高三数学一轮复习27正余弦定理应用举例学案
高三新数学第一轮复习教案第27讲正、余弦定理及应用
普通高中课程标准实验教科书—数学[人教版]高三新数学第一轮复习教案(讲座27)—正、余弦定理及应用一.课标要求:(1)通过对任意三角形边长和角度关系的探索,掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题;(2)能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题。
二.命题走向对本讲内容的考察主要涉及三角形的边角转化、三角形形状的判断、三角形内三角函数的求值以及三角恒等式的证明问题,立体几何体的空间角以及解析几何中的有关角等问题。
今后高考的命题会以正弦定理、余弦定理为知识框架,以三角形为主要依托,结合实际应用问题考察正弦定理、余弦定理及应用。
题型一般为选择题、填空题,也可能是中、难度的解答题。
三.要点精讲1.直角三角形中各元素间的关系:如图,在△ABC中,C=90°,AB=c,AC=b,BC=a。
(1)三边之间的关系:a2+b2=c2。
(勾股定理)(2)锐角之间的关系:A+B=90°;(3)边角之间的关系:(锐角三角函数定义)sin A=cos B=,cos A=sin B=,tan A=。
2.斜三角形中各元素间的关系:如图6-29,在△ABC中,A、B、C为其内角,a、b、c分别表示A、B、C的对边。
(1)三角形内角和:A+B+C=π。
(2)正弦定理:在一个三角形中,各边和它所对角的正弦的比相等。
(R为外接圆半径)(3)余弦定理:三角形任何一边的平方等于其他两边平方的和减去这两边与它们夹角的余弦的积的两倍。
a2=b2+c2-2bc cos A;b2=c2+a2-2ca cos B;c2=a2+b2-2ab cos C。
3.三角形的面积公式:(1)△=ah a=bh b=ch c(h a、h b、h c分别表示a、b、c上的高);(2)△=ab sin C=bc sin A=ac sin B;(3)△===;(4)△=2R2sin A sin B sin C。
高考数学一轮复习教案(含答案) 第3章 第7节 正弦定理、余弦定理应用举例
第七节 正弦定理、余弦定理应用举例[考纲传真] 能够运用正弦定理、余弦定理等知识和方法解决一些与测量和几何计算有关的实际问题.测量中的有关几个术语(2)南偏西α:1.(思考辨析)判断下列结论的正误.(正确的打“√”,错误的打“×”)(1)从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β的关系为α+β=180°. ( )(2)俯角是铅垂线与视线所成的角,其范围为⎣⎢⎡⎦⎥⎤0,π2. ( ) (3)方位角的大小范围是[0,2π),方向角的大小范围一般是⎣⎢⎡⎭⎪⎫0,π2.( )(4)若点P在点Q的北偏东44°,则点Q在点P的东偏北46°. ()[答案](1)×(2)×(3)√(4)×2.(教材改编)海面上有A,B,C三个灯塔,AB=10 n mile,从A望C和B 成60°视角,从B望C和A成75°视角,则BC等于()A.10 3 n mile B.1063n mileC.5 2 n mile D.5 6 n mile D[如图,在△ABC中,AB=10,∠A=60°,∠B=75°,∠C=45°,∴BCsin 60°=10sin 45°,∴BC=5 6.]3.若点A在点C的北偏东30°,点B在点C的南偏东60°,且AC=BC,则点A在点B的()A.北偏东15°B.北偏西15°C.北偏东10°D.北偏西10°B[如图所示,∠ACB=90°,又AC=BC,∴∠CBA=45°,而β=30°,∴α=90°-45°-30°=15°,∴点A在点B的北偏西15°.]4.如图所示,要测量底部不能到达的电视塔的高度,选择甲、乙两观测点.在甲、乙两点测得塔顶的仰角分别为45°,30°,在水平面上测得电视塔与甲地连线及甲、乙两地连线所成的角为120°,甲、乙两地相距500 m,则电视塔的高度是()A.100 2 m B.400 mC.200 3 m D.500 mD[设塔高为x m,则由已知可得BC=x m,BD=3x m,由余弦定理可得BD2=BC2+CD2-2BC·CD cos ∠BCD,即3x2=x2+5002+500x,解得x=500(m).]5.如图所示,已知A,B两点分别在河的两岸,某测量者在点A所在的河岸边另选定一点C,测得AC=50 m,∠ACB=45°,∠CAB=105°,则A,B两点的距离为()A.50 3 m B.25 3 mC.25 2 m D.50 2 mD[因为∠ACB=45°,∠CAB=105°,所以∠B=30°.由正弦定理可知AC sin B=ABsin C,即50sin 30°=ABsin 45°,解得AB=50 2 m.]1.如图所示,从气球A上测得正前方的河流的两岸B,C的俯角分别为67°,30°,此时气球的高是46 m,则河流的宽度BC约等于________m.(用四舍五入法将结果精确到个位.参考数据:sin67°≈0.92,cos 67°≈0.39,sin 37°≈0.60,cos 37°≈0.80,3≈1.73)60 [如图所示,过A 作AD ⊥CB且交CB 的延长线于D .在Rt △ADC 中,由AD =46 m ,∠ACB =30°得AC =92 m.在△ABC 中,∠BAC =67°-30°=37°,∠ABC =180°-67°=113°,AC =92 m ,由正弦定理AC sin ∠ABC =BC sin ∠BAC,得 92sin 113°=BC sin 37°,即92sin 67°=BC sin 37°, 解得BC =92sin 37°sin 67°≈60(m).] 2.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m. 103 [如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m),在△MON 中,由余弦定理得,MN =900+300-2×30×103×32=300=103(m).]3.如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h.32 [在△ABS 中,∠BAS =30°,∠ASB =75°-30°=45°,由正弦定理得AB sin ∠ASB =BS sin ∠BAS,则 AB =82sin 45°sin 30°=16,故此船的船速是160.5=32 n mile/h.]4.如图,A ,B 两点在河的同侧,且A ,B 两点均不可到达,要测出A ,B 的距离,测量者可以在河岸边选定两点C ,D ,测得CD =a ,同时在C ,D 两点分别测得∠BCA =α,∠ACD =β,∠CDB =γ,∠BDA =δ.在△ADC 和△BDC 中,由正弦定理分别计算出AC 和BC ,再在△ABC 中,应用余弦定理计算出AB .若测得CD =32km ,∠ADB =∠CDB =30°,∠ACD =60°,∠ACB =45°,则A ,B 两点间的距离为________km.64[∵∠ADC =∠ADB +∠CDB =60°,∠ACD =60°, ∴∠DAC =60°,∴AC =DC =32(km).在△BCD 中,∠DBC =45°,由正弦定理,得BC =DC sin ∠DBC·sin ∠BDC =32sin 45°·sin 30°=64. 在△ABC 中,由余弦定理,得AB 2=AC 2+BC 2-2AC ·BC cos 45°=34+38-2×32×64×22=38.∴AB =64(km).∴A ,B 两点间的距离为64 km.]【例1】 (2019·黄山模拟)如图所示,一辆汽车在一条水平的公路上向正西行驶,到A 处时测得公路北侧一山顶D 在西偏北30°的方向上,行驶600 m 后到达B 处,测得此山顶在西偏北75°的方向上,仰角为30°,则此山的高度CD =______m.1006 [由题意,在△ABC 中,∠BAC =30°,∠ABC =180°-75°=105°,故∠ACB =45°.又AB =600 m ,故由正弦定理得600sin 45°=BC sin 30°,解得BC =300 2 m.在Rt △BCD 中,CD =BC ·tan 30°=3002×33=1006(m).]如图,从某电视塔CO 的正东方向的A 处,测得塔顶的仰角为60°,在电视塔的南偏西60°的B 处测得塔顶的仰角为45°,AB 间的距离为35米,则这个电视塔的高度为________米.521 [如图,可知∠CAO =60°,∠AOB =150°,∠OBC =45°,AB =35米.设OC =x 米,则OA =33x 米,OB =x 米. 在△ABO 中,由余弦定理,得AB 2=OA 2+OB 2-2OA ·OB ·cos ∠AOB ,即352=x 23+x 2-233x 2·cos 150°,整理得x =521,所以此电视塔的高度是521米.]【例2】 某渔船在航行中不幸遇险,发出呼救信号,我海军舰艇在A 处获悉后,立即测出该渔船在方位角为45°,距离A 为10海里的C 处,并测得渔船正沿方位角为105°的方向,以10海里/时的速度向小岛B 靠拢,我海军舰艇立即以103海里/时的速度前去营救,求舰艇的航向和靠近渔船所需的时间.[解]如图所示,设所需时间为t小时,则AB=103t,CB=10t,在△ABC中,根据余弦定理,则有AB2=AC2+BC2-2AC·BC·cos 120°,可得(103t)2=102+(10t)2-2×10×10t cos 120°.整理得2t2-t-1=0,解得t=1或t=-12(舍去),∴舰艇需1小时靠近渔船,此时AB=103,BC=10.在△ABC中,由正弦定理得BCsin∠CAB=ABsin 120°,∴sin∠CAB=BC·sin 120°AB=10×3 2103=1 2.∴∠CAB=30°.所以舰艇航向为北偏东75°.B处有一艘渔船遇险,在原地等待营救.信息中心立即把消息告知在其南偏西30°,相距20海里的C处的乙船,现乙船朝北偏东θ的方向沿直线CB前往B处救援,求cos θ的值.[解]在△ABC中,AB=40,AC=20,∠BAC=120°,由余弦定理得,BC2=AB2+AC2-2AB·AC·cos 120°=2 800⇒BC=207.由正弦定理,得ABsin∠ACB=BCsin∠BAC⇒sin∠ACB=ABBC·sin∠BAC=217.由∠BAC=120°,知∠ACB为锐角,则cos∠ACB=27 7.由θ=∠ACB+30°,得cos θ=cos(∠ACB+30°)=cos∠ACB cos 30°-sin∠ACB sin 30°=21 14.。
高三数学一轮复习学案:第27课时 正余弦定理应用举例
实际问题中的常用角(1)仰角和俯角在视线和水平线所成的角中,视线在水平线的角叫仰角,在水平线的角叫俯角(如图①).(2)方位角:指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图②).(3)坡度:坡面与水平面所成的二面角的度数.题型一:测量距离问题例1如图所示,为了测量河对岸A,B两点间的距离,在这一岸定一基线CD,现已测出CD=a和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.思考题1为了测量两山顶M,N之间的距离,飞机沿水平方向在A,B两点进行测量.A,B,M,N在同一个铅垂平面内(如图所示).飞机能够测量的数据有俯角和A,B间的距离.请设计一个方案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤.题型二:测量高度问题例2某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30°,求塔高.思考题2要测底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD =40 m,求电视塔的高度.题型三:测量角度问题例3如图所示,A,B是海面上位于东西方向相距5(3+3) 海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B点相距20 3 海里的C点的救援船立即前往营救,其航行速度为30 海里/小时,该救援船到达D点需要多长时间?思考题3如图所示,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A地侦察发现,在南偏东60°方向的B地,有一艘某国军舰正以每小时13海里的速度向正西方向的C地行驶,企图抓捕正在C地捕鱼的中国渔民.此时,C地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的速度赶往C地救援我国渔民,能不能及时赶到?(2≈1.41,3≈1.73,6≈2.45)。
余弦定理、正弦定理课件-2025届高三数学一轮复习
2
5
10
(2)[2021全国卷乙]记△ ABC 的内角 A , B , C 的对边分别为 a , b , c ,面积为
3 , B =60°, a 2+ c 2=3 ac ,则 b =
1
2
[解析] 由题意得 S △ ABC = ac sin B =
2 2
3
ac =
4
.
3 ,则 ac =4,所以 a 2+ c 2=3 ac =
A为锐角
A为钝角或直角
图形
关系式
a<b sinA
解的个数
无解
a=b sinA
⑪ 一解
b sin A<a<b
⑫
两解
a≥b
⑬ 一解
a>b
a≤b
一解
无解
3. 三角形中常用的面积公式
△ ABC 中,角 A , B , C 对应的边分别为 a , b , c .则:
1
(1) S = ah ( h 表示边 a 上的高);
(2,8) .
