关于用百分数解决问题
利用百分数解决数学问题
利用百分数解决数学问题百分数是我们生活中常见的数学概念之一,它在实际问题中的应用非常广泛。
利用百分数可以帮助我们解决各种数学问题,比如比较大小、计算增减、求百分比等。
接下来,将介绍一些利用百分数解决数学问题的常见方法。
一、比较大小当我们需要比较两个数的大小时,可以将它们转化为百分数进行比较。
假设我们需要比较两个数a和b的大小,其中a为 a%,b为b%。
若a% > b%,则a大于b;若a% < b%,则a小于b;若a% = b%,则a 等于b。
例如,我们需要比较0.2和0.08的大小。
可以将0.2转化为20%、0.08转化为8%,然后比较大小。
由于20% > 8%,所以0.2大于0.08。
二、计算增减百分数还可以用于计算增减的量。
当我们需要计算一个数a的增加或减少b%后的结果时,可以通过以下公式进行计算:结果 = a * (1 ± b%)其中加号表示增加,减号表示减少。
例如,假设我们有一个数100,需要将其增加30%。
首先将30%转化为0.3,然后使用上述公式进行计算:结果 = 100 * (1 + 0.3) = 130所以,将100增加30%后的结果为130。
三、求百分比当我们已知一个数a是另一个数b的百分之几时,可以通过以下公式求出百分比:百分比 = (a / b) * 100%例如,如果一个班级有40名男生,总人数为100,我们想知道男生在班级总人数中占多少百分比,可以使用上述公式进行计算:百分比 = (40 / 100) * 100% = 40%所以,男生在班级总人数中占40%。
四、注意事项在应用百分数解决数学问题时,需要注意一些常见的问题。
首先,注意百分数的表示方式。
百分数可以用小数表示,比如0.5表示50%,也可以用分数表示,比如1/4表示25%。
在计算时,需要根据具体情况选择合适的表示方式。
其次,注意百分数的换算。
有时,我们需要在百分数和小数之间进行换算。
百分数用百分数解决问题优秀7篇
百分数用百分数解决问题优秀7篇用百分数解决问题数学说课稿篇一《用百分数解决问题》数学教案设计教学重点:掌握比一个数多(少)百分之几的应用题的数量关系和解题思路。
教学难点:正确、灵活地解答这类百分数应用题的实际问题。
教学过程:一、复习1、出示复习题:学校图书室原有图书1400册,今年图书册数增加了。
现在图书室有多少册图书?2、学生找出这道题目的分率句,确定单位1,并根据数量关系列式:1400(1+)二、新授1、教学例3(1)出示例题:学校图书室原有图书1400册,今年图书册数增加了12%。
现在图书室有多少册图书?(2)学生读题,找条件和问题,明确这道题是把谁看成单位1。
(3)引导思考:从今年图书册数增加了12%这句话中,你能知道些什么?①今年图书增加的部分是原有的12%。
②今年图书的册数是原有的120%。
(4)学生讨论后分小组交流,并独立列式计算:第一种:140012%=168(册)1400+168=壹伍68(册)第二种:1400(1+12%)=1400112%=168(册)2、通过这道题的学习,你明白了什么?(求一个数的几分之几和求一个数的。
百分之几,都要用乘法计算)3、巩固练习:完成P93做一做第1题。
三、练习1、补充练习(1)出示练习:①油菜子的出油率是42%。
2100千克油菜子可榨油多少千克?②油菜子的出油率是42%。
一个榨油厂榨出油菜子2100千克,用油菜子多少千克?(2)分析理解:A、出油率是什么意思?这两道题有什么相同和不同?B、第(1)题是求一个数的百分之几是多少,应用什么方法计算?第(2)题是已知一个数的百分之几求这个数,可以怎样解?(3)学生独立列式解答。
2、学生做教科书练习二十二的第1、3、4题。
教学追记:本部分内容是求比一个数多(少)百分之几的应用题,这部分内容与求比一个数多(少)几分之几的应用题相似,只是相应的分率转换成了百分率。
因此,在复习上,我安排了与例题较为相似的分数应用题,通过对题目的改变,让学生了解二者的联系。
百分数的应用解决问题
百分数的应用解决问题百分数作为一种常见的数学形式,在实际生活中扮演着重要的角色。
它能够通过表示百分比的方式,清晰地描述和比较不同数据之间的关系。
在本文中,我们将探讨百分数的应用,并着重解决一些与百分数相关的问题。
一、百分数在商业中的应用在商业领域中,百分数广泛用于描述销售、市场份额和盈利等关键指标。
