安徽合肥市瑶海区2020年中考数学模拟试卷(有答案)

合集下载

2020届安徽合肥市瑶海区中考数学模拟试卷(有答案)(已审阅)

2020届安徽合肥市瑶海区中考数学模拟试卷(有答案)(已审阅)

九年级数学中考模拟试卷一、选择题:1.下列说法正确的是()A.有理数的绝对值一定是正数B.如果两个数的绝对值相等,那么这两个数相等C.如果一个数是负数,那么这个数的绝对值是它的相反数D.绝对值越大,这个数就越大2.下列运算正确的是()A.a2•a3=a6B.(a2)4=a6C.a4÷a=a3D.(x+y)2=x2+y23.据统计部门预测,到2020年武汉市常住人口将达到约14500000人,14500000用科学记数法表示为( )A.0.145×108B.1.45×107C.14.5×106D.145×1054.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()A.B. C.D.5.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()A.B.C.D.6.若关于x,y的多项式0.4x2y-7mxy+0.75y3+6xy化简后不含二次项,则m=( )7.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的年级七年级八年级九年级合格人数270 262 254B.八年级的学生人数为262名C.八年级的合格率高于全校的合格率D.九年级的合格人数最少8.如图,在大小为4×4的正方形网格中,是相似三角形的是()A.①和②B.②和③C.①和③D.②和④9.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()A.4B.8C.16D.810.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()A.6.5米 B.9米 C.13米 D.15米二、填空题:11.一元一次不等式﹣x≥2x+3的最大整数解是.12.因式分解:x2﹣49= .13.如图,正方形ABCD内接于⊙O,AD=2,弦AE平分BC交BC于P,连接CE,则CE的长为.14.如图所示,一束光线从点A(3,3)出发,经过y轴上的C反射后经过点B(1,0),则光线从A点到B点经过的路线长是.三、计算题:15.计算:16.解方程:3x2+5(2x+1)=0四、解答题:17.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.18.已知在直角坐标平面内,抛物线y=x2+bx+c经过点A(2,0)、B(0,6).(1)求抛物线的表达式;(2)抛物线向下平移几个单位后经过点(4,0)?请通过计算说明.19.据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直的道路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A处行驶到B处的时间为4秒.问此车是否超过了该路段16米/秒的限制速度?(参考数据:≈1.4,≈1.7)20.如图,一次函数y=﹣x+5的图象与反比例函数y=kx-1(k≠0)在第一象限的图象交于A(1,n)和B两点.(1)求反比例函数的解析式与点B坐标;(2)求△AOB的面积;(3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y=kx-1(k≠0)的值时,写出自变量x的取值范围.21.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:请根据所给信息解答以下问题:(1)请补全条形统计图;(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.五、综合题:22.在平面直角坐标系中,二次函数y=x2+mx+2m﹣7的图象经过点(1,0).(1)求抛物线的表达式;(2)把﹣4<x<1时的函数图象记为H,求此时函数y的取值范围;(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.23.如图①,在平面直角坐标系中,点A(0,3).点B(-3,0),点C(1,0),点D(0,1).连AB, AC,BD.