轴对称章节测试卷

合集下载

初二轴对称测试题及答案

初二轴对称测试题及答案

初二轴对称测试题及答案一、选择题(每题3分,共30分)1. 轴对称图形是指:A. 沿一条直线折叠后,直线两旁的部分能够完全重合的图形B. 沿一条直线折叠后,直线两旁的部分不能完全重合的图形C. 不能沿任何一条直线折叠的图形D. 沿任何一条直线折叠后,直线两旁的部分都能完全重合的图形答案:A2. 以下哪个图形不是轴对称图形?A. 等边三角形B. 等腰梯形C. 圆D. 不规则四边形答案:D3. 如果一个图形绕某一点旋转180°后,与原图形重合,那么这个图形是:A. 轴对称图形B. 中心对称图形C. 既是轴对称图形又是中心对称图形D. 既不是轴对称图形也不是中心对称图形答案:B4. 一个图形沿一条直线折叠后,直线两旁的部分能够完全重合,这条直线称为该图形的:A. 对称轴B. 对称中心C. 对称点D. 对称线答案:A5. 一个图形关于某条直线对称,那么该图形上任意一点关于这条直线的对称点:A. 一定在该图形上B. 一定不在该图形上C. 可能在该图形上,也可能不在该图形上D. 无法确定答案:A6. 一个图形关于某点对称,那么该图形上任意一点关于该点的对称点:A. 一定在该图形上B. 一定不在该图形上C. 可能在该图形上,也可能不在该图形上D. 无法确定答案:A7. 一个图形关于某条直线对称,那么该图形上任意两点关于这条直线的对称点:A. 一定在该图形上B. 一定不在该图形上C. 可能在该图形上,也可能不在该图形上D. 无法确定答案:C8. 一个图形关于某点对称,那么该图形上任意两点关于该点的对称点:A. 一定在该图形上B. 一定不在该图形上C. 可能在该图形上,也可能不在该图形上D. 无法确定答案:A9. 一个图形关于某条直线对称,那么该图形上任意两点关于这条直线的对称点连线:A. 一定经过对称轴B. 一定不经过对称轴C. 可能经过对称轴,也可能不经过对称轴D. 无法确定答案:A10. 一个图形关于某点对称,那么该图形上任意两点关于该点的对称点连线:A. 一定经过对称中心B. 一定不经过对称中心C. 可能经过对称中心,也可能不经过对称中心D. 无法确定答案:A二、填空题(每题4分,共20分)11. 轴对称图形的对称轴是一条______。

轴对称单元测试题及答案

轴对称单元测试题及答案

轴对称单元测试题及答案一、选择题(每题2分,共20分)1. 下列图形中,哪一个是轴对称图形?A. 圆形B. 三角形C. 正方形D. 五边形2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的什么?A. 对称轴B. 中心线C. 垂直线D. 平行线3. 一个图形的轴对称图形与其本身是否完全重合?A. 是B. 否C. 有时是D. 不确定4. 轴对称图形的对称轴可以有多少条?A. 只有一条B. 至少一条C. 无数条D. 没有5. 下列哪个图形不是轴对称图形?A. 等边三角形B. 等腰梯形C. 矩形D. 正五边形二、填空题(每空1分,共10分)6. 轴对称图形的对称轴是________。

7. 如果一个图形关于点O对称,那么这个点O被称为该图形的________。

8. 一个轴对称图形的对称轴可以是一条________或多条________。

9. 轴对称图形的对称轴将图形分成两个完全________的部分。

10. 轴对称图形的对称轴是图形上所有点到________的距离相等的直线。

三、判断题(每题1分,共10分)11. 所有圆形都是轴对称图形。

()12. 轴对称图形的对称轴可以是曲线。

()13. 轴对称图形的对称轴一定经过图形的中心。

()14. 一个图形的轴对称图形与原图形是完全相同的。

()15. 轴对称图形的对称轴是唯一的。

()四、简答题(每题5分,共10分)16. 请解释什么是轴对称图形,并给出一个例子。

17. 描述如何确定一个图形是否是轴对称图形。

五、应用题(每题5分,共10分)18. 给定一个矩形,如果将其沿一条对角线折叠,这条对角线是否是该矩形的对称轴?为什么?19. 如果一个图形关于某条直线对称,那么这条直线上的所有点是否也是对称的?请解释。

六、解答题(每题5分,共10分)20. 给定一个等边三角形ABC,如果点A关于对称轴l对称到点A',求证点B和点C也关于对称轴l对称。

答案一、选择题1. A2. A3. A4. B5. D二、填空题6. 对称轴7. 对称中心8. 直线,直线9. 重合10. 对称轴三、判断题11. √12. ×13. ×14. √15. ×四、简答题16. 轴对称图形是指一个图形关于某条直线(对称轴)对称,这条直线将图形分成两个完全相同的部分。

初二轴对称测试题及答案

初二轴对称测试题及答案

初二轴对称测试题及答案一、选择题(每题3分,共30分)1. 以下哪个图形是轴对称图形?A. 任意三角形B. 任意四边形C. 等腰三角形D. 任意梯形答案:C2. 如果一个图形关于某条直线对称,那么这条直线被称为该图形的:A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:A3. 一个图形关于某点对称,那么这个点被称为该图形的:A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:B4. 一个图形关于某线段对称,那么这条线段被称为该图形的:A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:D5. 如果一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这条直线就是这个图形的:A. 对称轴B. 对称中心C. 对称点D. 对称线段答案:A6. 一个图形关于某条直线对称,那么这条直线必须:A. 经过图形的中心B. 经过图形的顶点C. 经过图形的对称中心D. 经过图形的对称轴答案:C7. 一个图形关于某点对称,那么这个点必须:A. 在图形的中心B. 在图形的顶点C. 在图形的对称中心D. 在图形的对称轴上答案:C8. 一个图形关于某线段对称,那么这条线段必须:A. 经过图形的中心B. 经过图形的顶点C. 经过图形的对称中心D. 经过图形的对称轴答案:D9. 如果一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这个图形是:A. 非对称图形B. 轴对称图形C. 中心对称图形D. 旋转对称图形答案:B10. 如果一个图形绕着某一点旋转180度后,旋转前后的图形能够完全重合,那么这个图形是:A. 非对称图形B. 轴对称图形C. 中心对称图形D. 旋转对称图形答案:C二、填空题(每题4分,共20分)11. 轴对称图形的对称轴是一条______。

