材料力学第2章 连接部分的计算
材料力学——第二章剪切
材料力学
练习2、在厚t=10毫米的钢板上冲出如图所 示的孔, 钢板的剪切极限应力为τ0=300MP a,求冲力P=?
R=50 100
材料力学
练习3、夹剪夹住直径为d=3毫米的铅丝,铅丝 的剪切极限应力为:τ0=100MPa,求力P=?
P
200
50
材料力学
§2-3 挤压的实用计算
铆钉在接触面上产生变形
F
bF
LL
材料力学
取一根杆为研究对象,受力分析
F/2
A Lb
剪切面
F
由剪切强度条件:
F/2
Fs F / 2 [ ]
A Lb
F
L 2b[ j ] 100mm
确定挤压面 由挤压强度条件:
jy
Fb Ajy
F /2
b
[
jy
]
F 2b[ jy ]
材料力学
钢板在接触面处的变形
材料力学
挤压: 连接件和被连接件在接触面上相互压紧.
挤压变形
P
铆钉与钢板在接触处相互压紧,在铆钉或 铆钉孔处因相互压紧而产生塑性变形;
挤压力:局部接触面上的总压力(外力);
或者挤压面上传递的力。
材料力学
挤压面:
两个构件之间相互接触的局部接触面,用 Abs 表示; 挤压面与外载荷垂直;
]
2 Pbs
h[ bs
]
2 64 10 240
103 (
m
)
53.3mm
L maxL1,L2 53.3mm
材料力学
例3 两矩形截面木杆,用两块钢板连接如图示。已知拉杆的 截面宽度 b=25cm,沿顺纹方向承受拉力F=50KN,木材的
材料力学习题册答案-第2章-拉压
一、 选择题
1.图 1 所示拉杆的外表面上有一斜线,当拉杆变形时,斜线将(
A.平动
B.转动
C.不动
D.平动加转动
D)
2.轴向拉伸细长杆件如图 2 所示,则正确的说法是 ( C )
A.1-1、2-2 面上应力皆均匀分布 B.1-1、2-2 面上应力皆非均匀分布 C. 1-1 面上应力非均匀分布,2-2 面上应力均匀分布 D.1-1 面上应力均匀分布,2-2 面上应力非均匀分布
30KN 1
300mm
l1 解:(1) 轴力图如下
2
400mm
l2
10KN
-
40KN
50KN 3
400mm
l3
10KN
+
10KN
(2)
(3)右端面的位移
=
= 即右端面向左移动 0.204mm。
8.一杆系结构如图所示,试作图表示节点 C 的垂直位移,设 EA 为常数。
A
30
C
30 ΔL2 60 ΔL1
CD 段:σ3= =
Pa=25MPa
2.图为变截面圆钢杆 ABCD,已知 =20KN, = =35KN, = =300mm, =400mm,
D
3
C
P3
2
,绘出轴力图并求杆的最大最小应力。
B
1 P2
A
P1
l3 解:
-
50KN
l2 15KN
l1
20KN
+
AB 段:σ1=
=
=176.9MPa
BC 段:σ2=
反力均匀分布,圆柱承受轴向压力 P,则基座剪切面的剪力
。ห้องสมุดไป่ตู้
材料力学课件第二章 轴向拉伸和压缩
2.3 材料在拉伸和压缩时的力学性能
解: 量得a点的应力、应变分别 为230MPa、0.003
E=σa/εa=76.7GPa 比例极限σp=σa=230MPa 当应力增加到σ=350MPa时,对应b点,量得正应变值
ε = 0. 0075 过b点作直线段的平行线交于ε坐标轴,量得 此时的塑性应变和弹性应变
εp=0. 0030 εe= 0 . 0075-0.003=0.0045
内力:变形固体在受到外力作用 时,变形固体内部各相邻部分之 间的相互作用力的改变量。
①②③ 切加求 一内平 刀力衡
应力:是内力分布集度,即 单位面积上的内力
p=dF/dA
F
F
FX = 0
金属材料拉伸时的力学性能
低碳钢(C≤0.3%)
Ⅰ 弹性阶段σe σP=Eε
Ⅱ 屈服阶段 屈服强度σs 、(σ0.2)
FN FN<0
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(1)外载荷不能沿其作用线移动。
2.2 拉压杆截面上的内力和应力
第二章 轴向拉伸和压缩
在应用截面法时应注意:
(2)截面不能切在外载荷作用点处,要离开或 稍微离开作用点。
1
2
11
22
f 30 f 20
60kN
Ⅲ 强化阶段 抗压强度 (强度极限)σb
Ⅳ 局部颈缩阶段
例1
一根材料为Q235钢的拉伸试样,其直径d=10mm,工作段 长度l=100mm。当试验机上荷载读数达到F=10kN 时,量 得工作段的伸长为Δ l=0.0607mm ,直径的缩小为 Δd=0.0017mm 。试求此时试样横截面上的正应力σ,并求出 材料的弹性模量E。已知Q235钢的比例极限为σ p =200MPa。