(1)求证:BD⊥AC;(2)如图②,将△BOD绕着点0旋转,得到△B'OD'当点D'落在AC上时,求AB'的长;(3)试直接写出(2)中点B的坐标.参考答案1.C2.C.3.B4.A5.A6.B7.D8.C9.C10.A11.答案为:﹣112.答案为:(x﹣7)(x+7).13.答案为.14.答案为:2+8.15.答案略;16.17.【解答】解:如图所示:18.【解答】解:(1)把A(2,0),B(0,6)代入y=x2+bx+c得解得b=﹣5,c=6,∴抛物线的表达式为y=x2﹣5x+6(2)把x=4代入y=x2﹣5x+6得y=16﹣20+6=2.2﹣0=2.故抛物线向下平移2个单位后经过点(4,0).19.由题意得,在Rt△BCD中,∵∠B DC=90°,∠BCD=45°,CD=100米,∴B D=CD=100米.在Rt△ACD中,∵∠ADC=90°,∠ACD=60°,CD=100米,∴A D=CD·tan∠ACD=100(米).∴AB=AD-BD=100-100≈70(米).∴此车的速度为(米/秒).∵17.5>16,∴此车超过了该路段16米/秒的限制速度.20.21.【解答】解:(1)根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),补全统计图,如图所示:(2)根据题意得:2000××100%=560(人),则估计全校同学中最喜爱“臭豆腐”的同学有560人;(3P=.22.【解答】解:(1)∵二次函数y=x2+mx+2m﹣7的图象经过点(1,0),∴1+m+2m﹣7=0,解得m=2.∴抛物线的表达式为y=x2+2x﹣3;(2)y=x2+2x﹣3=(x+1)2﹣4.∵当﹣4<x<﹣1时,y随x增大而减小;当﹣1≤x<1时,y随x增大而增大,∴当x=﹣1,y最小=﹣4.当x=﹣4时,y=5.∴﹣4<x<1时,y的取值范围是﹣4≤y<5;(3)y=x2+2x﹣3与x轴交于点(﹣3,0),(1,0).新图象M如右图红色部分.把抛物线y=x2+2x﹣3=(x+1)2﹣4的图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣(x+1)2+4(﹣3≤x≤1),当直线y=x+b经过(﹣3,0)时,直线y=x+b与图象M有两个公共点,此时b=3;当直线y=x+b与抛物线y=﹣(x+1)2+4(﹣3≤x≤1)相切时,直线y=x+b与图象M有两个公共点,即﹣(x+1)2+4=x+b有相等的实数解,整理得x2+3x+b﹣3=0,△=32﹣4(b﹣3)=0,解得b=.结合图象可得,直线y=x+b与图象M有三个公共点,b的取值范围是3<b<.23.。

安徽省合肥瑶海区四校联考2019-2020学年中考数学模拟试卷

安徽省合肥瑶海区四校联考2019-2020学年中考数学模拟试卷

安徽省合肥瑶海区四校联考2019-2020学年中考数学模拟试卷一、选择题1.如图,四边形ABCD 内接于⊙O ,F 是上一点,且=,连接CF 并延长交AD 的延长线于点E ,连接AC .若∠ABC=105°,∠BAC=25°,则∠E 的度数为( )A.45°B.50°C.55°D.60°2.某班要在一面墙上同时展示数张形状、大小均相同的矩形绘画作品,将这些作品排成一个矩形(作品不完全重合).现需要在每张作品的四个角落都钉上图钉,如果作品有角落相邻,那么相邻的角落共享一枚图钉(例如,用9枚图钉将4张作品钉在墙上,如图).若有36枚图钉可供选用,则最多可以展示绘画作品( )A.22张B.23张C.24张D.25张3.如图,从一块直径为24cm 的圆形纸片上,剪出一个圆心角为90°的扇形ABC ,使点A ,B ,C 都在圆周上,将剪下的扇形围成一个圆锥的侧面,则这个圆锥的底面圆的半径是( )A.3 cmB.2cmC.6cmD.12cm4.北京市将在2019年北京世园会园区、北京新机场、2022年冬奥会场馆等地,率先开展5G 网络的商用示范.目前,北京市已经在怀柔试验场对5G 进行相应的试验工作.现在4G 网络在理想状态下,峰值速率约是100Mbps ,未来5G 网络峰值速率是4G 网络的204.8倍,那么未来5G 网络峰值速率约为( )A .1×102 MbpsB .2.048×102 MbpsC .2.048×103 MbpsD .2.048×104 Mbps5.