例如,某公司的市场份额从去年的10%上升到今年的15%,我们便可以用百分数来表示这一增长情况。
此外,在优惠活动中,商家通常会用百分数来表示折扣力度,如“8折”、“5% off”等,帮助消费者更好地了解折扣幅度。
二、百分数在金融中的应用百分数在金融行业也扮演着重要的角色。
比如,利息率、股票收益率和通货膨胀率等都是用百分数表示的。
投资者可以通过计算收益率来评估某项投资的盈利能力,从而做出更明智的决策。
此外,在贷款利率方面,银行通常会以百分比的形式告知借款人,帮助其了解贷款成本和月供金额。
三、百分数在统计学中的应用统计学是使用百分数频率最高的领域之一。
通过百分数,我们可以更清楚地了解样本或群体中的比例关系。
例如,一项调查显示参与者中有60%的人支持某项政策,我们就可以很直观地了解到大致的社会态度。
此外,百分数还可以用来描述增长率和下降率,对于分析数据的趋势及预测未来发展非常有帮助。
四、百分数在日常生活中的应用在我们的日常生活中,我们经常使用百分数来解决一些实际问题。
比如,在购物中,我们会比较不同产品的折扣幅度,以更合算的价格购买商品。
此外,我们还可以用百分数来描述人口增长、体重减少等情况,使数据更加直观易懂。
例如,某城市的人口增长率为3%,我们就能很清楚地知道城市的人口增长速度。
五、百分数的计算方法理解百分数的应用之前,我们需要了解如何计算百分数。
百分数的计算方法非常简单,只需将所需数值除以总数后乘以100。
例如,某项调查显示有75人支持某项提案,参与调查的总人数为100人,则百分数可通过以下计算得出:75 ÷ 100 × 100 = 75%。
百分数的应用题及答案
百分数的应用题及答案百分数的应用题及答案百分数是数学学习中的重点,那么相关的应用题又是怎么出题的呢?下面是小编推荐给大家的百分数的应用题及答案,希望大家有所收获。
百分数的应用题及答案1一、天君第一周读书160页,比第二周少读20%,而第三周比第二周多读10%,问天君第三周读书多少页?解: 设天天君第二周读书的页数为"1",则第三周读了1+10%,第一周读了1-20%,而实际上第一周读了160页,故第三周读了:160÷(1+10%)×(1-20%)=220(页)答:天君第三周读书220页。
二、某校四年级人数比三年级多25%,五年级人数比四年级少10%,六年级人数比五年级多10%,如果六年级人数比三年级人数多38人,那么该校三至六年级共有学生多少人?解:设三年级人数为"1",则四年级人数为1+25%,五年级人数为(1+25%)×(1-10%),六年级人数为(1+25%)×(1-10%)×(1+10%),于是三年级的人数为:38÷[(1+25%)×(1-10%)×(1+10%)-1](人)从而四年级人数为160×(1+25%)=200(人)五年级人数为200×(1-10%)=180(人)六年级人数为180×(1+10%)=198(人)于是,总人数为 160+200+180+198=738(人)答:该校三至六年级共有学生738人。
三、甲、乙、丙、丁四人合做一批零件,甲做的个数为其他人总数的一半,乙做的人数为其他人的,丙做的个数为其他人的,丁做了390个,求四人共做了多少个零件?解:设这批零件的总数为"1",则甲做了总数的,乙做了总数的,丙做了总数的,从而丁做了总数的1- - - 。
因而四人共做了:390÷(1- - - )=390÷ =1800(个)答:四人共做了1800个零件。
百分比的应用题六年级上册
以下是几个关于百分比的六年级上册应用题示例:
1.
题目:某商店上个月营业额为80万元,这个月营业额比上个月增加了10%。
这个月的营业额是多少万元?
答案:80万元× (1 + 10%) = 88万元。
所以这个月的营业额是88万元。
2.
题目:学校图书馆有图书500本,其中科技书占了20%。
图书馆有多少本科技书?
答案:500本× 20% = 100本。
所以图书馆有100本科技书。
3.
题目:小明家上个月电费是150元,这个月电费降低了15%。
这个月的电费是多少元?
答案:150元× (1 - 15%) = 127.5元。
所以这个月的电费是127.5元。
4.
题目:一件上衣原价是200元,商场打八折出售。
打折后这件上衣的售价是多少元?
答案:200元× 80% = 160元。
所以打折后这件上衣的售价是160元。
5.
题目:小刚参加了数学竞赛,他答对了80%的题目。
如果竞赛总共有50道题,那么小刚答对了多少道题?
