连铸板坯质量
改善连铸板坯表面质量的措施
的试验冷却制度 ,可以消除板坯表面过冷,包括局
部过冷(低于 920℃)。
从高温测量的结果中,得出结论 :采用原冷却
制度时,在 909—943 ̄C温度范围内,板坯塑性值在
25%~35%范围中;采用试验冷却制度时,在 938—
975 ̄C温度范 围内,板坯塑性值在 30%~65%范围
按上述 布置喷嘴 ,以避免板坯垂直段 区域 与
结 果 如表 1所示 。
表 1些里垩塑 廑
/m/min 原冷却制度 试 验冷却制度
0.6 0.7 O.8
909 922 943
938 953 975
由表 1可见 ,与原冷却制度相 比,采用试验冷
5号板坯连铸机带有垂直段和弯曲段 ,板坯表 0.8m/min时 ,采用红外测温仪(TC.800)N温。测温
面在弯曲处要承受附加 的拉应力 ,这不 同于弧型连 铸 机 。
5号连铸机所生产的板坯规格为 250 ̄1 250 2 350mm,二次冷却系统分为垂直段冷却区和弯曲 段 9个冷却 区,二冷参数取决板坯断面尺寸 、钢号 及浇铸速度 。垂直段冷却区采用水冷 ,该冷却区用 于冷却所有规格板坯 的宽边和窄边 ,其余弯曲段 9 个冷却 区均采用水 、汽混合 的气雾冷却方式。
锰 含 量 <0.80%的低 碳 和 中碳 钢 ,宽度 为 1 250~1 750mm 的板坯 ,其冷却制度按下述流程进 行 :
在弯曲段第 1个冷却 区,宽边侧每边有 4个中 心喷嘴和 2个平面射流喷嘴 ,通过调整总喷流宽度 (能盖过整个板坯宽度)来冷却板坯窄边 ;从第 2个 冷却区至第 9个冷却 区,宽侧均采用两个喷嘴(达到 总射流宽度),能冷却板坯表面的 75%区域 ;板坯窄 边侧的第 2个冷却 区中采用 5个串行排列的圆形射 流 喷嘴 。
连铸坯质量缺陷
连铸坯的质量缺陷及控制摘要连铸坯质量决定着最终产品的质量。
从广义来说所谓连铸坯质量是得到合格产品所允许的连铸坯缺陷的严重程度,连铸坯存在的缺陷在允许范围以内,叫合格产品。
连铸坯质量是从以下几个方面进行评价的:(1)连铸坯的纯净度:指钢中夹杂物的含量,形态和分布。
(2)连铸坯的表面质量:主要是指连铸坯表面是否存在裂纹、夹渣及皮下气泡等缺陷。
连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,与浇注温度、拉坯速度、保护渣性能、浸入式水口的设计,结晶式的内腔形状、水缝均匀情况,结晶器振动以及结晶器液面的稳定因素有关。
(3)连铸坯的内部质量:是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度。
二冷区冷却水的合理分配、支撑系统的严格对中是保证铸坯质量的关键。
(4)连铸坯的外观形状:是指连铸坯的几何尺寸是否符合规定的要求。
与结晶器内腔尺寸和表面状态及冷却的均匀程度有关。
下面从以上四个方面对实际生产中连铸坯的质量控制采取的措施进行说明。
关键词:连铸坯;质量;控制1 纯净度与质量的关系纯净度是指钢中非金属夹杂物的数量、形态和分布。
夹杂物的存在破坏了钢基体的连续性和致密性。
夹杂物的大小、形态和分布对钢质量的影响也不同,如果夹杂物细小,呈球形,弥散分布,对钢质量的影响比集中存在要小些;当夹杂物大,呈偶然性分布,数量虽少对钢质量的危害也较大。
此外,夹杂物的尺寸和数量对钢质量的影响还与铸坯的比表面积有关。
一般板坯和方坯单位长度的表面积(S)与体积(V)之比在0.2~0.8。
随着薄板与薄带技术的发展,S/V可达10~50,若在钢中的夹杂物含量相同情况下,对薄板薄带钢而言,就意味着夹杂物更接近铸坯表面,对生产薄板材质量的危害也越大。
所以降低钢中夹杂物就更为重要了。
提高钢的纯净度就应在钢液进入结晶器之前,从各工序着手尽量减少对钢液的污染,并最大限度促使夹杂物从钢液中排除。
为此应采取以下措施:⑴无渣出钢。
连铸板坯缺陷对下工序的质量影响
连铸板坯缺陷对下工序的质量影响摘要:为满足用户对产品质量越来越严格的要求,生产价格便宜高质量产品是人们追求的目标。
而轧制产品质量是与连铸坯缺陷紧密相联系的。
关键字:连铸坯;质量控制引言:在现代的工业发展中,质量的高低已逐渐决定着企业的命运。
市场竞争以价格竞争为主转向以质量竞争为主,为了达到提高连铸板坯质量更好的为下工序服务的目标,使我们的产品在下游客户的手中能更好的体现使用价值。
一、连铸板坯缺陷的分类与分析1、连铸板坯缺陷的分类炼钢-精炼-连铸工艺流程生产的连铸板坯作为半成品共给轧钢,轧制成不公规格的板材以满足不同单位的需求。
只有提供高质量的连铸板坯,才能轧制出高质量的产品。
连铸板坯缺陷包括以下几个方面:连铸板坯的纯净度:主要是钢中夹杂物类型、形貌、尺寸和分布。
(1)连铸板坯的表面缺陷:主要是指连铸板坯的表面纵裂纹、横裂纹、网状裂纹、夹渣、气泡等。
缺陷严重的会造成废品,甚至会已传至轧制产品内。
(2)连铸板坯的内部缺陷:主要是指连铸板坯内部裂纹、中心疏松、缩孔、偏析等。
缺陷严重者会影响轧制产品的力学性能和使用性能。
2、连铸板坯缺陷的分析2.1连铸板坯夹杂物的主要来源钢中夹杂物数量要少,钢中总氧要低,在钢中的夹杂物呈弥散分布而避免成链状串簇状分布(1)内生夹杂物:主要是脱氧产物。
其特点是溶解氧增加,脱氧产物增多。
(2)外来夹杂物:钢水与环境(空气、包衬、炉渣、水口等)作用下的二次氧化产物,其特点为夹杂物粒径大、组成复杂的氧化物、来源广泛、在连铸板坯中成偶然性分布、对产品危害大。
2.2连铸板坯表面裂纹缺陷连铸板坯裂纹包括表面裂纹(纵裂纹、横裂纹、网状裂纹)和内部裂纹(三角区裂纹、中心线裂纹)。
连铸板坯裂纹的形成是一个复杂冶金、物理过程。
是传热、传质、凝固和应力的相互结果。