如图,AB 是O 的直径,C ,D 分别是O 上的两点,OC OD ⊥,2AC cm =,BD =,则O 的半径是( )A B .2cm C D .3cm6.在“我的中国梦”演讲比赛中,有5名学生参加决赛,他们决赛的最终成绩各不相同.其中的一名学生想要知道自己能否进入前3名,不仅要了解自己的成绩,还要了解这5名学生成绩的( )A .中位数B .众数C .平均数D .方差7.如图,AB 是⊙O 的直径,点C 是圆上任意一点,点D 是AC 中点,OD 交AC 于点E ,BD 交AC 于点F ,若BF =1.25DF ,则tan ∠ABD 的值为( )A .23B .3C .35D .4 8.如图,一段抛物线293y x x =-+(-3≤≤)为1C ,与x 轴交于0A ,1A 两点,顶点为12D D ;将1C 绕点1A 旋转180°得到2C ,顶点为2D ;1C 与2C 组成一个新的图象.垂直于y 轴的直线l 与新图象交于点111()P x y ,,222()P x y ,,与线段12D D 交于点333()Px y ,,且1x ,2x ,3x 均为正数,设123t x x x =++,则t 的最大值是( )A .15B .18C .21D .24 9.下列运算正确的是( ) A .x ﹣2x =﹣1B .2x ﹣y =xyC .x 2+x 2=x 4D .(﹣2a 2b )3=﹣8a 6b 310.如图,正方形ABCD 的顶点B 、C 在x 轴的正半轴上,反个比例函数y=k x (k≠0)在第一象限的图象经过点A (m ,2)和CD 边上的点E (n ,23),过点E 作直线l ∥BD 交y 轴于点F ,则点F 的坐标是( )A .(0,- 73)B .(0,- 83)C .(0,-3)D .(0,- 103) 11.已知P 为线段AB 的黄金分割点,且AP >PB ,则( )A .AP 2+BP 2=AB 2 B .BP 2=AP•ABC.AP2=AB•BP D.AB2=AP•PB12.下列命题中,其中正确命题的个数为()个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A.1 B.2 C.3 D.4二、填空题13.如图,海面上B、C两岛分别位于A岛的正东和正北方向,A岛与C岛之间的距离约为36海里,B岛在C岛的南偏东43°,A、B两岛之间的距离约为______海里(结果精确到0.1海里)(参考数据:sin43°=0.68,cos43°=0.73,tan43°=0.93)14.如图所示,在正方形ABCD中,以AB为边向正方形外作等边三角形ABE,连接CE、BD交于点G,连接AG,那么∠AGD的底数是_____度.15.将一个含有45°角的直角三角板摆放在矩形上,如图所示,若∠1=40°,则∠2=________.16.如图,定点A(﹣2,0),动点B在直线y x上运动,当线段AB最短时,点B的坐标为.17.如图,在正方形ABCD中,AB=4,分别以B、C为圆心,AB长为半径画弧,则图中阴影部分的面积为______.18.如图,在四边形ABCD中,∠B=∠D=90°,AB=3, BC=2,tanA=43,则CD=_____.三、解答题19.(1)计算: 11tan 60|23-︒⎛⎫+- ⎪⎝⎭;(2)先化简22x -2x 1x -1+÷x-1-x 1x 1⎛⎫+ ⎪+⎝⎭,然后从. 20.如图,正方形网格中,△ABC 为格点三角形(顶点都在格点上)(1)作出△ABC 绕点A 逆时针旋转90°后的△AB 1C 1;将△ABC 向上平移3格,在向左平移4格得到△A 2B 2C 2;(2)设小正方形的边长为1,求出△ABC 旋转到△AB 1C 1的过程中AB 所扫过的面积(结果保留π)21.如图,已知AB 为⊙O 的直径,C 为⊙O 上一点,CE 与⊙O 切于点C ,交AB 的延长线于点E ,过点A 作AD ⊥EC 交EC 的延长线于点D ,交⊙O 于点F ,连接BC ,CF .(1)求证:AC 平分∠BAD ;(2)若AD =6,∠BAF =60°,求四边形ABCF 的面积.22.如图,在平面直角坐标系中,A (0,1),B (4,2),C (2,0).(1)将△ABC 沿y 轴翻折得到△A 1B 1C 1,画出△A 1B 1C 1;(2)将△ABC 绕着点(﹣1,﹣1)旋转180°得到△A 2B 2C 2,画出△A 2B 2C 2;(3)线段B 2C 2可以看成是线段B 1C 1绕着平面直角坐标系中某一点逆时针旋转得到,直接写出旋转中心的坐标为 .23.