材料力学2—剪切
Q τ = ≤ [τ ] A
2.3、挤压的实用计算 在外力作用下,连接件和被连接的构件之间, 必将在接触面上相互压紧,这种现象称为挤压。 在外力作用下,剪切构件除可能被剪断外,还 可能发生挤压破坏。挤压破坏的特点是:构件互相 接触的表面上,因承受了较大的压力作用,使接触 处的局部区域发生显著的塑性变形或被压碎。这种 作用在接触面上的压力称为挤压力;在接触处产生 的变形称为挤压变形。
例 2.5 m3挖掘机减速器的一轴上装一齿轮,齿轮与轴通过平 键连接,已知键所受的力为F=12.1 kN。平键的尺寸为:b= 28 mm,h=16 mm,l2=70 mm,圆头半径R=14 mm。键的 许用切应力[τ]=87 MPa,轮毂的许用挤压应力取[σbs]=100 MPa,试校核键连接的强度。
解:(1) 校核剪切强度 销轴的受力如图所示,a-a和b-b两截面 皆为剪切面,这种情况称为双剪。 利用截面法以假想的截面沿a-a和b-b将 销轴截开,由所取研究对象的平衡条件 可知,销轴剪切面上的剪力为
F 188 Q= = = 94 KN 2 2
剪切面面积为
A=
πd2
4
=
π × 92
4
= 63.6 cm 2 = 63.6 ×10−4 m 2
h Abs = ⋅ l p 2 1.6 = (7.0 − 2 ×1.4) 2 = 3.36 cm 2 = 3.36 ×10−4 m 2
故轮毂的工作挤压应力为
12100 P σ bs = = = 36 × 106bs 3.36 × 10−4
2.1 工程实际中的剪切问题 再看连接轴与轮的键(图a)。作用于轮和轴上的 传动力偶和阻抗力偶大小相等,方向相反,键的受 力情况如图b所示。作用于键的左右两个侧面上的 力,意图使键的上、下两部分沿n-n截面发生相对 错动。
材料力学2
解:画出杆的扭矩图如图所示。
可知最大弯矩为6kN ·m。
分别根据强度条件和刚度条件选择杆件直径,取其大者。
(1)根据强度条件τmax =M n,maxW p=163.14d3M n,max ≤[]τ得:[]d ≥316M n,max3.14=0.091m=91mm(2)根据刚度条件θ=M n GI p=323.14d 4M n ≤[]θG得:[]d ≥32M n3.14=0.078m=78mmθG由以上计算结果可知,杆所需的直径d=91mm 。
4、起重吊车AB 行走于CD 梁上,CD 梁是由两个同型号的工字钢组成。
已知吊车的自重为5kN ,最大起重量为10kN ,钢材的容许应力[σ]=160MPa , CD 梁长L=12m ,根据正应力强度条件确定工字钢的截面系数(设荷载平均分配在二工字钢上)。
解:吊车及其起重物的重量由吊车的前后轮承担,各受7.5kN 的力。
13.75kN6.25kN1.25kN当吊车行驶到梁中部时,梁有最大弯矩,从附图的弯矩图可知,最大弯矩值为:M max = 37.5 kN.m当吊车行驶到梁的一端时,梁端有最大剪力,从附图的剪力图可知,最大剪力值为: Q max = 13.75kN先以正应力强度选择工字钢型号。
由正应力强度条件(由于梁是由两个工字钢组成)[]M maxσσmax =2W z≤ 得:[]M max σ≥=W z 2117cm 45、平行杆系列化、2、3悬吊着刚性横梁AB 如图(a )所示。
在横梁上作用着荷载G 。
如杆菌、2、3的截面积、长度、弹性模量均相同,分别为A 、I 、E 。
试求:三根杆的轴力N 1,N 2,N 3。
6、已知圆轴受外力偶矩m=2KN ,材料的许可切应力[τ]=60MP 。
(1) 试设计实心圆轴的直径D 1;(2) 若该轴改为α=d/D=0.8的空心圆轴,试设计空心圆轴的内、外径d 2、D 2。
7、用钢板制成的工字形截面梁其尺寸及梁上荷载如图所示,已知P=90kN ,钢材的容许应力[σ]=160MPa ,[τ]=100MPa ,试全面校核梁的强度(按第三强度论)。
《材料力学》第2章 轴向拉压变形 习题解
第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a )解:(1)求指定截面上的轴力 FN =-11FF F N -=+-=-222(2)作轴力图轴力图如图所示。
(b )解:(1)求指定截面上的轴力 FN 211=-2222=+-=-F F N (2)作轴力图FF F F N =+-=-2233 轴力图如图所示。
(c )解:(1)求指定截面上的轴力 FN 211=-FF F N =+-=-222(2)作轴力图FF F F N 32233=+-=- 轴力图如图所示。