答案:直线12. 如果一个图形沿着一条直线折叠后,直线两旁的部分能够完全重合,那么这条直线叫做这个图形的______。

答案:对称轴13. 一个图形关于某点对称,那么这个点叫做这个图形的______。

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案

人教版八年级数学上册《第十三章轴对称》单元测试卷含答案一.选择题(共10小题)1.下列图形中,不是轴对称图形的是()A.B.C.D.2.如图,△ABC中,AB=AE,且AD⊥BC,EF垂直平分AC,交AC于点F,交BC于点E,若△ABC周长为16,AC =6,则DC为()A.5B.8C.9D.103.如图,在△ABC中,∠ACB=90°,CD是高,∠B=60°,则下列关系正确的是()A.B.C.D.4.如图,在△ABC中,AB=AC,CD平分∠ACB,交AB于点D,若∠BAC=100°,则∠ADC的度数为()A.60°B.50°C.65°D.70°5.下列命题中:①等腰三角形底边的中点到两腰的距离相等;②等腰三角形的高、中线、角平分线互相重合;③若△ABC与△A′B′C′成轴对称,则△ABC一定与△A′B′C′全等;④有一个角是60度的三角形是等边三角形;⑤等腰三角形的对称轴是顶角的平分线.正确命题的个数是()A.1B.2C.3D.46.已知等腰三角形两边的长x、y满足|x2﹣9|+(y﹣4)2=0,则三角形周长为()A.10B.11C.12D.10或117.如图,在等边三角形ABC中,BC边上的中线AD=6,E是AD上的一个动点,F是边AB上的一个动点,在点E,F运动的过程中,EB+EF的最小值是()A.6B.4C.3D.28.如图,在正方形网格中,A,B两点都在小方格的顶点上,如果点C也是图中小方格的顶点,且△ABC是等腰三角形,那么点C的个数为()A.1B.2C.3D.49.如图,△ABC是等腰三角形,AB=AC,∠BAC是钝角.点D在底边BC上,连接AD,恰好把△ABC分割成两个等腰三角形,则∠B的度数是()A.30°B.36°C.45°D.60°10.若二元一次方程组的解x,y的值恰好是一个等腰三角形两边的长,且这个等腰三角形的周长为7,则m的值为()A.4B.1.5或2C.2D.4或2二.填空题(共8小题)11.等边三角形的两条中线所成的锐角的度数是度.12.已知点P(1﹣a,3+2a)关于x轴的对称点落在第三象限,则a的取值范围是.13.等腰三角形一腰上的高与另一腰的夹角为42°,则顶角为.14.如图,等腰三角形ABC中,CA=CB,∠C=40°,若沿图中虚线剪去∠A,则∠1+∠2的度数为度.15.如图,在△ABC中,DE是BC的垂直平分线,若AB=6,AC=9,则△ABD的周长是.16.如图,∠ABC和∠ACB的角平分线相交于点M,且过点M的直线DE∥BC,分别交AB、AC于D、E两点,若AB =12,AC=10,则△ADE的周长为.17.如图,在△ABC中,AB=20cm,AC=12cm,点P从点B出发以每秒3cm速度向点A运动,点Q从点A同时出发以每秒2cm速度向点C运动,其中一个动点到达端点,另一个动点也随之停止,当△APQ是以PQ为底的等腰三角形时,运动的时间是秒.18.如图,在△ABC中,AB=AC,BC=4,△ABC的面积为20,AB的垂直平分线EF分别交AC,AB边于E,F点.若点D为BC边的中点,点M为线段EF上一动点,则BM+DM的最小值为.三.解答题(共7小题)19.△ABC在直角坐标系内的位置如图所示:(1)分别写出点A,C的坐标:A的坐标:,C的坐标:;(2)请在这个坐标系内画出与△ABC关于x轴对称的△A1B1C1,并写出点B1的坐标;(3)求△A1B1C1的面积.20.已知一个三角形的两条边长分别为4cm,8cm.设第三条边长为x cm.(1)求x的取值范围.(2)若此三角形为等腰三角形,求该等腰三角形的周长.21.如图所示,△ABC是等边三角形,AD为中线,AD=AE.(1)求∠EDC的度数;(2)若AD=2,求△AED的面积.22.如图,DC平分∠ACE,且AB∥CD,求证:△ABC为等腰三角形.23.如图,在等边三角形ABC中,D是BC边上一点,以AD为边作等腰三角形ADE,使AD=AE,∠DAE=80°,DE交AC于点F,∠BAD=15°.(Ⅰ)求∠CAE的度数;(Ⅱ)求∠FDC的度数.24.如图,在△ABC中,AB=AC,D是AB上的一点,过点D作DE⊥BC于点E,延长ED和CA,交于点F.(1)求证:△ADF是等腰三角形;(2)若∠F=30°,BD=4,EC=6,求AC的长.25.如图,在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线,且BD=BE,CD的垂直平分线MF交AC 于F,交BC于M.(1)求∠BDE的度数;(2)证明△ADF是等边三角形;(3)若MF的长为2,求AB的边长.参考答案一.选择题(共10小题)1.B.2.A.3.:D.4.A.5.B.6.D.7.A.8.C.9.B.10.C.二.填空题(共8小题)11.60.12.a>1.13.48°或132°.14.250.15.15.16.22.17.4.18.10.三.解答题(共7小题)19.解:(1)A(0,3),C(﹣2,1);(2)如图所示,△A1B1C1即为所求;点B1(﹣4,﹣4);故答案为:(﹣4,﹣4);(3)△A1B1C1的面积=.20.解:(1)根据三角形三边关系得,8﹣4<x<8+4即4<x<12;(2)∵三角形是等腰三角形,等腰三角形两条边长分别为4cm,8cm,且4<x<12∴等腰三角形第三边只能是8cm∴等腰三角形周长为4+8+8=20cm.21.(1)解:∵△ABC是等边三角形∴∠BAC=60°AB=AC=BC∵AD为中线∴AD⊥CD∵AD=AE∴∴∠CDE=∠ADC﹣∠ADE=15°;(2)解:过D作DH⊥AC于H∴∠AHD=90°∵∠CAD=30°∴∵AD=AE=2∴.22.证明:∵AB∥CD∴∠A=∠ACD,∠B=∠DCE.∵DC平分∠ACE∴∠ACD=∠DCE∴∠B=∠A∴AC=BC∴△ABC为等腰三角形.23.解:(Ⅰ)∵三角形ABC为等边三角形∴∠BAE=60°∵∠BAD=15°∴∠DAC=60°﹣15°=45°∵∠DAE=80°∴∠CAE=80°﹣45°=35°;(Ⅱ)∵∠DAE=80°,AD=AE∴∠ADE=(180°﹣80°)=50°∠ADC=∠BAD+∠B=15°+60°=75°又∵∠ADE=50°∴∠FDC=∠ADC﹣∠ADE=75°﹣50°=25°.24.(1)证明:∵AB=AC∴∠B=∠C∵FE⊥BC∴∠F+∠C=90°,∠B+∠BDE=90°∴∠F=∠BDE∵∠BDE=∠FDA∴∠F=∠FDA∴AF=AD∴△ADF是等腰三角形;(2)解:∵DE⊥BC∴∠DEB=90°∵∠F=30°∴∠BDE=30°∵BD=4∴∵AB=AC∴△ABC是等边三角形∴AC=AB=BE+EC=825.(1)解:在△ABC中,AB=AC,∠BAC=120°∴∠B=∠C=×(180°﹣∠BAC)=30°在△BDE中,BD=BE∴∠BDE=∠BED=×(180°﹣∠B)=75°;(2)证明:∵CD的垂直平分线MF交AC于F,交BC于M ∴DF=CF,∠FMC=90°∴∠FDC=∠C=30°∴∠AFD=∠FDC+∠C=60°在△ABC中,AB=AC,∠BAC=120°,AD是BC边上的中线∴∠BAD=∠CAD=∠BAC=60°∴∠CAD=∠AFD=60°∴△ADF是等边三角形;(3)在Rt△FMC中,∠C=30°,MF=2∴CF=2MF=4∴DF=CF=4由(2)可知:△ADF是等边三角形∴AF=DF=4∴AB=AC=AF+CF=4+4=8.。

轴对称测试题及答案

轴对称测试题及答案

轴对称测试题及答案一、选择题(每题3分,共30分)1. 下列图形中,哪一个是轴对称图形?A. 不规则多边形B. 等腰三角形C. 任意四边形D. 圆形答案:B、D2. 轴对称图形的定义是什么?A. 一个图形关于某条直线对称B. 一个图形关于某点对称C. 一个图形关于某面对称D. 一个图形关于某曲线对称答案:A3. 一个图形关于一条直线对称,那么这条直线被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:A4. 下列哪个图形不是轴对称图形?A. 正方形B. 等边三角形C. 半圆形D. 非等腰的梯形答案:D5. 一个图形关于某点对称,那么这个点被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:B6. 一个图形关于某面对称,那么这个面被称为什么?A. 对称轴B. 对称中心C. 对称面D. 对称点答案:C7. 轴对称图形的对称轴可以有多少条?A. 0条B. 1条C. 2条D. 无数条答案:D8. 一个图形关于某条直线对称,那么这条直线将图形分成的两部分是:A. 完全相同B. 完全相反C. 部分相同D. 完全不同答案:A9. 轴对称图形的对称轴一定是:A. 直线B. 曲线C. 点D. 面答案:A10. 下列哪个图形不是轴对称图形?A. 正五边形B. 正六边形C. 正七边形D. 正八边形答案:C二、填空题(每题4分,共20分)1. 一个图形关于一条直线对称,那么这条直线被称为______。

答案:对称轴2. 轴对称图形的定义是:一个图形关于某条直线对称,那么这条直线将图形分成的两部分是______。

答案:完全相同3. 一个图形关于某点对称,那么这个点被称为______。

答案:对称中心4. 轴对称图形的对称轴可以有______条。

答案:无数5. 一个图形关于某面对称,那么这个面被称为______。

答案:对称面三、简答题(每题5分,共10分)1. 请说明什么是轴对称图形,并给出一个例子。

轴对称经典测试题(含答案)

轴对称经典测试题(含答案)