如图,反比例函数y1=kx与一次函数y2=ax+b的图象交于点A(2,2)、B(12,n).(1)求这两个函数解析式;(2)直接写出不等式y2>1y的解集.24.解方程:1231 32x x--=+.25.如图,OA、OB是⊙O的半径,OA⊥OB,C为OB延长线上一点,CD切⊙O于点D,E为AD与OC的交点,连接OD.已知CE=5,求线段CD的长.【参考答案】***一、选择题13.514.6015.85°16.(﹣1,﹣1).17.4 3π18.5 6三、解答题19.(1)0;(2)12或-12.【解析】【分析】(1)指数幂、二次根式、特殊角的三角函数值和绝对值的意义进行计算;(2)先通分做分式的加减法,再将除法转变成乘法,然后把多项式因式分解并进行约分化简.最后选择合适的数代入求值.【详解】解:(1)原式(2)原式=22-21-1x x x +÷-11x x +-()-1x =()()()2-11-1x x x +÷()()-1--111x x x x ++ =-11x x +÷()2-1--11x x x + =-11x x +÷2-1x x x + =-11x x +·()11x x x +-=-1x.∵满足-2,-1,0,1,2,又∵x=±1或x=0时,分母的值为0,∴x 只能取-2或2.当x=-2时,原式=12,当x=2时,原式=-12.(答对两种情况之一即得满分) 故答案为:12或-12. 【点睛】本题第1小题考查了实数的加减混合运算,整数指数幂,锐角三角函数值等知识点.第2小题考查了分式的四则混合运算和化简求值.熟练掌握实数和分式的运算法则是关键.20.(1)见解析;(2)254S π=【解析】【分析】(1)根据旋转的性质及平移的性质画出△AB 1C 1,△A 2B 2C 2即可.(2)利用扇形的面积公式计算即可.【详解】(1)△AB 1C 1,△A 2B 2C 2如图所示.(2)2905253604S ππ==. 【点睛】本题考查作图-旋转变换,平移变换,扇形的面积等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.21.(1)详见解析;(2)【解析】【分析】(1)连接OC ,如图,根据切线的性质得OC ⊥CD ,则可判断∴OC ∥AD 得到∠1=∠2,加上∠2=∠3,从而得到∠1=∠3;(2)连接OF ,如图,先证明△AOF 、△OBC 和△COF 都为等边三角形,再利用含30度的直角三角形三边的关系得到,CD=2,所以CF=2DF=4,然后根据三角形面积公式计算S 四边形ABCF . 【详解】(1)证明:连接OC ,如图,∵CE 与⊙O 切于点C ,∴OC ⊥CD ,而AD ⊥CD ,∴OC ∥AD ,∴∠1=∠2,∵OA=OC ,∴∠2=∠3,∴∠1=∠3,∴AC 平分∠BAD ;(2)解:连接OF ,如图,∵∠BAF=60°,∴△AOF 为等边三角形,∠1=∠3=60°,∴∠BOC=∠COF=60°,∴△OBC 和△COF 都为等边三角形,在Rt △ACD 中, 在Rt △CDF 中,∠FCD=90°-∠OCF=30°,∴CD=2, ∴CF=2DF=4,∴S 四边形ABCF =3S △OAF =3×12【点睛】本题考查了切线的性质:圆的切线垂直于经过切点的半径.若出现圆的切线,必连过切点的半径,构造定理图,得出垂直关系.简记作:见切点,连半径,见垂直.也考查了圆周角定理和等边三角形的判定与性质.22.(1)详见解析;(2)详见解析;(3)(﹣2,﹣2).【解析】【分析】(1)利用关于y轴对称的点坐标特征写出点A1、B1、C1的坐标,然后描点即可;(2)利用网格特点和旋转的性质画出点A1、B1、C1的对应点A2、B2、C2,从而得到△A2B2C2;(3)作B1B2和C1C2的垂直平分线,它们相交于点P,则点P为旋转中心,然后写出P点坐标即可.【详解】解:(1)如图,△A1B1C1为所作;(2)如图,△A2B2C2为所作;(3)如图,线段B2C2可以看成是线段B1C1绕着点P逆时针旋转90°得到,此时P点的坐标为(﹣2,﹣2).故答案为(﹣2,﹣2).【点睛】本题考查了作图﹣旋转变换:根据旋转的性质可知,对应角都相等都等于旋转角,对应线段也相等,由此可以通过作相等的角,在角的边上截取相等的线段的方法,找到对应点,顺次连接得出旋转后的图形.23.