答案:50道× 80% = 40道。
所以小刚答对了40道题目。
这些题目旨在帮助学生理解百分比的基本概念,以及如何在日常生活中应用百分比进行计算。
通过解答这些题目,学生可以加深对百分比的理解,提高解决实际问题的能力。
用百分数解决实际问题
用百分数解决实际问题百分数是我们日常生活中经常遇到的一种表示方式,它能够有效地反映出各种比例关系和增减情况。
在实际问题中,我们可以运用百分数来解决各种计算、比较、分析等问题。
本文将以几个例子来说明如何用百分数解决实际问题。
一、销售增长率计算假设某公司去年全年销售额为100万元,今年全年销售额为120万元。
那么我们可以用百分数表示今年的销售额相较于去年的增长情况。
计算公式如下:增长率 = (今年销售额 - 去年销售额)/ 去年销售额 × 100%根据以上公式,我们可以算出这家公司今年的销售增长率为20%。
这意味着今年的销售额相较于去年增长了20%。
二、比较大小在日常生活中,我们常常需要比较不同事物的大小或者数量。
百分数可以帮助我们快速比较不同变量之间的关系。
例如,如果我们想知道两个城市的人口增长情况,可以利用百分数进行比较。
假设A城市的人口从去年的100万增长到今年的120万,而B城市的人口从去年的90万增长到今年的100万。
我们可以用百分数来表示两个城市的人口增长情况。
A城市的人口增长率 = (今年人口 - 去年人口)/ 去年人口 × 100% = (120 - 100)/ 100 × 100% = 20%B城市的人口增长率 = (100 - 90)/ 90 × 100% = 11.11%通过比较两个城市的人口增长率,我们可以得出A城市的人口增长率(20%)大于B城市的人口增长率(11.11%),即A城市的人口增长速度更快。
三、价格计算与比较在购物中,我们经常会遇到打折、促销等情况。
百分数可以帮助我们快速计算折扣力度,并比较价格优惠的程度。
例如,某商品原价100元,现在打8折,我们可以用百分数计算出打折后的价格。
打折后的价格 = 原价 ×折扣百分数打折后的价格 = 100 × 0.8 = 80元通过上述计算,我们得知该商品打折后的价格为80元。
用百分数解决问题(精选9篇)
用百分数解决问题(精选9篇)(经典版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。
文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的经典范文,如总结报告、合同协议、规章制度、条据文书、策划方案、心得体会、演讲致辞、教学资料、作文大全、其他范文等等,想了解不同范文格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor. I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of classic sample essays, such as summary reports, contract agreements, rules and regulations, doctrinal documents, planning plans, insights, speeches, teaching materials, complete essays, and other sample essays. If you want to learn about different sample formats and writing methods, please pay attention!用百分数解决问题(精选9篇)想要提高自己的学习成绩,超越别人,就要在别人还玩耍的时候,自己静静的学习。
常见的百分数应用题有以下几种类型
常见的百分数应用题有以下几种类型百分数在日常生活中应用广泛,可以用来表示比例、增减率、利率等。
在解决实际问题时,我们经常会遇到各种各样的百分数应用题。
本文将介绍一些常见的百分数应用题类型,并通过实例来解释相关的解题方法。
1. 比例题比例题是最常见的一种百分数应用题。
它通常描述了两个事物之间的比例关系,并要求求解其中一个未知量。
解决比例题的方法是设置一个方程,通过代入已知信息,求解未知量。
下面是一个例子:例题:某班级男生与女生的比例为3:5,共有40名学生,求男生的人数。
解析:设男生人数为3x,女生人数为5x,则男生人数加女生人数等于总人数,即3x+5x=40。
解得x=4,所以男生人数为3x=12。
2. 增减率题增减率题描述了某个数量相对于原始数量的增长或减少比例,并要求求解变化后的数量。
解决增减率题的方法是使用百分数计算公式,即变化量除以原始量再乘以100%。
下面是一个例子:例题:某商品原价100元,打8折出售,求实际售价。
解析:打8折意味着价格打了80%折扣,所以实际售价为100元乘以80%,即80元。
3. 利率题利率题描述了某个金额在一段时间内利息的增长情况,并要求求解利息或最终金额。
解决利率题的方法是使用利率计算公式,即利率乘以本金和时间的乘积。
下面是一个例子:例题:某银行定期存款年利率为4%,小明存了10000元,求一年后的本息和。
解析:本息和=本金+利息,利息=本金乘以利率乘以时间。
