植物细胞跨膜离子运输(PPT)
合集下载
细胞生物学 第五章 物质的跨膜运输
离子流,产生电信号。 编辑ppt
离子通道的三种类型
编辑ppt
电压门控离子通道:铰链细胞失水 原理:含羞草的叶柄基部和复叶基部,都有一个膨大部分,叫作 叶枕。叶枕细胞 (铰链细胞)受刺激时,其膜钙离子门控通 道打开,钙内流,产生AP,致使铰链细胞的液泡快速失水而 失去膨压,从而叶枕就变得瘫软,小羽片失去叶枕的支持,依次 地合拢起来。
编辑ppt
应力激活的离子通道:2X1013N,0.04nm
编辑ppt
❖ 2、通道蛋白 ❖ 离子通道的特征: ❖ (1)具有极高的转运速率 ❖ 比载体转运速率高1000倍以上;带电离子
的跨膜转运动力来自跨膜电化学梯度。 ❖ (2)离子通道没有饱和值 ❖ 离子浓度增大,通过率也随之增大。 ❖ (3)离子通道是门控的,并非连续开放 ❖ 离子通道的开与闭编辑p受pt 控于适当的细胞信号。
❖ Couple uphill transport to the hydrolysis of ATP.
❖ Mainly in bacteria, couple uphill transport to an input of
energy from light.
编辑ppt
第二节 离子泵和协同转运 ❖ ATP 驱动泵分类:
编辑ppt
水分子 通过水孔蛋白
编辑ppt
第一节 膜转动蛋白与物质的跨膜运输
❖ 二、物质的跨膜运输 ❖ (一)被动运输 ❖ 2、协助扩散 ❖ 各种极性分子和无机离子,以及细
胞代谢产物等顺其浓度梯度或电化学 梯度跨膜转运,无需细胞提供能量, 但需膜转运蛋白“协助”。
编辑ppt
葡萄糖载体蛋白家族
❖ 人类基因组编码12种与糖转运相关的载体 蛋白GLUT1~GLUT12,构成GLUT。
离子通道的三种类型
编辑ppt
电压门控离子通道:铰链细胞失水 原理:含羞草的叶柄基部和复叶基部,都有一个膨大部分,叫作 叶枕。叶枕细胞 (铰链细胞)受刺激时,其膜钙离子门控通 道打开,钙内流,产生AP,致使铰链细胞的液泡快速失水而 失去膨压,从而叶枕就变得瘫软,小羽片失去叶枕的支持,依次 地合拢起来。
编辑ppt
应力激活的离子通道:2X1013N,0.04nm
编辑ppt
❖ 2、通道蛋白 ❖ 离子通道的特征: ❖ (1)具有极高的转运速率 ❖ 比载体转运速率高1000倍以上;带电离子
的跨膜转运动力来自跨膜电化学梯度。 ❖ (2)离子通道没有饱和值 ❖ 离子浓度增大,通过率也随之增大。 ❖ (3)离子通道是门控的,并非连续开放 ❖ 离子通道的开与闭编辑p受pt 控于适当的细胞信号。
❖ Couple uphill transport to the hydrolysis of ATP.
❖ Mainly in bacteria, couple uphill transport to an input of
energy from light.
编辑ppt
第二节 离子泵和协同转运 ❖ ATP 驱动泵分类:
编辑ppt
水分子 通过水孔蛋白
编辑ppt
第一节 膜转动蛋白与物质的跨膜运输
❖ 二、物质的跨膜运输 ❖ (一)被动运输 ❖ 2、协助扩散 ❖ 各种极性分子和无机离子,以及细
胞代谢产物等顺其浓度梯度或电化学 梯度跨膜转运,无需细胞提供能量, 但需膜转运蛋白“协助”。
编辑ppt
葡萄糖载体蛋白家族
❖ 人类基因组编码12种与糖转运相关的载体 蛋白GLUT1~GLUT12,构成GLUT。
植物细胞跨膜离子运输机制
离子的选择性:
K+ channel、Ca2+ channel、Cl- channel, etc.
运输离子方向:K+inward、K+outward,etc.
离子通道开放与关闭的调控机制: 电压门控通道(voltage-gated ion channel)、 调节因子调控的通道等。 AKT1
P
AKT1: 6个跨膜区,一个通道孔部区域; S4区为电压敏感区; C端为磷酸化调控区。
Whole-cell recording of K+ currents in akt1-1 root protoplasts. Inward currents were absent but outward currents were the same as in wild-type root protoplasts
4.关闭膜内侧蛋白质空口的同时打开膜外侧的蛋白质空口
而将M+释放出去,并将结合的Pi水解释放回膜的内侧。 5. ATP酶又恢复至原先的构象,开始下一个循环。
由于这种转运造成了膜内外正、负电荷的不 一致,所以形成了跨膜的电位差,故这种现象称 为致电(electrogenesis)。
因为这种转运是逆电化学势梯度而进行的主 动转运,所以也将ATP酶称为一种致电泵 (electrogenic pump)。 H+是最主要的通过这种方式转运的离子,所以 可以将转运H+的ATP酶称为H+-ATPase或H+ 泵。
Three families Shaker family 9 members
TPK family (Tandem-Pore K+ channel) 5 members
Kir-like family (K+ inward rectifier)
植物生理学B植物细胞跨膜离子运输
植物生理学B - 植物细胞跨膜离
子运输
汇报人:可编辑
20ห้องสมุดไป่ตู้4-01-11
目录
• 植物细胞跨膜离子运输概述 • 植物细胞跨膜离子运输机制 • 植物细胞跨膜离子运输的影响因素 • 植物细胞跨膜离子运输与植物生长和发育 • 植物细胞跨膜离子运输的研究方法 • 未来展望与研究方向
01
植物细胞跨膜离子运输概述
长发育和环境适应过程。
植物对环境的适应性
03
植物通过调节离子运输来适应环境变化,如盐碱、干旱等。
02
植物细胞跨膜离子运输机制
主动运
主动运输是指细胞通过消耗能量,逆浓度梯度 或电位梯度跨膜运输物质的过程。
主动运输涉及载体蛋白的参与,载体蛋白在膜 上形成特定的通道,通过与被运输物质结合, 实现逆浓度或电位梯度的物质转运。
被动运输
顺浓度梯度进行,不需要消耗能量。包括简单扩 散和协助扩散。
3
载体蛋白
协助物质跨膜运输的膜蛋白,具有专一性。
植物细胞跨膜离子运输的重要性
维持细胞内外的渗透平衡
01
离子平衡是植物细胞正常代谢的基础,通过跨膜运输维持细胞
内外离子浓度的相对稳定。
参与信号转导
02
植物细胞内的离子浓度变化可以作为信号分子,参与植物的生
