浮选电化学作业

合集下载

硫化矿浮选电化学

硫化矿浮选电化学

硫化矿浮选电化学
硫化矿浮选是一种常用的选矿方法,电化学技术在硫化矿浮选中具有重要应用。

硫化矿浮选电化学的研究主要集中在浮选过程中的电化学现象和电化学反应机制。

电化学现象包括电位、电位变化、电流密度、电导率等指标。

电化学反应机制主要包括氧化还原反应、电化学氧化、电化学还原等反应。

电化学技术可用于改善硫化矿浮选的浮选性能、提高选矿效率、降低生产成本。

未来,随着电化学技术的不断发展,其在硫化矿浮选中的应用将得到进一步拓展和发展。

- 1 -。

特种作业煤炭特有工种特种设备作业人员一览表

特种作业煤炭特有工种特种设备作业人员一览表

《特种作业人员安全技术培训考核管理规定》(国家安监总局第30号令)附件:特种作业目录。

煤矿十类特种作业人员一、煤矿十类特种作业人员主要从事工作电气作业、爆破作业、井下安全监控、瓦斯检查作业、煤矿安全检查、煤矿提升机操作、采煤掘进机操作、矿下瓦斯抽采作业、井下防突作业、井下探放水作业等都是井下特殊工种,必须经有资质单位培训发证,并做到持证上岗.二、煤矿十类特种作业人员具体职责1、煤矿井下电气作业(井下电钳工、井下变配电工)指从事煤矿井下机电设备的安装、调试、巡检、维修和故障处理,保证本班机电设备安全运行的作业。

适用于与煤共生、伴生的坑探、矿井建设、开采过程中的井下电钳等作业.2、煤矿井下爆破作业(井下爆破工)指在煤矿井下进行爆破的作业。

3、煤矿安全监测监控作业(瓦斯监测工)指从事煤矿井下安全监测监控系统的安装、调试、巡检、维修,保证其安全运行的作业。

适用于与煤共生、伴生的坑探、矿井建设、开采过程中的安全监测监控作业。

4、煤矿瓦斯检查作业(瓦斯检查工)指从事煤矿井下瓦斯巡检工作,负责管辖范围内通风设施的完好及通风、瓦斯情况检查,按规定填写各种记录,及时处理或汇报发现的问题的作业.适用于与煤共生、伴生的矿井建设、开采过程中的煤矿井下瓦斯检查作业.5、煤矿安全检查作业(安全检查工)指从事煤矿安全监督检查,巡检生产作业场所的安全设施和安全生产状况,检查并督促处理相应事故隐患的作业.6、煤矿提升机操作作业(主提升司机)指操作煤矿的提升设备运送人员、矿石、矸石和物料,并负责巡检和运行记录的作业.适用于操作煤矿提升机,包括立井、暗立井提升机,斜井、暗斜井提升机以及露天矿山斜坡卷扬提升的提升机作业。

7、煤矿采煤机(掘进机)操作业(采煤机司机、掘进机司机)指在采煤工作面、掘进工作面操作采煤机、掘进机,从事落煤、装煤、掘进工作,负责采煤机、掘进机巡检和运行记录,保证采煤机、掘进机作业。

适用于煤矿开采、掘进过程中的采煤机、掘进机作业。

电解铝炭渣的资源化

电解铝炭渣的资源化

目录摘要 (1)1电解铝工艺 (2)1.1 电解铝工艺简介 (2)1.2 电解铝废渣情况 (2)2电解铝炭渣的资源化 (3)2.1 固体废物资源化概述 (3)2.1.1 固体废物定义 (3)2.1.2 固体废物资源化定义 (3)2.1.3 固体废物资源化原则 (3)2.1.4 固体废物资源化的意义 (3)2.2 炭渣的组成成分 (4)2.2.1 X衍射分析 (4)2.2.2 化学分析 (4)2.2.3 粒度分布 (4)2.3 炭渣的综合利用 (5)2.3.1 浮选工艺 (5)2.3.2焙烧工艺 (7)3结论 (8)摘要随着社会经济的发展,科学技术的进步,从十九世纪六十年代开始,出现了电气、石油、化工、汽车、原子能等新技术,人类社会步入了今天这样繁荣文明的时代。

在技术与经济两者之间,技术的进步加快了经济的发展,而经济的发展又促进了技术的进步。

科技与经济的相互促进与发展推动了社会的进步,同时也带来了污染的加剧,废物的积累。

我国是一个发展中国家,也是一个工业固体废物的产生大国。

长期以来,我国经济发展为资源消耗型模式,随着城市化和工业化进程的加快,工业固体废物的产生量也迅速增长。

“固体废物”实际只是针对原所有者而言。

在任何生产或生活过程中,所有者对原料、商品或消费品,往往仅利用了其中某些有效成分,而对于原所有者不再具有使用价值的大多数固体废物中仍含有其它生产行业中需要的成分,经过一定的技术环节,可以转变为有关部门行业中的生产原料,甚至可以直接使用。

可见,固体废物的概念随时、空的变迁而具有相对性。

提倡废物资源化,目的是充分利用资源,增加社会与经济效益,减少废物处置的数量,以利于社会发展。

关键词:固体废物;工业固体废物;废物资源化1电解铝工艺1.1 电解铝工艺简介现代铝工业生产采用冰晶石—氧化铝融盐电解法。

熔融冰晶石是溶剂,氧化铝作为溶质,以碳棒作为阳极,钢棒作为阴极,通入强大的直流电后,在950℃~970℃下,在电解槽内的两极上进行电化学反应,既电解。

矿物加工学的现状与发展

矿物加工学的现状与发展

• (4) 矿物资源的生化提取。
用生物浸出、化学浸出、溶剂萃取、
离子交换等处理复杂贫细矿物资源,如低 品位铜矿、铀矿、金矿的提取 , 煤脱硫等。 由于细菌兼有氧化、吸附、降解等作用 , 因 此生化提取不仅强化浸出过程 , 而且在环境 与工艺控制上具有独特的优势。生化提取 的基础理论与技术的研究近几年已成为矿 物加工学科的重要方向之一。
• (4) 浮选。以表面化学为学科基础,根据不同矿物表面物理 化学性质的差异,实现不同矿物的分选。
• 这个时期的选矿主要是从天然矿石(金属矿、非金属矿、煤 炭等)中,分离、富集其中的有用矿物, 为冶金、化工、建材 提供原料。
• 国外所用 “选矿” 词汇 多为 “ore dremng”或 “mineral dressing”。
• 重要的著作有 :
美国 Taggart 的Handbook of Ore Dressing(1927年第1版,1944年第2 版);Gaudin的Flotation(1932年第1 版,1957年第2版);澳大利亚的 Sutherland和Wark的Principles of Flotation (1955年第1版);原苏联 Bogdmov的Theory and Technology of Flotation(1959).
• 矿物加工学科的进一步发展,面临着来自 资源变化与所需技术难度方面的挑战。
• (1) 复杂贫细矿物资源的综合回收。 • 人类对矿物资源的消耗逐年增加 , 而易选矿物资源的不断开采利
用,越来越多的是复杂、贫细、大型多金属矿床需要被开采利 用 , 这些矿床的特点是金属品种及伴生稀有、贵金属品种多、品 位低、难处理。 现有矿物加工技术在处理这些矿物资源时 , 面临 能耗高、综合利用率低、环境污染等问题。

铅锌矿的浮选工艺研究

铅锌矿的浮选工艺研究

泡沫的处理:将分离后的泡沫进行收集和处理,以回收其中的矿物颗粒
泡沫的影响:泡沫的稳定性和浮选效果密切相关,需要合理控制泡沫的生成和分离过程
浮选设备
4
磨矿设备
球磨机:用于粗磨和细磨,具有较高的效率和产量
棒磨机:用于粗磨,具有较高的效率和产量
自磨机:用于粗磨和细磨,具有较高的效率和产量
砾磨机:用于粗磨和细磨,具有较高的效率和产量
充气量的控制:根据矿石性质和浮选效果,调整充气量,保证浮选效果
充气量与搅拌强度的关系:充气量与搅拌强度相互影响,需要根据实际情况进行调整
优化方法:通过实验和模拟,确定最佳充气量和搅拌强度,提高浮选效果
实际应用案例分析
6
某铅锌矿的浮选工艺流程设计
矿石性质:铅锌矿的矿石性质对浮选工艺有重要影响
浮选药剂:选择合适的浮选药剂可以提高浮选效果
充气与搅拌
充气量:根据浮选效果和浮选时间等因素调整
搅拌速度:根据矿粒大小和浮选时间等因素调整
搅拌目的:使矿粒悬浮,提高浮选效果
充气方式:机械搅拌、压缩空气、喷射器等
泡沫的分离与处理
泡沫的产生:浮选过程中,矿物颗粒与气泡结合形成泡沫
泡沫的分离:通过调整浮选药剂和浮选条件,使泡沫中的矿物颗粒与气泡分离
铅锌矿的浮选工艺研究
,
汇报人:
铅锌矿浮选原理
浮选药剂的选择与作用
浮选工艺流程
浮选设备
浮选过程控制与优化
实际应用案例分析
目录
铅锌矿浮选原理
1
浮选原理概述
浮选原理:利用矿物表面的物理化学性质差异,通过添加浮选剂,使有用矿物颗粒吸附在气泡上,浮到矿浆表面,从而达到分离目的。
浮选剂:包括收集剂、搅拌剂、分散剂、调整剂和抑制剂等,用于改善矿物表面的物理化学性质,提高浮选效果。

浮选电化学作业.

浮选电化学作业.

