手把手教你CATIA绘制一架简单模型飞机
枭龙战机catia建模教程
沈阳航空航天大学CATIA课程设计说明书枭龙战机建模院系专业班号学号姓名指导教师沈阳航空航天大学沈阳航空航天大学课程设计任务书课程名称:CATIA课程设计院(系):专业:课程设计题目:枭龙战机建模课程设计时间:2012年10月16日至2012年11月9日课程设计的内容及要求:(一)基本要求1、查找枭龙的相关资料;2、应用CATIA建立一个该飞机的三维模型;3、按照学院课程设计相关规定编写设计说明书。
(二)课设内容1、查阅该飞机的相关资料;2、查阅参考资料,熟悉CATIA软件相关应用模块;3、依照资料建立三维模型;4、编写设计说明书;5、参加答辩。
(三)评语(四)成绩指导教师:负责教师:学生签名:课程设计介于实验课和毕业设计之间,起着承上启下的作用,其目的在于培养学生综合运用所学知识,发现,提出,分析和解决实际问题,锻炼实践能力的重要环节,是对学生实际工作能力的具体练和考察过程。
本次课程设计历时三周,要求运用CATIA绘制枭龙飞机模型,并进行合理的装配,完成零件图与装配图。
在绘制飞机时,我主要运用样条线、3D曲线、拉伸、填充、多截面曲面、扫掠、相交投影等命令。
在装配零件时,我主要通过平移,相合约束、接触约束、偏移约束等约束条件,将其组装成飞机模型,最终完成本次课设。
关键词:CATIA 曲面设计装配第1章引言 (1)第2章枭龙战机简介 (2)第3章曲面绘制及装配 (3)3.1机身曲面 (3)3.2其他零件 (8)3.3装配图 (12)3.4飞机三视图 (15)第4章总结 (16)参考文献 (17)第1章引言CATIA是法国Dassault System公司旗下的CAD/CAE/CAM一体化软件,Dassault System 成立于1981年,CATIA是英文Computer Aided Tri-Dimensional Interface Application 的缩写。
在70年代Dassault Aviation 成为了第一个用户,Dassault Aviation 是世界著名的航空航天企业,其产品以幻影2000和阵风战斗机最为著名。
手把手教你CATIA绘制模型飞机
手把手教你CATIA绘制模型飞机说起CATIA的名字,对于很多模友来讲可能有些陌生。
但如果提起法国达索公司,所有爱好飞机的人一定会觉得如雷贯耳。
达索公司不仅因为其“幻影”系列战斗机和“隼”系列公务机在航空业界叱咤风云,其开发的CATIA工业设计软件更是成为目前风靡世界飞机设计软件领域的绝对老大。
从波音新一代737(A01)到洛克希德马丁的F-35,以及中国国产的歼10、枭龙,都是在其平台上完成的图纸绘制工作。
与传统CAD软件相比,其具有参数化设计功能,设计人员的每一步操作都会被记录下来。
当对设计产品的某一个尺寸进行改动时,可以直接通过修改设计过程中的参数而得到。
不需要再将所有步骤推倒重来。
与其他三维设计软件相比,CATIA绝对领先的曲面设计功能,在一个熟练的设计人员手里,能够绘制出任何“你能想象得到”的曲面外形。
不同于3DMAX等美术软件的曲面功能,CATIA能够绘制出完全解析的外形曲面——也就是说,CATIA生成的曲面可以经过无数倍的放大,而仍然保持表面的绝对光滑。
CATIA已经成为世界飞机设计领域的通用技术标准,此外在汽车制造、造船及其他机械设计领域也得到了更加广泛的应用。
对于航模设计而言,虽然没有真实飞机设计中许多复杂繁琐的要求,可能3DMAX就能基本满足一般用户的需要。
但是,CATIA能够大大节省绘图的时间,特别是在模型细节修改调整中显著降低劳动量。
因此,学习一下CATIA对于每一个喜欢航模设计的人来说,绝对是大有意义的。
相对于传统学习CATIA的书来说,我们这里更强调实用性,忽略掉一些在航模设计中很难遇到的东西,也不再一条一条学习软件中的每个命令。
在绘制模型的每一个步骤中,我们用到哪儿学到哪儿。
由简入繁,我们先从设计一个兼具一点向真机性质的上单翼练习机开始做起。
螽斯A的设计螽斯,又名“蝈蝈”,是一种善于鸣叫的昆虫。
我们这架飞机起名为“螽斯”,主要是因为其略显肥胖的机身和“蝈蝈”十分相似。
catia例子
专业课程设计(1)说明书LCA飞机外形设计院系航空宇航工程学院专业飞行器设计与工程班号7403302学号200704033073姓名喻艳平指导教师戴良景沈阳航空航天大学2010年11月沈阳航空工业学院专业课程设计(1)任务书院系航宇学院专业飞行器设计与工程班级7403302 姓名喻艳平课程设计题目:LCA飞机外形设计课程设计时间:2010 年11 月 1 日起至2010 年11 月19日课程设计的内容及要求:(一)基本要求1、查阅英文资料的能力,并能结合所学知识解决实际问题;2、掌握该型飞机各个部件的布置特点;3、熟练应用CATIA软件,模型符合要求;4、严肃认真的工作态度。
(二)课设内容1、了解所设计飞机的技术特点(用途、航程、乘员等);2、对飞机的布局特点进行分析;3、对该飞机外形进行三维建模;4、按照学院课程设计相关规定编写设计说明书;(三)主要参考书1. 牛春匀.实用飞机结构设计[M].北京:国防工业出版社,19832. 凯德.CATIA V5从设计到精通[M].北京:中国青年出版社,20073. 陶梅贞.现代飞机结构设计与分析[M].西安:西北工业大学出版社,19984. Daniel P.Raymer. Aircraft Design: A conceptual Approach,American Institute of Aeronautics And Astronautics, 4rd edition, 2006.(四)评语(五)成绩指导教师负责教师学生签名摘要本次的课程设计任务是进行LCA飞机的外形设计。
首先,在网上查找到LCA的相关尺寸资料和三视图。
接着,利用CATIA “形状”菜单下的“Sketch Tracer”命令,相应调节视角,将三个方向的视图分别导入CATIA中。
然后,根据导入的三视图大致绘制重要截面的草图和一些重要的引导线,通过绘制的草图和相关的引导线,利用“创成式外形设计”中的“多截面曲面”命令或“FreeStyle”中的“网状曲面”命令,分别扫掠出前机身、座舱、后机身、中机身、进气道、垂尾、机翼和进气道等主要部件,紧接着利用“创成式外形设计”中的“接合”“分割”“填充”以及“FreeStyle”中的“桥接曲面”“对称”等命令,对扫掠出的各个部件进一步处理,逐渐完善。
飞机catia造型与结构设计
飞机catia造型与结构设计一、序二、发动机与车轮罩1、零件的作用和结构分析2、飞机零件的三维设计3、飞机零件的二维工程制图设计三.侧风窗1、零件的作用和结构分析2、飞机零件的三维设计3、飞机零件的二维工程制图设计四.后风窗1、零件的作用和结构分析2、飞机零件的三维设计3、飞机零件的二维工程制图设计五.小节六.参考文献序言“飞机造型与结构设计”课程设计是在完成“飞机造型与结构设计”课程学习和实验以及在参观实习之后的下一教学环节。
它一方面要求学生通过设计获得综合运用过去所学的全部课程进行飞机结构设计的基本能力。
另外,也是为以后作好毕业设计进行一次综合训练和准备。
学生通过“飞机造型与结构设计”课程设计,应在下述各方面得到锻炼:(1)能熟练运用飞机造型与结构设计课程中的基本理论以及在生产实习中学到的实践知识,正确地进行飞机零部件的设计。
(2)能熟练掌握运用三维工程设计软件进行飞机零部件三维数字化设计能力。
(3)学会运用手册及图表资料。
掌握与本设计有关的各种资料的名称、出处,能够做到熟练运用。
二、发动机与车轮罩1、读要求,在XZ平面内画草图。
注意翻转X轴。
保持草图坐标方向跟草图窗口坐标方向相同。
2、画出g线并作出边界平面。
再做出车轮罩的边界线及扫掠线扫掠出的图形如图3、做由分别在1200x和600x处的两个平面内两条直线确定的平面。