生长素
生长素可以促进植物细胞跨膜离子运输,尤其对钾离子的吸 收有显著促进作用。它通过调节离子通道的活性来影响离子 运输。
脱落酸
脱落酸可以抑制植物细胞跨膜离子运输,尤其是在缺水或盐 分过高的环境中,脱落酸的作用更加明显。它通过调节离子 泵的活性来影响离子运输。
04
植物细胞跨膜离子运输与植物生长和发育
主动运输对于维持细胞内稳态和正常生理功能 具有重要意义,如维持细胞液的渗透压、pH值 等。
子运输
汇报人:可编辑
20ห้องสมุดไป่ตู้4-01-11
目录
• 植物细胞跨膜离子运输概述 • 植物细胞跨膜离子运输机制 • 植物细胞跨膜离子运输的影响因素 • 植物细胞跨膜离子运输与植物生长和发育 • 植物细胞跨膜离子运输的研究方法 • 未来展望与研究方向
01
植物细胞跨膜离子运输概述
长发育和环境适应过程。
植物对环境的适应性
03
植物通过调节离子运输来适应环境变化,如盐碱、干旱等。
02
植物细胞跨膜离子运输机制
主动运
主动运输是指细胞通过消耗能量,逆浓度梯度 或电位梯度跨膜运输物质的过程。
主动运输涉及载体蛋白的参与,载体蛋白在膜 上形成特定的通道,通过与被运输物质结合, 实现逆浓度或电位梯度的物质转运。
被动运输
顺浓度梯度进行,不需要消耗能量。包括简单扩 散和协助扩散。
3
载体蛋白
协助物质跨膜运输的膜蛋白,具有专一性。
植物细胞跨膜离子运输的重要性
维持细胞内外的渗透平衡
01
离子平衡是植物细胞正常代谢的基础,通过跨膜运输维持细胞
内外离子浓度的相对稳定。
参与信号转导
02
植物细胞内的离子浓度变化可以作为信号分子,参与植物的生
生长素
生长素可以促进植物细胞跨膜离子运输,尤其对钾离子的吸 收有显著促进作用。它通过调节离子通道的活性来影响离子 运输。
脱落酸
脱落酸可以抑制植物细胞跨膜离子运输,尤其是在缺水或盐 分过高的环境中,脱落酸的作用更加明显。它通过调节离子 泵的活性来影响离子运输。
04
植物细胞跨膜离子运输与植物生长和发育
主动运输对于维持细胞内稳态和正常生理功能 具有重要意义,如维持细胞液的渗透压、pH值 等。
(新高考)2023版高考生物二轮总复习 专题1 细胞的物质基础和结构基础 第3讲 物质的跨膜运输课件
2.理解质壁分离发生的条件 (1)从细胞角度分析。 ①死细胞、动物细胞及未成熟的植物细胞(如根尖分生区细胞)不发 生质壁分离及复原现象。 ②具有中央大液泡的成熟植物活细胞可发生质壁分离及复原现象。
(2)从溶液角度分析。 ①在一定浓度(溶质不能透过膜)的溶液中只会发生质壁分离现象, 不能发生自动复原现象(用清水或低渗溶液处理方可复原)。 ②在一定浓度(溶质可透过膜)的溶液(如KNO3、甘油等)中可发生质 壁分离后自动复原现象。 ③在高浓度溶液中可发生质壁分离现象,但不会发生质壁分离复原 现象。
变式二 分析影响物质运输的因素 4.(2022·泰州模拟)小肠绒毛 上皮细胞膜上存在着两种运输葡 萄糖的载体SGLT1(主动运输的载 体)和GLUT2(协助扩散的载体), 研究人员通过实验绘制如图所示 曲线。下列说法错误的是( D )
A.该实验可以用来探究不同浓度葡萄糖条件下的主要吸收方式 B.在较高葡萄糖浓度下,细胞主要依赖协助扩散来增大吸收速率 C.小肠绒毛上皮细胞膜上存在SGLT1和GLUT2的根本原因是基因 选择性表达 D.葡萄糖分子在不同的浓度下都可通过主动运输和协助扩散两种 方式进入细胞
考题解密
1.(2022·全国甲卷)植物成熟叶肉细胞的细胞液浓度可以不同。现 将a、b、c三种细胞液浓度不同的某种植物成熟叶肉细胞,分别放入三 个装有相同浓度蔗糖溶液的试管中,当水分交换达到平衡时观察到:① 细胞a未发生变化;②细胞b体积增大;③细胞c发生了质壁分离。若在 水分交换期间细胞与蔗糖溶液没有溶质的交换,下列关于这一实验的叙 述,不合理的是( C )
变式二 掌握质壁分离与复原实验 2.(2022·湖南高考)原生质体(细胞除细胞壁以外的部分)表面积大小 的变化可作为质壁分离实验的检测指标。用葡萄糖基本培养基和NaCl溶 液交替处理某假单孢菌,其原生质体表面积的测定结果如图所示。下列 叙述错误的是( A )
离子通道课件讲解
1) 双微电极钳位法只适用于巨大的神经轴突、肌肉纤维和卵母细胞等较大 的细胞, 对于直径小于10 微米的细胞, 胞内插入两根电极就很困难, 虽然此时可 用单根吸附电极进行电压钳位, 但是对细胞膜的损伤也不可避免;
2) 只能采用全细胞记录模式, 记录到的是整个细胞膜上所有开放通道的电 流总和, 无法了解单通道电流的情况;
膜片钳实验
(1)玻璃微电极使用硬质有芯玻璃毛细管在拉制仪 (PC-10,Narishige)上拉制,实验前用抛光仪(MF900,Narishige)进行抛光。
全细 胞钾 离子 通道 电流
单通 道记 录钙 离子 通道 电流
抛光仪
拉制仪
显微镜操作系统及可见光源
冷 光 源
膜片钳放大器、操作系统
低 温 水 浴 摇 床
材料的 好坏直 接影响 膜片钳 实验的 成败!
要根据不同的实验目的来栽培材料。 根细胞:通常根长度在2厘米左右,但突变体要 根据该基因起作用的发育阶段来确定; 保卫细胞:通常在土壤中生长4-6周,但绝不能 抽苔;叶肉细胞对光照要求较高,因为光照直 接影响叶绿体的活动。
( 3) 第二信使激活的离子通道, 包括由细胞内Ca2+、 IP3、G 蛋白及蛋白激酶激活的离子通道。
质膜上的离子通道
植
阴离子通道
物
细
胞
液泡膜上的离子通道
离
子
通 道
阳离子通道
其他细胞器膜上的离子通道
自从在蚕豆保卫细胞膜上发现植物离子通道以来,人们对植物细 胞乃至作为细胞器的液泡膜上离子通道的认识迅速深入,到目前为 止,已经发现植物细胞及其内膜上存在多种离子通道。
( 3) 机械敏感性: 由细胞膜表面的应力变化控制通道的开放与关闭 状态。 其中以电压依赖性通道最常见
2) 只能采用全细胞记录模式, 记录到的是整个细胞膜上所有开放通道的电 流总和, 无法了解单通道电流的情况;
膜片钳实验
(1)玻璃微电极使用硬质有芯玻璃毛细管在拉制仪 (PC-10,Narishige)上拉制,实验前用抛光仪(MF900,Narishige)进行抛光。
全细 胞钾 离子 通道 电流
单通 道记 录钙 离子 通道 电流
抛光仪
拉制仪
显微镜操作系统及可见光源
冷 光 源
膜片钳放大器、操作系统
低 温 水 浴 摇 床
材料的 好坏直 接影响 膜片钳 实验的 成败!