(1)y1=4x;y 2=﹣4x+10;(2)12<x<2或x<0.【解析】【分析】(1)将A坐标代入反比例解析式求出m的值,确定出反比例解析式,将B坐标代入反比例解析式求n的值,确定出B坐标,将A与B坐标代入一次函数解析式求出k与b的值,即可确定出一次函数解析式;(2)根据图象和交点坐标找出一次函数图象位于反比例函数图象上方时x的范围即可.【详解】解:(1)将A(2,2)代入反比例解析式得:k=2×2=4,则反比例解析式为y1=4x;将B(12,n)代入反比例解析式得:n=8,即B(12,8),将A与B坐标代y2=ax+b中,得2218 2a ba b+=⎧⎪⎨+=⎪⎩,解得:410ab=-⎧⎨=⎩.2y=﹣4x+10;则一次函数解析式为(2)由图象得:不等式y2>y1的解集为12<x<2或x<0.【点睛】此题考查了一次函数与反比例函数的交点问题,待定系数法确定函数解析式,利用了数形结合的思想,熟练掌握待定系数法是解本题的关键.24.57 x=【解析】【分析】分式方程去分母转化为整式方程,求出整式方程的解得到x的值,经检验即可得到分式方程的解【详解】解:2(1-2x)=3(x-3)+62-4x=3x-9+6-4x-3x=-9+6-2-7x=-557x=【点睛】此题考查解分式方程,掌握运算法则是解题关键25.5【解析】【分析】根据切线的性质,以及直角三角形的性质,直角三角形的两锐角互余,即可证明∠ADC=∠AEO,从而得到∠DEC=∠ADC,根据三角形中,等角对等边即可证明△CDE是等腰三角形,即CD=CE.【详解】解:∵CD切⊙O于点D,∴∠ODC=90°;又∵OA⊥OC,即∠AOC=90°,∴∠A+∠AEO=90°,∠ADO+∠ADC=90°;∵OA=OD,∴∠A=∠ADO,∴∠ADC=∠AEO;又∵∠AEO=∠DEC,∴∠DEC=∠ADC,∴CD=CE,∵CE=5,∴CD=5.【点睛】此题考查切线的性质,解题关键在于掌握其性质.。

安徽省合肥市瑶海区2020-2021学年九年级中考二模数学试卷(含答案)

安徽省合肥市瑶海区2020-2021学年九年级中考二模数学试卷(含答案)

合肥市瑶海区2020-2021学年九年级中考二模数学试卷(含答案) 一、选择题(本大题10小题,每小题4分,满分40分) 1、实数-3的绝对值是( )A -3B ±3C 3D -132、下列计算正确的是( )A x 3÷x 3=0B (-3x )2=6x 2C 2x -2=212x D (x 3)2=x 63、下列化学仪器的图中,是轴对称图形的是( ) A B C D4、国家统计局统计,2021年1~2月份,全国规模以上工业企业实现利润11140.1亿元,比2019年1~2月份增长 72.1%,延续了2020年下半年以来较快增长的良好态势其中11140.1亿用科学记数法表示为( )A 1114.01×10B 11140.1×108C 1.11401×1012D 1.11401×10135、已知关于x 的方程x 2-3x+k=0有两个不相等的实数根,则k 的取值范围是( )A k< 94B k >94C k< -94D k > -946、某篮球兴趣小组有10人,在一次3分球测试中,10人1分钟投进3分球的次数情况如下表:次数6 7 8 9 10 人数 1 2 4 2 1 依据表中信息得如下结论,其中正确的是( )A.众数是4B.中位数是8C.平均数是7D.方差是17、若x=2是关于x 的方程mx+n=0(m ≠0,n>0)的解,则一次函数y=-m (x-1)-n 的图象与x 轴的交点坐标是( )A (2,0)B (3,0)C (0,2)D (0,3)8、实数x 、y 、z 且x+y+z ≠0,2x y z x +-=,2x y z z -+=,则下列等式成立的是( ) A x 2-y 2=z 2 B xy=z C x 2+y 2=z 2 D x+y=z9、如图,AB 为⊙0的直径,直线EF 与⊙0相切于点D ,直线AC 交EF 于点H 、交00于点C ,连接AD 、OD ,则下列结论错误的是( )A.若AH//OD ,则AD 平分∠BAHB.若AD 平分∠BAH ,则AH ⊥EFC.若AH ⊥EF ,则AD 平分∠BAHD.若DH 2=CH ·AH ,则AH ⊥EF.