注意保持坐标方向的一致性。
4、平面分割如图画出修建车轮罩的面及修剪图5、裁剪整理修饰。
期间主要运用了分割命令。
发动机罩前部通过平移曲线形成的孔。
6、进行可变圆角倒圆角。
7、进行镜像隐藏不必要曲面曲线。
整录过程树。
3、侧风窗1、零件的作用和结构分析2、飞机零件的三维设计A、理解图纸的各个元素及其含义;找出图中的关键点、线、面,并分析图形的主要特征;分析各元素之间的相互关系;B、建立线框模型1)在ZX平面中建立工作基准面,绘制关键点A、B、C、D、E,并连接成直线AB、BC、CD、DE线段,使用R=250的圆弧将BC和CD线段倒圆角,形成一条折线b;2)在x=1300的平面上,过点(-643,500)绘制出一条与Z轴负向成20度直线;3) 在z=500的平面上,过点(1300,-643)绘制出一条与Z轴负向成20度直线,并过这条直线和步骤2中的直线构成以平面;4)将折线B投影到该平面上,形成折线b;5)创建垂直于折线b的平面,在该平面上绘制草图1,形成窗框的真实截面形状,b折线所在的平面为所有截面线段的最外边界也即窗框截面应该向内部布置:6)以草图1为截面沿折线b扫略,参考曲面为投影平面,形成扫略曲面;C、建立基本曲面模型1)将折线b向内偏置15mm,形成折线5;2)在ZX平面中建立草图2,绘制所给图中的虚线部分,并找出两个中心点;3)将第三步中的所有元素投影到投影平面中;4)将折线5和投影线相互修剪,形成一个整体,并填充成曲面;D、建立玻璃的实体模型1)进入实体设计空间,将填充曲面加厚成为实体,偏置距离1为6,偏置距离2为-11;2)用两个中心点的投影点,在实体上打两个D=10的孔;3)将窗框的棱边倒圆角R=3mm;E、保存文件,并命名;F、生成工程制图,打坐标网格线;并进行尺寸标注。
手把手教你CATIA绘制模型飞机完结版
CA TIA的优点除了我们之前谈到的参数化设计外,强大的曲面设计功能使其能够适应包括航空航天在内的各种工业产品建模要求。
通过下面机身的外形设计过程,可以从中感受到CA TIA在曲面建模方面的独特魅力。
下面,开始机身部分的建模工作。
首先需要进行的工作是把CA D下的俯视图和侧视图导入,作为机身建模的参考。
通过菜单“文件>打开”找到之前在C A D下面完成的三面图。
按下鼠标拖动矩形选框,选择飞机的侧视图。
选中后,线条会以高亮度显示。
单击右键选择复制。
(105)利用“窗口”菜单回到建模中的CATIA文件。
参照之前绘制机翼时的步骤,以Part为父对象创建几何图形集,将其命名为机身。
选择“ZX平面”并点击草图工具进入草图绘制模式。
选择菜单“编辑>粘贴”或直接按Ct rl+V将飞机的侧视图粘贴过来。
这时如果找不到粘贴结果,可以工具栏上的“适合全部”(106)图标。
按下鼠标左键,利用矩形选择框选择粘贴过来的侧视图后,在图上任意一点按下左键可以对其位置进行拖动。
参考现有机翼的位置将其拖动到位。
这个步骤只用来作为下面建模时候的参考,因此不用追求位置的绝对准确。
(107)按照同样的方法,以“XY平面”为基准绘制草图,将飞机的俯视图也复制过来。
再次以“XY平面”为基准绘制草图,参照刚才复制过来的俯视图完成准确的机身俯视草图绘制。
尺寸的设置可以参考108。
在绘制机身俯视草图的过程中,需要使用样条线工具。
图108中的粗线均为样条线,细线为直线。
设置样条线与直线之间平滑过渡的方法可以参考前面翼尖的绘制过程。
接下来参考从A UTOCA D复制过来的侧视图,以ZX平面为基准绘制草图,将其作为飞机的侧视图。
在侧视图的绘制过程中,注意要将上一步俯视图中飞机最前端一点和最后端一点分别通过投影工具投影到当前草图中。
catia教程CATIA是一种非常流行的3DCAD绘图工具,被广泛用于航空
catia教程CATIA是一种非常流行的3DCAD绘图工具,被广
泛用于航空
CATIA是一种非常流行的3D CAD绘图工具,被广泛用于航空、汽车、电子等领域。
以下是入门CATIA的指南:
1. 安装和配置软件
首先,您需要从Dassault Systemes官网上下载CATIA软件,并按照说明进行安装和配置。
您还需要为CATIA设置环境变量、指定工作文档路径和配置工作空间等。
2. 学习CATIA软件界面
CATIA的用户界面有许多不同的菜单、工具栏和面板。
熟悉界面,可大大提高您的工作效率。
学习如何打开和保存文件、如何使用搜索框和选项菜单等。
3. 熟悉基本命令和操作
熟悉CATIA的基本命令和操作,可以帮助您更好地构建和管理3D 模型。
例如:了解如何使用线、矩形和圆形绘制几何基本形状、如何使用拖放和旋转工具调整绘制对象的位置和方向等。
4. 学习高级D设计技术和功能
在熟悉基本命令和操作之后,您可以进一步学习CATIA的高级功能。
例如:学习如何使用参数化功能、如何使用装配工具构建复杂的
装配体、如何使用分析工具进行模拟和测试等。
5. 参加培训和工作坊
CATIA为新用户提供了许多培训和工作坊,以帮助他们更快地熟悉软件并掌握更高级的功能。
您可以参加这些培训和工作坊,与其他CATIA用户交流和分享经验。
总之,通过以上的指南,您可以入门CATIA 3D CAD绘图工具,并且通过不断地学习和实践,您可以掌握更高级的功能和技巧。
CATIA枭龙战机建模解析
枭龙战机建模目录第1章引言 (1)第2章枭龙战机简介 (2)第3章曲面绘制及装配 (3)3.1机身曲面 (3)3.2其他零件 (8)3.3装配图 (12)3.4飞机三视图 (15)第4章总结 (16)参考文献 (17)第1章引言CATIA是法国Dassault System公司旗下的CAD/CAE/CAM一体化软件,Dassault System成立于1981年,CATIA是英文Computer Aided Tri-Dimensional Interface Application的缩写。
在70年代Dassault Aviation成为了第一个用户,Dassault Aviation是世界著名的航空航天企业,其产品以幻影2000和阵风战斗机最为著名。
从1982年到1988年,CATIA相继发布了1版本、2版本、3版本,并于1993年发布了功能强大的4版本,现在的CATIA软件分为V4版本和V5版本两个系列。
V4版本应用于UNIX平台,V5版本应用于UNIX和Windows两种平台。
CATIA如今其在CAD/CAE/CAM以及PDM领域内的领导地位,已得到世界范围内的承认。
其销售利润从最开始的一百万美圆增长到现在的近二十亿美元。
雇员人数由20人发展到2,000多人。
居世界CAD/CAE/CAM领域的领导地位,广泛应用于航空航天、汽车制造、造船、机械制造、电子\电器、消费品行业,它的集成解决方案覆盖所有的产品设计与制造领域,其特有的DMU电子样机模块功能及混合建模技术更是推动着企业竞争力和生产力的提高。
CA TIA提供方便的解决方案,迎合所有工业领域的大、中、小型企业需要。
包括:从大型的波音747飞机、火箭发动机到化妆品的包装盒,几乎涵盖了所有的制造业产品。
在世界上有超过13,000的用户选择了CA TIA。
CATIA源于航空航天业,但其强大的功能已得到各行业的认可,在欧洲汽车业,已成为事实上的标准。
catia飞机教程
外文文献的中文翻译,祝君成功。