(d )解:(1)求指定截面上的轴力 FN =-11F F a aFF F qa F N 22222-=+⋅--=+--=-(2)作轴力图 中间段的轴力方程为: x aFF x N ⋅-=)(]0,(a x ∈轴力图如图所示。
[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
2400mm A =解:(1)求指定截面上的轴力kNN 2011-=- )(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力MPa mm N A N 504001*********-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σMPamm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
21200mm A =22300mm A =23400mm A =解:(1)求指定截面上的轴力kNN 2011-=-)(10201022kN N -=-=-)(1020102033kN N =-+=-(2)作轴力图轴力图如图所示。
材料力学 中国建筑工业出版社第二章 轴向拉压习题答案
2-1a 求图示各杆指截面的轴力,并作轴力图。
(c ')(e ')(d ')N (kN)205455(f ')解:方法一:截面法(1)用假想截面将整根杆切开,取截面的右边为研究对象,受力如图(b)、(c)、(d)、(e)所示。
列平衡方程求轴力: (b) 图:)(20020011拉kN N NX =→=-→=∑(c) 图:)(5252002520022压kN N NX -=-=→=--→=∑(d) 图:)(455025200502520033拉kN N NX =+-=→=-+-→=∑(e) 图:)(540502520040502520044拉kN N NX =-+-=→=--+-→=∑(2)杆的轴力图如图(f )所示。
方法二:简便方法。
(为方便理解起见,才画出可以不用画的 (b ‘)、(c ‘)、(d ‘)、(e ‘) 图,作题的时候可用手蒙住丢弃的部份,并把手处视为固定端)(1)因为轴力等于截面一侧所有外力的代数和:∑=一侧FN 。
故:)(201拉kN N =)(525202压kN N -=-=)(455025203拉kN N =+-=)(5405025204拉kN N =-+-=(2)杆的轴力图如图(f ‘)所示。
2-2b 作图示杆的轴力图。
(c)图:(b)图:(3)杆的轴力图如图(d )所示。
2-5 图示两根截面为100mm ⅹ100mm 的木柱,分别受到由横梁传来的外力作用。
试计算两柱上、中、下三段的应力。
(b)(c)(d)(f)题2-5-N图(kN)6108.5N图(kN)326.5-解:(1)梁与柱之间通过中间铰,可视中间铰为理想的光滑约束。
将各梁视为简支梁或外伸梁,柱可视为悬臂梁,受力如图所示。
列各梁、柱的平衡方程,可求中间铰对各梁、柱的约束反力,计算结果见上图。
(2)作柱的轴力图,如(e)、(f)所示。
(3)求柱各段的应力。
解:(1)用1-1截面将整个杆切开,取左边部分为研究对象;再用x -x 截面整个杆切开,取右边部分为研究对象,两脱离体受力如图(b)、(c),建立图示坐标。
北航材料力学第二章2
2 A1 [σ 1 ] = 184.7kN F≤ 3 F ≤ 2 A2 [σ 2 ] = 280kN
[F] = 184.7kN
Page15
BUAA
MECHANICS OF MATERIALS
强度条件的进一步应用 1. 最轻重量设计 已知: 方向, 已知:l, [σt]= [σc]= [σ],F方向,材料相同 方向
Page27
Page6
BUAA
MECHANICS OF MATERIALS
标距
试验试件
飞机的窗户
Page7
BUAA
MECHANICS OF MATERIALS
§2 - 6
失效、许用应力与强度条件 失效、 断裂
失效与许用应力
失效 屈服或显著塑性变形
极限应力: 极限应力: 工作应力: 工作应力: 理想状态: 理想状态:
A
可设计量: 可设计量:α, Α1, Α2 1 目标:使结构最轻(不考虑失稳) 目标:使结构最轻(不考虑失稳)
B
α
C 2
解:设材料重度为γ
l
F
l 1 = l / cos α l 2 = l
A1 =
F [σ ] sin α
A2 =
F [σ ] tan α
结构重量 W = γ ( A1 l1 + A2 l 2 ) =
A
校核该结构是否安全? 校核该结构是否安全? 1 B点的平衡方程 点的平衡方程
B
α
FN 1 =
C 2