要根据不同的实验目的来栽培材料。 根细胞:通常根长度在2厘米左右,但突变体要 根据该基因起作用的发育阶段来确定; 保卫细胞:通常在土壤中生长4-6周,但绝不能 抽苔;叶肉细胞对光照要求较高,因为光照直 接影响叶绿体的活动。
( 3) 第二信使激活的离子通道, 包括由细胞内Ca2+、 IP3、G 蛋白及蛋白激酶激活的离子通道。
质膜上的离子通道
植
阴离子通道
物
细
胞
液泡膜上的离子通道
离
子
通 道
阳离子通道
其他细胞器膜上的离子通道
自从在蚕豆保卫细胞膜上发现植物离子通道以来,人们对植物细 胞乃至作为细胞器的液泡膜上离子通道的认识迅速深入,到目前为 止,已经发现植物细胞及其内膜上存在多种离子通道。
( 3) 机械敏感性: 由细胞膜表面的应力变化控制通道的开放与关闭 状态。 其中以电压依赖性通道最常见
人教版高中生物必修一课件:第四章第3节物质跨膜运输的方式 (共39张PPT)
(2)根据运输方向:逆浓度梯度的跨膜运输方式是主 动运输。
影响物质出入细胞的因素
•【例2】 如图表示培养液中K+浓度及溶氧量对小 麦根系细胞吸收K+速率的影响。下列有关两曲线 形成机理的解释正确的是(多选)( )。
A.曲线OB段的形成是由于细胞膜上 K+载体数量未达到 饱和且能量充足 B.曲线CD段的形成是由于细胞内 K+过多,细胞大量排 出K+ C.E点表明植物根系可以通过自由扩散的方式吸收K+ D.曲线BC、FG段的形成与细胞膜上K+载体数量有关 思维导图:
•特别提醒 表中“高浓度”、“低浓度”是指运输的离子或小分 子本身的浓度,而不是它们所在的溶液的浓度。
2.影响物质跨膜运输的因素 (1)影响自由扩散的因素 细胞膜内、外物质的浓度差。 (2)影响协助扩散的因素 ①细胞膜内、外物质的浓度差。 ②细胞膜上载体蛋白的数量。 (3)影响主动运输的因素
•1.自由扩散、协助扩散、主动运输的比较
物质出入细 胞的方式 运输方向 被动运输 自由扩散 协助扩散 低浓度→高浓 度 需要 消耗
主动运输
高浓度→低浓度 高浓度→低浓度
是否需要
载体蛋白 是否消耗能量
不需要 不消耗
需要 不消耗
图例 小肠上皮细胞吸 O2、CO2、H2O、甘油、 红细胞吸收 举例 收葡萄糖、氨基 乙醇、苯等出入细胞 葡萄糖 酸、无机盐等
规律方法 坐标曲线题的解法 (1)理解纵坐标与横坐标表示的含义 横坐标为自变量,纵坐标为因变量,即纵坐标 随着横坐标的变化而变化。 (2)学会曲线中限制因素的判断 在曲线上升阶段,限制其增长的因素为横坐标 所表示的因子,如图中限制 EF段的因素为氧气的 相对含量;当曲线不再上升时,限制其增长的因 素需要从内部因素和环境因素两个方面加以考虑, 如图中限制 FG 段的因素为载体数量 ( 内部因素 ) 和 温度(环境因素)等。
4.细胞膜的分子生物学-物质的跨膜运输 ppt课件
2003年,美国科学家彼得·阿格雷和罗德里克·麦金农,分别 因对细胞膜水通道,离子通道结构和机理研究而获诺贝尔化 学奖。
三.载体蛋白介导的主动运输
主动运输(active transport)是指由载体蛋白介 导的物质逆浓度梯度(或化学梯度)的由浓度低 的一侧向浓度 高的一侧的跨膜运输方式。
主动运输的特点是:①逆浓度梯度(逆化学梯度)运输; ②需要能量(由ATP直接供能)或与释放能量的过程偶联 (协同运输);③都有载体蛋白。
功能:在肌质网内储存Ca2+调节肌细胞的收缩与
舒张
肌质网上的钙离子泵 ,肌细胞膜去极化后引起肌 质网上的钙离子通道打开,大量钙离子进入细胞 质,引起肌肉收缩之后由钙离子泵将钙离子泵回 肌质网。
(3)质子泵(H+泵) ATP直接供能
存在位置:溶酶体膜上 作用方式:从胞质中主动将H+输入溶酶
共运输
对向运输
主动运输与被动运输的比较
1、运输方向 2、跨膜动力 3、能量消耗
第二节 大分子物质的囊泡转运——胞吞 和胞吐
囊泡以出芽方式从细胞的一种内膜细胞器脱离后又 与另一内膜细胞器发生融合,这一转运过程称为 囊泡转运。 根据物质的运输方向:胞吞作用(endocytosis) 胞吐作用(exocytosis)
共同特点:双向、特异、有序、化学修饰
㈠ 胞吞作用的两种形式:
胞吞作用消耗能量,属于细胞膜的主动运输 吞噬(phagocytosis) 由专门的吞噬细胞完成,大的颗粒,直径>250nm, 最终到达溶酶体被降解。 吞饮(pinocytosis) 摄入液体和小溶质分子进行消化,直径<150nm。
吞噬过程 吞饮过程
道(电位门通道、配体门通道、环核苷酸门通道、机械门通道)。
第五章-跨膜转运PPT课件
1、同向协同(symport)
物质运输方向与离子转移方向相同。如小肠细胞对葡萄糖 的吸收伴随着Na+的进入。载体蛋白有两个结合位点,同 时与Na+和特异的氨基酸或葡萄糖分子结合,进行同向转 运。
2、反向协同(antiport)
物质跨膜运动的方向与离子转移的方向相反。如动物细胞 分裂时,常通过Na+/H+反向协同运输的方式来向细胞外转 运H+,以调高细胞内的PH值。
6. 2K+释放到细胞内, α亚基
4. 3Na+释放到细胞外 5. 2K+结合;去磷酸化 构象恢复原始状态。
每一循环消耗一个ATP;转运出三个Na+, 转进两个K+。 是一种基本的、典型的主动 运输方式。
Na+-K+泵的作用: ①维持细胞的渗透压,保持细胞的体积; ②维持低Na+高K+的细胞内环境; ③维持细胞的静息电位。
➢分泌蛋白合成后立即包装入高尔基复合体的分泌囊 泡中,然后被迅速带到细胞膜处排出。
➢所有真核细胞,连续分泌过程 ➢转运途径:粗面内质网→高尔基体→分泌泡 →细胞表面
(二)钙泵(Ca2+ pump )
又称Ca2+-ATP酶。
构成:1个多肽构成的整合膜蛋白,每个泵 单位含有10个跨膜α螺旋。
分布:
❖ 细胞质膜和内质网膜上。 ❖ 肌细胞的肌质网膜上。
工 作 原 理 :
3. 构象改变,破坏Ca2+结 4. 去磷酸化
1. 2Ca2+与位点结合 2. ATP水解;磷酸化
第三节 胞吞作用(endocytosis) 与胞吐作用(exocytosis)
大分子与颗粒性物质的跨膜运输 膜泡运输:转运过程中,物质包裹在囊泡中。 批量运输:同时转运一种或多种数量不等的
高中生物必修一课件:第四章第1节物质跨膜运输的实例 共54张
2.物质跨膜运输的特点 (1)物质跨膜运输并不都是 顺相对含量梯度的。 (2)细胞对于物质的输入和输出有 选择性。
3.结论
细胞膜和其它生物膜都是 选择透过性膜,可以让 水分子自由通过, 一些 和离子 也小可分以子通过,而其它的离子、小分子
和 大分子则不能通过。
[思维激活5] 农业生产中,不同作物及同一作物在不 同生长发育时期要施用不同的肥料,试分析其中的生 物学原理? 提示 植物对无机盐的吸收具有选择性。
液浓度时,细胞失水,发生质壁分离;若再使外界溶液 浓度小于细胞液浓度时,细胞吸水,发生质壁分离复原。
[思维激活3] 实验中共涉及三次显微镜观察,其中第一次观察的目 的是什么?
