变式训练在教学中的作用
变式训练——思维的训练
变式训练———思维的训练黑龙江农业经济职业学院附中周为变式训练——思维的训练变式训练是中学数学教学中的一种重要教学策略,在提高学生的学习兴趣、培养学生的数学思维和数学解题能力方面有着不可忽视的作用。
通过变式训练可以使教学内容变得更加丰富多彩, 使学生的思路更加宽广。
这种方法在我国数学教学中的应用由来已久, 在教学中往往被广大教师自觉或不自觉地运用。
所谓变式训练就是通过将原命题中的条件、结论、形式、内容、图形等作适当变换, 也就是通过一个问题的变式, 解决一类问题的变化, 逐步养成学生深入反思数学问题的习惯, 善于抓住数学问题的本质和规律, 探索相关数学问题间的内涵联系以及外延关系, 进而培养学生创新思维能力。
笔者在日常教学中对部分习题通过图形变式、等价变式、思想变式、条件、结论互变等途径,不仅对一些综合题铺设了适当的台阶, 降低了它们的难度, 也使学生掌握了学习知识的方法, 而且训练了学生的思维能力, 培养了创新精神。
下面是笔者在初中数学教学中运用变式训练的一点尝试: 一、图形变式初中低年级数学中的几何知识的学习是培养学生观察能力、空间想象能力、逻辑思维能力的重要载体, 学生对图形的认识能力也是由具体到抽象、由简单到复杂过渡的, 教师如果能在教学中把有些习题的图形加以变化, 借助变化来反映图形的空间形状及位置关系, 让图形动起来, 引导学生去思考探讨, 那么可以使学生真正掌握知识之间的内在联系。
例:求下图∠A +∠B+∠C+∠D+∠E+∠F 的度数。
学生在教师的指导启发下, 通过讨论,定理达到题目考察的目的,为了使学生能更进一步对图形及相关知识做到灵活使用、触类旁通变式训练(“图形变换”) 将大显身手。
在学生切实掌握了上述图形问题的讨论后, 再作如下变式:求如下两图∠A +∠B+∠C+∠D+∠E+∠F 的度数。
以上两题仍然是利用外角和内角和的定理解决。
由此可见,在这一系列的图形变化过程中, 本质的东西并没有发生变化, 掌握了这些不变性,也就把握住了事物的本质特征,这必将有助于我们从纷繁复杂的众多事物中寻找共性,从千姿百态的现象中总结出反映本质的基本规律。
变式训练在教学中的作用
浅谈变式训练在数学教学中的作用潍坊峡山第二中学张坤培养学生的创新能力,是新时期教学的最终目标,可如何实现这个目标,每个老师有自己的理解和方法,本人认为,通过变式教学,可以达到这一目标。
在传统教学机制下,学生要想获得好的成绩,必须既快又准确的解题,为达到这个目的,很多教师会采用让学生做大量习题,以达到熟练巩固的程度,这样造成学生的负担很重。
随着“减负”的实施,素质教育目标的提出,有效地培养学生的创新能力,让学生从大量的习题中解放出来,已是大势所趋,但同时又不能降低教学质量,本人在变式教学方面做出了一些尝试。
变式教学是对数学中的问题进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的本质特征,揭示不同知识点间的内在联系的一种教学设计方法。
变式教学使一题多用,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲。
在教学过程中,根据学生的特点,教师通过创设合理的、有挑战性的变式训练,激发学生的学习兴趣。
通过变式训练,教师对学生的思维发展提供一个支架,而这个支架恰好是学生思维发展的一个阶梯,有利于学生构建合理、完整的新知识。
对于每一个变式,通过在师生、学生之间的相互讨论,促进课堂的民主、和谐,真正体现“教师为主导,学生为主体”的思想。
变式教学有利于发展学生的创新能力。
《高中数学新课程标准》要求培养学生的探索精神,发展学生的创新意识。
创新是素质教育的核心,培养学生的创新精神、创新意识、创新思维和创新能力是实施素质教育的关键。
在教学中,变式练习时传统练习和创新的中介,教师通过变式,可以培养学生的探索精神和创新精神。
教师通过改变问题的情景、改变问题的条件、结论或者图形的关系,让学生探索,以激发学生的创新思维,培养他们的创新能力。
通过对一个问题多角度的求解,多方向的思维,已获得多种答案,培养学生的发散思维的能力,这种发散思维,就是创新的基础。
下面本人结合数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。
例谈变式训练在课堂教学中的运用
例谈变式训练在课堂教学中的运用【摘要】变式训练是一种教学方法,通过反复练习同一知识点的不同变式,促进学生对知识的深入理解和灵活运用。
在课堂教学中,变式训练不仅可以提高学生的学习兴趣和参与度,还可以帮助他们培养逻辑思维、问题解决能力和学习策略。
采用多样的方法和技巧进行变式训练,如递进式发问、案例分析和游戏化教学,能够激发学生的思维潜能,提高学习效果。
不同学科可以根据具体知识点和学生特点有针对性地运用变式训练,进一步增强教学效果。
通过对变式训练的效果评价,可以及时调整教学方法,提升教学质量。
变式训练在课堂教学中具有重要意义,有助于提高学生成绩和综合素质的培养。
【关键词】变式训练、课堂教学、概念、特点、意义、方法、技巧、不同学科、效果评价、结论。
1. 引言1.1 引言变式训练是指通过对知识或技能进行变异、组合、扩展等方式进行训练,以提高学生的学习能力和创新能力。
在课堂教学中,变式训练是一种常见的教学方法,通过设计不同形式的练习题目和活动,引导学生运用所学知识解决问题,培养其思维灵活性和创造力。
变式训练的本质是在原有知识基础上进行变化和拓展,让学生不仅掌握基本概念和方法,还能灵活运用于各种复杂情境中。
通过不同形式的变式训练,学生可以更好地理解知识点,提高问题解决能力和学习深度。
在实际教学中,教师可以通过设计不同难度和形式的变式训练题目,激发学生的学习兴趣和主动性。
变式训练还可以帮助学生巩固知识、整合知识、拓展知识,提高学习效果和成绩表现。
变式训练在课堂教学中具有重要意义,是促进学生思维发展和能力提升的有效手段。
2. 正文2.1 变式训练的概念与特点变式训练是指在教学中通过设计不同形式和难度的题目,让学生在掌握基础知识的基础上进行灵活运用和拓展,以提高他们的学习能力和解决问题的能力。
变式训练的特点包括:1. 灵活多样:变式训练可以通过设计不同形式的题目,如填空题、选择题、解答题等,以适应不同学生的学习方式和能力水平。
小学高年级数学教学中习题“变式”的应用探究