《浮选电化学作业》姓名:学号:授课老师:学院:资源加工与生物工程学院编写日期: 2015年5月硫化矿浮选电化学研究进展王建军(中南大学资源加工与生物工程学院,湖南,长沙,410083)摘要: 本文介绍了硫化矿浮选电化学理论进展、前沿机理、技术应用和存在问题,并提出了应该结合溶液化学等其他学科的知识,发挥学科交叉优势的作用。

关键字: 硫化矿;浮选;电化学;应用;存在问题Abstract: This paper introduces electrochemistry of sulfide mineral flotation theory progress, frontier mechanism, application technology and existing problems, and put forward that we should play the role of interdisciplinary strengths of solution chemistry, and other disciplines of knowledge.Keywords: Sulfide ores; flotation; electrochemistry; application; existing problems引言黄药的发现是泡沫浮选法得以迅速推广的关键因素,再加上当时发现氰化物是具有优良的选择抑制性,铜离子对闪锌矿具有活化作用,这样捕收剂、抑制剂和活化剂组成的简单浮选体系为以后硫化矿浮选奠定了重要的基础。

1. 硫化矿浮选理论一般而言, 硫化矿物浮选体系可以分为固相(硫化矿物及脉石) 、液相(捕收剂和调整剂) 和气相(空气, 特别是空气中含有的氧气)。

硫化矿物浮选体系中的固相(硫化矿物) 和液相( 捕收剂和调整剂)。

除一般的化学性质, 如可溶性、分散性以外, 还有其独特的性质, 如氧化还原性。

硫化矿物在水溶液中表面会产生一层性质完全不同于硫化矿物本身的氧化产物, 完全改变硫化矿物的表面性质和浮选行为。

磨矿和浮选过程中黄铁矿电化学行为的研究进展

磨矿和浮选过程中黄铁矿电化学行为的研究进展

工程科学学报,第 43 卷,第 1 期:58−66,2021 年 1 月Chinese Journal of Engineering, Vol. 43, No. 1: 58−66, January 2021https:///10.13374/j.issn2095-9389.2020.06.29.001; 磨矿和浮选过程中黄铁矿电化学行为的研究进展龚志辉,戴惠新✉,路梦雨,武立伟,赵可可昆明理工大学国土资源工程学院,昆明 650093✉通信作者,E-mail:***************摘 要 综述了黄铁矿在选矿过程中有关的电化学行为及工作机理,重点讨论了黄铁矿结构特性、溶液中氧化、金属离子作用和抑制剂对黄铁矿电化学行为的影响;此外,还讨论了磨矿过程中电偶相互作用、研磨介质形状、介质材料和研磨气氛对研磨中黄铁矿电化学行为的影响.其中黄铁矿晶体结构的不同对黄铁矿表面的氧化具有较大影响,从而间接的影响黄铁矿的可浮性,半导体性质对黄铁矿的导电率具有显著的影响;同时适度的氧化有利于黄铁矿的无捕收剂浮选,而强烈的还原电位或氧化电位会抑制黄铁矿的浮选;电位的增加,对铜活化黄铁矿有不利影响,主要原因是电位增加导致活化Cu+的浓度降低,同时黄铁矿表面被铁氧化物覆盖阻碍了铜离子的吸附.抑制剂的加入可以直接参与捕收剂与黄铁矿之间的氧化还原反应,从而抑制黄铁矿的浮选;同时磨矿介质及气氛条件的不同也会影响黄铁矿电化学行为.关键词 选矿;黄铁矿;研磨;浮选;电化学分类号 TD952Research progress in the electrochemical behavior of pyrite during grinding and flotationGONG Zhi-hui,DAI Hui-xin✉,LU Meng-yu,WU Li-wei,ZHAO Ke-keFaculty of Land Resource Engineering, Kunming University of Science and Technology, Kunming 650093, China✉Correspondingauthor,E-mail:***************ABSTRACT Metal sulfides are highly desirable owing to their semiconductor properties promoting electrochemical reactions for sulfide flotation. As the most common sulfide mineral, pyrite is found in coal and can contain a small amount of gold. The potential of electrochemical reactions for the beneficiation of pyrite makes it necessary to study its electrochemical behavior. The present work focuses on the electrochemical behavior and working mechanisms of pyrite in mineral processing. The effects of the structural characteristics of pyrite, oxidation in solution, the presence of metal ions, and inhibitors on the electrochemical behavior of pyrite were discussed emphatically. The effects of galvanic interaction and grinding medium shape, material, and atmosphere on the electrochemistry of pyrite in grinding were also discussed. It has been shown that the different crystal structures and semiconductor properties of pyrite can greatly influence the oxidation of its surface, which indirectly affects its floatability. Moreover, moderate oxidation conditions are beneficial to the collector-free flotation of pyrite, whereas strong reduction or oxidation potentials inhibit its flotation. It has also been shown that increase in potential and iron oxide on the pyrite surface lead to the decrease in the concentration of copper (Cu+) ions, thereby adversely affecting the activation of pyrite by copper. Furthermore, inhibitors can directly participate in the redox reaction between the collector and pyrite, thus inhibiting the flotation of pyrite. Different grinding media and atmosphere conditions also affect the electrochemical behavior of pyrite.KEY WORDS mineral processing;pyrite;grinding;flotation;electrochemical收稿日期: 2020−06−29基金项目: 国家自然科学基金资助项目(51764023)黄铁矿(FeS 2)是自然界最常见的硫化矿物.通常与闪锌矿、黄铜矿、方铅矿、金和煤等有价值的矿物共伴生[1−2]. 黄铁矿的经济价值低,通常被作为脉石矿物处理,黄铁矿进入有价值的精矿中会导致精矿品位降低,同时在冶炼过程中会产生大量的硫化气体,造成环境污染[3]. 天然黄铁矿在厌氧环境中是疏水的,因此常用浮选的方法选别.然而当黄铁矿长时间暴露于大气或水性条件下时,黄铁矿表面会被氧化从而降低其疏水性[4−5].大多数金属硫化物具有半导体特性,硫化矿物浮选取决于发生的电化学反应[6]. 黄铁矿浮选过程中发生的各种现象,如氧化引起的黄铁矿表面化学变化、黄铁矿与其他组分的相互作用、捕收剂的吸附和其他金属离子在黄铁矿表面的沉淀,通常都是由电化学机制引起的[7−9]. 影响电化学反应的主要因素是矿物/溶液界面的电化学势,该电位是一种混合电位,其中发生在矿物表面的阳极反应和阴极反应的速率完全相等,该电化学反应不仅控制着矿物在浮选过程中表面物种的形成,还抑制其表面物种的形成[10−11]. 因此电化学反应机理的研究对黄铁矿的浮选研究具有重要的意义. 本文综述了黄铁矿在选矿过程中有关的电化学行为及工作机理,重点讨论了黄铁矿结构、溶液氧化、离子活化和抑制剂对黄铁矿电化学行为的影响. 此外,还讨论了磨矿过程中研磨介质形状、介质材料和研磨气氛对研磨中黄铁矿电化学行为的影响. 并对今后的研究思路和方向进行了展望.1 黄铁矿晶体性质1.1 黄铁矿晶面特性黄铁矿的晶体类型众多,对黄铁矿晶体研究表明,大多数天然黄铁矿主要有三个解离面,分别为{100},{210}和{111},这三个晶面的比例为224∶42.8∶1[12−14]. 