所以一年后的本息和为10000元加上10000元乘以4%乘以1年,即10000 + 10000 × 4% × 1 = 10400元。
4. 百分数转化题百分数转化题描述了将一个百分数转化为分数、小数或整数的过程。
解决百分数转化题的方法是根据百分数的定义进行转化。
下面是一个例子:例题:将60%转化为分数和小数。
解析:60%表示60/100,所以60%可以转化为分数6/10和小数0.6。
总结:在解决常见的百分数应用题时,我们需要根据题目的要求选择合适的解题方法,例如比例题需要设置方程,增减率题需要使用百分数计算公式,利率题需要使用利率计算公式,百分数转化题需要根据定义进行转化。
用百分数解决问题
用百分数解决问题篇一:用百分数解决问题(一)用百分数解决问题(一)【教学内容】人教版《义务教育课程标准实验教科书·数学》六年级上册第五单元“用百分数解决问题”的第一课时,百分率的问题(第85-86页例1及“做一做”)。
【教学目标】1、理解生活中百分率问题的含义,掌握求百分率的方法。
2、理解求百分率应用题的一般结构和求百分率思考过程的主要步骤,提高学生解决问题的能力。
3、通过解决生活中简单的实际问题,培养学生数学的应用意识。
【教学重点与难点】重点:会解答求百分率(或一个数是另一个数的百分之几)的应用题。
难点:对一些百分率的理解。
【教学准备】简单的电脑课件。
【教学设计】篇二:用百分数解决问题用百分数解决问题班级________班小组名_______姓名________小组评价_______教师评价_______学习目标:1、使学生加深对百分数的认识,能理解命中率、出勤率、发芽率、出粉率、合格率、树木的成活率等这些百分率的含义。
2、能用求一个数是另一个数的几分之几的方法解答求一个数是另一个数的百分之几的的应用题,解决生活中一些简单的实际问题.3、能用求一个数的几分之几是多少的方法解答求一个数的百分之几是多少的应用题,解决生活中一些简单的实际问题.学习重点:解答求一个数是另一个数的百分之几的应用题。
学习难点:正确理解发芽率、达标率的意义。
一、自主学习1、自学课本p84-p85页;2、大胆提出学习过程中的疑惑点。
3,小组合作交流,讨论总结规律方法。
六年级有学生160人,已达到《国家体育锻炼标准》的有120人,六年级达标学生人数占学生总人数的百分之几?六年级学生的达标率是多少?温馨提示:六年级达标学生的人数占学生总人数的百分之几又叫做达标率。
想一想,什么没有变?问题有何变化?二、合作探究(关键理解达标率,合格率等的意义,并总结解决此类应用题的方法。
)1、达标率=───────×100%发芽率=────────×100%命中率=─────×100%出勤率=────────×100%2、某县种子推广站,用300粒玉米种子作发芽实验,结果发芽的种子有288粒。
解决百分数问题的方法
解决百分数问题的方法一、求一个数是另一个数的百分之几。
1. 六班有男生25人,女生20人,男生人数是女生人数的百分之几?- 解析:求男生人数是女生人数的百分之几,用男生人数除以女生人数再乘以100%。
即25÷20×100% = 1.25×100%=125%。
2. 学校图书馆有故事书80本,科技书100本,故事书的本数是科技书的百分之几?- 解析:用故事书的本数除以科技书的本数再乘以100%,80÷100×100% =0.8×100% = 80%。
二、求一个数比另一个数多(少)百分之几。
3. 某工厂去年生产产品120件,今年生产150件,今年比去年增产百分之几?- 解析:先求出今年比去年多生产的件数150 - 120=30件,再用多生产的件数除以去年的产量乘以100%,即(150 - 120)÷120×100%=(30)/(120)×100% = 25%。
4. 一种商品原价80元,现价60元,现价比原价降低了百分之几?- 解析:先求出现价比原价降低的金额80 - 60 = 20元,再用降低的金额除以原价乘以100%,(80 - 60)÷80×100%=(20)/(80)×100%=25%。
三、求比一个数多(少)百分之几的数是多少。
5. 甲数是50,乙数比甲数多20%,乙数是多少?- 解析:把甲数看作单位“1”,乙数是甲数的(1 + 20%),所以乙数为50×(1+20%)=50×1.2 = 60。
6. 某数是120,比另一个数少30%,另一个数是多少?- 解析:把另一个数看作单位“1”,某数是另一个数的(1 - 30%),则另一个数为120÷(1 - 30%)=(120)/(0.7)=(1200)/(7)≈171.43。
四、百分数的应用(折扣、利息等)7. 一件商品打八折出售,原价是120元,现价是多少元?- 解析:打八折就是按原价的80%出售,所以现价为120×80%=120×0.8 = 96元。
百分数应用题及答案
百分数应用题及答案百分数在我们的日常生活和学习中有着广泛的应用,下面通过一些具体的应用题来加深对百分数的理解。
一、折扣问题例 1:一件衣服原价 200 元,现在打八折出售,现价是多少元?解析:打八折意味着现价是原价的 80%,所以现价为 200×80% =160(元)答案:现价是 160 元。
例 2:一双鞋子原价 300 元,现在降价 20%出售,现价是多少元?解析:降价 20%出售,那么现价就是原价的(1 20%),即 80%。
