数学分析课后习题答案20.1
数学分析课后习题答案

数学分析课后习题答案【篇一:数学分析试卷及答案6套】>一. (8分)用数列极限的??n定义证明?1.n二. (8分)设有复合函数f[g(x)], 满足: (1) limg(x)?b;x?a(2) ?x?u(a),有g(x)?u(b) (3) limf(u)?au?b00用???定义证明, limf[g(x)]?a.x?a三. (10分)证明数列{xn}:xn?cos1cos2cosn????收敛. 1?22?3n?(n?1)1在[a,1](0?a?1)一致连续,在(0,1]不一致连续. x四. (12分)证明函数f(x)?五. (12分)叙述闭区间套定理并以此证明闭区间上连续函数必有界.六. (10分)证明任一齐次多项式至少存在一个实数零点. 七. (12分)确定a,b使limax?b)?0.x???32八. (14分)求函数f(x)?2x?9x?12x在[?15,]的最大值与最小值. 42九. (14分)设函数f(x)在[a,b]二阶可导, f?(a)?f?(b)?0.证明存在??(a,b),使f??(?)?4f(b)?f(a). 2(b?a)数学分析-1样题(二)一. (10分)设数列{an}满足: a1?, an?1?(n?n), 其中a是一给定的正常数, 证明{an}收敛,并求其极限.二. (10分)设limf(x)?b?0, 用???定义证明limx?x0x?x011?. f(x)b三. (10分)设an?0,且liman?l?1, 证明liman?0.n??n??an?1四. (10分)证明函数f(x)在开区间(a,b)一致连续?f(x)在(a,b)连续,且 x?a?limf(x),limf(x)存在有限. ?x?b五. (12分)叙述确界定理并以此证明闭区间连续函数的零点定理.六. (12分)证明:若函数在连续,且f(a)?0,而函数[f(x)]2在a可导,则函数f(x)在a可导. 七. (12分)求函数f(x)?x???x???1在的最大值,其中0???1.八. (12分)设f在上是凸函数,且在(a,b)可微,则对任意x1,x2?(a,b), x1?x2,都有f?(x1)?f?(x2).?g(x),??????x?0?九. (12分)设f(x)??x 且g(0)?g?(0)?0, g??(0)?3, 求f?(0).??0???????,??????x?0数学分析-2样题(一)一.(各5分,共20分)求下列不定积分与定积分: 1. 3.?xarctanx?dx2.?edx4.?x?ln0??xsinx1?cosx二.(10分)设f(x)是上的非负连续函数, 三. (10分)证明?baf(x)dx?0.证明f(x)?0 (x?[a,b]).?2?sinx?0. x四. (15分)证明函数级数?(1?x)xn?0?n在不一致收敛, 在[0,?](其中)一致收敛.五. (10分)将函数f(x)?????x,????????x?0展成傅立叶级数.???x,??????0?x???22xy??????x?y?0?六. (10分)设f(x,y)???22???????????0,???????????????????x?y?0证明: (1) fx?(0,0), fy?(0,0)存在;(2) fx?(x,y),fy?(x,y)在(0,0)不连续; (3) f(x,y)在(0,0)可微.七. (10分)用钢板制造容积为v的无盖长方形水箱,怎样选择水箱的长、宽、高才最省钢板? 八. (15分)设0???1, 证明11. ????n?1n(n?1)数学分析-2样题(二)?一. (各5分,共20分)求下列不定积分与定积分:1.???(a?0)2.?x?xx?x100?8717121514dx3.?arcsinx??dx4.?二. (各5分,共10分)求下列数列与函数极限: 1. limn?22n??k?1n?kn2. limxx?01?ex?xetdt2三.(10分)设函数在[a,b]连续,对任意[a,b]上的连续函数g(x), g(a)?g(b)?0,有?baf(x)g(x)dx?0.证明f(x)?0 (x?[a,b]).四. (15分)定义[0,1]上的函数列1?22nx,?????????????????????x??2n?11?fn(x)??2n??2n2x?????????????x?2nn?1? ????????????????????????????x?1?n?证明{fn(x)}在[0,1]不一致收敛. 五. (10分)求幂级数?(n?1)xn?0?n的和函数.六. (10分)用???定义证明(x,y)?(2,1)lim(4x2?3y)?19.七. (12分)求函数u?(2ax?x2)(2by?y2)??(ab?0)的极值. 八. (13分)设正项级数数学分析-3样题(一)一 (10分) 证明方程f(x?zy?1, y?zx?1)?0所确定的隐函数z?z(x, y)满足方程?an?1?n收敛,且an?an?1???(n?n?).证明limnan?0.n??x?z?z?y?z?xy. ?x?y二 (10分) 设n个正数x1, x2, ?, xn之和是a,求函数u?三 (14分) 设无穷积分.???af(x) dx收敛,函数f(x)在[a, ??)单调,证明1x四 (10分) 求函数f(y)?五 (14分) 计算?1ln(x2?y2) dx的导数(y?0).sinbx?sinaxdx (p?0, b?a).0x六 (10分) 求半径为a的球面的面积s.i????e?px七 (10分) 求六个平面a1b1c1 ?a1x?b1y?c1z??h1 ,??a2x?b2y?c2z??h2 , ?=a2b2c2?0 , ?ax?by?cz??h ,a3b3c3333?3所围的平行六面体v的体积i,其中ai, bi, ci, hi都是常数,且hi?0 (i?1, 2, 3). 八 (12分) 求xdy?ydx??cx2?y2,其中c是光滑的不通过原点的正向闭曲线.九 (10分) 求ds2222?,其中是球面被平面z?h (0?h?a)所截的顶部. x?y?z?a??z?数学分析-3样题(二)一 (10分) 求曲面x?u?v, y?u2?v2, z?u3?v3在点(0, 2)对应曲面上的点的切平面与法线方程.二 (10分) 求在两个曲面x2?xy?y2?z2?1与x2?y2?1交线上到原点最近的点. 三(14分) 设函数f(x)在[1, ??)单调减少,且limf(x)?0,证明无穷积分x??????1f(x) dx与级数?f(n)同时收敛或同时发散.n?1??100四 (12分) 证明?e?ax?e?bxbdx?ln(0?a?b). xa五 (12分) 设函数f(x)在[a, a]连续,证明? x?[a, a],有1xlim ?[f(t?h)?f(t)] dt?f(x)?f(a).ah?0h六 (10分) 求椭圆区域r: (a1x?b1y?c1)2?(a2x?b2y?c2)2?1(a1b2?a2b1?0)的面积a.七 (10分) 设f(t)????vf(x2?y2?z2) dx dy dz,其中v: x2?y2?z2? t2 (t?0),f是连续函数,求f(t).八 (10分) 应用曲线积分求(2x?siny)dx?(xcosy)dy的原函数. 九(12分) 计算外侧.??xyz dx dy,其中s是球面xs2?y2?z2?1在x?0, y?0部分并取球面【篇二:数学分析三试卷及答案】lass=txt>一. 计算题(共8题,每题9分,共72分)。
数学分析简明教程答案

第二十一章曲线积分与曲面积分§1 第一型曲线积分与曲面积分1.对照定积分的基本性质写出第一型曲线积分和第一型曲面积分的类似性质。
解:第一型曲线积分的性质:1(线性性)设⎰L ds z y x f ),,(,⎰L ds z y x g ),,(存在,21,k k 是实常数,则[]ds z y x g k z y x f kL ⎰+),,(),,(21存在,且[]ds z y x g k z y x f k L⎰+),,(),,(21⎰⎰+=LLds z y x g kds z y x f k ),,(),,(21;2l ds L=⎰1,其中l 为曲线L 的长度;3(可加性)设L 由1L 与2L 衔接而成,且1L 与2L 只有一个公共点,则⎰Lds z y x f ),,(存在⇔⎰1),,(Lds z y x f 与⎰2),,(L ds z y x f 均存在,且=⎰Lds z y x f ),,(⎰1),,(L ds z y x f +⎰2),,(L ds z y x f ;4(单调性)若⎰L ds z y x f ),,(与⎰L ds z y x g ),,(均存在,且在L 上的每一点p 都有),()(p g p f ≤则⎰⎰≤L L ds p g ds p f )()(;5若⎰L ds p f )(存在,则⎰L ds p f )(亦存在,且≤⎰ds p f L)(⎰Ldsp f )(6(中值定理)设L 是光滑曲线,)(p f 在L 上连续,则存在L p ∈0,使得l p f ds p f L)()(0=⎰,l 是L 的长度;第一型曲面积分的性质: 设S 是光滑曲面,⎰⎰S ds p f )(,⎰⎰S ds p g )(均存在,则有1(线性性)设21,k k 是实常数,则[]⎰⎰+Sds p g k p f k)()(21存在, 且[]⎰⎰+Sds p g k p f k )()(21⎰⎰⎰⎰+=SSds p g k ds p f k )()(21;2s ds S=⎰1, 其中s 为S 的面积;3(可加性)若S 由1S ,2S 组成21S S S =,且1S ,2S 除边界外不相交,则⎰⎰Sds p f )(存在⇔⎰⎰1)(S ds p f 与⎰⎰2)(S ds p f 均存在,且⎰⎰Sds p f )(=⎰⎰1)(S ds p f +⎰⎰2)(S ds p f4 (单调性)若在S 上的的每一点p 均有),()(p g p f ≤则⎰⎰⎰⎰≤SSds p g ds p f )()(;5⎰⎰S ds p f )(也存在,且≤⎰⎰Sdsp f )(⎰⎰Sds p f )(;6 (中值定理)若)(p f 在S 上连续,则存在S p ∈0,使得使得s p f ds p f S⎰⎰=)()(0,其中s 为S 的面积。
高等数学分析教材答案