一些研究表明,黄铁矿的反应活性在晶体方向上是特定的. Zhu 等[15]研究了黄铁矿晶体结构对黄铁矿表面氧化的影响. 结果表明,在潮湿的空气中,黄铁矿{111}和{210}的初始氧化速率均大于黄铁矿{100};在干燥的空气中,黄铁矿{210}的初始氧化速率大于黄铁矿{111}的初始氧化速率;在潮湿的空气中,黄铁矿{111}的初始氧化速率最大;同时{111}是黄铁矿氧化最敏感的面. 黄铁矿氧化相关反应如图1所示. 这些研究的发现明确了黄铁矿的晶面与反应活性的关系,不仅对黄铁矿氧化机理有了新的认识,也为发生在矿物-水界面的其他界面反应提供参考.S O 42−S O 32−/S 2O 32−+H +S 22−Fe 3+Fe 2+O 2ee e+H 2OPyrite①①S 22−−e (to Fe 3+)+H 2O → S O 32−/S 2O 32−+H +S O 32−/S 2O 32−+O 2→S O 42−②②③③④④Oxidation routeFe 2+−e (to O 2) → Fe 3+H 2OFe 3++e (from S 22−) → Fe 2+H 2O 图 1 黄铁矿空气中氧化反应路线图Fig.1 Mechanisms of pyrite oxidation in airXian 等[16]对纯黄铁矿、砷取代黄铁矿、钴取代黄铁矿和晶间金黄铁矿四种类型的黄铁矿进行了浮选研究. 浮选结果表明,钴取代黄铁矿和晶间金黄铁矿的可浮性随矿浆充气时间的延长而增加,而纯黄铁矿和砷取代黄铁矿的可浮性随矿浆充气时间的延长而降低. 通过电子结构和能带结构研究发现黄铁矿的稳定性受晶格缺陷和电子结构的影响,所观察到的浮选行为差异是由于黄铁矿的稳定性和氧化强度不同所致.1.2 半导体特性黄铁矿具有高电子迁移率和高光吸收系数,是一种潜在的光伏吸收材料. 然而天然黄铁矿的半导体性质存在较大的差异,从而影响了黄铁矿的电化学反应[17]. Abratis 等[18]综合评述了黄铁矿的半导性,发现已报道的电导率相差四个数量级.根据地质条件的不同,天然黄铁矿既可以作为n 型半导体存在,也可以作为p 型半导体存在. 在较高温度下形成的黄铁矿通常具有n 型特征,而在较低温度下形成的黄铁矿通常为p 型. 使用n 型黄铁矿作为微电极在混合硫化物矿物矿浆中(不考虑动力学因素),具有较高静息电位的黄铁矿将成为阴极,而更具活性的硫化物将成为阳极.龚志辉等: 磨矿和浮选过程中黄铁矿电化学行为的研究进展· 59 ·但是,所产生的阳极硫化物优先溶解的速率将取决于由杂质或半导体类型引起的黄铁矿静止电位的变化.Savage 等[19]研究发现,杂质元素Co ,As 对黄铁矿半导性具有较大的影响. 富含Co 的黄铁矿是具有低电阻率和高载流子迁移率的n 型半导体,而砷黄铁矿倾向于p 型且具有较高的电阻率. 硫化矿物与捕收剂之间相互作用的差异是由矿物表面不同的半导体特性引起的. 与n 型半导体相比,p 型半导体对黄药的吸附更为有益.2 浮选中黄铁矿电化学行为2.1 黄铁矿在矿浆中的氧化黄铁矿在水溶液中通过电化学反应被氧化,氧化速率受溶液pH 、溶液电位值、氧化剂种类和浓度、粒径、温度、搅拌速度等多种因素的影响.由于铁硫比、晶体结构和表面形态不同,导致黄铁矿表现出不同的电化学反应活性. 黄铁矿在氧化过程中通常是不完全氧化,除亚铁离子和硫酸根离子外,还生成了单质硫. 亚铁离子进一步反应生成的氢氧化铁沉淀附着在黄铁矿表面,并抑制黄铁矿的进一步氧化[20−22].矿浆中溶解氧含量对矿浆电位变化和黄铁矿亲水性表面的生成有一定影响. Owusu 等[23]通过需氧量试验和泡沫浮选,研究了两种黄铁矿矿物的电化学反应活性及其对黄铜矿浮选的影响. 通过氧化还原电位(E h )、溶解氧(DO )、pH 等参数控制矿浆化学,可显著提高硫化矿物的浮选回收率、品位和选择性. 需氧量测试表明,不同黄铁矿的电化学反应活性有明显差异. 此外,矿浆的持续充气降低了黄铁矿的氧化速度. 溶液和表面分析结果表明,随着充气的进行,黄铁矿表面会形成氢氧化物表面涂层,防止或最大限度地减少黄铁矿进一步被氧化反应. 图2显示了25 ℃下黄铁矿电化学势与pH 的关系[24].S 2−2S 2−2S 2−n 硫的氧化行为的研究对于理解黄铁矿的氧化非常重要,但是在不同的溶液条件下,各种中间的硫氧化产物会使其复杂化. Chandra 和Gerson [25]研究表明在新鲜破碎的黄铁矿表面存在四种不同的硫:(体相)(4配位)、(表面)(3配位)、S 2−和S 0/(分别为缺金属硫化物和多硫化物).这些硫在破碎的黄铁矿表面呈不均匀分布. 当O 2解离和H 2O 分子吸附到存在高密度悬挂键的表面Fe 位时,开始氧化. 同时H 2O 可能会解离产生OH 自由基. 研究表明,Fe−O 键先于Fe−OH 键SO 2−4O 2−3S 2−3形成. S 的氧化是通过Fe 位上形成的OH 自由基的相互作用进行的,而的形成是通过S 2/中间体进行的. 从而进一步证明黄铁矿的氧化过程本质上是电化学的过程.S 2−n Tu 等[26]研究了黄铁矿在pH 为2的电解液中的电化学氧化机理. 研究表明在0.50 V 的低电位下,黄铁矿表面形成并覆盖一层富硫层(S 0)使得黄铁矿表面钝化,从而造成黄铁矿电化学氧化扩散受限. 当电位增加到0.60 V 时,由于无定形单质硫转化为晶态,黄铁矿氧化的扩散限制和表面钝化停止,导致先前被覆盖的活性位重新暴露,从而造成黄铁矿继续氧化. 在较高电位(0.70 V 和0.80 V )下,在黄铁矿表面形成并积累了较多的单质硫和多硫化物(),以及由Fe(OH)3、FeO 和Fe 2O 3组成的富铁层,这些产物导致了氧化速率降低. 表面粗糙度随氧化电位的增加而增加,黄铁矿表面的氧化是不均匀的. 这些发现进一步揭示了黄铁矿在电化学氧化过程中所经历的物理和化学变化.Tao 等[27]对表面氧化的黄铁矿进行了无捕收剂泡沫浮选试验. 在原位断裂电极上进行的计时安培分析表明,在pH 为9.2时,表面氧化的黄铁矿电位为−0.28 V (SHE ),在pH 为4.6时为0 V. 在稍高的正电势下进行初始氧化会生成疏水性富硫物质,最有可能是多硫化物或缺乏金属的硫化物,从而使黄铁矿表面具有疏水性. 无捕收剂的浮选试验结果表明,黄铁矿在表面氧化后具有较好的可浮性. 黄铁矿的无捕收剂浮选回收率取决于氧化过程中产生的多硫化物,可溶物和不溶物的相对量,这取决于溶液的pH 值和电位.2.2 不同金属离子对黄铁矿的影响2.2.1 铜离子对黄铁矿的影响活化是硫化物浮选过程中最常用的方式之一,SO 42−SO 42−Fe(OH)3Fe(OH)2Fe 2++2SFe 2++H 2SFe+H 2SFeS+H 2SFe+HS −FeS+HS −Fe FeS 2F e (O H )2+F e (O H )2+Fe 3+pH02468101214图 2 25 ℃下FeS 2–H 2O 体系E h –pH 图Fig.2 E h –pH diagram for the FeS 2–H 2O system at 25 ℃· 60 ·工程科学学报,第 43 卷,第 1 期在这个过程中金属离子沉淀或吸附在矿物表面,为捕收剂的吸附创造合适的位点. 在碱性溶液中黄铁矿可被铅离子和铜离子活化.Owusu 等[28]使用黄铜矿和黄铁矿组成的混合矿物体系,研究了黄铁矿对矿浆化学和黄铜矿回收率的影响. 浮选试验表明,随着黄铁矿含量的增加,黄铜矿的可浮性、回收率、品位和矿浆氧化电位降低,而黄铁矿回收率增加.Peng 等[29]在pH 值为9的条件下,以不同的电化学势测量了铜离子的浓度. 研究发现铜离子的浓度在很大程度上取决于电化学势. 在−185 mV 的电势下,溶液中几乎所有的铜都以亚铜离子的形式存在,而在−10 mV 的电势下,溶液的铜质量分数降低到28%;电位为+260 mV 时,溶液中亚铜离子不存在. 在−10 mV 和+260 mV 范围内,几乎所有的铜都以Cu(OH)2的形式析出;而在−185 mV 的电位下,只有少量铜以Cu(OH)2的形式析出. 因此,提高矿浆的电化学电位可以增加Cu(OH)2的生成,降低Cu +在黄铁矿表面的浓度. 由于铜离子活化黄铁矿强烈依赖于Cu(I)−硫化物的形成,因此在还原条件下更有利于黄铁矿活化.S 2−n S 2−2Chandra 等[30]用光发射电子显微镜(PEEM )分析研究了弱酸性条件下铜离子活化黄铁矿. 研究发现Cu 以Cu +形式吸附在黄铁矿表面. 与未活化黄铁矿相比,活化黄铁矿中存在较多的和S−OH ,较少的S 2−和. 这一现象是由于O 2/H 2O 的存在和铜离子在黄铁矿表面吸附而引起的氧化,并证实了离子交换、铜离子还原和硫氧化是同时进行的.综上,电势的增加对铜离子活化黄铁矿具有不利的影响. 主要有以下三个原因:一是电势的增加加快了Cu(I)到Cu(II)的氧化速率,结果导致用于活化的Cu(I)离子浓度降低;二是在高电势下,黄铁矿被氧化形成氧化铁/氢氧化物薄膜阻碍了亚铜离子与黄铁矿的作用;三是已经作用在黄铁矿表面的亚铜离子在高电势的作用下形成了亲水性碳酸铜/铜羟基物质影响了活化效果.2.2.2 铅离子对黄铁矿的影响在方铅矿和黄铁矿的电偶中,方铅矿充当阳极,黄铁矿充当阴极,通过电流作用将硫离子从方铅矿中氧化为元素硫,并将溶解的氧还原为氢氧根离子. 在没有捕收剂仅方铅矿存在的情况下,黄铁矿可表现出较强的可浮性. Peng 等[29]对铅活化黄铁矿进行了ζ电位测量,发现铅活化黄铁矿在不同的电化学电位下表现出相似的ζ电位性质. 铅活化的黄铁矿具有类似于氢氧化铅、氧化物或碳酸盐的等电点. 另一方面,在活化过程中加入的铅离子几乎都可以用乙二胺四乙酸溶液提取. 这些发现显然表明,铅对黄铁矿的活化主要是通过形成铅表面络合物如氢氧化物来实现的.2.2.3 铁离子对黄铁矿的影响铁离子和溶解氧在黄铁矿氧化过程中起着至关重要的作用,黄铁矿氧化过程可看作是黄铁矿,铁离子与氧之间的一系列反应. Liu 等[31]研究了Fe 3+对黄铁矿电化学行为的影响. 