结构设计控制12个重要参数的目的

合集下载

建筑结构设计计算步骤参数确定分析

 建筑结构设计计算步骤参数确定分析

建筑结构设计计算步骤参数确定分析建筑结构是一个涉及多学科知识的领域,其中结构设计计算是整个建筑过程中至关重要的一步。

本文将围绕建筑结构设计计算步骤、参数的确定和分析展开讨论。

一、结构设计计算步骤结构设计计算是建筑设计的重要组成部分,建筑结构设计计算步骤通常包括以下内容:1.确定设计荷载:设计荷载是结构计算的基础,荷载分为静载和动载两种。

静载包括自重、建筑材料及构件重量、实用荷载等,动载包括风载、地震荷载等。

2.材料选择:材料的选择直接影响建筑结构的强度和稳定性。

常见的材料包括钢材、混凝土、木材等。

3.结构分析:结构分析是建筑结构设计计算的核心步骤,其目的是确定结构受力状态和结构强度。

常见的结构分析方法包括弹性分析和弹塑性分析。

4.设计结构构件:设计结构构件是根据结构分析结果确定构件的几何形状、尺寸和布置方式。

设计过程需要考虑结构构件的强度、刚度、稳定性等因素。

5.校核设计:校核设计是确保设计结果符合结构安全和稳定性要求的步骤。

在校核设计中,通常会进行结构强度、刚度和稳定性的分析。

二、参数的确定和分析在建筑结构设计计算过程中,参数的确定和分析是关键环节。

参数的确定通常有以下几个方面:1.确定荷载值:荷载值的确定直接影响结构的安全性和稳定性。

确定荷载值需要考虑建筑类型、设计用途、场地条件等多方面因素。

2.确定材料性能:不同材料的性能不同,如强度、韧性、抗裂性等。

根据建筑结构的实际情况,应选择相应材料并确定其性能参数。

3.确定结构分析方法:结构分析方法的选择取决于建筑结构的复杂程度、受力情况和工程需求。

常用的结构分析方法包括有限元方法、力法、位移法等。

4.确定结构构件的尺寸和布置:结构构件的尺寸和布置需要根据受力及使用要求进行合理设计。

尺寸过大过小、布置不合理都会影响建筑的稳定性。

5.确定校核设计方法:校核设计方法的选择需要根据结构的实际情况和需求。

校核设计过程中需要考虑的因素包括强度、稳定性、刚度和振动等。

结构设计常用参数表

结构设计常用参数表

一、钢筋的计算截面面积及理论重量101151201注:表中直径d=8.2mm 的计算截面面积及理论重量仅适用于有纵肋的热处理钢筋二、每米板宽内的钢筋截面面积表三、单肢箍Asv1/s(mm2/mm)四、梁内单层钢筋最多根数14 16九、混凝土保护层《混凝土结构设计规范》第9.2.1条纵向受力的普通钢筋及预应力钢筋,其混凝土保护层厚度(钢筋外边缘至混凝土表面的距离)不应小于钢筋的公称直径,且应符合表9.2.1的规定。

表9.2.1 纵向受力钢筋的混凝土保护层最小厚度(mm)梁注:基础中纵向受力钢筋的混凝土保护层厚度不应小于40mm;当无垫层时不应小于70mm。

第9.2.3条板、墙、壳中分布钢筋的保护层厚度不应小于本规范表9.2.1中相应数值减10mm,且不应小于10mm;梁、柱中箍筋和构造钢筋的保护层厚度不应小于15mm。

第9.2.4条当梁、柱中纵向受力钢筋的混凝土保护层厚度大于40mm时,应对保护层采取有效的防裂构造措施。

通常在砼保护离构件表面10-15mm处增配φ4@150钢筋网片。

处于二、三类环境中的悬臂板,其上表面应采取有效的保护措施。

第9.2.5条对有防火要求的建筑物,其混凝土保护层厚度尚应符合国家现行有关标准的要求。

处于四、五类环境中的建筑物,其混凝土保护层厚度尚应符合国家现行有关标准的要求。

注意事项:混凝土最低强度等级和保护层厚度问题1、±0.00以下(基础、底层柱)和屋面、露台梁板环境类别为二(a)类,应采用C25或以上混凝土。

2、基础混凝土保护层厚度为40mm,特别注意基础梁纵向钢筋净距是否满足规范要求。

3、应根据混凝土构件所处的环境类别和强度等级修改结构分析程序的保护层厚度。

十、纵向受力钢筋的配筋率10.1、考虑到满足最小配筋率要求,常见板纵向受力钢筋的最小配筋率应符合《混凝土结构设计规范》第9.5.1条的规定:《混凝土规范》第9.5.1条钢筋混凝土结构构件中纵向受力钢筋的配筋百分率不应小于表9.5.1规定的数值。

最新国家开放大学电大《建筑结构试验》期末题库及答案

最新国家开放大学电大《建筑结构试验》期末题库及答案

最新国家开放大学电大《建筑结构试验》期末题库及答案考试说明:本人针对该科精心汇总了历年题库及答案,形成一个完整的题库,并且每年都在更新。

该题库对考生的复习、作业和考试起着非常重要的作用,会给您节省大量的时间。

做考题时,利用本文档中的查找工具,把考题中的关键字输到查找工具的查找内容框内,就可迅速查找到该题答案。

本文库还有其他网核及教学考一体化答案,敬请查看。

《建筑结构试验》题库及答案一一、单向选择题(每小题3分,共计36分,将选择结果填入括弧)1.下列各项,( )项不属于生产检验性试验。

A.鉴定服役结构的可靠性B.鉴定结构的设计和施工C.检验预制构件的性能D.新结构应用于实际工程之前的模型试验2.( )不允许试验结构产生转动和移动。

A.固定端支座 B.滚动铰支座C.固定铰支座 D.固定球铰支座3.结构受轴向拉压作用情况,( )的布片和测量桥路的特点是:消除了温度影响,也消除了偏心荷载的影响,桥路测量灵敏度提高一倍,但使用的应变片较多。