所以现价为 300×80% = 240(元)答案:现价是 240 元。
二、利率问题例 3:_____将 5000 元存入银行,定期三年,年利率是 325%,到期时能获得多少利息?解析:利息=本金×利率×时间,所以利息为 5000×325%×3 = 4875(元)答案:到期时能获得 4875 元利息。
例 4:_____在银行存了 8000 元,存期两年,年利率为 275%,到期后能取回本金和利息一共多少元?解析:先算出利息为 8000×275%×2 = 440(元),本金和利息一共8000 + 440 = 8440(元)答案:到期后能取回本金和利息一共 8440 元。
三、增长率问题例 5:某工厂去年的产量是 200 万吨,今年的产量比去年增长了15%,今年的产量是多少万吨?解析:今年的产量=去年的产量×(1 +增长率),所以今年的产量为 200×(1 + 15%)= 230(万吨)答案:今年的产量是 230 万吨。
例 6:一家公司去年的营业额为 500 万元,今年的营业额比去年降低了 8%,今年的营业额是多少万元?解析:今年的营业额=去年的营业额×(1 降低率),即 500×(1 8%)= 460(万元)答案:今年的营业额是 460 万元。
四、百分数的比较问题例 7:甲商场的商品打九折出售,乙商场的商品满 100 元减 10 元。
巧妙运用百分数解决实际问题
巧妙运用百分数解决实际问题百分数是我们日常生活中经常用到的一种数学概念,它能够帮助我们解决很多实际问题。
在各个领域,都可以运用百分数进行计算和分析,来得出准确的结论和决策。
本文将通过几个实际问题的案例,向读者介绍如何巧妙运用百分数解决问题。
案例一:销售增长率的计算假设某个企业去年的销售额为100万元,今年的销售额为150万元,我们想要计算销售增长率。
可以按照以下步骤进行计算:1. 计算销售额的增长量:今年的销售额减去去年的销售额,即150万元 - 100万元 = 50万元。
2. 计算销售额的增长率:增长量除以去年的销售额,再乘以100%。
即50万元 / 100万元 * 100% = 50%。
因此,该企业今年的销售额增长了50%。
案例二:商品打折后的售价计算现在很多商家都会在促销活动中给商品打折,比如"7折"、"8.5折"等。
如果我们知道商品原价和折扣率,想要计算打折后的售价,可以按照以下步骤进行计算:1. 将折扣率转换成百分数,比如"7折"就是70%,"8.5折"就是85%。
2. 计算商品打折后的售价:原价乘以折扣率,即原价 * 折扣率。
例如,某商品的原价为200元,打8折,那么打折后的售价就是200元 * 80% = 160元。
案例三:人口增长率的估算在人口统计学中,人口增长率是一个重要的指标。
如果我们知道某地的人口数和年均人口增长率,想要估算未来几年的人口数,可以按照以下步骤进行计算:1. 将年均人口增长率转换成百分数,比如增长率为2.5%,就是0.025。
2. 计算未来几年的人口数:当前的人口数乘以增长率的n次方,其中n为未来的年数。
例如,某地目前的人口数为100万,年均人口增长率为2.5%,我们想要估算未来5年后的人口数,即100万 * (1 + 0.025)^5 ≈ 110.51万(保留两位小数)。
通过以上三个案例,我们可以看到百分数的运用在解决实际问题中起到了重要的作用。
百分数应用题类型
百分数应用题类型一、概述百分数是我们日常生活中经常使用的一种数字表示方式,它可以用来描述某种现象在总体中所占的比例或数量。
例如,我们经常听到某个城市的失业率达到了10%,这就是一个百分数。
在实际应用中,百分数可以用于各种领域,如经济、教育、医疗等。
本文将介绍几种常见的百分数应用题类型,并提供详细的解题方法和实例。
二、比例问题1. 比例问题概述比例问题是指给定两个量之间的比值,求其中一个量所占总量的百分比。
例如,某班级男生人数占总人数的三分之二,求男生人数所占总人数的百分比。
2. 解题方法设总量为x,已知其中一个量为y,则另一个量为x-y。
设已知比值为a:b,则有a/b=y/x-y。
解出y后,即可得到所求百分比。
3. 实例某班级共有50名学生,其中男生人数占总人数的三分之二,请问男生人数所占总人数的百分比是多少?解:设男生人数为y,则女生人数为50-y。
根据已知条件可得:2/3 = y / (50-y)解得y=30,即男生人数为30。
所求百分比为:30/50 × 100% = 60%三、增长率问题1. 增长率问题概述增长率问题是指给定两个量之间的变化比值,求其中一个量的百分增长率或百分减少率。
例如,某公司去年销售额为100万元,今年销售额为120万元,求今年销售额相比去年增长了多少百分比。
2. 解题方法设原始量为x,变化量为y,则有变化比值为y/x。
若变化量为正数,则所求百分增长率为变化量除以原始量再乘以100%;若变化量为负数,则所求百分减少率为变化量除以原始量再乘以100%的相反数。
3. 实例某公司去年销售额为100万元,今年销售额为120万元,请问今年销售额相比去年增长了多少百分比?解:设去年销售额为x,则今年销售额为x+20。
根据已知条件可得:20/100 = y/100解得y=20,即今年销售额相比去年增长了20万元。
所求百分增长率为:20/100 × 100% = 20%四、利润率问题1. 利润率问题概述利润率是指某项业务或产品的利润占销售额的百分比。