结果表明,三价铁在黄铁矿的溶解中起重要作用,黄铁矿电极的开路电势随Fe 3+浓度的增加而增加;Tafel 极化曲线表明,Fe 3+浓度的增加引起了黄铁矿电极极化电流的增加.黄铁矿的氧化是在黄铁矿电极和电解质界面发生的,并且在氧化过程中形成了由元素硫、多硫化物组成的钝化膜. 黄铁矿电极的极化电流随着Fe 3+浓度的增加而增加.2.2.4 金对黄铁矿的影响金常与黄铁矿伴生,以细小包裹体形式赋存于黄铁矿基质中,从而导致金不能被浸出剂浸出.为了使金能够被浸出剂浸出,通常需要通过氧化剂对黄铁矿基质进行强化氧化,然后释放出金颗粒.Huai 等[32]研究了金耦合对黄铁矿被铁离子氧化后的表面性能的影响. 研究表明,金可以催化三价铁还原,金的耦合显著促进了黄铁矿的氧化,在黄铁矿表面形成更多的铁氧化物. 同时,金的耦合还使黄铁矿的比表面积变的更粗糙、更大,从而提高黄铁矿氧化溶解的电化学活性.2.3 抑制剂对黄铁矿的影响2.3.1 无机抑制剂黄铁矿的无机抑制剂种类众多,通过电化学反应影响黄铁矿可浮性的主要有氰化物、硫化物和硫氧化物. 氰化物对黄铁矿浮选的抑制可能有以下几种机制[33−35]:在非离子活化条件下,当黄药存在时,主要是形成不溶性硫氰酸盐络合物取代了双黄药吸附位;当无捕收剂时,氰化物在黄铁矿表面的吸附导致形成不溶性的铁氰化物,使黄铁矿表面亲水性;在铜离子活化条件下,主要是通过降低矿浆铜离子含量,并形成铜氰化合物抑制黄药的吸附. Janetski 等[36]使用伏安法研究了氰化物抑制黄铁矿时对黄药的影响. 结果表明在黄原酸盐浓度和pH 恒定的情况下,氰化物离子浓度的增加会导致黄原酸盐的氧化电势向更正值移动. 氰化物离子对黄药的氧化过程具有抑制作用. 同时还发现在恒定的黄原酸酯浓度下,随着氰化物离龚志辉等: 磨矿和浮选过程中黄铁矿电化学行为的研究进展· 61 ·子浓度的增加,黄原酸酯氧化电位的阳极位移随着溶液pH 的降低而逐渐降低.由于氰化物有剧毒,硫化物作为替代物被广泛应用,硫化物、亚硫酸盐和硫酸盐的抑制机理主要是消耗溶液中的氧气,降低了溶液的混合电位,从而阻止了双黄药在黄铁矿表面的吸附. Janetski 等[36]通过伏安法研究了硫化钠如何抑制黄铁矿的浮选,并发现硫化钠的存在引入了新的阳极反应.相对于黄原酸盐氧化,新的阳极反应归因于溶解的硫化物(S 2−或HS −)在阴极电位下发生氧化. 硫化钠消耗了氧气并降低了混合电位,从而阻止了双黄药的生成和黄铁矿浮选. Khmeleva 等[37]研究了亚硫酸盐对黄铁矿浮选的影响. 结果发现,在有空气的情况下,黄铁矿表面上会形成多种氧化产物,亚硫酸盐可以在溶液中与黄铁矿和捕收剂相互作用. 亚硫酸盐的存在消耗了溶液中溶解的氧气,从而导致矿浆电位下降. 2.3.2 有机抑制剂无机抑制剂虽然有效,但对环境有害,并在处理过程中会造成额外费用. 有机抑制剂具有来源丰富、可生物降解和相对便宜等优点. 黄铁矿的有机抑制剂主要有羧甲基纤维素(CMC ),木质素磺酸盐. 由于聚合物结构复杂和矿物表面的非均质性,聚合物与矿物表面之间的相互作用非常复杂. 但可以简单的解释为有机抑制剂与黄铁矿矿物表面的吸附或结合,如图3所示[35]. 一是有机抑制剂与黄铁矿表面带相反电荷,二者之间存在静电吸引;二是有机抑制剂的非极性链段与矿物表面疏水区域之间的疏水相互作用驱动抑制剂聚集在矿物表面;三是羟基或羧基与矿物表面水合金属位点之间相互作用形成氢键,特别是在碱性pH 值下;四是阴离子官能团(如羧基或磺酸基团)与矿物表面的金属阳离子之间形成化学键驱动有机聚合物与矿物表面结合[38−39].(1) Electrochemical attraction(3) Hydrogen bonding(4) Chemical interaction(2) Hydrophobic interactionHydrophobic carbon chainHydrophobic sitesPyrite surfaceH HC C OHHO H HH H H OH OH O OO OH COOHOHHOH HHOMeMeMeMeC CC C C C C O OOH++图 3 有机聚合物与黄铁矿矿表面可能的相互作用机制:静电吸附(1),疏水相互作用(2),氢键(3)和化学相互作用(4)Fig.3 Possible interaction mechanisms of organic polymers with pyrite surface: electrochemical attraction (1), hydrophobic interaction (2), hydrogen bonding (3), and chemical interaction (4)羧甲基纤维素(CMC )是通过醚化过程产生的纤维素衍生物. 与天然多糖相比,CMC 结构中带负电荷的羧基和羟基的存在增加了CMC 的选择性. 与羟基不同的是,羧基能够与各种形式的金属物种相互作用,而羟基只能与金属羟基物种相互作用. Bicak 等[40]研究了高取代度和低取代度两种CMC 对黄铁矿的抑制效果. 研究表明,低取代度的CMC 比高取代度的CMC 抑制效果更好,主要是因为低取代度的CMC 自身负电荷较少,与黄铁矿表面的静电斥力较小,CMC 能更多的吸附在黄铁矿表面. 同时溶液中的pH 可以通过对羧基的解离、矿物表面羟基化及矿物表面电荷影响,从而影响CMC 在黄铁矿表面的吸附. 钙离子的存在可以增强CMC 在黄铁矿表面的吸附和抑制能力. 通过Zate 电位测定表明,Ca(OH)+在黄铁矿表面的吸附降低了黄铁矿表面的电负性,从而减小了CMC 与黄铁矿之间的静电排斥力. 除了静电作用外,黄铁矿表面的氢氧化物与CMC 的羟基和羧基之间形成氢键,从而抑制黄铁矿.木质素磺酸盐或磺化木质素可用作黄铁矿抑制剂. 对非活化黄铁矿浮选的电化学研究表明,生物聚合物吸附在黄铁矿表面后,使黄铁矿表面钝化,抑制了黄铁矿表面发生的电化学反应,包括黄铁矿自身的氧化还原反应和黄药在表面的氧化[35].Mu 等[41]比较了三种木质素磺酸盐聚合物(DP-1775,DP-1777和DP-1778)的抑制表现,研究表明生物· 62 ·工程科学学报,第 43 卷,第 1 期聚合物的分子量决定了其在黄铁矿表面的吸附密度,分子量越高,导致吸附能力越高,黄铁矿的抑制程度也更高.Mu等[42]通过电化学技术研究了在戊基黄原酸钾(PAX)和木质素磺酸盐类生物聚合物抑制剂(DP-1775)存在下黄铁矿表面性质的变化,对黄铁矿进行了电阻抗光谱法和循环伏安法测试.发现在不存在PAX的情况下,DP-1775不连续地分布在黄铁矿表面上并逐渐钝化黄铁矿表面;在PAX存在的情况下,预吸附的DP-1775降低了PAX的电化学氧化程度.3 研磨对黄铁矿电化学性能的影响3.1 电偶相互作用的影响磨矿对矿物/溶液界面的电化学势有很大影响,在磨矿过程中黄铁矿与磨矿介质之间存在电子相互流动,这种作用被称为电偶相互作用[29].不同电化学反应引起的电偶相互作用可以通过矿物的静息电位来预测,静息电位决定了不同硫化矿的电化学反应[43].在电偶相互作用中,黄铁矿由于具有较高的静息电位而表现出阴极的作用,从而导致其表面的氧还原和氢氧离子的产生.充当阳极的研磨介质被氧化并释放出亚铁离子.生成的亚铁离子进一步氧化成铁离子,然后与氢氧化物离子反应,以氢氧化铁的形式沉淀在黄铁矿表面,同时磨矿介质中产生的氧化铁物种对抑制黄铁矿浮选有重要作用[44],反应如下:阳极氧化:阴极还原:水解:Huang等[45]使用低碳钢作为磨矿介质研究了黄铁矿与介质的电偶作用及对浮选的影响.研究表明,低碳钢和黄铁矿之间的电流取决于极化行为、几何关系和研磨环境.低碳钢与黄铁矿的比表面积对低碳钢的电偶电流密度影响较大,同时溶解氧在电偶电流中起着显著的作用.研磨过程中研磨介质氧化产生的可被乙二胺四酸(EDTA)提取的铁含量与低碳钢上的电流密度成线性关系.电流与铁氧化物种的数量和黄铁矿的还原速率有关.溶解O2与硫化物反应、研磨介质的腐蚀和电相互作用降低了溶解的O2浓度.由于溶解O2的减少阻碍了黄药在硫化物矿物表面的吸附,从而抑制了这些矿物的浮选.3.2 研磨介质的形状及材料在矿石粉碎过程中会涉及到许多不同变量,例如研磨介质的形状和材料可能会对所产生颗粒的性质产生重大影响.研磨介质和硫化物矿物之间的电流相互作用产生的铁氧化物质对矿物浮选具有抑制作用.研磨介质形状主要有棒介质和球介质,材料类型主要有低碳钢、锻钢、低铬钢和高铬钢.Corin等[46]使用不同类型的磨矿介质研究其对金属硫化矿浮选的影响.结果表明,棒磨和球磨对金属硫化物的浮选影响差异不大,而研磨材料对金属硫化矿的矿浆化学和浮选性能有显著影响.Mu等[47]研究了锻钢、含铬15%(质量分数)的钢和含铬30%的钢3种磨矿介质材料在一定捕收剂(戊基黄药)浓度范围内分别在pH为5.0、7.0和8.5条件下对黄铁矿浮选的影响.结果表明,在pH值为5.0时,30%铬钢研磨的黄铁矿回收率最高,其次是使用15%铬钢和锻钢,磨矿介质中的铁污染和黄药氧化对黄铁矿浮选都有一定影响.黄铁矿表面的铁污染抑制了黄铁矿的浮选,黄药氧化可降低黄铁矿表面的铁污染.pH为7.0时,黄铁矿浮选主要受黄药浓度控制.黄药浓度较低时,阳极反应以黄铁矿氧化为主,黄药不能形成双黄药,浮选效果较差.当黄药浓度较高时,双黄药的形成占优势,有利于黄铁矿的浮选.pH为8.5时,黄铁矿的氧化作用超过黄药的氧化作用,矿浆电位在黄铁矿的浮选中起主要作用,高铬钢研磨介质产生的高矿浆电位促进了黄铁矿的氧化,而黄药的氧化降低,黄铁矿的浮选性能下降;锻钢研磨介质产生的低矿浆电位可使黄药氧化形成双黄药,从而促进了黄铁矿的浮选[48].3.3 研磨环境氧气在研磨过程的电流相互作用中起关键作用.氧气的存在会增加电流相互作用,因为氧气会在接受电子时形成羟基,从而促进研磨介质的氧化并增加矿物表面上氢氧化铁的浓度.在大多数硫化物系统中,这些电化学反应消耗氧气,导致矿浆电位降低[43].Huang和Grano[45]研究了在氮气、空气和氧气的不同气氛下,磨矿过程中黄铁矿的浮选回收率随原电池电流的变化.结果表明,氮气充入产生的龚志辉等:磨矿和浮选过程中黄铁矿电化学行为的研究进展· 63 ·。