A. 外设补偿片的半桥测试方案B.测量应变片互相补偿的半桥测试方案C.外设补偿片的全桥测试方案D.测量应变片互相补偿的全桥测试方案4.下列各项中,( )项不是无损检测技术的主要任务。

A.评定建筑结构和构件的施工质量B.为制定设计规范提供依据C.对古老的建筑物进行安全评估D.对受灾的、已建成的建筑物进行安全评估5.( )检测技术可用于混凝土结合面的质量检测和混凝土内部空洞、疏松等缺陷的检测。

A.超声法 B.钻芯法C.回弹法 D.扁顶法6.在结构试验的试件设计时,对于整体性的结构试验试件,尺寸比例可取为原型的 ( )A. 1/4~1 B.1/2~1C.1/5—1 D.1/10~1/27.常用的弹性模型材料不包括以下哪一种?( )A.石膏 B.水泥砂浆C.金属材料 D.塑料8.用量纲分析法进行结构模型设计时,下列量纲中,( )项不属于基本量纲。

A. 质量 B.应力C.长度 D.时间9.下列原因所引起的误差属于随机误差的是( )。

12个结构参数

12个结构参数

1.轴压比目的:控制构件保持一定延性。

规范规定:限值各等级的剪力墙和框架(支)柱轴压比;注意:剪力墙的轴压比对应的荷载为重力荷载代表值的设计值;框架(支)柱轴压比对应的荷载为含水平荷载的工况组合,多为地震工况组合。

2.扭转周期比目的:限制结构抗扭刚度不能太弱。

规范规定:限制结构扭转为主的第一周期Tt与平动为主的第一周期T1之比。

振型判别方法:振型方向因子来判断,因子以50%作为分界。

相关规定:全国超限建筑抗震设防中对周期比比值不足不是一项超限,广东抗震审查技术要求中无该条规定。

3.有效质量参与系数目的:保证考虑充足的地震作用。

要求:计算振型数应使各振型参与质量之和不小于总质量的90%。

4.刚重比目的:确定在水平荷载下,结构二阶效应不致过大,而引起稳定问题。

要求:高规5.4重力二阶效应及结构稳定注意:此处重力为重力荷载设计值,取1.2恒+1.4活。

5.剪重比目的:由于地震影响系数在长周期下降较快,对基本周期大于3s结构水平地震下结构效应可能影响过小,偏于不安全。

要求:高规4.3.12:“剪重比”注:此处此处重力为重力荷载代表值。

6.位移比目的:限制结构平面布置不规则性规定限值:1.2、1.4、1.5和1.6计算要求:(1)风荷载不控制(2)单向地震+偏心算,而且是采用规定水平力的施加模式。

(3)双向地震下控制。

(4)单向地震+偏心,CQC不控制。

新增的1.6出处:7.层间位移角目的:同体系和高度有关,详见规范,以弯曲变形为主的高层建筑不扣除整体弯曲变形。

计算要求:(1)风、单向地震均控制(2)单向地震+偏心不控制(3)双向地震不控制,除扭转特别严重外,一般双向地震同单向地震结构相近。

8.刚度比(软弱)目的:控制结构出现软弱层要求:高规(分结构体系)9.楼层受剪承载力比(薄弱层)目的:检验结构是否存在薄弱层要求:高规注意超限审查和高规中均提到,结构不应在同一层出现软弱层和薄弱层。