高等数学分析教材答案混用格式的高等数学分析教材答案第一章微分学1.1 函数与极限1.1.1 极限的定义设函数$f(x)$在$x_0$的某个领域内有定义,如果对于任意给定的正数$\varepsilon$,存在正数$\delta$,使得当$0 < |x - x_0| < \delta$时,就有$|f(x) - A| < \varepsilon$,则称函数$f(x)$当$x$趋于$x_0$时极限为$A$,记作$\lim_{x \to x_0} f(x) = A$。
【例题1】求极限$\lim_{x \to 2} \frac{x^2 - 4}{x - 2}$。
解:由题意,当$x \neq 2$时,可以将分式$\frac{x^2 - 4}{x - 2}$化简为$x + 2$。
因此,$\lim_{x \to 2} \frac{x^2 - 4}{x - 2} = \lim_{x \to 2} (x + 2) = 4$。
1.1.2 极限的性质与运算法则性质1:唯一性如果函数$f(x)$当$x$趋于$x_0$时极限存在,那么极限必定唯一。
性质2:有界性如果函数$f(x)$当$x$趋于$x_0$时极限存在且有界,那么函数$f(x)$在$x = x_0$处连续。
性质3:保号性如果函数$f(x)$当$x$趋于$x_0$时极限存在且大于(或小于)零,那么函数$f(x)$在$x = x_0$处大于(或小于)零。
运算法则1:四则运算法则如果$\lim_{x \to x_0} f(x) = A$,$\lim_{x \to x_0} g(x) = B$,那么:(1)$\lim_{x \to x_0} [f(x) + g(x)] = A + B$;(2)$\lim_{x \to x_0} [f(x) - g(x)] = A - B$;(3)$\lim_{x \to x_0} [f(x) \cdot g(x)] = A \cdot B$;(4)$\lim_{x \to x_0} \left[\frac{f(x)}{g(x)}\right] =\frac{A}{B}$(其中$B \neq 0$)。
数学分析课后习题答案