电化学作站安全操作及保养规程

电化学作站安全操作及保养规程

电化学作站安全操作及保养规程电化学作站是实验室中常见的仪器设备,它用于进行电化学研究和实验。

由于涉及到电流、电压等较高的电能,因此在使用电化学作站时,必须遵守一定的安全操作规程,并做好仪器的保养工作,以确保人身安全和设备的正常运行。

下面是电化学作站的安全操作及保养规程。

一、安全操作规程:1.穿戴个人防护装备:在操作电化学作站前,必须穿戴好实验室需要的个人防护装备,如实验手套、护目镜、实验服等。

2.安装连接设备:在进行任何操作前,必须检查设备的安装和连接情况是否牢固稳定,确保电源、电极等设备正确连接,并保持设备和周围环境的干燥。

3.标准化设置:在进行实验前,必须先进行标准化设置,确保电流和电压等参数设置正确,并且设备相关的安全开关和保护装置正常工作。

4.禁止超负荷操作:严禁超负荷操作,即操作过程中不得超过设备规定的电流、电压等参数范围。

5.定时巡视:在使用电化学作站的过程中,需要定时巡视设备运行情况,如发现异常需要及时处理,严禁出现设备自燃、漏电等危险情况。

6.禁止在无人状态下操作:在无人监督或无人操作的情况下,不得使用电化学作站,必须将电源切断并正确关闭相关设备。

7.防止电解液溅出:在操作电化学作站时,应注意防止电解液溅出,必要时可以使用防护罩进行保护。

8.准确记录实验数据:在操作过程中,要准确记录实验参数和数据,便于分析和评估实验结果。

二、保养规程:1.定期清洁:定期清洁电化学作站,特别是电解槽和电极等部位,防止积存污渍影响设备正常工作。

2.检查电缆和接线:定期检查电缆和接线是否正常,是否损坏或老化,如发现问题及时更换,以确保设备的安全性和稳定性。

3.均匀使用电极:用电化学作站进行实验时,应尽量均匀使用电极,以免部分电极长时间使用导致磨损严重影响实验结果。

4.防止腐蚀:电化学作站中使用的电解液和试剂一般较为腐蚀性,因此应注意防止其对设备的腐蚀,可采取合适的防护措施。

5.保护仪器外壳:在使用电化学作站时,要保持仪器外壳的清洁和不受损害,更不得随意拆卸、维修或改变设备结构。

在线悬浮电解去污电化学性能和去污效果

在线悬浮电解去污电化学性能和去污效果

在线悬浮电解去污电化学性能和去污效果张怡;郑佐西;朱欣研;马梅花【摘要】在悬浮电解去污前期实验研究中,建立了24 L实验室在线悬浮电解去污装置,并且确定了悬浮电解去污配方.利用前期的实验结果,对碳钢、不锈钢模拟样品进行电化学去污实验,确定了最优的悬浮电解液配方和去污工艺.同时通过电化学工作站对其去污过程中的电化学性能进行研究,确定了电化学性能和去污效果的关系.在优化的电解液配方即0.6 mol/L H 2 SO4、0.8 mol/L Na2 SO4、100 g/L石墨颗粒、60 g/L SiC颗粒,循环流速26 mL/s、电解电压8 V、传输距离5 m等工艺参数和电流密度250 A/cm2条件下,对碳钢和不锈钢模拟样片进行1 h去污,去污因子为257和191.【期刊名称】《核化学与放射化学》【年(卷),期】2018(040)004【总页数】7页(P243-249)【关键词】在线悬浮电解;电化学性能;去污因子【作者】张怡;郑佐西;朱欣研;马梅花【作者单位】中国原子能科学研究院放射化学研究所,北京 102413;中国原子能科学研究院放射化学研究所,北京 102413;中国原子能科学研究院放射化学研究所,北京 102413;中国原子能科学研究院放射化学研究所,北京 102413【正文语种】中文【中图分类】TL944悬浮电解法是指利用悬浮电极的电解法[1-3],悬浮电极主要利用流动的悬浮体,通过馈电线或极板将电荷传给悬浮的固体颗粒,电化学反应在这些固体颗粒上进行。

在线悬浮电解去污技术,就是通过含有这些悬浮固体颗粒的电解液具有的流动性,可以将其从电解槽中引到需去污的管道或设备的内部,只需保证整个循环的密封性,而不需要将其进行拆除,从而实现了在线悬浮电解去污。

这种技术可对核设施退役中产生的大量结构复杂严重污染的设备、零部件等,如放射性管道、热交换器等污染设备和管道,进行快速深度去污,以降低退役去污的费用。

该技术具有以下优点[4-6]:(1) 用较低浓度的电解质去污配方溶液可以有效去污;(2) 悬浮电解和研磨相结合,可以提高去污效率;(3) 对于表面形状复杂的污染物,可以均匀地去污;(4) 带电介质和电解液可以再循环使用,减少二次废物量。

简论高硫铝土矿中硫的赋存状态及除硫

简论高硫铝土矿中硫的赋存状态及除硫

简论高硫铝土矿中硫的赋存状态及除硫摘要:利用X射线衍射分析和化学分析对高硫铝土矿中硫相的定量分析进行了研究。

讨论了不同形态硫的脱除方法。

含硫铝土矿在不同地区主要以硫化硫(黄铁矿)或硫酸盐硫的形式存在。

通过X射线衍射分析和化学定量分析,他的硫相工作可以准确地研究含硫铝土矿。

铝的主要硫形态含硫铝土矿的测定,可以为铝土矿脱硫方法的选择提供理论指导。

氧化焙烧工艺是脱除高硫铝土矿中硫化物硫的有效方法。

焙烧矿消化液中被侵蚀的矿量高于1.7 g/L,而焙烧矿消化液中被侵蚀的矿量低于0.18 g/L,用碳酸盐溶液洗涤铝土矿可有效脱除硫酸盐硫,矿石中总硫含量降至0.2%以下,可满足生产对硫含量的要求。