带液芯的高温铸坯在连铸机运行过程中,各种力作用于高温坯壳产生变形,超过了钢的允许强度和应是产生裂纹的外因,钢对裂纹敏感性是产生裂纹的内因,而连铸机热工做状态和工艺操作是产生裂纹的条件。
连铸坯质量
● 对于极细的钢丝(如直径为0.10-0.25mm 对于极细的钢丝(如直径为0 10- 25mm
的轮胎钢丝)和极薄钢板(如厚度为 025mm的镀锡板) mm的镀锡板 0.025mm的镀锡板)中,其所含夹杂物的尺 寸就可想而知了。 寸就可想而知了 。 夹杂物的尺寸和数量对 钢质量的影响还与铸坯表面积有关。 钢质量的影响还与铸坯表面积有关。
采用压缩浇铸技术或者应用多点矫直技术二冷区采用合适夹辊辊距支撑辊准确对弧二冷水分配适当保持铸坯表面温度均匀合适拉辊压下量最好采用液压控制机构带液心的铸坯在运行过程中于两支撑辊之间高温坯壳中钢液静压力作用下发生鼓胀成凸面的现象称之为鼓肚变形
连铸坯质量控制
内容提要
◆ 连铸坯的质量评价 ◆ 连铸坯的纯净度及控制 ◆ 连铸坯表面质量及控制 ◆ 连铸坯内部质量及控制 ◆ 连铸坯形状缺陷及控制
星状裂纹 一般发生在晶间的细小裂
呈星状或呈网状。 纹,呈星状或呈网状。通常是隐藏在氧化铁 皮之下难于发现, 皮之下难于发现,经酸洗或喷丸后才出现在 铸坯表面。主要是由于铜向铸坯表面层晶界 铸坯表面。 的渗透,或者有AlN,BN或硫化物在晶界沉淀, AlN,BN或硫化物在晶界沉淀 的渗透,或者有AlN,BN或硫化物在晶界沉淀, 这都降低了晶界的强度,引起晶界的脆化, 这都降低了晶界的强度,引起晶界的脆化,从 而导致裂纹的形成。 而导致裂纹的形成。
其实早在结晶器内坯壳表面就存在细小裂纹, 其实早在结晶器内坯壳表面就存在细小裂纹,铸坯进 入二冷区后, 微小裂纹继续扩展形成明显裂纹。 入二冷区后 , 微小裂纹继续扩展形成明显裂纹 。 由于结 晶器弯月面区初生坯壳厚度不均匀,其承受的应力超过 晶器弯月面区初生坯壳厚度不均匀 , 了坯壳高温强度, 在薄弱处产生应力集中致使纵向裂纹。 了坯壳高温强度 , 在薄弱处产生应力集中致使纵向裂纹 。 坯壳承受的应力包括: 坯壳内外, 坯壳承受的应力包括 : 坯壳内外 , 上下存在温度差 产生的热应力; 产生的热应力 ; 钢水静压力阻碍坯壳凝固收缩产生的应 力; 坯壳与结晶器壁不均匀接触而产生的摩擦力。这些 坯壳与结晶器壁不均匀接触而产生的摩擦力。
连铸坯质量外观检验标准
连铸坯质量外观检验标准
作者:周毅发表日期:2007-9-19 阅读次数:157
1、尺寸及允许偏差单位:毫米
2、连铸坯长度根据客户要求交货,具体如下:单位:米
3、连铸坯头尾切除量
新开浇的连铸坯,接头部切除应不小于200mm,尾部切除应符合表2的规定。
表2
表面质量
连铸坯表面不得有肉眼可见的裂纹、重接、翻皮、结疤、缩孔,深度或高度大于3 mm的划痕、压痕、擦伤、冷溅、耳子、凸坑凹坑,深度大于2mm,的气孔、皱纹、横向振痕和深度大于1mm,发纹。
低碳低硅和焊条钢坯表面及横截面距表面2 mm 之内不得有气泡或针孔,其它部位允许存在气泡和针孔,其它钢坯横截面不得有皮下气泡。
连铸坯表面如存在上述不允许或超出允许规定的缺陷,应进行清除,应沿纵向清除,清除处应圆滑无棱角,清除宽度应不小于深度的6倍,长度应不小于深度的8倍。
表面清除深度,单面应不大于连铸坯边长10%,两相对面清除深度之和不大于深度的12%。
弯曲度
(1)连铸坯弯曲度每米不大于20mm, 弯曲度不大于总长的2%
(2)长度不小于6米、边长为150*150及200*200的连铸坯总弯曲度不大于80mm
(3)连铸坯不得有明显的扭转
边长测量
在连铸坯长度的垂直方向测量,测量部位应在有缺陷区以外。
鼓肚总高度
测量连铸坯有鼓肚处的最大厚度减去边长。
连铸坯质量的控制
连铸坯质量的控制
一、引言
连铸是钢铁生产过程中的重要环节,其连铸坯的质量影响着钢质的稳定性、物
理性能和化学成分等方面。
因此,连铸坯质量控制一直是钢铁生产中的关键技术之一。
二、连铸坯质量的影响因素
1.原料质量:包括钢水、氧化渣等的质量;
2.坯型结构和尺寸:坯型结构和尺寸的设计直接影响坯料的冷却效果和
内部应力状态;
3.坯料表面状态:表面缺陷会在浇铸过程中暴露出来,影响坯料的质量;
4.坯料内部缺陷:坯料内部缺陷会影响钢材的使用寿命和物理性能;
5.连铸工艺参数:包括浇注速度、结晶器温度和冷却水流量等。
三、连铸坯质量控制的措施
为了控制连铸坯质量,需要在生产过程中采取以下措施:
1.加强原料质量控制:保证钢水、氧化渣等原料的质量,避免对坯料质
量的不利影响;
2.优化坯型设计:通过设计合理的坯型结构和尺寸,使坯料均匀冷却、
内部应力均匀分布;
3.改进坯料清理技术:减少表面缺陷的产生;
4.加强坯料表面处理:处理坯料表面缺陷,消除缺陷部位;
5.控制连铸工艺参数:调整浇注速度和结晶器温度等工艺参数控制坯料
成分,改善坯料品质。
四、
通过加强原料质量控制、优化坯型设计、改进坯料清理技术、加强坯料表面处
理和控制连铸工艺参数等措施,可以有效地控制连铸坯质量。
同时,连铸坯质量控制也是钢铁生产中不可或缺的环节,对于提高钢材质量和降低成本都具有非常重要的意义。
炼钢-精炼-连铸流程连铸坯质量控制
炼钢-精炼-连铸流程连铸坯质量“零缺陷”控制北京科技大学冶金与生态工程学院蔡开科孙彦辉2012.5目录1.连铸凝固过程的冶金特性2.连铸钢水质量纯净度(洁净度)控制3.连铸坯裂纹缺陷控制4.连铸坯内部中心缺陷控制5.结语21. 连铸坯凝固过程的冶金特性1. 1连铸坯凝固过程基本特征把钢水凝固成固体,根据冷却速度不同有两种凝固工艺如图:●钢锭模浇注工艺●连续铸钢工艺连铸与模铸流程比较连续铸钢是一项把钢水直接浇注成形的新工艺,它的出现从根本上改变了一个世纪以来占统治地位的钢锭→初轧工艺。