第一节---创建三个拉伸曲面,分别相对 X、Y、Z平面进行偏移---给平面附上参考图片---为每一个截面创建草图之后,将它们重新放置在相对应的位置第二节---创建 3D曲线,之后创建自由曲面---首先创建机身,之后创建机翼,最后创建尾翼---将所有的曲面按照一个参考平面作对称,创建一个对称模型请牢记:这些章节只是用来陈述通过 CATIA进行设计的方法,而不单是 CATIA那些命令本CATIA中鼠标的一些操作不多说了首先要获得 p51正视图、右视图、俯视图(读者自行获取),图像是正方形的1000*1000像素的,可以通过以下网址获得 HTTP://.hk/~mmdsham/images/p51/-p51-front.jpg-p51-right.jpg-p51-top.jpg打开 CATIA,一个空的 product被创建,可以把它关掉开始->形状->创成式外形设计将启用混合图形集点掉,点击 OK于是我们就在创成式外形设计环境下创建了一个空的 Part插入几何图形集点击“插入”->“几何图形集”用“reference”(参考平面)作为图形集的名字点击 OK创建一个草图点击“草图”,选择“yz”平面作为参考作一个垂直的直线,长度 120mm,位置为距离坐标原点100mm (在点击第二个点之前,看一下“草图工具”中的 L值)点击退出草图创建一个拉伸曲面选择刚刚绘制的草图作为轮廓,“yz”平面作为方向点击 reverse direction“翻转方向”用鼠标拖动“limit1”(绿色箭头),拖到显示为285mm 点击 OK点击“应用材料”(对刚刚的“拉伸曲面”赋予材料)点击刚刚做的拉伸曲面点击 OK结束为了能看到赋予材料的效果,选择“渲染方式”为“带材料作色”双击树状控件“B&W Tiling ”Tiling ” 用图像替换材料纹理(将树状控件里的“拉伸曲面” 上的 “+”号点开,双击“B&W )点击“渲染”点击“结构”在“类型”下拉条中选择“图像”点击右侧的“…..”图标选择“p51-right.gpj 右视图”打开图像导进来后,选择“立方体映射”同时把“U V ”方向上“重复”都点掉(单选框中黄色) 点击完成创建另一个草图以“zx”平面为参考做草图作一条垂直线(线的一端捕捉到 X轴)点击“标注”图标,选择线修改长度为25.4mm 点击退出调整参考图片的大小和位置点击“快速查看”中“右视”视角再次双击树状图中的“B&W Tiling”选择“渲染”调整“缩放”和“定位”中的“UV”值,直到“1-2”(图中红圈中)的距离和“草图 2”的高度值相同保持大小不变,调整UV位置,使飞机图像的尖端和坐标原点重合点击 OK选定“草图 2”右键“删除”点击“OK”完成调整曲面的大小使之与图像的大小一致双击树状控件中的“拉伸曲面”拖拽“限制 1”使曲面的接触到图像的中飞机的尾部最后(如果无法对齐,点击“微调按钮”,每次增量为1mm,此时可以“右击”“限制 1”的“尺寸”文本框,在弹出的菜单项中选择“更改步骤”->“新的值”,输入值的大小 0.1mm)点击 OK结束现在,大小,位置和右视图的图像大小都是正确的单击“草图”图标,选择“yz”平面作为参考画一条水平线如图所示(长度为200mm,位置为距离坐标原点100mm处)退出“草图”创建一个“拉伸曲面”选择“草图 3”作为外形,“yz”平面为参考方向点击“翻转方向”保持尺寸不变(应该和拉伸 1一样)点击 OK结束对曲面应用材料点击“应用材料”图标点击“拉伸曲面 2”点击“确定”用图片替换原来的纹理和上面操作一样在树状控件中双击“B&W Tiling”选择“渲染”选择“结构”在“类型”右侧的下拉菜单中选择“图像”点击图像名右侧的“……”选择文件“p51-top.jpg”点击“打开”点掉 U,V方向的重复点击“快速查看”中的“俯视图”调整 UV值的大小直到图像中飞机的尾部尖端以及头部尖端与图像的边缘接触保持 UV大小不变,调整 UV的位置,使飞机对称轴与坐标系原点对其点击“确定”结束创建一个“草图”点击“草图”图标同时选择“zx”平面创建一条“垂直线”创建两条水平轴线作为参考,然后将“垂直线”的两个端点(最大最小位置)分别与两条水平轴线接触退出“草图”创建一个拉伸曲面点击“拉伸曲面”图标选择“草图 4”作为轮廓,“zx”平面作为方向点击“翻转方向”拖拽“限制 2”使两个方向上的长度相等点击“确定”对曲面应用“纹理材料”(就是 B&W Tiling)点击“应用材料”图标选择“纹理材料”点击“拉伸曲面 3”点击“确定”用图片替代“纹理”(同上)在树状图上双击“B&W Tiling”选择“渲染”选择“结构”选择右侧的下拉列表框,选择“图像”点击“…….”图标选择图片选择“p51-front.jpg”点击“打开”(现在,曲面上的图像显示的不正确)选择“立方体映射”点掉 U,V方向的重复点击“主视图”图标调整 UV方向上的大小,直到图像上的上下极限分别接触到拉伸曲面的上下边界保持 UV方向上大小不变,把图像中心线调整到与坐标原点重合点击“确定”结束(现在,所有三个视图都布置好了)隐藏“草图 1”,“草图 3”,“草图 4”设置“几何图形属性”为不可选定右击树形控件中的“reference”几何图形集(就是一开始插入的“几何图形集”)选择“属性”点掉“可拾取”单选框(现在在“reference”图形集中的元素都是不可选定的)插入几何图形集选择“插入”->“几何图形集”点击“确定”创建参考平面点击“平面”图标选择“yz”平面点击“右视图”图标,把鼠标移到“偏移”上,拖拽“箭头”到图像的“截面 B处”点击“确定”重复上面的步骤,分别做出图像上的“截面 D,G,H,I”(和上面介绍的一样,如果“拖拽的增量”为 1mm,可以“右击文本框”,选择“更改步骤”,选择“新值”输入数值为 0.1mm,单击进行微调)创建参考平面(沿着飞机展向)点击“平面”图标选择“zx”平面点击“俯视图”图标,同上面一样,把鼠标放到偏移上进行拖动,拖到截面所在位置点击“确定”,共三个平面,操作相同由于飞机机翼截面在右侧机翼(沿着飞机飞行方向),所以作如下操作双击“平面 6”单击“翻转方向 reverse direction”图标点击 OK确认对“平面 7”和“平面 8”作同样的操作(我们将要做右半边的模型,所以把三个平面方向翻转)创建一个 3D样条线(空间曲线)选择“开始/形状/Freestyle”(进入自由曲面设计截面)右击“罗盘”上的“红点”,弹出菜单栏,选择“将优先平面方向锁定为与屏幕平行”点击“右视图”图标点击“3D曲线”基于图片,画一条有“4个控制点”的“3D”点击“确定”点击“俯视图”点击“3D”曲线图标基于图片,画一条有四个控制点的曲线点击“确定”结束在“截面 D”上做“草图”(截面 D是图像上的“截面 D”)选择“开始/形状/创成式外形设计”,进入创成式外形设计界面点击“草图”图标,选择“zx”平面作为参考在截面 D绘制一条垂直轴线,通过它的“十字中心”绘制两条“水平线”,分别通过截面 D的最高和最低点绘制一条“样条线(三个控制点),用连接线分别将“样条线”的两个端点与之前那两条“水平线”连接重新定位“截面 D”的“草图”右击“草图 5”选择“草图 5对象”点击“更改草图基准..”(就是更改草图支持面)选择“平面 2”(作为“截面 D”的基准面)“类型”选择“已定位”点击“确定”来确认双击“草图 5”对其进行编辑在“草图 5”中将“3D曲线 1”“3D曲线 2”“3D曲线 3”选定点击“使三维元素相交”,于是就获得了“三个交点”选定草图中所有的“曲线”和“轴线”点击“平移”图标点掉“复制方式”选择“截面的画“星星”的点”,将其平移到上面所做的“交点”处(该步骤主要是为了定位截面)同时,给“外形”(平移的)添加“三个约束”使这个外形接触到“上面所做的三个交点”点击“退出草图”结束在截面 G上创建一个草图点击“草图”图标,以“xz”平面作为参照在“截面 G上”创建一条“垂直轴线”通过中心在“截面 G”上创建另外一条水平轴线创建一条“样条线”(双击“样条线”,改变在端点处的“切线方向”)调整“样条线”的“控制点”,使之和图像重合点击退出结束重置“截面 G草图”的位置右击“草图 6”选择“更改草图基准/更改草图支持面”选择“平面 3”(作为截面 G的支持面)选择“类型”为“已定位”点击“OK”确认双击“草图 6”,对其进行编辑将“3D曲线 1”“3D曲线 2”“3D曲线 