关键词:硫铝土矿;赋存状态;脱硫一、概述中国铝土矿资源丰富,储量已达2.3×109t。

高含硫一水硬铝石型铝土矿含量达1.5×108t,矿石主要由铝组成,具有中高比例、中低比例的硅、高比例的硫和中高铝硅比。

大部分矿石是高品位氧化铝,但脱硫后只能用含硫量高的铝土矿。

因此,开发一种经济实用的脱硫方法对工业界来说是非常重要的。

此外,在氧化铝生产过程中,矿石中的硫不仅会造成Na2O的损失,还会导致钢中腐蚀性物质和铁浓度的增加。

增加S2浓度后的解决方案。

例如,当铝矾土的硫含量超过0.8%时,氧化铝的质量会因为Fe的存在而受到损害,蒸发过程中的设备和钢铁分解过程中的设备都会受到腐蚀。

它甚至可以减少氧化铝的消化。

近年来,铝土矿脱硫吸引了氧化铝工业的快速发展。

从铝土矿中提取氧化铝有两种基本方法,即烧结法和拜尔法。

这种烧结工艺的缺点是效率低(低至33%或更低)。

由于成本低,拜耳法是从铝土矿中提取氧化铝最常用的方法。

在拜耳法和脱硫的研究领域,铝土矿主要是脱除钠中的硫铝酸盐溶液或拜耳溶液。

研究发现,脱硫主要是通过添加脱硫剂,即氧化锌或氧化钡来实现的,但这两种方法的基本原理是不同的。

但为了提高脱硫剂的针对性选择,首先要了解硫的相态。

铜铅硫化矿混合精矿浮选分离研究现状

铜铅硫化矿混合精矿浮选分离研究现状
l ms n e o b ov d e e d t e s l e . K EY O RDS :Cu- u fd r mi e o e ta e;foa in s p r to W Pb s l e o e; i x d c nc n r t lt to e a ai n; i h b tr p t n ilc n r lfo ai n n i io ; oe ta o to tto l
姜 亚雄 谢 海 云 刘 畅 陈 军 徐 国栋
( 明理 工大 学 国土 资 源工 程 学院 ,昆 明 6 0 9 ) 昆 5 0 3
摘 要 :对铜铅硫化矿混合精矿 的浮选分离进行 了总 结 , 介绍 了铜 铅硫化 矿混合精 矿分离 常用方法 ,
包 括 重 铬 酸 盐 法 、 MC法 、 化 物 法 、 硫 酸 ( ) 和其 他 组合 药 剂 以 及 矿 浆 电 位 调 控 浮 选 法 等 多 种 分 C 氰 亚 盐 法
矿 物 的抑制 剂 , 在 实 践 中 , 是 黄 铜 矿 的 活化 剂 , 但 它 活 化 的原 因是 在弱 酸性 矿浆 中 , 存在 空气 的条 件下 , F S 氧化 成 F : S , 而 F : S , 除去硫 化 eO e( O ) , e ( O ) 可 铜 矿 物表 面 的氧化 膜 , 使之 恢复 新鲜 的矿 物 表面 , 从 而 活化 硫化 铜 矿物 ; 一方 面 , 另 高价 铁 的存在 可 以使
化, 而硫 化 铜矿 物表 面 刚开始 氧化 时 , 就立 即进 行 浮
选。
联 氮化 合 物 对 铜 矿 物 的抑 制 机 理 研 究不 多 , 苯 胺 黑 是 种 常 见 的 联 氮 化 合 物 。T I 什 娜 认 为 ..俞 抑 制作 用为 苯胺 黑通 过 配位 机理 化学 吸 附在硫 化 铜 矿 物表 面上 , 成难溶 的亲水 化合 物 ; 形 部分 双 黄药 解 吸 , 吸附在 矿 物表 面 上 的不 同形 式 的 捕 收 剂 比例 使 改 变 , 而 降低 了矿 物 表 面 的 疏水 性 。苯 胺 黑 存 在 进 时, 氰化 物 浸 出铜离 子 的速度 降低 , 化 了浮 选矿 浆 优 中铜 一 氰化 合 物 的 比例 。用 苯 胺 黑 作 为 铅 铜 混 合 精

浮选药剂配制方法,矿石选矿浮选药剂配比

浮选药剂配制方法,矿石选矿浮选药剂配比

书山有路勤为径,学海无涯苦作舟
浮选药剂配制方法,矿石选矿浮选药剂配比
浮选机和浮选药剂是浮选工艺中最不可或缺的,矿浆在浮选机的搅拌下,与浮选药剂充分混合发生化学反应或者物理反应,来改变矿石的亲水性,与浮选机内空气粘合在一起,借助气泡的浮力浮到浮选机矿浆表面,再由浮选机刮板刮出到精矿槽。

浮选药剂在浮选工艺中直接影响精矿的产量和质量,浮选药剂配制比例过高容易导致精矿质量下降,比例过低容易影响精矿产量,浮选药剂配制参考依据和配制方法是什么呢?怎样才能配制出最合适的比例?浮选药剂在配制过程中需要遵守哪些安全管理规定呢?
浮选药剂定义和种类
凡在选矿过程中,为提高该作业的效率而加入的化学添加剂,统称为选矿药剂。

浮选药剂有捕收剂、抑制剂、助磨剂、助滤剂、表面改性剂等等。

我国大多数选矿厂目前常用的捕收剂主要有黄药和黑药,黄药适用于硫化矿物,如方铅矿、闪锌矿、黄铜矿等;黑药又分为15 号、25 号、31 号,因为黑药对黄铁矿的捕收能力差,所以适用于浮选含黄铁矿的硫化矿石。

浮选药剂配制参考依据
浮选药剂的配制是根据药剂的性质决定的,能够溶于水的药剂,水溶液配制一般在5%-10%,浓度太低,体积易过大;浓度太高,很难控制用量。

相反,难溶于水的药剂,需要先溶于特别的溶剂中,配制成合适的浓度,然后再添加到浮选机里。

比如说,油酸可先溶于火油,白药可先溶于邻甲苯胺。

浮选药剂配制方法
除了以上讲到的水溶液配制方法和加溶剂配制方法外,还有悬浮液、皂化、乳化、酸化、气溶胶法、电化学处理等配制方法。

浮选溶液化学作业

浮选溶液化学作业

2 Lg[HCO3 ] Lg(1CT) Lg(K1H0CT [H ]) Lg( 1010.33[H ] [CO3 ])
Lg[H2CO3]=Lg(2CT) Lg(2H0CT [H ]) Lg( 1016.68[H ] [CO32 ])
采用取点法并用描点法进行绘图,其结果如下:
3.93 5 根据公式 knH H H CH n A 0 代入数据得 10 H H 10 0 , 所 2 2
以 1×10-5mol/L 酒石酸溶液的 pH 值:5.03 因为碳酸钠为多元强碱弱酸盐,查表得到碳酸钠的平衡常数 k1H 109.57 ,
5.66 10 10
(5.66 10 10 ) 2 4 3.1775 10 18 2 10 9 2
pH 8.68 ② 当 pH pH l 时 : [ HOL( aq ) ]= -(1+K H )+ (1+K H )2 8C T ( K im K H K d K H 2 ) 4( K im K H K d K H 2 )
东北大学研究生考试试卷
课程名称
矿物浮选化学
考试日期
考试时间:
分钟
一、简答题(每小题 10 分,共 30 分)
1、矿物浮选化学的主要研究内容是什么? 答:矿物浮选化学的主要研究内容包括: ①浮选表面化学 ②浮选溶液化学 ③浮选电化学 ④浮选胶体化学 ⑤浮选药剂结构与性能 2、什么是质子等衡式 PBE?写出 H2CO3 和 H2O 的 PBE。 答: 用物质的量浓度表示质子 (氢离子) 数相等的方程式为质子等衡式, 如 H2CO3 和 H2O 的质子等衡式 PBE,如下所示: 在 H2CO3 的水溶液中,建立质子平衡式,按上述步骤则有: H2CO3-H+HCO3H2CO3-2H+CO32H2O-H+OHH2O+H +H3O+ 依据得失质子相等的关系,可知: c(H+)= c(HCO3-)+2 c(CO32-)+ c(OH-) 3、从十二胺(RNH2)解离平衡的角度分析其在矿物表面发生静电吸附的 pH 条件 是什么? 答:十二胺酸解离式 RNH3+=RNH2(aq)+H+, ka=[H+][RNH2]/[NH3+]=10-10.63 十二胺碱解离式 RNH2(aq)+H2O=RNH3++OH- kb=[OH-][RNH3+]/[RNH2] =4.3×10-4

浮选

浮选

浮选即泡沫浮选,是根据矿物表面物理化学性质的不同来分选矿物的选矿方法。

捕收剂主要作用是使目的矿物表面疏水、增加可浮性,使其易于向气泡附着。

捕收剂的分类:硫化矿捕收剂(黄药、黄药酯)、硫氮类(硫氮酯)、硫胺酯(硫逐氨基甲酸酯)、黑药类(25号黑药、丁铵黑药、胺黑药)、硫醇类(MBT)、硫脲衍生物类。

调整剂主要用于调整捕收剂的作用及介质条件,其中促进目的矿物与捕收剂的作用。

调整剂的作用机理:1调整剂在矿浆中的调整作用:调整剂在矿浆中的行为(排除影响浮选选择性的离子、调整矿浆中的离子组成、形成难容化合物、形成易溶但稳定的络合物)调整剂对矿物表面的基本作用(离子吸附、化学吸附、化学反应、竞争作用、分子作用、清洗表面作用、胶粒吸附)2调整剂对气泡的作用:调整剂对气泡弥散及气泡强队的影响。

微细胶粒对气泡的影响(在溶液中先形成胶粒,然后固着于液气界面。

钙离子与碱性溶液表面的负电荷相吸引,使液气界面层胶态化。

调节胶粒活化气泡的方法)3调整剂对矿粒向气泡附着的影响4抑制和活化作用机理:抑制作用机理(形成亲水性膜、封锁或改变捕收剂活化地区、将溶液中的活性离子结合成难溶化合物或稳定的络合物、将捕收剂结合成难溶化合物、改变气泡表面状态、利用某些离子促进抑制剂的吸附)活化作用机理:增加活化中心。

消除有害离子。

改善矿粒向气泡附着的状态。

起泡剂的定义:起泡剂应是异极性的有机物质,极性基亲水,非极性基亲气,使起泡剂分子在空气与水的界面上产生定向排列。

大部分起泡剂是表面活性物质,能够强烈地降低水的表面张力。

起泡剂应有适当的溶解度。

起泡剂的作用:起泡剂分子防止气泡的兼并。

起泡剂降低气泡上升速度。

起泡剂影响气泡的大小及分散状态。

主要作用是促使泡沫形成,增加分选界面,但它与捕收剂也有联合作用。

提高药效的主要措施:加速药剂配制、配制成悬浮液或乳浊液、皂化、乳化、电化学法、气溶胶法。

现代浮选过程一般包括以下作业:磨矿。

先将矿石磨细,使有用矿物与其他矿物解理。

双碱法处理磷矿选矿工艺废水及循环利用研究

双碱法处理磷矿选矿工艺废水及循环利用研究

【环境工程】双碱法处理磷矿选矿工艺废水及循环利用研究罗惠华,李冬莲,王玉林,魏以和(武汉工程大学环境与城市建设学院,湖北 武汉 430073)摘要:根据磷矿浮选工艺要求和废水的性质,利用CaO和Na 2CO 3两碱处理选矿废水,废水循环回用,达到回水的100%利用,即“零排放”。