10.相邻楼层质量比目的:检验高层建筑中质量沿竖向分布不规则。

结构设计的七个控制指标

结构设计的七个控制指标

2.3.剪重比不满足时的调整方法: 2.3.1.程序调整:在 SATWE 的“调整信息”中勾选“按抗震规范 5.2.5 调整各楼层地
震内力”后,SATWE 按 10 抗规 5.2.5 自动将楼层最小地震剪力系数直接乘以该层及以上 重力荷载代表值之和,用以调整该楼层地震剪力,以满足剪重比要求。 2.3.2.人工调整:如果还需人工干预,可按下列三种情况进行调整: a:当地震剪力偏小而层间侧移角又偏大时,说明结构过柔,宜适当加大墙、柱截面,提 高刚度; b:当地震剪力偏大而层间侧移角又偏小时,说明结构过刚,宜适当减小墙、柱截面, 降低刚度以取得合适的经济技术指标; c:当地震剪力偏小而层间侧移角又恰当时,可在 SATWE 的“调整信息”中的“全楼 地震作用放大系数”中输入大于 1 的系数增大地震作用,以满足剪重比要求。 2.4.电算结果的判别与调整要点: a:对于竖向不规则结构的薄弱层的水平地震剪力应增大 1.15 倍,即上表中楼层最小剪 力系数λ 应乘以 1.15 倍。当周期介于 3.5S 和 5.0S 之间时,可对于上表采用插入法求值。 b:般高层建筑而言,结构剪重比底层为最小 ,顶层最大,故实际工程中,结构剪重比由底层 控制,由下到上,哪层的地震剪力不够,就放大哪层的设计地震内力。 c:构各层剪重比及各楼层地震剪力调整系数自动计算取值,结果详 SATWE 周期、地震 力与振型输出文件 WZQ.OUT) 。 d:层地震内力自动放大与否在调整信息栏设开关;如果用户考虑自动放大,SATWE 将 在 WZQ.OUT 中输出程序内部采用的放大系数。 e 度区剪重比可在 0.7%~1%取。若剪重比过小,均为构造配筋,说明底部剪力过小,要 对构件截面大小、周期折减等进行检查;若剪重比过大,说明底部剪力很大,也应检查结构 模型,参数设置是否正确或结构布置是否太刚。 2.5.设计要点: 2.5.1:剪重比不满足要求时,首先要检查有效质量系数是否达到 90%(剪重比是反映 地震作用大小的重要指标,它可以由“有效质量系数”来控制,当“有效质量系数”大于 90%时,可以认为地震作用满足规范要求) 。若没有,则有以下几个方法:a: 查看结构空间 振型简图,找到局部振动位置,改变布置,去掉局部振动(局部振动是实际存在的,不是重 要的部位,没必要加强,但局部振动有时候会对其它指标的判断有干扰作用,要过滤掉) 。 b.采用强制刚性楼板,过滤掉局部振动,但结构计算可能局部失真;c.通常振型数在 satwe 参数设置时,正常情况下应该足够了,由于有局部振动,可以增加计算振型数,采用总刚分 析;d. 剪重比仍不满足时,对于需调整楼层层数较少(不超过楼层总数的 1/3) ,且剪重 比与规范限值相差不大(不小于规范限值的 80%,或地震剪力调整系数不大于 1.2-1.3)的 情况,我们可以通过选择 SATWE 的相关参数来达到目的。 2.5.2:制剪重比的根本原因在于建筑物周期很长的时候,由振型分解法所计算出的地 震效应会偏小; 剪重比与抗震设防烈度、场地类别、结构形式和高度有关;对于一般多、高 层建筑,最小的剪重比值往往容易满足; 高层建筑,由于结构布置原因,可能出现底部剪重 比偏小的情况,在满足规范规定的前提下,没必要刻意去提高,规定剪重比的指标主要是增 加结构的安全储备。 2.5.3:一个 3 层教学楼若采用混凝土结构,一般会采用框架结构,4%左右的剪重比 对多层框架结构应该是合理的。 结构体系对剪重比的计算数值影响较大, 矮胖型的钢筋混凝 土框架结构一般剪重比比较大,体型纤细的长周期高层建筑一般剪重比会比较小。

结构设计中的七个重要参数

结构设计中的七个重要参数

1、轴压比轴压比主要是控制结构的延性,具体要求见抗规6.3.6和6.4.5,高规6.4.2和7.2.14。

轴压比过大则结构的延性要求无法保证,此时应加大截面面积或提高混凝土强度;轴压比过小,则结构的经济性不好,此时应减小截面面积。

轴压比不满足时的调整方法:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

02周期比周期比控制的是结构侧向刚度与扭转刚度之间的相对关系,它的目的是使抗侧力构件的平面布置更合理,使结构不致于出现过大的扭转效应。

一句话,周期比不是要求结构足够结实,而是要求结构承载布置合理,具体要求见高规4.3.5。

刚度越大,周期越小。

抗侧力构件对结构扭转刚度的贡献与其距结构刚心的距离成正比,意思是结构外围的抗侧力构件对结构的扭转刚度贡献最大。

结构的第一、第二振型宜为平动,扭转周期宜出现在第三振型及以后。

当第一振型为扭转时:说明结构的扭转刚度相对于其两个主轴的侧移刚度过小,此时应沿两个主轴适当加强结构外围的刚度,或沿两个主轴适当削弱结构内部的刚度。

当第二振型为扭转时:说明结构沿两个主轴的侧移刚度相差较大,结构的扭转刚度相对于其中一主轴(第一振型转角方向)的侧移刚度是合理的,但对于另一主轴(第三振型转角方向)的侧移刚度过小,此时应适当削弱结构内部沿第三振型转角方向的刚度或适当加强结构外围(主要是沿第一振型转角方向)的刚度。

周期比不满足时的调整方法:通过人工调整改变结构布置,提高结构的抗扭刚度;总的调整原则是加强结构外围墙、柱或梁的刚度,适当削弱结构中间墙、柱的刚度;利用结构刚度与周期的反比关系,合理布置抗侧力构件,加强需要减小周期方向(包括平动方向和扭转方向)的刚度,或削弱需要增大周期方向的刚度。

03、位移比/位移角位移比是指采用刚性楼板假定下,端部最大位移(层间位移)与两端位移(层间位移)平均值的比,位移比的大小反映了结构的扭转效应,同周期比的概念一样都是为了控制建筑的扭转效应提出的控制参数。

【结构设计】浅析结构稳定性的验算要的目的

【结构设计】浅析结构稳定性的验算要的目的

浅析结构稳定性的验算要的目的A控制意义:对结构稳定性的控制,避免建筑在地震时发生倾覆.当高层、超高层建筑高宽比较大,水平风、地震作用较大,地基刚度较弱时,结构整体倾覆验算很重要,它直接关系到结构安全度的控制。

B规范条文规范:高规5.4.2条,高层建筑结构如果不满足第5.4.1条(即结构刚重比)的规定时,应考虑重力二阶效应对水平力(地震、风)作用下结构内力和位移的不利影响。