3”都选定点击“使三维元素相交”(同上)就获得“3D曲线”与“草图所在平面的交点”选择“所有的曲线和轴线”点击“平移”点掉“复制方式”点击截面上带“星星的点”(如图)然后点击带“三角形”的点(如图)分别对“截面”的“上下端点”和“刚刚作的交点”加“约束”(使之“相合”)点击“草图”图标,选择“zx”平面作为参考在截面 H上绘制一条“垂直轴线”,通过“中心”在截面 H上绘制另外两条“水平轴线”创建一条“样条线”(三个控制点)创建两条连接线(同上,双击样条线,改变“样条线端点的切线方向”)调整控制点位置,使曲线与图像重合点击“退出”结束右击“草图 7”选择“草图 7对象/更改草图基准/”选择“平面 4”(截面 H的支持面)选择“类型”为“已定位”点击“OK”确认双击“草图 7”,对其进行编辑将“3D曲线 1”“3D曲线 2”“3D曲线 3”都选定点击“使三维元素相交”图标,于是就获得了平面与 3D曲线的交点(同上)选择所有的“曲线和轴线”点击“平移”图标点掉“复制方式”点击带“星星”的点(如图所示)之后点击带“三角形”的点同上,对端点和“相交点”添加“约束”,使之重合点击“草图”图标,选择“zx”平面作为参考在截面 I上绘制一条“垂直轴线”,通过“中心”在截面 I上绘制另外两条“水平轴线”创建一条“样条线”(三个控制点)创建两条连接线(同上,双击样条线,改变“样条线端点的切线方向”)调整控制点位置,使曲线与图像重合点击“退出”结束右击“草图 8”选择“草图 8对象/更改草图基准/”选择“平面 5”(截面 H的支持面)选择“类型”为“已定位”点击“OK”确认双击“草图 8”,对其进行编辑将“3D曲线 1”“3D曲线 2”“3D曲线 3”都选定点击“使三维元素相交”图标,于是就获得了平面与 3D曲线的交点(同上)选择所有的“曲线和轴线”点击“平移”图标点掉“复制方式”点击带“星星”的点(如图所示)之后点击带“三角形”的点同上,对端点和“相交点”添加“约束”,使之重合点击“草图”图标,选择“zx”平面作为参考在截面 B上绘制一条“垂直轴线”,通过“中心”在截面 B上绘制另外两条“水平轴线”创建一条“样条线”(三个控制点)创建两条连接线(同上,双击样条线,改变“样条线端点的切线方向”)调整控制点位置,使曲线与图像重合点击“退出”结束右击“草图 9”选择“草图 9对象/更改草图基准/”选择“平面 1”(截面 H的支持面)选择“类型”为“已定位”点击“OK”确认双击“草图 9”,对其进行编辑将“3D曲线 1”“3D曲线 2”“3D曲线 3”都选定点击“使三维元素相交”图标,于是就获得了平面与 3D曲线的交点(同上)选择所有的“曲线和轴线”点击“平移”图标点掉“复制方式”点击带“星星”的点(如图所示)之后点击带“三角形”的点同上,对端点和“相交点”添加“约束”,使之重合(所有的截面都做完了)创建两个“拉伸曲面”选择“开始/形状/Freestyle”(进入“Freestyle”界面)点击“拉伸曲面”图标选择“3D曲线 1”选择“曲线的法线方向”拖拽在视图上“双向的箭头”,拖出 20mm左右点击“OK”完成同样,以“3D曲线 2”为准作拉伸曲面隐藏“3D曲线 1”和“3D曲线 2”单击“Net Surface”图标按住键盘上的“Ctrl”键,把“草图 5”“草图 6”“草图 7”“草图8”都选定,作为“引导线”单击命令窗口中的“轮廓”(图中用“五角星”标记)按住键盘上的“Ctrl”键,把刚做的“拉伸曲面”的边界(用四角星标记)“”“3D曲线 1”“3D曲线 2”“3D曲线 3”以及另外一个“拉伸曲面”的边界(用三角形标记)调整“拉伸曲面”的边界上的“连续性”为“切线”连续单击“OK”结束点击“Disassemble”图标选择刚刚所做的“Net Surface1”选择所有元素点击“确定”结束将刚刚打散的“三个曲面”合并为“一个曲面”点击“Concatenate”图标选择“自动更新公差”将“曲面 3”和“曲面 4”都选定,点击“应用”,点击“确定”结束点击“Concatenate”图标选择“自动更新公差”将“曲面 5”和“曲面 6”都选定,点击“应用”,点击“确定”结束创建第二个“Net Surface”隐藏“草图 5”,“草图 6”,“草图 7”和“草图 8”点击“Net Surface”图标按住键盘上的“Ctrl”键,选择“曲面”的“边界”(用“菱形”标记)和“草图 9”作为“引导线”(注意:曲面的边界必须首先选定,因为它的外形比“草图9”更重要)将“曲面边界”的连续性更改为“曲率”连续点击命令窗口上的文本“轮廓”(用“五角星”标记)按住键盘上的“Ctrl”键,复选曲面边界(用“四角星”标记)、“3D曲线3”和另一个曲面边界(用“三角形”标记)作为“轮廓”将两条曲面边界处的连续性改为“切线”连续先单击“应用”预览一下通过预览,接近“草图 9”的部分不光滑,因此将“曲率连续”改为“点连续”点击“确定”结束(上面的操作将导致在Netsurface和与它连接的曲面间产生尖锐的边缘,一会我们再修复它)(“Net Surface2”应该是一个曲面,因为它是通过两个曲面的边界创建的)删除“Net Surface2” 隐藏“曲面 1”和“曲面 2”(两个“拉伸曲面”)隐藏“3D 曲线 3”和“草图 9”缩短曲面点击“Extend ” 图标点击“Net Surface2”(一个新的曲面就被创建了,点击“确定”接受)拖动“绿色的豆点”缩短曲面的长度到大约13mm点击“确定”接受(或者隐藏之)同样,缩短 “曲面 7”长度到 13mm 左右创建 一个“Freestyle Blend Surface ”桥接曲面点击“Freestyle Blend Surface ”选择两个曲面的边界将两条线的连续性改为“曲率”连续点击“确定”结束创建一条“3D样条线”右击“罗盘”,检查是不是“将优先平面方向锁定为与屏幕平行”点击“右视图”图标点击“3D曲线”图标画一条有“3个控制点”的曲线(如图所示),右击在坐标原点处的“控制点”,选择“编辑”将“x”,“y”,“z”值设置为“0mm”选择“关闭”再次右击“控制点”,然后点击“加强曲率”再次右击“控制点”,然后选择“编辑”将“x”“y”设置为“0mm”,将“z”设置为“1mm”调整其它的控制点,使之与图像重合点击“确定”完成创建“旋转曲面”点击“Revolve”图标选择“3D曲线 4”作为“轮廓”右击“旋转轴”右侧的“文本框”选择“X轴”在“角度 1”中输入“0”在“角度 2”中输入“180”点击“OK”完成隐藏“3D曲线 4”创建一个“Blend Surface”(桥接曲面)单击“FreeStyle Blend Surface”图标(同上)选择两条曲线的“边界”将“连续性”改为“曲率”连续点击“确定”完成检查曲面点击“右视图”,曲面应该和图像重合点击“俯视图”,也应该和图像重合(因为大部分的控制线都是参照这两个视图做的)点击“正视图”图标如果没对齐,调整“图像”位置使曲面透明度变高右击“曲面 7”选择“属性”,调整透明度为“50”点击“确定”确认创建“3D曲线”点击“右视图”图标点击“3D曲线”图标“将集合图形设置为不可选定”(我们不选取在“现有曲面”上的“点”)创建一条有 5个控制点的“”3D曲线(如图所示)点击“确定”结束用“曲线”切割“曲面”(不是在曲面上)点击“Break Surface or Curve”图标“中断类型”选择“中断曲面”选择“罗盘方向”作为方向选择“曲面7”作为“元素”选择“3D曲线5”作为“限制”点击“应用”点击“要移除的部分”点击“确定”结束隐藏“3D曲线 5”点击“右视图”图标(如果现在视角不是“右视图”)点击“3D曲线”图标创建一条有“4个控制点的 3D曲线”(如图所示)(为了能捕捉到现有的点(定位最后一个点),我们需要把模型旋转一点)点击“确定”完成创建一个“拉伸”曲面点击“Extrude Surface”图标选择“3D曲线 6”选择“曲线的法线方向”作为“方向”拖动在预览曲面上的两个“箭头”,向左拖15mm左右点击“确定”完成重置“曲面的图形属性”右击“曲面 