与模铸相比,连铸的优点:◆节省工序,缩短流程◆提高金属收得率10~14%◆降低能耗减少1/2~1/4◆机械化自动化程度高◆产品质量好2011年中国钢产量达到6.75亿吨,2011年我国连铸比达98%以上,已达到饱和状态。
近年来近终型(Near Net-Shape)连铸技术如薄板坯连铸连轧(CSP、FTSC…)和中等厚度板坯连铸得到了很大的发展。
与钢锭模浇铸工艺相比,如图所示,连续铸钢过程基本特点如下:(1)连铸坯凝固过程实质上是动态热量传递过程钢水从液态转变为固体放出热量:钢水→固体+Q放出热量包括:✓过热✓凝固潜热✓物理显热连铸凝固过程示意图以20钢为例,钢水凝固冷却到室温放出热量是:✓过热25.2 kJ/kg✓潜热328 kJ/kg✓显热958 kJ/kg总热量中大约1/3从液体→固体放出,其余2/3是完全凝固后放出的。
钢水在连铸机内凝固是一个热量释放和传递的过程,铸坯边运行,边放热,边凝固,形成了很长的液相穴(10~20几米),在液相穴长度上布置了三个冷却区:●一次冷却区:钢水在结晶器中形成足够厚的均匀坯壳,以保证铸坯出结晶器不拉漏。
●二次冷却区:喷水加速铸坯内部热量的传递,使其完全凝固。
●三次冷却区:铸坯向空气中辐射传热使铸坯温度均匀化。
以20钢为例,经过钢水凝固热平衡计算,得出以下概念:a)钢水从结晶器→二冷区→辐射区大约有40%热量放出来,铸坯钢水才能完全凝固。
连铸坯产生质量问题的原因
23.什么是连铸坯的质量问题?最终钢材产品的质量取决于连铸坯的质量。
所谓连铸坯的质量是指得到合格钢材产品所允许的铸坯缺陷的严重程度。
我们关心的是,哪些连铸坯的质量问题可以通过电磁搅拌来解决,这就一定会涉及质量问题产生的原因。
24.铸坯质量问题主要有哪些?(1)铸坯的纯净度(夹杂物数量、形态、分布等);(2)铸坯的表面缺陷(裂纹、夹渣、气孔等);(3)铸坯内部缺陷(裂纹、偏析、夹杂、疏松和缩孔等)。
铸坯的纯净度主要取决于钢水进入结晶器之前的处理过程,即在浇注前把钢水搞“干净”些;同时浇铸时要控制工艺,不让夹杂物随钢水下行。
铸坯纯净度的控制是从熔炼开始(电炉、转炉)到炉外精炼、中间包冶金、保护浇注以及电磁搅拌工艺的全过程控制。
铸坯的表面缺陷主要取决于钢水在结晶器内的凝固过程,它与结晶器内坯壳的形成过程、结晶器液面波动、浸入式水口设计、保护渣性能等因素有关。
必须控制影响表面质量的各参数在目标值以内,从而生产无缺陷的铸坯,这是热送和直接轧制的前提。
铸坯的内部缺陷包括内部裂纹、疏松与缩孔,主要取决于在二次冷却区铸坯冷却过程和铸坯支撑系统。
合理的二次冷却水分布,支承辊的对中,防止铸坯鼓肚等是提高铸坯内部质量的前提。
铸坯内部元素偏析,是与全过程有关的。
因此,为了获得良好的铸坯质量,可以根据钢种和产品的不同要求,在连铸的不同阶段,如钢包、中间包、结晶器和二冷区采用不同的工艺技术(包括电磁搅拌),对铸坯质量进行有效的控制。
25.连铸坯中非金属夹杂物有哪些类型?连铸坯中非金属夹杂物,按其生成方式可分为内生夹杂和外来夹杂。
内生夹杂,主要是指出钢时,加铁合金的脱氧产物和浇注过程中钢水和空气的二次氧化产物,如铝的氧化物。
外来夹杂,主要是冶炼和浇铸过程中带入的夹杂物,如钢包、中间包耐火材料的浸蚀物,卷入的包渣和保护渣、水口被冲刷的残留物等。
连铸坯中最后凝固的夹杂物的数量、分布和粒度,是受中间包内钢水的纯净度、结晶器内注流的冲击深度以及注流的运动状态等制约的。
连铸工艺、设备--09连铸坯质量控制
液相穴内夹杂物上浮示意图: a—带垂直段立弯式连铸机; b—弧形连铸机
B.连铸操作对铸坯中夹杂物的影响
连铸操作有正常浇注和非正常浇注两种情况。
在正常浇注下,浇注过程比较稳定,铸坯中 夹杂物多少主要由钢液的纯净度决定。
B.连铸坯的表面质量:
指连铸坯表面是否存在裂纹、夹渣及皮下 气泡等缺陷。
连铸坯的表面缺陷主要决定于钢水在结晶 器的凝固过程。它是与结晶器内坯壳的形 成、结晶器振动、保护渣性能、浸入式水 口设计及钢液面稳定性等因素有关的,必 须严格控制影响表面质量的各参数在合理 的目标值以内,以生产无缺陷的铸坯,这 是热送和直接轧制的前提。
2.钢包精炼。
根据钢种的需要选择合适的精炼处理方法,以均 匀温度、微调成分、降低氧含量、去除气体夹杂 物、改善夹杂物形态等。
3.无氧化浇注技术。
从钢包→中间包用长水口,中间包→结晶器用浸 入式水口(板坯、大方坯)或气体保护(小方 坯),中间包采用覆盖剂,结晶器用保护渣。
4.充分发挥中间包冶金净化器的作用。
C.在操作中,注温和拉速对铸坯中夹杂物也有 一定影响
当钢液温度降低时,夹杂物指数升高;随着 拉速的提高,铸坯中夹杂物有增多的趋势。
D.耐火材料质量对铸坯夹杂物的影响
注连铸过程中由于钢液和耐火材料接触, 钢液中的元素(锰和铝等)会与耐火材料中 的氧化物发生作用生成夹杂物,当其不能上 浮时就遗留在铸坯中。
2.连铸坯中夹杂物的类型和来源
类型:取决于浇注钢种和脱氧方法。在连铸 坯中较常见的夹杂物有Al2O3和以SiO2为主并 含有MnO和CaO的硅酸盐,以及以Al2O3为主 并含有SiO2、CaO 和CaS等的铝酸盐。此外还 有硫化物如FeS、MnS等。
连续铸钢板坯 标准
连续铸钢板坯标准
连续铸钢板坯的尺寸和外形允许偏差以及外形允许偏差都有相应的标准。
连续铸钢板坯的尺寸允许偏差为:公称厚度+4.0mm。
公称宽度+10mm,连铸板坯可按定尺或非定尺交货,定尺长度允许偏差+ 80mm。
连续铸钢板坯的外形允许偏差包括横截面脱方、镰刀穹、不平度、鼓肚、切斜、凹陷等,具体标准如下:
1.横截面脱方:公称厚度< 150mm,as4.0mm; 公称厚度150 ~ 200mm, a<6.0mm; 公称厚度> 200mm,as8.0mm。
2.镰刀穹:每米不大于8mm.