规范:高规5.4.4条,规定了高层建筑结构的稳定所应满足的条件.高规5.4.1条,当高层建筑结构的稳定应符合一定条件时,可以不考虑重力二阶效应的不利影响。

高规第12.1.6条,高宽比大于4的高层建筑,基础底面不宜出现零应力区;高宽比不大于4的高层建筑,基础底面与地基之间零应力区面积不应超过基础底面面积的15%。

计算时,质量偏心较大的裙楼与主楼可分开考虑。

C计算方法及程序实现重力二阶效应即P-Δ效应包含两部分,(1)由构件挠曲引起的附加重力效应;(2)由水平荷载产生侧移,重力荷载由于侧移引起的附加效应。

一般只考虑第(2)种,第(1)种对结构影响很小。

当结构侧移越来越大时,重力产生的福角效应(P-Δ效应)将越来越大,从而降低构件性能直至最终失稳。

在考虑P-Δ效应的同时,还应考虑其它相应荷载,并考虑组合分项系数,然后进行承载力设计。

对于多层结构P-Δ效应影响很小。

对于大多数高层结构,P-Δ效应影响将在5%~10%之间。

对于超高层结构,P-Δ效应影响将在10%以上。

所以在分析超高层结构时,应该考虑P-Δ效应影响。

(P-Δ效应对高层建筑结构的影响规律:中间大两端小)框架为剪切型变形,按每层的刚重比验算结构的整体稳定剪力墙为弯曲型变形,按整体的刚重比验算结构的整体稳定整体抗倾覆的控制??基础底部零应力区控制D注意事项>>结构的整体稳定的调整当结构整体稳定验算符合高规5.4.4条,或通过考虑P-Δ效应提高了结构的承载力后,对于不满足整体稳定的结构,必须调整结构布置,提高结构的整体刚度(只有高宽比很大的结构才有可能发生)。

结构设计

结构设计

钢(框架)结构
一、 普通钢结构
(一) 结构特征、优缺点和适用范围
(1) 普通钢结构是的工业化程度高,工作性能可靠,结构 自重轻,在工程中得到了广泛的应用。有如下一些特点:
1) 强度高、截面小、运输和装拆均较方便。但是,杆件较细长, 因此稳定性问题较其它类型的结构更为突出,设计中应予以充分注 意。 2) 材料的均匀性和同向性好,它最符合一般工程力学的基本规定 ,应力计算比较可靠。 3) 材料的可焊性好,因而可简化制造工艺,提高钢结构的工业化 生产程度。 4) 耐火性和耐腐性较差,在有侵蚀性介质环境中或在有特殊防火 要求的建筑中使用钢结构,应采用有效的防护措施。钢结构的维护 费用较高。
二、 平面大跨结构(19世纪后半叶~二战)
特征:桁架、刚架、拱结构
三、 新型大跨结构(二战~今)
特征:“薄壳、悬索、网架”
1 薄壁结构
合理的外形,充分发挥材料受压性能,以较 薄的壳体跨越很大的空间,而具有足够的强度和 刚度。 2 悬索结构 纤细的索网,充分发挥钢材抗拉性能,轻盈 活波,适宜与大跨度 3 网架结构 利用小型杆件,组合成整体结构,刚度大, 变形小,自重轻,材料省
二、构件受力特点
1 受力特点 竖向荷载下梁的弯-剪,柱的弯-压 2 变形特点 a)框架侧移以整体剪切变形为主 b)梁、柱弯曲变形是框架侧移的主因
三、 适用范围
高抗震烈度地区不宜使用
按《高层建筑结构设计建议》 设防烈度 现浇结构 装配结构 9度 25米 不用 8度 45米 25米 7度 55米 35米 6度 60米 50米 非震区 60米 50米
(2)当前钢结构的适用范围,就民用建筑和工业企业范围 来说,大致如下:
1) 用于重型车间的承重骨架; 2) 受动力荷载影响的结构; 3) 高耸结构; 4) 大跨度结构。

高层建筑结构设计几个指标控制

高层建筑结构设计几个指标控制

高层建筑结构设计的几个指标的控制摘要:本文从周期比、位移比、刚重比、刚度比、层间受剪承载力之比、轴压比以及剪重比等六个方面综述了高层建筑结构设计的指标控制,希望对以后的工作有一定的帮助。

关键词:高层建筑;周期比;位移比;刚重比;剪承载力;前言:高层建筑与多层结构相比有明显不同的受力和变形性能,水平荷载混合地震作用是主要的控制内容。

判断结构布置合理性和结构体系的经济性能是高层建筑结构设计的关键,设计结构规范用语控制高层建筑整体性的指标主要有:周期比、位移比、刚重比、刚度比、层间受剪承载力之比、轴压比以及剪重比等。

1.周期比周期比是控制结构扭转效应的重要指标,是结构扭转为主的第一自振周期与平动为主的第一自振周期的比值。

周期比控制的是侧向刚度与扭转刚度之间的一种相对关系。

它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不至于出现过大(相对于侧移)的扭转效应,而不是在要求结构具有足够大的刚度。