小学高年级数学教学中习题“变式”的应用探究一、引言数学是一门抽象而又具体的学科,它需要学生进行大量的实践和训练才能够掌握。
在小学高年级数学教学中,习题“变式”是一个很重要的教学方法。
通过“变式”习题的练习,学生可以更加深入地理解和掌握数学知识,提高解题能力和创新能力。
本文将重点探讨小学高年级数学教学中习题“变式”的应用。
二、“变式”习题的定义“变式”是指在一定的数学基本概念和规则下,通过变换数字、字母或者表达式的形式,构造出一类具有一般规律的问题,供学生进行练习和巩固。
在小学高年级数学教学中,“变式”习题通常包括因式分解、方程式变形、等式变换等内容。
这些习题能够帮助学生扩展思维,理解抽象的数学概念,提高数学解题能力。
三、“变式”习题的优点1. 帮助学生理解数学概念通过“变式”习题的练习,学生可以通过不同的形式来认识和理解数学知识。
通过对不同形式的方程式的变形来理解方程的解法及其规律;通过对因式分解的练习来理解多项式的展开和化简过程。
2. 提高学生的解题能力“变式”习题的练习可以让学生在不同的情境下进行思维的转换和推理,从而提高学生的解题能力和创新能力。
通过对一类问题的变形和推演,学生可以更好地应用所学的数学知识来解决各种问题。
四、“变式”习题的实际应用在小学高年级数学教学中,“变式”习题的应用是非常广泛的。
教师可以通过设计不同形式的“变式”习题来辅助教学,提高学生的学习兴趣,同时也能够帮助学生更好地掌握数学知识。
1. 因式分解因式分解是小学高年级数学教学中的一个重要内容,通过因式分解习题的练习,学生可以更好地了解多项式的展开和化简。
教师可以设计不同难度和形式的因式分解习题,让学生进行练习和巩固。
例如:将多项式3x²+6x进行因式分解。
例如:将方程式2x+5=10进行变形求解x的值。
五、“变式”习题的教学方法在小学高年级数学教学中,教师需要采用合适的教学方法来引导学生学习“变式”习题。
以下是一些常用的教学方法:1. 培养学生的自主学习能力在教学中,教师可以采用启发式的方法,引导学生自主发现问题的规律和解题的方法。
数学课堂教学中的变式教学
数学课堂教学中的变式教学变式教学是对教学中的概念,定理,习题进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的本质,揭示不同知识点的内在联系的一种教学设计方法。
一、变式教学的意义1.运用变式教学,确保学生参与教学活动的持续的热情。
课堂教学效果很大程度上处决于学生的参与情况,这就首先要求学生有参与意识。
加强学生在课堂教学中的参与意识,使学生真正成为课堂教学的主人,是现代数学教学的趋势。
通过变式教学,使一题多用,多题重组,常给人以新鲜感,能够唤起学生好奇心和求知欲,因而能够产生主动参与的动力,保持其参与教学活动的兴趣和热情。
2.运用变式教学,培养学生思维的广阔性。
思维的广阔性是发散思维的又一特征。
思维的狭窄性表现在只知其一,不知其二,稍有变化,就不知所云。
反复进行一题多变的训练,是帮助学生克服思维狭窄性的有效办法。
可通过讨论,启迪学生的思维,开拓解题思路,在此基础上让学生通过多次训练,既增长了知识,又培养了思维能力。
教师在教学过程中,不能只重视计算结果,要针对教学的重难点,精心设计有层次、有坡度,要求明确、题型多变的练习题。
要让学生通过训练不断探索解题的捷径,使思维的广阔性得到不断发展。
要通过多次的渐进式的拓展训练,使学生进入广阔思维的佳境。
现在课本中,有一部分例题的“想一想”是把例题进行变式训练的,我们可以利用它们切实培养学生思维的广阔性。
3.运用变式教学,培养学生思维的深刻性。
变式教学是指变换问题的条件和结论,变换问题的形式,而不变换问题的本质,使本质的东西更全面。
使学生不迷恋于事物的表象,而能自觉地注意到从本质看问题,同时使学生学会比较全面地看问题,注意从事物之间的联系的矛盾上来理解事物的本质,在一定程度上可克服和减少思维中的绝对化而呈现的思维僵化及思维惰性。
4.运用变式教学,培养思维的创造性。
著名的数学教育家波利亚曾形象的指出:“好问题同某种蘑菇有些相像,它们都成堆地生长,找到一个以后,你应当在周围找一找,很可能附近就有好几个。
初中数学教学中的变式训练分析
初中数学教学中的变式训练分析变式训练是初中数学教学中的一种常见教学模式,通过让学生学会变形和转化同一类别的表达式、方程或不等式,培养学生分析问题、解决问题的能力,同时提高学生智力水平和数学素养。
本文将从变式训练的目的、方法和实施策略三个方面对其进行分析。
一、目的变式训练是为了让学生拓宽思路、提高数学水平;养成良好的思维习惯;能够发现、解决问题的技能以及加强对知识的理解和掌握。
变式训练有助于学生将数学知识内化为自己的认知结构,促进学生在解决问题中的思维能力和技巧的提高,提高学生对数据的敏感性,有助于优化学生的数学思维和数学语言的表达。
二、方法变式训练的方法包括识别式变、列式子、化简式子、提取公因式、配方法、分组、加倍式子、积分式子、夹逼等。
通过这些方法来使学生掌握变式的基本技能,加强数学的启示性、实用性和趣味性,激发学生对数学知识的探究兴趣,培养学生的自主学习和创新的精神。
三、实施策略在实施变式训练的过程中,教师应注重以下几点策略:1. 施教“量体裁衣”。
变式训练要根据不同学生的能力设计不同难度的题目,让学生在适当的难度下进行练习,既不会太简单而缺乏挑战性,也不会太难影响学生信心。
2. 关注学生思维规律。
通过从学生解题的过程中获取信息,了解学生的解题基本思路、思维规律、思维偏向,以便更好地指导学生,帮助学生克服困难。
3. 系统性、完整性训练。
变式训练的效果是积累式的,要建立起一个系统化、完整的训练体系,让学生在不断的训练中逐步提高。
4. 认识到变式训练的重要性。
教师要传达变式训练的深远意义,让学生认识到这种训练对数学学习的重要性和必要性,并激发学生的学习兴趣。
5. 创设多维化的教学环境。
教师可以通过举办各种形式的数学科技活动、数学竞赛、数学娱乐等活动,不断拓宽学生习题的思维范围,增强学生运用数学知识解决实际问题的能力。
总之,变式训练能够帮助学生加强数学的启示性、实用性和趣味性,激发学生对数学知识的探究兴趣,促进学生在解决问题中的思维能力和技巧的提高,进而提高学生的数学素养和综合能力。
运用教学变式训练提高课堂教学效率
运用教学变式训练提高课堂教学效率变式训练教学是提高数学教学质量的重要手段之一。
数学教师在课堂中运用变式教学的频度较大,对变式教学的作用认可度也较高。