3.不平度:每米不大于15mm,总不平度总长度的1.5%。
4.鼓肚:宽面鼓肚:铸坯厚度最大尺寸与铸坯厚度最小尺寸之差<1%铸坯宽度;侧面鼓肚:≤5%铸坯厚度。
5.切斜:宽度方向s25mm,厚度方向≤10mm。
6.凹陷:侧面凹陷≤5mm,宽面凹陷≤5mm。
此外。
连续铸钢板坯还规定了连铸板坯牌号和连铸板坯标准。
制表:审核:批准:。
连铸板坯缺陷特征和缺陷图谱
连铸板坯缺陷特征和缺陷图谱首钢京唐板坯质检编制2010年8月8日一.连铸坯质量特征综述1.1连铸坯质量定义和特征所谓连铸坯质量是指的到合格产品所允许的铸坯缺陷的严重程度。
对铸坯质量要求而言,主要有四项指标,即连铸坯几何形状、表面质量、内部组织致密性和钢的洁净性;而这些质量要求与连铸机本身设计,采取的工艺以及凝固特点密切相关。
1.2铸坯的检查和清理的意义提高钢的质量,降低成本,加强产品市场的竞争力是企业追求的目标,生产无缺陷连铸坯以保证高附加值产品优良的性能是永恒的主题,连铸坯的裂纹和夹杂物所产生的缺陷可以说是影响产品质量的两大障碍,生产无缺陷或缺陷不足以影响产品质量的连铸坯,这是要努力达到的目标,而连铸坯裂纹和夹杂物所产生的缺陷是受设备、工艺、管理等多种因素制约的。
因此设备、工艺和管理的现代化加上人的质量意识是提高产品质量的关键。
,但是在连铸生产中,铸坯的各种缺陷总是无法避免的,铸坯清理对钢厂保障铸坯质量、降低废品比例具有重要意义。
(1)火焰铸坯清理的注意事项1)一般对表面质量要求较高的钢种,铸坯清理的目的以检查铸坯表面和皮下质量为主,包括夹杂物、气泡、裂纹等分布情况,在清理检查的基础上提供铸坯的进一步处理(清除缺陷、决定铸坯表面质量级别、是否送机器去皮、决定钢种是否达到热送条件等)的意见。
2)微合金钢如Nb、V微合金钢和包晶钢等容易产生角部横裂纹,往往位于铸坯振痕谷底,也需要用火焰清理才能发现。
这方面也应引起足够重视。
3)对于包晶钢、中碳钢等钢种,则以人工清理肉眼可见缺陷为主,包括铸坯常见的表面缺陷,如纵裂、角横裂、重接、凹陷、夹渣、毛刺等,以便尽量降低铸坯判废损失。
(2)不良的火焰清理的危害虽然火焰清理是检查和去除连铸坯表面缺陷的一个极好的方法。
但是,这项操作的确需要掌握一定的技巧,一旦能够正确地操作可确保最终产品不产生额外的表面缺陷。
连铸坯表面上的深槽、凸脊和界面必须平滑以确保清理操作本身不造成额外表面缺陷。
连铸坯质量控制
连铸坯质量控制连铸坯质量控制引言连铸坯质量是决定钢铁产品质量的重要因素之一。
在连铸过程中,通过控制连铸坯的凝固结晶形貌、尺寸尺寸以及内部缺陷等,可以保证最终钢铁产品的质量稳定性。
本文将介绍连铸坯质量控制的基本原则和常用技术手段。
1. 连铸坯凝固结晶形貌控制1.1 凝固路径设计连铸坯的凝固路径设计是影响凝固结晶形貌的关键因素。
凝固路径包括主要凝固温度区间、凝固速度以及凝固过程中应有的温度梯度等要点。
通过科学合理地设计凝固路径,可以控制连铸坯的凝固结晶形貌,提高产品的均匀性和致密性。
1.2 凝固浸没深度控制凝固浸没深度是指连铸坯在铸机中浸没的深度。
凝固浸没深度的调整可以通过调整浇注速度、浇注高度和结晶器深度等因素来实现。
恰当地控制凝固浸没深度可以优化凝固结构,减少坯壳厚度和缩孔等缺陷的发生。
2. 连铸坯尺寸控制2.1 坯型设计连铸坯的尺寸控制需要科学合理地设计坯型。
坯型设计要考虑连铸机的性能和工艺条件,以及产品需要达到的尺寸要求。
有效的坯型设计可以保证连铸坯尺寸的精确控制,减少修磨损失并提高铸坯产量。
2.2 坯型换边控制连铸坯在连铸过程中,由于挤压力和引拉力的作用,容易发生坯型换边的情况。
坯型换边会导致铸轧过程中尺寸控制困难,甚至导致产品尺寸不合格。
通过控制连铸机的工艺参数和优化设备结构,可以有效地控制坯型换边,提高铸坯质量。
3. 连铸坯内部缺陷控制3.1 结晶器设计结晶器是连铸过程中控制坯内部缺陷的关键设备。
结晶器的设计应考虑到坯内部的流动状态,并通过合理的传热和传质方式,控制连铸坯内的气体和夹杂物等缺陷。
合理的结晶器设计可以有效减少坯内部夹杂物和气体等缺陷的产生。
3.2 液相线保护措施液相线是连铸过程中凝固结构变化的关键位置。
液相线的形成过早或过晚都会导致内部缺陷的产生。
通过合理的冷却水设定和轧制工艺,可以保证液相线的稳定形成,有效控制坯内部缺陷。
结论连铸坯质量控制是保证钢铁产品质量稳定的关键环节。
毕业论文(设计)浅议连铸坯质量控制【毕业论文】
题目: ______ 简论__________ 控制连铸坯的质量系部:冶金化工系姓名:陈明义学号:2009214039专业:冶金技术年级班级:09冶金一班指导教师(职称):张成勇(工程师)2011年月日摘要连铸坯的质量控包括连铸坯的纯净度控制、连铸坯的表面质量及控制、连铸坯内部质量及控制、以及连铸坯外观形状控制,以下描述了各种缺陷以及质量问题形成的原因:(1)连铸坯的纯净度:夹杂物的存在破坏了钢基体的连续性以及致密性,大于50微米的夹杂物基本都会伴有裂纹出现,造成连铸坯低倍结构不合格,铸坯分层,对钢的危害很大。