第9题图 第10题图 10、如图,直线a 、b 都与直线1垂直,垂足分别为E 、F ,EF=1,正方形ABCD 的边长为2,对角线AC 在直线1上,且点C 位于点E 处,将正方形ABCD 沿1向右平移,直到点A 与点F 重合为止,记点C 平移的距离为x ,正方形ABCD 位于直线a 、b 之间部分(阴影部分)的面积为y ,则y 关于x 的函数图象大致为( )A B C D二、填空题(本大题4小题,每小题5分,满分20分)11、计算:389-= 12、因式分解:x3-4x2+4x=13、如图,点A是反比例函数y=-kx(x> 0)图象上的任意一点,过点A作AB垂直x轴交反比例函数y=-1x(x> 0)的图象于点B,连接A0、BO,若△ABO的面积为1.5,则k的值为第13题图第14题图14、在等腰△ABC中,AB=AC=5,BC=6,点D是BC边上一点,点E是AC边上一点,将△CDE沿DE所在直线折叠,使点C落在AB边上的点C处。

2020届合肥市部分学校中考数学模拟试卷(5月份)(有解析)

2020届合肥市部分学校中考数学模拟试卷(5月份)(有解析)

2020届合肥市部分学校中考数学模拟试卷(5月份)一、选择题(本大题共10小题,共40.0分)1.是整数,则正整数的最小值是()A. 4;B. 5;C. 6;D. 72.下列计算正确的是()A. a2+a4=a6B. 2a+3b=5abC. (a2)3=a8D. a2⋅a3=a53.如图所示的四个立体图形中,左视图是圆的个数是()A. 4B. 3C. 2D. 14.用四舍五入法对数5664935取近似数精确到万位,结果是()A. 566B. 5.66C. 5.66×106D. 5.67×1065.如图,直线a//b,直线l分别与直线a,b相交于点P,Q,PA垂直于l于点P.若∠1=64°,则∠2的度数为()A. 26°B. 30°C. 36°D. 64°6.下列各式,计算结果为√5的是()A. √2+√3B. √7−√2C. √20−√5D. 10√157.平面直角坐标系中,如图,有一条“鱼”,它有六个顶点,则()A. 将各点横坐标乘以2,纵坐标不变,得到的鱼与原来的鱼位似B. 将各点纵坐标乘以2,横坐标不变,得到的鱼与原来的鱼位似C. 将各点横坐标乘以2,纵坐标乘以,得到的鱼与原来的鱼位似D. 将各点横.纵坐标都乘以2,得到的鱼与原来的鱼位似8.如图是根据某校学生的血型绘制的扇形统计图,该校血型为A型的有200人,那么该校血型为AB型的人数为()A. 100B. 50C. 20D. 89.如图,矩形ABCD的对角线AC与BD相交于点O,P、Q分别为AO、AD的中点,PQ=5,AB=5,则sin∠ADB=()2A. 12B. √22C. √32D. 110.如图,正方形ABCD的边长为3cm,动点M从点B出发以3cm/s的速度沿着边BC−CD−DA运动,到达点A停止运动,另一动点N同时从点B 出发,以1cm/s的速度沿着边BA向点A运动,到达点A停止运动,设点M运动时间为x(s),△AMN的面积为y(cm2),则y关于x的函数图象是()A. B.C. D.二、填空题(本大题共4小题,共20.0分)11.已知关于x的不等式x+a≤1的解集是如图所示,则a的值为______.12.因式分解:−9x2y+6xy2−y3=______ .13.如图,直线y=2x−4的图象与x、y轴交于B、A两点,与y=kx的图象交于点C,CD⊥x轴于点D,如果△CDB的面积:△AOB的面积=1:4,则k的值为______ .14.如图,矩形ABCD中,AB=4,BC=8.若将它沿EF折叠,使点B与点D重合,点A落在点A′处,则tan∠EFD=.三、计算题(本大题共1小题,共8.0分)15.先化简,再求值:x−2x2−1÷x+1x2+2x+1−xx−1,其中x=1√2−1.四、解答题(本大题共8小题,共82.0分)16.某班去看演出,甲种票每张24元,乙种票每张18元.如果35名学生购票恰好用去750元,甲、乙两种票各买了多少张?17.如图,在平面直角坐标系中,已知△ABC的三个顶点的坐标分别为A(−1,1),B(−3,1),C(−1,4),将△ABC绕着点B顺时针旋转90°后得到△A1BC1,请在图中画出△A1BC1,并求出线段BC旋转过程中所扫过的面积(结果保留π)18.已知一个三角形的第一条边长为(a+2b)厘米,第二条边比第一条边短(b−2)厘米,第三条边比第二条边短3厘米.(1)请用式子表示该三角形的周长;(2)当a=2,b=3时,求此三角形的周长.19.