那么,新课程理念下,如何运用数学变式教学,提高课堂教学效率呢?1.运用变式训练,减轻学生负担。
变式教学不同于题海战术,学生要巩固所学知识,需要充分的练习。
一般地说,学生要做大量的练习。
如果认为这是“无意义地记忆,模仿和操练”,等同于题海战术,这种观念是不对的。
重复是掌握一项技能的必要过程,数学学习也不例外。
数学学习需要重复的是相关概念和问题的本质,非本质的内容则应不断改变,实行变式教学则比较符合这方面的特征。
这类比较复杂的教学方法比简单的重复要有效得多。
通过教师深入的理解,课堂内容被精心选择,并被加以良好的组织,从而在各种不同的地方使用有意义的“变式”。
在变换非本质属性的过程中掌握数学概念的本质属性。
在剔除次要因素的过程中暴露主要教学方法。
变式的核心在于保持问题所具有的特定程式和形式,至于基本知识和基本技能中的非“基本”元素,则可以精心设计,加以改变。
学生通过比较与鉴别,努力认识不变的“性质”。
运用变式教学,学生就不会只是通过做大量枯燥无味的习题来应用掌握的知识和技能,而是在一个有意义的、合适的背景下理解这些知识和技能,从而减轻学生的学习负担。
2.运用变式训练,提高教学效率。
实施变式教学是搞好有效教学的重要途径。
有教师认为,运用变式教学必须通过一个问题引出问题,往往要花更多的时间,然而教学时间有限,这是否影响了教学进度,降低了教学效益呢?看似一堂变式教学课,可能比一堂习题课要处理的题目少得多,甚至一堂课只能解决一个问题。
实际上,通过变式教学却能使一题变式成多题,进而有效带动大量问题的解决,帮助学生从“题海”中摆脱出来。
实际教学中,可以选择有探索价值的问题进行变换条件、条件弱化、条件一般化、条件开放化、条件类比等多角度深层次的连环变式,激起学生思维的火花和强烈的求知欲望。
变式训练在高中数学解题教学中运用
变式训练在高中数学解题教学中运用随着高考改革的推进,近年来数学的试题越来越变态,难度大大加强,而变式训练因其强化思维能力、提升解题能力的特点得到广泛关注,在高中数学解题教学中得到了广泛的应用。
一、什么是变式训练变式训练,指的是将原有的问题中某一特定要素进行改动,使其变化出不同的问题,如将已有的公式进行加减乘除的变形,力求以最简化的方式让学生通过思维分析出问题的解决方法。
常见的包括等式变形、代数式变形、运算法则变形、图形平移旋转等。
二、变式训练的作用1. 提高思维能力。
在变式训练中,学生需要通过综合思考、联想和分析的方法来解决不同的题目,这样可以帮助学生锻炼和提高其思维能力。
2. 提高解题能力。
变式训练可以帮助学生对不同类型的题目进行快速准确的解答,从而提高学生的解题能力。
3. 发散思维能力。
通过不同的变形方式,学生可以更好地挖掘问题本身,发现问题的内在逻辑关系,从而培养学生的发散思维,能够更好地解决问题。
1. 等式变形的应用。
等式变形是变式训练的常见方式之一,可以通过对等式左右两边进行变形,或者分离变量,简化等式,从而提高学生的数学理解能力。
3. 运算法则变形的应用。
运算法则是数学的基础内容,通过对运算规则进行变形、推广、总结,可以使学生更加深刻地理解基础概念。
4. 图形平移旋转的应用。
图形变换是通过变形、旋转等方式来改变图形位置、大小和形状的能力。
通过变形图形,可以培养学生的空间想象能力。
四、变式训练的教学策略1. 强调问题本身而非解答方法。
教师应当引导学生思考问题的本质,让学生更好地理解问题,以更简便的方式来解决问题。
2. 注重引导,鼓励探究。
变式训练需要通过引导分析问题,再提供解答思路,并鼓励学生自己探究、动手实践,从而加深问题的理解。
3. 考虑学生实际情况。
改变问题的方式是否符合学生实际情况,影响学生的思考效果,应该注重走向问题的简化,避免试图增加无关因素。
变式训练是高中数学解题教学过程中常见的、有效的思维训练方式之一。
浅谈变式训练在高中数学解题教学中的应用
浅谈变式训练在高中数学解题教学中的应用高中数学解题教学中,变式训练是一种非常重要的教学手段。
通过变式训练,可以帮助学生更好地掌握数学知识,提高解题能力,培养逻辑思维和数学推理能力。
本文将从变式训练的定义、特点以及在高中数学解题教学中的应用等方面进行浅谈。
一、变式训练的定义变式训练是指在已有概念或方法的基础上,通过变形措施训练学生的能力的一种教学手段。
它是通过变式训练,使学生在熟练掌握基本概念和方法的基础上,能够熟练运用这些知识解决相对比较复杂和具有一定难度的问题。
变式训练是对学生进行思维训练的重要方式,可以帮助学生提高解题能力,培养学生的创新思维。
1. 灵活性:变式训练要求学生在解题过程中要有灵活的思维,能够根据题目的不同情况做出相应的变形处理,而不是机械地死记硬背。
2. 多样性:变式训练的题目形式是多样的,可以是填空题、选择题、解答题等,内容也可以是代数、几何、概率等各个方面的数学知识。
3. 深度:通过变式训练,学生能够更深入地理解和掌握数学知识,提高解题的深度和广度。
4. 实用性:变式训练注重解决实际问题,能够培养学生的实际动手能力和解题能力,提高应用能力。
1. 培养逻辑思维能力变式训练可以帮助学生培养逻辑思维能力。
通过多样化的题目形式和不同类型的变化,可以激发学生的思维,帮助他们理清思路,提高逻辑推理能力,使学生在解题过程中能够迅速找出解题思路和方法。
2. 强化基本知识和方法的运用在变式训练中,学生需要将所学的基本知识和方法灵活运用到不同的题目中。
这种训练能够帮助学生巩固和加深对基本知识和方法的理解,提高解题的熟练程度,使学生能够迅速并准确地运用所学知识解决问题。
3. 提高解题能力通过变式训练,学生能够在解题的过程中不断地思考、推理和变形处理,这样可以提高学生的解题能力。
通过练习,在熟练掌握基本方法和技巧的基础上,使学生能够迅速地找出解题的关键点,并运用正确的方法进行解题。
4. 培养实际应用能力。
“变式训练”在教学中的重要性
n .
中的问题改为 : , 的图像关于直线 x 对称, 已知 () =b 且 的图像关于直线 驴 ( ) 6 对称 , 么 , 还 >n 那 ( 经过研究可 以知道 : ) 是以 T (-a为周期 =2b )
授之 以鱼 , 不如 授之 以渔 . 变式训 练其实就是 一种很
引申 4 偶函数的图像关于 , 如果将其一般化, 可将 引申 3
好 的授之以渔的训练模式 , 给学生一对 飞翔的翅膀 , 他们会越飞越高 , 这才是我们 教育 目的根本之所在.