F F cos α , FN 2 = sin α sin α
l
F
σ1 =
F , A1 sin α
σ2 =
| σ 2 |=
F A2 tan α
材料力学第2版 课后习题答案 第2章 轴向拉压与伸缩
习题2-1一木柱受力如图示,柱的横截面为边长20cm 的正方形,材料服从虎克定律,其弹性模量MPa .如不计柱自重,试求:51010.0×=E (1)作轴力图;(2)各段柱横截面上的应力;(3)各段柱的纵向线应变;(4)柱的总变形.解:(1)轴力图(2)AC 段应力a a ΜΡΡσ5.2105.22.010100623−=×−=×−=CB 段应力aa ΜΡΡσ5.6105.62.010260623−=×−=×−=(3)AC 段线应变45105.2101.05.2−×−=×−==ΕσεN-图CB 段线应变45105.6101.05.6−×−=×−==Εσε(4)总变形m 3441035.15.1105.65.1105.2−−−×=××−××−=ΑΒ∆2-2图(a)所示铆接件,板件的受力情况如图(b)所示.已知:P =7kN ,t =0.15cm ,b 1=0.4cm ,b 2=0.5cm ,b 3=0.6cml 。
试绘板件的轴力图,并计算板内的最大拉应力。
解:(2)aΜΡσ4.194101024.015.0767311=×××××=−a ΜΡσ1.311101025.015.0767322=×××××=−a ΜΡσ9.388101026.015.07673=××××=−最大拉应力aΜΡσσ9.3883max ==2-3直径为1cm 的圆杆,在拉力P =10kN 的作用下,试求杆内最大剪应力,以及与横截面夹角为=30o 的斜截面上的正应力与剪应力。
α解:(1)最大剪应力a d ΜΡππΡστ66.6310101102212672241max =××××===−(2)界面上的应力°=30α()a ΜΡασσα49.952366.632cos 12=×=+=a ΜΡαστα13.5530sin 66.632sin 2=×=×=°2-4图示结构中ABC 与CD 均为刚性梁,C 与D 均为铰接,铅垂力P =20kN 作用在C 铰,若(1)杆的直径d 1=1cm ,(2)杆的直径d 2=2cm ,两杆的材料相同,E =200Gpa ,其他尺寸如图示,试求(1)两杆的应力;(2)C 点的位移。
材料力学第二章轴向拉伸与压缩作业习题
第二章 轴向拉伸与压缩1、试求图示各杆1-1和2-2横截面上的轴力,并做轴力图。
(1) (2)2、图示拉杆承受轴向拉力F =10kN ,杆的横截面面积A =100mm 2。
如以α表示斜截面与横截面的夹角,试求当α=10°,30°,45°,60°,90°时各斜截面上的正应力和切应力,并用图表示其方向。
3、一木桩受力如图所示。
柱的横截面为边长200mm 的正方形,材料可认为符合胡克定律,其弹性模量E =10GPa 。
如不计柱的自重,试求:(1)作轴力图;(2)各段柱横截面上的应力; (3)各段柱的纵向线应变;(4)柱的总变形。
4、(1)试证明受轴向拉伸(压缩)的圆截面杆横截面沿圆周方向的线应变d ε,等于直径方向的线应变d ε。
(2)一根直径为d =10mm 的圆截面杆,在轴向拉力F 作用下,直径减小0.0025mm 。
如材料的弹性摸量E =210GPa ,泊松比ν=0.3,试求轴向拉力F 。
(3)空心圆截面钢杆,外直径D =120mm,内直径d =60mm,材料的泊松比ν=0.3。
当其受轴向拉伸时, 已知纵向线应变ε=0.001,试求其变形后的壁厚δ。
5、图示A和B两点之间原有水平方向的一根直径d=1mm的钢丝,在钢丝的中点C加一竖直荷载F。
已知钢丝产生的线应变为ε=0.0035,其材料的弹性模量E=210GPa,钢丝的自重不计。
试求:(1) 钢丝横截面上的应力(假设钢丝经过冷拉,在断裂前可认为符合胡克定律);(2) 钢丝在C点下降的距离∆;(3) 荷载F的值。
6、简易起重设备的计算简图如图所示.一直斜杆AB应用两根63mm×40mm×4mm不等边角钢组[σ=170MPa。
试问在提起重量为P=15kN的重物时,斜杆AB是否满足强度成,钢的许用应力]条件?7、一结构受力如图所示,杆件AB,AD均由两根等边角钢组成。
已知材料的许用应力[σ=170MPa,试选择杆AB,AD的角钢型号。
《材料力学》第2章 轴向拉(压)变形 习题解讲解