提示 观察正常洋葱鳞片叶表皮细胞的状态,以便与处理后的状 态形成对照。
[思维激活4] 已知K+、NO能透过半透膜,若该实验选用一定浓度 的KNO3溶液,滴加KNO3溶液后持续观察一段时间,细胞会发生怎 样的变化?
细胞失水、质壁分离 细胞吸水、细胞膨胀,但不会涨破
细胞吸水、失水平衡
3.探究植物细胞的吸水和失水 (1)实验过程
①制作装片:制作洋葱鳞片叶外表皮的临时装片,低倍显微镜观 察液泡的大小和原生质层的位置
②滴加质量浓度为
0.3g/mL的蔗糖 溶液,用低倍显微镜观察液泡
的大小变化和原生质层的位置
③滴加 清水 ,用低倍显微镜观察液泡的大小变化和原生质层的 位置
思维导图:
深度剖析 由于半透膜内为质量分数为30%的淀粉溶液,膜外为 蒸馏水,膜内浓度高于膜外浓度,水分子由膜外进入膜内,淀粉溶 液浓度降低,可用曲线乙表示,A选项错误。水分子进入半透膜内 的速率由膜内外两侧的浓度差决定。由于水分子不断进入半透膜内, 两侧的浓度差越来越小,水分子进入半透膜内的速率也逐渐下降, 可用曲线乙表示,B、D选项正确。随着水分子的进入,玻璃管内 的液面高度逐渐上升,可用曲线丙表示,C选项正确。 答案 A
【备考2023】高考生物一轮复习:第6讲 物质跨膜运输的方式(共65张PPT)
2.动物细胞的吸水和失水 细胞膜 细胞质
①外界溶液浓度 < 细胞质浓度⇒细胞吸水膨胀 (2)现象 ②外界溶液浓度 > 细胞质浓度⇒细胞 失水皱缩
③外界溶液浓度 = 细胞质浓度⇒水分子进出平衡
3.成熟植物细胞的吸水和失水 (1)原理
全透性
小
原生质层 细胞质
(2)实验步骤及现象
Байду номын сангаас
原生质层
低倍显微镜
。
提示 K+、NO3-都可转运到细胞内,使细胞液浓度升高,细胞渗透吸水而发生 自动复原
易错辨析 基于对渗透作用原理的理解,判断下列表述是否正确。 (1)玻璃纸是一种选择透过性膜,水分子可以透过,而蔗糖分子不能透过。
(× ) (2)渗透作用中膜两侧溶液的浓度指的是质量浓度。( × ) (3)细胞壁是全透性的,水分子和溶解在水里的物质都能够自由通过。
改变
道蛋白结合
(5)影响因素
①影响自由扩散的因素: 膜内外物质浓度梯度
。
②影响协助扩散的因素: 膜内外物质浓度梯度和转运蛋白的数量 。
2.主动运输
逆 载体蛋白
需要
低
高
载体蛋白
能量
主动运输 代谢废物
对细胞有害
3.大分子进出细胞的方式——胞吞和胞吐 (1)概念 ①胞吞:当细胞摄取大分子时,首先是大分子与细胞膜上的 蛋白质 结 合,从而引起这部分细胞膜内陷形成 小囊 ,包围着大分子。然后,小囊 从细胞膜上分离下来,形成 囊泡 ,进入细胞内部。 ②胞吐:细胞需要外排的大分子,先在细胞内形成 囊泡 ,囊泡移动到
【备考2023】高考生物一轮复习 第3单元 第6讲 物质跨膜运输的方式
素养目标
一、水进出细胞的原理 1.渗透作用原理 (1)概念:指水分子(或其他溶剂分子)通过 半透膜 的扩散。 (2)发生渗透作用的条件:一是具有 半透膜 ,二是半透膜两侧的溶液 具有 浓度差 。 (3)渗透的方向:水分子从水的相对含量 高 的一侧向相对含量 低 的一侧 渗透。
细胞生物学--细胞膜与跨膜运输 ppt课件
型
该模型认为膜的骨架是脂肪形成的脂双层结 构,脂双层的内外两侧都是由一层蛋白质包 被,即蛋白质-脂-蛋白质的三层结构,内外两 层的蛋白质层都非常薄。并且,蛋白层是以 非折叠、完全伸展的肽链形式包在脂双层的 内外两侧。1954年对该模型进行了修改:膜 上有一些二维伸展的孔,孔的表面也是由蛋 白质包被的,这样使孔具有极性,可提高水对 膜的通透性。这一模型是第一次用分子术语 描述的结构
膜糖的存在方式
通过共价键同膜脂或膜蛋白相连,即以糖脂或糖蛋 白的形式存在于细胞质膜上。
糖同氨基酸的连接主要有两种形式,即O-连接和N-连接
O-连接:是糖链与肽链中的丝氨酸或苏氨酸残基相连, O-连接糖链较短, 约含4个糖基。
N-连接: 是糖链与肽链中天冬酰胺残基相连,N-连接 的糖链一般有10个以上的糖基。另外,N连接的方式较O 连接普遍。
膜脂的不对称性
细胞质膜各部分的名称 膜脂与糖脂的不对称性
糖脂仅存在于质膜的ES面,是完成其生理功能的结构基础 非对称性形成原因: 磷脂:ER胞质半膜合成,Flippase选择性转运 糖脂: 催化糖基化反应的酶位于Golgi非胞质半膜,转运不
变
膜糖
存在于原核和真核细胞的质膜上(5%以下),神经细胞糖 脂含量较高;细胞质膜上所有的膜糖都位于质膜的外表面,
极性的头部、非极性的类固醇环结构和一个非极性的碳氢尾部。胆固醇的分子较 其他膜脂要小, 双亲媒性也较低。胆固醇的亲水头部朝向膜的外侧,疏水的尾部埋 在脂双层的中央。胆固醇分子是扁平和环状的,对磷脂的脂肪酸尾部的运动具有 干扰作用,所以胆固醇对调节膜的流动性、加强膜的稳定性有重要作用。
胆固醇的分子较其他膜脂要小, 双亲媒性也较低。胆固醇的亲水头部朝向 膜的外侧,疏水的尾部埋在脂双层的中央
该模型认为膜的骨架是脂肪形成的脂双层结 构,脂双层的内外两侧都是由一层蛋白质包 被,即蛋白质-脂-蛋白质的三层结构,内外两 层的蛋白质层都非常薄。并且,蛋白层是以 非折叠、完全伸展的肽链形式包在脂双层的 内外两侧。1954年对该模型进行了修改:膜 上有一些二维伸展的孔,孔的表面也是由蛋 白质包被的,这样使孔具有极性,可提高水对 膜的通透性。这一模型是第一次用分子术语 描述的结构
膜糖的存在方式
通过共价键同膜脂或膜蛋白相连,即以糖脂或糖蛋 白的形式存在于细胞质膜上。
糖同氨基酸的连接主要有两种形式,即O-连接和N-连接
O-连接:是糖链与肽链中的丝氨酸或苏氨酸残基相连, O-连接糖链较短, 约含4个糖基。
N-连接: 是糖链与肽链中天冬酰胺残基相连,N-连接 的糖链一般有10个以上的糖基。另外,N连接的方式较O 连接普遍。
膜脂的不对称性
细胞质膜各部分的名称 膜脂与糖脂的不对称性
糖脂仅存在于质膜的ES面,是完成其生理功能的结构基础 非对称性形成原因: 磷脂:ER胞质半膜合成,Flippase选择性转运 糖脂: 催化糖基化反应的酶位于Golgi非胞质半膜,转运不
变
膜糖
存在于原核和真核细胞的质膜上(5%以下),神经细胞糖 脂含量较高;细胞质膜上所有的膜糖都位于质膜的外表面,
