >- 21解 (1) 必要性 :120,1a a c ==-∵∴ ,又 2[0,1],011a c ∈≤-≤∵∴ ,即[0,1]c ∈充分性 :设 [0,1]c ∈,对*n N ∈用数学归纳法证明[0,1]n a ∈ 当1n =时,10[0,1]a =∈.假设[0,1](1)k a k ∈≥则31111k k a ca c c c +=+-≤+-=,且31110k k a ca c c +=+-≥-=≥1[0,1]k a +∈∴,由数学归纳法知[0,1]n a ∈对所有*n N ∈成立(2) 设 103c <<,当1n =时,10a =,结论成立 当2n ≥ 时,3211111,1(1)(1)n n n n n n a ca c a c a a a ----=+--=-++∵∴103C <<∵,由(1)知1[0,1]n a -∈,所以 21113n n a a --++≤ 且 110n a --≥ 113(1)n n a c a --≤-∴21112113(1)(3)(1)(3)(1)(3)n n n n n a c a c a c a c -----≤-≤-≤≤-= ∴1*1(3)()n n a c n N -≥-∈∴(3) 设 103c <<,当1n =时,2120213a c=>--,结论成立 当2n ≥时,由(2)知11(3)0n n a c -≥->21212(1)1(1(3))12(3)(3)12(3)n n n n n a c c c c ----≥-=-+>-∴ 222222112212[3(3)(3)]n n n a a a a a n c c c -+++=++>--+++ ∴2(1(3))2111313n c n n c c-=+->+---22解 (1)由题意:2222222211c a b c a b⎧=⎪⎪+=⎨⎪⎪=-⎩ ,解得224,2a b ==,所求椭圆方程为22142x y += (2)方法一设点Q 、A 、B 的坐标分别为1122(,),(,),(,)x y x y x y 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2008年安徽省高考数学试卷(理科)一、选择题(共12小题,每小题5分,满分60分)1.(5分)复数i3(1+i)2=()A.2 B.﹣2 C.2i D.﹣2i2.(5分)集合A={y|y=lgx,x>1},B={﹣2,﹣1,1,2}则下列结论正确的是()A.A∩B={﹣2,﹣1}B.(C R A)∪B=(﹣∞,0) C.A∪B=(0,+∞)D.(C R A)∩B={﹣2,﹣1}3.(5分)在平行四边形ABCD中,AC为一条对角线,若,,则=()A.(﹣2,﹣4)B.(﹣3,﹣5)C.(3,5) D.(2,4)4.(5分)m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n5.(5分)将函数的图象按向量平移后所得的图象关于点中心对称,则向量α的坐标可能为()A.B.C.D.6.(5分)设(1+x)8=a0+a1x+…+a8x8,则a0,a1,…,a8中奇数的个数为()A.2 B.3 C.4 D.57.(5分)a<0是方程ax2+2x+1=0至少有一个负数根的()A.必要不充分条件 B.充分不必要条件C.充分必要条件D.既不充分也不必要条件8.(5分)若过点A(4,0)的直线l与曲线(x﹣2)2+y2=1有公共点,则直线l 的斜率的取值范围为()A.B.C.D.9.(5分)在同一平面直角坐标系中,函数y=g(x)的图象与y=e x的图象关于直线y=x对称.而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=﹣1,则m的值是()A.﹣e B.C.e D.10.(5分)设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲线如图所示,则有()A.μ1<μ2,σ1>σ2B.μ1<μ2,σ1<σ2C.μ1>μ2,σ1>σ2D.μ1>μ2,σ1<σ2 11.(5分)若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=e x,则有()A.f(2)<f(3)<g(0)B.g(0)<f(3)<f(2)C.f(2)<g(0)<f (3)D.g(0)<f(2)<f(3)12.