7”选择“曲面.7对象”/“重置属性”选择“应用于子类”点击“确定”完成(图形属性被重置)创建一个“桥接曲面”点击“Freestyle Blend surface”图标选择两个曲面的边界点掉“投影终点”(单选框)将连续性设置为“如图所示”拖动点(用星星标记)使之与“图像”重合点击“正视图”图标调整使之“与图像重合”点击“确定”完成隐藏“3D曲线”和曲面 11创建一条“3D”曲线捕捉已存在的端点(图中用“五角星标记”)(当端点被捕捉到时,一个红色的虚线圈出现)点击“正视图”图标将“图形捕捉”取消选定右侧的“点”右击第一个点,选择“编辑”复制“Z值”右击第二个点,选择“编辑”,将刚刚复制的“Z 值”赋给现在的“Z”点击“OK”结束创建另一条“3D曲线”将“模型”旋转到如图所示点击“3D曲线”图标拾取两个“端点”点击“插入一个点”图标点击线的中间一点(之间的点就被创建)点击“右视图”图标拖拽“中间的点”使之与图像重合点击“确定”完成创建一个“Freestyle Blend Curve”点击“Freestyle Blend Curve”图标选择两条“3D曲线”将“连续性”改为“切向”连续拖拽“端点”改变方向,直到 Freestyle Blend Curve和图像重合点击“OK”完成用一个“曲线”切割另一个“曲面”点击“Break Surface or Curve”图标选择“curve by curve”作为分割类型选择“3D曲线 7”作为“元素”选择“3D曲线 1”作为“限制”点击“应用”完成同样,移除“3D曲线 8”上的部分将“3条曲线”合并为“1条”点击“Concatenate”图标(图中用“五角星”标记)将“3条曲线”选定点击应用,点击“OK”完成点击“Freestyle Blend Surface”图标选择曲线(图中用“五角星”标记)选择“曲面”边界Blend Type设置为“自动”点击“弹出的窗口”选择“投影中点”选择“点”连续拖动“绿色的点”到“限制边界”(拖到不能拖位置)点击“OK”确定隐藏“曲线 4”点击“俯视图”图标点击“3D曲线”图标绘制一条“有两个控制点的”曲线点击“正视图”图标拖动“控制点”使曲线与图像重合点击“OK”完成类似的,创建另外两条“3D曲线”(如图所示 3D曲线 10,11)在截面 3上创建“草图”选择“开始/形状/创成式外形设计”点击“草图”图标,选择“xy”平面在截面 3上创建一条有“四个控制点”的“样条线”在截面 3上创建一条有“三个控制点”的“样条线”创建一条“连接线”(双击连接线,点击“箭头”改变“切线方向”)调节“张度”使之与图像重合点击退出完成重置“截面 3”的“草图”的位置右击“草图 10”选择“草图1对象/更改草图基准”选择“平面8”(作为草图支持面)选择“定位类型”为“已定位”选择“反转H”(下面的单选框)点击“OK”确认双击“草图 10”对其进行编辑选择“3D曲线 10”和“3D曲线 9”点击“使三维元素相较”图标就获得两个交点选择所有的曲线点击“平移”图标点掉“复制方式”点击图中“用五角星标记的点”之后点击“用三角形标记的点”调整外形使之能与 3D曲线 9接触点击“退出”完成。
手把手教你CATIA绘制模型飞机(3)
下面,选择工具栏上的“样条线”图标,在扑捉到前缘端点后,间隔一定距离依次扑捉曲线上各点绘制翼型上表面曲线。
由于前缘部分曲率变化较大,因此需要适当将点的数量增加。
越靠近后缘,翼型表面曲线越发接近直线,曲率变化较小需要的控制点数也就越少。
因为我们制作的是一个尺寸较小的航模,在绘制翼型表面曲线的过程中,不需要将曲线的控制点取得太密,这样既节省时间,又可以提高软件运行的速度。
另外需要注意的是,在样条线绘制过程中不能进行“构造/标准元素”的转化。
(025)在连接后缘点的时候,有两个方法:最简单的是直接利用捕捉,将鼠标端点移动至后缘处翼型曲线与绘制的竖直线相交点处,当图标显示捕捉信号,并且翼型曲线和直线都变为橙色时,点击鼠标左键就可以捕捉到合适的坐标点。
然后连续两次按下键盘ESC键完成曲线绘制(026)。
另一种方法是,将鼠标移动至任意一点,双击鼠标完成曲线绘制。
之后,单击选择曲线最后生成的端点,在按住键盘Ctrl键同时选择我们画的那条竖直线。
接下来点击约束定义图标,在弹出的对话框中选择“相合”并单击确定。
这时我们会发现,刚才选择的点自动移动到了直线上。
同时,其旁边出现了一个“○”表示与另一元素具有相合约束。
接下来,再次选择这一点和上一层投影下来的翼型曲线,创建一个相合约束。
两种方法效果完全一样,在完成约束创建后可以发现,端点变成了绿色,表示该元素被完全约束了。
(027)按照上面方法同理可以完成翼型下表面曲线的绘制。
只有一点需要注意的是,CATIA 里面认为,如果一个点在某条线段的延长线上,即使该点没有落在线段内部,仍然认为改点与线段“相交”。
也就是说,绘制下表面后缘点时,没必要再绘制一条向下的参考竖直线。
只需利用之前那条即可。
最后,利用一条直线连接上下曲线在后缘处的端点,单击退出草图图标,完成整个翼型的绘制。
(028)上面步骤完成后,我们可以看到描点得到的新翼型草图。
为了后面使用过程中不至于搞混,我们将原始翼型草图隐藏起来。
CATIA二次开发进行飞机外形设计
航空宇航院科协第4期(总第12期)航家CATIA二次开发进行飞机外形设计简介引言:在进行飞机外形设计时,由于在总体设计时需要对其经常修改,故需要一种快速生成飞机三维外形模型的方法,而基于CATIA的二次开发技术就是一种能快速实现这一要求的好方法。
一、二次开发是指在现有软件上进行定制修改,扩展功能,以期达到自己所需要实现的功能。
二、参数化设计参数分为尺寸参数(可变参数)、几何元素间的各种连续几何信息(不可变参数)。
参数化过程包括参数化图元和参数化修改引擎(一个改变引起相关构件参数产生关联性变化)。
三、进行飞机外形参数化设计需要解决的问题1)飞机外形的参数化描述2)如何根据这些参数通过编程方式自动生成飞机外形三维图四、VC++环境下CATIA进行飞机外形二次开发的步骤1)开发工具:CATIA CAA(组件应用构架)、CATIA Automation(自动化对象编程)2)接口(CATIA类库)的引入:该部分类容比较专业,有兴趣的同学可查阅有关资料,本文仅阐述二次开发的思想和大致过程。
3)飞机外形的参数化描述:飞机外形部件主要有机翼、机身、平尾、垂尾、发动机短舱等。
对每一个部件都要定义其相应的参数。
下面以机翼外形参数为例介绍:机翼外形参数包括总体轮廓参数和剖面参数。
总体轮廓参数又包括机翼面积、展展弦比、展长比、安装角、后掠角等参数(以上词汇的解释可参看《航概》)。
剖面形状由翼型决定,可在翼尖、翼根和内外段连接处取三个翼型。
具体实例程序段可参看有关资料,在此不叙述。
结束语:CATIA提供了丰富的二次开发接口,几乎涵盖CATIA所有模块的基本功能,特别是其很强的曲面生成功能。
因此CATIA中手工能实现的功能二次开发技术几乎都能实现。
这就大大节省了飞机开发时间和周期。
而这一切都是建立在掌握所需编程语言的基础之上,VC++作为强大的面向对象编程语言,为顺利实现CATIA二次开发提供了便利,因此各位同学一定要学好C++,为以后学习和工作打下基础。
CATIA自由曲面J9战斗机设计
歼9战斗机外形设计目录目录1.歼9战斗机介绍 (1)2.制作过程 (6)2.1制作前准备工作 (6)2.2 绘制飞机截面图 (9)2.3绘制飞机机身 (13)2.4 绘制飞机翼面 (15)2.5绘制座舱 (16)3. 最终效果图 (17)一、歼9战斗机介绍国产歼击8型歼击机是大家耳熟能详的中国著名歼击机了。
但是在歼8 提出研制的 1964 年,还提出了另一种方案与之竞争,并经过了多次方案论证,但终因种种原因而未能投入量产,但是现在看来,仍有许多是值得借鉴的,我们可以称其为歼9,并来回顾一下这段历史。