百分数解决问题道客巴巴
百分数解决问题道客巴巴
百分数可以应用于许多实际问题中,以下是一些例子:
1. 折扣计算:假设某件商品原价为100元,现在打8折,问现价是多少?解法:100元 * 0.8 = 80元,所以现价为80元。
2. 百分比增长:某公司去年销售额为100万,今年增长了20%,问今年销售额是多少?解法:100万 * 1.20 = 120万,所以今年销售额为120万。
3. 利息计算:某人存款10000元,年利率为4%,问一年后的利息是多少?解法:10000元 * 0.04 = 400元,所以一年后的利息为400元。
4. 考试成绩统计:某班级有40位学生,其中20位学生考了满分,问满分的学生占总人数的百分比是多少?解法:20 / 40 * 100% = 50%,所以满分的学生占总人数的百分比是50%。
通过使用百分数,我们可以更方便地进行各种问题的计算和比较,并更直观地了解数据的比例和增长率。
六年级百分数应用题练习题(精选4篇)
六年级百分数应用题练习题〔精选4篇〕篇1:六年级百分数应用题练习题六年级百分数应用题练习题六年级百分数应用题练习题及答案【知识点】用百分数解决问题1、常见百分率的计算方法:2甲比乙多〔少〕百分之几的应用题:〔甲?乙〕?乙?100%=甲比乙多的百分之几〔乙?甲〕?乙?100%=甲比乙少的百分之几1、求比一个数多〔少〕百分之几的数是多少的应用题:单位“1”的量?对应分率=局部量2、一个数的百分之几是多少,求这个数的应用题:局部量?对应分率=单位“1”的量3、折扣:商品按原价的百分之几出售,叫做折扣。
4、纳税:纳税的税款叫应纳税额。
应纳税额与各种收入的比率叫税率。
应纳税额=总收入?税率5、利息:取款时银行多支付的钱叫做利息。
税后利息=本金?利率?时间?〔1-5%〕【典型例题】例1、一个盒子里装有大小一样的白色玻璃球6个,红色玻璃球12个。
从中任意摸出一个,摸到红球的可能性是百分之几?例2、同一段路上,小方要跑5分钟,小强要跑4分钟,小强的速度比小方快百分之几?例3、某商店同时卖出两种商品,每种各得480元,其中一种赚20%,另一种赔本20%。
这个商品卖出这两种商品赚钱还是赔本?为什么?例4、根据算式补充条件。
一台微波炉的原价是500元,,现价是多少?〔1〕500?80% 〔2〕500?80% (3) 500-1?20%? (4) 500-1?20%?(5) 500-1?20%? (6) 500-1?20%?例5、红红在一凡图书城购置了一套大七折的《三国演义》,结果少付了45元。
这套《三国演义》原价是多少?1例6、利民超市在国庆期间举行“买三百送一百”的'促销活动。
妈妈话300元钱买了一些物品,妈妈能享受到几折优惠?例7、刘叔叔开了一家小商店,上个月按全部收入的5%缴纳营业税,一共缴纳税款元。
刘叔叔上个月的营业额是多少?〔2〕宋老师写一本书需缴纳个人说得税696元,这本书的稿费是多少元?例9、赵明有200元压岁钱,打算存入银行两年,有两种存法:一种是存两年期,年利率是4.68%;另一种是先存入一年,年利率是4.14%,第一年到期后再把本金和税后利息合一起,再存入一年。
百分数应用题及答案
百分数应用题及答案百分数在我们的日常生活和学习中经常会遇到,下面就为大家带来一些常见的百分数应用题及详细的答案解析。
一、折扣问题例题 1:一件衣服原价 200 元,现在打八折出售,现在的价格是多少?答案:八折就是 80%,所以现在的价格为 200×80% = 160(元)解析:打几折就是按原价的百分之几十出售,原价乘以折扣率就是现在的价格。
例题 2:一双鞋子原价 150 元,现在打七五折出售,比原价便宜了多少元?答案:打七五折后的价格为 150×75% = 1125(元),比原价便宜了 150 1125 = 375(元)解析:先算出打折后的价格,再用原价减去打折后的价格就是便宜的金额。
二、增长率问题例题 3:某工厂去年的产量是 500 吨,今年的产量比去年增长了20%,今年的产量是多少?答案:今年比去年增长了 20%,则今年的产量是去年的(1 +20%),所以今年的产量为 500×(1 + 20%)= 600(吨)解析:增长了百分之几就是在原来的基础上增加了百分之几,用原来的量乘以(1 +增长率)就是增长后的量。
例题 4:一家公司第一季度的利润是 10 万元,第二季度的利润比第一季度增长了 15%,第二季度的利润是多少?答案:第二季度的利润是 10×(1 + 15%)= 115(万元)解析:同理,用第一季度的利润乘以(1 +增长率)得到第二季度的利润。
三、税率问题例题 5:王叔叔月工资 5000 元,个人所得税起征点是 3500 元,超过部分按 3%缴纳个人所得税,王叔叔每月应缴纳个人所得税多少元?答案:超过起征点的部分是 5000 3500 = 1500(元),所得税为1500×3% = 45(元)解析:先算出超过起征点的金额,再乘以税率就是应缴纳的税额。
例题 6:某商店上个月的营业额是 8000 元,按 5%缴纳营业税,应缴纳营业税多少元?答案:应缴纳的营业税为 8000×5% = 400(元)解析:营业额乘以税率就是应缴纳的营业税。
用百分数解决问题(精选17篇)