调整结构周期比的措施主要有两种:第一种是提高结构的抗扭刚度。

这样可以改善结构的抗扭性能,是解决结构抗扭薄弱的根本方法。

提高抗扭刚度一般需要调整结钩布置,增加结构周边构件的刚度,江都结构中间构件的刚度;有时要改变结构类型,如增加剪力墙、异形柱等。

这种改变一般是整体性的,局部的小调整往往收效甚微。

调整原则是要加强结构外圈刚度,或者削弱内筒降低结构中间的刚度,以增大结构的整体抗扭刚度;第二种是降低平动度,使平移周期加长。

此种方法仅适用于原来结构刚度较大,层间位移远小于规范限值的情况。

2.位移比及其调整措施2.1 位移比位移比是控制结构平面规则性的重要指标,是指楼层竖向构件的最大水平位移和层间位移与本楼层平均值得比值。

结构是否规则、对称、平面内刚度分布是否均匀,是结构本身的性能,可以用结构刚心与质心的相对位置表示,二者相距较远的结构在地震作用下扭转可能较大。

由于刚心与质心位置都无法直接定量计算,规范采用了校核结构位移比的要求。

结构设计规范

结构设计规范
边角需倒钝,避免对安装人员造成不必要的伤害。
4.通用要求
4.2 设计准则
➢应具备防静电、散热、可靠性、安全性、防震性、接 地柱设计。
➢ 接地柱安装孔标准尺寸为ø6.5,连接方式可使用六角 头螺栓或者铆接螺柱,材质应为黄铜H62或者不锈钢 材质。接地应通过面接触导电,不能通过螺纹接触导 电。面板外表面与平垫接触面上不得喷漆(使用M6接 地柱的面板遮喷尺寸建议为ø13mm)。
1.6
2.4~3.2
PMMA
0.8
1.5
2.2
4~6.5
透明PC
0.95
1.8
2.33~4ຫໍສະໝຸດ 55.设计要求5.5 塑胶件设计要求
尽量壁厚均匀一致,壁厚不均匀零件将有缩水痕迹。如 不能保证,需做渐变过渡,过渡的部分长高比例大于等于 3:1。壁厚均匀在拐角处同样适用。如下图所示。
5.设计要求
5.5 塑胶件设计要求
5.设计要求
5.2 钣金件设计要求
➢超过三道工序的钣金件的结构应进行分解,分解成只 由圆形、直线等组成的简单结构,然后焊接在一起。 如下图所示。
5.设计要求
5.3 焊接件设计要求
➢应有足够大的操作空间以方便焊接和检测。如下图所示。
5.设计要求
5.3 焊接件设计要求
➢ 焊接时应方便定位,电极不能和周围的板相粘接。
在三维图的构建中,凡影响外观,影响装配的地方需要 画出斜度,加强筋一般不画斜度。塑胶件的脱模斜度由材 料、表面饰纹状态,零件透明与否决定。硬质塑料比软质 塑料的脱模斜度大,零件越高,孔越深,斜度越小。不同 材料的脱模斜度如下表所示。
塑胶种类
型腔斜度
型芯斜度
ABS 防火ABS PA66+玻纤 PMMA 透明PC

12芯熔纤盒 技术参数-概述说明以及解释

12芯熔纤盒 技术参数-概述说明以及解释

12芯熔纤盒技术参数-概述说明以及解释1.引言1.1 概述熔纤盒是一种用于光纤连接和保护的设备,用于将光纤的末端连接在一起,并提供保护和管理光纤的功能。

12芯熔纤盒是一种特殊规格的熔纤盒,适用于在光纤通信网络中连接多达12根光纤的情况。

本文将对12芯熔纤盒的技术参数进行详细介绍。

通过了解这些技术参数,我们可以更好地了解该熔纤盒的性能和适用范围。

在介绍技术参数之前,我们首先需要了解一些基本概念。

光纤熔接是指将两根光纤通过高温加热,使其熔融并连接在一起的过程。

而熔纤盒则是用于保护这些熔接点,防止其受到外界的损害。

接下来,我们将详细介绍12芯熔纤盒的技术参数。

这些参数包括但不限于:熔纤盒的尺寸、材质、保护等级、接口类型等。

通过这些技术参数,我们可以判断该熔纤盒是否适用于特定的光纤连接需求。

在本文的后续部分,我们还将讨论12芯熔纤盒的设计特点。

这些设计特点包括盒体结构、纤纱布置、接口设计等方面。

通过了解这些设计特点,我们可以更好地理解该熔纤盒在实际应用中的优势和局限性。

总体而言,本文将通过详细介绍12芯熔纤盒的技术参数和设计特点,为读者提供了解该设备的全面视角。

希望读者通过本文的阅读,能够更好地了解和应用12芯熔纤盒,以满足其在光纤通信网络中的连接需求。

1.2文章结构1.2 文章结构本文将按照以下结构进行介绍和分析12芯熔纤盒的技术参数。

首先,在引言部分,我们将概述熔纤盒的概念和作用,以及对整篇文章的目的进行说明。

接下来,在正文部分,2.1将对熔纤盒的技术参数进行概述,包括其尺寸、材质、光纤接入方式等。

2.2将介绍12芯熔纤盒的设计特点,包括其独特的结构设计、接口类型、接头保护等方面。

最后,在结论部分,3.1将对本文进行总结,概述熔纤盒技术参数对光纤连接的重要性,并对其应用前景进行展望,即3.2部分。

通过以上的结构安排,本文将全面分析和介绍12芯熔纤盒的技术参数,为读者提供深入了解和应用该产品的指导。

1.3 目的本文的目的是介绍和分析12芯熔纤盒的技术参数。

与力学要求有关的12条结构设计准则!

与力学要求有关的12条结构设计准则!