轴对称单元测试(二)一、填空题(每题2分,共32分)1.线段轴是对称图形,它有_______条对称轴,正三角形的对称轴有条.2.下面是我们熟悉的四个交通标志图形,请从几何图形的性质考虑,哪一个..与其他三个..不同?请指出这个图形,并说明理由.答:这个图形是:(写出序号即可),理由是.3.等腰△ABC中,若∠A=30°,则∠B=________.4.△ABC中,AD⊥BC于D,且BD=CD,若AB=3,则AC=__ __.5.在Rt△ABC中,∠C=90°,AD平分∠BAC交BC于D,若CD=4,则点D到AB的距离是__________.6.判断下列图形(如图所示)是不是轴对称图形.7.等腰△ABC中,AB=AC=10,∠A=30°,则腰AB上的高等于___________.8.如图,△ABC中,AD垂直平分边BC,且△ABC的周长为24,则AB+BD = ;又若∠CAB=60°,则∠CAD = .9.如图,△ABC中,EF垂直平分AB,GH垂直平分AC,设EF与GH相交于O,则点O 与边BC的关系如何?请用一句话表示:.B E CDAABC DBHFAECGO第8题图第9题图第10题图10.如图:等腰梯形ABCD 中,AD ∥BC ,AB =6,AD =5,BC =8,且AB ∥DE ,则△DEC 的周长是____________.11.请在下面这一组图形符号中找出它们所蕴含的内在规律,然后在横线上的空白处填上恰当的图形.12.等腰梯形的腰长为2,上、下底之和为10且有一底角为60°,则它的两底长分别为____________.13.等腰三角形的周长是25 cm ,一腰上的中线将周长分为3∶2两部分,则此三角形的底边长为__ ___.14.如图,三角形1与_____成轴对称图形,整个图形中共有_____条对称轴.15.如图,将长方形ABCD 沿对角线BD 折叠,使点C 恰好落在如图C 1的位置,若∠DBC =30º,则∠ABC 1=________.16.如图是小明制作的风筝,为了平衡制成了轴对称图形,已知OC 是对称轴,∠A =35º,∠BCO =30º,那么∠AOB =____ ___.二、解答题(共68分)17.(5分)已知点M )5,3(b a -,N )32,9(b a +关于x 轴对称,求ab 的值.18.(5分)已知AB =AC ,BD =DC ,AE 平分∠F AC ,问:AE 与AD 是否垂直?为什么?第14题图 第15题图 第16题图ABCDEF19.(5分)如图,已知:△ABC中,BC<AC,AB边上的垂直平分线DE交AB于D,交AC于E,AC=9 cm,△BCE的周长为15 cm,求BC的长.20.(5分)如图所示,已知△ABC和直线MN.求作:△A′B′C′,使△A′B′C′和△ABC关于直线MN对称.(不要求写作法,只保留作图痕迹)21.(5分)如图,A、B两村在一条小河的的同一侧,要在河边建一水厂向两村供水.(1)若要使自来水厂到两村的距离相等,厂址应选在哪个位置?(2)若要使自来水厂到两村的输水管用料最省,厂址应选在哪个位置?请将上述两种情况下的自来水厂厂址标出,并保留作图痕迹..BA .22.(5分)如图,在∆ABC 中,AB =AC ,∠A =92︒,延长AB 到D ,使BD =BC ,连结DC .求∠D 的度数,∠ACD 的度数.23.(5分)有一本书折了其中一页的一角,如图:测得AD =30cm,BE =20cm ,∠BEG =60°,求折痕EF 的长.24.(8分)如图所示,在△ABC 中,CD 是AB 上的中线,且DA =DB =DC .(1)已知∠A =︒30,求∠ACB 的度数; (2)已知∠A =︒40,求∠ACB 的度数; (3)已知∠A =︒x ,求∠ACB 的度数; (4)请你根据解题结果归纳出一个结论.25.(6分)如图所示,在等边三角形ABC 中,∠B 、∠C 的平分线交于点O ,OB 和OC 的垂直平分线交BC 于E 、F ,试用你所学的知识说明BE =EF =FC 的道理.ADBCADB CABO E FC26.(7分)已知AB =AC ,D 是AB 上一点,DE ⊥BC 于E ,ED 的延长线交CA 的延长线于F ,试说明△ADF 是等腰三角形的理由.27.(7分)等边△ABC 中,点P 在△ABC 内,点Q 在△ABC 外,且∠ABP =∠ACQ ,BP =CQ ,问△APQ 是什么形状的三角形?试说明你的结论.28.(5分)如图①是一张画有小方格的等腰直角三角形纸片,将图①按箭头方向折叠成图②,再将图②按箭头方向折叠成图③.(1)请把上述两次折叠的折痕用实线画在图④中.(2)在折叠后的图形③中,沿直线l 剪掉标有A 的部分,把剩余部分展开,将所得到的图形在图⑤中用阴影表示出来.新课标第一网AFBCD EACBPQ轴对称单元测试答案(二)一、填空题1.2,3 2.④,不是轴对称图形3.75度或30度4.3 5.4 6.(1)(3)(6)是轴对称图形,(2)(4)(5)不是轴对称图形7.5 8.12 9.点O到BC两端的距离相等10.1511.正反写的4和6 12.4,6 13.353cm或5cm 14.2、4,2 15.30度16.130度二、解答题17.9 18.垂直19.BC=6cm 20.略21.略22.22度,66度23.20cm 24.(1)90度;(2)90度;(3)90度;(4)三角形中,一边上的中线等于这边的一半,那么这边所对的角等于90度25.略26.略27.是等边三角形28.略新课标第一网。

轴对称单元测试题含答案

轴对称单元测试题含答案

一、选择题(每题3分,共24分)1、下列图案中,不是轴对称图形的是( )AB C D2、(易错易混点)下列长度的三线段,能组成等腰三角形的是 ( ) A . 1 1 2 B. 2 2 5 C. 3 3 5 D. 3 4 5 3.如图,已知AC ∥BD ,OA =OC ,则下列结论不一定成立的是 ( ) A . ∠B=∠D B. ∠A=∠B C. AD=BC D. OA=OB 4.(易错易混点)下列说法正确的是( ) A .等腰三角形的高、中线、角平分线互相重合 B .顶角相等的两个等腰三角形全等 C .等腰三角形一边不可以是另一边的二倍 D .等腰三角形的两个底角相等5、如图,ABC △与A B C '''△关于直线l 对称,且7848A C '∠=∠=°,°,则∠B 的度数为()A .48°B .54°C .74°D .78°6、如图所示,把一个长方形纸片沿EF 折叠后,点D ,C 分别落在D ′,C ′的位置.若∠EFB =65°,则∠AED ′等于A. 70°B. 65°C. 50°D. 25°7、已知M (a ,3)和N (4,b )关于y 轴对称,则2012()a b +的值为( ) A.1 B 、-1 C.20097D.20097-8、如图,∠BAC =110°若MP 和NQ 分别垂直平分AB 和AC ,则∠P AQ 的度数是( ) A.20° B. 40° C. 50° D. 60° 二、填空题(每题3分,共24分)9.轴对称是指____个图形的位置关系;轴对称图形是指____个具有特殊形状的图形. 10、有一条对称轴的三角形是_______三角形,有三条对称轴的三角形是______三角形. 11. 如图,在∆ABC 中,090=∠A ,BD 是∠ABC 的平分线,DE 是BC 的垂直平分线,则∠C =____.12、(易错易混点)在△ABC 中,AB =AC ,AB 的垂直平分线与AC 所在的直线相交所得到锐角为50°,则∠B 等于_____________度.13、如图,在∆ABC 中,AB =AC ,050=∠A ,P 是∆ABC 内一点,且∠PBC = ∠PCA ,则∠BPC =_____.14、如图,△ABC 中,∠A =36°,AB =AC ,BD 平分∠ABC ,DE ∥BC ,则图中等腰三角形有_____________个.15、如图,△ABC 中,DE 是AC 的垂直平分线,AE =3cm ,△ABD 的周长为13cm ,则△ABC 的周长为____________.16.如图,点P 在∠AOB 的内部,点M 、N 分别是点P 关于直线OA 、OB •的对称点,线段MN 交OA 、OB 于点E 、F ,若△PEF 的周长是20cm ,则线段MN 的长是___________.三、解答题(17-20题每题10分,21题12分)17、右图(实线部分)补成以虚线L为对称轴的轴对称图形,你会得到一只美丽蝴蝶的图案(不用写作法、保留作图痕迹).请用一句话说明你的画图思路18、如图,写出△ABC的各顶点坐标,并画出△ABC关于Y轴对称的△A1B1C1,写出△ABC关于X轴对称的△A2B2C2的各点坐标。

轴对称单元测试题(含答案--高质量)

轴对称单元测试题(含答案--高质量)

1第十二章 轴对称提升训练一、选择题(每小题3%,共30分)1.下面四组图形中,右边与左边成轴对称的是( )A.B. C. D.2.下列图形中一定有4条对称轴的是( )A.长方形B.正方形C.等边三角形D.等腰直角三角形3.下列图形:①两个点;②线段;③角;④长方形;⑤两条相交直线;⑥三角形,其中一定是轴对称图形的有( )A.5个B.3个C.4个D.6个 4.如图1:射线BA,CA 相交于点A,连接BC,已知AB=AC,∠B=400, 则∠CAE 的度数为( )A.400B.600C.800D.10005.等腰三角形是轴对称图形,它的对称轴有( )A.1条B.2条C.3条D.1条或3条 图1 6.如图2:在△ABC 中,DE 垂直平分AB,AE 平分∠BAC,若∠C=900,则∠B 的度数为( )A.30B.200C.400D.250图27.底和腰不等的等腰三角形中,它的角平分线、中线、高共有线段( ) A.9条 B.6条 C.7条 D.3条8.如图3:在△ABC 中,AB=AC,∠A=36,BD,CE 分别平分∠ABC 和∠ACB,相交于点F,则图中等腰三角形共有()A.7个B.8个C.6个D.9个图3 9.如图4:如果直线m 是多边形ABCDE 的对称轴,其中∠A=1300, ∠B=1000,则∠BCD 的度数为( ) A.700B.800C.600D.90010.等腰三角形一腰上的高与另一腰的夹角为300,则顶角的度数为( ) 图4 A.600B.1200C.600或1500D.600或1200二、填空题(每小题3%,共15%)11.从镜子中看到背后墙上电子钟的示意数为 ,这时的实际时间为______. 12.在△ABC 中,AB=AC,AD ⊥BC 于D,由以上两个条件 可得_________________.(写出一个结论即可)13.如图5:在△ABC 中, ∠A=900,BD 平分∠ABC,交AC于点D,已知AD=4.3㎝,则D 到BC 边的距离为__________. 图5 14.如果等腰三角形的三边长均为整数且周长为10,则它的三边长分别为______________.15.如图:有一张长方形纸片ABCD,AB=3,AD=1.8,将纸片折叠,使AD 边落在AB 边上,折痕为AE,再将△AED 以DE 为折痕向右折叠,AE 与BC 相交于点F,则CF 的长为__________.三、解答题(每小题5%,共30分)16.如图是由三个小正方形组成的图形,请你在图中补画一个小正方形,使补画后的图形为轴对称图形.17.如图: △ABC 中,∠C=900.(1)请你以AC 所在的直线为对称轴,作出△ABC 的轴对称图形;(2)作出后所得的三角形与△ABC 是否组成一个等腰三角形?为什么?18.等腰△ABC 的腰AB=10㎝,AB 的垂直平分线交另一腰AC 于点D , △BCD 的周长为18㎝,求底边BC 的长.BCAE BC A ED ABCD E F A BCDEm ABCD A B CDA B C A D B C A D B C E AC F ED B219.如图:已知在△ABC 中,AB=AC,AE ∥BC,试说明AE 平分∠DAC.20.如图:一艘轮船在上午8时从A 处出发,以20海里/时的速度由南向北航行,在A 处测得小岛P 在北偏西24度,9点45分到达B 处,这时测得小岛P 在北偏西48度,求B 处到小岛P 的距离.21.如图:在△ABC 中,AB=AC,BF=DF,DC=DE,∠A=300,求∠EDF 的度数.四、解答题(22,23,24小题每小题6%,25题7%,共25%)22.如图:在△ABC 中,AB=AC,D 为BC 中点,DE ⊥AB 于E,DF ⊥AC 于F,则有DE=DF,你能说说其中的道理吗?23.如图: △ABC 中,若AD 平分∠BAC,CE ∥AD,CE 交BA 的延长线于E,问△ACE 是什么三角形?为什么?24.如图:在等边△ABC 中,BD 平分∠ABC,延长BC 到F,使CD=CF,连结DF. (1) 小刚说:BD=DF,他说得对吗?为什么?(2)小红说:把“BD 平分∠ABC”的条件改一改,也能得到同样的结论,你认为可以如何改呢?请说明你的理由.25.如图:在△ABC 中,AB=AC,P 为BC 边上任意一点,PF ⊥AB 于F,PE ⊥AC 于E,若AC 边上的高BD=a.(1)试说明PE +PF=a;(2)若点P 在BC 的延长线上,其它条件不变,上述结论还成立吗?如果成立请说明理由;如果不成立,请重新给出一个关于PE,PF,a 的关系式,不需要说明理由.A B CDE AB P A B CD E FA BD CE AB C D FA B C D F E A BCPFED。