歼击9 型截击机是一种全天候高空高速要地防空截击机,主要以苏“逆火”和美B-1B超音速轰炸机为主要作战对象。
设计技术指标达双 26(升限 26 公里,时速 2.6 马赫),可以说是中国歼击机性能之最了。
研制的提出是在 1964 年,那时因为 1963 年冬季以来,歼7飞机参加了几次高空作战,暴露出它升限留空时间短,高空高速性能差,没有雷达,高空机动性差等缺陷。
另外,在作战火力和起飞着陆性能上也有待加强和改善。
因此,自 1964 年初开始,六零一所就开始考虑改进歼7,以满足高空作战要求。
1964 年 10 月 25 日,六院在沈阳六零一所召开了“米格-21和伊尔-28 改进改型预备会”。
会上,六零一所提出了米格-21 的两种改型方案,一种为双发型,另一种为单发型。
前者计划装用两台涡喷 7 发动机的改进型,飞机气动外形则参照米格-21 飞机,不做大的改变,这一方案发展成了歼8;而后者拟装六零六所新设计的推力为 8,500 公斤的加力式涡轮风扇发动机(910),这一方案则发展成了歼9。
当时,两种方案的飞行性能均与美国的 F-4B 相当,即升限 20 公里,最大马赫数 2。
2,基本航程 1,600 公里,重量约 10 吨。
1965 年 1 月 12-17 日,三机部在北京召开了航空工业企事业单位领导干部会,会议期间又由段子俊副部长主持召开了新机研制工作座谈会,由于担心新发动机研制周期长,所以会议一致同意以米格-21 为原准机搞双发设计方案,从而确定了歼8 的研制方向。
飞机的CATIA外形设计
飞机的CATIA外形设计飞机的外形设计是飞机研发过程中非常重要的一环,它决定了飞机的气动性能、舒适度、飞行稳定性等方面。
在CATIA软件中进行飞机外形设计的过程中,可以通过建模、分析和优化一系列参数来实现最佳的设计效果。
首先,在进行飞机的外形设计时,需要确定飞机的机翼布局、机身长度、机身型号等关键参数。
这些参数决定了飞机的外形轮廓,在CATIA软件中可以采用参数化设计的方式,通过改变这些参数的数值,实现飞机外形的快速变化。
同时,根据飞机的设计需求,可以在CATIA软件中进行等截面线设计,通过绘制剖面线,并进行扫掠、上反等操作,实现飞机外形的细节调整。
其次,在进行飞机外形设计时,需要考虑飞机的气动特性,如升力、阻力等。
通过CATIA软件中的飞行器气动性能分析模块,可以对飞机的气动特性进行模拟和分析。
可以根据飞机的设计需求,通过改变翼型、扭曲翼形等参数,实现飞机的气动特性的优化。
此外,飞机的外形设计还需要考虑飞行稳定性和操纵性。
在CATIA软件中,可以进行飞机的三维模拟和虚拟飞行测试。
通过对飞机进行三维模拟和虚拟飞行测试,可以评估飞机在不同飞行状态下的飞行稳定性和操纵性,并对飞机的外形设计进行优化。
最后,在进行飞机的外形设计时,还需要考虑飞机的舒适度和乘客空间。
在CATIA软件中,可以进行飞机内部空间的布局和设计。
通过虚拟仿真和人体工程学分析,可以评估乘客在不同座位位置上的舒适度,并对飞机的内部空间进行优化设计。
综上所述,飞机的CATIA外形设计是飞机研发过程中不可或缺的一环。
通过CATIA软件中的建模、分析和优化功能,可以实现飞机外形的快速变化和优化设计。
这将有助于提高飞机的气动性能、舒适度、飞行稳定性等方面的综合性能。
手把手教你CATIA绘制模型飞机(4)
下面进入机翼外段结构的绘制过程。
为了避免绘图结构的混乱,在绘制外翼结构之前同样需要新生成一个几何图形集。
选择菜单“插入>有序的几何图形集”。
在弹出窗口中将名称修改为“外段结构”,父对象设置为PartXX(如Part1)。
接下来需要从之前绘制的图形中借一些来用用。
按住Ctrl键分别选中之前在“零部件几何体”下面绘制的“内翼外侧平面”、“外翼基准翼型”、和为绘制内外翼上反关系而创建的极值点。
(064)单击右键选择复制,再在特征树上的“外段结构”上单击右键,选择“特殊粘贴”,在弹出的窗口中选择“作为使用链接的结果”,单击确定。
用这个方法复制的特征,只相当于一个“链接”。
表示链接特征的图标其左下方会有一个箭头。
为了后面好描述,我们可以通过属性窗口将链接的那个点命名为“上反基准点”。
对于链接特征而言,如果其引用的特征,比如用来生成“外翼基准翼型”的旋转特征角度发生变化的时候,链接特征也会自动改变。
再具体一点来说,就是如果飞机试飞后我们发现上反角不够时,只要修改一下与定义上反角有关的特征属性后,链接特征及以它为基准的所有特征都会发生变化。
以上说法或许有些抽象,当整个机翼绘制完成后,我们可以通过实际操作来详细理解一下它的意思。
由于下面进行的绘图操作与之前生成的几何图形集没有关系,为了绘图清晰,点击工具条上的“仅当前几何体”按钮,隐藏“零部件几何体”和“内翼结构”里面的特征。
(065)接下来开始绘制用于将外翼段各零件进行定位的参考平面图。
以“平行通过点”方法,生成YZ平面通过“上反基准点”的平行平面,将这个平面命名为“参考面A”,并以其为基准开始做草图。
点击“构造/标准元素”按钮,将绘图状态设置为“构造元素”。
投影“上反基准点”,然后通过该点作一条水平直线。
再将绘图状态转为“标准元素”,通过投影点绘制一条任意角度的直线,这条直线和水平构造线之间生成一个“角度约束”。
双击角度约束,在“值”后面的文字框中单击右键,选择“编辑公式”。
CATIA航空产品设计与制造课件:工程制图
项目
2
视图的创建
基本视图 投影视图 剖视图 局部视图
视图的创建
视图是图纸的下一级对象。CATIA既可以根据三维模型创建产品的投影视图,也 可以不依赖三维模型以交互方式绘制工程图。有关视图操作的菜单和工具栏如图6-11 和图6-12所示。
图6-11有关视图操作的菜单
图6-12有关视图操作的工具栏
视图的创建
2.每个图纸都有一个名字,名字是自动生成的,由图纸、“.” 和序号组成,例如图纸.1、图纸.2。
3. 图纸之间是相对独立的。
4. 图纸分为图纸和详细图纸两种,前者接受来自三维形体 的投影图,后者不接受来自三维形体的投影图,主要用来放 置一些常用的平面图形、专用符号、文字说明等。后者可 以被图纸引用。
图6-19 视图向导对话框
视图的创建
(3)确定只有主视图的视图布局 对话框的左边是一列有关视图布局的图标,如果单击图标 ,将
会得到如图6-19(a)所示的主视图、俯视图和左视图的视图布局。单击 下一步按钮,对话框的左边出现一列有关单个视图的图标,如图6-19(b) 所示。单击图标 ,得到只有一个主视图的布局。
视图的创建
3. 隐藏或显示视图的方框 单击可视化工具栏的图标 ,可以交替地隐藏或显示视图的方
框。但是如果视图的方框属性设置为不显示视图框架,该图标将 不起作用。此时只能改变视图方框的属性为显示视图框架,该图 标才起作用。 4.删除视图 单击特征树上的视图名,按Del键或单击右键,在快捷菜单中选择 删除,相应的视图即被删除。也可以双击视图的兰色方框,按Del 键或单击右键,在快捷菜单中选择删除,相应的视图即被删除。 5.移动视图
手把手教你CATIA绘制模型飞机(doc 66页)
手把手教你CATIA绘制模型飞机(doc 66页)手把手教你CATIA绘制模型飞机说起CATIA的名字,对于很多模友来讲可能有些陌生。
但如果提起法国达索公司,所有爱好飞机的人一定会觉得如雷贯耳。
达索公司不仅因为其“幻影”系列战斗机和“隼”系列公务机在航空业界叱咤风云,其开发的CATIA工业设计软件更是成为目前风靡世界飞机设计软件领域的绝对老大。
从波音新一代737(A01)到洛克希德马丁的F-35,以及中国国产的歼10、枭龙,都是在其平台上完成的图纸绘制工作。
与传统CAD软件相比,其具有参数化设计功能,设计人员的每一步操作都会被记录下来。
当对设计产品的某一个尺寸进行改动时,可以直接通过修改设计过程中的参数而得到。
不需要再将所有步骤推倒重来。