2 + 1 > 0,
1
[解析] ∵2 a +1, a ,2 a -1是三角形的三边,∴ > 0,
解得 a > .显然2 a
2
2 − 1 > 0,
+1是三角形的最大边,则要使2 a +1, a ,2 a -1构成三角形,需满足 a +2 a -1
>2 a +1,解得 a >2.设最大边对应的角为θ(钝角),则 cos θ=
(
D )
A. 1
B. 2
C. 5
D. 3
[解析] 由余弦定理得 AC 2= AB 2+ BC 2-2 AB ·BC ·cos B ,得 BC 2+2 BC -15=
高三数学一轮复习26正余弦定理学案
高三数学一轮复习 26.正余弦定理学案【学习目标】掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题.预习案1.正弦定理asin A===2R 其中2R为△ABC外接圆直径.变式:a=,b=,c= .a∶b∶c=∶∶ .2.余弦定理a2=;b2=;c2=.变式:cos A=;cos B=;cos C= .sin2A=sin2B+sin2C-2sin B sin C cos A.3.解三角形(1)已知三边a、b、c.运用余弦定理可求三角A、B、C.(2)已知两边a、b及夹角C. 运用余弦定理可求第三边c(3)已知两边a、b及一边对角A. 先用正弦定理,求sin B:sin B=b sin A a.①A为锐角时,若a<b sin A,;若a=b sin A,;若b sin A<a<b,;若a≥b,.②A为直角或钝角时,若a≤b,;若a>b,.4.已知一边a及两角A,B(或B,C)用正弦定理,先求出一边,后求另一边.4.三角形常用面积公式 (1)S=12a·h a(h a表示a边上的高).(2)S=12ab sin C=12ac sin B=12bc sin A=abc4R. (3)S=12r(a+b+c)(r为内切圆半径).【预习自测】1.在锐角△ABC中,角A,B所对的边长分别为a,b.若2a sin B=3b,则角 A 等于( )A.π12B.π6C.π4D.π32.在△ABC中,∠ABC=π4,AB=2,BC=3,则sin∠BAC= ( )A.1010B.105C.31010D.553.在△ABC中,若a=3,b=3,∠A=π3,则∠C的大小为________.4.设△ABC的内角A,B,C所对的边分别为a,b,c.若(a+b-c)(a+b+c)=ab,则角C =________.5.△ABC 中,已知c =102,A =45°,在a 分别为20,102,2033,10和5的情况下,求相应的角C .探 究 案题型一:利用正余弦定理解斜三角形例1.(1)在△ABC 中,已知a =2,b =3,A =45°,求B ,C 及边c .(2)已知sin A ∶sin B ∶sin C =(3+1)∶(3-1)∶10,求最大角.拓展1:(1)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .若a sin B cos C +c sin B cos A =12b ,且a >b ,则∠B =________.(2)已知a ,b ,c 分别为△ABC 三个内角A ,B ,C 的对边,a cos C +3a sin C -b -c =0.①求A ; ②若a =2,△ABC 的面积为3,求b ,c .题型二:面积问题例2.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c .已知A =π4,b sin(π4+C )-c sin(π4+B )=a .(1)求证:B -C =π2; (2)若a =2,求△ABC 的面积.拓展2.△ABC的内角,A,B,C的对边分别为a,b,c,已知a=b cos C+c sin B.(1)求B; (2)若b=2,求△ABC面积的最大值.题型三:判断三角形形状例3;(1)设△ABC的内角A,B,C所对的边分别为a,b,c,若b cos C+c cos B=a sin A,则△ABC 的形状为 ( )A.锐角三角形B.直角三角形 C.钝角三角形 D.不确定(2)在△ABC中,已知a cos A=b cos B,则△ABC为 ( )A.等腰三角形 B.直角三角形 C.等腰三角形或直角三角形 D.等腰直角三角形拓展3. (1)在△ABC中,a,b,c分别表示三个内角A,B,C的对边,如果(a2+b2)sin(A-B)=(a2-b2)·sin(A+B),试判断该三角形的形状.(2)在△ABC中,A、B、C是三角形的三个内角,a、b、c是三个内角对应的三边,已知b2+c2=a2+bc. ①求角A的大小;②若sin B sin C=34,试判断△ABC的形状,并说明理由.题型四:解三角形的应用例4.在△ABC中,内角A,B,C所对的边分别为a,b,c,已知sin B(tan A+tan C)=tan A tan C.(1)求证:a,b,c成等比数列; (2)若a=1,c=2,求△ABC的面积S.拓展4. 在△ABC中,角A,B,C所对的边分别为a,b,c,已知cos C+(cos A-3sin A)cos B =0. (1)求角B的大小; (2)若a+c=1,求b的取值范围.我的学习总结:(1)我对知识的总结 . (2)我对数学思想及方法的总结。
高三数学一轮复习学案:正弦定理、余弦定理
高三数学一轮复习学案:正弦定理、余弦定理一、考试要求:了解利用向量知识推导正弦定理和余弦定理;掌握正弦定理、余弦定理,并能解决一些简单的三角形度量问题二、知识梳理: 1. 正弦定理: ____________________.强调几个问题:(1)正弦定理适合于任何三角形;(2)可以证明R Aa__sin =(R 为ABC ∆的外接圆半径);(3)每个等式可视为一个方程:知三求一; (4)公式的变形:①2sin ,2sin ,2sin a R A b R B c R C ===;②sin ,sin ,sin 222a b c A B C R R R ===;③sin sin sin ::::A B C a b c =.(5)三角形面积公式:=∆ABC S ____ ____=______ ___=_____ ___. (6)正弦定理的应用范围: ①已知两角和任一边,求其它两边和一角。
②已知两边和其中一边的对角,求另一边的对角。
2. 余弦定理: =2a _____________________;=2b ____________________; =2c _____________________.强调几个问题:(1)熟悉定理的结构,注意“平方”“夹角”“余弦”等;(2)知三求一;(3)当夹角为90 时,即三角形为直角三角形时即为勾股定理(特例);(4)变形:bc a c b A 2cos 222-+= acb c a B 2cos 222-+=ac c b a C 2cos 222-+=.(5)余弦定理的应用范围:①已知三边,求三个角;②已知两边和它们的夹角,求第三边和其他两个角.3. 解斜三角形(1).两角和任意一边,求其它两边和一角;(2).两边和其中一边对角,求另一边的对角,进而可求其它的边和角。
(见图示)已知a, b 和A, 用正弦定理求B 时的各种情况: ①若A 为锐角时:⎪⎪⎩⎪⎪⎨⎧≥<<=<)( b a ) ,( b a bsinA )( bsinA a sin 锐角一解一钝一锐二解直角一解无解A b a已知边a,b 和∠A有两个解仅有一个解无解CH=bsinA<a<b a=CH=bsinA a<CH=bsinA②若A 为直角或钝角时:⎩⎨⎧>≤)( b a 锐角一解无解b a三、基础检测:1. 在 中, ,则 等于( )A .B .C .D .2. 若 是 ( )A .等边三角形B .有一内角是30°C .等腰直角三角形D .有一内角是30°的等腰三角形 3. 在,面积,则BC 长为( )A .B .75C .51D .494.在 中,已知角 则角A 的值是( )A .15°B .75°C .105°D .75°或15°5. 中,sinB=23sin ,21=C ,则a :b :c 为( )A.1:3:2B.1:1:3C.1:2:3D.2:1:3或1:1:36. 如图,在△ABC 中,D 是边AC 上的点,且,2,2AB CD AB BC BD ===,则sin C 的值为A .3B .6C .3D .67.若的三个内角成等差数列,且最大边为最小边的2倍,则三内角之比为________。
高考数学一轮复习教学案正弦定理和余弦定理的应用
第八节正弦定理和余弦定理的应用[知识能否忆起]1.实际问题中的有关概念(1)仰角和俯角:在视线和水平线所成的角中,视线在水平线上方的角叫仰角,在水平线下方的角叫俯角(如图1).(2)方位角:从指北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图2).(3)方向角:相对于某一正方向的水平角(如图3)①北偏东α°即由指北方向顺时针旋转α°到达目标方向.②北偏西α°即由指北方向逆时针旋转α°到达目标方向.③南偏西等其他方向角类似.(4)坡度:①定义:坡面与水平面所成的二面角的度数(如图4,角θ为坡角).②坡比:坡面的铅直高度与水平长度之比(如图4,i为坡比).2.解三角形应用题的一般步骤(1)审题,理解问题的实际背景,明确已知和所求,理清量与量之间的关系;(2)根据题意画出示意图,将实际问题抽象成解三角形模型;(3)选择正弦定理或余弦定理求解;(4)将三角形的解还原为实际问题,注意实际问题中的单位、近似计算要求.[小题能否全取]1.从A 处望B 处的仰角为α,从B 处望A 处的俯角为β,则α,β之间的关系是( ) A .α>β B .α=β C .α+β=90°D .α+β=180°答案:B2.若点A 在点C 的北偏东30°,点B 在点C 的南偏东60°,且AC =BC ,则点A 在点B 的( )A .北偏东15°B .北偏西15°C .北偏东10°D .北偏西10°解析:选B 如图所示, ∠ACB =90°, 又AC =BC , ∴∠CBA =45°, 而β=30°,∴α=90°-45°-30°=15°. ∴点A 在点B 的北偏西15°.3.(教材习题改编)如图,设A 、B 两点在河的两岸,一测量者在A 的同侧,选定一点C ,测出AC 的距离为50 m ,∠ACB =45°,∠CAB =105°,则A 、B 两点的距离为( )A .50 2 mB .50 3 mC .25 2 mD.2522m解析:选A 由正弦定理得AB =AC ·sin ∠ACB sin B =50×2212=502(m).4.(·上海高考)在相距2千米的A 、B 两点处测量目标点C ,若∠CAB =75°,∠CBA =60°,则A 、C 两点之间的距离为________千米.解析:如图所示,由题意知∠C =45°,由正弦定理得AC sin 60°=2sin 45°,∴AC =222·32= 6. 答案: 65.(·泰州模拟)一船向正北航行,看见正东方向有相距8海里的两个灯塔恰好在一条直线上.继续航行半小时后,看见一灯塔在船的南偏东60°,另一灯塔在船的南偏东75°,则这艘船每小时航行________海里.解析:如图,由题意知在△ABC 中,∠ACB =75°-60°=15°,B =15°,∴AC =AB =8.在Rt △AOC 中,OC =AC ·sin 30°=4. ∴这艘船每小时航行412=8海里.答案:8解三角形应用题常有以下两种情形(1)实际问题经抽象概括后,已知量与未知量全部集中在一个三角形中,可用正弦定理或余弦定理求解.(2)实际问题经抽象概括后,已知量与未知量涉及到两个或两个以上的三角形,这时需作出这些三角形,先解够条件的三角形,然后逐步求解其他三角形,有时需设出未知量,从几个三角形中列出方程(组),解方程(组)得出所要求的解.测量距离问题典题导入[例1] 郑州市某广场有一块不规则的绿地如图所示,城建部门欲在该地上建造一个底座为三角形的环境标志,小李、小王设计的底座形状分别为△ABC 、△ABD ,经测量AD =BD =7米,BC =5米,AC =8米,∠C =∠D .(1)求AB 的长度;(2)若不考虑其他因素,小李、小王谁的设计使建造费用最低(请说明理由). [自主解答] (1)在△ABC 中,由余弦定理得 cos C =AC 2+BC 2-AB 22AC ·BC =82+52-AB 22×8×5,①在△ABD 中,由余弦定理得cos D =AD 2+BD 2-AB 22AD ·BD =72+72-AB 22×7×7,②由∠C =∠D 得cos C =cos D .解得AB =7,所以AB 的长度为7米. (2)小李的设计使建造费用最低. 理由如下:易知S △ABD =12AD ·BD sin D ,S △ABC =12AC ·BC sin C ,因为AD ·BD >AC ·BC ,且∠C =∠D , 所以S △ABD >S △ABC .故选择△ABC 的形状建造环境标志费用较低.若环境标志的底座每平方米造价为5 000元,试求最低造价为多少? 解:因为AD =BD =AB =7,所以△ABD 是等边三角形, ∠D =60°,∠C =60°.故S △ABC =12AC ·BC sin C =103,所以所求的最低造价为5 000×103=50 000 3≈86 600元.由题悟法求距离问题要注意:(1)选定或确定要求解的三角形,即所求量所在的三角形,若其他量已知则直接解;若有未知量,则把未知量放在另一确定三角形中求解.(2)确定用正弦定理还是余弦定理,如果都可用,就选择更便于计算的定理.以题试法1.如图所示,某河段的两岸可视为平行,为了测量该河段的宽度,在河段的一岸边选取两点A 、B ,观察对岸的点C ,测得∠CAB =105°,∠CBA =45°,且AB =100 m.(1)求sin ∠CAB 的值; (2)求该河段的宽度. 解:(1)sin ∠CAB =sin 105° =sin(60°+45°)=sin 60°cos 45°+cos 60°sin 45° =32×22+12×22=6+24. (2)因为∠CAB =105°,∠CBA =45°, 所以∠ACB =180°-∠CAB -∠CBA =30°. 由正弦定理,得AB sin ∠ACB =BC sin ∠CAB ,则BC =AB ·sin 105°sin 30°=50(6+2)(m).如图所示,过点C 作CD ⊥AB ,垂足为D ,则CD 的长就是该河段的宽度.在Rt △BDC 中,CD =BC ·sin 45°=50(6+2)×22=50(3+1)(m). 所以该河段的宽度为50(3+1)m.测量高度问题典题导入[例2] (·九江模拟)如图,在坡度一定的山坡A 处测得山顶上一建筑物CD (CD 所在的直线与地平面垂直)对于山坡的斜度为α,从A 处向山顶前进l 米到达B 后,又测得CD 对于山坡的斜度为β,山坡对于地平面的坡角为θ.(1)求BC 的长;(2)若l =24,α=15°,β=45°,θ=30°,求建筑物CD 的高度.[自主解答] (1)在△ABC 中,∠ACB =β-α, 根据正弦定理得BC sin ∠BAC =ABsin ∠ACB ,所以BC =l sin αsin (β-α).(2)由(1)知BC =l sin αsin (β-α)=24×sin 15°sin 30°=12(6-2)米.在△BCD 中,∠BDC =π2+π6=2π3,sin ∠BDC =32,根据正弦定理得BC sin ∠BDC =CDsin ∠CBD ,所以CD =24-83米.由题悟法求解高度问题应注意:(1)在测量高度时,要理解仰角、俯角的概念,仰角和俯角都是在同一铅垂面内,视线与水平线的夹角;(2)准确理解题意,分清已知条件与所求,画出示意图;(3)运用正、余弦定理,有序地解相关的三角形,逐步求解问题的答案,注意方程思想的运用.以题试法2.(·西宁模拟)要测量底部不能到达的电视塔AB 的高度,在C 点测得塔顶A 的仰角是45°,在D 点测得塔顶A 的仰角是30°,并测得水平面上的∠BCD =120°,CD =40 m ,求电视塔的高度.解:如图,设电视塔AB 高为x m ,则在Rt △ABC 中,由∠ACB =45°得BC =x .在Rt △ADB 中,∠ADB =30°,则BD =3x .在△BDC 中,由余弦定理得, BD 2=BC 2+CD 2-2BC ·CD ·cos 120°, 即(3x )2=x 2+402-2·x ·40·cos 120°,解得x =40,所以电视塔高为40米.测量角度问题典题导入[例3] (·太原模拟)在一次海上联合作战演习中,红方一艘侦察艇发现在北偏东45°方向,相距12 n mile 的水面上,有蓝方一艘小艇正以每小时10 n mile 的速度沿南偏东75°方向前进,若侦察艇以每小时14 n mile 的速度,沿北偏东45°+α方向拦截蓝方的小艇.若要在最短的时间内拦截住,求红方侦察艇所需的时间和角α的正弦值.[自主解答] 如图,设红方侦察艇经过x 小时后在C 处追上蓝方的小艇,则AC =14x ,BC =10x ,∠ABC =120°.