习题1.验证下列等式 (1)C x f dx x f +='⎰)()( (2)⎰+=C x f x df )()(证明 (1)因为)(x f 是)(x f '的一个原函数,所以⎰+='C x f dx x f )()(.(2)因为C u du +=⎰, 所以⎰+=C x f x df )()(.2.求一曲线)(x f y =, 使得在曲线上每一点),(y x 处的切线斜率为x 2, 且通过点)5,2(.解 由导数的几何意义, 知x x f 2)(=', 所以C x xdx dx x f x f +=='=⎰⎰22)()(.于是知曲线为C x y +=2, 再由条件“曲线通过点)5,2(”知,当2=x 时,5=y , 所以有 C +=225, 解得1=C , 从而所求曲线为12+=x y3.验证x x y sgn 22=是||x 在),(∞+-∞上的一个原函数. 证明 当0>x 时, 22x y =, x y ='; 当0<x 时, 22x y -=, x y -='; 当0=x 时,y 的导数为02sgn lim 0sgn )2(lim020==-→→x x x x x x x , 所以⎪⎩⎪⎨⎧=<-=>='||0000x x xx x xy 4.据理说明为什么每一个含有第一类间断点的函数都没有原函数解 由推论3的证明过程可知:在区间I 上的导函数f ',它在I 上的每一点,要么是连续点,要么是第二类间断点,也就是说导函数不可能出现第一类间断点。
因此每一个含有第一类间断点的函数都没有原函数。
5.求下列不定积分⑴C x x x x dx x dx x xdx dx dx x x x +-+-=-+-=-+-⎰⎰⎰⎰⎰-31423233233421)11(⑵C x x x dx x x x dx xx ++-=+-=-⎰⎰||ln 343)12()1(2332122⑶C gxC x gdx x ggxdx +=+⋅==⎰⎰-22212122121 ⑷ ⎰⎰⎰+⋅+=+⋅+=+dx dx dx x x x x x x x x )9624()3)32(22()32(222C x x x ++⋅+=9ln 96ln 624ln 4 ⑸C x dx x dx x +=-=-⎰⎰arcsin 23112344322⑹ C x dx x dx x x dx x x +-=+-=+-+=+⎰⎰⎰)arctan 1(31)111(31)1(311)1(322222 ⑺ C x x dx x xdx +-=-=⎰⎰tan )1(sec tan 22⑻ C x x dx x dx x xdx +-=-=-=⎰⎰⎰)2sin 21(21)2cos 1(2122cos 1sin 2⑼ C x x dx x x dx xx xx dx x x x +-=+=--=-⎰⎰⎰cos sin )sin (cos sin cos sin cos sin cos 2cos 22 ⑽C x x dx x x dx x x x x dx x x x +--=-=⋅-=⋅⎰⎰⎰tan cot )cos 1sin 1(sin cos sin cos sin cos 2cos 22222222 ⑾ C C dt dt tt ttt+=+⋅⋅=⋅=⋅⎰⎰90ln 90)910ln()910()910(3102 ⑿C x dx x dx x x x +==⎰⎰81587158⒀ C x dx xdx x x x x dx x x x x +=-=--+-+=+-+-+⎰⎰⎰arcsin 212)1111()1111(222⒁ C x x xdx dx dx x dx x x +-=+=+=+⎰⎰⎰⎰2cos 212sin 1)2sin 1()sin (cos 2⒂ C x x dx x x xdx x ++=+=⎰⎰)sin 3sin 31(21)cos 3(cos 212cos cos ⒃ C e e e e dx e e e e dx e e x xx x x x x x x x ++--=-+-=------⎰⎰33333313331)33()(习题1.应用换元积分法求下列不定积分:⑴ C x x d x dx x ++=++=+⎰⎰)43sin(31)43()43cos(31)43cos( ⑵ C e x d e dx xe x x x +==⎰⎰222222241)2(41⑶ C x x x d x dx ++=++=+⎰⎰|12|ln 2112)12(2112⑷ C x n x d x dx x n nn +++=++=++⎰⎰1)1(11)1()1()1(⑸Cx x xd xdx x dx xx++=-+-=-+-⎰⎰⎰3arcsin 313arcsin 3)3113131)31131(2222⑹ C C x d dx x x x x +=+=+=++++⎰⎰2ln 22ln 22)32(221222323232⑺C x C x x d x dx x +--=+-⋅-=---=-⎰⎰232321)38(92)38(3231)38()38(3138 ⑻C x C x x d x xdx+--=+-⋅-=---=-⎰⎰-3232313)57(103)57(2351)57()57(5157 ⑼ C x dx x dx x x +-==⎰⎰2222cos 21sin 21sin ⑽ C x x x d x dx++-=++=+⎰⎰)42cot(21)42(sin )42(21)42(sin 22ππππ⑾ 解法一:C xxx d x dxx dx+===+⎰⎰⎰2tan2cos 22cos 2cos 122解法二: ⎰⎰⎰⎰-=--=+xxdxx dx x dx x x dx 222sin cos sin cos 1)cos 1(cos 1 C x x xx d x ++-=--=⎰sin 1cot sin sin cot 2⑿解法一:利用上一题的结果,有C x C x x x d x dx +--=+--=-+--=+⎰⎰)24tan()2(21tan )2cos(1)2(sin 1ππππ 解法二: C x x xx d x dx x dx x x dx +-=+=--=+⎰⎰⎰⎰cos 1tan cos cos cos sin 1)sin 1(sin 1222 解法三:⎰⎰⎰+⋅=+=+222)12(tan 2cos )2cos 2(sin sin 1x x dxx x dx x dxC x x x d ++-=+=⎰12tan 2)12(tan 2tan 22⒀ 解法一:⎰⎰⎰---=-=)2()2sec()2sec(csc x d x dx x xdx πππC x x C x x ++-=+-+--=|cot csc |ln |)2tan()2sec(|ln ππ解法二:C x x x x d dx x x dx x xdx ++-=-===⎰⎰⎰⎰1cos 1cos ln 211cos cos sin sin sin 1csc 22C x x +-=|cot csc |ln解法三:⎰⎰++=dx x x x x x xdx cot csc )cot (csc csc cscC x x C xx x x d ++-=+++-=⎰|cot csc |ln cot csc )cot (csc解法四:⎰⎰⎰==dx x x xdx x x xdx 2cos2sin 22sin2cos 2sin 21csc 2C xC x x d x +=+-=-=⎰|2tan |ln |2cot |ln 2cot 2cot 1⒁C x x d x dx x x +--=---=-⎰⎰22221)1(11211 ⒂ C x dx x dx x x +=+=+⎰⎰2arctan 41)(4121422224⒃C x x x d x x dx +==⎰⎰|ln |ln ln ln ln⒄ C x x d x dx x x +-=---=-⎰⎰25535354)1(1101)1()1(151)1( ⒅ C x x C x x dx x dx x x ++-=++-⋅=-=-⎰⎰|22|ln 281|22|ln 221412)(1412444442483⒆C xx C x x dx x x x x dx ++=++-=+-=+⎰⎰|1|ln |1|ln ||ln )111()1( ⒇ C x dx x xxdx +==⎰⎰|sin |ln sin cos cot(21) ⎰⎰⎰-==x d x xdx x xdx sin )sin 1(cos cos cos 2245C x x x x d x x ++-=+-=⎰5342sin 51sin 32sin sin )sin sin 21((22) 解法一:C x x x x d x x dx +-==⎰⎰|2cot 2csc |ln 2sin )2(cos sin解法二:C x x xd x x xdx x x dx +===⎰⎰⎰|tan |ln tan tan cos sin cos cos sin 2 解法三:⎰⎰+=xx dxx x x x dx cos sin )cos (sin cos sin 22C x x dx xxx x +-=+=⎰|cos |ln |sin |ln )sin cos cos sin ((23) C e e de e dx e e e dx xx x x x x x+=+=+=+⎰⎰⎰-arctan 1122 (24) C x x x x x x d dx x x x ++-=+-+-=+--⎰⎰|83|ln 83)83(83322222(25) C x x x dx x x x dx x x x dx x x ++-+++=+++-+=+++-+=++⎰⎰⎰2323232)1(2312|1|ln ))1(3)1(211()1(3)1(2)1()1(2(26)⎰+22ax dx解 令t a x tan =, 则C a x x C t t t a tdt a a x dx+++=++==+⎰⎰||ln |tan sec |ln sec sec 221222(27)C a x x a a x x d a a x dx ++=+=+⎰⎰21222212222322)(1)(1)(解法2 令t a x tan =, 则C ax a x C t a tdt a t a tdt a a x dx ++=+===+⎰⎰⎰222223322322sin 1cos 1sec sec )( (28)⎰-dx xx 251解 令t x sin =, 则Cx x x C t t t td t tdt dt t t t dx x x +---+--=+-+-=--===-⎰⎰⎰⎰25223221253225525)1(51)1(32)1(cos 51cos 32cos cos )cos 1(sin cos cos sin 1(29)⎰-dx xx31解 令t x =61, 则6t x =, 56t dx =C t t t t t t dt tt t t dt tt t t t dt t t t dt t t dx x x++--+++-=-++++-=-++++-=-+-=-⋅=-⎰⎰⎰⎰⎰|11|ln 26)357(6)11)1((611)1)(1(6111)(61613572246224622422533其中61x t = (30)⎰++-+dx x x 1111解 令t x =+1, 则21t x =+, tdt dx 2=,Cx x x C x x x C t t t dt t t dt t t t tdt t tdt t t dx x x +++++-=+++++-+=+++-=++-=+-=+-=+-=++-+⎰⎰⎰⎰⎰|11|ln 414|11|ln 4141|1|ln 44)1442()142(2)121(21111111122.应用分部积分法求下列不定积分: ⑴ C x x x dx x x x x xdx +-+=--=⎰⎰221arcsin 1arcsin arcsin⑵ C x x x dx xx x x xdx +-=⋅-=⎰⎰ln 1ln ln ⑶Cx x x x x xdx x x x x x xd x x xdx x x x x d x xdx x +-+=-+=+=-==⎰⎰⎰⎰⎰sin 2cos 2sin cos 2cos 2sin cos 2sin sin 2sin sin cos 222222 ⑷C x x x dx x x x x xd dx x x +--=+-=-=⎰⎰⎰223223412ln 121ln 211ln 21ln ⑸ C x x x x x xdx x x dx x ++-=-=⎰⎰2ln 2)(ln ln 2)(ln )(ln 222⑹ ⎰⎰⎰+-==dx xx x x xdx xdx x 2222121arctan 21arctan 21arctan C x x x x dx x x x +--=+--=⎰)arctan (21arctan 21)111(21arctan 21222 C x x x +-+=21arctan )1(212⑺ ⎰⎰⎰+=+dx x dx x dx x x ln 1)ln(ln ]ln 1)[ln(ln C x x dx xdx x x x x x +=+⋅-=⎰⎰)ln(ln ln 1ln 1)ln(ln⑻ ⎰⎰--=dx xx x x x dx x 2221arcsin 2)(arcsin )(arcsin⎰-+=221arcsin 2)(arcsin x xd x x ⎰----+=dx xx x x x x 22221112arcsin 12)(arcsinC x x x x x +--+=2arcsin 12)(arcsin 22⑼ ⎰⎰⎰-==xdx x x x x xd xdx 23tan sec tan sec tan sec sec⎰⎰⎰+-=--=xdx xdx x x dx x x x x sec sec tan sec )1(sec sec tan sec 32 |tan sec |ln sec tan sec 3x x xdx x x ++-=⎰所以 C x x x x xdx +++=⎰|)tan sec |ln tan sec 21sec 3⑽⎰⎰+⋅-+=+dx ax x x a x x dx a x 222222⎰+-+-+=dx ax a a x a x x )(2222222⎰⎰+++-+=dx ax a dx a x a x x 2222222)ln(2222222a x x a dx a x a x x ++++-+=⎰所以C a x x a a x x dx a x +++++=+⎰))ln((212222222 类似地可得C a x x a a x x dx a x +-+--=-⎰))ln((212222222 3.求下列不定积分:⑴ C x f a x df x f dx x f x f a aa++=='+⎰⎰1)]([11)()]([)()]([ ⑵C x f x df x f dx x f x f +=+=+'⎰⎰)(arctan )()]([11)]([1)(22⑶C x f x f x df dx x f x f +=='⎰⎰|)(|ln )()()()( ⑷ C e x df e dx x f e x f x f x f +=='⎰⎰)()()()()(4.证明:⑴ 若⎰=dx x I n n tan , ,3,2=n ,则21tan 11----=n n n I x n I 证 ⎰⎰⎰----=-=dx x dx x x dx x x I n n n n 22222tan sec tan )1(sec tan22tan tan ---=⎰n n I x d x .因为⎰⎰-----=x d x n x x d x n n n tan tan )2(tan tan tan 212,所以x n x d x n n 12tan 11tan tan ---=⎰. 从而21tan 11----=n n n I x n I . ⑵ 若⎰=dx x x n m I n m sin cos ),(,则当0≠+n m 时,),2(1sin cos ),(11n m I nm m n m x x n m I n m -+-++=+-)2,(1sin cos 11-+-++-=-+n m I nm n n m x x n m , ,3,2,=m n证 ⎰⎰+-+==x d x n dx x x n m I n m nm 11sin cos 11sin cos ),( ]sin cos )1(sin [cos 112211⎰+-+--++=dx x x m x x n n m n m ])cos 1(sin cos )1(sin [cos 112211⎰--++=-+-dx x x x m x x n n m n m ))],(),2()(1(sin [cos 1111n m I n m I m x x n n m ---++=+-所以),2(1sin cos ),(11n m I n m m n m x x n m I n m -+-++=+-, 同理可得)2,(1sin cos ),(11-+-++-=-+n m I nm n n m x x n m I n m习题1.求下列不定积分:⑴ ⎰⎰⎰-+++=-+-=-dx x x x dx x x dx x x )111(1111233 C x x x x +-+++=|1|ln 2323 ⑵ 解法一:C x x dx x x dx x x x +--=---=+--⎰⎰|3|)4(ln )3142(127222解法二:⎰⎰⎰+-++--=+--dx x x dx x x x dx x x x 12732112772211272222 ⎰⎰---++-+-=)27(41)27(123127)127(21222x d x x x x x dC x x x x +--++-=34ln 23|127|ln 212 ⑶ 解22311)1)(1(111xx CBx x A x x x x +-+++=+-+=+ 去分母得 )1)(()1(12x C Bx x x A ++++-=令1-=x ,得31=A . 再令0=x ,得1=+C A ,于是32=C . 比较上式两端二次幂的系数得 0=+B A ,从而1-=B ,因此⎰⎰⎰+---+=+dxx x x x dx x dx 2312311311⎰⎰+-++---+=dx x x dx x x x x 22112111261|1|ln 31⎰+-++--+=dx x x x x 43)21(121)1ln(61|1|ln 3122C x x x x +-++-+=312arctan 311)1(ln 6122 ⑷ 解 ⎰⎰⎰⎰+--++=+--+=+dx xx dx x x dx x x x x dx 42424224112111211)1()1(211 ⎰⎰⎰⎰++-+-=+--++=22222222221)1(211)1(211112111121x x x x d x x x x d dx x x x dx x x x⎰⎰-++-+--=2)1()1(212)1()1(2122xx x x d x x x x d C xx x x x x +++-+--=2121ln 24121arctan221C x x x x x x ++++---=1212ln 8221arctan 42222 ⑸⎰+-22)1)(1(x x dx解 令22222)1(11)1)(1(1++++++-=+-x EDx x C Bx x A x x , 解得41=A , 41-==CB , 21-==E D , 于是 ⎰⎰⎰⎰++-++--=+-dx x x dx x x x dx x x dx 22222)1(1211141141)1)(1(C x x x x x x x +++-++-+--=)1(arctan 411141arctan 41)1ln(81|1|ln 41222 C x x x x x ++-+-+-=)11arctan 21|1|(ln 4122⑹⎰⎰⎰++-+++=++-dx x x dx x x x dx x x x 222222)122(125)122(2441)122(2 其中1221)122()122()122(24222222++-=++++=+++⎰⎰x x x x x x d dx x x x ⎰⎰⎰+++=++=++)12(]1)12[(12]1)12[(4)122(1222222x d x dx x dx x x )12arctan(1)12(122+++++=x x x 参见教材 例9或关于k I 的递推公式⑺. 于是,有C x x x x x dx x x x ++-+++-++-=++-⎰)12arctan(251)12(1225122141)122(22222 C x x x x ++-+++=)12arctan(25)122(23522.求下列不定积分⑴⎰-x dx cos 35解 令2tan xt =,则C t t t d tdt t dt t t dx x dx+=+=+=++--=-⎰⎰⎰⎰2arctan 21)2(1)2(2141121135cos 3522222 C x+=)2tan 2arctan(21 ⑵⎰⎰⎰⎰+=+=+=+)tan 32(tan cos )tan 32(sin 3cos 2sin 2222222x xd x x dx x x dx x dxC x x x d +=+=⎰)tan 23arctan(61)tan 231()tan 23(612 ⑶ ⎰⎰⎰++-+=+=+dx xx xx x x x x xdx x dx sin cos cos sin sin cos 21sin cos cos tan 1 )sin cos )cos (sin (21)sin cos cos sin 1(21⎰⎰⎰+++=++-+=x x x x d dx dx x x x x C x x x +++=|)sin cos |ln (21另解:设⎰+=x x xdx I sin cos cos 1,⎰+=x x xdxI sin cos sin 2,则C x dx x x xx I I +=++=+⎰sin cos sin cos 21,C x x x x x x d dx x x x x I I ++=++=+-=-⎰⎰|sin cos |ln sin cos )sin (cos sin cos sin cos 21所以C x x x I x dx +++==+⎰|)sin cos |ln (21tan 11⑷⎰⎰⎰-+++-+-=-+22221)1(11xx dx x dx x x dx xx x⎰⎰⎰-++-++---+-=2221231)12(211x x dxx x dx x dx x x其中(利用教材例7的结果)]1)21(512arcsin 45[21)21(451222x x x x dx x dx x x -+-+-=--=-+⎰⎰ 2222121)1(1)12(x x x x x x d x x dx x -+=-+-+=-++-⎰⎰512arcsin)21(45122-=--=-+⎰⎰x x dxxx dx所以有⎰-+dx xx x 221C x x x x x x x +-+-+--+-+--=512arcsin 231221]1)21(512arcsin 45[2122C x x x x +-++--=21432512arcsin 87 ⑸C x x x x x d xx dx ++++=-++=+⎰⎰|21|ln 41)21()21(222⑹⎰+-dx xxx 1112 解 令 x x t +-=11,则2211tt x +-=,22)1(4t tdtdx +-=,代入原式得 ⎰⎰⎰⎰---=--=+-⋅⋅⎪⎪⎭⎫ ⎝⎛-+=+-dt t t dt t t dt t t t t t dx x xx 222222222222)1(114)1(4)1(411111⎰⎰⎰⎰-+-++--=---=dt t t t dt t dt t dt t ]12)1(1)1(1[114)1(141142222222C t t t t dt t t dt t +++---+=-++--=⎰⎰1111|11|ln ])1(1)1(1[112222 C xx x x +---+=221|11|ln总 练 习 题求下列不定积分: ⑴C x x x dx x xx dx xx x +--=--=--⎰⎰-4312134541121414334132454)2(12⑵ ]11arcsin [21arcsin 21arcsin 2222⎰⎰⎰--==dx x x x x dx x dx x x 其中)2sin 21(2122cos 1cos cos sin 1222t t dt t dt t t t dx x x -=-==-⎰⎰⎰)1(arcsin 212x x x --=所以]11arcsin [21arcsin 222⎰⎰--=dx xx x x dx x xC x x x x x +---=)]1(arcsin 21arcsin [2122 C x x x x x +-+-=22141arcsin 41arcsin 21 ⑶⎰+xdx 1解 令u x =,则udu dx 2=C u u du uu udu xdx ++-=+-=+=+⎰⎰⎰|)1|ln (2)111(2121 C x x ++-=|)1|ln (2⑷ ⎰⎰⎰⎰===x x x x de x x d x e dx x x e dx x e sin sin sin sin sin 2sin sin 2cos sin 22sinC x e C e x e x d e x e x x x x x +-=+-=-=⎰)1(sin 2)sin (2)sin sin (2sin sin sin sin sin⑸ C x e C e u e du u e u x dx ex u u u x+-=+-==⎰⎰)1(2)(22)(令 ⑹C x x d x x x dx x xdx +-=--=-=-⎰⎰⎰1arcsin )1(1111112222 解法二:令t x sec =,C xC t dt t t t t x xdx +=+==-⎰⎰1arccos tan sec tan sec 12⑺⎰⎰⎰++=+-=+-x x x x d dx x x x x dx x x sin cos )sin (cos sin cos sin cos tan 1tan 1C x x ++=|sin cos |lnC x dx x dx x x +-=-=+-⎰⎰|)4cos(|ln )4tan(tan 1tan 1ππ ⑻ C x x x dx x x x dx x x x +-----=-+-+-=--⎰⎰23232)2(123|2|ln )2(2)2(3)2()2( ⑼C x x x d x xdx x x dx ++=+==⎰⎰⎰32224tan 31tan tan )tan 1(cos sec cos ⑽ ⎰⎰⎰-==dx x dx x dx x 2224)22cos 1()(sin sin⎰⎰++-=+-=dx x x dx x x )24cos 12cos 21(41)2cos 2cos 21(412 C x x x C x x x x ++-=+++-=4sin 3212sin 4183)84sin 22sin (41 ⑾ ⎰+--dx x x x 43523 解⎰⎰-+-=+--dx x x x dx x x x 223)2)(1(5435令22)2(21)2)(1(5-+-++=-+-x C x B x A x x x 去分母得:)1()2)(1()2(52++-++-=-x C x x B x A x 解得:32-=A ,32=B ,1-=C 所以⎰⎰⎰⎰---++-=+--dx x dx x dx x dx x x x 223)2(121321132435 C x x x +-++-=21|12|ln 32 ⑿ ⎰+dx x )1arctan(解 令u x =+1,du u dx )1(2-=⎰⎰⎰⎰-⋅=-⋅=+du u du u u du u u dx x arctan 2arctan 2)1(2arctan )1arctan(122)1ln(arctan 2]arctan )1[(C u u u u u u +++--+= C x x x x x ++++-+=)22ln()1arctan(⒀ ⎰⎰⎰+-=+-+=+dx x x x dx x x x x dx x x )22(2222433433747 C x x ++-=)2ln(214144 另解:C x x dx x dx x x x dx x x ++-=+-=+⋅=+⎰⎰⎰)2ln(2141)221(4122444443447 ⒁⎰++dx x x x2tan tan 1tan 解 令u x =tan⎰⎰⎰⎰++-+=+++=++du u u du u du u u u u dx x x x 222221111111tan tan 1tanC x x C u u ++-=++-=31tan 2arctan32312arctan32arctan⒂ ⎰⎰-+---=-dx x x x dx x x 10021002)1(1)1(2)1()1( C x x x +-+---=979899)1(971)1(491)1(991 ⒃⎰⎰⎰-+-=-=dx x x xx x d x dx x x 2211arcsin 1arcsin arcsin C xx x x +-+--=|11|ln arcsin 2⒄ ⎰⎰⎰--+=--+=-+2)]1ln()1[ln(21)]1ln()1[ln(11lndx x x dx x x x dx x x x C x xxx dx x x x x x x ++-+-=-++---+=⎰11ln 21)1111(21)]1ln()1[ln(21222⒅⎰⎰⎰+==x d xx dx xx dx xx tan tan tan 1cos tan 1cos sin 1247C x x ++=)tan 511(tan 22⒆ ⎰⎰⎰⎰+-++=+-+=+-dx x x e dx x e dx x x x e dx x x e xx x x22222222)1(21)1(21)11( C xe dx x e x e dx x e x d e dx x e x x x x x x ++=+-+++=+++=⎰⎰⎰⎰2222221111111 ⒇ ⎰=dx uv I n n ,x b a u 11+=,x b a v 22+=解 ][221211⎰⎰⎰--===dx v b u n u v b u d v b dx uv I n nn n n ])([2][21122111121⎰⎰---+-=-=dx uv b a b a v b n u v b dx u uv b n u v b n nn n ])([21122111----=n n nI b a b a n I nb u v b 所以])([)12(2112211---+=n n n I b a b a n u v b n I。
数学分析20.1第一型曲线积分(含习题及参考答案)