极性的头部、非极性的类固醇环结构和一个非极性的碳氢尾部。胆固醇的分子较 其他膜脂要小, 双亲媒性也较低。胆固醇的亲水头部朝向膜的外侧,疏水的尾部埋 在脂双层的中央。胆固醇分子是扁平和环状的,对磷脂的脂肪酸尾部的运动具有 干扰作用,所以胆固醇对调节膜的流动性、加强膜的稳定性有重要作用。
胆固醇的分子较其他膜脂要小, 双亲媒性也较低。胆固醇的亲水头部朝向 膜的外侧,疏水的尾部埋在脂双层的中央
离子通道PPT课件
膜
系 统
3.信号传导, 例如,钙离子是细胞中重要的第二信使之一
和
离
4.调节膜电位,例如,植物细胞的动作电位
子
通 道
5.决定细胞的分裂和生长方向,钙离子通道能调节细胞分裂和
生长。
植物体内的离子通道参与了植物生长发育衰老死亡的全过程。
离子通道与细胞信号转导
植 物 细 胞 膜 系 统 和 离 子 通 道
全细 胞钾 离子 通道 电流
膜
单通
片
道记
钳 技
录钙
术
离子
简
通道
述
电流
膜片钳(仪器)
膜 片 钳 技 术 简 述
抛光仪
拉制仪
显微镜操作系统及可见光源
冷
膜 片 钳
光 源
技
术
简
述
膜片钳放大器、操作系统
低
温
水
膜 片 钳
浴 摇 床
技
术
简
述
膜片钳技术步骤
材料的
好坏直
接影响
膜
膜片钳
片
钳 技
实过离子通道通过离子多少。 )
3. 通道门控特性
4. 离子转运的高效性
植 物
5. 饱和现象 (离子跨膜运输可 分 为被动运输和主动运输
细
两类。由 扩散作用或物理 过程所决定的运输属于被动运
胞 膜
输;逆浓度梯度或电位梯度 运输 ,需要消耗能量属于主
系
动运输。离子通道 与载体蛋白都能准许离子沿浓度梯度或
(2)基本介质:甘露醇0.45mol/L、CaCl2 0.5mmol/L、MgCl2 0.5mmol/L、抗坏血酸 0.5mmol/L、KH2PO4 10mol/L、Mes 10mmol/L、pH5.5(KOH)。
人教生物必修1第4章第第3节物质跨膜运输的方式(共21张PPT)
外界溶液浓度与细胞质浓度相同 水分进出平衡
二、动物细胞的吸水和失水
讨论:红细胞的失水或吸水是否属于渗透现象?
细胞膜
细胞核
细胞质 动物细胞模式图
细胞膜:相当于半透膜 细胞质浓度与外界溶液浓度不同:具有浓度差
三、探究:植物细胞的吸水和失水
细胞壁
细胞质 液泡膜 细胞膜
原生质层
细胞液 细胞核
成熟的植物 细胞模式图
重复几次。
4.观察洋葱鳞片叶 4.观察低浓度溶液中的植物细胞: 细胞吸水时的细胞。 在盖玻片的一侧滴入清水,在盖玻片的
另一侧用吸水纸吸收,这样重复几次。
记录实验结果
正常状态
观察到 的图像
液泡大 小变化 原生质 层位置
高浓度状态 低浓度状态
① 细胞壁
② 细胞膜 原生 ③ 细胞质 质层 ④ 液泡膜 ⑤ 细胞液
的事就赶紧去做,并且尽量把它做到最好,这样才不会留下太多的遗憾和悔恨。淡看人生苦痛,淡薄名利,心态积极而平衡,有所求而有所不求,有所为而有所不为,不用刻意掩饰自己,不用势利逢迎他人,只是做一个简单真实的 自己。63.你所做的事情,也许暂时看不到成果,但不要灰心或焦虑,你不是没有成长,而是在扎 64.无论你从事什么行业,只要做好两件事就够了:一个是专业、一个是人品。专业决定了你的存在,人品决定了你的人脉;剩下的就 是坚持。65.给自己的三句话:一、年轻,什么都还来得及;二、不要纠缠于小事;三、你现在遇到的事都是小事。66.生活只有两种选择:重新出发,做自己生命的主角;抑或停留在原地,做别人的配角。67.决定你的人生高度的,不 是你的才能,而是你的人生态度!限制你的,从来就不是什么年龄,而是你的心态!68.水再浑浊,只要长久沉淀,依然会分外清澄;人再愚钝,只要足够努力,一样能改写命运!69.人最大的对手,就是自己的懒惰;做一件事并不 难,难的在于坚持;坚持一下也不难,难的是坚持到底;你全力以赴了,才有资格说自己运气不好;感觉累,也许是因为你正处于人生的上坡路;只有尽全力,才能迎来美好的明天!70.有理想,有目标,攒足力量向前冲;有勇气, 有信心,艰苦奋斗不放松;有恒心,有毅力,百折不挠不认输;加把劲,提提神,前途光明见曙光。71.想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不 到,又何必抱怨这个世界都和你作对?72.人生从来没有固定的路线,决定你能够走多远的,并不是年龄,而是你的努力程度。无论到了什么时候,只要你还有心情对着糟糕的生活挥拳宣战,都不算太晚。迟做,总比不做好!73.任 何打击都不应该成为你堕落的借口,你改变不了这个世界,但你可以改变自己,选择一条正确的路,坚定的走下去。74.也许你一生中走错了不少路,看错不少人 ,承受了许多的叛逆,落魄得狼狈不胜, 但都无所谓,只要还活着, 就总有盼望,余生很长, 何必慌张 75.这世界上,没有能回去的感情。就算真的回去了,你也会发现,一切已经面目全非回去的,只是存于心底的记忆。是的,回不去了,所以,我们只能一直往前。76.鸡汤再有理,终究是别人的 总结。故事再励志,也只是别人的经历,只有你自己才能改变自己。77.理想艰险,遇到再大的困难,想着为自己的理想奋斗,也不会选择放弃。即使在阴霾的云沙下,也会想到苍天苏醒的风和日丽。即使在封闭的角落中也会让心 灵驰骋在广阔的草原上。78.只要勇于去博,英勇去闯,就可闯出一片属于自己天地,以实现人生出色。不管结局能否完美,至少你享受拼搏的过程,就是人生的成功,就是胜者。79.一个人想要优秀,你必须接受挑战!一个人想要 尽快优秀,就要寻找挑战!80.人最大的对手,就是自己的懒惰;做一件事并不难,难的在于坚持;坚持一下也不难,难的是坚持到底;你全力以赴了,才有资格说自己运气不好;感觉累,也许是因为你正处于人生的上坡路;只有 尽全力,才能迎来美好的明天!81.每个人都有一行热泪,苦也要面对,因为坚强;每个人都有无言的伤,痛也要承受,因为成长。82.每一份坚持都是成功的累积!只要相信自己,总会遇到惊喜;每一种生活都有各自的轨迹!记得 肯定自己,不要轻言放弃;每一个清晨都是希望的开始,记得鼓励自己!83.我没有靠山,自己就是山!我没有天下,自己打天下!我没有资本,自己赚资本!这世界从来没有什么救世主。我弱了,所有困难就强了。我强了,所有 阻碍就弱了!活着就该逢山开路,遇水架桥。生活,你给我压力,我还你奇迹!.你要记得,在这个世界上,你是独一无二的,没人像你,你也不需要去代替谁。在你的人生舞台上,你是自己的主角,不需要去做谁