根据余弦定理得(14x )2=122+(10x )2-240x cos 120°, 解得x =2.故AC =28,BC =20.根据正弦定理得BC sin α=AC sin 120°,解得sin α=20sin 120°28=5314.所以红方侦察艇所需要的时间为2小时,角α的正弦值为5314.由题悟法1.测量角度,首先应明确方位角,方向角的含义.2.在解应用题时,分析题意,分清已知与所求,再根据题意正确画出示意图,通过这一步可将实际问题转化为可用数学方法解决的问题,解题中也要注意体会正、余弦定理综合使用的特点.以题试法3.(·无锡模拟)如图,两座相距60 m 的建筑物AB 、CD 的高度分别为20 m 、50 m ,BD 为水平面,则从建筑物AB 的顶端A 看建筑物CD 的张角∠CAD 的大小是________.解析:∵AD 2=602+202=4 000,AC 2=602+302=4 500. 在△CAD 中,由余弦定理得cos ∠CAD =AD 2+AC 2-CD 22AD ·AC =22,∴∠CAD =45°.答案:45°1.在同一平面内中,在A 处测得的B 点的仰角是50°,且到A 的距离为2,C 点的俯角为70°,且到A 的距离为3,则B 、C 间的距离为( )A.16B.17C.18D.19解析:选D ∵∠BAC =120°,AB =2,AC =3. ∴BC 2=AB 2+AC 2-2AB ·AC cos ∠BAC =4+9-2×2×3×cos 120°=19. ∴BC =19.2.一个大型喷水池的有一个强力喷水柱,为了测量喷水柱喷出的水柱的高度,某人在喷水柱正西方向的点A 测得水柱顶端的仰角为45°,沿点A 向北偏东30°前进100 m 到达点B ,在B 点测得水柱顶端的仰角为30°,则水柱的高度是( )A .50 mB .100 mC .120 mD .150 m解析:选A 设水柱高度是h m ,水柱底端为C ,则在△ABC 中,A =60°,AC =h ,AB =100,BC =3h ,根据余弦定理得,(3h )2=h 2+1002-2·h ·100·cos 60°,即h 2+50h -5 000=0,即(h -50)(h +100)=0,即h =50,故水柱的高度是50 m.3.(·天津高考) 在△ABC 中,内角A ,B ,C 所对的边分别是a ,b ,c ,已知8b =5c ,C =2B ,则cos C =( )A.725B .-725C .±725D.2425解析:选A 由C =2B 得sin C =sin 2B =2sin B cos B ,由正弦定理及8b =5c 得cos B =sin C 2 sin B =c 2b =45,所以cos C =cos 2B =2cos 2 B -1=2×⎝⎛⎭⎫452-1=725. 4.(·厦门模拟)在不等边三角形ABC 中,角A 、B 、C 所对的边分别为a 、b 、c ,其中a 为最大边,如果sin 2(B +C )<sin 2B +sin 2C ,则角A 的取值范围为( )A.⎝⎛⎭⎫0,π2 B.⎝⎛⎭⎫π4,π2 C.⎝⎛⎭⎫π6,π3D.⎝⎛⎭⎫π3,π2解析:选D 由题意得sin 2A <sin 2B +sin 2C , 再由正弦定理得a 2<b 2+c 2,即b 2+c 2-a 2>0. 则cos A =b 2+c 2-a 22bc >0,∵0<A <π,∴0<A <π2.又a 为最大边,∴A >π3.因此得角A 的取值范围是⎝⎛⎭⎫π3,π2.5.一艘海轮从A 处出发,以每小时40海里的速度沿东偏南50°方向直线航行,30分钟后到达B 处,在C 处有一座灯塔,海轮在A 处观察灯塔,其方向是东偏南20°,在B 处观察灯塔,其方向是北偏东65°,那么B 、C 两点间的距离是( )A .10 2 海里B .10 3 海里C .20 2 海里D .20 3 海里解析:选A 如图所示,由已知条件可得,∠CAB =30°,∠ABC =105°, ∴∠BCA =45°.又AB =40×12=20(海里),∴由正弦定理可得20sin 45°=BCsin 30°.∴BC =20×1222=102(海里).6.如图,飞机的航线和山顶在同一个铅垂面内,若飞机的高度为海拔18 km ,速度为1 000 km/h ,飞行员先看到山顶的俯角为30°,经过1 min 后又看到山顶的俯角为75°,则山顶的海拔高度为(精确到0.1 km)( )A .11.4B .6.6C .6.5D .5.6解析:选B ∵AB =1 000×1 000×160=50 0003 m ,∴BC =AB sin 45°·sin 30°=50 00032m.∴航线离山顶h =50 00032×sin 75°≈11.4 km.∴山高为18-11.4=6.6 km.7.(·南通调研)“温馨花园”为了美化小区,给居民提供更好的生活环境,在小区内的一块三角形空地上(如图,单位:m)种植草皮,已知这种草皮的价格是120元/m 2,则购买这种草皮需要________元.解析:三角形空地的面积S =12×123×25×sin 120°=225,故共需225×120=27 000元.答案:27 0008.(·潍坊模拟)如图,一艘船上午9:30在A 处测得灯塔S 在它的北偏东30°的方向,之后它继续沿正北方向匀速航行,上午10:00到达B 处,此时又测得灯塔S 在它的北偏东75°的方向,且与它相距8 2 n mile.此船的航速是________n mile/h.解析:设航速为v n mile/h ,在△ABS 中AB =12v ,BS =82,∠BSA =45°,由正弦定理得82sin 30°=12v sin 45°,则v =32.答案:329.江岸边有一炮台高30 m ,江中有两条船,船与炮台底部在同一水平面上,由炮台顶部测得俯角分别为45°和60°,而且两条船与炮台底部连线成30°角,则两条船相距________m.解析:如图,OM =AO tan 45°=30(m),ON =AO tan 30°=33×30=103(m), 在△MON 中,由余弦定理得, MN = 900+300-2×30×103×32=300=103(m).答案:10 310.如图,在△ABC 中,已知∠B =45°,D 是BC 边上的一点,AD =10,AC =14,DC =6,求AB 的长.解:在△ADC 中,AD =10,AC =14,DC =6,由余弦定理得cos ∠ADC =AD 2+DC 2-AC 22AD ·DC=100+36-1962×10×6=-12,∴∠ADC =120°, ∴∠ADB =60°.在△ABD 中,AD =10,∠B =45°,∠ADB =60°,由正弦定理得AB sin ∠ADB =AD sin B, ∴AB =AD ·sin ∠ADB sin B=10sin 60°sin 45°=10×3222=5 6. 11.某气象仪器研究所按以下方案测试一种“弹射型”气象观测仪器的垂直弹射高度:A 、B 、C 三地位于同一水平面上,在C 处进行该仪器的垂直弹射,观测点A 、B 两地相距100米,∠BAC =60°,在A 地听到弹射声音的时间比B 地晚217秒.在A 地测得该仪器至最高点H 时的仰角为30°,求该仪器的垂直弹射高度CH .(声音的传播速度为340米/秒)解:由题意,设AC =x ,则BC =x -217×340=x -40, 在△ABC 中,由余弦定理得BC 2=BA 2+CA 2-2BA ·CA ·cos ∠BAC ,即(x -40)2=x 2+10 000-100x ,解得x =420.在△ACH 中,AC =420,∠CAH =30°,∠ACH =90°,所以CH =AC ·tan ∠CAH =140 3.答:该仪器的垂直弹射高度CH 为1403米.12.(·兰州模拟)某单位在抗雪救灾中,需要在A ,B 两地之间架设高压电线,测量人员在相距6 km 的C ,D 两地测得∠ACD =45°,∠ADC =75°,∠BDC =15°,∠BCD =30°(如图,其中A ,B ,C ,D 在同一平面上),假如考虑到电线的自然下垂和施工损耗等原因,实际所需电线长度大约应该是A ,B 之间距离的1.2倍,问施工单位至少应该准备多长的电线?解:在△ACD 中,∠ACD =45°,CD =6,∠ADC =75°,所以∠CAD =60°.因为CD sin ∠CAD =AD sin ∠ACD, 所以AD =CD ×sin ∠ACD sin ∠CAD=6×2232=2 6. 在△BCD 中,∠BCD =30°,CD =6,∠BDC =15°,所以∠CBD =135°.因为CD sin ∠CBD =BD sin ∠BCD, 所以BD =CD ×sin ∠BCD sin ∠CBD=6×1222=3 2. 又因为在△ABD 中,∠BDA =∠BDC +∠ADC =90°,所以△ABD 是直角三角形.所以AB =AD 2+BD 2=(26)2+(32)2=42.所以电线长度至少为l =1.2×AB =6425(单位:km) 答:施工单位至少应该准备长度为6425km 的电线.1.某城市的电视发射塔CD 建在市郊的小山上,小山的高BC 为35 m ,在地面上有一点A ,测得A ,C 间的距离为91 m ,从A 观测电视发射塔CD 的视角(∠CAD )为45°,则这座电视发射塔的高度CD 为________米.解析:AB =912-352=84,tan ∠CAB =BC AB =3584=512.由CD +3584=tan(45°+∠CAB )=1+5121-512=177,得CD =169. 答案:1692.10月29日,超级风暴“桑迪”袭击美国东部,如图,在灾区的搜救现场,一条搜救狗从A 处沿正北方向行进x m 到达B 处发现一个生命迹象,然后向右转105°,行进10 m 到达C 处发现另一生命迹象,这时它向右转135°后继续前行回到出发点,那么x =________.解析:∵由题知,∠CBA =75°,∠BCA =45°,∴∠BAC =180°-75°-45°=60°,∴x sin 45°=10sin 60°.∴x =1063m. 答案:1063m 3.(·泉州模拟)如图,当甲船位于A 处时获悉,在其正东方向相距20海里的B 处有一艘渔船遇险等待营救.甲船立即前往救援,同时把消息告知在甲船的南偏西30°,相距10海里的C 处的乙船.(1)求处于C 处的乙船和遇险渔船间的距离;(2)设乙船沿直线CB 方向前往B 处救援,其方向与CA ―→成θ角,求f (x )=sin 2θsin x +34cos 2θcos x (x ∈R )的值域.解:(1)连接BC ,由余弦定理得BC 2=202+102-2×20×10cos 120°=700.∴BC =107,即所求距离为107海里. (2)∵sin θ20=sin 120°107, ∴sin θ= 37. ∵θ是锐角,∴cos θ=47. f (x )=sin 2θsin x +34cos 2θcos x =37sin x +37cos x =237sin ⎝⎛⎭⎫x +π6, ∴f (x )的值域为⎣⎡⎦⎤-237,237.1.如图,甲船以每小时302海里的速度向正北方航行,乙船按固定方向匀速直线航行.当甲船位于A 1处时,乙船位于甲船的北偏西105°方向的B 1处,此时两船相距20海里,当甲船航行20分钟到达A 2处时,乙船航行到甲船的北偏西120°方向的B 2处,此时两船相距102海里.问:乙船每小时航行多少海里?解:如图,连接A 1B 2由已知A 2B 2=102,A 1A 2=302×2060=102, ∴A 1A 2=A 2B 2.又∠A 1A 2B 2=180°-120°=60°,∴△A 1A 2B 2是等边三角形,∴A 1B 2=A 1A 2=10 2.由已知,A 1B 1=20,∴∠B 1A 1B 2=105°-60°=45°,在△A 1B 2B 1中,由余弦定理得B 1B 22=A 1B 21+A 1B 22-2A 1B 1·A 1B 2·cos 45° =202+(102)2-2×20×102×22=200, ∴B 1B 2=10 2. 因此,乙船的速度为10220×60=30 2(海里/时). 2.如图,扇形AOB 是一个观光区的平面示意图,其中圆心角∠AOB 为2π3,半径OA 为1 km.为了便于游客观光休闲,拟在观光区内铺设一条从入口A 到出口B 的观光道路,道路由弧AC 、线段CD 及线段DB 组成,其中D 在线段OB 上,且CD ∥AO .设∠AOC =θ.(1)用θ表示CD 的长度,并写出θ的取值范围;(2)当θ为何值时,观光道路最长?解:(1)在△OCD 中,由正弦定理,得CD sin ∠COD =OD sin ∠DCO =CO sin ∠CDO=23, 所以CD =23sin ⎝⎛⎭⎫2π3-θ=cos θ+13sin θ,OD =23sin θ, 因为OD <OB ,即23sin θ<1, 所以sin θ<32,所以0<θ<π3, 所以CD =cos θ+33sin θ,θ的取值范围为⎝⎛⎭⎫0,π3. (2)设观光道路长度为L (θ),则L (θ)=BD +CD +弧CA 的长=1-23sin θ+cos θ+13sin θ+θ =cos θ-13sin θ+θ+1,θ∈⎝⎛⎭⎫0,π3, L ′(θ)=-sin θ-33cos θ+1, 由L ′(θ)=0,得sin ⎝⎛⎭⎫θ+π6=32, 又θ∈⎝⎛⎭⎫0,π3,所以θ=π6,列表: θ⎝⎛⎭⎫0,π6 π6 ⎝⎛⎭⎫π6,π3 L ′(θ)+ 0 - L (θ)增函数 极大值 减函数所以当θ=π6时,L (θ)达到最大值,即当θ=π6时,观光道路最长.。
2019-2020年高三数学一轮复习讲义 正弦定理和余弦定理教案 新人教A版
2019-2020年高三数学一轮复习讲义 正弦定理和余弦定理教案 新人教A 版自主梳理1. 正弦定理:__a sin A __=__b sin B ____=__csin C _=2R ,其中R 是三角形外接圆的半径.由正弦定理可以变形为:(1)a ∶b ∶c =____ sin A ∶sin B ∶sin C _____; (2)a =___)2R sin A _____,b =__2R sin B _____,c =__2R sin C ___;(3)sin A =___a 2R ____,sin B =___b 2R ___,sin C =__c2R _____等形式,以解决不同的三角形问题.2.余弦定理:a 2=__ b 2+c 2-2bc cos A ________,b 2=__ a 2+c 2-2ac cos B _____,c 2=____ a 2+b 2-2ab cos C ____.余弦定理可以变形为:cos A =___b 2+c 2-a 22bc ________,cos B =___a 2+c 2-b 22ac ______,cos C =___a 2+b 2-c 22ab______.3.S △ABC =12ab sin C =12bc sin A =12ac sin B =abc 4R =12(a +b +c )·r (r 是三角形内切圆的半径),并可由此计算R 、r .4.在解三角形时,正弦定理可解决两类问题:(1)已知两角及任一边,求其它边或角;(2)已知两边及一边的对角,求其它边或角.情况(2)中结果可能有一解、二解、无解,应注意区分.余弦定理可解决两类问题: (1)已知两边及夹角或两边及一边对角的问题;(2)已知三边问题.解三角形时,三角形解的个数的判断在△ABC 中,已知a 、b 和A 时,解的情况如下:必须从研究三角形的边角关系入手,充分利用正、余弦定理进行转化,即化边为角或化角为边,边角统一.①等腰三角形:a =b 或A =B .②直角三角形: b 2+c 2=a 2或 A =90° . ③钝角三角形: a 2>b 2+c 2或 A >90° .④锐角三角形:若a 为最大边,且满足 a 2<b 2+c 2或A 为最大角,且 A <90° . 6.由正弦定理容易得到:在三角形中,大角对大边,大边对大角;大角的正弦值也较大,正弦值较大的角也较大,即A >B ⇔a >b ⇔sin A >sin B .基础自测1.在△ABC 中,若A =60°,a =3,则a +b +csin A +sin B +sin C=________.2.(2010·北京)在△ABC 中,若b =1,c =3,C =2π3,则a =________.3.在△ABC 中,a =15,b =10,A =60°,则cos B =________.4.△ABC 的三个内角A 、B 、C 所对边的长分别为a 、b 、c ,已知c =3,C =π3,a =2b ,则b的值为________.5.已知圆的半径为4,a 、b 、c 为该圆的内接三角形的三边,若abc =162,则三角形的面积为( )A.2 2B.8 2C. 2D.221.22.13.634. 35.C 6.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边,若a 、b 、c 成等差数列,B =30°,△ABC 的面积为32,则b = .