第二十章 曲线积分 1第一型曲线积分一、第一型曲线积分的定义引例:设某物体的密度函数f(P)是定义在Ω上的连续函数. 当Ω是直线段时,应用定积分就能计算得该物体的质量.当Ω是平面或空间中某一可求长度的曲线段时,可以对Ω作分割,把Ω分成n 个可求长度的小曲线段Ωi (i=1,2,…,n),并在每一个Ωi 上任取一点P i . 由f(P)为Ω上的连续函数知,当Ωi 的弧长都很小时,每一小段Ωi 的质量可近似地等于f(P i )△Ωi , 其中△Ωi 为小曲线段Ωi 的长度. 于是在整个Ω上的质量就近似地等于和式i ni i P f ∆Ω∑=1)(.当对Ω有分割越来越细密(即d=i ni ∆Ω≤≤1max →0)时,上述和式的极限就是该物体的质量.定义1:设L 为平面上可求长度的曲线段,f(x,y)为定义在L 上的函数.对曲线L 作分割T ,它把L 分成n 个可求长度的小曲线段L i (i=1,2,…,n),L i 的弧长记为△s i ,分割T 的细度为T =i ni s ∆≤≤1max ,在L i 上任取一点(ξi ,ηi ),( i=1,2,…,n). 若有极限i ni i i T s f ∆∑=→1),(lim ηξ=J ,且J 的值与分割T 与点(ξi ,ηi )的取法无关,则称此极限为f(x,y)在L 上的第一型曲线积分,记作:⎰L ds y x f ),(.注:若L 为空间可求长曲线段,f(x,y,z)为定义在L 上的函数,则可类似地定义f(x,y,z)在空间曲线L 上的第一型曲线积分⎰L ds z y x f ),,(.性质:1、若⎰L i ds y x f ),((i=1,2,…,k)存在,c i (i=1,2,…,k)为常数,则⎰∑=L ki i ids y x f c1),(=∑⎰=ki Li i ds y x f c 1),(.2、若曲线L 由曲线L 1,L 2,…,L k 首尾相接而成,且⎰iL ds y x f ),((i=1,2,…,k)都存在,则⎰L ds y x f ),(也存在,且⎰L ds y x f ),(=∑⎰=ki L i ids y x f 1),(.3、若⎰L ds y x f ),(与⎰L ds y x g ),(都存在,且f(x,y)≤g(x,y),则⎰Lds y x f ),(≤⎰Lds y x g ),(.4、若⎰L ds y x f ),(存在,则⎰L ds y x f ),(也存在,且⎰L ds y x f ),(≤⎰L ds y x f ),(.5、若⎰L ds y x f ),(存在,L 的弧长为s ,则存在常数c ,使得⎰L ds y x f ),(=cs, 这里),(inf y x f L≤c ≤),(sup y x f L.6、第一型曲线积分的几何意义:(如图)若L 为平面Oxy 上分段光滑曲线,f(x,y)为定义在L 上非负连续函数. 由第一型曲面积分的定义,以L 为准线,母线平行于z 轴的柱面上截取0≤z ≤f(x,y)的部分面积就是⎰Lds y x f ),(.二、第一型曲线积分的计算 定理20.1:设有光滑曲线L:⎩⎨⎧==)()(t y t x ψϕ, t ∈[α,β],函数f(x,y)为定义在L上的连续函数,则⎰L ds y x f ),(=⎰'+'βαψϕψϕdt t t t t f )()())(),((22. 证:由弧长公式知,L 上由t=t i-1到t=t i 的弧长为△s i =⎰='+'ii t t dt t t 1)()(22ψϕ.由)()(22t t ψϕ'+'的连续性与积分中值定理,有△s i =)()(22i i τψτϕ''+''△t i (t i-1<i τ'<t=t i ),∴i ni i i s f ∆∑=1),(ηξ=i i i ni i i t f ∆''+''''''∑=)()())(),((221τψτϕτψτϕ (t i-1<i τ',i τ''<t=t i ). 设σ=[]i i i i i n i i i t f ∆'''+'''-''+''''''∑=)()()()())(),((22221τψτϕτψτϕτψτϕ,则有in i iis f ∆∑=1),(ηξ=i i i ni iit f ∆'''+'''''''∑=)()())(),((221τψτϕτψτϕ+σ.令△t=max{△t 1,△t 2,…,△t n },则当T →0时,必有△t →0. 又复合函数f(φ(t),ψ(t))关于t 连续,∴在[α,β]上有界,即 存在常数M ,使对一切t ∈[α,β],都有|f(φ(t),ψ(t))|≤M. 再由)()(22t t ψϕ'+'在[α,β]上连续,从而在[α,β]上一致连续,即 ∀ε>0, ∃δ>0,使当△t<δ时有)()()()(2222i i i i τψτϕτψτϕ'''+'''-''+''<ε, 从而|σ|≤εM ∑=∆ni i t 1=εM(β-α), 即σlim 0→∆t =0. 又由定积分的定义,得i i i ni i i t t f ∆'''+'''''''∑=→∆)()())(),((lim221τψτϕτψτϕ=⎰'+'βαψϕψϕdt t t t t f )()())(),((22. 故⎰Lds y x f ),(=in i iit s f ∆∑=→∆1),(limηξ=i i i ni iit t f ∆'''+'''''''∑=→∆)()())(),((lim 221τψτϕτψτϕ+0lim →∆t σ=⎰'+'βαψϕψϕdt t t t t f )()())(),((22.注:1、若曲线L 由方程y=ψ(x), x ∈[a,b]表示,且ψ(x)在[a,b]上有连续的导函数时,则有⎰L ds y x f ),(=⎰'+ba dx x x x f )(1))(,(2ψψ.2、当曲线L 由方程x=φ(y), y ∈[c,d]表示,且φ(y)在[c,d]上有连续的导函数时,则有⎰L ds y x f ),(=⎰'+dc dy y y y f )(1)),((2ϕϕ. 3、对空间曲线积分⎰L ds z y x f ),,(,当曲线L 由参量方程x=φ(t),y=ψ(t),z=χ(t), t ∈[α,β]表示时,有⎰Lds z y x f ),,(=⎰'+'+'βαχψϕχψϕdt t t t t t t f )()()())(),(),((222. 4、由第一型曲线积分的定义,在Oxy 平面上,线密度为ρ(x,y)的曲线状物体对x,y 轴的转动惯量分别为:J x =⎰L ds y x y ),(2ρ和J x =⎰L ds y x x ),(2ρ.例1:设L 是半圆周⎩⎨⎧==t a y ta x sin cos , t ∈[0,π],试计算第一型曲线积分⎰+Lds y x )(22.解:⎰+L ds y x )(22=⎰++π022222222cos sin )sin cos (dt t a t a t a t a =⎰π03dt a =a 3π.例2:设L 是y 2=4x 从O(0,0)到A(1,2)的一段,试求第一型曲线积分⎰L yds . 解:⎰L yds =⎰+20241dy yy =⎰⎪⎪⎭⎫ ⎝⎛++202241412y d y =202324134⎪⎪⎭⎫ ⎝⎛+y =)122(34-.例3:计算⎰L ds x 2,其中L 为球面x 2+y 2+z 2=a 2被平面x+y+z=0所截得的圆周.解:由对称性知,⎰L ds x 2=⎰L ds y 2=⎰L ds z 2,∴⎰L ds x 2=⎰++L ds z y x )(31222=⎰L ds a 32=33πa .例4:求线密度ρ(x,y)=21xy +的曲线段y=lnx, x ∈[1,2]对于y 轴的转动惯量.解:J x =⎰L ds y x x ),(2ρ=⎰+Lds x y x 221=⎰++21222111ln dx xx x x =⎰21ln xdx x =ln4-43.习题1、计算下列第一型曲线积分:(1)⎰+L ds y x )(, 其中L 是以O(0,0), A(1,0),B(0,1)为顶点的三角形; (2)⎰+L ds y x 22, 其中L 是以原点为中心,R 为半径的右半圆周;(3)⎰L xyds , 其中L 为椭圆22a x +22by =1在第一象限中的部分;(4)⎰L ds y ||, 其中L 为单位圆周x 2+y 2=1;(5)⎰++L ds z y x )(222, 其中L 为螺旋线x=acost, y=asint, z=bt(0≤t ≤2π)的一段;(6)⎰L xyzds , 其中L 是曲线x=t, y=3232t , z=21t 2(0≤t ≤1)的一段; (7)⎰+L ds z y 222, 其中L 为x 2+y 2+z 2=a 2与x=y 相交的圆周. 解:(1) ⎰+L ds y x )(=⎰+OA ds y x )(+⎰+AB ds y x )(+⎰+BO dsy x )( =⎰10xdx +⎰102dx +⎰10ydy =1+2.(2)右半圆的参数方程为:x=Rcos θ, y=Rsin θ, -2π≤θ≤2π. ∴⎰+L ds y x 22=⎰-222ππθd R =πR 2.(3)方法一:∵y=22x a a b-, y ’=22xa a bx -, ∴⎰L xyds =⎰-+-adx x a a x b x a x a b 02222222)(1=⎰--adx x b a a a b 0222242)(2=)(3)(22b a b ab a ab +++.方法二:L 的参数方程为:x=acos θ, y=bsin θ,0≤θ≤2π.∴⎰L xyds =⎰+202222cos sin sin cos πθθθθθd b a ab=⎰-++-2022222cos 2cos 2)(224πθθd a b b a ab =)(3)(22b a b ab a ab +++. (4)方法一:圆的参数方程为:x=cos θ, y=sin θ,0≤θ≤2π, ∴⎰L ds y ||=⎰πθθ0sin d -⎰ππθθ2sin d =4. 方法二:∵|y|=21x -, (|y|)’=21xx --,∴⎰L ds y ||=2⎰--+-11222111dx x x x=2⎰-11dx =4. (5)⎰++L ds z y x )(222=⎰++π2022222)(dt b a t b a =2232b a +π(3a 2+4π2b 2).(6)x ’=1, y ’=t 2, z ’=t,∴⎰L xyzds =⎰++⋅⋅102232121232dt t t t t t =⎰+129)1(32dt t t =143216. (7)依题意,L 的参数方程可表示为:x=y=2a cos θ, z=asin θ, 0≤θ≤2π,∴⎰+L ds z y 222=⎰πθ202d a =2a 2π.2、求曲线x=a, y=at, z=21at 2(0≤t ≤1, a>0)的质量,设线密度为ρ=az 2. 解:⎰L ds a z 2=⎰+10222dt t a a t =⎰+102212dt t a =)122(3-a.3、求摆线x=a(t-sint), y=a(1-cost) (0≤t ≤π)的质心,设其质量分布均匀.解:∵dx=dt t a t a 2222sin )cos 1(+-=2asin 2t dt ,m=2a ρ0⎰π02sin dt t=4a ρ0.∴质心坐标为x=⎰-πρ002sin 2)sin (1dt t a t t a m =⎰-π0)2sin sin 2sin (2dt t t t t a =34a;y=⎰-πρ002sin 2)cos 1(1dt t a t a m =34a .4、若曲线以极坐标ρ=ρ(θ) (θ1≤θ≤θ2)表示,试给出计算⎰L ds y x f ),(的公式,并用此公式计算下列曲线的积分: (1)⎰+L y x ds e22, 其中L 为曲线ρ=a (0≤θ≤4π)的一段; (2)⎰L xds , 其中L 为对数螺线ρ=ae k θ (k>0)在圆r=a 内的部分. 解:L 的参数方程为x=ρ(θ)cos θ, y=ρ(θ)sin θ, (θ1≤θ≤θ2),ds=θθθd d dy d dx 22⎪⎭⎫ ⎝⎛+⎪⎭⎫ ⎝⎛=θθρθρd )()(22'+,∴⎰L ds y x f ),(=⎰'+21)()()sin ,cos (22θθθθρθρθρθρd f .(1)⎰+L y x ds e22=⎰40πθd ae a =4πae a . (2)⎰L xds =a ⎰∞-+022222cos θθθθθd e k a e a e k k k=a 2⎰∞-+022cos 1θθθd ekk =1412222++k k ka .注:∵⎰∞-02cos θθθd e k =⎰∞-02cos 21θθk de k =⎰∞-∞-+202sin 21cos 21d e ke kk k θθθθ=θθk e d k k 202sin 4121⎰∞-+=⎰∞--022cos 4121θθθd e kk k ; ∴⎰∞-⎪⎭⎫ ⎝⎛+022cos 411θθθd e k k =k 21,即⎰∞-02cos θθθd e k =1422+k k .5、证明:若函数f(x,y)在光滑曲线L: x=x(t), y=y(t), t ∈[α,β]上连续,则存在点(x 0,y 0)∈L ,使得⎰L ds y x f ),(=f(x 0,y 0)△L ,其中△L 为L 的弧长. 证:∵f 在光滑曲线L 上连续,∴⎰L ds y x f ),(存在,且⎰Lds y x f ),(=⎰'+'βαdt t y t x t y t x f )()())(),((22.又f(x(t),y(t))与)()(22t y t x '+'在[α,β]上连续,由积分中值定理知, ∃t 0∈[α,β],使⎰L ds y x f ),(=f(x(t 0),y(t 0))⎰'+'βαdt t y t x )()(22= f(x(t 0),y(t 0))△L. 令x 0=x(t 0), y 0=y(t 0), 则(x 0,y 0)∈L, 且⎰L ds y x f ),(=f(x 0,y 0)△L.。
数学分析数项级数课后习题答案