第二章轴向拉(压变形[习题2-1]试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(b)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(c)解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(d)解:(1)求指定截面上的轴力(2)作轴力图中间段的轴力方程为:轴力图如图所示。
[习题2-2]试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,试求各横截面上的应力。
解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积,,,并求各横截面上的应力。
解:(1)求指定截面上的轴力(2)作轴力图轴力图如图所示。
(3)计算各截面上的应力[习题2-4] 图示一混合屋架结构的计算简图。
屋架的上弦用钢筋混凝土制成。
下面的拉杆和中间竖向撑杆用角钢构成,其截面均为两个的等边角钢。
已知屋面承受集度为的竖直均布荷载。
试求拉杆AE和EC横截面上的应力。
解:(1)求支座反力由结构的对称性可知:(2)求AE和EG杆的轴力①用假想的垂直截面把C铰和EG杆同时切断,取左部分为研究对象,其受力图如图所示。
由平衡条件可知:②以C节点为研究对象,其受力图如图所示。
由平平衡条件可得:(3)求拉杆AE和EG横截面上的应力查型钢表得单个等边角钢的面积为:[习题2-5] 石砌桥墩的墩身高,其横截面面尺寸如图所示。
荷载,材料的密度,试求墩身底部横截面上的压应力。
解:墩身底面的轴力为:墩身底面积:因为墩为轴向压缩构件,所以其底面上的正应力均匀分布。
[习题2-6]图示拉杆承受轴向拉力,杆的横截面面积。
如以表示斜截面与横截面的夹角,试求当时各斜截面上的正应力和切应力,并用图表示其方向。
解:斜截面上的正应力与切应力的公式为:式中,,把的数值代入以上二式得:轴向拉/压杆斜截面上的应力计算题目编号10000 100 0 100 100.0 0.0 习题2-6100 30 100 75.0 43.310000100 45 100 50.0 50.010000100 60 100 25.0 43.310000100 90 100 0.0 0.010000[习题2-7]一根等直杆受力如图所示。
第20-1-2章对接焊缝连接构造与计算教程
max
M [ t ] Ww
max
VS w [ ] Iwt
M——焊缝承受的弯矩; Ww——焊缝截面模量。 V——焊缝承受的剪力; Iw——焊缝计算截面惯性矩; Sw——焊缝截面计算剪应力处以上部分对中和轴的面积矩。
青海大学 结构设计原理
对于工字形、箱形、T形等构件除应分别验算最大正应力与最 大剪应力外,还应验算腹板与翼缘交接处的折算应力:
2、变截面钢板拼接 (a)钢板宽度不同
≤1:2.5(静力荷载)
≤1:2.5(静力荷载) ≤1:2.5(静力荷
≤1:2.5(静力荷载) ≤1:4(计算疲劳) ≤1:2.5(静力荷载) ≤4m ≤1:2.5(静力荷载) (b)钢板厚度不同 ≤1:2.5(静力荷载) ≤1:2.5(静力荷载) ≤1:2.5(静力荷载) ≤1:4(计算疲劳) ≤1:4(计算疲劳)
青海大学 结构设计原理
20.1.5 对接焊缝的构造和计算
一、对接焊缝的构造要求 1、坡口形式 对接焊缝常做成带坡口的形式,故又称为
坡口焊缝。应根据焊件厚度按保证焊缝质量,便于施焊及
减小焊缝截面积的原则选用。 常用的坡口形式有I形缝、带钝边单边V形缝、带钝边V 形缝(Y形缝)、带钝边U形缝、带钝边双单边V形缝、 双Y形缝。
章节内容 1、焊缝连接 2、普通螺栓连接 3、高强螺栓连接
青海大学 结构设计原理
20 钢结构的连接
章节重点 1、掌握钢结构常用的连接方法、特点及应用范围; 2、了解对接焊缝和角焊缝的工作性能,掌握对接焊缝 的计算方法和各构造尺寸限制的意义; 3、了解焊接应力、焊接变形的形成原因及防治措施; 4、了解普通螺栓连接和高强螺栓的工作性能、破坏形 态,掌握普通螺栓和高强螺栓连接的计算方法;
材料力学 第2章应力集中 剪切与挤压
键的右侧的下半部分受到轴给键的作用力,合力大小F‘;
(3)、剪切面: 两组力的作用线交错的面;
A = bl
(4)、挤压面: 相互压紧的局部接触面;
Abs
=
hl 2
(5) 挤压应力
σ bs
=
F Abs
例 齿轮与轴由平键(b×h×L=20 ×12 ×100)连接,它传递的
扭矩m=2KNm,轴的直径d=70mm,键的许用剪应力为[τ]= 60M Pa ,许用挤压应力为[σbs]= 100M Pa,试校核键的强度。
h
L
AQ
b
m P
d
综上,键满足强度要求。
接头的强度计算 在铆钉钢板的接头中,有几种可能的破坏?