(5分)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A.C82A32B.C82A66C.C82A62D.C82A52二、填空题(共4小题,每小题4分,满分16分)13.(4分)函数的定义域为.14.(4分)在数列{a n}中,,a1+a2+…a n=an2+bn,n∈N*,其中a,b 为常数,则的值是.15.(4分)若A为不等式组表示的平面区域,则当a从﹣2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为.16.(4分)已知A,B,C,D在同一个球面上,AB⊥平面BCD,BC⊥CD,若AB=6,,AD=8,则B,C两点间的球面距离是.三、解答题(共6小题,满分74分)17.(12分)已知函数f(x)=cos(2x﹣)+2sin(x﹣)sin(x+).(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x)在区间上的值域.18.(12分)如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.19.(12分)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望Eξ=3,标准差σξ为.(Ⅰ)求n,p的值并写出ξ的分布列;(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.20.(12分)设函数f(x)=(x>0且x≠1).(1)求函数f(x)的单调区间;(2)已知>x a对任意x∈(0,1)成立,求实数a的取值范围.21.(13分)设数列{a n}满足a1=0,a n+1=ca n3+1﹣c,n∈N*,其中c为实数(1)证明:a n∈[0,1]对任意n∈N*成立的充分必要条件是c∈[0,1];(2)设,证明:a n≥1﹣(3c)n﹣1,n∈N*;(3)设,证明:.22.(13分)设椭圆=1(a>b>0)过点,且左焦点为(Ⅰ)求椭圆C的方程;(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交于两不同点A,B时,在线段AB上取点Q,满足•=•,证明:点Q总在某定直线上.2008年安徽省高考数学试卷(理科)参考答案与试题解析一、选择题(共12小题,每小题5分,满分60分)1.(5分)(2008•安徽)复数i3(1+i)2=()A.2 B.﹣2 C.2i D.﹣2i【分析】复数i的幂的计算,直接乘积展开可得结果.【解答】解:i3(1+i)2=(﹣i)(2i)=2,故选A.2.(5分)(2008•安徽)集合A={y|y=lgx,x>1},B={﹣2,﹣1,1,2}则下列结论正确的是()A.A∩B={﹣2,﹣1}B.(C R A)∪B=(﹣∞,0) C.A∪B=(0,+∞)D.(C R A)∩B={﹣2,﹣1}【分析】由题意A={y|y=lgx,x>1},根据对数的定义得A={y|>0},又有B={﹣2,﹣1,1,2},对A、B、C、D选项进行一一验证.【解答】解:∵A={y|y=lgx,x>1},∴A={y|y>0},∵B={﹣2,﹣1,1,2}A∩B={1,2},故A错误;(C R A)∪B=(﹣∞,0],故B错误;∵﹣1∈A∪B,∴C错误;(C R A)={y|y≤0},又B={﹣2,﹣1,1,2}∴(C R A)∩B={﹣2,﹣1},故选D.3.(5分)(2008•安徽)在平行四边形ABCD中,AC为一条对角线,若,,则=()A.(﹣2,﹣4)B.(﹣3,﹣5)C.(3,5) D.(2,4)【分析】根据平行四边形法则,可以求出,再根据平行四边形法则可以求出结果,在运算过程中要先看清各向量的关系,理清思路以后再用坐标表示出结果.【解答】解:∵,故选B.4.(5分)(2008•安徽)m,n是两条不同直线,α,β,γ是三个不同平面,下列命题中正确的是()A.若m∥α,n∥α,则m∥n B.若α⊥γ,β⊥γ,则α∥βC.若m∥α,m∥β,则α∥βD.若m⊥α,n⊥α,则m∥n【分析】本题考查的知识点是空间中直线与平面之间的位置关系,若m∥∂,n ∥∂,m,n可以相交也可以异面,故A不正确;若α⊥γ,β⊥γ,则α∥β,则α、β可以相交也可以平行,故B不正确;若m∥α,m∥β,则α∥β,则α、β可以相交也可以平行,故C不正确;m⊥α,n⊥α则同垂直于一个平面的两条直线平行;故D答案正确;分析即可得到结论.