某校九年级四个数学活动小组参加测量操场旗杆高度的综合实践活动,如图是四个小组在不同位置测量后绘制的示意图,用测角仪测得旗杆顶端A的仰角记为α,CD为测角仪的高,测角仪CD的底部C处与旗杆的底部B处之间的距离记为CB,四个小组测量和计算数据如下表所示:数据组别CD的长(m)BC的长(m)仰角αAB的长(m)第一组 1.5913.232°9.8第二组 1.5813.431°9.6第三组 1.5714.130°9.7第四组 1.5615.228°(1)利用第四组学生测量的数据,求旗杆AB的高度(精确到0.1m);(2)四组学生测量旗杆高度的平均值约为______ m(精确到0.1m).(参考数据:sin28°≈0.47,cos28°≈0.88,tan28°≈0.53)20. 如图,在△ABC中,AB=BC,∠A=45°,以AB为直径的⊙O交CO于点D.(1)求证:BC是⊙O的切线;(2)连接BD,若BD=m,tan∠CBD=n,写出求直径AB的思路.21. 某校为了了解学生家长对孩子使用手机的态度情况,随机抽取部分学生家长进行问卷调查,发出问卷140份,每位学生的家长1份,每份问卷仅表达一种态度.将回收的问卷进行整理(假设回收的问卷都有效),并绘制了如下两幅不完整的统计图:学生家长对孩子使用手机的态度情况统计图根据以上信息回答下列问题:(1)回收的问卷数为______份,“严加干涉”部分对应扇形的圆心角度数为______.(2)把条形统计图补充完整;(3)为了正确引导家长,学校决定从初三某班表示严加干涉的3位家长(甲、乙、丙三位家长)中随机选2位进行深入访谈,请你利用树状图或列表的方法,求出甲、乙家长被同时选中的概率.22. 某商场将每件进价为80元的某种商品原来按每件100元售出,一天可售出100件,后来经过市场调查,发现这种商品单价每降低1元,其销量可增加10件.(1)求商场经营该商品原来一天可获利润多少元?(2)设后来该商品每件降价x元,商场每天可获利润y元.①若商场经营该商品一天要获利润2210元,则每件商品应降价多少元?②求y与x之间的函数关系式,并根据关系式求出该商品如何定价可使商场所获利润最多?最多为多少?23.(1)如图1,在中,,于点.求证:;(2)如图2,在中,,点为边上的点,于点,延长交于点.=1,求的值;(3)在中,,点为边上的动点(点不与重合),直线于点,交直线于点.若,请探究并直接写出的值(用含的式子表示),不必证明.【答案与解析】1.答案:C解析:解析:∵==2,∴当n=6时,=6,∴原式=2=12,∴n的最小值为6.故选C.2.答案:D解析:解:A、a2和a4不能合并,故本选项不符合题意;B、2aa和3b不能合并,故本选项不符合题意;C、结果是a6,故本选项不符合题意;D、结果是a5,故本选项符合题意;故选:D.根据合并同类项法则、幂的乘方、同底数幂的乘法分别求出每个式子的值,再判断即可.本题考查了合并同类项法则、幂的乘方、同底数幂的乘法等知识点,能正确求出每个式子的值是解此题的关键.3.答案:D解析:解:圆柱的左视图是长方形;圆锥的左视图是三角形;圆台的左视图是等腰梯形;球的左视图是圆.故选D.左视图是从物体的左面看得到的视图.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.4.答案:C解析:解:5664935=5.664935×106中,万位上是6,千位上是4,则精确到万位是5.66×106;故选:C.近似数精确到哪一位,应当看末位数字实际在哪一位.本题考查了科学记数法和有效数字,对于用科学记数法表示的数,有效数字的计算方法以及与精确到哪一位是需要识记的内容,经常会出错.5.答案:A解析:[分析]先根据平行线的性质,即可得到∠3的度数,再根据垂直的定义,即可得到∠2的度数.本题主要考查了垂直的定义以及平行线的性质的运用,解题时注意:两直线平行,内错角相等.[详解]解:∵a//b,∠1=64°,∴∠3=∠1=64°,又∵PA垂直于l于点P,∴∠2+∠3=90°∴∠2=90°−∠3=26°,故选A.6.答案:C解析:解:A、√2+√3,无法计算,故此选项错误;B、√7−√2,无法计算,故此选项错误;C、√20−√5=2√5−√5=√5,正确;D、10√1=2√5,故此选项错误;5故选:C.直接利用二次根式的加减运算法则计算得出答案.此题主要考查了二次根式的加减运算,正确掌握运算法则是解题关键.7.答案:D解析:坐标平面内的图形的各个顶点,如果横纵坐标同时乘以同一个非0的数k,得到的图形与原图形关于原点成位似图形,位似比是k.