引 申 3 已知 n b , ∈R, ≠b 求证 a +b>a b Ⅱ , 4 。
引申 6 奇函数的图像关于原点是对称 的, 那关于
2 6
数学教学研究
第 2 卷第 l 期 7 1
20 年 l 月 08 1
原点对称是特殊的中心对称 , 如果将其一般化, 可将引
通过对问题的不断引申, 一方面巩固不等式 的知 识, 另一方面让学生 真正体会 出不等式知识 的灵活使 用. 对初学绝对值不等式的学生来说, 受益会非常大 !
的周期函数
是否是周期 函数呢?
引 申5 如果将引申 3 中的偶 函数改为奇函数 , 对
引申 1 已知 n b , ≠6 求证 a +b>口b ,ER n , 。 3
称性不变, 周期性会有怎样的改变呢?即已知 , 是 ()
定义在 R 的奇函数, 上 且 的图像关于直线 z 对 —a 称 。 ,z还是否是周期函数呢? 那么 ()
变式训练助提高
变式训练助提高所谓变式训练就是通过将原命题中的条件、结论、形式、内容、图形等作适当变换,也就是通过一个问题的变式,解决一类问题的变化,逐步养成学生深入反思数学问题的习惯,善于抓住数学问题的本质和规律,探索相关数学问题间的内涵联系以及外延关系,进而培养学生创新思维能力。
在日常教学中对部分习题通过“变变图形、变变数据、变变文字”等手段,不仅对一些综合题铺设了适当的台阶,降低了它们的难度,也使学生掌握了学习知识的方法,而且训练了学生的思维能力,培养了创新精神。
一、在形成概念的过程中,利用变式引导学生积极参与形成概念的全过程,让学生自己去“发现”、去“创造”,通过多样化的变式提高学生学习的积极性,培养学生的观察、分析以及概括能力。
如在讲分式的意义时,一个分式的值为零是指分式的分子为零而分母不为零,因此对于分式321-+x x 的值为零时,在得到答案1-=x 时,实际上学生对“分子为零而分母不为零”这个条件还不是很清晰,难以辨析出学生是否考虑了“分母不为零”这个条件,此时可以做如下变形:变形1:当x__________时,分式3212--x x 的值为零?(分子为零时x=1±) 变形2:当x__________时,分式112--x x 的值为零?(1=x 时分母为零因此要舍去) 变形3:当x__________时,分式654322----x x x x 的值为零?(此时分母可以因式分解为)1)(6(+-x x ,因此x 的取值就不能等于6且不能等于-1)通过以上的变形,可以对概念的理解逐渐加深,对概念中本质的东西有个非常清晰的认识,防止教师盲目出题,学生盲目练习,在有限的时间内使得效益最大化。
二、在定理和公式的教学中,利用变式,展现相关定理和公式之间的联系以及定理、公式成立依附的条件,培养学生辨析与定理和公式有关的判断,运用。
如在九年级学习垂径定理时:学生对定理“如果圆的直径平分弦(这条弦不是直径),那么这条直径垂直这条弦,并平分这条弦所对的弧”理解不透,经常在判断中出错,实际上学生的错误是可以理解的,而教师却要去思考学生出错的根源是什么?我认为是学生没有理解这句话中几个关键字或词:直径、平分、不是直径,因此我们可以通过变式给出如下语句让学生去判断,并在错误的判断中给出反例,让学生理解错误的原因。
变式训练在初中数学教学中的应用
变式训练在初中数学教学中的应用一、变式训练的概念和特点1. 变式训练的概念变式训练是指在数学学习中,通过变化问题的形式和内容,使学生在相同类型的问题中反复训练,提高解题的灵活性和对问题的把握能力。
变式训练不仅可以帮助学生掌握解题技巧,还能培养学生的逻辑思维和问题解决能力。
二、变式训练在初中数学教学中的应用1. 适应教学需求,提高学生的解题能力初中数学学习要求学生具有较高的数学运算能力和解题能力,而变式训练可以帮助学生在相同类型的问题中不断训练,从而提高学生的解题能力。
在代数中,通过变式训练可以让学生掌握各种代数运算的方法和技巧,提高解题的准确度和速度。
2. 培养学生的逻辑思维和问题解决能力初中数学教学既要求学生掌握基本的数学知识和技巧,同时也要求学生具有较强的逻辑思维和问题解决能力。
变式训练可以通过不同形式和内容的问题训练,培养学生的逻辑思维和解决问题的能力,使学生能够在实际问题中运用所学的知识和方法进行解决。
3. 帮助学生建立数学信心,增强学习兴趣在学习数学的过程中,许多学生会因为解题困难而失去信心,甚至产生对数学学习的抵触情绪。
而变式训练可以通过连续反复的训练和技巧的掌握,帮助学生建立数学信心,增强学习兴趣,从而提高学生的学习积极性和主动性。
4. 注重实践操作,提高数学学习的效果变式训练在初中数学教学中的应用,不仅要注重知识点的训练,还要注重实际问题的解决和应用。
通过实践操作,可以帮助学生更好地理解和应用所学的知识,从而提高数学学习的效果。
在几何学习中,通过变式训练可以让学生更好地掌握几何图形的性质和定理,提高几何问题的解题能力。
三、变式训练在初中数学教学中的实际案例下面通过一个实际的案例,介绍变式训练在初中数学教学中的应用。
案例:小明学习了一元一次方程的解法后,老师设计了一组变式训练题目进行练习。
题目如下:1)求解方程2x+1=5;2)求解方程3x-2=7;3)求解方程4x+3=11;4)求解方程5x-4=13。
变式训练在初中数学教学中的应用
变式训练在初中数学教学中的应用一、定义变式训练是指通过改变一个数学问题中的数据或其他条件,使其变得不同的一类问题,目的是训练学生不固化的应变能力,提高其灵活掌握数学知识的能力。
二、应用1.培养学生的变通思维能力在初中数学教学中,一些基础的数学知识、定理或方法可以运用到不同的题目中。
通过变式训练,学生可以摆脱传统的计算模式,更加灵活地掌握运用数学知识的方法,让学生从学习中得到实际运用的启示,进一步提高学生的变通思维能力。
2. 调动学生学习兴趣变式训练适度增加了题目的多样性,给学生提供更多不同的思考角度,即使是同一类题型,变化后的外形可能会呈现出不同的色彩,从而有利于激发学生的学习兴趣。
通过变式训练能够有针对性地提高学生的解题能力,同时也可以促进学生自主学习的能力,培养学生独立思考解决问题的能力。
同时,此类训练方式也有利于提高学生的合作意识和情感交流能力,让同学之间互相学习借鉴,更有效地实现知识的整理和巩固。
三、优点1.扩展学生的数学思维深度变式训练可以有针对性地扩展学生的数学思维深度,帮助学生更好地掌握数学知识,通过变化题目的数据、条件等可以有效拓展学生的数学思维,提高学生的综合应用能力。