与其他三维设计软件相比,CATIA绝对领先的曲面设计功能,在一个熟练的设计人员手里,能够绘制出任何“你能想象得到”的曲面外形。
不同于3DMAX 等美术软件的曲面功能,CATIA能够绘制出完全解析的外形曲面——也就是说,CATIA生成的曲面可以经过无数倍的放大,而仍然保持表面的绝对光滑。
CATIA已经成为世界飞机设计领域的通用技术标准,此外在汽车制造、造船及其他机械设计领域也得到了更加广泛的应用。
对于航模设计而言,虽然没有真实飞机设计中许多复杂繁琐的要求,可能3DMAX就能基本满足一般用户的需要。
但是,CATIA能够大大节省绘图的时间,特别是在模型细节修改调整中显著降低劳动量。
因此,学习一下CATIA对于每一个喜欢航模设计的人来说,绝对是大有意义的。
相对于传统学习CATIA的书来说,我们这里更强调实用性,忽略掉一些在航模设计中很难遇到的东西,也不再一条一条学习软件中的每个命令。
在绘制模型的每一个步骤中,我们用到哪儿学到哪儿。
由简入繁,我们先从设计一个兼具一点向真机性质的上单翼练习机开始做起。
螽斯A的设计在弹出的翼型库窗口中,找到“Filter By Name”按钮和其右侧的文本框,在文本框中输入“CLARK”,软件将自动过滤出名称中包含“CLARK”的所有翼型。
轻木塞斯纳的绘制与制作
轻木塞斯纳的绘制与制作过程:Ⅰ:用CATIA绘模型飞机三维图Ⅱ:三维图装配1.部件配与配合件的尺寸与外形的修改2.飞机的总装Ⅲ:1.各个零件修改好后的零件导出为CAD工程图2.绘制零件激光切割工艺图Ⅳ:激光切割制作Ⅴ:制作模型飞机装配工装Ⅵ:进行模型飞机结构件装配和系统装配Ⅶ:重心的调整Ⅷ:场外试飞Ⅰ用CATIA制模型飞机三维图:首先我们,我们打开CATIA V5R20,然后再开始菜单里面选择一次选择形状,Sketch Tracer(如下图)接着点击右边中间的然后我们就可以选择我们的模型图纸进行导入到CATIA。
(如下图)..\图片\模型图纸\机身.tif然后我们就可以根据图形的外部轮廓描绘出零件的尺寸。
(注:每张图的大小尺寸都已经转换成相同大小的比列,所以各个零件不会存在大小相差成倍数的情况)在图标编辑的下我们将描绘好的零件都做成厚为2mm的台。
(其中有部分薄板为1mm)注意:各个零件做好都得依次按规律的命名,以便在模型总装时便于找到。
(电池仓某零件的三维制作。
)按照这种方式依次的做好115个零件即可。
Ⅱ:三维图装配3.1. 部件配与配合件的尺寸与外形的修改按一定顺序飞机的各个部件,然后再将各个配件产生碰撞的地方进行修改。
总装在CATIA 开始菜单—机械设计—装配设计里。
(右机翼)注意:装好的各个部件需要按层级关系命名。
例如:平尾、垂尾、机身、机翼、蒙皮、起落架。
2.飞机的总装将各个装好的部件进行总装。
总装好的图如下:..\图片\总装CATIA图\总装\zhongzhuang.CATProductⅢ:1.各个零件修改好后的零件导出为CAD工程图点击某零件文件,打开后选择开始菜单—机械设计—工程制图然后我们只需将主视图依次以*.dxf的格式依次保存即可。
2.绘制零件激光切割工艺图:..\图片\总装CATIA图\jiyicad.dxfⅣ:激光切割制作我们接着就可以将排好的图导入到激光切割机,选好所需的板料放入,我们便可以依次切割出所需要的全部零件。
18飞机
一.绘制机身。
1.首先用草图编辑画出机身的大致轮廓,然后拉伸,输入拉伸距离17。
2.点击拉伸,选择左边长方形,输入拉伸距离80,再选择锥销命令,基准面选择最左边面,确定可得:3. 拉伸出机尾部件后,在机身后方建一个长方体。
4.对长方形进行倒圆。
5.在长方形侧面中心画一个圆,然后拉伸,点击减运算。
6.再在侧面中间绘制一个圆柱体,同理边倒圆。
7.再点击拉伸,选择绘制圆柱的上表面,输入距离3.35,点击减运算。
8. 建一个面,拉伸后成为一个长方形,接着用实体分割命令分为两部分,删除右边分割实体。
9. 再建一个长方体。
10.选择阵列,点击长方形,输入数量4,确定后删除最上面长方形。
11. 使用组合编辑→减运算,基体选择实体分割后的实体,合并体选择阵列的三个长方形。
12.在飞机身的侧面画一个飞机翼的草图。
14.在机身旁再建一个长方体。
15.同理绘制面使用实体切割。
16.再在机舱上画长方形,利用实体切割。
18.在两个实体面中间建一个圆柱,再点击倒圆角命令,选择圆线。
20.在倒角长方形后面加入一个六面体,利用组合编辑合并。
21.飞机后翼画一个草图,拉伸后倒角或圆角修饰。
29.png22.可见大致外形已经出来,因为左右两边的零件相同,在中间绘制平面,使用镜像使左右对称。
二.绘制机顶。
1.在直升机上方放一个圆柱2. 上方再一次进行拉伸,输入距离6.5。
3.选择最上面圆柱表面,绘制一个如图草图,拉伸。
再点击阵列(圆形阵列),输入数量4。
4.再建一个圆柱,然后用圆角修饰。
5.在尾翼画图案修饰。
6.最后一步,点击材质渲染命令进行渲染。
40.png看到这里是不是觉得建一个军事模型也不是很难呢。
其实只要开动想象力,没有什么是做不出来的,只有想的到,没有做不到!。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
手把手教你CATIA绘制模型飞机说起CATIA的名字,对于很多模友来讲可能有些陌生。
但如果提起法国达索公司,所有爱好飞机的人一定会觉得如雷贯耳。
达索公司不仅因为其“幻影”系列战斗机和“隼”系列公务机在航空业界叱咤风云,其开发的CATIA工业设计软件更是成为目前风靡世界飞机设计软件领域的绝对老大。
从波音新一代737(A01)到洛克希德马丁的F-35,以及中国国产的歼10、枭龙,都是在其平台上完成的图纸绘制工作。
与传统CAD软件相比,其具有参数化设计功能,设计人员的每一步操作都会被记录下来。
当对设计产品的某一个尺寸进行改动时,可以直接通过修改设计过程中的参数而得到。
不需要再将所有步骤推倒重来。
与其他三维设计软件相比,CA TIA绝对领先的曲面设计功能,在一个熟练的设计人员手里,能够绘制出任何“你能想象得到”的曲面外形。
不同于3DMAX等美术软件的曲面功能,CA TIA 能够绘制出完全解析的外形曲面——也就是说,CA TIA生成的曲面可以经过无数倍的放大,而仍然保持表面的绝对光滑。
CA TIA已经成为世界飞机设计领域的通用技术标准,此外在汽车制造、造船及其他机械设计领域也得到了更加广泛的应用。
对于航模设计而言,虽然没有真实飞机设计中许多复杂繁琐的要求,可能3DMAX就能基本满足一般用户的需要。
但是,CA TIA能够大大节省绘图的时间,特别是在模型细节修改调整中显著降低劳动量。
因此,学习一下CA TIA对于每一个喜欢航模设计的人来说,绝对是大有意义的。
相对于传统学习CATIA的书来说,我们这里更强调实用性,忽略掉一些在航模设计中很难遇到的东西,也不再一条一条学习软件中的每个命令。
在绘制模型的每一个步骤中,我们用到哪儿学到哪儿。
由简入繁,我们先从设计一个兼具一点向真机性质的上单翼练习机开始做起。
螽斯A的设计螽斯,又名“蝈蝈”,是一种善于鸣叫的昆虫。
我们这架飞机起名为“螽斯”,主要是因为其略显肥胖的机身和“蝈蝈”十分相似。
肥胖的机身虽然会在一定程度上增加飞机的阻力,但同时也带来了较大的舱容。
因此,该机十分适于装载许多特殊设备进行飞行作业。
螽斯A飞机采用矩形机翼,翼展1.3m,翼面积0.24㎡,标准起飞重量在1.3kg左右。
准备工作:绘制飞机基本三面图和翼型我们将这架原创的飞机命名为螽斯A,经过经验分析和设计计算,我们首先得到这架飞机的外形尺寸,并利用AUTOCAD软件绘制飞机基本的三面图或两面图。
这张图的作用主要是在以后建模过程中作为参考,因此尺寸不需要十分准确,只要能够让自己大概掌握飞机的外形轮廓即可。
在完成绘制后,将其导出为DXF文件保存。
(000)当然,如果自己对新飞机的外形已经心有成竹,那么这一步完全可以跳过。