【解析】∵S △ABC =12ac sin B =12ac sin30°=32,∴ac =6.又a 、b 、c 成等差数列,故2b =a +c .由余弦定理得b 2=a 2+c 2-2ac cos B=(a +c )2-2ac -2ac cos30°, ∴b 2=4b 2-12-63,得b 2=4+23,∴b =1+ 3. 7.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( ) A .等腰直角三角形 B .直角三角形C .等腰三角形D .等腰三角形或直角三角形 【解析】由a =2b cos C 得sin A =2sin B cos C ∵A +B +C =π ∴sin A =sin(B +C )∴sin(B +C )=2sin B cos C 即sin(B -C )=0 ∵0<B <π,0<C <π ∴B =C ,选C. 8.在△ABC 中,设命题p :a sin B =b sin C =csin A,命题q :△ABC 是等边三角形,则命题p 是命题q 的( )A .充分不必要条件B .必要不充分条件C .充要条件D .既不充分也不必要条件【解析】∵a sin B =b sin C =c sin A ,由正弦定理知:a sin A =b sin B =csin C.∴sin B =sin A =sin C ∴A =B =C ⇒a =b =c ,∴p ⇒q 又若a =b =c ,则A =B =C =60°⇒sin A =sin B =sin C . ∴a sin B =b sin C =csin A,∴q ⇒p .题型一 利用正弦定理求解三角形及有关三角形中的三角函数的范围(最值)例1 ⑴在△ABC 中,a =3,b =2,B =45°.求角A 、C 和边c . (2)在△ABC 中,a =8,B =60°,C =75°,求边b 和c .解 (1)由正弦定理得a sin A =b sin B , 3sin A =2sin 45°,∴sin A =32.∵a >b ,∴A =60°或A =120°.当A =60°时,C =180°-45°-60°=75°,c =b sin C sin B =6+22; 当A =120°时,C =180°-45°-120°=15°,c =b sin C sin B =6-22. (2)∵B =60°,C =75°,∴A =45°.由正弦定理asin A =bsin B =csin C, 得b =a ·sin B sin A =46,c =a ·sin C sin A=43+4.∴b =46,c =43+4.(2)设锐角三角形ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且a =2b sin A . ①求角B 的大小;②求cos A +sin C 的取值范围.解析 ①由a =2b sin A ,根据正弦定理得sin A =2sin B sin A ,所以sin B =12,由△ABC 为锐角三角形得B =π6.②cos A +sin C =cos A +sin(π-π6-A )=cos A +sin(π6+A )=cos A +12cos A +32sin A =3sin(A +π3).由△ABC 为锐角三角形知,π2>A >π2-B ,又π2-B =π2-π6=π3.∴2π3<A +π3<5π6,∴12<sin(A +π3)<32. 由此有32<3sin(A +π3)<32×3=32,所以cos A +sin C 的取值范围为(32,32). 点评 解决这类问题的关键是利用正弦定理和余弦定理,要么把角化成边,要么把边化成角,然后再进行三角恒等变换得到y =A sin(ωx +φ)+B 型函数,从而求解单调区间、最值、参数范围等问题,注意限制条件A +B +C =π,0<A ,B ,C <π的应用,如本题中由△ABC为锐角三角形得到A +B >π2,从而推到2π3<A +π3<5π6.探究提高 (1)已知两角一边可求第三角,解这样的三角形只需直接用正弦定理代入求解即可.(2)已知两边和一边对角,解三角形时,利用正弦定理求另一边的对角时要注意讨论该角,这是解题的难点,应引起注意.变式训练1 (1) 已知a ,b ,c 分别是△ABC 的三个内角A ,B ,C 所对的边,若a =1,b =3,A +C =2B ,则角A 的大小为________. π6(2)在△ABC 中,若tan A =13,C =150°,BC =1,则AB =________;(3)在△ABC 中,若a =50,b =256,A =45°,则B =______ 解析 (2)∵在△ABC 中,tan A =13,C =150°,∴A 为锐角,∴sin A =110.又∵BC =1.∴根据正弦定理得AB =BC ·sin C sin A =102.(3)由b >a ,得B >A ,由a sin A =bsin B,得sin B =b sin A a =25650×22=32,∵0°<B <180° ∴B =60°或B =120°.(4)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c 且满足c sin A =a cos C . ①求角C 的大小;②求3sin A -cos(B +π4)的最大值,并求取得最大值时角A ,B 的大小.解析 ①由正弦定理得sin C sin A =sin A cos C .因为0<A <π,所以sin A >0,从而sin C =cos C ,又cos C ≠0,所以tan C =1,则C =π4.②由(1)知B =3π4-A .于是3sin A -cos(B +π4)=3sin A -cos(π-A )=3sin A +cos A =2sin(A +π6).∵0<A <3π4,∴π6<A +π6<11π12,从而当A +π6=π2,即A =π3时,2sin(A +π6)取最大值2.综上所述,3sin A -cos(B +π4)的最大值为2,此时A =π3,B =5π12.(5)如图,已知△ABC 是边长为1的正三角形,M 、N 分别是边AB 、AC 上的点,线段MN经过△ABC 的重心G .设∠MGA =α(π3≤α≤2π3).①试将△AGM 、△AGN 的面积(分别记为S 1与S 2)表示为α的函数;②求y =1S 21+1S 22的最大值与最小值.解析①因为G 是边长为1的正三角形ABC 的重心,所以AG =23×32=33,∠MAG =π6,由正弦定理GM sin π6=GA sin π-α-π6,得GM=36sin α+π6.则S 1=12GM ·GA ·sin α=sin α12sin α+π6(或163+cot α).又GN sin π6=GA sin α-π6,得GN =36sin α-π6,则S 2=12GN ·GA ·sin(π-α)=sin α12sin α-π6(或163-cot α),②y =1S 21+1S 22=144sin 2α·[sin 2(α+π6)+sin 2(α-π6)]=72(3+cot 2α).因为π3≤α≤2π3,所以,当α=π3或α=2π3时,y 取得最大值y max =240;当α=π2时,y 取得最小值y min =216.题型二 利用余弦定理求解三角形例2 在△ABC 中,a 、b 、c 分别是角A 、B 、C 的对边,且cos B cos C =-b2a +c .(1)求角B 的大小;(2)若b =13,a +c =4,求△ABC 的面积.解 (1)由余弦定理知:cos B =a 2+c 2-b 22ac ,cos C =a 2+b 2-c 22ab.将上式代入cos B cos C =-b 2a +c 得: a 2+c 2-b 22ac ·2ab a 2+b 2-c 2=-b2a +c, 整理得:a 2+c 2-b 2=-ac .∴cos B =a 2+c 2-b 22ac =-ac 2ac =-12.∵B 为三角形的内角,∴B =23π.(2)将b =13,a +c =4,B =23π代入b 2=a 2+c 2-2ac cos B ,得b 2=(a +c )2-2ac -2ac cos B ,∴13=16-2ac ⎝ ⎛⎭⎪⎫1-12,∴ac =3.∴S △ABC =12ac sin B =334.探究提高 (1)根据所给等式的结构特点利用余弦定理将角化边进行变形是迅速解答本题的关键.(2)熟练运用余弦定理及其推论,同时还要注意整体思想、方程思想在解题过程中的运用.变式训练2 1.已知a 、b 、c 分别是△ABC 中角A 、B 、C 的对边,且a 2+c 2-b 2=ac . (1)求角B 的大小;(2)若c =3a ,求tan A 的值.解 (1)∵a 2+c 2-b 2=ac ,∴cos B =a 2+c 2-b 22ac =12.∵0<B <π,∴B =π3.(2)方法一 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a .由余弦定理,得cos A =b 2+c 2-a 22bc =5714.∵0<A <π,∴sin A =1-cos 2A =2114,∴tan A =sin A cos A =35. 方法二 将c =3a 代入a 2+c 2-b 2=ac ,得b =7a .由正弦定理,得sin B =7sin A .由(1)知,B =π3,∴sin A =2114.又b =7a >a ,∴B >A ,∴cos A =1-sin 2A =5714. ∴tan A =sin A cos A =35.方法三 ∵c =3a ,由正弦定理,得sin C =3sin A .∵B =π3,∴C =π-(A +B )=2π3-A ,∴sin(2π3-A )=3sin A ,∴sin 2π3cos A -cos 2π3sin A =3sin A ,∴32cos A +12sin A =3sin A ,∴5sin A =3cos A ,∴tan A =sin A cos A =35.2.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,且满足cos A 2=255,·=3. (1)求△ABC 的面积; (2)若b +c =6,求a 的值.解 (1)∵cos A 2=255,∴cos A =2cos 2A 2-1=35,∴sin A =45.又·=3,∴bc cos A =3,∴bc =5.∴S △ABC =12bc sin A =12×5×45=2.(2)由(1)知,bc =5,又b +c =6, 根据余弦定理得a 2=b 2+c 2-2bc cos A =(b +c )2-2bc -2bc cos A =36-10-10×35=20,∴a =2 5.3.在△ABC 中,内角A ,B ,C 所对边长分别为a ,b ,c ,AB BC ⋅=8,∠BAC =θ,a=4.(1)求b ·c 的最大值及θ的取值范围;(2)求函数f (θ)=23sin 2(π4+θ)+2cos 2θ-3的值.【解析】(1)∵AB BC ⋅=8,∠BAC =θ,∴bc cos θ=8.又a =4,∴b 2+c 2-2bc cos θ=42即b 2+c 2=32. 又b 2+c 2≥2bc ∴bc ≤16,即bc 的最大值为16.而bc =8cos θ,∴8cos θ≤16,∴cos θ≥12∵0<θ<π,∴0<θ≤π3.(2)f (θ)=23sin 2(π4+θ)+2cos 2θ-3=3[1-cos(π2+2θ)]+1+cos2θ-3=3sin2θ+cos2θ+1=2sin(2θ+π6)+1∵0<θ≤π3, ∴π6<2θ+π6≤5π6 ∴12≤sin(2θ+π6)≤1.当2θ+π6=5π6,即θ=π3时,f (θ)min =2×12+1=2.当2θ+π6=π2,即θ=π6时,f (θ)max =2×1+1=3.点评 有关三角形中的三角函数求值问题,既要注意内角的范围,又要灵活利用基本不等式.题型三 正、余弦定理的综合应用例3 (2011·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知sin A +sin C =p sin B (p ∈R ),且ac =14b 2.(1)当p =54,b =1时,求a ,c 的值;(2)若角B 为锐角,求p 的取值范围. 解 (1)由题设并由正弦定理, 得⎩⎪⎨⎪⎧a +c =54,ac =14,解得⎩⎪⎨⎪⎧a =1,c =14或⎩⎪⎨⎪⎧a =14,c =1.(2)由余弦定理,b 2=a 2+c 2-2ac cos B=(a +c )2-2ac -2ac cos B =p 2b 2-12b 2-12b 2cos B ,即p 2=32+12cos B .因为0<cos B <1,所以p 2∈⎝ ⎛⎭⎪⎫32,2,由题设知p >0,所以62<p < 2.探究提高 在已知关系式中,若既含有边又含有角.通常的思路是:将角都化成边或将边都化成角,再结合正、余弦定理即可求角.变式训练3 1.在△ABC 中,内角A ,B ,C 所对的边长分别是a ,b ,c . (1)若c =2,C =π3,且△ABC 的面积为3,求a ,b 的值;(2)若sin C +sin(B -A )=sin 2A ,试判断△ABC 的形状. 解 (1)∵c =2,C =π3,∴由余弦定理c 2=a 2+b 2-2ab cos C得a 2+b 2-ab =4.又∵△ABC 的面积为3,∴12ab sin C =3,ab =4.联立方程组⎩⎪⎨⎪⎧a 2+b 2-ab =4,ab =4,解得a =2,b =2.(2)由sin C +sin(B -A )=sin 2A ,得sin(A +B )+sin(B -A )=2sin A cos A ,即2sin B cos A =2sin A cos A ,∴cos A ·(sin A -sin B )=0, ∴cos A =0或sin A -sin B =0,当cos A =0时,∵0<A <π, ∴A =π2,△ABC 为直角三角形;当sin A -sin B =0时,得sin B =sin A ,由正弦定理得a =b , 即△ABC 为等腰三角形.∴△ABC 为等腰三角形或直角三角形.2. ABC 的三个内角A ,B ,C 所对的边分别为a,b,c,asinAsinB+bcos 2a⑴b a⑵若c 2=b 2a 2求B.解: (1)由正弦定理得,sin 2A sinB +sin B cos 2A =2sin A ,即sinB (sin 2A +cos 2A )=2sin A . 故sinB =2sin A ,所以ba= 2. (2)由余弦定理和c 2=b 2+3a 2,得cos B =1+3a2c.由(1)知b 2=2a 2,故c 2=(2+3)a 2.可得cos 2B =12,又cos B >0,故cos B =22,所以B =45°.题型四 判断三角形的形状一、判断三角形的形状例1在△ABC 中,a 、b 、c 分别是三内角A 、B 、C 的对边,已知2a sin A =(2b +c )sin B +(2c +b )sin C .(1)求角A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解析 (1)由已知得:2a 2=(2b +c )b +(2c +b )c .即a 2=b 2+c 2+bc由余弦定理得:a 2=b 2+c 2-2bc cos A ∴cos A =-12∵A ∈(0°,180°),∴A =120°.(2)由(1)得:sin 2A =sin 2B +sin 2C +sin B sin C又sin B +sin C =1得sin B =sin C =12∵0°<B <60°,0°<C <60°. ∴B =C . ∴△ABC 是等腰的钝角三角形. 点评 有关三角形形状的判定,途径一:探究内角的大小或取值范围确定形式;途径二:计算边的大小或转化为仅关于边的关系式确定形式.例4 在△ABC 中,若(a 2+b 2)sin(A -B )=(a 2-b 2)·sin(A +B ), 试判断△ABC 的形状.解 ∵(a 2+b 2)sin(A -B )=(a 2-b 2)sin(A +B ),∴b 2[sin(A +B )+sin(A -B )]=a 2[sin(A +B )-sin(A -B )],∴2sin A cos B ·b 2=2cos A sin B ·a 2, 即a 2cos A sin B =b 2sin A cos B .方法一 由正弦定理知a =2R sin A ,b =2R sin B , ∴sin 2A cos A sinB =sin 2B sin A cos B ,又sin A ·sin B ≠0,∴sin A cos A =sin B cos B , ∴sin 2A =sin 2B .在△ABC 中,0<2A <2π,0<2B <2π,∴2A =2B 或2A =π-2B ,∴A =B 或A +B =π2.∴△ABC 为等腰或直角三角形.