变式训练能够激发学生的学习积极性,提高学生的学习热情,并且能够不断地激发学生学习的热情,增加学生的学习信心,更有利于推进课程学习进度。
3. 能够针对性地提高学生学习效率在变式训练的教学模式中,特定的难点与问题被重复讲解、训练,让学生更深入地理解课程内容,有助于针对性地提高学生的学习效率和学习成果。
四、缺点1. 学习效果可能存在差异变式训练可以根据不同学生的掌握程度来调整难度和深度,但这也会导致学生掌握的知识量产生差异,存在学习成效不同的情况。
2. 可能导致学习成果不充分变式训练可以通过多样性的题目来增加学生的学习兴趣,但这也可能会导致部分学生不够集中地去学习和思考题目,从而影响学生的学习成果。
五、具体实施针对上述的优点和缺点,应在实施过程中注重以下几个方面:1.要注意变式训练的选材以及选题的方式:选材要考虑学生的学习经验、学习水平和学习能力,选题的方式也让大家能够更好地理解课程内容及其在实际生活场景中的应用。
初中数学教学变式训练(含示范课课程设计、学科学习情况总结)
初中数学教学变式训练第一篇范文:初中数学教学变式训练在初中数学教学中,变式训练是一种重要的教学方法。
它旨在通过多种形式的题目设置,让学生在变化中掌握数学概念、原理和方法,培养学生的数学思维能力和解决问题的能力。
本文将从教学实际出发,探讨如何有效地进行初中数学教学变式训练。
二、变式训练的原则1.针对性:变式训练应针对学生的学习需求和教学目标,有目的地选择或设计题目,使学生在变化中掌握数学知识。
2.层次性:变式训练应遵循由浅入深、由易到难的原则,分层次地设置题目,使学生在逐步解决问题的过程中提高数学能力。
3.多样性:变式训练应注重题目的多样性,包括不同类型、不同背景、不同难度的题目,以丰富学生的数学思维。
4.创新性:变式训练应注重题目的创新性,引导学生从不同角度思考问题,培养学生的创新意识和解决问题的能力。
三、变式训练的设计与实施1.课前准备:教师应根据教学内容和学生的学习情况,选取或设计具有代表性的题目,并分析题目的关键点和考察目标。
2.课堂讲解:在课堂上,教师应引导学生分析题目的基本结构,揭示题目的本质特征,让学生在变化中理解数学知识。
3.课后练习:教师应布置相应的课后练习,让学生在自主学习中巩固所学知识,提高解决问题的能力。
4.反馈与评价:教师应及时对学生的练习情况进行反馈,针对学生的问题进行讲解和指导,鼓励学生积极参与讨论和思考。
四、变式训练的注意事项1.关注学生的个体差异:在变式训练中,教师应关注学生的个体差异,根据学生的实际情况调整题目的难度和教学策略。
2.注重数学思维的培养:变式训练的目的是培养学生的数学思维能力,教师应引导学生从多个角度分析问题,提高学生的思维品质。
3.创设良好的学习氛围:教师应营造轻松、愉快的学习氛围,激发学生的学习兴趣,使学生在愉悦的情感中学习数学。
4.合理分配教学时间:教师应合理分配教学时间,确保变式训练的实施,同时兼顾其他教学内容的学习。
总之,在初中数学教学中,变式训练是一种有效提高学生数学能力的教学方法。
优化变式训练 提升教学有效性
、
何 为 数 学 变 式训 练
所 谓 数 学 变 式 训 练 ,即 是 指 在 数 学 教 学 过 程 中 对 概 念 、性
质 、定理 、公 式 ,以及 问题从不 同角度 、不 同层次 、不 同情形 、 不同背景做 出有效 的变化 ,使其 条件或形式 发生变化 ,而本质 特征却不变.
全面推 进素质教育 是当今学校教 育的主方 向 ,在 新课程背 的关 系时 ,可展现教学过程 中教师与学生数学思维活动的过程 ,
景下课堂教学 乃是素质教育 的载体 . 然而如何 向课 堂 4 5分钟要 充分调 动学 生学 习的积极性 、主动 地参与教学 的全 过程 ,培养 效益 ,如何进行有效 的课 堂教学这是 值得我们关 注和思考 的问 学生独 立分 析和解决 问题 的能力 ,以及大胆创新 、勇于探索 的
题.笔者认 为 ,强化数学变式训 练 、优化课堂教学设计是我们达 精神 ,从而真正把 学生 能力 的培养落到实处.变式训 练从某种 意
到 “ 减负增效” ,提高教学质量最有效的方法之一.
一
义上来讲 ,既加大 了课堂练 习的力度 ,又保证 了题型的新颖性 ,
不再让学生感到枯燥乏味 ,真正做到有效 教学 . 三、变式训练的常见做法
决问题的思路 、方 法和类似 问题 的联系与 区别以及特殊 与一般 数关 系式 为 Y=一 x+3 3 ,且 f与 。 额 5千万 ,那 么该由谁来 当董事 长呢? ( 学生答 :小明的爸爸)
学校
A B
C
+
_+
・
参赛人数
1 5 7
1 0
参赛选手平均成绩
9 0 8 0
题情境 ,这样大大节约了读题 、解题的时间. 通过对问题不断地
培养学生自主学习和创新意识的抓手——变式训练
培养学生自主学习和创新意识的抓手——变式训练培养学生自主学习和创新意识的抓手——变式训练导语:自主学习和创新意识是学生全面发展的关键要素,为了培养学生的这些能力,变式训练成为一种重要的教学手段。
本文将阐述变式训练的定义、特点以及对学生自主学习和创新意识的培养作用。
一、变式训练的定义与特点变式训练是指在教学过程中,通过改变教学内容的形式、难度、思维模式等,促使学生能够进行更加综合、灵活的思维和学习。
变式训练的特点主要体现在以下几个方面。
1. 多样性:变式训练注重提供多种多样的训练形式,包括书面、口语、实践等多种训练方式,以满足不同学生的学习需求。
2. 可塑性:变式训练强调学生的个性化发展,注重培养学生灵活、创新的思维方式,培养他们的问题解决能力和创新思维。
3. 程序化:变式训练要求教师根据学生的学习特点和发展需求,有针对性地设计个性化的变式训练课程,通过一系列有机的环节来培养学生的自主学习与创新意识。
二、变式训练对学生自主学习和创新意识的培养作用变式训练作为一种创新的教学方法,对学生的自主学习和创新意识的培养有着重要作用。
1. 激发学生的学习兴趣:变式训练能够提供丰富多样的学习形式,让学生从传统的单一的知识记忆中解放出来,激发他们的学习兴趣。
学生在多样的学习环境中,能够更加主动地参与学习,提高学习积极性。
2. 培养学生的自主学习能力:变式训练注重培养学生针对问题的自主解决能力。