第十三章 轴对称 章节达标检测(原卷版)

第十三章 轴对称 章节达标检测(原卷版)

第十三章轴对称一、单选题:1.下列银行标志中,既不是中心对称图形也不是轴对称图形的是()A .B .C .D .2.如图,∠A =30°,∠C ′=60°,△ABC 与△A ′B ′C ′关于直线l 对称,则∠B 度数为()A .30︒B .60︒C .90︒D .120︒3.如图,将△ABC 的三个顶点坐标的横坐标都乘以-1,并保持纵坐标不交,则所得图形与原图形的关系是()A .关于x 轴对称B .关于y 轴对称C .将原图形沿x 轴的负方向平移了1个单位D .将原图形沿y 轴的负方向平移了1个单位4.已知点P (a ,2b -)与点Q 关于x 轴对称,则点Q 的坐标是()A .Q (a ,2b -+)B .Q (a -,2b -)C .Q (a ,2b +)D .Q (a -,2b -+)5.有下列命题:①等腰三角形的角平分线、中线和高重合;②等腰三角形两腰上的高相等;③有个外角等于120°的等腰三角形是等边三角形;④等边三角形的高线、中线、角平分线都相等;其中正确的有()A .1个B .2个C .3个D .4个6.如图,在44⨯正方形网格中,已将图中的四个小正方形涂上阴影,若再从图中选一个涂上阴影,使得整个阴影部分组成的图形是轴对称图形,那么不符合条件的小正方形是()A .①B .②C .③D .④7.如图,在△AB C 中,AB =AC ,∠BAC =120°,AB 的垂直平分线交AB 于点E ,交BC 于点F ,连接AF ,则∠AFC 的度数()A .80B .70C .60D .50 8.如图,△AB C 中,AB =AC ,过点A 作DA ⊥AC 交BC 于点D .若∠B =2∠BAD ,则∠BAD 的度数为()A .18°B .20°C .30°D .36°9.如图,等边ABC ∆的边长为8,AD 是BC 边上的中线,E 是AD 边上的动点,F 是AB 边上一点,若4BF =,当BE EF +取得最小值时,则EBC ∠的度数为()A.15 B.25 C.30 D.45 中,AB=AC,AD是BC边的中线,以AC为边作等边△ACE,BE 10.如图,在ABC与AD相交于点P,点F在BE上,且PF=PA,连接AF下列四个结论:①AD⊥BC;②∠ABE=∠AEB;③∠APE=60°;④△AEF≌△ABP,其中正确结论的个数是()A.1B.2C.3D.4二、填空题:11.给出下列4种图形:①线段,②等腰三角形,③平行四边形,④圆.其中,不一定是轴对称图形的是(填写序号).12.一个汽车牌照在水中的倒影为,则该汽车牌照号码为. 13.如图,在△AB C中,AB=AC,D为BC上一点,且CD=AD,AB=BD,则∠B的度数为.14.若点A(m+2,3)与点B(﹣4,n+5)关于y轴对称,则m+n=15.如图,在△AB C中,∠ABC和∠ACB的平分线交于点E,过点E作MN∥BC交AB 于M,交AC于N,若BM+CN=9,则线段MN的长为.16.如图,△AB C中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E点,若△ABC与△EBC的周长分别是40cm,24cm,则AB=cm.17.如图,等腰三角形ABC底边BC的长为4cm,面积是12cm2,腰AB的垂直平分线EF交AG于点F,若D为BC边上的中点,M为线段EF上一动点,则△BDM的周长最短为cm.18.如图,△ABC中,AB=11,AC=5,∠BAC的平分线AD与边BC的垂直平分线CD相交于点D,过点D分别作DE⊥AB,DF⊥AC,垂足分别为E、F,则BE的长为.三、作图题:19.作图:已知∠AOB,试在∠AOB内确定一点P,使P到OA、OB的距离相等,并且到M、N两点的距离也相等。

初中轴对称测试题及答案

初中轴对称测试题及答案

初中轴对称测试题及答案一、选择题(每题3分,共30分)1. 下列哪个图形是轴对称图形?A. 圆形B. 正方形C. 长方形D. 菱形2. 轴对称图形的对称轴是:A. 直线B. 曲线C. 折线D. 虚线3. 如果一个图形沿一条直线对折,两侧的图形完全重合,那么这条直线叫做:A. 对称轴B. 对称线C. 轴线D. 中心线4. 下列哪个图形不是轴对称图形?A. 等边三角形B. 等腰梯形C. 等腰三角形D. 正五边形5. 轴对称图形的对称点到对称轴的距离:B. 相等C. 有时相等有时不相等D. 无法确定6. 一个图形的对称轴有几条?A. 一条B. 两条C. 无数条D. 无法确定7. 轴对称图形的对称点的连线:A. 垂直于对称轴B. 平行于对称轴C. 与对称轴重合D. 与对称轴成一定角度8. 一个图形的对称中心是:A. 一个点B. 一条线C. 一个面D. 一个体9. 轴对称图形的对称点到对称中心的距离:A. 不相等B. 相等C. 有时相等有时不相等D. 无法确定10. 一个图形的对称中心有几个?A. 一个C. 无数个D. 无法确定二、填空题(每题3分,共30分)1. 轴对称图形的对称轴是______。

2. 一个图形的对称中心是______。

3. 轴对称图形的对称点到对称轴的距离是______。

4. 一个图形的对称轴有______条。

5. 轴对称图形的对称点的连线与对称轴的关系是______。

6. 一个图形的对称中心有几个______。

7. 轴对称图形的对称点到对称中心的距离是______。

8. 一个图形的对称点到对称轴的距离与对称中心的距离关系是______。

9. 一个图形的对称轴与对称中心的关系是______。

10. 轴对称图形的对称点的连线与对称中心的关系是______。

三、解答题(每题10分,共40分)1. 给定一个轴对称图形,请找出它的对称轴和对称中心,并说明理由。

2. 描述如何判断一个图形是否是轴对称图形,并给出一个例子。

轴对称单元测试题

轴对称单元测试题

轴对称单元测试题一、选择题(每题 3 分,共 30 分)1、下列图形中,不是轴对称图形的是()A 线段B 角C 平行四边形D 等腰三角形2、点 P(-2,1)关于 x 轴对称的点的坐标为()A (-2,-1)B (2,1)C (2,-1)D (1,-2)3、等腰三角形的一个内角是 50°,则另外两个角的度数分别是()A 65°,65°B 50°,80°C 65°,65°或 50°,80°D 无法确定4、下列说法正确的是()A 对称轴是一条直线B 两个全等的三角形一定关于某条直线对称C 若△ABC 与△A'B'C'关于直线 l 对称,则△ABC 与△A'B'C'全等D 若线段 AB 和 A'B'关于直线 l 对称,则 AB = A'B'5、如图,在△ABC 中,AB = AC,∠A = 36°,BD 平分∠ABC交 AC 于点 D,则图中的等腰三角形有()A 1 个B 2 个C 3 个D 4 个6、如图,在△ABC 中,∠C = 90°,DE 垂直平分 AB,若∠CAD :∠DAB = 2 : 1,则∠B 的度数为()A 20°B 225°C 25°D 30°7、已知等腰三角形的两边长分别为 3 和 6,则它的周长为()A 9B 12C 15D 12 或 158、如图,在四边形 ABCD 中,AD∥BC,∠B = 90°,AD = 3,BC = 5,AB = 4,把线段 CD 以点 D 为中心逆时针旋转 90°到 DE 位置,连接 AE,则 AE 的长为()A 4B 5C 6D 79、如图,在 Rt△ABC 中,∠C = 90°,AB 的垂直平分线交 BC 于点 D,若∠CAD :∠DAB = 1 : 2,则∠B 的度数为()A 20°B 225°C 25°D 30°10、如图,在△ABC 中,AB = AC,∠A = 120°,BC = 6cm,AB 的垂直平分线交 BC 于点 M,交 AB 于点 E,AC 的垂直平分线交BC 于点 N,交 AC 于点 F,则 MN 的长为()A 2cmB 3cmC 4cmD 5cm二、填空题(每题 3 分,共 30 分)11、等边三角形有_____条对称轴。