P P
可能造成的破坏: (1)因铆钉被剪断而使铆接被破坏;
(2)铆钉和板在钉孔之间相互挤压过大,而使铆接被 破坏;
(3)因板有钉孔,在截面被削弱处被拉断。
N1a − N3a = 0
Δl1
=
N 1l EA
Δl2
=
N2l EA
Δ与原长相比为无穷小;
Δl3
=
N3l EA
且由静力学关系得知 Δl1 = Δl3
3、协调关系 作协调图,确定各变形量之间的关系; 协调关系 Δ -⊿L2= ⊿L1
4、补充方程
Δ -⊿L2= ⊿L1 5、联立求解
Δ − N2l = N1l EA EA
A
B
由于在安装阶段,迫使杆件产生变形,
必定会在杆内 产生应力; 装配应力:
12
3
静不定结构中, 由于杆件的尺寸不准确, A
B
强行装配在一起,在未受载荷之前,杆内已产生应力。
即由于强行装配在一起而引起的应力。 装配应力的特点:
第2章 轴向载荷作用下杆件的材料力学问题
刚性板
F´P B
1.2 m
FP B As Es
l l
铝制圆筒
刚性板
Aa Ea A
0.9 m
C FP F´P
FP
习题 2-3 图
解:1. 铝筒的压缩量: (其中 uA = 0)
l AB
2. 钢杆的伸长量:
FPl AB 60 103 1.2 0.935 mm Ea Aa 70 109 1.10 10 3
范钦珊教育教学工作室
FAN Qin-Shan’s Education & Teaching Studio
eBook
材料力学习题详细解答
教师用书
(第 2 章 轴向载荷作用下杆件的材料力学问题)
2013-8-8
1
习题 2-1 习题 2-2 习题 2-3 习题 2-4 习题 2-5 习题 2-6 习题 2-7 习题 2-8 习题 2-9 习题 2-10 习题 2-11 习题 2-12 习题 2-13 习题 2-14 习题 2-15 习题 2-16 习题 2-17 习题 2-18 习题 2-19
FP
FP
B
2FN
2FN
1-1截面和2-2截面
(c)
(b) (a)
习题 2-5 图 5
解:1. 受力分析 根据受力的对称性(如图所示),得 F y 0 , 4 FN cos FP
FN FP 4 cos 1200 10 3 960 960 2 420 2 3.275 10 5 N
习题 2-9 图
解:当小车开到 A 点时,AB 杆的受力最大,此时轴力为 FNAB 。 1. 受力分析 确定 AB 杆的轴力 FNAB ,受力如图所示, 由平衡方程
材料力学 第02章 轴向拉伸和压缩及连接件的强度计算
弹屈 性服 阶阶 段段
强 化 阶 段
颈 缩 阶 段
33/113
2.3 材料在拉伸或压缩时的力学性能 2.3.1 低碳钢Q235拉伸时的力学性能-弹性阶段
Oa段应力与应变成正比
s Ee
s
b a
弹性模量E是直线Oa的斜率 Q235 E≈200GPa
直线部分的最高点a所对应的应力称为 比例极限,sp Oa段材料处于线弹性阶段
(2) 杆AB段上与杆轴线夹45°角(逆时针方向)斜截面上的正应力 和切应力。
A 1 300 mm B 500 kN 300 mm 2 C 3 300 kN 400 mm
26/113
D
200 kN
2.2 拉压杆截面上的内力和应力 【例2-3】解
A 1 300 mm B 500 kN 300 mm 2 C
内力相同,
但是常识告诉我们,
F F
直径细的拉杆更容易破坏。
求得各个截面上的轴力后,并不能直接判断杆件是否具有足 够的强度。必须用横截面上的应力来度量杆件的受力程度。 用横截面上的应力来度量杆件的受力程度。
18/113
2.2 拉压杆截面上的内力和应力 2.2.2 1 拉压杆横截面上的应力
a
F
c
c' d'
F4
D
FN4
F
x
0 FN4 F4 0
FN4 20 kN 拉
16/113
同一位置处左右侧截面上的内力分量具有相同的正负号
2.2 拉压杆截面上的内力和应力 【例】解
1
FR A F1
F1=40kN,F2=55kN,F3=25kN,F4=20kN
2
F2 B
材料力学第2章-拉压4
Ab s =
h——平键高度 l——平键长度
hl 2
F
b
l
F
h
拉伸与压缩/连接部分的强度计算 2、柱面接触(如铆钉):挤压面面积为实际的承压面积在其直径 平面上的投影。 挤压强度条件:
bs
Fb A bs
F
[
bs
]
F
Ab s = d d
d——铆钉或销钉直径,
——接触柱面的长度
拉伸与压缩/连接部分的强度计算
A´
l2 l3
物理关系
l3 F N 3 l3 E 3 A3 l1 l 2 F N 1 l1 E 1 A1
FP
,
拉伸与压缩/拉压超静定问题
将物理关系代入变形协调条件得到补充方程为:
解:地桩所受外载为轴载,且在F和摩擦力共同 作用下平衡。 即:
F y ky d y F k
2 0
l
l
3
F 0
3
则:
FN ( y )
k
3F l
3
f
y 0
3F l
3
y
2
轴力方程为: 求地桩的缩短量δ:
l
FN ( y )
f dy
Fy l
3
3
y
l AB l AC 整理得 A y A A tan 3 0 co s 4 5 co s 3 0
1 tan 3 0 1 .3 6 6 m m
2-9 图示为打入土中的混凝土地桩,顶端承受载荷F,并由作用于地桩的摩擦力所支持。设沿 地桩单位长度的摩擦力为 f,且 f =k y2,式中,k为常数。试求地桩的缩短量δ 。已知地桩的 横截面面积为A,弹性模量为E,埋入土中的长度为l。
材料力学02(第二章 轴向拉压应力与材料的力学性能)
FN 2
A
F
1.校核强度
已知F, ,A1,A2, t , c
校核结构是否安全? 解:
F 1= t ? A1 sin F 2 = c ? A2 tan
2
L
FN ,max max [ ] (1)强度校核 A FN ,max A (2)截面选择 [ ] (3)计算许可荷载 FN,max A[ ]
强度条件的应用举例
1 2
L
(1) 求内力(节点A平衡) FN1= F sin
A
FN2= - F tan
FN1
F
(2) 求应力(A1,A2横截面积)
C 1m
B
A F
C y 1m
FN1
B A F
A F
x
FN2
解: (1)节点 A 的受力如图,其平衡方程为:
F F
x y
0 0
FN2 FN1 cos 30 0 FN1 sin 30 F 0
得 FN1 2F (拉) FN 2 1.732F (压)
(2)查型钢表得两杆的面积 杆AC 杆AB
例题2 . 钢板冲孔,已知t=5mm,d=18mm,剪切极限应力 τ0=400MPa,求冲力P的大小。
• 解:(1)内力分析: • 剪力: Fs=P • 剪切面面积:A=πd t
• (2)应力分析与强度计算: • τ= Fs/ A ≥τ0 • 由上解得: P ≥ τ0 πd t =113kN
例3 、一铆钉接头如图所示,铆钉和板用同一种材料制成, 铆钉的直径d=18mm,板厚t=10mm,其[τ]=80MPa, [σbs]=200MPa,[σ]=120MPa,试校核此接头部分的强度。
《材料力学》第2章-轴向拉(压)变形-习题解
第二章轴向拉(压)变形[习题2-1] 试求图示各杆1-1和2-2横截面上的轴力,并作轴力图。
(a ) 解:(1)求指定截面上的轴力 F N =-11F F F N -=+-=-222 (2)作轴力图轴力图如图所示。
(b ) 解:(1)求指定截面上的轴力 F N 211=-02222=+-=-F F N (2)作轴力图F F F F N =+-=-2233 轴力图如图所示。
(c ) 解:(1)求指定截面上的轴力 F N 211=-F F F N =+-=-222 (2)作轴力图F F F F N 32233=+-=- 轴力图如图所示。
(d ) 解:(1)求指定截面上的轴力 F N =-11F F a aFF F qa F N 22222-=+⋅--=+--=- (2)作轴力图中间段的轴力方程为: x aFF x N ⋅-=)( ]0,(a x ∈ 轴力图如图所示。
[习题2-2] 试求图示等直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积2400mm A =,试求各横截面上的应力。
解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。
(3)计算各截面上的应力 MPa mm N A N 504001020231111-=⨯-==--σMPa mm N A N 254001010232222-=⨯-==--σ MPa mm N A N 254001010233333=⨯==--σ[习题2-3] 试求图示阶梯状直杆横截面1-1、2-2和平3-3上的轴力,并作轴力图。
若横截面面积21200mm A =,22300mm A =,23400mm A =,并求各横截面上的应力。
解:(1)求指定截面上的轴力kN N 2011-=-)(10201022kN N -=-=- )(1020102033kN N =-+=- (2)作轴力图轴力图如图所示。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
b
d
3.铆钉的剪切强度
a
Fs 4F 2F 2 2 A 2 πd πd 2 50 10 3 2 π 0.017 110 10 6 110 MPa [ ]
4.板和铆钉的挤压强度 Fbs F 50 103 bs Abs 2d 2 0.017 0.01
40 10 3 4 2 ba 50 10 m bs 8 10 6 FS P 2. 顺纹剪切强度条件为 A bl P
ba
b 11.4 10 2 m 114 mm l 35.1 10 2 m 351mm a 4.4 10 2 m 44 mm
bs 2
为充分利用材料,切 应力和挤压应力应满足
Fbs F bs Abs dh
4F 8h F 2 2 d d dh