在变式训练中,学生需要根据不同的情境和要求,自主选择学习策略和解决方法,提高自主学习能力。
3. 培养学生的创新思维:变式训练要求学生用不同的思维方式去思考问题,培养学生灵活的思维方式和创新思维能力。
通过变化的学习环境和任务,培养学生的创新意识,激发他们的创新潜力。
4. 提高学生的问题解决能力:变式训练经常出现各种新颖或复杂的问题,学生需要根据这些问题进行特定的思考和解决。
通过不断面对问题和解决问题,学生的问题解决能力将会得到提高。
关于变式训练在初中数学中的应用与思考
关于变式训练在初中数学中的应用与思考摘要:初中是学习发展中的一个关键转折点,从小学到初中这一过程中学生们学习的知识越来越多、越来越抽象。
数学这一学科在所有学科中既是重点又是难点,需要学生在这一阶段培养总结、变通的能力,可以建立自己的知识体系。
变式训练在一定程度上可以帮助学生培养以上能力,并且在素质教育的背景下变式训练越来越受到教育工作者的重视。
变式教育对教学改革和学生能力的培养具有重要作用,在数学教学中也不例外。
关键词:变式训练;初中数学;应用与思考我们现在处于新课程改革下的洪流中,我们在此中稍不谨慎便会被冲到岸边失去竞争力。
在课改下更加强调学生的主体性,要求教师改变以往的刻板教学方法。
不再是教师主讲学生被动接受,要求学生们发散思维,发挥学生的主观能动性。
教师在数学教学过程中应该将变式训练融入其中,培养学生们发散式思维、自主学习的习惯。
让学生在遇到问题时可以进行多方位、多层次的思考,想出多种不同的解题思路。
本文从变式训练的含义、变式训练对初中数学的重要意义及变式训练在初中数学中的应用三大部分论述,具体内容如下。
1.变式训练的含义学习以产生式表征的程序性知识的必要条件,它是指在其他教学条件不变的情况下,变化概念和规则的例证。
简单来说就是学生在学习中学习一个题或者概念可以以此推测出别的类型的题和概念,与我们平常所说的举一反三类似。
一般来说变式训练一般有三种:概念性变式、语言性变式和数学题目变式。
1.变式训练对初中数学的重要意义初中是重要的转折阶段,在这一阶段中学生们学习的内容越来越复杂、越来越多。
在有限的时间里学生要完全掌握这知识有些困难,况且初中数学更加的抽象难懂。
在遇到这些难题时学生们多半会退缩并且会减少对数学的喜爱,学生们会减少对数学的热情以至于会厌烦。
我们都知道兴趣是最好的老师,一旦失去兴趣那么这个学科可能会变成减分项。
而变式训练的运用刚好可以解决此类的问题:变式训练可以帮助学生们培养发散性思维、培养创造力,在学习中锻炼学生们举一反三地能力帮助学生们构建体系。
浅谈变式教学在初中数学教学中的运用
浅谈变式教学在初中数学教学中的运用1. 引言1.1 变式教学的定义变式教学是一种教学方法,它强调学生在探究、发现和解决问题的过程中,通过变式的变化和推演,掌握知识和技能。
变式教学不仅仅是单一的知识传授,更注重培养学生的思维能力、创新能力和解决问题的能力。
通过多样化的变式教学,学生可以更好地理解数学知识,培养数学思维,提高问题解决能力。
在变式教学中,教师不再是简单地灌输知识,而是扮演引导者和促进者的角色。
教师应该引导学生通过探究、实践和讨论,发现问题的本质,掌握解决问题的方法。
通过引导学生进行不同形式的变式训练,培养他们的逻辑思维和数学推理能力。
1.2 初中数学教学的重要性初中数学教学作为学生学习数学的基础阶段,具有极其重要的意义。
初中数学教学能够为学生打下扎实的数学基础,为未来的学习奠定坚实的基础。
数学是一门抽象逻辑的学科,其各种概念和原理相互联系、相互补充,因此在初中阶段掌握扎实的数学知识对于学生后续学习是至关重要的。
初中数学教学培养了学生的逻辑思维和分析问题的能力。
数学是一门需要逻辑推理和思维能力的学科,通过解题和证明过程,学生能够培养自己的逻辑思维能力,提高解决问题的能力。
这种思维方式对学生的终身受益无疑。
初中数学教学还对学生的综合能力有较强的促进作用。
数学与其他学科有着紧密的联系,学生通过数学学习可以培养自己的观察力、分析能力、解决问题的能力等,从而提高自己的综合素质,为未来的学习和工作打下坚实基础。
1.3 变式教学在初中数学教学中的意义变式教学还可以帮助学生更好地理解数学概念和原理,加深对数学知识的记忆和理解,培养他们的逻辑思维能力和推理能力。
通过变式教学,学生可以在实际问题中灵活运用数学知识,找到最优解决方法,提高解决问题的效率和准确性。
变式教学在初中数学教学中的意义在于能够激发学生的学习兴趣和求知欲,提高他们的数学学习效果和能力,为他们未来的学习和发展打下坚实的基础。
通过变式教学,可以使数学教学更加生动有趣,激发学生的学习激情,提高他们的学习积极性和主动性。
例谈变式在数学教学中的应用
浅谈变式在数学教学中的应用在教学一线的大多数教师能够说工作勤勤恳恳,把自己的知识毫无保留的传授给学生,但学生掌握知识的效果却给我们以极大的反差:很多我们认为学生已掌握的知识,在一次次考试中,只要对问题的背景或数量关系稍作演变,有的很多学生就无所适从。
很多实例也说明:在讲解时教师直接把自己的解题思路灌输给学生,就题论题。
对一些学生薄弱的地方没有实行深入的思考,处理方法单一,缺乏演变,再加上学生参与不够,这样的课堂就变得枯燥无味,而大量单一的、重复的机械性练习,达到的不是“生巧”,而是“生厌”,它不但对学生知识与技能的掌握无所裨益,而且还会使学生逐步丧失学习数学的兴趣。
要改变上面所提到的现状,提升学生的学习兴趣,取得更佳的效果,关键是我们的数学课堂教法上要有所改变------变式教学是有效的、重要的教学手段,下面我结合教学实例,谈谈我的几点体会:一.变式教学对新概念教学的促动作用: 概念,在数学课中的比例较大。
能否准确理解概念,是学生学好数学的关键。
概念通常比较抽象,学生感觉枯燥,学习起来索然无味,对抽象概念的理解就显困难。
通过变式等手段,不但能有效的解决这个难题,使学生渡过难关,而且还可加深学生对概念内涵和外延的更深层次的理解。
如在讲分式的意义时,一个分式的值为零,是指分式的分子为零而分母不为零,所以对于分式321X X +-的值为零时,在得到答案x=-3时。