二、动物细胞的吸水和失水
讨论:红细胞的失水或吸水是否属于渗透现象?
细胞膜
细胞核
细胞质 动物细胞模式图
细胞膜:相当于半透膜 细胞质浓度与外界溶液浓度不同:具有浓度差
三、探究:植物细胞的吸水和失水
细胞壁
细胞质 液泡膜 细胞膜
原生质层
细胞液 细胞核
成熟的植物 细胞模式图
重复几次。
4.观察洋葱鳞片叶 4.观察低浓度溶液中的植物细胞: 细胞吸水时的细胞。 在盖玻片的一侧滴入清水,在盖玻片的
另一侧用吸水纸吸收,这样重复几次。
记录实验结果
正常状态
观察到 的图像
液泡大 小变化 原生质 层位置
高浓度状态 低浓度状态
① 细胞壁
② 细胞膜 原生 ③ 细胞质 质层 ④ 液泡膜 ⑤ 细胞液
的事就赶紧去做,并且尽量把它做到最好,这样才不会留下太多的遗憾和悔恨。淡看人生苦痛,淡薄名利,心态积极而平衡,有所求而有所不求,有所为而有所不为,不用刻意掩饰自己,不用势利逢迎他人,只是做一个简单真实的 自己。63.你所做的事情,也许暂时看不到成果,但不要灰心或焦虑,你不是没有成长,而是在扎 64.无论你从事什么行业,只要做好两件事就够了:一个是专业、一个是人品。专业决定了你的存在,人品决定了你的人脉;剩下的就 是坚持。65.给自己的三句话:一、年轻,什么都还来得及;二、不要纠缠于小事;三、你现在遇到的事都是小事。66.生活只有两种选择:重新出发,做自己生命的主角;抑或停留在原地,做别人的配角。67.决定你的人生高度的,不 是你的才能,而是你的人生态度!限制你的,从来就不是什么年龄,而是你的心态!68.水再浑浊,只要长久沉淀,依然会分外清澄;人再愚钝,只要足够努力,一样能改写命运!69.人最大的对手,就是自己的懒惰;做一件事并不 难,难的在于坚持;坚持一下也不难,难的是坚持到底;你全力以赴了,才有资格说自己运气不好;感觉累,也许是因为你正处于人生的上坡路;只有尽全力,才能迎来美好的明天!70.有理想,有目标,攒足力量向前冲;有勇气, 有信心,艰苦奋斗不放松;有恒心,有毅力,百折不挠不认输;加把劲,提提神,前途光明见曙光。71.想要体面生活,又觉得打拼辛苦;想要健康身体,又无法坚持运动。人最失败的,莫过于对自己不负责任,连答应自己的事都办不 到,又何必抱怨这个世界都和你作对?72.人生从来没有固定的路线,决定你能够走多远的,并不是年龄,而是你的努力程度。无论到了什么时候,只要你还有心情对着糟糕的生活挥拳宣战,都不算太晚。迟做,总比不做好!73.任 何打击都不应该成为你堕落的借口,你改变不了这个世界,但你可以改变自己,选择一条正确的路,坚定的走下去。74.也许你一生中走错了不少路,看错不少人 ,承受了许多的叛逆,落魄得狼狈不胜, 但都无所谓,只要还活着, 就总有盼望,余生很长, 何必慌张 75.这世界上,没有能回去的感情。就算真的回去了,你也会发现,一切已经面目全非回去的,只是存于心底的记忆。是的,回不去了,所以,我们只能一直往前。76.鸡汤再有理,终究是别人的 总结。故事再励志,也只是别人的经历,只有你自己才能改变自己。77.理想艰险,遇到再大的困难,想着为自己的理想奋斗,也不会选择放弃。即使在阴霾的云沙下,也会想到苍天苏醒的风和日丽。即使在封闭的角落中也会让心 灵驰骋在广阔的草原上。78.只要勇于去博,英勇去闯,就可闯出一片属于自己天地,以实现人生出色。不管结局能否完美,至少你享受拼搏的过程,就是人生的成功,就是胜者。79.一个人想要优秀,你必须接受挑战!一个人想要 尽快优秀,就要寻找挑战!80.人最大的对手,就是自己的懒惰;做一件事并不难,难的在于坚持;坚持一下也不难,难的是坚持到底;你全力以赴了,才有资格说自己运气不好;感觉累,也许是因为你正处于人生的上坡路;只有 尽全力,才能迎来美好的明天!81.每个人都有一行热泪,苦也要面对,因为坚强;每个人都有无言的伤,痛也要承受,因为成长。82.每一份坚持都是成功的累积!只要相信自己,总会遇到惊喜;每一种生活都有各自的轨迹!记得 肯定自己,不要轻言放弃;每一个清晨都是希望的开始,记得鼓励自己!83.我没有靠山,自己就是山!我没有天下,自己打天下!我没有资本,自己赚资本!这世界从来没有什么救世主。我弱了,所有困难就强了。我强了,所有 阻碍就弱了!活着就该逢山开路,遇水架桥。生活,你给我压力,我还你奇迹!.你要记得,在这个世界上,你是独一无二的,没人像你,你也不需要去代替谁。在你的人生舞台上,你是自己的主角,不需要去做谁
植物细胞跨膜离子运输机制
液泡膜H+-ATPase (V型-ATPase):催化部分在细胞质 一侧,在水解ATP过程中,将H+泵入液泡,建立跨液泡 膜的 H+浓度梯度和电势梯度。
• 它是由至少10个亚基构成的复合物 ,分子量 750kD; • 对钒酸不敏感,而受NO3抑制; • 不受K+激活,可被Cl-刺激;
V-ATPase model
当钾离子扩散平衡时,膜两侧电化学势相等,即:
μ0 +RTlnao + ZFEo= μ0+ RTlnai+ZFEi
ao
RTln——+ ZF(Eo-Ei) =0 ai ao RTln ——为化学势梯度 ai ZF(Eo-Ei)或 ZFΔE为电势梯度。
ai ΔE = — ln — ZF ao
RT
这就是著名的模斯特(Nernst)方程,它表明了膜电势差和膜内外离子活 度(浓度)的关系:即膜电势差与膜内外离子活度比的对数成正比。 对于一个单价阳离子,在25℃时, ai ΔE =59log — ao 可见当膜内、外浓度差10倍时,膜电位差相当于59mv
拟南芥中各种跨膜运输蛋白一览表
中文名称 ATP 结合跨膜运输蛋白 反向运转载体 水孔蛋白 无机溶质共运转载体 离子通道 有机溶质共运转载体 离子泵(ATP 酶) 氨基酸/生长素通透酶 主要内在蛋白 英文名称 基因家族数 基 因 数 量 ABC Transporters Antiporters Aquaporins Inorganic solute contransporters Ion channels Organic solute cotransporter Primary Pumps (ATPase) Amino acid/Auxin permease(AAAP) Major Intrinsic protein(MIP) 8 13 2 16 7 35 12 1 1 量 94 70 35 84 61 279 83 43 38