【解答】解:m,n均为直线,其中m,n平行α,m,n可以相交也可以异面,故A不正确;若α⊥γ,β⊥γ,则α∥β,则α、β可以相交也可以平行,故B不正确;若m∥α,m∥β,则α∥β,则α、β可以相交也可以平行,故C不正确;m⊥α,n⊥α则同垂直于一个平面的两条直线平行;故选D.5.(5分)(2008•安徽)将函数的图象按向量平移后所得的图象关于点中心对称,则向量α的坐标可能为()A.B.C.D.【分析】先假设平移向量=(m,0),从而可以得到平移后的关系式,再由平移后所得的图象关于点中心对称,将代入使其等于0求出m即可.【解答】解:设平移向量,则函数按向量平移后的表达式为,因为图象关于点中心对称,故,代入得:,﹣2m=kπ(k∈Z),k=0得:,故选C.6.(5分)(2008•安徽)设(1+x)8=a0+a1x+…+a8x8,则a0,a1,…,a8中奇数的个数为()A.2 B.3 C.4 D.5【分析】利用二项展开式的通项公式判断出展开式中项的系数即为二项式系数,求出所有的二项式系数值,求出项为奇数的个数.【解答】解:由(1+x)8=a0+a1x+a2x2+…+a8x8可知:a0、a1、a2、、a8均为二项式系数,依次是C80、C81、C82、、C88,∵C80=C88=1,C81=C87=8,C82=C86=28,C83=C85=56,C84=70,∴a0,a1,,a8中奇数只有a0和a8两个故选A7.(5分)(2008•安徽)a<0是方程ax2+2x+1=0至少有一个负数根的()A.必要不充分条件 B.充分不必要条件C.充分必要条件D.既不充分也不必要条件【分析】先求△>0时a的范围,结合韦达定理,以及特殊值a=1来判定即可.【解答】解:方程ax2+2x+1=0有根,则△=22﹣4a≥0,得a≤1时方程有根,当a<0时,x1x2=<0,方程有负根,又a=1时,方程根为x=﹣1,显然a<0⇒方程ax2+2x+1=0至少有一个负数根;方程ax2+2x+1=0至少有一个负数根,不一定a<0.a<0是方程ax2+2x+1=0至少有一个负数根的充分不必要条件.故选B.8.(5分)(2008•安徽)若过点A(4,0)的直线l与曲线(x﹣2)2+y2=1有公共点,则直线l的斜率的取值范围为()A.B.C.D.【分析】设出直线方程,用圆心到直线的距离小于等于半径,即可求解.【解答】解:设直线方程为y=k(x﹣4),即kx﹣y﹣4k=0,直线l与曲线(x﹣2)2+y2=1有公共点,圆心到直线的距离小于等于半径,得4k2≤k2+1,k2≤,故选C.9.(5分)(2008•安徽)在同一平面直角坐标系中,函数y=g(x)的图象与y=e x 的图象关于直线y=x对称.而函数y=f(x)的图象与y=g(x)的图象关于y轴对称,若f(m)=﹣1,则m的值是()A.﹣e B.C.e D.【分析】由函数y=g(x)的图象与y=e x的图象关于直线y=x对称,则y=g(x)的图象与y=e x互为反函数,易得y=g(x)的解析式,再由函数y=f(x)的图象与y=g(x)的图象关于y轴对称,进而可以得到函数y=f(x)的解析式,由函数y=f(x)的解析式构造方程f(m)=﹣1,解方程即可求得m的值.【解答】解:∵函数y=g(x)的图象与y=e x的图象关于直线y=x对称∴函数y=g(x)与y=e x互为反函数则g(x)=lnx,又由y=f(x)的图象与y=g(x)的图象关于y轴对称∴f(x)=ln(﹣x),又∵f(m)=﹣1∴ln(﹣m)=﹣1,故选B.10.(5分)(2008•安徽)设两个正态分布N(μ1,σ12)(σ1>0)和N(μ2,σ22)(σ2>0)曲线如图所示,则有()A.μ1<μ2,σ1>σ2B.μ1<μ2,σ1<σ2C.μ1>μ2,σ1>σ2D.μ1>μ2,σ1<σ2【分析】从正态曲线关于直线x=μ对称,看μ的大小,从曲线越“矮胖”,表示总体越分散;σ越小,曲线越“瘦高”,表示总体的分布越集中.看出σ的大小即可解决.【解答】解:从正态曲线的对称轴的位置看,显然μ1<μ2,正态曲线越“瘦高”,表示取值越集中,σ越小.∴σ1>σ2故选A.11.