实际上学生对“分子为零而分母不为零”这个条件还不是很清晰,难以辨析出学生是否考虑了“分母不为零”这个条件,此时能够做如下变形:X 31X _____X 32X-1X 32X X 3X-3-=±-=-变式:当时,分式的值为零(此时)变式: 当_____时,分式的值为零(此时) 所以说,使用变式教学,不但能加深学生对新知识的理解、解决难点,还能对概念内涵和外延的更深层次的理解,增加课堂思维量,提升课堂教学有效性。
二.变式教学有利于培养学生良好的思维品质。
数学课堂中变式练习的必要性(教学论文)
数学课堂中变式练习的必要性在课堂教学改革的今天,为了如何提高课堂教学效率,为了培养学生良好的学习习惯和养成良好的逻辑思维能力,我在教学中进行了变式教学法的尝试。
我认为它的核心是结合某一个或几个知识点,构造一系列知识的联系与变通,将相关联的知识连成串,能够清晰地展示数学知识发生、发展的过程,数学问题的知识结构的演变过程,解决问题的逻辑思维过程,以及创设暴露思维障碍情境过程。
它的主要作用在于凝聚学生的注意力;培养学生在相同条件下迁移、发散知识的能力;并激发学生的学习热情,达到举一反三、触类旁通的效果,使他们的应变能力得以提高,进而提高教学质量。
下面结合自己的教学实际,谈几点对有效变式练习的体会。
一、数学教学中新概念的变式练习。
数学教学离不开概念的教学,新知识绝大多数都是通过概念的教学直接学到的,它是学生接受新知识的主要渠道。
概念是学生们掌握知识必须掌握的阶梯性知识,能否正确理解概念,是学生学好数学的关键。
而数学中最枯燥的可能就是概念教学了,而在作业中又是最容易让孩子混淆而失分的。
对于如此抽象的数学概念,教师在教学时,应注意表达方式的多样化,从而加深对概念的理解,通过变式,可以使学生更好地认识概念的内涵和外延。
概念教学有其特殊性,它不仅要求学生要识记其内容,明确与它相关知识的内在联系,还要能灵活运用它来解决相关的实际问题。
概念往往比较的抽象,学习起来往往是索然无味,对抽象的概念的理解很困难。
而采取变式教学却能有效的解决这一难题,使学生度过难关。
通过变式或前后知识对比,或联系实际情况或创设思维障碍情境,来启发学生学习兴趣,变枯燥的东西为乐趣。
例如,学习了“梯形”和“等腰梯形”的定义后,提出:1、有一组对边平行的四边形是梯形吗?2、一组对边平行加一组对边相等的四边形是等腰梯形吗?通过反例变式进行反面刺激,使学生更明确的理解和掌握“梯形”概念中“只”字的重要性、明确“等腰梯形”是特殊的“梯形”。
又如,学过长方形和正方形的概念和特征之后,让学生找出长方形和正方形的异同,然后讨论“正方形是特殊的长方形。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
浅谈变式训练在数学教学中的作用潍坊峡山第二中学张坤培养学生的创新能力,是新时期教学的最终目标,可如何实现这个目标,每个老师有自己的理解和方法,本人认为,通过变式教学,可以达到这一目标。
在传统教学机制下,学生要想获得好的成绩,必须既快又准确的解题,为达到这个目的,很多教师会采用让学生做大量习题,以达到熟练巩固的程度,这样造成学生的负担很重。
随着“减负”的实施,素质教育目标的提出,有效地培养学生的创新能力,让学生从大量的习题中解放出来,已是大势所趋,但同时又不能降低教学质量,本人在变式教学方面做出了一些尝试。
变式教学是对数学中的问题进行不同角度、不同层次、不同情形、不同背景的变式,以暴露问题的本质特征,揭示不同知识点间的内在联系的一种教学设计方法。
变式教学使一题多用,多题重组,常给人以新鲜感,能唤起学生的好奇心和求知欲。
在教学过程中,根据学生的特点,教师通过创设合理的、有挑战性的变式训练,激发学生的学习兴趣。
通过变式训练,教师对学生的思维发展提供一个支架,而这个支架恰好是学生思维发展的一个阶梯,有利于学生构建合理、完整的新知识。
对于每一个变式,通过在师生、学生之间的相互讨论,促进课堂的民主、和谐,真正体现“教师为主导,学生为主体”的思想。
变式教学有利于发展学生的创新能力。
《高中数学新课程标准》要求培养学生的探索精神,发展学生的创新意识。
创新是素质教育的核心,培养学生的创新精神、创新意识、创新思维和创新能力是实施素质教育的关键。
在教学中,变式练习时传统练习和创新的中介,教师通过变式,可以培养学生的探索精神和创新精神。
教师通过改变问题的情景、改变问题的条件、结论或者图形的关系,让学生探索,以激发学生的创新思维,培养他们的创新能力。
通过对一个问题多角度的求解,多方向的思维,已获得多种答案,培养学生的发散思维的能力,这种发散思维,就是创新的基础。
下面本人结合数学课堂教学的实践,谈谈在数学教学中如何进行变式训练培养学生的思维能力。
一、在数学概念的形成过程中,利用变式启发学生积极参与观察、分析、归纳,培养学生正确概括的思维能力。
从培养学生思维能力的要求来看,形成数学概念,提示其内涵与外延,比数学概念的定义本身更重要。
在形成概念的过程中,可以利用变式引导学生积极参与形成概念的全过程,让学生自己去“发现”、去“创造”,通过多样化的变式提高学生学习的积极性,培养学生的观察、分析以及概括能力。
如在讲函数的定义域时,一个函数的定义域是自变量的取值范围。
实际上学生对自变量和变量,难以辨析,此时可以做如下变形:变式1:若函数()f x 的定义域是[]1,1-,求(2)xf 的定义域; 变式2:若函数(2)xf 的定义域是[]1,1-,求()f x 的定义域; 变式3:若函数(2)x f 的定义域是[]1,1-,求2(log )x f 的定义域。
通过以上的变式,可以对概念的理解逐渐加深,对概念中本质的东西有个非常清晰的认识,因此教师在以后的练习中也明确类似知识点的考查方向,防止教师盲目出题,学生盲目练习,在有限的时间内使得效益最大化。
二、在理解公式、定理及其性质的过程中,利用变式使学生深刻认知定理和公式中概念间的多种联系,从而培养学生多向变通的思维能力。
数学思维的发展,还赖于掌握、应用定理和公式,去进行推理、论证和演算。
由于定理和公式的实质,也是人们对于概念之间存在的本质联系的概括,所以掌握定理和公式的关键在于明确理解定理和公式中概念的联系,对于这种联系的任何形式的机械的理解,是不能熟练、灵活应用定理和公式的根源,它是缺乏多向变通思维能力的结果。
因此在定理和公式的教学中,也可利用变式,展现相关定理和公式之间的联系以及定理、公式成立依附的条件,培养学生辨析与定理和公式有关的判断,运用。