A 一、不定积分部分1.设()f x 具有可微的反函数()1fx -。
设()F x 是()f x 的一个原函数。
试证明()()()111f x dx xf x F f x C ---⎡⎤=-+⎣⎦⎰。
证 在公式右端对x 求导,我们有()(){}()()()()()()()()1111111111.df x df x d xf x F f x C f x x f f x dx dx dx df x df x f x x x f x dx dx----------⎡⎤⎡⎤-+=+-⎣⎦⎣⎦=+-=2. 设()f x 定义在(),a b 上,a c b <<,且有()()()()()()()()1212;;lim ,lim x cx cF x f x a x c F x f x c x b F x A F x B -+→→''=<<=<<==,若()f x 在x c =处连续,试证明()f x 在(),a b 上存在原函数。
证 作函数()F x 如下:()()()12,,,,,.F x a x c F x A x c F x B A c x b <<⎧⎪==⎨⎪-+<<⎩则()F x 在x c =处连续,由()f x 在x c =处连续知,()()lim lim x cx cF x F x -+→→=,故根据导函数的特征,即知()()F c f c '=。
因而()F x 是()f x 在(),a b 上的原函数。
3. 试证明下列命题:(1)(函数方程)设()f x 是(),-∞+∞上的可微函数,且满足()()()2,f x y f x f y xy x y +=++∈(),-∞+∞,则()()20f x x f x '=+;(2)设()f x 在[],a b 上连续,在(),a b 内可微,且()()0f a f b ==。
数值分析-课后习题答案