与力学要求有关的12条结构设计准则!结构设计准则:1、均匀受载准则:尽量避免集中载荷,尽可能地将载荷分散在结构上,均匀分布最为理想。

结构的强度取决于结构中的最大应力,可见,使结构受载均匀能达到提高其强度即承载能力的目的。

2、力流(类比水的流动)最短路径准则:力流最重要的特征是:力流优先走较短路径,更确切地说优先走刚度最大的路径。

保证力流的路径较短,通常也可起到提高强度的目的,因此,力流路径越接近直线,力所引起的附加弯矩越小,对应的弯曲应力也就越小,力线的直线形状是最理想的受力状态,力线偏离直线形状越利害,应力增加得越大。

力流最短路径准则,即要求力从其作用点(力的入口)到结构支撑点(力的出口)的距离尽可能的短。

相关工程应用实例:1)齿轮轴上的齿轮,当结构设计容许时,应尽可能靠近轴承安装;2)车间行车要超载使用时,若尽量靠近轨道处起吊,则可使起重量增加一倍;3)承受均布载荷的简支梁,若把两端的支座向里移动0.2L,则最大弯矩仅为前者的20%,这样讲结构的承载能力一下提高了5倍。

3、降低缺口效应准则:缺口如:孔、槽、螺纹、台肩等,这些外形突变进而引起力流突变处,应力急剧上升,这种现象称为缺口效应。

截面尺寸变化越急剧,缺口顶部倒角越小,缺口效应越强。

缺口效应不仅和缺口的几何形状有关,也和构件的受力状况有关,因为缺口效应的根本原因是由于力流被迫急剧改变其原来路径,从而因力流抢近道引起在近道局部力线拥挤,即应力水平上升。

缺口效应的特点是局部性的,在静载作用下,塑性材料因为具有屈服阶段,对缺口效应不敏感,脆性材料将易引起断裂。

减少缺口效应的方法:1)避免外形突变;2)降低缺口附件的刚度;3)避免力流截面突然变小;4)加预压内应力;5)避免力流突然转弯;4、变形协调准则:应力集中不仅出现在一个构件内部的缺口处,也可能出现在两个不同构件的接触处,当一个构件和另一个构件在接触处难以同步变形时,应力会急剧上升,这种变形越不协调,应力集中就越严重。

结构设计时结构参数的控制与分析

结构设计时结构参数的控制与分析

结构设计时结构参数的控制与分析结构设计时结构参数的控制与分析是结构设计的重要环节,它涉及结构的稳定性、安全性、经济性等多个方面,对于结构的设计和优化具有重要意义。

本文将从结构参数的定义、控制和分析三个方面进行讨论。

一、结构参数的定义结构参数是指影响结构性能的各种参数,包括结构的几何尺寸、材料性质、荷载情况等。

在结构设计中,不同的结构参数会对结构的稳定性、强度、振动特性等产生重要影响,因此必须对结构参数进行合理的控制和分析。

结构参数的控制是指在结构设计中对各种参数进行调节,以达到预期的建筑功能和安全性要求,提高结构的经济性和效果。

控制结构参数需要综合考虑多个因素,如结构的使用条件、荷载条件、材料性能等。

1、结构几何尺寸的控制结构几何尺寸是决定结构形态和空间布局的基本参数,包括结构的跨度、高度、板厚等。

在设计中,必须控制结构尺寸的大小和比例,要考虑结构的整体性、稳定性、疲劳寿命等因素。

在具体操作中,可以通过合理选择材料、形状和尺寸来达到控制结构几何尺寸的目的。

2、结构材料性质的控制结构材料的性质也是影响结构性能的重要因素,包括强度、刚度、韧性、耐腐蚀性等等。

在设计中,必须控制材料的选择和使用,以满足结构对材料的性能要求。

同时,在实际操作中也需要考虑材料的成本、可靠性和可维护性等诸多因素。

3、荷载条件的控制荷载条件是指结构所承受的静载荷或动载荷,包括永久荷载、临时荷载、地震荷载等等。

在设计中,必须对荷载条件进行合理的预估和控制,以满足结构的安全性和稳定性要求。

具体操作中,可以通过建筑功能、荷载特点、结构形态等因素来优化结构荷载条件。

结构参数的分析是指基于数学模型和有限元分析等方法,对结构各种参数进行计算和评估,以确定结构安全性、经济性和稳定性等指标。

结构参数分析可以帮助设计师更好地理解结构性能和特性,为结构设计和优化提供重要参考。

1、静力分析静力分析是指利用静力学原理,对结构受力状态进行分析和计算,以评估结构稳定性和强度等指标。

vc-b防震标准

vc-b防震标准

vc-b防震标准VC-B防震标准是指中国建筑行业钢结构工程设计规范的第12部分,也是应用于钢结构建筑物的抗震设计和施工指导标准。

该标准由中国建筑结构协会编制,于2005年8月1日实施。

VC-B防震标准的主要目的是确保钢结构建筑的安全性和抗震性能,保护生命财产安全。

VC-B防震标准详细规定了钢结构建筑在地震力作用下的抗震设计要求,包括结构物的抗震性能等级、设计基准地震动参数的选取、结构抗震措施的设计方法、构件的受力性能要求等。

下面是VC-B防震标准的一些相关参考内容:1. 抗震性能等级:VC-B防震标准将钢结构建筑的抗震性能分为A、B、C、D四个等级,分别代表了不同的抗震能力水平。

建筑物的等级应根据结构的重要性、地震烈度和设计年限等因素确定。

2. 基准地震动参数:根据VC-B防震标准,地震动参数的选取应符合规范规定的设计地震烈度等级和设计基准地震动参数的要求。

其中,地震烈度等级包括甲、乙、丙、丁四个级别,对应不同地区的地震活动频率和强度。

3. 抗震设计方法:VC-B防震标准规定了不同结构形式的抗震设计方法,包括耗能型结构、减震型结构、隔震型结构等。

其中,耗能型结构是通过控制结构的塑性变形来吸收地震能量,减震型结构是通过减小结构刚度来提高结构的振动周期,隔震型结构是将结构与基础之间设置隔震装置来减小地震作用。