(2)连铸坯的表面质量:连铸坯这些表面缺陷主要是钢液在结晶器内坯壳形成生长过程中产生的,结晶器振动以及结晶器液面的稳定因素有关,连铸坯表面质量的好坏决定了铸坯在热加工之前是否需要精整,也是影响金属收得率和成本的重要因素,还是铸坯热送和直接轧制的前提条件,连铸坯表面缺陷形成的原因较为复杂,但是总体来讲,主要是受结晶器内钢液凝固所控制(3)连铸坯的内部质量:连铸坯的内部质量是指连铸坯是否具有正确的凝固结构,以及裂纹、偏析、疏松等缺陷程度,夹杂物含量以及分布情况。
二冷区的冷却和支撑系统与连铸坯内部质量密切相关.(4)连铸坯的外观形状:带液心的连铸坯在运行中,与棍子在高温坯壳中钢液静压力的作用下发生挤压产生鼓肚变形,此外还会发生脱方,即菱形变形,此时对连铸坯影响很大,不规则矩形不适宜建造。
关键词:连铸坯;质量;控制目录摘要 (1)目录 (3)⒈连铸坯纯净度与产品质量 (4)1.1纯净度与质量的关系 (4)1.2提高纯净度的措施 (4)⒉连铸坯的表面质量 (5)2.1表面裂纹 (5)2.2表面夹渣 (6)2.3皮下气泡与气孔 (7)⒊连铸坯内部质量 (7)3.1中心偏析 (7)3.2中心疏松 (8)3.3内部裂纹 (8)⒋连铸坯的外观形状 (9)4.1鼓肚变形 (9)4.2菱形变形 (9)4.3圆铸坯变形 (10)参靠文献 (11)⒈连铸坯纯净度度与产品质量1.1纯净度与质量的关系纯净度是指钢中非金属夹杂物的数量、形态和分布。
连铸坯质量控制
连铸坯质量控制连铸坯质量控制1. 引言2. 连铸坯质量特点连铸坯的质量特点主要包括以下几个方面:2.1 凝固结构连铸坯是通过冷却凝固过程形成的,其凝固过程直接影响到坯体的凝固结构。
凝固结构的好坏会对后续的加工以及材料性能产生重要影响。
2.2 化学成分均匀性连铸坯的化学成分均匀性是其质量的重要指标之一。
成分不均匀容易导致后续钢材性能不稳定,从而影响到产品的质量。
2.3 表面缺陷由于连铸坯制造过程中的一些不可避免的因素,气体夹杂、氧化皮等,会在坯体表面形成一些缺陷。
这些表面缺陷会对后续产品的外观质量产生负面影响。
2.4 尺寸偏差连铸坯的尺寸偏差是指坯体的实际尺寸与标准尺寸之间的差异。
尺寸偏差会影响到钢材的加工工艺和成形质量。
3. 连铸坯质量控制因素及措施连铸坯质量的影响因素众多,包括原料质量、连铸工艺参数、设备状况等。
针对这些影响因素,可以采取以下控制措施来提高连铸坯的质量:3.1 原料质量控制通过严格控制原料的化学成分和物理性能,确保连铸坯的化学成分均匀性和机械性能达到要求。
3.2 连铸工艺参数控制连铸工艺参数的合理设置对坯体的凝固结构和表面质量具有决定性影响。
需要通过优化连铸工艺参数,如冷却水流量、浇注速度等,来控制连铸坯的质量。
3.3 设备维护与改进连铸设备的状态对连铸坯质量也有重要影响。
定期进行设备维护和检修,及时处理设备故障,可以保证设备处于良好状态,进而提高连铸坯的质量。
3.4 检测手段与技术利用先进的检测手段和技术,如超声波检测、磁力检测等,可以对连铸坯进行质量检测,及时发现问题并采取相应措施。
4.连铸坯质量控制是钢铁生产中至关重要的环节。
通过对连铸坯质量特点的分析和影响因素的控制,可以采取相应的措施来提高连铸坯的质量。
这不仅对于保证下游产品质量,还对于提高工业生产效益和降低资源消耗具有重要意义。
开展连铸坯质量控制工作是必不可少的。
提高连铸坯质量技术
提高连铸坯质量技术连铸坯的质量概念包括:铸坯纯净度(主要指钢中非金属夹杂物数量、类型、尺寸、分布和形态);铸坯表面缺陷(主要指铸坯纵裂纹、横裂纹、星状裂纹、气泡以及夹渣等);铸坯内部缺陷(主要包括铸坯中间裂纹、角部裂纹、中心线裂纹、疏松、缩孔以及中心偏析等);形状缺陷(凹坑、鼓肚等)。
铸坯纯净度主要决定于钢水进入结晶器之前的处理过程。
连铸过程控制钢洁净度的技术措施:保护浇注、冶炼及合金化过程控制、选择合适的炉外精炼、中间包冶金、钢水流动控制技术、中间包材质碱性化加速、中间包电磁离心分离技术、中间包热量循环技术、中间包稳态浇注技术、防止下渣和卷渣技术、结晶器流动控制技术以及结晶器EMBR技术。
提高铸坯纯净度,就是要降低钢中夹杂物的含量,要根据钢种和产品的要求,把钢中夹杂物降低到所要求的水平。
在工艺上应采用的措施:无渣出钢;钢包精炼;无氧化浇注;中间包冶金;浸入式水口加保护渣。
铸坯的表面质量缺陷主要决定于钢水在结晶器的凝固过程。
它是与结晶器坯壳形成、结晶器液面波动、浸入式水口设计、保护渣性能有关的。
铸坯表面质量好坏是后续的热送、热装和直接轧制的前提条件。
要想清楚铸坯表面缺陷,生产中可采用以下技术:结晶器钢水液面稳定性控制、结晶器振动技术、浸入式水口快速更换技术、结晶器内凝固坯壳生长均匀性控制技术、结晶器钢水流动状况合理控制技术以及结晶器保护渣技术等。