(5分)(2008•安徽)若函数f(x),g(x)分别是R上的奇函数、偶函数,且满足f(x)﹣g(x)=e x,则有()A.f(2)<f(3)<g(0)B.g(0)<f(3)<f(2)C.f(2)<g(0)<f (3)D.g(0)<f(2)<f(3)【分析】因为函数f(x),g(x)分别是R上的奇函数、偶函数,所以f(﹣x)=﹣f(x),g(﹣x)=g(x).用﹣x代换x得:f(﹣x)﹣g(﹣x)=﹣f(x)﹣g(x)=e﹣x,又由f(x)﹣g(x)=e x联立方程组,可求出f(x),g(x)的解析式进而得到答案.【解答】解:用﹣x代换x得:f(﹣x)﹣g(﹣x)=e﹣x,即f(x)+g(x)=﹣e ﹣x,又∵f(x)﹣g(x)=e x∴解得:,,分析选项可得:对于A:f(2)>0,f(3)>0,g(0)=﹣1,故A错误;对于B:f(x)单调递增,则f(3)>f(2),故B错误;对于C:f(2)>0,f(3)>0,g(0)=﹣1,故C错误;对于D:f(x)单调递增,则f(3)>f(2),且f(3)>f(2)>0,而g(0)=﹣1<0,D正确;故选D.12.(5分)(2008•安徽)12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A.C82A32B.C82A66C.C82A62D.C82A52【分析】从后排8人中选2人共C82种选法,这2人插入前排4人中且保证前排人的顺序不变,则先从4人中的5个空挡插入一人,有5种插法;余下的一人则要插入前排5人的空挡,有6种插法为A62.【解答】解:从后排8人中选2人共C82种选法,这2人插入前排4人中且保证前排人的顺序不变,则先从4人中的5个空挡插入一人,有5种插法;余下的一人则要插入前排5人的空挡,有6种插法,∴为A62故选C.二、填空题(共4小题,每小题4分,满分16分)13.(4分)(2008•安徽)函数的定义域为{x|x≥3} .【分析】根据偶次开方的被开方数为非负数,可以得到:|x﹣2|﹣1≥0,又因为对数函数的真数大于0且分母不能是0可以得到:x﹣1>0,且x﹣1≠2,进而根据以上条件求出x的取值范围,得出函数f(x)的定义域.【解答】解:由题知:log2(x﹣1)≠0,且x﹣1>0,解得x>1且x≠2,又因为|x﹣2|﹣1≥0,解得:x≥3或x≤1,所以x≥3.故答案为:{x|x≥3}.14.(4分)(2008•安徽)在数列{a n}中,,a1+a2+…a n=an2+bn,n∈N*,其中a,b为常数,则的值是1.【分析】由,可知.从而得到a=2,,由此可知.【解答】解:∵,∴,从而.∴a=2,,则.答案:1.15.(4分)(2008•安徽)若A为不等式组表示的平面区域,则当a从﹣2连续变化到1时,动直线x+y=a扫过A中的那部分区域的面积为.【分析】先由不等式组画出其表示的平面区域,再确定动直线x+y=a的变化范围,最后由三角形面积公式解之即可.【解答】解:如图,不等式组表示的平面区域是△AOB,动直线x+y=a(即y=﹣x+a)在y轴上的截距从﹣2变化到1.知△ADC是斜边为3的等腰直角三角形,△EOC是直角边为1等腰直角三角形,所以区域的面积S阴影=S△ADC﹣S△EOC=故答案为:.16.(4分)(2008•安徽)已知A,B,C,D在同一个球面上,AB⊥平面BCD,BC⊥CD,若AB=6,,AD=8,则B,C两点间的球面距离是.【分析】先求BC的距离,求出∠BOC的值,然后求出B,C两点间的球面距离.【解答】解:如图,易得,,∴,则此球内接长方体三条棱长为AB、BC、CD(CD的对边与CD等长),从而球外接圆的直径为,R=4则BC与球心构成的大圆如图,因为△OBC为正三角形,则B,C两点间的球面距离是.故答案为:.三、解答题(共6小题,满分74分)17.(12分)(2008•安徽)已知函数f(x)=cos(2x﹣)+2sin(x﹣)sin (x+).(Ⅰ)求函数f(x)的最小正周期和图象的对称轴方程;(Ⅱ)求函数f(x)在区间上的值域.【分析】(1)先根据两角和与差的正弦和余弦公式将函数f(x)展开再整理,可将函数化简为y=Asin(wx+ρ)的形式,根据T=可求出最小正周期,令,求出x的值即可得到对称轴方程.(2)先根据x的范围求出2x﹣的范围,再由正弦函数的单调性可求出最小值和最大值,进而得到函数f(x)在区间上的值域.