方法二 由正弦定理、余弦定理得:a 2b b 2+c 2-a 22bc =b 2a a 2+c 2-b 22ac,∴a 2(b 2+c 2-a 2)=b 2(a 2+c 2-b 2), ∴(a 2-b 2)(a 2+b 2-c 2)=0, ∴a 2-b 2=0或a 2+b 2-c 2=0.即a =b 或a 2+b 2=c 2.∴△ABC 为等腰或直角三角形.变式训练4 1.已知在△ABC 中,222cosA b cc+=,则△ABC 的形状是解析:∵cos 2A 2=b +c 2c ,∴cos A +12=b +c 2c.∴cos A =b c . 又∵b 2+c 2-a 22bc =b c,即b 2+c 2-a 2=2b 2. ∴a 2+b 2=c 2.∴△ABC 为直角三角形.探究提高 利用正弦、余弦定理判断三角形形状时,对所给的边角关系式一般都要先化为纯粹的边之间的关系或纯粹的角之间的关系,再判断. 2. 设△ABC 的内角A 、B 、C 的对边长分别为a 、b 、c , 且3b 2+3c 2-3a 2=42bc .(1)求sin A 的值;(2)求2sin ⎝⎛⎭⎪⎫A +π4sin ⎝ ⎛⎭⎪⎫B +C +π41-cos 2A的值.解 (1)∵3b 2+3c 2-3a 2=42bc ,∴b 2+c 2-a 2=423bc .由余弦定理得,cos A =b 2+c 2-a 22bc =223,又0<A <π,故sin A =1-cos 2A =13(2)原式=2sin ⎝ ⎛⎭⎪⎫A +π4sin ⎝ ⎛⎭⎪⎫π-A +π41-cos 2A =2sin ⎝ ⎛⎭⎪⎫A +π4sin ⎝⎛⎭⎪⎫A -π42sin 2A =2⎝ ⎛⎭⎪⎫22sin A +22cos A ⎝ ⎛⎭⎪⎫22sin A -22cos A 2sin 2A=sin 2A -cos 2A2sin 2A=-72.所以2sin(A +π4)sin(B +C +π4)1-cos 2A =-72方法与技巧1.在利用正弦定理解已知三角形的两边和其中一边的对角,求另一边的对角,进而求出其他的边和角时,有可能出现一解、两解或无解的情况,应结合图形并根据“三角形中大边对大角”来判断解的情况,作出正确取舍.2.应熟练掌握和运用内角和定理:A +B +C =π,A 2+B 2+C 2=π2中互补和互余的情况,结合诱导公式可以减少角的种数.3.根据所给条件确定三角形的形状,主要有两种途径:(1)化边为角;(2)化角为边,练题一一、选择题1.在△ABC 中,角A 、B 、C 所对的边分别为a ,b ,c .若a cos A =b sin B ,则sin A cos A +cos 2B =( )A .-12 B.12C .-1D .1【解析】根据正弦定理,由a cos A =b sin B 得sin A cos A =sin 2B .∴sin A cos A +cos 2B =sin 2B +cos 2B =1,故选D.2.在△ABC 中,a ,b ,c 分别为角A ,B ,C 所对的边,若a =2b cos C ,则此三角形一定是( )A.等腰直角三角形B.直角三角形C .等腰三角形 D.等腰三角形或直角三角形3.在△ABC 中,若∠A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C的值为( )A.2633B .2393 C.393D.13334.若△ABC 的内角A 、B 、C 满足6sin A =4sin B =3sin C ,则cos B =( )A.154B.34C.31516D.1116【解析】结合正弦定理得:6a =4b =3c设3c =12k (k >0) 则a =2k ,b =3k ,c =4k .由余弦定理得cos B =a 2+c 2-b 22ac =4k 2+16k 2-9k 22×2k ×4k =1116,选D.5.若△ABC 的内角A 、B 、C 所对的边a ,b ,c 满足(a +b )2-c 2=4且C =60°,则ab 的值为( )A.43B .8-4 3C .1D.23【解析】由已知得:⎩⎪⎨⎪⎧a +b 2-c 2=4a 2+b 2-c 2=2ab cos60°两式相减得:ab =43,选A.二、填空题6.在△ABC 中,若b =5,∠B =π4,sin A =13,则a =__523______.7.若△ABC 的面积为3,BC =2,C =60°,则边AB 的长度等于____2____. 8.在△ABC 中,若AB =5,AC =5,且cos C =910,则BC =________.4或5.9.已知△ABC 的一个内角为120°,且三边长构成公差为4的等差数列,则△ABC 的面积为 .【解析】不妨设A =120°,c <b 则a =b +4,c =b -4∴cos120°=b 2+(b -4)2-(b +4)22b (b -4)=-12解得:b =10. ∴S △ABC =12bc sin120°=15 3.三、解答题10.已知△ABC 的三个内角A ,B ,C 所对的边分别为a ,b ,c ,A 是锐角,且3b =2a ·sinB .(1)求A ;(2)若a =7,△ABC 的面积为103,求b 2+c 2的值.解 (1)∵3b =2a ·sin B ,由正弦定理知 3sin B =2sin A ·sin B . ∵B 是三角形的内角,∴sin B >0,从而有sin A =32, ∴A =60°或120°,∵A 是锐角,∴A =60°. (2)∵103=12bc sin 60°,∴bc =40,又72=b 2+c 2-2bc cos 60°,∴b 2+c 2=89.11.在△ABC 中,内角A 、B 、C 的对边长分别为a 、b 、c .已知a 2-c 2=2b ,且sin B =4cos A sin C ,求b .解 方法一 ∵sin B =4cos A sin C ,由正弦定理,得b 2R =4cos A c2R,∴b =4c cos A ,由余弦定理得b =4c ·b 2+c 2-a 22bc,∴b 2=2(b 2+c 2-a 2),∴b 2=2(b 2-2b ),∴b =4. 方法二 由余弦定理,得a 2-c 2=b 2-2bc cos A , ∵a 2-c 2=2b ,b ≠0,∴b =2c cos A +2,①由正弦定理,得b c =sin B sin C ,又由已知得,sin Bsin C=4cos A ,∴b =4c cos A .② 解①②得b =4.12.在△ABC 中,A ,B 为锐角,角A ,B ,C 所对应的边分别为a ,b ,c ,且cos2A =35,sin B =1010. (1)求A +B 的值; (2)若a -b =2-1,求a ,b ,c 的值.【解析】(1)∵A ,B 为锐角,且sin B =1010 ∴cos B =1-sin 2B =31010又cos2A =1-2sin 2A =35∴sin A =55,cos A =1-sin 2A =255∴cos(A +B )=cos A cos B -sin A sin B =255×31010-55×1010=22又∵0<A +B <π,∴A +B =π4.(2)由(1)知C =3π4,∴sin C =22由正弦定理a sin A =b sin B =csin C 得5a =10b =2c 即a =2b ,c =5b .∵a -b =2-1,即2b -b =2-1,∴b =1. ∴a =2,c = 5.13.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c .已知cos A -2cos C cos B =2c -ab.(1)求sin C sin A的值;(2)若cos B =14,△ABC 的周长为5,求b 的长.【解析】(1)由正弦定理得a =2R sin A ,b =2R sin B ,c =2R sin C ,所以cos A -2cos C cos B =2c -a b =2sin C -sin A sin B,即sin B cos A -2sin B cos C =2sin C cos B -sin A cos B , 即有sin(A +B )=2sin(B +C ),即sin C =2sin A ,所以sin C sin A=2.(2)由(1)知sin C sin A =2,所以有ca=2,即c =2a ,又因为周长为5,所以b =5-3a ,由余弦定理得:b 2=c 2+a 2-2ac cos B ,即(5-3a )2=(2a )2+a 2-4a 2×14,解得a =1,所以b =2.练习2一、选择题1.在△ABC 中,sin 2A ≤sin 2B +sin 2C -sin B ·sin C ,则A 的取值范围是( )A .(0,π6]B .[π6,π)C .(0,π3]D .[π3,π)【解析】由已知得:a 2≤b 2+c 2-bc由余弦定理得:a 2=b 2+c 2-2bc cos A ∴b 2+c 2-2bc cos A ≤b 2+c 2-bc∴cos A ≥12 ∵A ∈(0,π),∴A ∈(0,π3],选C.2.如图,在△ABC 中,D 是边AC 上的点,且AB =AD,2AB =3BD ,BC =2BD ,则sin C 的值 为( ) A.33B.36 C.63D .663.在△ABC 中,角A ,B ,C 所对的边长分别为a ,b ,c .若∠C =120°,c =2a ,则 ( ) A.a >b B.a <bC.a =bD.a 与b 的大小关系不能确定二、填空题4.在△ABC 中,a 、b 、c 分别为∠A 、∠B 、∠C 的对边长,已知a ,b ,c 成等比数列,且a 2-c 2=ac -bc ,则∠A =___60°_____,△ABC 的形状为__正三角形______.5.在锐角△ABC 中,角A 、B 、C 的对边分别为a 、b 、c .若b a +a b =6cos C ,则tan C tan A +tan Ctan B的值是___4_____.6.在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,若其面积S =14(b 2+c 2-a 2),则A =___π4_____7.在锐角△ABC 中,BC =1,B =2A ,则ACcos A的值等于____,AC 的取值范围为 .【解析】由正弦定理得:ACsin B =BC sin A ,即AC sin2A =1sin A,∴AC 2sin A cos A =1sin A ,则ACcos A=2.又△ABC 为锐角三角形,∴A +B =3A >90°,B =2A <90°∴30°<A <45°,22<cos A <32由AC =2cos A 得AC 的取值范围是(2,3).三、解答题8.在△ABC 中,a ,b ,c 分别为内角A ,B ,C 的对边,且2a sin A =(2b +c )sin B +(2c +b )sin C . (1)求A 的大小;(2)若sin B +sin C =1,试判断△ABC 的形状.解 (1)由已知,根据正弦定理得2a 2=(2b +c )b +(2c +b )c , 即a 2=b 2+c 2+bc .①由余弦定理得a 2=b 2+c 2-2bc cos A ,故cos A =-12,又∵0°<A <180°,∴A =120°.(2)由①得sin 2A =sin 2B +sin 2C +sin B sin C . ∴34=(sin B +sin C )2-sin B sin C , 又sin B +sin C =1, ② ∴sin B sin C =14.③解②③联立的方程组,得sin B =sin C =12.因为0°<B <60°,0°<C <60°,故B =C . 所以△ABC 是等腰的钝角三角形.9.在△ABC 中,a 、b 、c 分别为角A 、B 、C 的对边, 4sin2B +C2-cos 2A =72. (1)求∠A 的度数;(2)若a =3,b +c =3,求b 、c 的值. 解 (1)∵B +C =π-A ,即B +C 2=π2-A2,由4sin2B +C2-cos 2A =72,得4cos 2A 2-cos 2A =72,即2(1+cos A )-(2cos 2A -1)=72,整理得4cos 2A -4cos A +1=0,即(2cos A -1)2=0.∴cos A =12,又0°<A <180°,∴A =60°.(2)由A =60°,根据余弦定理cos A =b 2+c 2-a 22bc ,即b 2+c 2-a 22bc =12,∴b 2+c 2-bc =3,①又b +c =3, ② ∴b 2+c 2+2bc =9.③-③整理得:bc =2.④解②④联立方程组得⎩⎪⎨⎪⎧b =1,c =2,或⎩⎪⎨⎪⎧b =2,c =1.10.在△ABC 中,角A 、B 、C 的对边分别为a 、b 、c ,其中b =32,tan A +tan C +tan π3=tan A ·tan C ·tan π3.(1)求角B 的大小;(2)求a +c 的取值范围.解析 (1)tan(A +C )=tan A +tan C1-tan A ·tan C=3tan A ·tan C -31-tan A ·tan C =-3, ∴A +C =2π3,∴B =π3.(2)由正弦定理有2R =b sin B =a sin A =csin C=1,∵a +c =2R (sin A +sin C )=sin A +sin C=sin A +sin(23π-A )=32sin A +32cos A =3sin(A +π6)又由0<A <23π,有π6<A +π6<56π,∴32<a +c ≤3,即a +c 的取值范围是(32,3]. 11.在△ABC 中,a 、b 、c 分别为角A 、B 、C 所对的边,a =23,tan A +B2+tan C2=4,sin B ·sin C =cos 2A2,求A 、B 及b 、c .【解析】由tan A +B 2+tan C 2=4,得cot C 2+tan C2=4,即cos C 2sin C 2+sinC2cos C2=4,所以cos 2C2+sin2C2sin C 2cos C 2=4,所以1sin C =2,所以sin C =12,又C ∈(0,π),所以C =π6或5π6,由sin B ·sin C =cos 2A 2,得sin B ·sin C =12[1-cos(B +C )],即2sin B ·sin C =1-cos B ·cos C +sin B ·sin C ,所以cos B ·cos C +sin B ·sin C =1,即cos(B -C )=1,所以B =C =π6, A =π-(B +C )=2π3,由正弦定理a sin A =b sin B =c sin C 得, b =c =a ·sin Bsin A =23×1232=2.12.若tan C =sin A +sin Bcos A +cos B,c =3,试求ab 的最大值.(2)∵tan C =tan[π-(A +B )]=-tan(A +B )∴-sin(A +B )cos(A +B )=sin A +sin B cos A +cos B即sin(A +B )cos A +sin(A +B )cos B +cos(A +B )sin A +cos(A +B )sin B =0 即sin(2A +B )+sin(A +2B )=0. ∴2A +B =-(A +2B )+2k π(k ∈Z ) 或(2A +B )-(A +2B )=π+2k π(k ∈Z )∵A ,B 为△ABC 的内角,∴A +B =2π3,即C =π3.又c =3,由余弦定理c 2=a 2+b 2-2ab cos C得:3+ab =a 2+b 2≥2ab∴ab ≤3,当且仅当a =b 时“=”成立. 故ab 的最大值为3.13.在△ABC 中,AC =1,∠ABC =2π3,∠BAC =x ,记f (x )=AB BC ⋅.(1)求函数f (x )的解析式及定义域;(2)设g (x )=6m ·f (x )+1,x ∈(0,π3),是否存在正实数m ,使函数g (x )的值域为(1,54]?若存在,请求出m 的值;若不存在,请说明理由. 【解析】(1)由正弦定理BCsin x=AB sin π3-x =AC sin ∠ABC =1sin2π3, 得BC =23sin x ,AB =23sin(π3-x ),∴f (x )=AB BC ⋅=AB ·BC cos(π-∠ABC )=43sin x ·sin(π3-x )·12=23(32cos x -12sin x )·sin x =13sin(2x +π6)-16,其定义域为(0,π3). (2)g (x )=6mf (x )+1=2m sin(2x +π6)-m +1(0<x <π3),假设存在正实数m 满足题设.∵0<x <π3,∴π6<2x +π6<5π6,则sin(2x +π6)∈(12,1].又m >0,则函数g (x )的值域为(1,m +1],而g (x )的值域为(1,54],故m +1=54,∴m =14.故存在正实数m =14使函数g (x )的值域为(1,54].14在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知向量p =(c -2a ,b ),q =(cos B ,cos C ),p ⊥q .(1)求角B 的大小;(2)若b =23,求△ABC 面积的最大值.解析 (1)由p ⊥q 得:(c -2a )cos B +b cos C =0由正弦定理得,sin C cos B -2sin A cos B +sin B cos C =0 ∴sin(C +B )=2sin A cos B∵B +C =π-A ∴sin(C +B )=sin A 且sin A >0∴sin A =2sin A cos B ,cos B =12又B ∈(0,π),∴B =π3.(2)由余弦定理得,b 2=a 2+c 2-2ac cos B =a 2+c 2-ac ≥ac当且仅当a =c 时“=”成立.又b =23,∴ac ≤12. ∴S △ABC =12ac sin B ≤12×12×32=33,当且仅当a =c =23时,S △ABC 的最大值为3 3.。