提高铸坯的表面质量,在工艺上采用的措施;结晶器采用合理的到锥度;选用性能良好的保护渣,采用勤加少加匀加的原则;浸入式水口的出口倾角和插入深度要合适,一般在120~140mm;依据所浇钢种确定合理的浇铸温度及拉坯速度;保持结晶器液面稳定,控制在100±10mm;钢的化学成分控制在合适的范围,降低钢中S、P、O、N的含量;结晶器采用高振频低振幅。
铸坯的内部缺陷主要决定于在二次冷却区铸坯冷却过程和铸坯支撑系统。
合理的二次冷却水分布、支撑辊的对中、防止铸坯鼓肚等是提高铸坯内部质量的前提。
第五讲-连铸坯内部质量控制
第六讲连铸坯内部质量的控制北京科技大学课程主要内容1.绪论2.连铸技术的发展3.凝固理论(形核、长大、凝固组织控制)4.钢液的凝固原理(结晶器、二次冷却)5.连铸坯表面质量控制6.连铸坯内部质量控制7.连铸新技术主要内容1 连铸坯中心缺陷概念2 影响连铸坯中心缺陷形成因素3 防止铸坯中心缺陷的对策4 铸坯中心缺陷形成机理5 结语前言从结晶器拉出来带有液芯的坯壳,在连铸机内边传热、边凝固、边运行而形成很长液相穴的铸坯(少则几米多则十几或二十几米),由于受凝固、传热、传质和工艺的限制,沿液相穴路径常常发生钢水补缩不好,在铸坯完全凝固后,沿铸坯轴向(拉坯方向)某些局部区域常常发现疏松、缩孔和偏析,常称为中心缺陷。
根据钢种和产品用途不同,对连铸坯中心缺陷有严格要求,板坯中心缺陷严重会引起中厚板横向性能尤其是冲击韧性不合格,管线钢抵抗,氢脆(HIC)裂纹能力恶化。
对于中高碳大方坯轧制棒材或线材产品常常会因中心缺陷严重使大方坯低倍检验不合格而导致产品合格率降低。
因此减轻铸坯中心缺陷至不使产品产生废品,这是提高连铸坯内部质量的一个重要任务。
1 连铸坯中心缺陷概念1.1 铸坯中心缺陷形貌沿铸坯横向或纵向轴线剖开经硫印或酸浸后,可显示出低倍结构,(图1-1)沿铸坯纵剖面中心轴线可发现:y中心疏松y中心缩孔y中心偏析(宏观偏析,它与疏松缩孔伴生)y点状或V形偏析(半宏观偏析)沿铸坯横剖面,则中心区有点状疏松或缩孔。
图1-1 铸坯低倍形貌1.2 铸坯中心缺陷评价(1)宏观评级零级相当于中心结构致密,5级为中心疏松尺寸大且连续。
在高过热度浇铸时,约80%铸坯相当于1、2、3级,而20%铸坯相当于4、5级。
(3)化学元素分布从铸坯横断面从内弧到外弧隔一定距离钻样,分析C、Si、Mn、S、P元素以表征铸坯表面至中心的成分差异(图1-3)。
图1-3 铸坯横断面成分分布从铸坯纵向轴线剖开沿中心线隔一定距离钻样,分析C、Si、Mn、S、P成分,以表征铸坯中心线区域成分差异(图1-4)图1-4 铸坯中心成分分布表1-1 铸坯偏析比也可用SEM(Scanning Electron Microscope) 来描述铸坯或轧材试样上Mn偏析图谱,以表征微观偏析状况。
板坯连铸质量提升关键技术的研究与应用
板坯连铸质量提升关键技术的研究与应用摘要板坯连铸工艺是现代工业生产中应用的主要技术,技术应用质量提升,有利于提升板坯件的生产质量。
而当前,技术研究发现,板坯连铸工艺还存在一定的问题,影响到生产质量。
因此,本文开展对板坯连铸工艺质量提升关键技术的研究探讨,文章在进行研究的过程中,以天荣炼钢厂的连铸大板坯纯净度提升工艺技术为研究对象,该厂在提质关键技术研究中提出工艺优化必要性,并以自身现有连铸技术条件为基础,开展对提质技术的探讨,最终提出了板坯连铸工艺提升措施,而根据实践验证表明,该厂提出的新技术与传统板坯连铸工艺相比有长足进步,技术应用已经符合标准,更有利于促进技术发展,保证技术快速发展。
关键词:板坯连铸;质量提升;关键技术板坯连铸生产过程中,对工艺应用质量和效率的要求比较高。
尤其是在我国工业对板坯件质量要求逐渐加强的背景下,传统板坯连铸工艺已经不能够满足生产质量需求。
工艺中存在的质量问题、效率问题已经非常明显。
因此,为优化板坯连铸工艺,相关工厂和技术研发部门正在大力开展板坯连铸工艺提升关键技术研究,希望通过关键技术研究,对传统技术进行革新,继而解决关键问题,确保生产达到最佳效果。
1.板坯连铸工艺提质技术研究的必要性分析对板坯连铸工艺进行优化研究已经势在必行,是工业生产中出现的实际问题,引导技术优化创新改革。
以天荣炼钢厂为例,改产技术升级改造,目的明确,理由充分。
首先,该厂其他工艺已经升级,为满足板坯连铸生产新需求,更要求做好技术改造。
如,该厂2#板坯连铸设备进行了升级改造,将浇注断面增加至180*670~870mm,浇注拉速提升至1.0~1.2m/min,年产量可达到220万吨。
为尽快使用新生产模式,要求对板坯连铸工艺进行再次优化,确保工艺与整体技术流程匹配。
其次,传统工艺问题严重。
传统的板坯连铸工艺开始逐渐暴露问题,严重影响到生产。
如,传统生产工艺已经适用现高拉速,连续的大批量生产模式。