用百分数解决问题(精选17篇)用百分数解决问题篇1【专题要点】用百分数解决问题主要包括以下四个要点:1、求一个数是另一个数的百分之几应用题的思考方法与解题步骤,与求一个数是另一个数的几分之几或者几倍的应用题基本相同,即从问题入手进行分析,弄清是求谁占谁的百分之几,从而确定谁除以谁的数量关系,不同的是计算结果要用百分数来表示。
2、求百分率应用题的思考方法和解题步骤,与求一个数是另一个数的百分之几的应用题相同,关键是要弄清楚各种不同百分率的含义。
如:及格人数及格率=——————————×100%参加考试人数成活棵树成活率=——————————×100%植树总棵树熟练理解各种百分率的含义是解答此类应用题的关键。
3、百分数应用题和分数应用题在结构特征、数量关系和解题方法上都是一致的,只是把分数应用题的几分之几换成了百分之几。
4、百分率的应用税率的计算方法:应纳税额=某种收入×税率。
利息的计算方法:利息=本金×利率×时间折扣的计算方法:原价×折扣=现价【例题解读1】例: 一台电脑原价8000元,现价6000元,降价了百分之几?思路点拨:求降价了百分之几,把这句话补充完整就是现在的价钱和原来的价钱比,降低的占原来价钱的百分之几?解答方法:方法一:1、先计算出现在的价钱比原来降低了多少元?8000-6000=2000(元)2、再用降低的2000元除以单位“1” 的量,计算出降低的占原来价钱的百分之几?2000÷8000=25%方法二:先计算现在的价钱是原来的百分之几。
6000÷8000=75%1-75%=25%说明:两种方法必须注意找准单位“1”和相对应的量和分率。
【精练内化】基础训练:1、男生25人,女生20人,男生比女生多百分之几?思路点拨:求求男生比女生朵百分之几,把这句话补充完整就是男生的人数和女生的人数比,男生比女生多的占女生的百分之几?方法一:1、男生比女生多多少人?2、再用多的人数除以单位“1” 的量,计算出男生比女生多的人数占男生的百分之几?方法二:先算出男生占女生的百分之几?再算男生比女生多百分之几?2、机床厂去年生产机床500台,今年生产600台,今年生产的是去年的百分之几?3、南山镇今年计划造林200公顷,结果上半年造林124公顷,下半年造林100公顷,完成计划的百分之几?4、40比50少百分之几?50比 30多百分之几?5、有一台冰箱,原价2000元,降价后卖1600元,降了百分之几?6、有一台空调,原价1600元,涨价后卖2000元,涨了百分之几?7、有一台电视,原价1200元,降了300元,价格降了百分之几?8、有一种消毒柜,原价2400元,涨价了400元,价格涨了百分之几、提升训练:1、机床厂去年生产机床500台,今年生产600台,今年比去年超额百分之几?2、机床厂去年生产机床500台,今年生产600台,去年比今年少了百分之几?1、某厂的一种产品,原来每件成本96元,技术革新后,每件成本降低到了84元,每件成本降低了百分之几?4、录音机厂第三季度计划生产录音机3600台,实际生产4500台,实际产量超过计划百分之几?5、化纤厂由于加强企业管理,每班的工人由800名减少到650名。
100道百分数应用题带答案
100道百分数应用题带答案1. 小明有100元,他买了一件价值200元的衣服,他用了多少百分比的钱?答案:50%2. 小红有200元,她买了一件价值100元的衣服,她用了多少百分比的钱?答案:50%3. 小刚有300元,他买了一件价值150元的衣服,他用了多少百分比的钱?答案:50%4. 小芳有400元,她买了一件价值200元的衣服,她用了多少百分比的钱?答案:50%5. 小强有500元,他买了一件价值250元的衣服,他用了多少百分比的钱?答案:50%6. 小美有600元,她买了一件价值300元的衣服,她用了多少百分比的钱?答案:50%7. 小丽有700元,她买了一件价值350元的衣服,她用了多少百分比的钱?答案:50%8. 小华有800元,他买了一件价值400元的衣服,他用了多少百分比的钱?答案:50%9. 小杰有900元,他买了一件价值450元的衣服,他用了多少百分比的钱?答案:50%10. 小娟有1000元,她买了一件价值500元的衣服,她用了多少百分比的钱?答案:50%11. 小英有1100元,她买了一件价值550元的衣服,她用了多少百分比的钱?答案:50%12. 小张有1200元,他买了一件价值600元的衣服,他用了多少百分比的钱?答案:50%13. 小利有1300元,他买了一件价值650元的衣服,他用了多少百分比的钱?答案:50%14. 小林有1400元,她买了一件价值700元的衣服,她用了多少百分比的钱?答案:50%15. 小钱有1500元,他买了一件价值750元的衣服,他用了多少百分比的钱?答案:50%16. 小军有1600元,他买了一件价值800元的衣服,他用了多少百分比的钱?答案:50%17. 小秋有1700元,她买了一件价值850元的衣服,她用了多少百分比的钱?答案:50%18. 小文有1800元,他买了一件价值900元的衣服,他用了多少百分比的钱?答案:50%19. 小艳有1900元,她买了一件价值950元的衣服,她用了多少百分比的钱?答案:50%20. 小洋有2000元,他买了一件价值1000元的衣服,他用了多少百分比的钱?答案:50%21. 小莉有2100元,她买了一件价值1050元的衣服,她用了多少百分比的钱?答案:50%22. 小峰有2200元,他买了一件价值1100元的衣服,他用了多少百分比的钱?答案:50%23. 小辉有2300元,他买了一件价值1150元的衣服,他用了多少百分比的钱?答案:50%24. 小娜有2400元,她买了一件价值1200元的衣服,她用了多少百分比的钱?答案:50%25. 小芬有2500元,她买了一件价值1250元的衣服,她用了多少百分比的钱?答案:50%26. 小贝有2600元,他买了一件价值1300元的衣服,他用了多少百分比的钱?答。