初二轴对称l单元测试题及答案

初二轴对称l单元测试题及答案

初二轴对称l单元测试题及答案初二轴对称单元测试题及答案一、选择题(每题2分,共10分)1. 下列图形中,不是轴对称图形的是:A. 等边三角形B. 正方形C. 圆D. 五角星2. 如果一个图形关于某条直线对称,那么这条直线称为该图形的:A. 对称轴B. 对称线C. 反射线D. 镜像线3. 一个图形的轴对称变换不改变图形的:A. 形状B. 大小C. 颜色D. 位置4. 根据轴对称的性质,下列说法正确的是:A. 对称轴两侧的图形形状相同B. 对称轴两侧的图形颜色相同C. 对称轴两侧的图形大小相同D. 对称轴两侧的图形位置相同5. 在平面直角坐标系中,如果一个点关于y轴对称,那么它的对称点的坐标是:A. (-x, y)B. (x, -y)C. (y, x)D. (-y, x)二、填空题(每题2分,共10分)6. 若一个图形关于直线x=1对称,则该图形的对称轴是________。

7. 等腰三角形的底边中点与顶点的连线是该三角形的________。

8. 在平面直角坐标系中,点(3,4)关于x轴对称的点的坐标是________。

9. 轴对称图形的对称轴是图形的________。

10. 如果一个图形的对称轴是y=2,那么该图形在对称轴上的所有点的y坐标都是________。

三、简答题(每题5分,共15分)11. 描述如何判断一个图形是否为轴对称图形。

12. 解释轴对称图形的对称轴的确定方法。

13. 给出一个实际生活中轴对称的应用例子,并解释其工作原理。

四、作图题(每题5分,共10分)14. 给定一个三角形ABC,A(-1,2),B(2,4),C(3,-1),请画出三角形ABC关于直线x=1的对称图形。

15. 在平面直角坐标系中,画出点(2,3)关于y轴的对称点。

五、计算题(每题5分,共15分)16. 已知点P(-2,3),求点P关于直线y=x的对称点P'的坐标。

17. 已知点Q(4,-1),求点Q关于原点的对称点Q'的坐标。

初中数学鲁教版(五四制)七年级上册第二章 轴对称本章综合与测试-章节测试习题

初中数学鲁教版(五四制)七年级上册第二章 轴对称本章综合与测试-章节测试习题

章节测试题1.【答题】下列图形中,不是轴对称图形的是()A. B. C. D.【答案】A【分析】【解答】2.【答题】如图,已知等腰三角形ABC,AB=AC. 以点B为圆心、BC为半径画弧,交腰AC于点E,则下列结论一定正确的是()A. AE=ECB. AE=BEC. ∠EBC=∠BACD. ∠EBC=∠ABE【答案】C【分析】【解答】3.【答题】如图,把一张矩形纸片ABCD沿EF折叠后,点A落在CD边上的点A′处,点B落在点B′处.若∠2=40°,则∠1的度数为()A. 115°B. 120°C. 130°D. 140°【答案】A【分析】【解答】4.【答题】已知等腰三角形一腰上的高线与另一腰的夹角为50°,那么这个等腰三角形的顶角等于()A. 15°或75°B. 140°C. 40°D. 140°或40°【答案】D【分析】【解答】5.【答题】如图,直线EF垂直平分BC,且BD=5,BF=4,则△BCD的周长为()A. 9B. 14C. 18D. 20【答案】C【分析】【解答】6.【答题】如图,△ABC中,AB=AC,∠A=36°,BD是AC边上的高,则∠DBC的度数是()A. 18°B. 24°C. 30°D. 36°【答案】A【分析】【解答】7.【答题】如图,OP平分∠MON,PA⊥ON于点A,点Q是射线OM上的一个动点.若PA=2,则PQ的最小值为()A. 1B. 2C. 3D. 4【答案】B【分析】【解答】8.【答题】如图,△ADB≌△EDB,△BDE≌△CDE,点B,E,C在一条直线上知下列结论:①BD是∠ABE的平分线;②AB⊥AC;③∠C=30°;④线段DE是△BDC的中线;⑤AD+BD=AC. 其中正确的个数是()A. 2B. 3C. 4D. 5【答案】A【分析】【解答】9.【答题】如图,∠AOE=∠BOE=15°,EF∥OB,EC⊥OB.若EC=2,则EF=______.【答案】4【分析】【解答】10.【答题】已知(a-1)2+|b-2|=0,则以a,b为边长的等腰三角形的周长为______.【答案】5【分析】【解答】11.【答题】在△ABC中,按以下步骤作图:①分别以A,B为圆心,大于的长为半径画弧,两弧相交于点M,N;②作直线MN,交AC于点D,连接BD.若CD=BC,∠A=35°,则∠C=______.【答案】40°【分析】【解答】12.【答题】如图,△ABC中,AB=AC,AB的垂直平分线交边AB于D点,交边AC于E 点.若△ABC与△EBC的周长分别是40cm,24cm,则AB=______cm.【答案】16【分析】【解答】13.【题文】(10分)请在以下三个网格图中各补画一个有阴影的小正方形,使补画后的图形为轴对称图形.【答案】【分析】【解答】所补画的图形如图所示.14.【题文】(12分)如图,已知AB=AC,D是AB上一点,DE⊥BC于点E,ED的延长线交CA的延长线于点F.求证:△ADF是等腰三角形.【答案】【分析】【解答】证明:∵AB=AC,∴∠B=∠C.∵DE⊥BC,∴∠FEB=∠FEC=90°.∵∠B+∠EDB=∠C+∠EFC=90°,∴∠EFC=∠EDB.∵∠EDB=∠ADF,∴∠EFC=∠ADF.∴△ADF是等腰三角形.15.【题文】(12分)如图,点C是线段AB上除点A,B外的任意一点,分别以AC,BC 为边在线段AB的同侧作等边△ACD和等边△BCE,连接AE交DC于M,连接BD 交CE于N,连接MN.(1)求证:AE=BD;(2)求证:MN∥AB.【答案】【分析】【解答】(1)∵△ACD和△BCE是等边三角形,∴AC=DC,CE=CB,∠DCA=60°,∠ECB=60°.∵∠DCA=∠ECB=60°,∴∠DCA+∠DCE=∠ECB+∠DCE,即∠ACE=∠DCB.在△ACE和△DCB中,∴△ACE≌△DCB,∴AE=BD.(2)由(1)得△ACE≌△DCB,∴∠CAM=∠CDN.∵∠ACD=∠ECB=60°,而A,C,B三点共线,∴∠DCN=60°.在△ACM和△DCN中,∴△ACM≌△DCN(ASA),∴MC=NC.∵∠MCN=60°,∴△MCN为等边三角形,∴∠NMC=∠DCN=60°,∴∠NMC=∠DCA,∴MN∥AB.16.【题文】(14分)在△ABC中,∠C=90°,AC=BC=2.将一块三角板的直角顶点放在斜边AB的中点P处,将此三角板绕点P旋转,三角板的两直角边分别交射线AC,CB于点D,点E,图1、图2、图3是旋转得到的三种图形.(1)观察线段PD和PE之间的有怎样的大小关系,并以图2为例加以说明;(2)△PBE是否能构成等腰三角形?若能,指出所有的情况(求出△PBE为等腰三角形时CE的长);若不能,请说明理由.【答案】【分析】【解答】(1)PD=PE.证明如下:如图,连接PC.∵△ABC是等腰直角三角形,P为斜边AB的中点,∴PC=PB,CP⊥AB,∠DCP=∠B=45°.又∵∠DPC+∠CPE=90°,∠CPE+∠EPB=90°,∴∠DPC=∠EPB,∴△DPC≌△EPB(ASA).∴PD=PE.(2)能.①当EP=EB时,.②当EP=PB时,若点E在BC上,则点E和C重合,CE=0.③当BE=BP时,若点E在BC上,则;若点E在CB的延长线上,则.17.【答题】下列四个图案中,轴对称图形的个数是()A. 1B. 2C. 3D. 4【答案】B【分析】【解答】18.【答题】如图,将正方形纸片三次对折后,沿AB剪掉一个等腰直角三角形,则展开铺平得到的图形是()A. B. C. D.【答案】A【分析】【解答】19.【答题】如图,AD是△ABC的角平分线,∠C=20°,AB+BD=AC. 将△ABD沿AD所在直线翻折,点B在AC边上的落点记为E,那么∠AED等于()A. 80°B. 60°C. 40°D. 30°【答案】C【分析】【解答】20.【答题】如图,正方形ABCD的边长为4cm,则图中阴影部分的面积为()A. 6cm2B. 8cm2C. 16cm2D. 不能确定【答案】B 【分析】【解答】。