4. 受力性能要求:VC-B防震标准规定了钢结构构件的受力性能要求,包括构件的轴力、弯矩、剪力、变形等受力状态的限制。

这些要求旨在保证结构在地震力作用下的稳定性和抗震性能。

5. 施工质量控制:VC-B防震标准还详细规定了钢结构建筑施工的质量控制要求,包括焊接质量、构件制作质量、连接件的安装质量等。

这些要求是为了确保钢结构建筑的抗震性能能够真实反映在实际施工中。

总之,VC-B防震标准是中国建筑行业钢结构工程设计规范的重要组成部分。

它通过详细规定钢结构建筑在地震力作用下的抗震设计要求和施工质量控制要求,保证钢结构建筑的安全性和抗震性能。

(完整版)结构设计中的8个参数比(超限)调节方法.docx

(完整版)结构设计中的8个参数比(超限)调节方法.docx

结构设计中的几个参数比1.轴压比目的:控制构件保持一定延性。

保证柱(墙)的塑性变形能力和保证结构的抗倒塌能力。

要求:详见规范(抗规柱 6.3.6 、墙 6.4.5和混规柱11.4.16、墙11.7.16&17 ),限制各等级的剪力墙和框架(支)柱轴压比;注意:剪力墙的轴压比对应的荷载为重力荷载代表值的设计值;框架(支)柱轴压比对应的荷载为含水平荷载的工况组合,多为地震工况组合。

调节方法:1)程序调整: SATWE 程序不能实现。

2)人工调整:增大该墙、柱截面或提高该楼层墙、柱混凝土强度。

2.扭转周期比目的:周期比侧重控制的是侧向刚度与扭转刚度之间的一种相对关系,而非其绝对大小,它的目的是使抗侧力构件的平面布置更有效、更合理,使结构不致于出现过大(相对于侧移)的扭转效应。

一句话,周期比控制不是在要求结构足够结实,而是在要求结构承载布局的合理性要求:规范规定(高规 3.4.5):结构扭转为主的第一周期 Tt 与平动为主的第一周期 T1 之比,A 级高度高层建筑不应大于 0.9 ;B 级高度高层建筑、混合结构高层建筑及复杂高层建筑不应大于0.85振型判别方法:振型方向因子来判断,因子以50%作为分界。

注意:全国超限建筑抗震设防中,对周期比比值不足不是一项超限,广东抗震审查技术要求中无该条规定。

调节方法:一般只能通过调整平面布置来改善这一状况,这种改变一般是整体性的,局部的小调整往往收效甚微。

周期比不满足要求说明结构的扭转刚度相对于侧移刚度较小,总的调整原则是加强结构外圈刚度,削弱结构内筒刚度。

3.有效质量参与系数目的:保证考虑充足的地震作用。

要求:详见规范(抗规 5.2.2 条文及高规 5.1.13)计算振型数应使各振型参与质量之和不小于总质量的90%。

调节方法:增加计算参与的振型数量。

4.刚重比目的:确定在水平荷载下,结构二阶效应不致过大,而引起稳定问题。

要求:详见规范(高规 5.4)重力二阶效应及结构稳定注意:此处重力为重力荷载设计值,取 1.2 恒+1.4 活。

膨胀机的原理,基本构造,主要参数控制及意义。

膨胀机的原理,基本构造,主要参数控制及意义。

膨胀机的原理,基本构造,主要参数控制及意义。

膨胀机的原理气体的绝热膨胀,并对外做功,是获得低温的重要方法,透平膨胀机就是利用压缩气体在高压下进入膨胀机内膨胀到低压。

由高压低速气体变为低压高速气体,在这个过程中与外界不发生热交换,因此,整个过程是绝热的。

气体通过膨胀机后12高压中压低压超低压0.2---0.3兆帕膨胀到0.12兆帕3按级数来分可分为单级,双级,和多级4按制动方式分[1]风机制动[2]透平增压机制动[3]电机制动[4]油制动-------制动器为一系列位于转子和定子之间的油腔。

5万空分装置所配置的膨胀机,一台是杭氧的,另一台是阿特拉斯。

杭氧膨胀机组组成示意图杭氧产膨胀机油箱盛油500Kg最高油位距油箱顶部100为490Kg距高油位距130为最低油位310Kg 开车需仪表空气压力0.6MPa----15m3/hI.概述II.机组简介一.透平膨胀机的构造二.增压机三.供油装置四.膨胀机流量调节五.快速安全关闭IIIIVVVIVII本标准适用于增压机制动的,工作轮直径系列为?100毫米到?450毫米的,采用油轴承的透平膨胀机组。