2024届高考一轮复习数学教案(新人教B版):正弦定理、余弦定理
§4.8正弦定理、余弦定理考试要求1.掌握正弦定理、余弦定理及其变形.2.理解三角形的面积公式并能应用.3.能利用正弦定理、余弦定理解决一些简单的三角形度量问题.知识梳理1.正弦定理、余弦定理在△ABC 中,若角A ,B ,C 所对的边分别是a ,b ,c ,R 为△ABC 外接圆半径,则定理正弦定理余弦定理内容a sin A =bsinB =c sinC =2R a 2=b 2+c 2-2bc cos A ;b 2=c 2+a 2-2ca cos B ;c 2=a 2+b 2-2ab cos C变形(1)a =2R sin A ,b =2R sin B ,c =2R sin C ;(2)sin A =a 2R,sin B =b 2R ,sin C =c 2R;(3)a ∶b ∶c=sin A ∶sin B ∶sin Ccos A =b 2+c 2-a 22bc ;cos B =c 2+a 2-b 22ac ;cos C =a 2+b 2-c 22ab2.三角形解的判断A 为锐角A 为钝角或直角图形关系式a =b sin A b sin A <a <b a ≥b a >b 解的个数一解两解一解一解3.三角形中常用的面积公式(1)S =12ah a (h a 表示边a 上的高);(2)S =12ab sin C =12ac sin B =12bc sin A ;(3)S =12r (a +b +c )(r 为三角形的内切圆半径).常用结论在△ABC 中,常有以下结论:(1)∠A +∠B +∠C =π.(2)任意两边之和大于第三边,任意两边之差小于第三边.(3)a >b ⇔A >B ⇔sin A >sin B ,cos A <cos B .(4)sin(A +B )=sin C ;cos(A +B )=-cos C ;tan(A +B )=-tan C ;sin A +B 2=cos C2;cos A +B 2=sin C 2.(5)三角形中的射影定理在△ABC 中,a =b cos C +c cos B ;b =a cos C +c cos A ;c =b cos A +a cos B .(6)三角形中的面积S =12(a +b +思考辨析判断下列结论是否正确(请在括号中打“√”或“×”)(1)三角形中三边之比等于相应的三个内角之比.(×)(2)在△ABC 中,若sin A >sin B ,则A >B .(√)(3)在△ABC 的六个元素中,已知任意三个元素可求其他元素.(×)(4)当b 2+c 2-a 2>0时,△ABC 为锐角三角形.(×)教材改编题1.在△ABC 中,AB =5,AC =3,BC =7,则∠BAC 等于()A.π6B.π3C.2π3D.5π6答案C解析在△ABC 中,设AB =c =5,AC =b =3,BC =a =7,由余弦定理得cos ∠BAC =b 2+c 2-a 22bc =9+25-4930=-12,因为∠BAC 为△ABC 的内角,所以∠BAC =2π3.2.记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,若△ABC 的面积为4,a =2,B =30°,则c 等于()A .8B .4C .833D .433答案A解析由S △ABC =12ac sin B =12×2c ×12=4,得c =8.3.在△ABC 中,角A ,B ,C 的对边分别为a ,b ,c ,已知B =30°,b =2,c =2,则C =.答案45°或135°解析由正弦定理得sin C =c sin B b =2sin 30°2=22,因为c >b ,B =30°,所以C =45°或C =135°.题型一利用正弦定理、余弦定理解三角形例1(12分)(2022·新高考全国Ⅰ)记△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知cos A1+sin A=sin 2B1+cos 2B.(1)若C =2π3,求B ;[切入点:二倍角公式化简](2)求a 2+b 2c2的最小值.[关键点:找到角B 与角C ,A 的关系]思维升华解三角形时,如果式子中含有角的余弦或边的二次式,要考虑用余弦定理;如果式子中含有角的正弦或边的一次式,则考虑用正弦定理,以上特征都不明显时,则要考虑两个定理都有可能用到.跟踪训练1(2022·全国乙卷)记△ABC的内角A,B,C的对边分别为a,b,c,已知sin C sin(A -B)=sin B sin(C-A).(1)证明:2a2=b2+c2;(2)若a=5,cos A=2531,求△ABC的周长.(1)证明方法一由sin C sin(A-B)=sin B sin(C-A),可得sin C sin A cos B-sin C cos A sin B=sin B sin C cos A-sin B cos C sin A,结合正弦定理asin A=bsin B=csin C可得ac cos B-bc cos A=bc cos A-ab cos C,即ac cos B+ab cos C=2bc cos A(*).由余弦定理可得ac cos B=a2+c2-b2,2ab cos C=a2+b2-c2,22bc cos A=b2+c2-a2,将上述三式代入(*)式整理,得2a2=b2+c2.方法二因为A+B+C=π,所以sin C sin(A-B)=sin(A+B)sin(A-B)=sin2A cos2B-cos2A sin2B=sin2A(1-sin2B)-(1-sin2A)sin2B=sin2A-sin2B,同理有sin B sin(C-A)=sin(C+A)sin(C-A)=sin2C-sin2A.又sin C sin(A-B)=sin B sin(C-A),所以sin2A-sin2B=sin2C-sin2A,即2sin2A=sin2B+sin2C,故由正弦定理可得2a2=b2+c2.(2)解由(1)及a2=b2+c2-2bc cos A得,a2=2bc cos A,所以2bc=31.因为b2+c2=2a2=50,所以(b+c)2=b2+c2+2bc=81,得b+c=9,所以△ABC的周长l=a+b+c=14.题型二正弦定理、余弦定理的简单应用命题点1三角形的形状判断例2(1)在△ABC中,角A,B,C所对的边分别是a,b,c,若c-a cos B=(2a-b)cos A,则△ABC的形状为()A.等腰三角形B.直角三角形C.等腰直角三角形D.等腰三角形或直角三角形答案D解析因为c-a cos B=(2a-b)cos A,C=π-(A+B),所以由正弦定理得sin C -sin A cos B =2sin A cos A -sin B cos A ,所以sin A cos B +cos A sin B -sin A cos B =2sin A cos A -sin B cos A ,所以cos A (sin B -sin A )=0,所以cos A =0或sin B =sin A ,所以A =π2或B =A 或B =π-A (舍去),所以△ABC 为等腰三角形或直角三角形.(2)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,c -a 2c =sin 2B2,则△ABC 的形状为()A .直角三角形B .等边三角形C .等腰三角形或直角三角形D .等腰直角三角形答案A解析由cos B =1-2sin 2B2,得sin 2B 2=1-cos B2,所以c -a 2c =1-cos B 2,即cos B =a c .方法一由余弦定理得a 2+c 2-b 22ac=ac ,即a 2+c 2-b 2=2a 2,所以a 2+b 2=c 2.所以△ABC 为直角三角形,但无法判断两直角边是否相等.方法二由正弦定理得cos B =sin A sin C,又sin A =sin(B +C )=sin B cos C +cos B sin C ,所以cos B sin C =sin B cos C +cos B sin C ,即sin B cos C =0,又sin B ≠0,所以cos C =0,又角C 为△ABC 的内角,所以C =π2,所以△ABC 为直角三角形,但无法判断两直角边是否相等.延伸探究将本例(2)中的条件“c -a 2c=sin 2B 2”改为“sin A sin B =ac ,(b +c +a )(b +c -a )=3bc ”,试判断△ABC 的形状.解因为sin A sin B =a c ,所以由正弦定理得a b =ac,所以b =c .又(b +c +a )(b +c -a )=3bc ,所以b 2+c 2-a 2=bc ,所以由余弦定理得cos A =b 2+c 2-a 22bc =bc 2bc =12.因为A ∈(0,π),所以A =π3,所以△ABC 是等边三角形.思维升华判断三角形形状的两种思路(1)化边:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.(2)化角:通过三角恒等变换,得出内角的关系,从而判断三角形的形状.此时要注意应用A +B +C =π这个结论.命题点2三角形的面积例3(2022·浙江)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c .已知4a =5c ,cos C =35.(1)求sin A 的值;(2)若b =11,求△ABC 的面积.解(1)由正弦定理a sin A =c sin C,得sin A =a ·sin Cc.因为cos C =35,所以sin C =45,又a c =54,所以sin A =5sin C 4=55(2)由(1)知sin A =55,因为a =5c 4<c ,所以0<A <π2,所以cos A =255,所以sin B =sin(A +C )=sin A cos C +sin C cos A =55×35+45×255=11525.因为b sin B =csin C,即1111525=c 45,所以c =45,所以S △ABC =12bc sin A =12×11×45×55=22.思维升华三角形面积公式的应用原则(1)对于面积公式S =12ab sin C =12ac sin B =12bc sin A ,一般是已知哪一个角就使用哪一个公式.(2)与面积有关的问题,一般要用到正弦定理或余弦定理进行边和角的转化.命题点3与平面几何有关的问题例4(2023·厦门模拟)如图,已知△ABC 的内角A ,B ,C 所对的边分别是a ,b ,c ,b (1+cos C )=3c sin ∠ABC 且△ABC 的外接圆面积为49π3.(1)求边c 的长;(2)若a =5,延长CB 至M ,使得cos ∠AMC =217,求BM .解(1)设△ABC 的外接圆半径为R ,由题意πR 2=49π3,解得R =733.由题意及正弦定理可得sin ∠ABC (1+cos C )=3sin C sin ∠ABC ,因为sin ∠ABC ≠0,所以1+cos C =3sin C ,即1,因为0<C <π,所以C -π6∈-π6,C -π6=π6,即C =π3.故c =2R sin C =2×733×32=7.(2)因为a =5,c =7,C =π3,故cos C =12=25+b 2-492×5×b ,得b 2-5b -24=0,解得b =8(b =-3舍去).在△ABC 中,由余弦定理可得cos ∠ABC =52+72-822×5×7=17,所以sin ∠ABC =437.由cos ∠AMC =217得sin ∠AMC =277.故sin∠BAM=sin(∠ABC-∠AMC)=sin∠ABC cos∠AMC-cos∠ABC sin∠AMC=107 49,在△ABM中,由正弦定理可得BMsin∠BAM=ABsin∠AMB,则BM=7277×10749=5.思维升华在平面几何图形中研究或求与角有关的长度、角度、面积的最值、优化设计等问题时,通常是转化到三角形中,利用正、余弦定理通过运算的方法加以解决.在解决某些具体问题时,常先引入变量,如边长、角度等,然后把要解三角形的边或角用所设变量表示出来,再利用正、余弦定理列出方程,再解方程即可.若研究最值,常使用函数思想.跟踪训练2(1)(多选)(2023·合肥模拟)已知△ABC的内角A,B,C所对的边分别为a,b,c,下列四个命题中正确的是()A.若a cos A=b cos B,则△ABC一定是等腰三角形B.若b cos C+c cos B=b,则△ABC是等腰三角形C.若acos A=bcos B=ccos C,则△ABC一定是等边三角形D.若B=60°,b2=ac,则△ABC是直角三角形答案BC解析对于A,若a cos A=b cos B,则由正弦定理得sin A cos A=sin B cos B,∴sin2A=sin2B,则2A=2B或2A+2B=180°,即A=B或A+B=90°,则△ABC为等腰三角形或直角三角形,故A错误;对于B,若b cos C+c cos B=b,则由正弦定理得sin B cos C+sin C cos B=sin(B+C)=sin A=sin B,即A=B,则△ABC是等腰三角形,故B正确;对于C,若acos A=bcos B=ccos C,则由正弦定理得sin Acos A=sin Bcos B=sin Ccos C,则tan A=tan B=tan C,即A=B=C,即△ABC是等边三角形,故C正确;对于D,由于B=60°,b2=ac,由余弦定理可得b2=ac=a2+c2-ac,可得(a-c)2=0,解得a=c,可得A=C=B,故△ABC是等边三角形,故D错误.(2)在①b2+2ac=a2+c2;②cos B=b cos A;③sin B+cos B=2这三个条件中任选一个填在下面的横线中,并解决该问题.已知△ABC的内角A,B,C的对边分别为a,b,c,,A=π3,b=2,求△ABC的面积.解若选①,则由b2+2ac=a2+c2,得2ac=a2+c2-b2.由余弦定理得cos B =a 2+c 2-b 22ac =2ac 2ac =22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选②,因为cos B =b cos A ,A =π3,b =2,所以cos B =b cos A =2cos π3=22.因为B ∈(0,π),所以B =π4.由正弦定理得a sin A =b sin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.若选③,则由sin B +cos B =2,得2sin =2,所以 1.因为B ∈(0,π),所以B +π4∈所以B +π4=π2,所以B =π4.由正弦定理得a sin A =bsin B,即asin π3=2sin π4,解得a = 3.因为C =π-A -B =π-π3-π4=5π12,所以sin C =sin 5π12==sin π6cos π4+cos π6sin π4=6+24,所以S △ABC =12ab sin C =12×3×2×6+24=3+34.(3)(2022·重庆八中模拟)已知△ABC 的内角A ,B ,C 所对的边分别为a ,b ,c ,在①c (sin A -sin C )=(a -b )(sin A +sin B );②2b cos A +a =2c ;③233ac sin B =a 2+c 2-b 2三个条件中任选一个,补充在下面问题中,并解答.①若,求角B 的大小;②求sin A +sin C 的取值范围;③如图所示,当sin A +sin C 取得最大值时,若在△ABC 所在平面内取一点D (D 与B 在AC 两侧),使得线段DC =2,DA =1,求△BCD 面积的最大值.