第13章轴对称(提优卷)学生版

第13章轴对称(提优卷)学生版

20232024学年人教版数学八年级上册章节真题汇编检测卷(提优)第13章轴对称考试时间:120分钟试卷满分:100分难度系数:0.56姓名:___________班级:___________考号:___________题号一二三总分得分评卷人得分一.选择题(共10小题,满分20分,每小题2分)1.(2分)(2023春•顺义区期末)在平面直角坐标系中,点(2,3)关于x轴对称的点的坐标是()A.(2,﹣3)B.(3,2)C.(﹣2,3)D.(﹣2,﹣3)2.(2分)(2023•锦江区二模)已知点A(4,3)和点B是坐标平面内的两个点,且它们关于直线x=﹣3对称,则平面内点B的坐标为()A.(0,﹣3)B.(4,﹣9)C.(4,0)D.(﹣10,3)3.(2分)(2022秋•罗定市期末)如图,在Rt△ABC中,∠ACB=90°,∠BCD=30°,CD是△ABC的高,且BD=2,则AD的长为()A.6 B.7 C.8 D.94.(2分)(2022秋•宜州区期中)如图,在等边△ABC中,BD平分∠ABC交AC于点D,过点D作DE⊥BC于点E,且CE=2,则BC的长为()A.4 B.5 C.6 D.85.(2分)(2021秋•孟村县期末)如图,在△ABC中,AB的垂直平分线交AB于点D,交BC于点E,连接AE.若AD=3,△ACE的周长为13,则△ABC的周长为()A.19 B.16 C.29 D.186.(2分)(2022秋•中卫期中)若点P(a﹣2,3)和点Q(﹣1,b+5)关于y轴对称,则点P在()A.第一象限B.第二象限C.第三象D.第四象限7.(2分)(2022秋•青田县期中)如图,在格点中找一点C,使得△ABC是等腰三角形,且AB为其中一条腰,这样的点C个数为()A.8 B.9 C.10 D.118.(2分)(2022秋•江汉区期中)如图所示,在△ABC中,∠ABC=70°,BD平分∠ABC,P为线段BD上一动点,Q为边AB上一动点,当AP+PQ的值最小时,∠APB的度数是()A.120°B.125°C.130°D.135°9.(2分)(2021秋•依安县期末)如图,直线a,b相交形成的夹角中,锐角为52°,交点为O,点A在直线a上,直线b上存在点B,使以点O,A,B为顶点的三角形是等腰三角形,这样的点有()A.4个B.3个C.2个D.1个10.(2分)(2021秋•林口县期末)若a,b,为等腰△ABC的两边,且满足|a﹣4|+=0,则△ABC的周长为()A.8 B.6 C.8或10 D.10评卷人得分二.填空题(共10小题,满分20分,每小题2分)11.(2分)(2022秋•句容市期末)如图,在△ABC中,AB的垂直平分线分别交AB、BC于点D、E,连接AE,若AE=4,EC=2,则BC的长.12.(2分)(2022秋•赣县区期末)剪纸艺术是最古老的中国民间艺术之一,很多剪纸作品体现了数学中的对称美.如图,蝴蝶剪纸是一幅轴对称图形,将其放在平面直角坐标系中,如果图中点E的坐标为(2m,﹣n),其关于y轴对称的点F的坐标(3﹣n,﹣m+1),则(m﹣n)2022的值为.13.(2分)(2022秋•大兴区校级期末)如图,在△ABC中,AB=AC,边AC的垂直平分线MN分别交AB,AC 于点M,N,点D是边BC的中点,点P是MN上任意一点,连接PD,PC,若∠A=α,∠CPD=β,当△PCD 周长取到最小值时,α,β之间的数量关系是.14.(2分)(2022秋•海港区期末)如图的5个三角形中,均有AB=AC,则经过三角形的一个顶点的一条直线不能够将这个三角形分成两个小等腰三角形的是(填序号).15.(2分)(2022秋•灵宝市校级期末)如图,在等腰三角形ABC中,AB=AC,∠B=50°,D为BC的中点,点E在AB上,∠AED=69°,若点P是等腰三角形ABC的腰AC上的一点,则当△EDP为等腰三角形时,∠EDP的度数是.16.(2分)(2020秋•丹阳市期末)如图,在△ABC中,∠ABC和∠ACB的平分线相交于点F,过F作DE∥BC,交AB于点D,交AC于点E.若BD=3,DE=5,则线段EC的长为.17.(2分)(2021春•峡江县期末)如图,△ABC中,EF是AB的垂直平分线,与AB交于点D,BF=10,CF=2,则AC=.18.(2分)(2021秋•浠水县期中)如图,点P是∠AOB内任意一点,∠AOB=30°且OP=6cm,点P和点P1关于射线OA对称,点P和点P2关于射线OB对称,则△P1OP2的周长是cm.19.(2分)(2021秋•西城区校级期中)如图,△ABC中,D点在BC上,将D点分别以AB、AC为对称轴,画出对称点E、F,并连接AE、AF.根据图中标示的角度,则∠EAF的度数为.20.(2分)(2021秋•闵行区校级月考)如图,∠AOB=30°,点M、N分别在边OA、OB上,且OM=3,ON =4,点P、Q分别在边OB、OA上,则MP+PQ+QN的最小值是.评卷人得分三.解答题(共9小题,满分60分)21.(6分)(2022秋•苍溪县期末)如图,在△ABC中,AB=AC,∠A=36°,AC的垂直平分线DE分别交AB,AC于点D,E.(1)求证:△BCD是等腰三角形;(2)若△BCD的周长是13,BC=5,求AC的长.22.(6分)(2022秋•沂源县期中)如图所示,已知O是∠APB内的一点,点M、N分别是O点关于PA、PB 的对称点,MN与PA、PB分别相交于点E、F,已知MN=5cm,求△OEF的周长.23.(6分)(2021秋•源城区校级期末)如图,将一张长方形纸条ABCD按沿EF所在直线折叠,若折叠角∠FEC=64°.(1)求∠1的度数.(2)求证:△EFG是等腰三角形.24.(6分)(2022秋•磁县期末)如图,电信部门要在S区修建一座电视信号发射塔.按照设计要求,发射塔到两个城镇A,B距离必须相等,到两条高速公路m和n的距离也必须相等.发射塔应修建在什么位置?在图上标出它的位置.(保留作图痕迹)25.(6分)(2023春•新泰市期末)如图,在△ABC中,AB=AC,∠ABC的平分线BE交AC于点D,AF⊥AB 交BE于点F.(1)如图1,若∠BAC=40°,求∠AFE的度数.(2)如图2,若BD⊥AC,垂足为D,BF=8,求DF的长.26.(6分)(2022秋•北京期末)如图,△ABC中,AB<AC,点D为BC边中点,∠BAD=α.作点B关于直线AD的对称点B',连接BB'交AD于点E,过点C作CF∥AB交直线AB'于点F.(1)依题意补全图形,并直接写出∠AB'E和∠AFC的度数(用含α的式子表示);(2)用等式表示线段AB,AF,CF之间的数量关系,并证明.27.(8分)(2022秋•和平区校级期末)如图,在等边△ABC外侧作直线AP,记∠BAP=α(0°<α<60°),点B关于直线AP的对称点为D,连接BD,CD,CD交AP于P,交AB于E.(1)当α=20°时,求∠ACP的大小;(2)试找出PA、PC、PD三条线段的长度之间满足的用等号连接的数量关系,并说明理由.28.(8分)(2022秋•海淀区期末)已知在△ABC中,AB=AC,且∠BAC=α.作△ACD,使得AC=CD.(1)如图1,若∠ACD与∠BAC互余,则∠DCB=(用含α的代数式表示);(2)如图2,若∠ACD与∠BAC互补,过点C作CH⊥AD于点H,求证:CH=BC;(3)若△ABC与△ACD的面积相等,则∠ACD与∠BAC满足什么关系?请直接写出你的结论.29.(8分)(2022秋•全南县期中)(1)如图1,在△ABC中,∠ABC,∠ACB的平分线相交于点F,过点F 作DE∥BC,分别交AB,AC于点D,E.求证:DE=DB+EC.(2)如图2,若F是∠ABC的平分线和△ABC的外角∠ACG的平分线的交点,(1)中的其他条件不变,请猜想线段DE,DB,EC之间有何数量关系,并证明你的猜想.。

人教版八年级数学上册《第十三章轴对称》章节测试卷-附带答案

人教版八年级数学上册《第十三章轴对称》章节测试卷-附带答案

人教版八年级数学上册《第十三章轴对称》章节测试卷-附带答案一、选择题1.下列体育图标是轴对称图形的是()A.B.C.D.2.在平面直角坐标系中,点与点关于轴对称,则的值分别为()A.3,2 B.C.2,3 D.3.若等腰三角形的一个内角比另一个内角大30°,则这个等腰三角形的底角度数是()A.50°B.80°C.50°或70°D.80°或40°4.如图,AD是等边的中线,AE=AD,则的度数为()A.30°B.20°C.25°D.15°5.如图,在中,AB=AC,的垂直平分线交于点D,交于点E,若,则()A.B.C.D.6.在中,边,的垂直平分线分别交于点M,G(如图),连,AG.若.则的周长为()A.28 B.30 C.32 D.347.如图,在四边形刚好是中点,P、Q分别是线段上的动点,则的最小值为()A.12 B.15 C.16 D.188.如图,在中,的垂直平分线与的外角平分线交于点D,于点E,交的延长线于点F,则下列结论:①;②;③;④若,CE=4,则,其中一定成立的有()A.1个B.2个C.3个D.4个二、填空题9.已知,点O在三角形内,且,则的度数是度.10.在△ABC 中, , 的垂直平分线与AC 所在的直线相交所得锐角为 ,则∠B= .11.如图的周长为18,且,于D,的周长为12,那么的长为.12.如图,与关于直线对称,延长交于点,当°时,.13.如图,中,平分交于点D,过点A作交的延长线于点E.若,的周长为,的面积为,则.三、解答题14.如图,在直角坐标系中,的位置如图所示,请完成下列问题:⑴分别写出点A,点C的坐标;⑵作出关于x轴的对称图形,并写出的坐标为▲.⑶求的面积;⑷在y轴上找一点P,使最小.15.如图,在中,已知点在线段的反向延长线上,过的中点作线段交的平分线于,交于,且 .(1)求证:是等腰三角形:(2)若,求的长.16.如图,在中,AB=AC,点是边上的中点,连结,平分交于点,过点作交于点.(1)若,求的度数;(2)求证:.17.以点A为顶点作两个等腰直角三角形,其中,AB=AC,如图所示放置,D在AC边上,连接BD,CE.(1)求证:;(2)延长BD,交CE于点F,求的度数.18.如图,在中,AB=AC,过点作于点,过点作于点,与交于点,连接.(1)求证:;(2)若,求的度数.参考答案:1.A2.D3.C4.D5.C6.D7.D8.D9.11010.11.312.3613.414.解:⑴由图形可知:;⑵如下图,作点A、B、C关于y轴对称的点的坐标特征得到,连接即为所求;;(-2,-3)⑶由题意可知:的面积;⑷如(2)图,作点B关于x轴的对称点,连接交x轴于P点两点之间线段最短最小点P即为所求.15.(1)证明:平分是等腰三角形.(2)解:是的中点.在和中.16.(1)解:∵∴∵为的中点,∴,即,∴;(2)证明:∵平分∴∵∴∴∴.17.(1)解:∵,都是等腰直角三角形∴∴∴(2)解:∵∴∵∴∴∴18.(1)证明:∵∴∴∴∴∴(2)解:∵∴∵∴∴由(1)得:∴∴。