证明 (1)A正交,则ATA=AAT=E,Cond2(A)=A2A-12=1. (2)A对称正定,ATA=A2, A2=1. A-12=1/n.
精选课件
12
三.习题3 (第75页)
3-2.讨论求解方程组Ax=b的J迭代法和G-S迭代法的收
计算结果如下:
x x 1 2 ( (k k 1 1 ) ) 3 2 1 2 .x 5 2 (x k ) 1 (k 1 )
k
J法x1(k)
0
1.01
1
0.98
2
2.03
3
1.94
4
5.09
5
4.82
6
14.27
J法x2(k) 1.01 0.485 0.53 -1.045 -0.91 -5.635精选课件 -5.23
1.01
1.01
1
0.66
0.995
0.66
1.17
2
0.67
1.17
0.553333
1.223333
3
0.553333
1.165
0.517778
1.241111
4
0.556667
1.223333
0.505926
1.247037
5
0.517778
1.221667
0.501975
1.249012
6
0.518889
3 4精1选 课件
1
1
5
2-5.对矩阵A进行LDLT分解和GGT分解,并求解方程组
Ax=b,其中
16 4 8
1
数学分析习题答案(陈纪修第二版)

(3) f (x) = sin2 x + cos2 x , g(x) = 1。
解 (1)函数 f 和 g 不等同;
5
(2)函数 f 和 g 不等同;
(3)函数 f 和 g 等同。
7. (1) 设 f (x + 3) = 2x3 − 3x2 + 5x − 1,求 f (x) ;
(2)
设
f
⎜⎛ ⎝
x
x −
并且或者 x ∈ B ,或者 x ∈ D ,即 x ∈ A ∩ (B ∪ D) ,因此
A ∩ (B ∪ D) ⊃ (A ∩ B) ∪ (A ∩ D) 。
2
(2)设 x ∈ ( A ∪ B)C ,则 x∈A ∪ B ,即 x∈A 且 x∈B ,于是 x ∈ AC ∩ BC ,因 此
(A ∪ B)C ⊂ AC ∩ BC ; 设 x ∈ AC ∩ BC ,则 x∈A 且 x∈B ,即 x∈A ∪ B ,于是 x ∈ ( A ∪ B)C ,因此
⒎ 下述命题是否正确?不正确的话,请改正。 (1) x ∈ A ∩ B ⇔ x ∈ A 并且 x ∈ B ; (2) x ∈ A ∪ B ⇔ x ∈ A 或者 x ∈ B 。
解(1)不正确。 x ∈ A ∩ B ⇔ x ∈ A 或者 x ∈ B 。 (2)不正确。 x ∈ A ∪ B ⇔ x ∈ A 并且源自x ∈ B 。nn2
2n2 2
(1)的结论矛盾。
2. 求下列数集的最大数、最小数,或证明它们不存在:
A = {x|x ≥ 0};
B
=
⎨⎧sin ⎩
x|
0
<
x
<
2π 3
⎫ ⎬ ⎭
;
C
=
⎧n ⎩⎨ m
数学分析上册课后习题答案(叶淼林)

数学分析上册课后答案(叶淼林版)材料提供人:13级信息二班全体同学答案仅供参考,最终解释权归信息二班所有,侵权必究。
目录-----------------------------------------------------------------第一章.....................3第七章 (106)1.1......................37.1. (106)1.2......................47.2. (114)1.3......................67.3. (124)1.4......................10第八章 (128)1.5......................148.1. (128)1.6......................168.2. (131)第二章.....................19第九章.. (133)2.1......................199.1 (133)2.2......................229.2 (135)2.3......................32第十章.. (138)2.4 (35)2.5 (39)2.6 (43)第三章 (49)3.1 (49)3.2 (52)3.3 (57)3.4 (61)第四章 (65)4.1 (65)4.2 (69)4.3 (71)4.4 (73)4.5 (78)4.6 (81)第五章 (84)5.1 (84)5.2 (86)5.3 (93)第六章 (98)6.2 (98)6.3 (100)6.4 (101)6.5 (103)第一章§1.11、(1)实数和数轴是一一对应的关系。
(2)是无限不循环小数,是无理数。
(3)两个无理数之和还是无理数,一个有理数与一个无理数之和是无理数,当有理数不为零时,一个有理数与一个无理数的乘积是无理数。
数学分析课本(华师大三版)-习题及答案01

第一章 实数集与函数习题§1实数1、 设a 为有理数,x 为无理数。
证明: (1)a+ x 是无理数;(2)当a ≠0时,ax 是无理数。
2、 试在数轴上表示出下列不等式的解:(1)x (2x -1)>0;(2)|x-1|<|x-3|;(3)1-x -12-x ≥23-x 。
3、 设a 、b ∈R 。
证明:若对任何正数ε有|a-b|<ε,则a = b 。
4、 设x ≠0,证明|x+x1|≥2,并说明其中等号何时成立。
5、 证明:对任何x ∈R 有(1)|x-1|+|x-2|≥1;(2)|x-1|+|x-2|+|x-3|≥2。
6、 设a 、b 、c ∈+R (+R 表示全体正实数的集合)。
证明|22b a +-22c a +|≤|b-c|。
你能说明此不等式的几何意义吗?7、 设x>0,b>0,a ≠b 。
证明xb x a ++介于1与ba 之间。
8、 设p 为正整数。
证明:若p 不是完全平方数,则p 是无理数。
9、 设a 、b 为给定实数。
试用不等式符号(不用绝对值符号)表示下列不等式的解: (1)|x-a|<|x-b|;(2)|x-a|< x-b ;(3)|2x -a|<b 。
§2数集、确界原理 1、 用区间表示下列不等式的解:(1)|1-x|-x ≥0;(2)| x+x1|≤6;(3)(x-a )(x-b )(x-c )>0(a ,b ,c 为常数,且a<b<c ); (4)sinx ≥22。
2、 设S 为非空数集。
试对下列概念给出定义: (1)S 无上界;(2)S 无界。
3、 试证明由(3)式所确定的数集S 有上界而无下界。
4、 求下列数集的上、下确界,并依定义加以验证:(1)S={x|2x <2};(2)S={x|x=n !,n ∈+N };(3)S={x|x 为(0,1)内的无理数};(4)S={x|x=1-n21,n ∈+N }。
数学分析课本(华师大三版)-习题及答案第三章