该工艺既防止了浮选废水对环境的潜在污染,降低了浮选药剂消耗,又充分利用了水资源,工艺简单,易于工业化。

关键词:磷矿浮选;循环利用;双碱法处理废水中图分类号:X751.03;TD971.3 文献标识码:A 文章编号:1007-9386(2008)03-0048-03Research on Treatment Phosphorite ProcessingWastewater with Double Alkali and Recycling UtilizationLuo Huihua, Li Donglian, Wang Yulin, Wei Yihe(School of Environment and Civil Engineering, Wuhan Institute of Technology, Hubei Wuhan 430073)Abstract: Based on the requirement of phosphorite processing technology and the characters of wastewater, the technology of treatment phosphorite processing wastewater with CaO and Na 2CO 3 and recycling utilization of wastewater was studied. The utilization ratio of wastewater is 100%. The experiment results indicate that the technology can prevent the potential environmental pollution causing by wastewater, and reduce the amount of flotation agent. The water resource can be utilized fully. The technology is briefness and industrialization.Key words: phosphorite flotation; recycling utilization; treatment wastewater with double alkali我国磷矿资源丰富,仅次于美国、摩洛哥,居世界第三位,是世界上重要的磷化工产品生产国。

油泡浮选技术探讨

油泡浮选技术探讨

油泡浮选技术探讨李振;于伟;杨超;周安宁【摘要】The research and development of oily-bubble flotation opens upa new research field from the angle of method .For improving the understanding and research of oily-bubble flotation in our country ,theoily-bubble flotation realization mechanism and effect has been analyzed by the introduction of oily-bubble flotation process and the analysis on the application of oily-bubble in oil sand flotation and coal slime flotation .It has been pointed out that relative to normal flotation ,oily-bubble flotation has the characteristics of high recovery rate ,good selectivity and so on .Thus under the background of high-tech flotation technology research need ,it can be expected that to carry out theory and craft research on oily-bubble flotation will make mineral processing technology of our country upgrade to a new level ,and become one of the important methods of upgrading technology research .%油泡浮选技术的研发从方法的角度为浮选开辟了新的研究领域。

铁闪锌矿的选矿研究概况_童雄

铁闪锌矿的选矿研究概况_童雄

去其表面的捕收剂, 这比使表面新鲜的黄铁矿受到
抑制更加困难。所以, 优先浮选比混合浮选更有利
于锌和硫化铁矿物的分选。在很多时候, 铁闪锌矿
浮选的实质, 也就是铁闪锌矿与黄铁矿或者磁黄铁
矿的分离问题。
但在实际生产中, 须根据具体的矿石性质决定
采取哪种流程。锡铁山铅锌 矿的浮选流程 几经改
动, 原设计为等可 浮流程, 后 改为部分优先 混合浮
铁闪锌矿粒度太粗主要存在以下 3个方面的危
9
总第 360期
金属 矿山
2006年第 6期
表 2 不同粒级铁闪锌矿的天然可浮性
粒度 /目 上浮率 /%
+ 80 - 40 0. 2
+ 120- 80 1. 3
+ 200- 120 1. 5
- 200 0. 5
害。 ( 1) 除了造成锌、铟的损失 ( 如广西大厂车河
坏, 给锌硫分离带来困难, 脉石矿物也因为泡沫粘而 夹杂进入锌精矿。
( 2) 由于硫化矿的密度与锡石的接近, 粗粒硫 化矿进入后续重选作业后, 与细粒锡石混杂在一起, 使摇床分带不清, 无法截取锡石精矿, 影响锡石的回 收率。都龙的锡石回收率还不到 40% 。
( 3) 粗粒容易沉淀、累积在浮选槽内, 使浮选作 业无法正常进行, 甚至烧坏电机, 因而不得不加大水 量、降低浮选浓度, 这又导致药剂用量、水量等生产 成本的大幅度增加。车河选厂仅锌硫混选和锌硫分
Hale Waihona Puke 含铁高些, 颜色呈黑褐色; 中温热液矿床的铁闪锌矿 含铁较少, 呈褐色或者浅褐色; 低温热液矿床的铁闪 锌矿含铁更少, 一般呈黄色。
依据矿床成因, 一般铁闪锌矿不含锗, 而铟、银、 镉、镓等富集在铁闪锌矿中。都龙的情况与此表现 出较大的一致性。 2. 2 铁闪锌矿的含铁量与选矿特性的关系

选矿工作内容介绍

选矿工作内容介绍

三Байду номын сангаас选矿前准备作业 配矿及混匀
目的:通过保持入选矿石质量指标均衡稳定,保 证选矿厂生产稳定,获得好的经济指标; 方法:建配矿混匀料场或简易配矿混匀设施。配 矿一般在料场、采矿场、粗碎仓、精矿仓中进 行; 混匀一般在料场、破碎、筛分和运输过程中 进行。 常用设备:堆取料机
三、选矿前准备作业 洗矿
定义:除去矿石中粘土质物料的过程。 “泥”的界定:没有统一而明确的粒度界限,通常 以0.074mm为界限; 目的:消除粘土质物料(矿泥)对选别作业的影 响,获得良好的选别指标; 工艺过程:在水流和相应的机械力作用下将矿泥 碎散和分离; 常用设备:洗矿溜槽、水力筛、圆筒洗矿机、槽 式洗矿机、擦洗机等。
定义:根据矿粒在介质(水或空气)中沉降速度的 不同把物料分成两个或两个以上粒度级别的过 程。 分类:水力分级(湿式)、风力分级(干式); 用途:准备作业/磨矿闭路/脱泥、除尘和浓缩/粒 度分析/洗矿/选别 产品:粗粒级产物叫沉砂或底流、细粒级产物称 为溢流或顶流。 常用设备:螺旋分级机、水力旋流器、圆锥分级 机、倾斜板浓缩箱等。
三、选矿前准备作业
磨矿 过程:磨矿作业是破碎作业的继续,将物料装入 连续转动的圆筒中,圆筒内装入一定数量的不同 形状的研磨介质,如球、棒、短圆柱或较大块矿 石、砾石。当筒体以一定速度旋转时,研磨介质 被带动而产生冲击研磨、作用,将物料磨碎。 分类:湿式磨矿、干式磨矿; 常用磨机:球磨机、棒磨机、半自磨机、自磨 机、立式磨机、砾磨机等。
一、概 常用选矿方法

常用的选矿方法有浮选法、磁选法和重选 法。其中浮选法应用最广,磁选法多用在 黑色金属和稀有金属的选矿,重选法则广 泛地应用于黑色、有色、稀有金属和煤的 选矿。还有电选法、化学选矿法及其他特 殊选矿法。各种选矿方法有时单独使用, 也有几种选矿方法联合应用。
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

《浮选电化学作业》姓名:学号:授课老师:学院:资源加工与生物工程学院编写日期:2015年5月硫化矿浮选电化学研究进展王建军(中南大学资源加工与生物工程学院,湖南,长沙,410083)摘要:本文介绍了硫化矿浮选电化学理论进展、前沿机理、技术应用和存在问题,并提出了应该结合溶液化学等其他学科的知识,发挥学科交叉优势的作用。

关键字:硫化矿;浮选;电化学;应用;存在问题Abstract:This paper introduces electrochemistry of sulfide mineral flotation theory progress, frontier mechanism, application technology and existing problems, and put forward that we should play the role of interdisciplinary strengths of solution chemistry, and other disciplines of knowledge.Keywords:Sulfide ores; flotation; electrochemistry; application; existing problems引言黄药的发现是泡沫浮选法得以迅速推广的关键因素,再加上当时发现氰化物是具有优良的选择抑制性,铜离子对闪锌矿具有活化作用,这样捕收剂、抑制剂和活化剂组成的简单浮选体系为以后硫化矿浮选奠定了重要的基础。

1.硫化矿浮选理论一般而言, 硫化矿物浮选体系可以分为固相(硫化矿物及脉石) 、液相(捕收剂和调整剂) 和气相(空气, 特别是空气中含有的氧气)。

硫化矿物浮选体系中的固相(硫化矿物) 和液相( 捕收剂和调整剂)。

除一般的化学性质, 如可溶性、分散性以外, 还有其独特的性质, 如氧化还原性。

硫化矿物在水溶液中表面会产生一层性质完全不同于硫化矿物本身的氧化产物, 完全改变硫化矿物的表面性质和浮选行为。

因此硫化矿浮选体系是一个比较复杂的体系[1]。

国内外选矿学者对硫化矿物—硫氢捕收剂(黄药)—氧—水这一复杂体系进行了大量基础理论和实际应用研究, 获得了许多有意义的结论。

硫化矿物浮选理论研究可以分为三个阶段:一是20世纪50 年代以前, 从纯化学的观点来解释硫化矿物与捕收剂的作用机理;二是50 年代后提出了硫化矿物浮选的电化学理论;三是近20 多年来开展的矿浆电化学应用研究[2]。