接下来使用Profili软件,导入需要的翼型,在本模型上使用的是CLARK Y。
关于Profili 的使用,不是我们这篇文章的重点,因此只简略叙述其过程。
在Profili软件环境下点击左上角翼型图标,打开翼型库。
(001)在弹出的翼型库窗口中,找到“Filter By Name”按钮和其右侧的文本框,在文本框中输入“CLARK”,软件将自动过滤出名称中包含“CLARK”的所有翼型。
从左侧选择框中找到“CLARK Y”,单击使其变蓝,选择Ribs-templates—>Begin printing a rib or template for the selected airfoil,打开翼型绘制对话框。
(002)翼型绘制对话框中,只在Draw chord line(绘制翼弦)前打钩,选择确定。
(003)在翼型模板生成后,从屏幕上方找到DXF导出按钮,将翼型导出为DXF文件。
(004)CA TIA的初始准备以上准备工作全部完成,下面开始进入我们的主要对象——CATIA软件的工作环境。
相信绝大多数读者都是第一次使用,因此我们一步一步,从最开始的设置说起。
CA TIA是一个随意性很大的软件,不仅在作图方面,就连其操作界面也是如此。
每一个使用CATIA的设计人员都很可能拥有不同形式的设计界面,以便尽可能符合自己的绘图习惯。
在第一次使用CATIA时,我们通常需要对CATIA的使用界面进行一些处理。
目前使用最广泛的是CATIA V5版本,以后的全部操作,我们都将在CATIA V5 R17版本下进行。
由于程序需要进行很多初始化工作,因此在绝大多是电脑上,进入CA TIA需要花上两到三分钟时间。
在进入CA TIA后,一般会自动生成一个product文件,现在我们暂时不用管它,直接将其关闭即可。
(005)在空白页面上,单击上部菜单栏最左边的开始,可以看到里面有许多内容,其中包含机械零件设计、曲面设计、数控加工等等,可见CA TIA作为工业设计软件其功能的强大。
这里,我们因为是设计航模,只会用到其中很少的一部分。
现在开始—>形状—>创成式外形设计。
(006)然后会弹出一个对话框,让输入新建零部件号,直接点确定即可。
下面即进入了创成式外形设计模块。
我们一般利用这个模块绘制模型的外形曲面。
(007)这是一个没有经过调整的标准界面——很多工具都隐藏起来了,图标布置得也很没规律,一般需要我们手动调整一下。
首先将鼠标移至任何一个图标附近,单击右键,可以看到所有能够显示的工具条。
一般情况下可以打开图形属性工具条,关掉ENOVIA V5。
(008)仔细观察,可以看到工具条在屏幕右下角处显示一个很淡的“》”图标,这表示由于屏幕大小限制,有一部分图标无法显示。
为了显示所有图标,我们还需要进一步改变工具条的位置。
(009)的位置。
这样我们可以让所有隐藏的图标都显示出来。
(010)另外,注意到很多工具图标的右下角都有一个黑色的三角,这表示点击该图标可以进一步展开出多个操作按钮。
通过拖拽展开后工具条上的横线部分,我们还可以把它也拖到方便的地方。
比如,笔者个人很喜欢把视图工具条展开,并放置在屏幕上方。
(011)就这样,我们完成了CA TIA创成式外形设计模块第一次使用时的界面设置。
有的时候,当我们发现工具条位置由于某些原因发生了改变,导致我们无法找到需要的工具图标时,可以打开“工具—>定制”,单击工具栏选项卡,点击恢复位置按钮,就可以将所有工具条恢复至初始默认位置。
下面,我们就可以开始进入翼型的绘制过程。
利用草图工具绘制翼型单击“文件—>打开”找到我们从Profili中导入的基本翼型数据文件。
这时CATIA会自动进入工程图绘制模式,并打开指定的DXF文件。
按下鼠标左键,拖出选择框选择整个翼型曲线,当全部曲线变成橙色显示时,则表示选择成功。
按下键盘“Ctrl + C”快捷键,或者单击菜单“编辑—>复制”以将翼型存入剪贴板(012)单击窗口,找到我们刚才创立的曲面文件,单击回到曲面造型界面。
(013)具(014)进入草图绘制模式后,照例先收拾一下工具栏,将其尽可能展开并放置在比较好看的位置上。
这里有一个需要注意的地方,找到工具栏上“网络”和“点对齐”图标。
其功能分别是显示背景网格和网格节点的捕捉,类似AUTOCAD下的栅格捕捉功能。
一般我们用不到它,因此单击使其取消点亮状态。
(015)按下“Ctrl + V”快捷键或者点击菜单栏“编辑—>粘贴”就可以将刚才工程图模块中复制的翼型曲线复制过来。
这时曲线会显示成黑色的。
(016)在粘贴的过程中,我们可能会遇到一个问题,按下粘贴键后,并没有看到翼型显示在屏幕中。
不用着急,这时很可能需要进行一下屏幕的放大缩小操作。
方法是:按紧鼠标中键(滚轮),单击右键(注意不是按住不放),这时上下拖动鼠标即能完成屏幕的方法和缩小操作。
顺带在此再讲一下屏幕的旋转操纵,方法是:按紧鼠标中键,然后按紧右键,这时拖动鼠标即是屏幕显示的旋转操纵。
需要平移屏幕时,按紧鼠标中键同时拖动鼠标即可。
当我们需要回到草图的“法向”也就是从正上(下)方观察草图状态,单击工具栏上“法线视图”图标。
(017)入。
(018)再次单击左侧特征树下的“ZX平面”,单击草图工具栏上“草图”图标。
这时可以看到上一张草图已经成为了我们现在的背景。
现在需要借用它一下,点击上一张草图中的曲线将其置于高亮,按下工具栏“投影三维元素”图标,这样可以把背景中的图线投影到当前草图中。
如果投影成功,曲线会显示为黄色。
(019)选择翼型表面曲线和翼弦线,点击“构造/标准元素图标”图标,将其转化为虚线。
虚线即“构造元素”,一旦退出当前草图,所有虚线将不再显示,就相当于我们作图时候辅助线的作用。
对虚线再次点击“构造/标准元素图标”图标,又可以把它改变会标准元素。
(020)在上面一步操作中,如果之前的那张草图有些碍事,影响了对曲线的选择,那么可以右键单击特征树下的上一个草图,选择“隐藏/显示”即可暂时隐藏掉。
再重复一遍这个操纵,又可以把它再显示出来。
(021)放大当前投影的翼型曲线,我们可以看到“CLARK-Y”翼型的后缘并不是尖的,为了相对作图准确,我们需要采用一定的辅助线方法。
点击工具栏上“直线”工具,并移动鼠标(022)从后缘点处单击鼠标左键后向上移动鼠标,随着鼠标位置的变化系统会自动绘制出一条直线。
移动鼠标至后缘点正上方处,直线会变成蓝色,表示捕捉到垂直方向。
再次单击左键完成直线的创建。
如果直线显示为粗实线,不要忘记点击“构造/标准元素”将其转化为虚线。
(023)“V”表示这条直线与草图“竖直”方向平行。
(024)————————————传说中的分隔线————————————————下面,选择工具栏上的“样条线”图标,在扑捉到前缘端点后,间隔一定距离依次扑捉曲线上各点绘制翼型上表面曲线。
由于前缘部分曲率变化较大,因此需要适当将点的数量增加。
越靠近后缘,翼型表面曲线越发接近直线,曲率变化较小需要的控制点数也就越少。
因为我们制作的是一个尺寸较小的航模,在绘制翼型表面曲线的过程中,不需要将曲线的控制点取得太密,这样既节省时间,又可以提高软件运行的速度。
另外需要注意的是,在样条线绘制过程中不能进行“构造/标准元素”的转化。
(025)在连接后缘点的时候,有两个方法:最简单的是直接利用捕捉,将鼠标端点移动至后缘处翼型曲线与绘制的竖直线相交点处,当图标显示捕捉信号,并且翼型曲线和直线都变为橙色时,点击鼠标左键就可以捕捉到合适的坐标点。
然后连续两次按下键盘ESC键完成曲线绘制(026)。
另一种方法是,将鼠标移动至任意一点,双击鼠标完成曲线绘制。
之后,单击选择曲线最后生成的端点,在按住键盘Ctrl键同时选择我们画的那条竖直线。
接下来点击约束定义图标,在弹出的对话框中选择“相合”并单击确定。
这时我们会发现,刚才选择的点自动移动到了直线上。
同时,其旁边出现了一个“○”表示与另一元素具有相合约束。