数学分析课本(华师大三版)-习题及答案第三章第三章函数极限一、填空题 1.若[]2)(1ln lim20=+→x x f x ,则=→20)(lim xx f x _________ 2.=--+-→xxe e x x x x x 340sin 21sin lim _______________ 3.设xx x x f ??+-=11)(,则=+∞→)1(lim x f x ____________4.已知??>-=<+=2,12,02,1)(x x x x x x f ,1)(+=x e x g ,[]=→)(lim 0x g f x ________5.()x x x x ln cos arctan lim -+∞→=_________________6.[]=→xx x tan )sin(sin sin lim0_____________ 7.________24tan lim =+∞→n n x π8.________ln 1ln ln lim 2=??+→x x x x 9.)1ln(lim 2cos 0x x e e xx x x +-→=__________10.=?+-∞→x xx x x cos 1sin 21lim22_________ 11.=-→x x x x tan 11lim 20_________12.310)(1lim e x x fx xx =++→,则+→20)(1lim x x f x =_______ 13.()=+++→) 1ln(cos 11cossin 3lim20x x x x x x ___________ 二、选择填空1.=-→ttt cos 1lim( )A.0B.1C.2D.不存在2.函数xx x f 1cos 1)(=,在0=x 点的任何邻域内都是( ) A.有界的 B.无界的 C.单增 D.单减 3.已知()25lim 2=++-+∞→c yx ax x ,则必有( )A.20,25-==b a B. 25==b a C.0,25=-=b a D.2,1==b a4.设nn n x n x f ??-+=+∞→2lim )1(,则=)(x f ( )A.1-x eB.2+x eC.1+x eD.xe-5.若22lim 222=--++→x x bax x x ,则必有( ) A.8,2==b a B.5,2==b a C. 8,0-==b a D. 8,2-==b a6.0)(6sin lim30=+→x x xf x x ,则=+→20)(6lim xx f x ( ) A. 0 B.6 C.36 D.∞7.设对任意x 点有)()()(x g x p x ≤≤?,且[]0)()(lim =-∞→x x g x ?,则=∞→)(lim x f x ( )A.存在且一定为0B.存在且一定不为0C.一定不存在D.不一定存在 8.当0→x 时,变量x x1sin 12是( ) A.无穷小 B.无穷大C.有界,但不是无穷小D.无界的,但不是无穷大9.=-+?+∞→π21sin 1])1(1[lim n n n n( )A.πe B.π1e C.1 D.π2e10.=--→xx x xx x tan )(arctan 1lim 220( )A.0B.1C.21 D.21-11.x x x g dt t x f xsin )(,tan )(sin 02-==,则当0→x 时,)(x f 是)(x g 的( )A.高阶无穷小B.低阶无穷小C.同阶非等价无穷小D.等价无穷小三、计算题1.求下列极限:(1))x x cos x (sin 2lim 22x --π→; (2)1x x 21x lim 220x ---→;(3)1x x 21x lim 221x ---→; (4)3230x x 2x ) x 31()1x (lim +-+-→; (5)1x 1x lim m n 1x --→,(n ,m 为自然数);(6)2x 3x 21lim4x --+→;(7))0a (,xax a lim 20x >-+→;(8)xx cos x limx -∞→; (9)4x xsin x lim 2x -∞→ ;(10).)1x 5()5x 8()6x 3(lim 902070x --+∞→ 2.设,0a ,b x b x b x b a x a x a x a )x (f 0n1n 1n 1n 0m 1m 1m 1m 0≠++++++++=---- 0b 0≠,m ≤n ,试求).x (f lim x ∞→ 3.求下列极限(其中n 为自然数): (1)20 x x 11x xlim+→; (2)20x x11x x lim ++→; (3)1x nx x x lim n 21x --+++→ ;(4)x1x 1limnx -+→;(5)→x 1lim 0x ; (6)[]x x 1lim x +∞→.4.求下列函数在0x =处的左右极限或极限。
数学分析答案第四版

数学分析答案第四版【篇一:数学分析(4)复习提纲(全部版)】>第一部分实数理论1 实数的完备性公理一、实数的定义在集合r内定义加法运算和乘法运算,并定义顺序关系,满足下面三条公理,则称r为实数域或实数空间。
(1)域公理:(2)全序公理:则或a中有最大元而a?中无最小元,或a中无最大元而a?中有最小元。
评注域公理和全序公理都是我们熟悉的,连续性公理也称完备性公理有许多等价形式(比如确界原理),它是区别于有理数域的根本标志,它对实数的描述没有借助其它概念而非常易于接受,故大多数教科把它作为实数理论起步的公理。
二、实数的连续性(完备性)公理实数的连续性(完备性公理)有许多等价形式,它们在使用起来方便程度不同,这些公理是本章学习的重点。
主要有如下几个公理:确界原理:单调有界定理:区间套定理:有限覆盖定理:(heine-borel)聚点定理:(weierstrass)致密性定理:(bolzano-weierstrass)柯西收敛准则:(cauchy)习题1 证明dedekind分割原理与确界原理的等价性。
习题2 用区间套定理证明有限覆盖定理。
习题3 用有限覆盖定理证明聚点定理。
评注以上定理哪些能够推广到欧氏空间r?如何叙述? n2 闭区间上连续函数的性质有界性定理:上册p168;下册p102,th16.8;下册p312,th23.4最值定理:上册p169;下册下册p102,th16.8介值定理与零点存在定理:上册p169;下册p103,th16.10一致连续性定理(cantor定理):上册p171;下册p103,th16.9;下册p312,th23.7 习题4 用有限覆盖定理证明有界性定理习题5 用致密性定理证明一致连续性定理3 数列的上(下)极限三种等价定义:(1)确界定义;(2)聚点定义;(3)??n定义评注确界定义易于理解;聚点定义易于计算;??n定义易于理论证明习题6 用区间套定理证明有界数列最大(小)聚点的存在性。
数学分析课后习题答案

取有理数 r0 ,使得 loga (a x − ε ) < r0 < x .
sup 所以 a x = sup E ,即 a x =
{a r r为有理数}
r<x
≤
−6x
前 一 不 等 式 组 的 解 为 x ∈[3 − 2 2 , 3 + 2 2] , 后 一 不 等 式 组 解 为
x ∈[−3 − 2 2 ,− 3 + 2 2].
因此原不等式解为 x ∈[−3 − 2 2 ,− 3 + 2 2] [3 − 2 2 ,3 + 2 2]
⑶令 f (x) = (x − a)(x − b)(x − c) ,则由 a < b < c 知:
x
≥
0
或
x
−
1
−
x
≥
0
前一不等式组的解为 x ≤ 1 ,后一不等式组无解. 2
所以原不等式的解为
x ∈ −
∞
,
1 2
⑵不等式 x + 1 ≤ 6 等价于 − 6 ≤ x + 1 ≤ 6
x
x
x > 0
x < 0
这又等价于不等式组
−
6x
≤
x2
+1
≤
6x
或 6x
≤
x2
+1
§2 数集 确界原理
1、 用区间表示下列不等式的解:
⑴1− x − x ≥ 0;
⑵ x+ 1 ≤ 6; x
⑶ (x − a)(x − b)(x − c) > 0 ( a 、 b 、 c 为常数,且 a < b < c )
数学分析课后习题答案--高教第二版(陈纪修)--2章

数列极限
1. 按定义证明下列数列是无穷小量: ⑴ ⎨
⎧ n +1 ⎫ ⎬; 2 ⎩ n + 1⎭ 1 ⎩n
⑵ { ( −1) n (0.99) n }; ⑷ ⎨
⎧1 + 2 + 3 + n3 ⎩ + n⎫ ⎬; ⎭
⎧ −n ⎫ ⑶ ⎨ + 5 ⎬; ⎭
⑺ ⎨
⎧ n! ⎫ ; n ⎬ ⎩n ⎭ 2
⎧ ⑻ ⎨ − 1 ⎩n
hd
(2) ∀ε (0 < ε < 1) ,取 N = ⎢
n n
⎡ lg ε ⎤ ⎥ ,当 n > N 时,成立 ⎣ lg 0.99 ⎦
lg ε lg 0.99
案 网
(−1) (0.99) < (0.99)
后 答
2⎤ 2⎤ 1 ε ⎡ n > N 取 N1 = ⎡ , 当 时, 成立 ; 取 (3) = ∀ε (0 < ε < 2) , N log < 1 2 5 ⎢ ⎥ ⎢ ⎥, ⎣ε ⎦ n 2 ⎣
α
2
案 网
(1)的结论矛盾。
ww w
9
3+ 2 =
m2 m2 5 m ,于是 3 + 2 6 + 2 = 2 , 6 = 2 − ,即 6 是有理数,与 2 n n 2n
.k
hd
aw .c om
max C 与 min C 都不存在,因为 ∀
n n n +1 ,所以 max C 与 min C 都不存在。 < < m +1 m m +1
n n n +1 ∈ C ,有 ∈C , ∈C , m m +1 m +1
数学分析课后题答案