如在研究三棱锥(即四面体)顶点的射影与底面三角形“各心”的关系时就可设置以下问题:① 当三棱锥是正三棱锥时;② 当三条侧棱的长均相等时;③ 当侧棱与底面所成的角都相等时;④ 当各个侧面与底面所成的二面角相等,且顶点射影在底面三角形内时; ⑤ 当顶点与底面三边距离相等时;⑥ 当三条侧棱两两垂直时;⑦ 当三条侧棱分别与所对侧面垂直时;教师通过不断变换命题的条件,引深拓广,产生一个个既类似又有区别的问题,使学生产生浓厚的兴趣,在挑战中寻找乐趣,培养了思维的深刻性,同时也进一步巩固了对于线线、线面垂直关系,尤其是三垂线定理的掌握。
防止学生形式地、机械地背诵、套用公式和定理,提高学生变通思考问题和灵活应用概念、公式以及定理的能力。
三、在解题教学中,利用变式来改变题目的条件或结论,揭示条件、目标间的联系,解题思路中的方法之间的联系与规律,从而培养学生联想、转化、推理、归纳、探索的思维能力。
(一)多题一解,适当变式,.培养学生求同存异的思维能力。
许多数学习题看似不同,但它们的内在本质(或者说是解题的思路、方法是一样的),这就要求教师在教学中重视对这类题目的收集、比较,引导学生寻求通法通解,并让学生自己感悟它们之间的内在联系,形成数学思想方法。
如:题1:已知,,a b R +∈且1a b +=,求11(1)(1)a b++的取值范围。
题2:已知,,a b R +∈且231a b +=,求11(1)(1)a b++的取值范围。
题3:已知,,a b R +∈且234a b +=,求11(1)(1)a b ++的取值范围。
这些题目都是对均值定理的应用,教师要把这类题目成组展现给学生,让学生在比较中感悟它们的共性。
(二)一题多解,触类旁通,培养学生发散思维能力,培养学生思维的灵活性。
一题多解的实质是以不同的论证方式,反映条件和结论的必然本质联系。
在教学中教师应积极地引导学生从各种途径,用多种方法思考问题。
这样,既可暴露学生解题的思维过程,增加教学透明度,又能使学生思路开阔,熟练掌握知识的内在联系。
这方面的例子很多,通过一题多解,让学生从不同角度思考问题、解决问题,可以引起学生强烈的求异欲望,培养学生思维的灵活性。
如有这么一个选择题,已知向量(2,0),(2,2)OB OC ==,(2)CA αα=, 则OB 与OA 夹角的范围是( )A 、5,1212ππ⎡⎤⎢⎥⎣⎦B 、0,4π⎡⎤⎢⎥⎣⎦C 、5,412ππ⎡⎤⎢⎥⎣⎦D 、5,122ππ⎡⎤⎢⎥⎣⎦这个题学生一般想到利用OA OC CA =+,先求出OA ,然后用两向量夹角的余弦公式求解,这样运算不仅费时费力的加大了运量,而且还求不出正确的结果。
再者说对于一个选择题也不应该投大量的时间。
那么这个题如果采用另外一种方法就会简单的多了。
那就是利用(2,2)OA OC CA αα=+=++,可以判断出点A 的轨迹是以(2,2)为半径的圆。
然后利用数形结合的方法有图形就可以很简单的求出夹角的范围了。
这个题从不同的角度进行多向思维,把各个知识点有机地联系起来,发展了学生的多向思维能力。
(三)一题多变,总结规律,培养学生思维的探索性和深刻性。
通过变式教学,不是解决一个问题,而是解决一类问题,遏制“题海战术”,开拓学生解题思路,培养学生的探索意识,实现“以少胜多”。
从而使一个题目延伸出一类题目,达到举一反三、触类旁通的目的。
伽利略曾说过“科学是在不断改变思维角度的探索中前进的”。
故而课堂教学要常新、善变,通过原题目延伸出更多具有相关性、相似性、相反性的新问题,深刻挖掘例习题的教育功能。
譬如书本上有这样一道题,已知空间四边形ABCD 中,E 、F 分别是AB 、AD 的中点,,G H 分别是,CB CD 上的点,::2:3CH CB CG CD ==,求证:四边形EFGH 是梯形。
这道题目的目的是加强对公理4的理解和应用,对这个题目可从改变条件,探索新的结论和改变图形的角度进行很多变化。
变式1:条件不变,该求证HE 与GF 交于一点。
学生在上题中已经证得EFGH 是梯形,对结论的深化应该不是难事,关键是教师在教学过程中,要引导学生在不改变条件的情况下,要对结论进行探索,要培养学生的深层次探索意识和主动研究的精神。
变式2:改已知条件为E 、F 、G 、H 分别是AB 、AD 、CB 、CD 的中点,(1)则四边形EFGH 的形状。
(平行四边形)(2)且AC=BD ,则四边形EFGH 的形状。
(菱形)(3)且AC BD ⊥,则四边形EFGH 的形状。
(矩形)(4)且AC=BD ,AC BD ⊥则四边形EFGH 的形状。
(正方形)(5)且AB=BC ,AD=DC ,则四边形EFGH 的形状。
(矩形)变式3:改已知条件,E H 分别为AB ,BC 的中点,:3AF FD =,过H 、E 、F 做一平面交CD 于G ,①:CG CD ②求证:EF 与GH 交于一点。
通过改变条件得到不同结论的变式,可以大大激发学生的兴趣,提高他们的求知欲望,变式2的一组题目跟初中平面几何的题目有类似性,可以促进学生从平面到空间的迁移变式3有例题及前两个变式的基础,教师为学生的巩固掌握打好了支架,学生要理解就比较容易了。
变式4:设图形G 、H 分别是CB 、CD 反向延长线上的点,其余条件不变,求证:EFGH 是梯形。
变式5;当图形G 、H 分别是CB 、CD 反向延长线上的点时,(1)四边形图形EFGH 是平行四边形,求:CG CB 。
(2)在①的基础上满足什么条件时,再补充条件使四边形EFGH是矩形。
变式4、变式5改变了图形中G 、H 的位置,但线段的一些基本关系没变,学生已有前面变式的经验,还是比较容易掌握。
但变式5中②是一个开放性题目,对所补充条件,每个学生考虑的角度不同会得出不同的答案,如,EH BD 或AB=AD 且BC=DC ,对于学生的探索,推理过程只要存在着一定得合理成分,教师都应该予以肯定,并作出适当的点评,让学生对自己的探索充满信心。
总之,在数学课堂教学中,遵循学生认知发展规律,根据教学内容和目标加强变式训练,对巩固基础、培养思维、提高能力有着重要的作用。
特别是,变式训练能培养培养学生敢于思考,敢于联想,敢于怀疑的品质,培养学生自主探究能力与创新精神。
当然,课堂教学中的变式题最好以教材为源,以学生为本,体现出“源于课本,高于课本”,并能在日常教学中渗透到学生的学习中去。
让学生也学会“变题”,使学生自己去探索、分析、综合,以提高学生的数学素质。