解①若选①,因为c (sin A -sin C )=(a -b )(sin A +sin B ),由正弦定理得c (a -c )=(a -b )(a +b ),整理得a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选②,因为2b cos A +a =2c ,由余弦定理得2b ·b 2+c 2-a 22bc +a =2c ,化简得,a 2+c 2-b 2=ac ,所以cos B =a 2+c 2-b 22ac =ac 2ac =12,又0<B <π,所以B =π3.若选③,因为233ac sin B =a 2+c 2-b 2,由余弦定理得233ac sin B =2ac cos B ,化简得tan B =3,又0<B <π,所以B =π3.②由①得,A +C =2π3,则0<A <2π3,sin A +sin C =sin A +=32sin A +32cos A =3sin 又π6<A +π6<5π6,所以12<sin 1,则sin A +sin C ,3.③当sin A +sin C 取得最大值时,A +π6=π2,解得A =π3,又B =π3,所以△ABC 为等边三角形,令∠ACD =θ,∠ADC =α,AB =AC =BC =a ,则由正弦定理可得a sin α=1sin θ,所以sin α=a sin θ.又由余弦定理得,a 2=22+12-2×2×1×cos α,所以a 2cos 2θ=a 2-a 2sin 2θ=cos 2α-4cos α+4,所以a cos θ=2-cos α.S △BCD =12×a ×=32a cos θ+12a sin θ=32(2-cos α)+12sin α=3+≤3+1,当且仅当α=∠ADC =5π6时等号成立,所以△BCD 面积的最大值为3+1.课时精练1.在△ABC 中,C =60°,a +2b =8,sin A =6sin B ,则c 等于()A.35B.31C .6D .5答案B解析因为sin A =6sin B ,则由正弦定理得a =6b ,又a +2b =8,所以a =6,b =1,因为C =60°,所以由余弦定理c 2=a 2+b 2-2ab cos C ,即c 2=62+12-2×6×1×12,解得c =31.2.在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,若(a +b )(sin A -sin B )=(b +c )sin C ,a =7,则△ABC 外接圆的直径为()A .14B .7C.733D.1433答案D 解析已知(a +b )(sin A -sin B )=(b +c )sin C ,由正弦定理可得(a +b )(a -b )=(b +c )c ,化简得b 2+c 2-a 2=-bc ,所以cos A =b 2+c 2-a 22bc =-bc 2bc=-12,又因为A ∈(0,π),所以A =2π3,所以sin A =sin2π3=32,设△ABC 外接圆的半径为R ,由正弦定理可得2R =asin A =732=1433,所以△ABC 外接圆的直径为1433.3.(2022·北京模拟)在△ABC 中,a ,b ,c 分别是角A ,B ,C 的对边,若3a sin B =b cos A ,且b =23,c =2,则a 的值为()A .27B .2C .23-2D .1答案B解析由已知及正弦定理得,3sin A sin B =sin B cos A 且sin B ≠0,可得tan A =33,又0<A <π,所以A =π6,又b =23,c =2,所以由余弦定理a 2=b 2+c 2-2bc cos A =16-12=4,解得a =2.4.(2023·枣庄模拟)在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,A =60°,b =1,S △ABC =3,则a +b +csin A +sin B +sin C等于()A.2393B.2633C.833D .23答案A解析由三角形的面积公式可得S △ABC =12bc sin A =34c =3,解得c =4,由余弦定理可得a =b 2+c 2-2bc cos A =13,设△ABC 的外接圆半径为r ,由正弦定理得a sin A =b sin B =csin C=2r ,所以a +b +c sin A +sin B +sin C =2r (sin A +sin B +sin C )sin A +sin B +sin C=2r =asin A =1332=2393.5.(2023·马鞍山模拟)已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,设(sin B +sin C )2=sin 2A +(2-2)sin B sin C ,2sin A -2sin B =0,则sin C 等于()A.12B.32C.6-24 D.6+24答案C解析在△ABC 中,由(sin B +sin C )2=sin 2A +(2-2)sin B sin C 及正弦定理得(b +c )2=a 2+(2-2)bc ,即b 2+c 2-a 2=-2bc ,由余弦定理得cos A =b 2+c 2-a 22bc=-22,而0°<A <180°,解得A =135°,由2sin A -2sin B =0得sin B =22sin A =12,显然0°<B <90°,则B =30°,C =15°,所以sin C =sin(60°-45°)=sin 60°cos 45°-cos 60°sin 45°=6-24.6.(2023·衡阳模拟)在△ABC 中,角A ,B ,C 所对的边分别为a ,b ,c ,已知2cos B (a cos C +c cos A )=b ,lg sin C =12lg 3-lg 2,则△ABC 的形状为()A .等腰三角形B .直角三角形C .等边三角形D .等腰直角三角形答案C解析∵2cos B (a cos C +c cos A )=b ,∴根据正弦定理得,2cos B (sin A cos C +cos A sin C )=sin B ,∴2cos B sin(A +C )=sin B ,∴2cos B sin(π-B )=sin B ,即2cos B sin B =sin B ,∵B ∈(0,π),∴sin B ≠0,∴cos B =12,∴B =π3.∵lg sin C =12lg 3-lg 2,∴lg sin C =lg32,∴sin C =32,∵C ∈(0,π),∴C =π3或2π3,∵B =π3,∴C ≠2π3,∴C =π3,∴A =B =C =π3,即△ABC 为等边三角形.7.(2022·全国甲卷)已知△ABC 中,点D 在边BC 上,∠ADB =120°,AD =2,CD =2BD .当ACAB取得最小值时,BD =.答案3-1解析设BD =k (k >0),则CD =2k .根据题意作出大致图形,如图.在△ABD 中,由余弦定理得AB 2=AD 2+BD 2-2AD ·BD cos ∠ADB =22+k 2-2×2k k 2+2k +4.在△ACD 中,由余弦定理得AC 2=AD 2+CD 2-2AD ·CD cos ∠ADC =22+(2k )2-2×2×2k ·12=4k 2-4k +4,则AC 2AB 2=4k 2-4k +4k 2+2k +4=4(k 2+2k +4)-12k -12k 2+2k +4=4-12(k +1)k 2+2k +4=4-12(k +1)(k +1)2+3=4-12k +1+3k +1.∵k +1+3k +1≥23(当且仅当k +1=3k +1,即k =3-1时等号成立),∴AC 2AB 2≥4-1223=4-23=(3-1)2,∴当ACAB取得最小值3-1时,BD =k =3-1.8.(2023·宜春模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知b sin C +c sin B =4a sin B sin C ,b 2+c 2-a 2=8,则△ABC 的面积为.答案233解析∵b sin C +c sin B =4a sin B sin C ,sin B sin C >0,结合正弦定理可得sin B sin C +sin C sin B =4sin A sin B sin C ,∴sin A =12,∵b 2+c 2-a 2=8,结合余弦定理a 2=b 2+c 2-2bc cos A ,可得2bc cos A =8,∴A 为锐角,且cos A =32,从而求得bc =833,∴△ABC 的面积为S =12bc sin A =12×833×12=233.9.已知△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,且b cos C =(2a -c )cos B .(1)求B ;(2)若b =3,sin C =2sin A ,求△ABC 的面积.解(1)由正弦定理,得sin B cos C =2sin A cos B -cos B sin C ,即sin B cos C +cos B sin C =2sin A cos B ,∴sin(B +C )=2sin A cos B ,∴sin A =2sin A cos B ,又∵sin A ≠0,∴cos B =12,∵B 为三角形内角,∴B =π3.(2)∵sin C =2sin A ,∴由正弦定理得c =2a ,∴由余弦定理得b 2=a 2+c 2-2ac cos B =a 2+4a 2-2a 2=9,即3a 2=9,∴a =3,c =23,∴△ABC 的面积为S =12ac sin B =12×3×23×32=332.10.(2023·湖州模拟)在△ABC 中,a ,b ,c 分别为角A ,B ,C 的对边,已知3b a sin B .(1)求角A 的大小;(2)若b ,a ,c 成等比数列,判断△ABC 的形状.解(1)∵3b a sin B ,由诱导公式得3b cos A =a sin B ,由正弦定理得3sin B cos A =sin A sin B ,∵sin B ≠0,∴3cos A =sin A ,即tan A =3,∵A ∈(0,π),∴A =π3.(2)∵b ,a ,c 成等比数列,∴a 2=bc ,由余弦定理得cos A =b 2+c 2-a 22bc =b 2+c 2-bc 2bc=12,即b 2+c 2-bc =bc ,∴(b -c )2=0,∴b =c ,又由(1)知A =π3,∴△ABC 为等边三角形.11.(多选)对于△ABC ,有如下判断,其中正确的是()A .若cos A =cosB ,则△ABC 为等腰三角形B .若A >B ,则sin A >sin BC .若a =8,c =10,B =60°,则符合条件的△ABC 有两个D .若sin 2A +sin 2B <sin 2C ,则△ABC 是钝角三角形答案ABD解析对于A ,若cos A =cos B ,则A =B ,所以△ABC 为等腰三角形,故A 正确;对于B ,若A >B ,则a >b ,由正弦定理a sin A =b sin B=2R ,得2R sin A >2R sin B ,即sin A >sin B 成立,故B 正确;对于C ,由余弦定理可得b =82+102-2×8×10×12=84,只有一解,故C 错误;对于D ,若sin 2A +sin 2B <sin 2C ,则根据正弦定理得a 2+b 2<c 2,cos C =a 2+b 2-c 22ab <0,所以C为钝角,所以△ABC 是钝角三角形,故D 正确.12.在△ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,sin A sin B sin C =18,△ABC 的面积为2,则下列选项错误的是()A .abc =162B .若a =2,则A =π3C .△ABC 外接圆的半径R =22D ≥32sin C 答案B解析由题可得12ab sin C =2,则sin C =4ab,代入sin A sin B sin C =18,得4sin A sin B ab =18,即R 2=8,即R =22,C 正确;abc =8R 3sin A sin B sin C =1282×18=162,A 正确;若a =2,则sin A =a 2R =242=14,此时A ≠π3,B 错误;因为sin A >0,sin B >0,所以(sin A +sin B )2≥4sin A sin B ,所以(sin A +sin B )2(sin A sin B )2≥4sin A sin B ,由sin A sin B sin C =18,得4sin A sin B=32sin C ,所以(sin A +sin B )2(sin A sin B )2≥32sin C ,即≥32sin C ,D 正确.13.(2023·嘉兴模拟)△ABC 的内角A ,B ,C 的对边分别为a ,b ,c ,已知c sin A =3a cos C ,c =23,ab =8,则a +b 的值是.答案6解析∵c sin A =3a cos C ,根据正弦定理得sin C sin A =3sin A cos C ,∵sin A ≠0,故tan C =3,∵C ∈(0,π),∴C =π3,再由余弦定理得cos C =a 2+b 2-c 22ab =(a +b )2-2ab -c 22ab =12,代入c =23,ab =8,得a +b =6.14.在△ABC 中,已知AB =4,AC =7,BC 边的中线AD =72,那么BC =.答案9解析在△ABD 中,结合余弦定理得cos ∠ADB =BD 2+AD 2-AB 22BD ·AD,在△ACD 中,结合余弦定理得cos ∠ADC =CD 2+AD 2-AC 22CD ·AD,由题意知BD =CD ,∠ADB +∠ADC =π,所以cos ∠ADB +cos ∠ADC =0,所以BD 2+AD 2-AB 22BD ·AD +CD 2+AD 2-AC 22CD ·AD =0,2×72CD 2×72CD 0,解得CD =92,所以BC =9.15.(多选)(2023·珠海模拟)已知△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,且△ABC 的面积S △ABC =332,则下列命题正确的是()A .△ABC 的周长为5+7B .△ABC 的三个内角A ,B ,C 满足关系A +B =2C C .△ABC 的外接圆半径为2213D .△ABC 的中线CD 的长为192答案ABD解析因为△ABC 满足sin A ∶sin B ∶sin C =2∶3∶7,所以a ∶b ∶c =2∶3∶7,设a =2t ,b =3t ,c =7t ,t >0,利用余弦定理cos C =a 2+b 2-c 22ab =4t 2+9t 2-7t 212t 2=12,由于C ∈(0,π),所以C =π3.对于A ,因为S △ABC =332,所以12ab sin C =12·2t ·3t ·32=332,解得t =1.所以a =2,b =3,c =7,所以△ABC 的周长为5+7,故A 正确;对于B ,因为C =π3,所以A +B =2π3,故A +B =2C ,故B 正确;对于C ,利用正弦定理c sin C =732=2213=2R ,解得R =213,所以△ABC 的外接圆半径为213,故C 错误;对于D ,如图所示,在△ABC 中,利用正弦定理732=2sin A ,解得sin A =217,又a <c ,所以cos A =277,在△ACD 中,利用余弦定理CD 2=AC 2+AD 2-2AC ·AD ·cos A =9+74-2×3×72×277=194,解得CD =192,故D 正确.16.如图,△ABC 的内角A ,B ,C 的对边分别是a ,b ,c .已知a 2+c 2=b 2+ac ,则B =.若线段AC 的垂直平分线交AC 于点D ,交AB 于点E ,且BC =4,DE = 6.则△BCE 的面积为.答案π323解析在△ABC 中,由余弦定理知cos B =a 2+c 2-b 22ac,而a 2+c 2=b 2+ac ,∴cos B =12,又0<B <π,则B =π3,在△BCE 中,设∠CEB =θ,则CE sin π3=BC sin θ,可得CE =23sin θ,又AC 的垂直平分线交AC 于点D ,交AB 于点E ,则∠ECA =∠EAC =θ2,∴sin θ2=DE CE =2sin θ2,可得cos θ2=22,而0<θ<π,故θ2=π4,即θ=π2.∴CE =23,BE =2,故△BCE 的面积为12·CE ·BE =23.。
高考数学一轮复习 正弦定理、余弦定理及其应用
(3)若三角形三边 a,b,c 成等差数列,则 2b=____________
⇔
2sinB
=
____________
⇔
2sin
B 2
=
cos
A-C 2
解:由正弦定理得ab=ssiinnAB,所以
sinB=
2× 7
sinπ3=
721,
由余弦定理得 a2=b2+c2-2bccosA,所以 7= 4+c2-2c,所
以 c=3(负值舍去).故填 721;3.