§1 实数连续性的等价描述2211.{}({},{})1(1).1; sup 1,inf 0;(2)[2(2)]; sup ,inf ;1(3),1,(1,2,); sup ,inf 2;1(4)[1(1)]; n n n n n n n n n n k k n n n n x x x x x x nx n x x x k x k x x k n x n ++∞-∞=-===+-=+∞=-∞==+==+∞=+=+-求数列的上下确界若无上下确界则称,是的上下确界:(1) sup 3,inf 0;(5)12; sup 2,inf 1;123(6)cos ; sup 1,inf .132nn n nn n n n n n n x x x x x n n x x x n π-===+==-===-+§2 实数闭区间的紧致性{}{}{}{}{}11122112225.,()..,0,. 2,,;max(2,),,; k k n n m n n n n n n n n n x x x a a i x G x x x G G x x x G G x x x x G →∞→∀>∈>=∈>=∈>若数列无界,且非无穷大量,则必存在两个子列,为有限数证明:由数列无界可知对于总有使得那么我们如下构造数列:取则有使得取则有使得取{}{}{}{}2331333max(2,),,;max(2,),,;lim 2,lim ..k k k k k n n n n k k n n n n k n n n n k n G x x x x G G x x x x G x x ii x -→∞→∞=∈>=∈>=+∞=+∞∃则有使得取则有使得由于那么我们可以知道我们得到一个子列满足由于数列不是无穷大量,那么12300111021220323300,0,,. 1,,,max(2,),,, max(3,),,,n n n n G N n N x G N n N x G N n n N x G N n n N x G >∀>∃><=∃><=∃><=∃><对使得我们如下构造数列:取那么使得取那么使得取那么使得{}{}{}100 max(2,),,,,,k k k k k k k n n m n N n n N x G G x x x -=∃><取那么使得 于是我们得到一个以为界的数列那么由紧致性定理可以知道此数列必有收敛子列显然这个收敛子列也必是数列的子列。
数学分析习题课讲义上册答案

8.2 函数的单调性 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 140
8.3 函数的极值与最值 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 142
10.3 变限积分与微积分基本定理 . . . . . . . . . . . . . . . . . . . . . . . . . . 186
10.4 定积分的计算 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 188
3.6 数列的上极限和下极限 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 42
3.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 45
5.3 有界性定理与最值定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 78
目录
5.4 一致连续性与 Cantor 定理 . . . . . . . . . . . . . . . . . . . . . . . . . . . 79 5.5 单调函数 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 81 5.6 周期 3 蕴涵混沌 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82 5.7 对于教学的建议 . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . 82
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
∫ (x
L
2
=
2 3
∫t
0
1
9/2
⋅(1 + t )dt =
16 2 . 143
x = y 2 2 2 2 y + z = a
, 其 参 数 方 程 为
(7)
其
截
线
为
圆
x=y=
a 2
sin t , z = a cos t , (0 ≤ t ≤ 2π ) ,于是
2π
∫
L
2 y 2 + z 2 ds = ∫ a a 2 sin 2 t + a 2 cos 2 t dt = 2a 2π .
L
∫
x2 + y2
ds ,其中 L 为曲线 ρ = a(0 ≤ θ ≤
kθ
π
4
) 的一段;
(2)
∫ xds ,其中 L 为对数螺线 ρ = ae
L
(k > 0) 在圆 r = a 内的部分.
解 因 L 的参数方程为 x =
ρ (θ ) cos θ , y = ρ (θ ) sin θ (θ1 ≤ θ ≤ θ 2 ) ,从而
0
2. 求曲线 x = a, y = at , z = 解 曲线质量为:
1 2 at (0 ≤ t ≤ 1, a > 0) 的质量,设其线密度为 ρ = 2
2z . a
M =∫
L
1 a 1 a 2z ds = ∫ t a 2 + a 2 t 2 dt = ∫ 1 + t 2 d (t 2 + 1) = (2 2 − 1). 0 2 0 3 a
α
β
又因 f 在 L 上连续,L 为光滑曲线,所以
f [ x(t ), y (t )] 与 x ′ 2 (t ) + y ′ 2 (t ) 在 [α , β ] 上连续.由积分中值定理知: ∃t 0 ∈ [α , β ] 使
∫
L
f [ x(t ), y (t )] x ′ 2 (t ) + y ′ 2 (t ) dt
AB BO
=
∫
1
0
xdx + ∫
1
0
2dx + ∫ ydy = 1 + 2 .
0
1
(2)右半圆周的参数方程为:
x = R cos θ , y = R sin θ .(−
从而
π
2
≤θ ≤
π
2
)
∫ (x
L
2
+ y ) ds = ∫ 2π R 2 dθ = πR 2 .
2 − 2
1 2
π
(3)因为 y =
b 2a 2
∫
a
0
a 4 − (a 2 − b 2 ) x 2 dx 2
=
ab(a 2 + ab + b 2 ) . 3(a + b)
(4)由于圆的参数方程为: x = a cos θ , y = a sin θ (0 ≤ θ ≤ 2π ) ,从而
∫
L
y ds = ∫ sin θdθ − ∫ sin θdθ = 4 .
1. 计算第一型曲线积分: (1) (2) (3) (4) (5) (6) (7)
∫ ( x + y)ds ,其中 L 是以 O(0,0), A(1,0), B(0,1) 为顶点的三角形.
L
∫ (x
L
2
+ y ) ds ,其中 L 是以原点为中心, R 为半径的右半圆周;
2
1 2
∫
L
xyds , 其中 L 为椭圆
L
2
2t 3 , z =
1 2 t (0 ≤ t ≤ 1) 的一段; 2
∫
LLeabharlann 2 y 2 + z 2 ds ,其中 L 是 x 2 + y 2 + z 2 = a 2 与 x = y 相交的圆.
解 (1)
∫ ( x + y)ds = ∫
L
OA
( x + y )ds + ∫ ( x + y )ds + ∫ ( x + y )ds
( x0 , y 0 ) ∈ L ,使得 ∫ f ( x, y )ds = f ( x0 , y 0 )∆L,
L
其中 ∆L 为 L 的弧长. 证 由于 f 在光滑曲线 L 上连续,从而曲线积分
∫
L
f ( x, y )ds 存在,且
∫
L
f ( x, y )ds = ∫ f ( x(t ), y (t )) x ′ 2 (t ) + y ′ 2 (t ) dt .
= f [ x (t 0 ), y (t 0 )]
∫α
β
x ′ 2 (t ) + y ′ 2 (t ) dt = f [ x(t 0 ), y (t 0 )] ⋅ ∆L .
令 x 0 = x(t 0 ), y 0 = y (t 0 ), 显然 ( x 0 , y 0 ) ∈ L ,且
∫
L
f ( x, y )ds = f ( x0 , y 0 )∆L .
b a 2 − x 2 , y′ = a
− bx a2 − x2
, 从而
∫ xyds = ∫
L
a
0
b x a 2 − x 2 1 + ( y ′) 2 dx a
=
∫
a
0
b b2 x2 x a2 − x2 1+ 2 2 dx a a (a − x 2 )
= =
b2 2 2 b a 2 2 a x − + x dx 2a ∫0 a2
cos θdθ ,则
0 −∞
I = e 2 kθ sin θ ∫ − 2kθ sin θ dθ = 2k − 4k 2 I
于是 I =
2k 2a 2 k 1 + k 2 , 故 . xds = 4k 2 + 1 ∫L 1 + 4k 2
5. 证 明 : 若 函 数 f ( x, y ) 在 光 滑 曲 线 L : x = x(t ), y = y (t ), t ∈ [α , β ] 上 连 续 , 则 存 在 点
x2 + y2
ds = ∫ 4 e a a 2 + 0dθ =
0
0
π
aπ a e . 4
0 −∞
(2)
∫ xds = ∫
−∞
ae kθ cos θ ⋅ a 2 e 2 kθ + a 2 x 2 e 2 kθ dθ = a 2 1 + k 2 ∫ e 2 kθ cos θdθ .
记I =
∫e
−∞
0
2 kθ
=
a π t a π t 3t 4 sin dt − ∫ (sin − sin )dt = a. ∫ 2 0 2 4 0 2 2 3
4. 若曲线以极坐标 ρ = 式计算下列曲线积分: (1) e
L
ρ (θ )(θ1 ≤ θ ≤ θ 2 ) 表示,试给出计算 ∫ f ( x, y )ds 的公式,并用此公
ds = (
故 =
dx 2 dy ) + ( ) 2 dθ = ρ 2 (θ ) + ρ '2 (θ ) dθ . dθ dθ
∫
θ2
1
L
f ( x, y )ds
∫θ
f ( ρ (θ ) cos θ ,ρ (θ ) sin θ ) ⋅ ρ 2 (θ ) + ρ ′ 2 (θ ) dθ .
(1)
∫e
L
L
x2 y2 + = 1 在第一象限中的部分; a2 b2
∫
L
y ds ,其中 L 为单位圆周 x 2 + y 2 = 1 ;
2
∫ (x
L
+ y 2 + z 2 )ds ,其中 L 为螺旋线 x = a cos t , y = a sin t , z = bt (0 ≤ t ≤ 2π ) 的一段;
∫ xyzds ,其中 L 是曲线 x = t , y = 3
3. 求摆线 解 因为
x = a (t − sin t ), (0 ≤ t ≤ π ) 的重心,设其质量分布是均匀的. y = a (1 − cos t )
t ds = a 2 (1 − cos t ) 2 + a 2 sin 2 t dt = 2a sin dt. 2 π t 所以 M = 2aρ 0 ∫ sin dt = 4aρ 0 . 故重心坐标为 0 2 1 π t ρ 0 a (t − sin t )2a sin dt x= ∫ 0 M 2 π π a t a t = ∫ t sin dt − ∫ sin t sin dt 0 0 2 2 2 2 π 3t 4 t π t a π t = − at cos | 0 + a ∫ cos dt + ∫ (cos − cos ) dt = a. 0 2 2 4 0 2 2 3 1 π t y= ρ 0 a (t − cos t )2a sin dt M ∫0 2
0
π
2π
π
(5)
2π 2 + y 2 + z 2 )ds = ∫ (a 2 + b 2 t 2 ) a 2 + b 2 dt = π (3a 2 + 4π 2 b 2 ) a 2 + b 2 . 0 3 1 2 1 (6) ∫ xyzds = ∫ t ⋅ 2t 3 ⋅ t 2 1 + 2t + t 2 dt 0 L 3 2