《第十三章 轴对称》单元测试卷及答案(共6套)

《第十三章 轴对称》单元测试卷及答案(共6套)

《第十三章轴对称》单元测试卷(一)时间:120分钟满分:120分一、选择题(本大题共6小题,每小题3分,共18分.每小题只有一个正确选项) 1.下列图标中是轴对称图形的是( )2.如图,点C在AD上,CA=CB,∠A=40°,则∠BCD等于( )A.40° B.70° C.80° D.110°第2题图第3题图第4题图3.妈妈问小欣现在几点了,小欣瞧见了镜子里的时钟如图所示(分针正好指向整点位置),她立刻告诉了妈妈正确的时间,请问正确的时间是( )A.6点20分 B.5点20分C.6点40分 D.5点40分4.如图,在△ABC中,AB=AC,∠A=50°,AB的垂直平分线MN交AC于D点,连接BD,则∠DBC的度数是( )A.15° B.20° C.25° D.30°5.若一个等腰三角形的两内角的度数为1∶2,则它的顶角的角度是( ) A.30° B.36° C.90° D.36°或90°6.已知△ABC中,AB=6,AC=8,BC=11,任作一条直线将△ABC分成两个三角形,若其中有一个三角形是等腰三角形,则这样的直线最多有( )A.3条 B.5条 C.7条 D.8条二、填空题(本大题共6小题,每小题3分,共18分)7.一个正五边形的对称轴共有________条.8.如图,等边△ABC中,AD为高,若AB=6,则CD的长度为________.第8题图第10题图9.点(2+a,3)关于y轴对称的点的坐标是(-4,2-b),则b a=________. 10.如图,在△ABC中,BE平分∠ABC,交AC于点E,过点E作DE∥BC交AB于点D.若AE=3cm,△ADE的周长为10cm,则AB=________.11.如图,点P是∠AOB外的一点,点M,N分别是∠AOB两边上的点,点P关于OA的对称点Q恰好落在线段MN上,点P关于OB的对称点R落在MN的延长线上.若PM=2,PN=3,MN=4,则线段QR的长为________.第11题图第12题图12.如图,∠AOB=60°,OC平分∠AOB,如果射线OA上的点E满足△OCE是等腰三角形,那么∠OEC的度数为________________.三、(本大题共5小题,每小题6分,共30分)13.如图,AB=AC,∠A=100°,CE平分∠ACD,求∠ECD的度数.14.如图,已知AB=AC,AE平分∠DAC,那么AE∥BC吗?为什么?15.如图,在△ABC中,∠C=∠ABC,BE⊥AC,△BDE是正三角形.求∠C的度数.16.如图,AB比AC长2cm,BC的垂直平分线交AB于点D,交BC于点E,△ACD 的周长是14cm,求AB和AC的长.17.如图是由一个正方形和一个等腰直角三角形组成的图形.试分别在图①和图②中,用无刻度的直尺通过连线的方式按要求作图:(1)在图①中画出一个小正方形ABCD;(2)在图②中画出图形的对称轴l.四、(本大题共3小题,每小题8分,共24分)18.如图,从①∠B=∠C;②∠BAD=∠CDA;③AB=DC;④BE=CE四个等式中选出两个作为条件,证明△AED是等腰三角形(写出一种即可).19.如图,在平面直角坐标系中,A(-3,2),B(-4,-3),C(-1,-1).(1)在图中作出ABC关于y轴对称的△A1B1C1;(2)写出点A1,B1,C1的坐标:A1________,B1________,C1________;(3)在y轴上画出点P,使PB+PC最小.20.如图,OE平分∠AOB,EF∥OB,EC⊥OB.(1)求证:OF=EF;(2)若∠BOE=15°,EC=5,求OF的长.五、(本大题共2小题,每小题9分,共18分)21.如图,在△ABC中,AB=AC,点D、E、F分别在边AB、BC、AC上,且BE=CF,BD=CE.(1)求证:△DEF是等腰三角形;(2)当∠A=40°时,求∠DEF的度数.22.如图,已知∠MAN=120°,AC平分∠MAN,∠ABC+∠ADC=180°.求证:(1)DC=BC;(2)AB+AD=AC.六、(本大题共12分)23.如图,在平面直角坐标系中,点A的坐标为(1,0),以线段OA为边在第四象限内作等边三角形AOB,点C为x轴正半轴上一动点(OC>1),连接BC,以线段BC为边在第四象限内作等边△CBD,连接DA并延长,交y轴于点E.(1)△OBC与△ABD全等吗?判断并证明你的结论;(2)当点C运动到什么位置时,以A,E,C为顶点的三角形是等腰三角形?参考答案与解析1.D 2.C 3.D 4.A 5.D6.C 解析:分别以A,B,C为等腰三角形的顶点的等腰三角形有4个,如图①,分别为△ABD,△ABE,△ABF,△ACG,∴满足条件的直线有4条;分别以AB,AC,BC为底的等腰三角形有3个,如图②,分别为△ABH,△ACM,△BCN,∴满足条件的直线有3条.综上所述,满足条件的直线共有7条,故选C.7.5 8.3 9.1 10.7cm 11.512.120°或75°或30°解析:∵∠AOB=60°,OC平分∠AOB,∴∠AOC=30°.当△OCE为等腰三角形时,有如下情况.如图.①当E在E1时,OE=CE,∴∠OCE =∠AOC=30°,∴∠OEC=180°-30°-30°=120°;②当E在E2时,OC=OE,则∠OCE=∠OEC=12(180°-30°)=75°;③当E在E3时,OC=CE,则∠OEC=∠AOC=30°.综上所述,∠OEC的度数为120°或75°或30°.13.解:∵AB=AC,∠A=100°,∴∠B=(180°-100°)÷2=40°,(2分)∴∠ACD=100°+40°=140°.(4分)∵CE平分∠ACD,则∠ECD=70°.(6分)14.解:AE∥BC.(2分)理由如下:∵AB=AC,∴∠B=∠C.由三角形的外角性质得∠DAC=∠B+∠C=2∠B.(4分)∵AE平分∠DAC,∴∠DAC=2∠DAE,∴∠B=∠DAE,∴AE∥BC.(6分)15.解:∵△BDE是正三角形,∴∠DBE=60°.(1分)∵BE垂直AC,∠BEA=90°,∴∠A=90°-60°=30°.(3分)∵∠ABC+∠C+∠A=180°,∠C=∠ABC,∴∠C=180°-30°2=75°.(6分)16.解:∵BC的垂直平分线交AB于点D,交BC于点E,∴BD=DC.(2分)∵△ACD 的周长是14cm,∴AD+DC+AC=14cm,∴AD+BD+AC=AB+AC=14cm.(4分)∵AB比AC 长2cm ,∴AB -AC =2cm ,∴AC =6cm ,AB =8cm.(6分) 17.解:(1)如图①所示.(3分) (2)如图②所示.(6分)18.解:选择的条件是:①∠B =∠C ,②∠BAD =∠CDA (或①③,①④,②③).(2分)证明如下:在△BAD 和△CDA 中,∵⎩⎨⎧∠B =∠C ,∠BAD =∠CDA ,AD =DA ,∴△BAD ≌△CDA (AAS),∴∠ADB =∠DAC ,(6分)∴AE =DE ,∴△AED 为等腰三角形.(8分)19.解:(1)如图所示,△A 1B 1C 1即为所求.(2分) (2)(3,2) (4,-3) (1,-1)(5分)(3)如图所示,连接B 1C ,交y 轴于点P ,点P 即为所求.(8分)20.(1)证明:∵OE 平分∠AOB ,∴∠BOE =∠AOE .∵EF ∥OB ,∴∠BOE =∠OEF ,(2分)∴∠OEF =∠FOE ,∴OF =EF .(4分)(2)解:如图,过E 作ED ⊥OA 于D .∵CE ⊥OB ,OE 平分∠AOB ,∴DE =CE =5.(6分)∵∠BOE =15°,∴∠OEF =∠FOE =15°,∴∠EFD =30°,∴EF =2DE =10,∴OF =EF =10.(8分)21.(1)证明:∵AB =AC ,∴∠B =∠C .在△DBE 和△ECF 中,⎩⎨⎧BE =CF ,∠B =∠C ,BD =CE ,∴△DBE ≌△ECF (SAS),(3分)∴DE =EF ,∴△DEF 是等腰三角形.(4分) (2)解:由(1)可知△DBE ≌△ECF ,∴∠1=∠3.(5分)∵∠A +∠B +∠C =180°,∠A =40°,∠B =∠C ,∴∠B =12(180°-40°)=70°,∴∠1+∠2=110°,(7分)∴∠3+∠2=110°,∴∠DEF =180°-110°=70°.(9分)22.证明:(1)如图,在AN 上截取AE =AC ,连接CE .(2分)∵AC 平分∠MAN ,∠MAN =120°,∴∠CAB =∠CAD =60°,∴△ACE 是等边三角形,∴∠AEC =60°,AC =EC =AE .又∵∠ABC +∠ADC =180°,∠ABC +∠EBC =180°,∴∠ADC =∠EBC .(4分)在△ADC 和△EBC 中,⎩⎨⎧∠DAC =∠BEC ,∠ADC =∠EBC ,AC =EC ,∴△ADC ≌△EBC (AAS),∴DC =BC .(6分)(2)由(1)知△ADC ≌△EBC ,AE =AC ,∴AD =BE ,∴AB +AD =AB +BE =AE ,∴AB +AD =AC .(9分)23.解:(1)△OBC ≌△ABD .(1分)证明如下:∵△AOB ,△CBD 都是等边三角形,∴OB =AB ,CB =DB ,∠ABO =∠DBC =60°,∴∠OBC =∠ABD .(3分)在△OBC 和△ABD 中,⎩⎨⎧OB =AB ,∠OBC =∠ABD ,CB =DB ,∴△OBC ≌△ABD (SAS).(5分)(2)由(1)知△OBC ≌△ABD ,∴∠BAD =∠BOC =60°.又∵∠OAB =60°,∴∠OAE =180°-60°-60°=60°,∴∠EAC =120°,∠OEA =30°,∴以A ,E ,C 为顶点的三角形是等腰三角形时,AE 和AC 是腰.(8分)∵在Rt△AOE 中,OA =1,∠OEA =30°,∴AE =2,(9分)∴AC =AE =2,∴OC =1+2=3,∴点C 的坐标为(3,0).(11分)∴当点C 的坐标为(3,0)时,以A ,E ,C 为顶点的三角形是等腰三角形.(12分)《第十三章 轴对称》单元测试卷(二)第Ⅰ卷(选择题 共30 分)一、选择题(本大题共10题,每小题3分,共30分) 1、下列说法正确的是( ).A .轴对称涉及两个图形,轴对称图形涉及一个图形B .如果两条线段互相垂直平分,那么这两条线段互为对称轴C .所有直角三角形都不是轴对称图形D .有两个内角相等的三角形不是轴对称图形2、点M (1,2)关于x 轴对称的点的坐标为( ).A .(-1,-2)B .(-1,2)C .(1,-2)D .(2,-1) 3、下列图形中对称轴最多的是( )A .等腰三角形B .正方形C .圆D .线段4、已知直角三角形中30°角所对的直角边为2cm ,则斜边的长为( ). A .2cm B .4cm C .6cm D .8cm5、若等腰三角形的周长为26cm ,一边为11cm ,则腰长为( ). A .11cm B .7.5cm C .11cm 或7.5cm D .以上都不对6、如图所示,l 是四边形ABCD 的对称轴,AD ∥BC ,现给出下列结论:①AB ∥CD ;②AB=BC ;③AB ⊥BC ;④AO=OC 其中正确的结论有( ).A .1个B .2个C .3个D .4个 7、如图:DE 是△ABC 中AC 边的垂直平分线,若BC=8厘米,AB=10厘米,则△EBC 的周长为( )厘米. A .16 B .18 C .26 D .28 8、若等腰三角形腰上的高是腰长的一半,则这个等腰三角形的底角是 ( ).A .75°或15°B .75°C .15°D .75°和30°9、等腰三角形ABC 在直角坐标系中,底边的两端点坐标是(-2,0),(6,0),则l ODCBAE DCBABA其顶点的坐标,能确定的是( ).A .横坐标B .纵坐标C .横坐标及纵坐标D .横坐标或纵坐标 10、下列图案是几种名车的标志,在这几个图案中不是轴对称图形的是( ) A : B : C : D : 二、填空题(每小题3分,共15分)11、已知点P 在线段AB 的垂直平分线上,PA=6,则PB= . 12、等腰三角形一个底角是30°,则它的顶角是__________度. 13、等腰三角形的一内角等于50°,则其它两个内角各为 .14、如图:点P 为∠AOB 内一点,分别作出P 点关于OA 、OB 的对称点P 1,P 2,连接P 1P 2交OA 于M ,交OB 于N ,P 1P 2=15,则△PMN 的周长为 .15.已知A (-1,-2)和B (1,3),将点A 向______平移________ 个单位长度后得到的点与点B 关于y 轴对称. 三、解答题:16、已知:如图,已知△ABC ,分别画出与△ABC 关于x 轴、y 轴对称的图形△A 1B 1C 1 和△A 2B 2C 2 ;(8分)17.如图,AC 和BD 相交于点O ,且AB//DC ,OC=OD ,求证:OA =OB 。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