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
K+通道 内向钾离子通道(K+in) 外向钾离子通道( K+out)
电压门控K+通道模型
电压门控通道
Proposed structural model for AKT1, a plant K+in channel
二、离子载体( ion carrier)
• 生物膜上的一些有跨膜区域结构的 特殊蛋白。
植物细胞跨膜离子运输
第一节 生物膜的物理化学特性
一、生物膜的化学组成与生物膜的 “两亲性”和“绝缘性”
二、跨膜电化学势梯度和膜电位
一、生物膜的化学组成与生物膜的 “两亲性”和“绝缘性”
磷脂分子两亲性:亲水基团 疏水基团
带电离子
亲水部分
绝缘性 疏水层
具有强亲水性的带电离子不易通过膜的脂质双层结构
膜的相对通透性增高
人工膜 H2O 甘油
ClK+ Na+
P
10-2
10-4 10-6 10-8 10-10
生物膜 H2O
甘油
K+ ClNa+
生物膜与人工膜区别:生物膜中含有执行离子跨膜 运输功能的蛋白质。
二、跨膜电化学势梯度和膜电位
化学势
中性分子或粒子 浓度
带电粒子
电化学势 (浓度和电势)
膜电位:膜内外两侧的电势差。 分为:超极化(hyperpolarization) 去极化 (depolarization)
根尖、茎尖或叶肉细胞
patch clamp apparatus
第二节 细胞膜结构中的离子跨 膜运输蛋白
离子跨膜运输蛋白或离子运载体(ion transporter):镶嵌在生物膜中的大量功能 蛋白中执行离子跨膜运输过程的功能蛋白。
离子通道(ion channel) 离子载体( ion carrier) 离子泵(ion pump)
转运系统及机制 四、高等植物Ca2+的跨膜运转机制
一、氮素跨膜转运系统
吸收氮素形式:NH4+、NO3-、某些氮基酸、多肽等。
保卫细胞的特点 气孔运动的机理 影响气孔运动的因素 蒸腾意义
离子跨膜运输蛋白定义及特点: 离子通道 离子载体 离子泵
拟南芥中各种跨膜运输蛋白分类一览表
中文名称
英文名称
ATP结合跨膜运输复 合体
反向运转载体
ABC Transporters Antiporters
基因家族数 量
8
基因数 量
94
13
70
二、主动运输(active transport)
离子的跨膜运输与消耗水解ATP相偶联, 且被运送离子的方向是逆该离子跨膜电 化学势梯度进行。
如H+-ATPase
质膜上的主动运输 初始主动运输
跨膜质子电化 学势梯度
驱动其它离子或小分子通过相应载体 跨膜运输 次级主动运输
通过载体的次级共运输过程示意。在质子电化学势梯度的驱动下,溶质 S 被逆着其电化学势梯度运送过膜。(引自Taiz+Zeiger,1998)
多数植物所必需的矿质元素都是以离子形式 经质膜上的离子载体进入胞内。
三、离子泵(Ion pumps)
生物膜上的运输蛋白,具有 ATPase活性,靠水解ATP提供能 量将离子逆电化学势梯度跨膜运 输。
分为: 致电离子泵(electrogenic pump) 中性离子泵(electroneutral pump)
一、被动运输 二、主动运输 三、共运输
一、被动运输(passive transport)
离子的跨膜运输并不直接消耗ATP,且其 被动运输方式是顺跨膜电化学势梯度进行。
如简单扩散(simple diffusion)
离子的被动跨膜转运输是在载体的协助下 进行,其运输速度慢。
如协助扩散(facilitated diffusion)
三、共运输(co-transport)
也称协同运输,指两种溶质被同时运输 过膜的机制,两者缺一则此过程不会发生。
分为:同向共运输(symport) 反向共运输(antiport)
跨 膜 运 转 蛋 白 的 类 型
第四节 高等植物K+、Ca2+的 跨膜运输机制研究进展
一、氮素跨膜转运系统 二、磷元素跨膜转运系统 三、高等植物细胞K+的跨膜
水孔蛋白
Aquaporins
2
35
无机溶质共运转载体 Inorganic Solute Cotransporters
16
84
离子通道
Ion Channels
7
61
有机溶质共运转载体 Organic Solute Cotransporters
35
279
泵(ATP酶)
Primary Pumps (ATPa13 植物细胞膜H+-ATP酶结构式意图
(引自Buchanan等,2000)
图4-14 离子泵跨膜运输离子的过程示意图(引自 Taiz 和 Zeiger,1998)
植物细胞上确认的离子泵: 质膜上的H+-ATP 酶和Ca2+-ATP 酶 液泡膜上的H+-ATP 酶和Ca2+-ATP 酶 内膜系统上的H+-焦磷酸酶
• 具有活性结合部位,选择性地结 合物质,结合后构象发生变化, 再将物质释放于膜的另一侧。
•不具门控特性,由底物或其它化学 信号激活。载运物质的动力是跨膜 的电化学势梯度。
• 具有饱和效应
分为: 被动运输载体 主动运输载体,如离子泵
离子通过载体从膜的一侧运到另一侧示意图
载体的动力学饱和效应
通过动力学分析,可以区别溶 质是经通道还是经载体转运的, 经通道转运的是扩散过程,没有 饱和现象而经载体转运的,由于 结合部位数量有限,因此具有饱 和现象。
12
83
氨基酸/生长素通透酶 Amino Acid/Auxin Permease
1
43
(AAAP)
主要内在蛋白
Major Intrinsic Protein (MIP)
1
38
1. ATP酶
液 泡 膜 上 的
H+-ATPase
电化学势梯度
ATP酶逆电化学势梯度运送 阳离子到膜外去的假设步骤
第三节 植物细胞的离子跨膜 运输机制
The three classes of membrane transport proteins:channels,carriers,and pumps.