百分数练习利用百分数解决实际问题
百分数练习利用百分数解决实际问题解题步骤:百分数是我们日常生活中经常使用的一种表示方式。
使用百分数可以将某种数量或比率以百分比的形式呈现,便于我们理解和比较。
在解决实际问题时,我们经常需要运用百分数来进行计算和分析。
下面,我们将通过几个实例来练习如何应用百分数解决实际问题。
实例一:折扣计算小明在商场购买了一件原价为300元的衣服,商家正在举行促销活动,对所有商品进行9折优惠。
请计算小明享受了多少折扣以及实际支付多少钱。
解析:首先,我们要计算出折扣的百分比。
由于商家给出的是9折优惠,即商品价格打九折,因此折扣的百分比为100% - 90% = 10%。
接下来,我们将原价300元与折扣的百分比相乘,即可计算出小明享受的折扣金额。
300元 × 10% = 30元。
最后,我们用原价减去折扣金额,即可得到小明实际需要支付的金额。
300元 - 30元 = 270元。
所以,小明享受了30元的折扣,实际支付了270元。
实例二:百分比表示比率某小组进行了一次调查,统计了学生中爱好篮球和足球的人数,结果显示总人数为500人,其中有300人喜欢篮球,占总人数的百分之多少呢?解析:我们需要将喜欢篮球的人数占总人数的比率转化为百分数。
首先,我们可以计算出喜欢篮球的人数占总人数的比率为 300 / 500 = 0.6。
为了将比率表示为百分数,我们需要将0.6乘以100。
即 0.6 × 100 = 60。
所以,喜欢篮球的人数占总人数的百分比为60%。
实例三:计算涨幅或降幅某公司去年销售额为1000万元,今年销售额为1200万元,请计算今年销售额相比去年增长了多少百分比。
解析:我们需要计算今年销售额相比去年增长的百分比。
首先,我们将今年的销售额减去去年的销售额,即 1200万元 - 1000万元 = 200万元。
然后,将这个增量除以去年的销售额,并乘以100,即 (200万元 / 1000万元) × 100 = 20%。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1、我校六年级共有学生140名,今天全部到
校,六年级今天学生的出勤率是140%。
(×)
2、一批零件的合格率为98%,那么这批零件
的不合格率是2%。
(√)
3、10克盐放入100克水中,盐水的含盐率是
10%。
(× )
谢谢
发芽率=
发芽种子数 试验种子总数
×100%
例3
某县种子推广站,用300粒玉米种
子作发芽试验,结果发芽的种子有
288粒。求发芽率。
发芽率=
发芽种子数 试验种子总数
=0.96×100% =96%
同学们做的种子发芽试验终于有结果啦!
绿豆 花生 大蒜
种子数
80 50 20
用200千克小麦磨出面粉170千克, 小麦的出粉率是( 85% )。
王师傅加工了50个零件,其中有2个 不合格,合格率是(96%)。
种一批树,活了100棵,死了1棵,求
成活率的正确算式是( C)。
选一选
A:10100-0 1×100% B:110000-+11×100% C:10100+0 1×100%
例2
六年级有学生160人,已达到《国家体育 锻炼标准》(儿童组)的有120人,六年 级学生的达标率是多少 ?
达标率=
达标人数 总人数
×100%
120
160 ×100% =75%
答:六年级学生的达标率是75%。
种 子 发 芽 实 验
种 子 发 芽 实 验
种 子 发 芽 实 验
求发芽种子数占试验种子总 数的百分之几就是发芽率。
发芽数
78 46 19
发芽率
97.5% 92% 95%
小麦的出粉率=
面粉的重量 小麦的重量
×100%
产品的合格率=
合格产品数 产品总数
×100%
学生的出勤率=实应际出出勤勤人人数数×100%
求什么率就用什么量作分子,用相应的总数 作分母,然后乘以100%。
生活中常见的百分率
入学率 及格率 成活率 出油率 优秀率 投球命中率
达标人数÷总人数
120 ÷160 = 120
3
160
4
答:已达标人数占六年级学生人数的四分之三
例1
六年级有学生160人,已达到《国家体育 锻标炼人标数准占》六(年儿级童学组生)人的数有的12分0人几之百,几已?达
达标人数÷总人数
3 120÷160= 4 =75%
答:已达标人数占六年级学生人数的75%。
关于用百分数解决 问题
看成语联想百分数
百战百胜( 100% ) 十拿九稳( 90% ) 百里挑一( 1% ) 半壁江山( 50% )
看百分数联想成语
1、100%的命中率( 百发百中) 2、死的可能性为90%,活的可 能性为10%。( 九死一生 )
复习
六年级有学生160人,已达到《国家体育 锻炼标准》(儿童组)的有120人,已达 标人数占六年级学生人数的几分之几?