【解答】解:(1)∵=sin2x+(sinx﹣cosx)(sinx+cosx)===∴周期T=由∴函数图象的对称轴方程为(2)∵,∴,因为在区间上单调递增,在区间上单调递减,所以当时,f(x)取最大值1,又∵,当时,f(x)取最小值,所以函数f(x)在区间上的值域为.18.(12分)(2008•安徽)如图,在四棱锥O﹣ABCD中,底面ABCD四边长为1的菱形,∠ABC=,OA⊥底面ABCD,OA=2,M为OA的中点,N为BC的中点.(Ⅰ)证明:直线MN∥平面OCD;(Ⅱ)求异面直线AB与MD所成角的大小;(Ⅲ)求点B到平面OCD的距离.【分析】方法一:(1)取OB中点E,连接ME,NE,证明平面MNE∥平面OCD,方法是两个平面内相交直线互相平行得到,从而的到MN∥平面OCD;(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP ⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP菱形的对角相等得到∠ABC=∠ADC=,利用菱形边长等于1得到DP=,而MD利用勾股定理求得等于,在直角三角形中,利用三角函数定义求出即可.(3)AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A 作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD,又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,求出距离可得.方法二:(1)分别以AB,AP,AO所在直线为x,y,z轴建立坐标系,分别表示出A,B,O,M,N的坐标,求出,,的坐标表示.设平面OCD的法向量为=(x,y,z),则,解得,∴MN∥平面OCD(2)设AB与MD所成的角为θ,表示出和,利用a•b=|a||b|cosα求出叫即可.(3)设点B到平面OCD的距离为d,则d为在向量上的投影的绝对值,由,得.所以点B到平面OCD的距离为.【解答】解:方法一(综合法)(1)取OB中点E,连接ME,NE∵ME∥AB,AB∥CD,∴ME∥CD又∵NE∥OC,∴平面MNE∥平面OCD∴MN∥平面OCD(2)∵CD∥AB,∴∠MDC为异面直线AB与MD所成的角(或其补角)作AP⊥CD于P,连接MP∵OA⊥平面ABCD,∴CD⊥MP∵,∴,,∴所以AB与MD所成角的大小为.(3)∵AB∥平面OCD,∴点A和点B到平面OCD的距离相等,连接OP,过点A作AQ⊥OP于点Q,∵AP⊥CD,OA⊥CD,∴CD⊥平面OAP,∴AQ⊥CD.又∵AQ⊥OP,∴AQ⊥平面OCD,线段AQ的长就是点A到平面OCD的距离,∵,,∴,所以点B到平面OCD的距离为.方法二(向量法)作AP⊥CD于点P,如图,分别以AB,AP,AO所在直线为x,y,z轴建立坐标系:A(0,0,0),B(1,0,0),,,O(0,0,2),M(0,0,1),(1),,设平面OCD的法向量为n=(x,y,z),则•=0,•=0即取,解得∵•=(,,﹣1)•(0,4,)=0,∴MN∥平面OCD.(2)设AB与MD所成的角为θ,∵∴,∴,AB与MD所成角的大小为.(3)设点B到平面OCD的距离为d,则d为在向量=(0,4,)上的投影的绝对值,由,得d==所以点B到平面OCD的距离为.19.(12分)(2008•安徽)为防止风沙危害,某地决定建设防护绿化带,种植杨树、沙柳等植物.某人一次种植了n株沙柳,各株沙柳成活与否是相互独立的,成活率为p,设ξ为成活沙柳的株数,数学期望Eξ=3,标准差σξ为.(Ⅰ)求n,p的值并写出ξ的分布列;(Ⅱ)若有3株或3株以上的沙柳未成活,则需要补种,求需要补种沙柳的概率.【分析】(1)由题意知本题符合二项分布,根据二项分布的期望和方差公式得到关于n和p的方程组,通过把np乘积整体代入的方法得到n和p的值,写出分布列(2)由第一问可以知道,对于变量小于或等于3所包含的事件的概率,由题意知它们是互斥的,根据互斥事件的概率公式得到结果.【解答】解:(1)由题意知本题符合二项分布,根据二项分布的期望和方差公式得到,Eξ=np=3,(σξ)2=np(1﹣p)=,得1﹣p=,从而n=6,p=∴ξ的分布列为ξ0123456P(2)记”需要补种沙柳”为事件A,则未成活的数量大于等于3,则ξ≤3,则P(A)=P(ξ≤3),得,20.(12分)(2008•安徽)设函数f(x)=(x>0且x≠1).