一、离子通道(ion channel)
生物膜上的离子运输蛋白,其氨基酸序列 中的若干疏水区域在膜上形成跨膜孔道结构, 具门控特性,多种因素调节其开放、关闭状态, 对离子具有选择性,离子顺电化学势梯度跨膜 运输。
电压门控K+通道模型
电压门控通道
Proposed structural model for AKT1, a plant K+in channel
二、离子载体( ion carrier)
• 生物膜上的一些有跨膜区域结构的 特殊蛋白。
植物细胞跨膜离子运输
第一节 生物膜的物理化学特性
一、生物膜的化学组成与生物膜的 “两亲性”和“绝缘性”
二、跨膜电化学势梯度和膜电位
一、生物膜的化学组成与生物膜的 “两亲性”和“绝缘性”
磷脂分子两亲性:亲水基团 疏水基团
带电离子
亲水部分
绝缘性 疏水层
具有强亲水性的带电离子不易通过膜的脂质双层结构
膜的相对通透性增高
人工膜 H2O 甘油
ClK+ Na+
P
10-2
10-4 10-6 10-8 10-10
生物膜 H2O
甘油
K+ ClNa+
生物膜与人工膜区别:生物膜中含有执行离子跨膜 运输功能的蛋白质。
二、跨膜电化学势梯度和膜电位
化学势
中性分子或粒子 浓度
带电粒子
电化学势 (浓度和电势)
膜电位:膜内外两侧的电势差。 分为:超极化(hyperpolarization) 去极化 (depolarization)
根尖、茎尖或叶肉细胞
patch clamp apparatus
第二节 细胞膜结构中的离子跨 膜运输蛋白
离子跨膜运输蛋白或离子运载体(ion transporter):镶嵌在生物膜中的大量功能 蛋白中执行离子跨膜运输过程的功能蛋白。
离子通道(ion channel) 离子载体( ion carrier) 离子泵(ion pump)
转运系统及机制 四、高等植物Ca2+的跨膜运转机制
一、氮素跨膜转运系统
吸收氮素形式:NH4+、NO3-、某些氮基酸、多肽等。
保卫细胞的特点 气孔运动的机理 影响气孔运动的因素 蒸腾意义
离子跨膜运输蛋白定义及特点: 离子通道 离子载体 离子泵
拟南芥中各种跨膜运输蛋白分类一览表
中文名称
英文名称
ATP结合跨膜运输复 合体
反向运转载体
ABC Transporters Antiporters
基因家族数 量
8
基因数 量
94
13
70
二、主动运输(active transport)
离子的跨膜运输与消耗水解ATP相偶联, 且被运送离子的方向是逆该离子跨膜电 化学势梯度进行。
如H+-ATPase
质膜上的主动运输 初始主动运输
跨膜质子电化 学势梯度
驱动其它离子或小分子通过相应载体 跨膜运输 次级主动运输
通过载体的次级共运输过程示意。在质子电化学势梯度的驱动下,溶质 S 被逆着其电化学势梯度运送过膜。(引自Taiz+Zeiger,1998)
多数植物所必需的矿质元素都是以离子形式 经质膜上的离子载体进入胞内。
三、离子泵(Ion pumps)
生物膜上的运输蛋白,具有 ATPase活性,靠水解ATP提供能 量将离子逆电化学势梯度跨膜运 输。
分为: 致电离子泵(electrogenic pump) 中性离子泵(electroneutral pump)
一、被动运输 二、主动运输 三、共运输
一、被动运输(passive transport)
离子的跨膜运输并不直接消耗ATP,且其 被动运输方式是顺跨膜电化学势梯度进行。
如简单扩散(simple diffusion)
离子的被动跨膜转运输是在载体的协助下 进行,其运输速度慢。
如协助扩散(facilitated diffusion)
三、共运输(co-transport)
也称协同运输,指两种溶质被同时运输 过膜的机制,两者缺一则此过程不会发生。
分为:同向共运输(symport) 反向共运输(antiport)
跨 膜 运 转 蛋 白 的 类 型
第四节 高等植物K+、Ca2+的 跨膜运输机制研究进展
一、氮素跨膜转运系统 二、磷元素跨膜转运系统 三、高等植物细胞K+的跨膜
水孔蛋白
Aquaporins
2
35
无机溶质共运转载体 Inorganic Solute Cotransporters
16
84
离子通道
Ion Channels
7
61
有机溶质共运转载体 Organic Solute Cotransporters
35
279
泵(ATP酶)
Primary Pumps (ATPa13 植物细胞膜H+-ATP酶结构式意图
(引自Buchanan等,2000)
图4-14 离子泵跨膜运输离子的过程示意图(引自 Taiz 和 Zeiger,1998)
植物细胞上确认的离子泵: 质膜上的H+-ATP 酶和Ca2+-ATP 酶 液泡膜上的H+-ATP 酶和Ca2+-ATP 酶 内膜系统上的H+-焦磷酸酶
• 具有活性结合部位,选择性地结 合物质,结合后构象发生变化, 再将物质释放于膜的另一侧。
•不具门控特性,由底物或其它化学 信号激活。载运物质的动力是跨膜 的电化学势梯度。
• 具有饱和效应
分为: 被动运输载体 主动运输载体,如离子泵
离子通过载体从膜的一侧运到另一侧示意图
载体的动力学饱和效应
通过动力学分析,可以区别溶 质是经通道还是经载体转运的, 经通道转运的是扩散过程,没有 饱和现象而经载体转运的,由于 结合部位数量有限,因此具有饱 和现象。
12
83
氨基酸/生长素通透酶 Amino Acid/Auxin Permease
1
43
(AAAP)
主要内在蛋白
Major Intrinsic Protein (MIP)
1
38
1. ATP酶
液 泡 膜 上 的
H+-ATPase
电化学势梯度
ATP酶逆电化学势梯度运送 阳离子到膜外去的假设步骤
第三节 植物细胞的离子跨膜 运输机制
The three classes of membrane transport proteins:channels,carriers,and pumps.
一、离子通道(ion channel)
生物膜上的离子运输蛋白,其氨基酸序列 中的若干疏水区域在膜上形成跨膜孔道结构, 具门控特性,多种因素调节其开放、关闭状态, 对离子具有选择性,离子顺电化学势梯度跨膜 运输。