造成的铸坯质量纯净度不稳定,铸坯氧含量高、夹杂物超标等缺陷,铸坯氧含量最高超过120ppm,夹杂物等级达到3.5级,严重影响产品质量。
连铸坯质量及控制方法
连铸坯质量及控制方法1、连铸坯质量的含义是什么?最终产品质量决定于所供给的铸坯质量。
从广义来说,所谓连铸坯质量是指得到合格产品所允许的铸坯缺陷的严重程度。
它的含义是:——铸坯纯净度(夹杂物数量、形态、分布、气体等)。
——铸坯表面缺陷(裂纹、夹渣、气孔等)。
——铸坯内部缺陷(裂纹、偏析、夹杂等)。
铸坯纯净度主要决定于钢水进入结晶器之前处理过程。
也就是说要把钢水搞“干净”些,必须在钢水进入结晶器之前各工序下功夫,如冶炼及合金化过程控制、选择合适的炉外精炼、中间包冶金、保护浇注等。
铸坯的表面缺陷主要决定于钢水在结晶器的凝固过程。
它是与结晶器坯壳形成、结晶器液面波动、浸入式水口设计、保护渣性能有关的。
必须控制影响表面质量各参数在目标值以内,以生产无缺陷铸坯,这是热送和直接扎制的前提。
铸坯的内部缺陷主要决定于在二次冷却区铸坯冷却过程和铸坯支撑系统。
合理的二次冷却水分布、支承辊的对中、防止铸坯鼓肚等是提高铸坯内部质量的前担。
因此,为了获得良好的铸坯质量,可以根据钢种和产品的不同要求,在连铸的不同阶段如钢包、中间包、结晶器和二次冷却区采用不同的工艺技术,对铸坯质量进行有效控制。
2、提高连铸钢种的纯净度有哪些措施?纯净度是指钢中非金属夹杂物的数量、形态和分布。
要根据钢种和产品质量,把钢中夹杂物降到所要求的水平,应从以下五方面着手:——尽可能降低钢中[O]含量;——防止钢水与空气作用;——减少钢水与耐火材料的相互作用;——减少渣子卷入钢水内;——改善钢水流动性促进钢水中夹杂物上浮。
从工艺操作上,应采取以下措施:(1)无渣出钢:转炉采用挡渣球(或挡渣锥),防止钢渣大量下到钢包。
(2)钢包精炼:根据钢种选择合适的精炼方法,以均匀温度、微调成分、降低氧含量、去除气体夹杂物等。
(3)无氧化浇注:钢水经钢包精炼处理后,钢中总氧含量可由130ppm下降到20ppm以下。
如钢包→中间包注流不保护或保护不良,则中间包钢水中总氧量又上升到60~100ppm范围,恢复到接近炉外精炼前的水平,使炉外精炼的效果前功尽弃。
第六讲 连铸坯表面质量控制
◆ 横裂纹可位于铸坯面部或角部
◆ 横 裂 纹 与 振 痕 共 生 , 深 度 2 ~ 4mm , 可 达 7mm,裂纹深处生成FeO。不易剥落,热轧板 表面出现条状裂纹。振痕深,柱状晶异常,形 成元素的偏析层,轧制板上留下花纹状缺陷。
◆ 铸坯横裂纹常常被FeO覆盖,只有经过酸洗 后,才能发现。
-沿振痕波谷处元素呈正偏析。
这样,振痕波谷处,奥氏体晶界脆性增大,为裂纹产生提 供了条件。
(2) 铸坯运行过程中,受到外力(弯曲,矫直,鼓肚, 辊子不对中等)作用时,刚好处于低温脆性区(图1- 5)的铸坯表面处于受拉伸应力作用状态,如果坯壳所 受的ε临>1.3%,在振痕波谷处就产生裂纹。
3.3.3影响产生横裂纹因素
结晶器弱冷,有利于减少纵裂纹(图3- 11)。
图3-11 结晶器弱冷对小纵裂的影响
(6) 结晶器的锥度
图3-12 结晶器锥度和钢成分对皮下内裂的影响 (断面尺寸240x240mm,拉速0.7m/min)
◆ 锥度<0.8%/m,窄面凸出→角部纵裂; ◆ 锥度>0.8%/m,窄面凹入→无角部纵裂。
(7) 结晶器振动
3.3.2横裂纹产生原因
(1) 横裂纹产生于结晶器初始坯壳形成振痕的波谷处,振痕 越深,则横裂纹越严重,在波谷处,由于: -冷却速度降低,晶粒粗大(图3-13);
图3-13 铸坯内γ晶粒尺寸对裂纹的影响
-奥氏体晶界析出沉淀物(AlN,Nb(CN)),产生晶间断裂 (图3-14);
断裂前
断裂后
图3-14 钢在600~900℃区域内发生脆断示意图
(1) 结晶器初始坯壳均匀生长
◆ 热顶结晶器(弯月面区热流减少50~60%) ◆ 波浪结晶器(弯月面区热流减少17~25%) ◆ 结晶器弱冷 ◆ 合适结晶器锥度
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
连铸板坯质量
概述
纵裂纹时发生在板坯宽面与浇注方向平行的表面裂纹。
该类缺陷造成板坯表面清理量增大,收得率低,严重时大量报废,甚至漏钢,给生产带来不稳定因素,影响铸机生产和铸坯质量。
铸坯纵裂纹影响因素
✧钢水过热度与拉速
过热度高,拉速波动大,对板坯表面质量有显著影响。
过热度和拉速决定结晶器内坯壳的厚度。
在结晶器水量设定不变,二冷水自动控制的条件下,拉速与过热度的匹配,对纵裂纹的发生率有着重要影响。
过热度过高时,拉速降低,虽然能在结晶器上部形成一定厚度的坯壳,但在结晶器中下部过早形成气隙,使传热不均匀,坯壳不能均匀生长,造成热应力,摩擦力加大,极易导致纵裂纹,另外,钢水过热度高,导致钢水凝固推迟,坯壳厚度薄且平均温度高,坯壳温度向钢的第Ⅰ脆性区移动,使纵裂倾向加重。
✧钢种成份
1、碳的影响