(2018·全国卷Ⅰ) △ABC 的内角 A,B,C 的对边 分别为 a,b,c,已知 bsinC+csinB=4asinBsinC,b2+c2
-a2=8,则△ABC 的面积为________.
解:根据题意,结合正弦定理
可得 sinBsinC+sinCsinB=4sinAsinBsinC,即 sinA=12, 结合余弦定理可得 b2+c2-a2=2bccosA=8,
所以 A 为锐角,且 cosA= 23,从而求得 bc=8 3 3,
所以△ABC 的面积为 S=12bcsinA=12×8 3 3×
所 以 AB2 = BC2 + AC2 - 2BC·AC·cosC = 1 + 25 -
2×1×5×-35=32,所以 AB=4 2.故选 A.
(2017·山东)在△ABC 中,角 A,B,C 的对边分
别为 a,b,c.若△ABC 为锐角三角形,且满足 sinB(1+2cosC)
=2sinAcosC+cosAsinC,则下列等式成立的是( )
余弦定理正弦定理应用举例课件高三数学一轮复习
3.方向角 相对某一正方向的水平角,即从指定方向线到目标方向线的水平角(指定方向线 一般是指正北或正南方向,方向角小于90°).如北偏东α,南偏西α.特别地,若目标方 向线与指北或指南方向线成45°角,则称为东北方向、西南方向等. (1)北偏东α,即由__指_北__方__向__顺__时__针__旋__转__α__到达目标方向(如图③); (2)北偏西α,即由__指_北__方__向__逆__时__针__旋__转__α__到达目标方向; (3)南偏西等其他方向角类似.
留宇宙秘密的最后遗产”,若要测量如图所示某蓝洞洞口边缘A,B两点CD=8海里,∠ADB=135°,∠BDC=∠DCA=15°,
∠ACB=120°,则A,B两点的距离为
海里.
考点二测量高度问题 [例2](1)如图,某同学为测量鹳雀楼的高度MN,在鹳雀楼的正东方向找到一座建 筑物AB,高约为37 m,在地面上点C处(B,C,N三点共线)测得建筑物顶部A,鹳雀楼 顶部M的仰角分别为30°和45°,在A处测得鹳雀楼顶部M的仰角为15°,则鹳雀楼的 高度约为( )
核心考点·分类突破
14
解题技法 距离问题的类型及解法
(1)类型:①两点间既不可达也不可视,②两点间可视但不可达,③两点都不可达. (2)解法:选择合适的辅助测量点,构造三角形,将问题转化为求某个三角形的边长 问题,从而利用正、余弦定理求解.
对点训练
1.(2023·青岛模拟)海洋蓝洞是地球罕见的自然地理现象,被喻为“地球给人类保
第六章 平面向量、复数
第2课时 余弦定理、正弦定理应用举例
正余弦定理的应用举例教案
正余弦定理的应用举例教案章节一:正弦定理的应用1.1 导入:通过复习正弦定理的定义和公式,引导学生理解正弦定理在几何中的应用。
1.2 实例讲解:以一个等腰三角形为例,利用正弦定理求解三角形的角度和边长。
1.3 练习:给出几个应用正弦定理的例题,让学生独立解答。
章节二:余弦定理的应用2.1 导入:回顾余弦定理的定义和公式,引导学生理解余弦定理在几何中的应用。
2.2 实例讲解:以一个直角三角形为例,利用余弦定理求解三角形的角度和边长。
2.3 练习:给出几个应用余弦定理的例题,让学生独立解答。
章节三:正弦定理和余弦定理的综合应用3.1 导入:介绍正弦定理和余弦定理的综合应用,引导学生理解两者之间的关系。
3.2 实例讲解:以一个复杂的三角形为例,利用正弦定理和余弦定理相互验证,求解三角形的角度和边长。
3.3 练习:给出几个综合应用正弦定理和余弦定理的例题,让学生独立解答。
章节四:正弦定理和余弦定理在实际问题中的应用4.1 导入:引导学生思考正弦定理和余弦定理在实际问题中的应用,如测量学和工程学。
4.2 实例讲解:以一个实际问题为例,如测量一个未知角度的三角形,利用正弦定理和余弦定理求解。
4.3 练习:给出几个实际问题应用正弦定理和余弦定理的例题,让学生独立解答。
章节五:总结与拓展5.1 总结:回顾本节课学习的正弦定理和余弦定理的应用,让学生总结关键点和注意事项。
5.2 拓展:引导学生思考正弦定理和余弦定理在其他领域的应用,如物理学和天文学。
5.3 练习:给出一个拓展性问题,让学生独立解答,激发学生的思考和创造力。
正余弦定理的应用举例教案章节六:正弦定理在三角形判定中的应用6.1 导入:引导学生思考正弦定理在三角形判定中的应用,如判断三角形的类型。
6.2 实例讲解:以一个给定角度的三角形为例,利用正弦定理判断三角形的类型。
6.3 练习:给出几个利用正弦定理判断三角形类型的例题,让学生独立解答。
章节七:余弦定理在三角形判定中的应用7.1 导入:回顾余弦定理的定义和公式,引导学生理解余弦定理在三角形判定中的应用。
正余弦定理的应用举例教案
正余弦定理的应用举例教案一、教学目标1. 理解正余弦定理的概念及公式。
2. 学会运用正余弦定理解决实际问题。
3. 培养学生的数学思维能力和解决问题的能力。
二、教学内容1. 正弦定理:a/sinA = b/sinB = c/sinC2. 余弦定理:a^2 = b^2 + c^2 2bccosA三、教学重点与难点1. 教学重点:正余弦定理的公式及应用。
2. 教学难点:如何运用正余弦定理解决复杂问题。
四、教学方法1. 采用讲解、示例、练习、讨论相结合的方法。
2. 通过图形演示,使学生更直观地理解正余弦定理。
3. 引导学生运用正余弦定理解决实际问题,提高学生的应用能力。
五、教学过程1. 导入:通过复习三角形的基本概念,引导学生进入正余弦定理的学习。
2. 讲解:详细讲解正弦定理和余弦定理的公式及含义。
3. 示例:给出三角形ABC的边长和角度,运用正余弦定理求解未知量。
4. 练习:让学生独立完成一些简单的正余弦定理应用题。
5. 讨论:分组讨论一些复杂的问题,引导学生相互合作,共同解决问题。
6. 总结:对本节课的内容进行归纳总结,强调正余弦定理在实际问题中的应用。
7. 作业:布置一些有关正余弦定理的应用题,让学生巩固所学知识。
六、教学反思在教学过程中,关注学生的学习反馈,及时调整教学方法,提高教学效果。
针对学生的薄弱环节,加强个别辅导,帮助学生克服困难,提高解决问题的能力。
七、课后拓展1. 研究正余弦定理在实际问题中的广泛应用。
2. 了解正余弦定理在其他领域的应用,如物理学、工程学等。
3. 探索正余弦定理的证明方法,加深对定理的理解。
八、教学评价1. 课堂表现:观察学生在课堂上的参与程度、提问回答等情况,了解学生的学习状态。
2. 作业完成情况:检查学生作业的完成质量,评估学生对正余弦定理的掌握程度。
3. 课后拓展:了解学生在课后对正余弦定理的学习和研究情况,鼓励学生进行深入学习。
九、教学资源1. 教材:正余弦定理的相关内容。
(新)高中数学高考一轮复习正弦定理和余弦定理复习课教学设计
(新)高中数学高考一轮复习正弦定理和余弦定理复习课教学设计(新)高中数学高考一轮复习:正弦定理和余弦定理复习课教学设计《正弦定理和余弦定理》复习课教学设计设计意图:学生通过必修5的学习,对正弦定理、余弦定理的内容已经了解,但对于如何灵活运用定理解决实际问题,怎样合理选择定理进行边角关系转化从而解决三角形综合问题,学生还需通过复习提点有待进一步理解和掌握。
作为复习课一方面要将本章知识作一个梳理,另一方面要通过整理归纳帮助学生学会分析问题,合理选用并熟练运用正弦定理、余弦定理等知识和方法解决三角形综合问题和实际应用问题。
数学思想方法的教学是中学数学教学中的重要组成部分,有利于学生加深数学知识的理解和掌握。
虽然是复习课,但我们不能一味的讲题,在教学中应体现以下教学思想:⑴重视教学各环节的合理安排:设疑探究拓展实践循环此流程在生活实践中提出问题,再引导学生带着问题对新知进行探究,然后引导学生回顾旧知识与方法,引出课题。
激发学生继续学习新知的欲望,使学生的知识结构呈一个螺旋上升的状态,符合学生的认知规律。
⑵重视多种教学方法有效整合,以讲练结合法、分析引导法、变式训练法等多种方法贯穿整个教学过程。
⑶重视提出问题、解决问题策略的指导。
⑸注意避免过于繁琐的形式化训练。
从数学教学的传统上看解三角形内容有不少高度技巧化、形式化的问题,我们在教学过程中应该注意尽量避免这一类问题的出现。
二、实施教学过程评述:利用正弦定理,将命题中边的关系转化为角间关系,从而全部利用三角公式变换求解.思考讨论:该题若用余弦定理如何解决【例2】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,(1)若△ABC的面积为,c=2,A=600,求边a,b的值;(2)若a=ccoB,且b=cinA,试判断△ABC的形状。
(五)变式训练、归纳整理【例3】已知a、b、c分别是△ABC的三个内角A、B、C所对的边,若bcoC=(2a-c)coB(1)求角B(2)设,求a+c的值。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高三数学一轮复习 27.正余弦定理应用举例学案
实际问题中的常用角
(1)仰角和俯角
在视线和水平线所成的角中,视线在水平线的角叫仰角,在水平线的角叫俯角(如图①).
(2)方位角:指从正北方向顺时针转到目标方向线的水平角,如B点的方位角为α(如图
②). (3)坡度:坡面与水平面所成的二面角的度数.
题型一:测量距离问题
例1.如图所示,为了测量河对岸A,B两点间的距离,在这一岸定一基线CD,现已测出CD=a 和∠ACD=60°,∠BCD=30°,∠BDC=105°,∠ADC=60°,试求AB的长.
拓展1.为了测量两山顶M,N之间的距离,飞机沿水平方向在A,B两点进行测量.A,B,M,N在同一个铅垂平面内(如图所示).飞机能够测量的数据有俯角和A,B间的距离.请设计一个方
案,包括:①指出需要测量的数据(用字母表示,并在图中标出);②用文字和公式写出计算M,N间的距离的步骤.
题型二:测量高度问题
例2. 某人在塔的正东沿着南偏西60°的方向前进40米后,望见塔在东北方向,若沿途测得塔顶的最大仰角为30°,求塔高.
拓展2. 要测底部不能到达的电视塔AB的高度,在C点测得塔顶A的仰角是45°,在D点测得塔顶A的仰角是30°,并测得水平面上的∠BCD=120°,CD=40 m,求电视塔的高度.
题型三:测量角度问题
例3. 如图所示,A,B是海面上位于东西方向相距5(3+3) 海里的两个观测点.现位于A点北偏东45°,B点北偏西60°的D点有一艘轮船发出求救信号,位于B点南偏西60°且与B 点相距20 3 海里的C点的救援船立即前往营救,其航行速度为30 海里/小时,该救援船到达D 点需要多长时间?
拓展3. 如图所示,中国渔民在中国南海黄岩岛附近捕鱼作业,中国海监船在A地侦察发现,在南偏东60°方向的B地,有一艘某国军舰正以每小时13海里的速度向正西方向的C地行驶,企图抓捕正在C地捕鱼的中国渔民.此时,C地位于中国海监船的南偏东45°方向的10海里处,中国海监船以每小时30海里的速度赶往C地救援我国渔民,能不能及时赶到?(2≈1.41,3≈1.73,6≈2.45)
我的学习总结:
(1)我对知识的总结 . (2)我对数学思想及方法的总结。