I.概述本机组利用气体经膨胀机进行绝热膨胀,产生空分装置所必须的冷量,其所产生的机械功又被增压机所吸收,用以提高增压气体的压力。

机组所使用的气体应为不含有机械杂质(金属粉尘,分子筛,珠光砂粉末等)并经净化处理的干净气体。

II.机组简介机组由以下主要部分组成:(具体交货内容以合同和产品装箱清单为准。

)1.带保冷箱及底架的透平膨胀机;2345附图1出。

膨胀机流量的调节系统是依靠一安装在冷箱顶上的执行机构带动喷嘴叶片转动而改变通道截面积来实现的。

1.膨胀机蜗壳:蜗壳直接固定在底架上并支承膨胀机主机及增压机。

蜗壳内容纳了膨胀机叶轮和喷嘴环。

在排气侧有一压圈借助一弹性压紧机构而压在喷嘴叶片上,使喷嘴叶片的端面没有间隙。

????2.膨胀机轴:安装在两只轴承中,它的一端装有膨胀机叶轮,另一端装有增压机轮,组成一刚性转子。

有关设计参数的问题

有关设计参数的问题

新的建筑结构设计规范在结构可靠度、设计计算、配筋构造方面均有重大更新和补充,特别是对抗震及结构的整体性,规则性作出了更高的要求,使结构设计不可能一次完成。

如何正确运用设计软件进行结构设计计算,以满足新规范的要求,是每个设计人员都非常关心的问题。

以SATWE软件为例,进行结构设计计算步骤的讨论,对一个典型工程而言,使用结构软件进行结构计算分四步较为科学。

1 •完成整体参数的正确设定计算开始以前,设计人员首先要根据新规范的具体规定和软件手册对参数意义的描述,以及工程的实际情况,对软件初始参数和特殊构件进行正确设置。

但有几个参数是关系到整体计算结果的,必须首先确定其合理取值,才能保证后续计算结果的正确性。

这些参数包括振型组合数、最大地震力作用方向和结构基本周期等,在计算前很难估计,需要经过试算才能得到。

(1)振型组合数是软件在做抗震计算时考虑振型的数量。

该值取值太小不能正确反映模型应当考虑的振型数量,使计算结果失真;取值太大,不仅浪费时间,还可能使计算结果发生畸变。

《高层建筑混凝土结构技术规程》 5.1.13-2条规定,抗震计算时,宜考虑平扭藕联计算结构的扭转效应,振型数不宜小于15,对多塔结构的振型数不应小于塔楼的9倍,且计算振型数应使振型参与质量不小于总质量的90%。

一般而言,振型数的多少于结构层数及结构自由度有关,当结构层数较多或结构层刚度突变较大时,振型数应当取得多些,如有弹性节点、多塔楼、转换层等结构形式。

振型组合数是否取值合理,可以看软件计算书中的x,y向的有效质量系数是否大于0.9。

具体操作是,首先根据工程实际情况及设计经验预设一个振型数计算后考察有效质量系数是否大于0.9,若小于0.9,可逐步加大振型个数,直到x,y两个方向的有效质量系数都大于0.9为止。

必须指出的是,结构的振型组合数并不是越大越好,其最大值不能超过结构得总自由度数。

例如对采用刚性板假定得单塔结构,考虑扭转藕联作用时,其振型不得超过结构层数的3倍。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

结构设计控制12个重要参数的目的
1.轴压比
目的:控制构件保持一定延性。

规范规定:限值各等级的剪力墙和框架
柱轴压比;
注意:剪力墙的轴压比对应的荷载为重力荷载代表值的设计值;框架柱轴压比对应的荷载为含水平荷载的工况组合,多为地震工况组合。

2.扭转周期比
目的:限制结构抗扭刚度不能太弱。

规范规定:限制结构扭转为主的第一周期
Tt与平动为主的第一周期T1之比。

振型判别方法:振型方向因子来判断,因子以50%作为分界。

相关规定:全国超限建筑抗震设防中对周期比比值不足不是一项超限,广东抗震审查技术要求中无该条规定。

3.有效质量参与系数
目的:保证考虑充足的地震作用。

要求:计算振型数应使各振型参与质量之和不小于总质量的90%。

4.刚重比
目的:确定在水平荷载下,结构二阶效应不致过大,而引起稳定问题。

要求:高规重力二阶效应及结构稳定
注意:此处重力为重力荷载设计值,取恒+活。

5.剪重比
目的:由于地震影响系数在长周期下降较快,对基本周期大于3s结构水平地震下结构效应可能影响过小,偏于不安全。

要求:高规:“剪重比”注:此处此处重力为重力荷载代表值。

6.位移比
目的:限制结构平面布置不规则性
规定限值:、、和
计算要求:
(1)风荷载不控制
(2)单向地震+偏心算,而且是采用规定水平力的施加模式。

(3)双向地震下控制。

(4)单向地震+偏心,CQC不控制。

新增的出处:
7.层间位移角
目的:同体系和高度有关,详见规范,以弯曲变形为主的高层建筑不扣除整体弯曲变形。

计算要求:
(1)风、单向地震均控制
(2)单向地震+偏心不控制
(3)双向地震不控制,除扭转特别严重外,一般双向地震同单向地震结构相近。

8.刚度比(软弱)
目的:控制结构出现软弱层
要求:高规(分结构体系)
9.楼层受剪承载力比(薄弱层)
目的:检验结构是否存在薄弱层
要求:高规
注意超限审查和高规中均提到,结构不应在同一层出现软弱层和薄弱层。

10.相邻楼层质量比
目的:检验高层建筑中质量沿竖向分布不规则。

要求:相邻楼层质量之比不宜超过(高规)。

11.倾覆力矩分担比
目的:(1)帮助确定结构体系(2)帮助确定构件抗震等级。

要求:(1)框剪(2)短肢剪力墙
12.框剪结构剪力分担比
目的:控制分担比使外围框架与核心筒发挥协同工作的
双重抗侧力结构体系。

相关文档
最新文档