C在0.10%—0.16%范围内的碳钢凝固过程会发生包晶反应,在凝固点附近体积收缩率增大,属于裂纹敏感区,极易因收缩不均匀产生纵裂。
而又因Mn等合金的加入,碳的范围还要向下移,宝钢生产的中碳钢相当一部分在这个范围内。
例如,表3-1中Ⅳ钢,其碳含量在0.08%—0.11%之间,属亚包晶钢,占每个月纵裂报废的大头。
2、钢种各元素对纵裂纹的影响程度用纵裂纹敏感因子表示如下:
CSF=36%C+12%Mn+8%Si+540%S+812%P+5%Ni+3.5%Co-20%V
从上式中可以看到,P和S对纵裂的影响极大,主要是因为P、S在δ-Fe中的溶解度和扩散系数要比在γ-Fe中大得多,在相变时有可能产生晶界富集,导致裂纹的发生。
因此降低钢中P、S含量,对提高坯壳的强度,减少裂纹的初生与扩展都是有益的,有经验表明提高Mn/S可以有效降低S对裂纹的影响,减少纵裂的发生,当Mn/S<40时,会发生严重的晶界脆化现象,Mn/S>100时,使FeS充分转化为MnS,减少了低熔点硫化物的析出,可使裂纹发生率降低。
3、另外Cu、Sn等元素在钢种能显著降低钢的热塑性,在晶界富集降低晶界表面能,
增大晶界处孔洞形核与长大速度,增加裂纹的敏感度。
宝钢生产的耐候钢中P含量很高,C含量又在亚包晶范围内,因此纵裂发生率及报废量特别高,约占50%,在不影响产品质量的情况下,我们对其中的几个钢种进行了降碳试验,结果表明,C含量避开包晶范围能有效降低纵裂的发生率。
✧结晶器一冷水
结晶器缓冷能减轻初生坯壳的热应力,有效减少纵裂的发生。
①提高结晶器入口水温,经与能源部水处理分厂协商,为减少纵裂的发生,把结晶器入
口水温目标值由原来的36℃提高到38℃,对防止纵裂有一定的好处。
②减小结晶器水量,减小结晶器水量能有效减少结晶器的冷却强度,对纵裂敏感性钢种
均采用K1方式(小水量)取得了一定效果,但为防止结晶器一冷水的局部沸腾,对一冷水的流速有最低限制,为了能得到进一步的缓冷,我们采取了减少结晶器水槽深度的方法,把原来深度为28-29mm的水槽改为25-26mm,22-23mm,这样水量有了进一步调节的余地。
✧铸坯纵裂影响因素
结晶器内形成的裂纹大都细而浅,铸坯进入二冷区后,如果冷却强度过大或冷却不均匀,强的热应力会促使铸坯已形成的微细裂纹扩大、延伸,最终发展成表面纵裂缺陷。
目前
1930连铸对裂纹敏感性钢种,均采用弱冷方式,4—7区为气水冷却,经常保持对二冷区的检查和维护,对防止喷嘴堵塞、变形、管道漏水等非常重要,能有效减少铸坯二次冷却不均匀,减小纵裂在二冷区的扩展。
2003年6月份因2ST一号扇形段漏水,造成纵裂报废明显增加,也说明了二冷区的均匀冷却的重要性。
铸坯纵裂影响因素
保护渣是影响纵裂的重要因素之一。
结晶器内保护渣分三层,与钢水接触的为熔融层,中间为烧结层,最上层为为粉渣层。
熔融保护渣通过钢水弯月面与结晶器之间的间隙流入坯壳与结晶器之间,起润滑作用,坯壳与结晶器之间的保护渣膜实际是由液渣层、玻璃相固相渣层、结晶相固相渣层组成。
合理调节三个渣层的物性非常重要。
通过控制液渣层的粘度来保证润滑,防止液渣流入不均匀及过度传热;提高保护渣的结晶、凝固温度以增加固相层比率来减缓传热,并通过增加结晶比率来增加晶界热阻和减缓玻璃相的辐射传热,以抑制铸坯表面裂纹的产生。
横裂纹、角横裂纹
表面横裂纹:
中碳钢、含铌钢铸坯发生率高;
主要发生在铸坯表面振痕波谷处;
多发生在铸坯内弧侧;
有时“黑皮”状态不易发现,位于皮下;
裂纹沿晶界扩展延伸。
角横裂纹
发生在铸坯角部振痕底部;
长度5~20mm;
深度≤5mm;
铸坯“黑皮”状态不易发现。
横裂、角横裂的原因:
振痕(缺口效应、杂质富集);
结晶器内摩擦力等应力;
氮化物、碳氮化物析出造成钢脆化;
二冷温度控制模式不当,铸坯表面温度进入脆性温度区;
矫直应力。
防止横裂、角横裂的对策
减小振痕深度、增大振痕曲率半径;
避免过低拉速;
减小结晶器钢水液面波动;
减小结晶器铸坯摩擦力;
提高铸机对弧、对中精度;
减少钢种氮含量,控制碳、氮化物析出;
采用合适的二冷温度模式;
矫直温度避开钢的脆性温度区。
(皮下)针孔缺陷
危害:
暴露在表面(清理、轧钢氧化)造成冷轧板表面缺陷
皮下未暴露的在退火或镀锌时造成冷轧板“鼓包”blister。
皮下气孔的原因:
主要是刚水流中吹入的Ar泡被凝固坯壳捕捉造成的。
钢种气体含量高时(N/O/H)易造成针孔缺陷。
部分气孔中伴随有夹杂物。
中心偏析
中心偏析严重影响钢材的Z向性能、抗HIC性能、焊接性能等。
中心偏析是在凝固最后阶段,钢收缩引起的最后部分钢水液流动造成的。
中心裂纹
中心裂纹会造成钢板严重分层缺陷,其产生原因主要是凝固末期铸坯心部没有钢水补缩造成的,与铸机开口度密切相关。
影响中心偏析的因素:
浇注温度
拉速
磷、硫含量
棍子状态
减轻铸坯中心偏析的对策:
降低杂质含量
强的二冷
严格辊缝管理
电磁搅拌
轻压下。