轴对称章节测试卷
姓名________________ 成绩______________
一。

选择题(每小题3分,共30分)
1.诗人但丁曾赞美道:“圆是最美的图形.”圆的线条明快、简练、均匀、对称,无论是古人,还是今人,都对圆有着特殊的亲切情感.你知道圆有多少条对称轴吗?().
A.1条
B.2条
C.4条
D.无数条
2.“羊”字象征吉祥和美好,下图的图案与羊有关,其中是轴对称图形的个数是 ( )
A.1 B.2 C.3 D.4
3.如图,已知∠AOB=40°,OM平分∠AOB,MA⊥OA,MB⊥OB,垂足
分别为A、B两点,则∠OMA等于 ( )
A.50° B.40° C.30° D.70°
4.在等腰三角形中一个角是700,则另两个角分别为()
A、700,400
B、550,550
C、 700,400或550,550
D、不同于以上答案
5.已知等腰三角形的一边等于3,一边等于6,那么它的周长等 ( ) A.12 B.12或15 C.15 D.15或18
6.如图,在△ABC中,AB=AC,∠A=36°,两条角平分线BD、CE相交于点F,则图中的等腰三角形共有 ( ) A.6个 B.7个 C.8个 D.9个
第6题图第7题图
7.如图,把一个正方形三次对折后沿虚线剪下,则所得图形大致是 ( )
8.已知等腰三角形的周长为24,腰长为x ,则x 的取值范围是 ( ). (A )x >12
(B )x <6
(C )6<x <12
(D )0<x <12
9.如图所示,DE 是△ABC 中边AC 的垂直平分线,若BC=18 cm ,AB=10 cm ,则△ABD 的周长为 ( ) A .16 cm B .28 cm C .26 cm D .18 cm 10.下列语句中,正确的有 ( ) ①关于一条直线对称的两个图形一定能重合; ②两个能重合的图形一定关于某条直线对称; ③一个轴对称图形不一定只有一条对称轴; ④两个轴对称图形的对应点一定在对称轴的两侧. A .1个 B .2个 C .3个 D .4个 二、填空题(每小题3分,共30分)
11.在英文大写字母A 、E 、M 、S 、U 、P 中是轴对称图形的是 。

12.等腰△ABC 中,顶角∠A=40°,则一个底角∠B= 度.
13.若直角三角形斜边上的高和中线长分别是5 cm ,6 cm ,则它的面积是________. 14.等腰三角形的底角是顶角的4倍,则它的顶角为 。

15.角平分线上的任一点到这个角的两边的距离 。

16.如图所示,在等腰△ABC 中,∠A =50º,则∠ACD= 。

第16题图 第17题图
17.已知:如图,△AMN 的周长为18,∠B, ∠C 的平分线相交于点O,过O 点的直线MN ∥BC 交AB 、AC 于点M 、N 。

则AB+AC= 。

18.如图,以正方形ABCD 的一边CD 为边向形外作等边三角形CDE ,则∠AEB=_______. 19.数的计算中有一些有趣的对称,形式如:12×231=132×21.仿照上面的形式填空,并判断等式是否成立:(1)12×462=_________×_________
20.如图,点D 、E 分别为边AB 、AC 的中点,将△ABC 沿线段DE 折叠,使点A 落在点F 处,
若∠B=50°,则∠BDF=_________. 三、解答题
C
21.(8分)如图所示,AD =AE ,BD =CE ,B 、D 、E 、C 在同一条直线上,试说明⊿ABC 是等腰三角形。

22.(10分)如图,在△ABC 中,AB=AC ,点D 在BC 边上,且BD=AD ,DC=AC .将图中的等腰三角形全都写出来.并求∠B 的度数.
23. (10分)如图,在△ABC 中,AB =AC ,AD ⊥BC ,∠BAD =40°,AD =AE .求∠CDE 的度数.
24. (12分)如图,点A 是BC 上一点,△ABD 、△ACE 都是等边三角形。

试说明:(1)AM =AN ;(2)MN ∥BC ;
B
E A。

相关文档
最新文档