(1)求函数f(x)的单调区间;(2)已知>x a对任意x∈(0,1)成立,求实数a的取值范围.【分析】(Ⅰ)求单调区间既是求函数导数大于或小于0的区间,我们可以用图表表示使结果直观.(Ⅱ)对于未知数在指数上的式子,往往取对数进行解答.【解答】解:(Ⅰ),若f′(x)=0,则列表如下x(1,+∞)f′(x)+0﹣﹣f(x)单调增极大值单调减单调减(Ⅱ)在两边取对数,得,由于0<x<1,所以(1)由(1)的结果可知,当x∈(0,1)时,,为使(1)式对所有x∈(0,1)成立,当且仅当,即a>﹣eln221.(13分)(2008•安徽)设数列{a n}满足a1=0,a n+1=ca n3+1﹣c,n∈N*,其中c 为实数(1)证明:a n∈[0,1]对任意n∈N*成立的充分必要条件是c∈[0,1];(2)设,证明:a n≥1﹣(3c)n﹣1,n∈N*;(3)设,证明:.【分析】(1)先证明必要性:a2∈[0,1]⇒c∈[0,1],再证明充分性:设c∈[0,1],对n∈N*用数学归纳法证明a n∈[0,1].(2)设,当n=1时,a1=0,结论成立.当n≥2时,a n=ca n﹣13+1﹣c,1﹣a n=c(1﹣a n﹣1)(1+a n﹣1+a n﹣12),所以1+a n﹣1+a n﹣12≤3且1﹣a n﹣1≥0,由此能够导出a n≥1﹣(3c)n﹣1(n∈N*).(3)设,当n=1时,,结论成立.当n≥2时,a n2≥(1﹣(3c)n﹣1)2=1﹣2(3c)n﹣1+(3c)2(n﹣1)>1﹣2(3c)n﹣1,所以.【解答】解:(1)必要性:∵a1=0,∴a2=1﹣c,又∵a2∈[0,1],∴0≤1﹣c≤1,即c∈[0,1]充分性:设c∈[0,1],对n∈N*用数学归纳法证明a n∈[0,1]当n=1时,a1=0∈[0,1].假设a k∈[0,1](k≥1)=ca k3+1﹣c≤c+1﹣c=1,且a k+1=ca k3+1﹣c≥1﹣c=≥0则a k+1∈[0,1],由数学归纳法知a n∈[0,1]对所有n∈N*成立∴a k+1(2)设,当n=1时,a1=0,结论成立,当n≥2时,∵a n=ca n﹣13+1﹣c,∴1﹣a n=c(1﹣a n﹣1)(1+a n﹣1+a n﹣12)∈[0,1],所以1+a n﹣1+a n﹣12≤3且1﹣a n﹣1≥0∵,由(1)知a n﹣1∴1﹣a n≤3c(1﹣a n﹣1)∴1﹣a n≤3c(1﹣a n﹣1)≤(3c)2(1﹣a n﹣2)≤≤(3c)n﹣1(1﹣a1)=(3c)n﹣1∴a n≥1﹣(3c)n﹣1(n∈N*)(3)设,当n=1时,,结论成立当n≥2时,由(2)知a n≥1﹣(3c)n﹣1>0∴a n2≥(1﹣(3c)n﹣1)2=1﹣2(3c)n﹣1+(3c)2(n﹣1)>1﹣2(3c)n﹣1∴a12+a22+…+a n2=a22+…+a n2>n﹣1﹣2[3c+(3c)2+…+(3c)n﹣1]=n﹣1﹣2×=n﹣1﹣2×=22.(13分)(2008•安徽)设椭圆=1(a>b>0)过点,且左焦点为(Ⅰ)求椭圆C的方程;(Ⅱ)当过点P(4,1)的动直线l与椭圆C相交于两不同点A,B时,在线段AB上取点Q,满足•=•,证明:点Q总在某定直线上.【分析】(Ⅰ)通过椭圆焦点坐标知c=,且有a2=b2+c2,又点M的坐标满足椭圆方程,则列方程组解之即可;(Ⅱ)欲证点Q总在某定直线上,所以先设点Q的坐标为变量(x,y),点A、B 的坐标分别为参数(x1,y1)、(x2,y2),然后根据已知条件可变形得,设其比值为λ则有、,此时利用定比分点定理可得A、B、P 三点横坐标关系及纵坐标关系,同时可得A、B、Q三点横坐标关系及纵坐标关系,又因为点A、B的坐标满足椭圆方程,则有x12+2y12=4,x22+2y22=4,再利用已得关系式构造x12+2y12与x22+2y22则可整体替换为4,同时消去参数λ,最后得到变量x、y的关系式,则问题得证.【解答】解:(Ⅰ)由题意得,解得a2=4,b2=2,所以椭圆C的方程为.(Ⅱ)设点Q、A、B的坐标分别为(x,y),(x1,y1),(x2,y2).由题设知,,,均不为零,记,则λ>0且λ≠1又A,P,B,Q四点共线,从而于是,,,从而①,②,又点A、B在椭圆C上,即x12+2y12=4 ③,x22+2y22=4 ④,①+②×2并结合③、④得4x+2y=4,即点Q(x,y)总在定直线2x+y﹣2=0上.。

相关文档
最新文档