b
d
a
图示接头,受轴向力F 作 用。已知F=50kN,b=150mm, δ=10mm,d=17mm,a=80mm, [σ]=160MPa,[τ]=120MPa, [σbs]=320MPa,铆钉和板的材 料相同,试校核其强度。
例: t=2mm,b=15mm,d=4mm, []= 100MPa, [bs]= 300MPa, []= 160MPa,计算许用载荷[F]。
F
b
F
F
t
F
F 3-3 2-2 F t 1-1
b
F
F
解:一、破坏形式分析 1.剪断(沿1-1截面) 2.拉断(沿2-2截面) 3.“剪豁” (剪出缺口 3-3截面) 4.挤压破坏
d 2
F td 2.4kN
挤 bs
td
F拉 b d t 3.52kN
例2 如图所示冲床,Pmax=400kN, 冲头[]=400MPa,冲剪钢板b=360MPa 试设计冲头的最小直径值及钢板厚度最大 值。 解:(1)按冲头压缩强度计算d
F 3-3 2-2 F t 2.剪切强度: FS F 1-1
b
F
F
F 1.256kN
F F剪 1 . 256 kN 2 4 d / 4 F FbS F bs bs 3.挤压强度
4.拉伸 强度 N F b d t A
Fbs Fbs
在挤压实用计算中,假设有效挤压面上各点处的挤 压应力相等,称为名义挤压应力 则名义挤压应力和挤压强度条件
Fbs bs [ bs ] Abs
分析受力、确定有效挤压面: 实际的挤压面是半 个圆柱面,而在实用计算中用其直径平面Abs来代 替;对于平键连接,实际的挤压面是平面,在实 用计算中就是实际挤压面积。
147 106 147MPa [ bs ]
结论:强度足够。
例3 截面为正方形的两木杆的榫接头如图所示。已知木材的顺纹许 用挤压应力[bs]=8MPa ,顺纹许用剪切应力[]=1MPa ,顺纹许用 拉应力[]=10MPa 。若P=40kN,作用于正方形形心,试设计b、a 及L。 解:1. 顺纹挤压强度条件为 P bs bs
插销横截面上的剪应力为:
P FS 2
FS A
2
15 103
3 2
20 10 4
23.9 MPa
故插销满足剪切强度要求。
t
2P
例 电瓶车挂钩由插销联接。插销材料为20#钢, []=30MPa , 直径d=20mm。挂钩及被联接的板件的厚度分别为t=8mm和 1.5t=12mm。牵引力P=15kN。试校核插销的剪切强度。 解:插销受力所示。 根据受力情况,插销 中段相对于上、下两 段,沿m—m和n—n两 个面向左错动。所以 有两个剪切面,称为 双剪切。由平衡方程 容易求出
3. 顺纹拉伸强度条件为
40 10 3 4 2 bl 400 10 m 6 10 P P
2 40 10 3 4 2 b ba 80 10 m t 10 10 6
2
1 b ( b a ) 2
P P 2 A d 4
d
4P
3 . 4 cm
(2)按钢板剪切强度计算t
FS P b A dt
P t 1 .04 cm d b
Fs F A lb
Fbs F bs Abs cb
Fs 4 F 2 A d
§2-8
铆钉连接
连接件的强度计算
工程实际中,经常需要将构件相互连接。 螺栓连接
销轴连接
平键连接
铆钉、螺栓、键等起连接作用的部件,统称为 连接件。 连接件受力和变形较复杂,很大程度上受到加工工艺的 影响,要精确分析其应力比较困难。工程上对连接件的 强度计算,均采用简化分析法或实用计算法。 一:对连接件的受力和应力分布进行假设,计算出其 名义应力; 二:对同类连接件进行破坏实验,采用同样的计算方 法,得到破坏载荷,从而确定材料的极限应力。 主要包括连接件的剪切实用计算 、挤压实用计算。
2.板的剪切强度
解:1.板的拉伸强度 FN F A (b 2d )
50 103 (0.15 2 0.017) 0.01 43.1 10 6 43.1MPa [ ]
Fs F 50 103 A 4a 4 0.08 0.01 15.7 106 15.7 MPa [ ]
FS AS
剪切的强度条件
FS [ ] AS
注意:连接件计算中,连接件材料的许用切应力 []是通过直接试验测量得到; 也可在有关的设计 规范中查到。 对大多数的连接件(或连接)来说,剪切变形及 剪切强度是主要的。
二、挤压的实用计算 在铆钉连接中,在螺栓与钢板相互接触的侧面 上,将发生彼此间的局部承压现象,称为挤压。 在接触面上的压力,称为挤压力Fbs 挤压力过大,可能引起铆钉压扁或钢板在孔缘压 皱,从而导致连接松动而失效
一、剪切的实用计算
F F F
F
F
m
m F
Fs m m
剪切面: 螺栓将沿两侧外力之 间、与外力作用线平行的截面 m—m发生相对错动,这种变形 形式为剪切。m-m截面发生剪切 变形,称为剪切面。 用截面法,可得剪切面上的内 力,即剪力FS。
F
Fs m m
F
在剪切实用计算中,假设剪切面上各点 处的切应力相等,称为名义切应力, FS为剪切面上的剪力; AS为剪切 面的面积。