经过几十年来大量的理论和应用研究, 形成了以电化学条件为控制参数的硫化矿物浮选及分离的理论及工艺。

其主要研究成果可概括为以下几方面:一是黄药与硫化矿作用的电化学理论和模型, 阐明了黄药在不同矿物表面的产物及氧气的作用;二是硫化矿物无捕收剂浮选理论, 如硫化钠存在时硫诱导浮选和无硫化钠存在时的自诱导浮选;三是电化学调控浮选工艺, 如外加电场浮选, 调整矿浆电位浮选和原生电位浮选[3];四是Cu2+活化硫化矿物的电化学[4, 5];五是浮选半导体能带理论[6, 7]。

2.硫化矿浮选机理2.1 捕收剂黄药和硫化矿物作用的电化学机理国内外学者对硫化矿与捕收剂作用的电化学机理进行了大量研究, 提出了硫化矿物与捕收剂作用的电化学模型[8, 9],认为硫化矿与捕收剂的作用为一电化学反应, 其阳极过程是由捕收剂或捕收剂与硫化矿物直接参与阳极反应而产生疏水物质, 其阴极过程为液相的氧气从矿物表面上接受电子而还原, 如用MS 表示硫化矿物,X-表示硫氢捕收剂离子, 则硫化矿物与硫氢捕收剂的作用可用电化学反应表示,反应式如下:(1)阴极反应为氧气还原:O2+2H2O+4e =4OH-(2)阳极反应为硫氢捕收剂离子向矿物表面转移电子或者为硫化矿表面直接参与阳极反应而形成疏水物质。

可能的情况有以下几种:X- =X吸附+eMS+2X-= MX2 +S0+2e 或MS+2X-+4H2O= MX2 +SO42 -+8H ++8e2X-=X2+2e(3)则由阴/阳极反应式可得硫氢捕收剂与硫化矿物反应的形式:4X-+O2+2H2O=4X吸附+4OH-MS+2X-+1/ 2O2 +H2O =MX2 +S0+2OH-MS+2X-+2O2=MX2+SO42-4X-+O2+2H2O=2X2+4OH-电化学机理表明, 硫氢捕收剂与硫化矿物作用可能出现的疏水产物有三种, 、MX2 和X2。

但对于具体的硫化矿物浮选体系, 其反应产物不同。

对特即X吸附定的硫化矿物浮选体系, 只要测定硫化矿物的静电位, 然后与捕收剂氧化为二聚物的平衡电位进行比较, 就可以确定硫化矿物与捕收剂作用的阳极反应和生成产物[9]。

表1.在乙基黄药溶液中硫化矿物的静电位与反应产物R .Allison 和N .P .Finkelsiein测定了硫化矿物在捕收剂溶液中的静电位,并鉴定了反应产物。

由结果可知,当矿物静电位>黄药氧化为双黄药的平衡电位时,矿物表面产物为双黄药;当矿物静电位<黄药氧化为双黄药的平衡电位时,矿物表面产物为金属黄原酸盐。

结果见图表1。

(注:黄药的平衡电位为0.13V)2.2 无捕收剂下硫化矿浮选电化学机理最先对硫化矿无捕收剂浮选进行科学研究的是Rauitzr等[10]。

他们研究了方铅矿的无捕收剂浮选。

所研究的矿物都经过热盐溶液冲洗, 然后在浮选前小心地用蒸馏水清洗, 经过了这些预处理, 体系中的氧得以尽可能排除。

结果是可以实现方铅矿在无捕收剂下的浮选。

尽管可以实现在无氧条件下的硫化矿无捕收剂浮,但是研究也表明至少需要一个氧化电位才能进行无捕收剂浮选。

现在硫化矿无捕收剂浮选被划分为自诱导浮选和硫诱导浮选两大类。

(1)自诱导浮选自诱导浮选也称为第一类无捕收剂浮选,即是用普通氧化还原剂调控电位的无捕收剂浮选[4]关于自诱导浮选的机理,主要有以下三种观点: ①在电化学调控下, 硫化矿表面适度阳极氧化产生了中性硫分子S0,而S0是疏水物质,从而导致矿物浮选。

②在电化学调控下, 硫化矿表面氧化初期形成的缺金属富硫化合物是疏水体。

硫化矿表面氧化开始时, 金属离子优先离开矿物晶格而进入液相, 留下一个与化学计量的矿物有相同结构的缺金属富硫层, 这种缺金属富硫层是疏水的。

随着氧化的继续, 金属离子越来越多离开晶体, 进入液相。

富硫程度越来越高, 最终有中性硫生成在矿物表面[11]。

③硫化矿的溶解度很小, 不易被水润湿, 决定了矿物的无捕收剂浮选, 溶解度越小, 无捕收剂可浮性越好[12]。

前两种观点都认为是硫化矿物表面的阳极氧化导致了矿物表面无捕收剂疏水化, 这种氧化受电位的调节和控制。

第三种观点从本质上说, 这种提法属于天然可浮性的范畴, 并没有考虑到矿浆电位的影响。

(2)硫诱导浮选硫诱导浮选即第二类无捕收剂浮选, 即用硫化钠做还原电位调整剂时的硫化矿无捕收剂浮选。

自诱导浮选的普通还原剂调整剂如Na2S2O3, 其添加只能降低硫化矿的无捕收剂浮选的矿浆电位, 不会促进浮选。

但第二类无捕收剂浮选中的还原电位调整剂Na2S则不同,它除了降低矿物- 溶液界面间的电位外, 还能在硫化矿表面发生明显吸附, 这种吸附能促进某些硫化矿的无捕收剂浮选。

G.H.Luttrell等[13]通过调节矿浆电位,对六种不同的黄铜矿, 用硫化钠进行了无捕收剂浮选试验。

结果表明, 无捕收剂浮选仅在氧化条件下有效。

而且浮选要求黄铜矿表面相对地没有氧化物, 这一点可用Na2S处理矿浆来实现。

黄开国等[14]通过硫化铜矿石无捕收剂浮选取得了与加捕收剂浮选相同的选别指标,含铜1.88%的浸染铜矿无捕收剂浮选小型闭路试验,获得品位26.15%,回收率95.3%的铜精矿。

研究结果表明,无捕收剂浮选中,黄铜矿的浮选速率比黄铁矿高,对铜-硫矿石的优先浮选有利;氧化还原电位较高的矿浆中容易实现硫化铜矿石的无捕收剂浮选;黄铜矿在酸性或碱性矿浆中的可浮性都比在自然pH状态下好;用石灰调浆能获得硫化铜矿浮选所需的pH值和稳定、适宜的氧化还原电位,对黄铁矿又有较好的抑制作用;加入硫化钠时,矿浆的氧化还原电位相应降低,但当充空气浮选时,随即上升为较高的氧化还原电位,适合于无捕收剂浮选,本研究不用硫化钠处理,也能实现硫化铜矿石无捕收剂浮选。

3. 硫化矿浮选电化学技术应用覃文庆[15]等通过研究黄铜矿、黄铁矿、方铅矿等矿物在有/无捕收剂两种情况下的浮选行为,考察浮选与矿浆电位的关系。

结果表明:当pH 值分别小于4.0 时,黄铜矿无捕收剂浮选的电位区间为0~0.9 V;当pH 值为4.0 或11.0 时,矿浆电位大于0.85 V 以后,黄铁矿的浮选回收率低于20%;当pH 值为11.0 时,黄铜矿无捕收剂浮选的矿浆电位区间为0.35~0.85 V。

当pH 值为10.0、丁黄药浓度为5×10−5 mol/L 时,方铅矿浮选的矿浆电位为0.45~0.55 V,而黄铜矿在0.45~0.80 V 的电位区间具有良好的浮选性能(分别见下图a、b、c、d);对闪锌矿而言,当pH 值为9.0 时,矿浆电位在−0.40~0.80V 区间都不具有良好的可浮性。

在浮选体系中,黄铜矿表面氧化会产生元素S0,当矿浆电位从−0.2V增大至0.6 V,黄铜矿表面氧化产生的元素S 的数量逐渐增大,黄铜矿的无捕收剂浮选性能越来越好。

并电位调控浮选技术,使得南京某铅锌矿由原来2个系列每天处理900 t 矿石,变成一个系列即可处理。

(a) (b)图1. pH 及矿浆电位对硫化矿浮选的影响孙传尧等[16]以铜钼硫化矿浮选体系中的电化学理论为基础,研究了在硫化矿表面发生的5类典型的阳极氧化反应(捕收剂的阳极氧化;金属/捕收剂盐的形成;硫化矿物表面的氧化;MX 的氧化分解;抑制剂使MX 的分解)在处理斑岩铜矿过程中的浮选意义。

在应用电化学控制浮选技术的基础上结合新型高效捕收剂, 在额尔登特选矿厂工业试验取得了成功:当原矿含铜0.709 %时,仅两次精选获得铜钼混合精矿铜品位25.88 %,铜回收率85.61 %分别比原生产提高5.90 %、0.67 %王淀佐等[5]运用电化学电位调控浮选理论, 对方铅矿-石灰-乙硫氮体系进行研究。

结果表明:随着石灰的加入, 矿浆电位降低, 方铅矿的回收率逐步提高, 在矿浆电位为170mV 左右, 方铅矿回收率趋于最大值, 此时矿浆pH =11.5~12。

随着矿浆电位从400mV 降至240mV , 闪锌矿可浮性慢慢提高,其在铅粗精矿中的含量达到最大值;矿浆电位进一步降低, 闪锌矿可浮性急剧下降, 当矿浆电位降至175~165mV 时, 闪锌矿的抑制最完全, 铅锌矿物达到了有效分离。

黄铁矿在pH >9~10 , 电位低于240mV 时受到有效抑制。

相关文档
最新文档