若乘的不是同一个数,得到的图形一定不会与原图形关于原点对称.故选D.8.答案:B解析:解:∵该校血型为A型的有200人,占总人数为40%,∴被调查的总人数为200÷40%=500(人),又∵AB型血人数占总人数的比例为1−(40%+30%+20%)=10%,∴该校血型为AB型的人数为500×10%=50(人),故选:B.根据A型血的有200人,所占的百分比是40%即可求得被调查总人数,用总人数乘以AB型血所对应的百分比即可求解.本题考查的是扇形统计图的运用,读懂统计图,从统计图中得到必要的信息是解决问题的关键.扇形统计图直接反映部分占总体的百分比大小.9.答案:A解析:解:∵四边形ABCD是矩形,∴BO=DO=12BD,∠BAD=90°,∵点P、Q是AO、AD的中点,∴PQ是△AOD的中位线,∴OD=2PQ=5,∴BD=2OD=10,∴sin∠ADB=ABBD =510=12;故选:A.根据矩形的性质可得∠BAD=90°,BO=DO,再根据三角形中位线定理可得OD=2PQ=5,得出BD=10,即可得出结果.此题主要考查了矩形的性质,三角形中位线定理,解直角三角形等知识;熟练掌握矩形的性质,求出BD的长是解题的关键.10.答案:A解析:解:由题可得,BN=x,当0≤x≤1时,M在BC边上,BM=3x,AN=3−x,则S△ANM=12AN⋅BM,∴y=12⋅(3−x)⋅3x=−32x2+92x,故C选项错误;当1≤x≤2时,M点在CD边上,则S△ANM=12AN⋅BC,∴y=12(3−x)⋅3=−32x+92,故D选项错误;当2≤x≤3时,M在AD边上,AM=9−3x,∴S△ANM=12AM⋅AN,∴y=12⋅(9−3x)⋅(3−x)=32(x−3)2,故B选项错误;故选:A.分三种情况进行讨论,当0≤x≤1时,当1≤x≤2时,当2≤x≤3时,分别求得△ANM的面积,列出函数解析式,根据函数图象进行判断即可.本题主要考查了动点问题的函数图象,用图象解决问题时,要理清图象的含义即会识图.利用数形结合,分类讨论是解决问题的关键.11.答案:−1解析:解:由图可知,x≤2,解不等式x+a≤1得,x≤1−a,故1−a=2,解得a=−1.故答案为:−1.先根据数轴上不等式解集的表示方法得出不等式的解集,再把a当作已知条件求出a值即可.本题考查的是解一元一次不等式,熟知解一元一次不等式的基本步骤是解答此题的关键.12.答案:−y(3x−y)2解析:解:原式=−y(9x2−6xy+y2)=−y(3x−y)2.故答案为:−y(3x−y)2.原式提取公因式,再利用完全平方公式分解即可.此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.13.答案:6解析:解:∵直线y=2x−4的图象与x,y轴交于B,A两点,∴点A(0,−4),点B(2,0),∴OA=4,OB=2,∵CD⊥x轴,∴CD//OA,∴△AOB∽△CDB,∵△CDB的面积:△AOB的面积=1:4,∴OACD =12,∴CD=2,BD=1,∴OD=OB+BD=3,∴点C的坐标为:(3,2),∴2=k3,解得:k=6.故答案为:6.由直线y=2x−4的图象与x,y轴交于B,A两点,可求得A与B的坐标,易得△AOB∽△CDB,然后由相似三角形面积比等于相似比的平方,求得CD与BD的长,继而求得点C的坐标,则可求得答案.此题考查了一次函数的性质与反比例函数的交点问题,相似三角形的判定与性质,待定系数法求函数解析式,注意掌握数形结合思想的应用.14.答案:2解析:试题分析:根据翻折变换的性质得出BF=DF,∠BFE=∠EFD,进而利用平行线的性质得出∠DEF=∠DFE,得出DE=DF,再利用勾股定理求出DE,DF,BF的长,进而得出NF的长,由锐角三角函数关系得出EF的长.过点E作EN⊥BC于点N,∵将矩形ABCD沿EF折叠,使点B与点D重合,点A落在点A′处,∴BF=DF,∠BFE=∠EFD,∵AD//BC,∴∠DEF=∠EFB,∴∠DEF=∠DFE,∴DE=DF,设BF=DF=x,则FC=8−x,在Rt△DFC中,FD2=FC2+DC2,∴x2=(8−x)2+42,解得:x=5,∴DE=DF=BF=5,∴AE=3,∴NF=5−3=2,∴tan∠EFD=tan∠EFN=ENNF =42=2.故答案为:2.15.答案:解:原式=x−2(x+1)(x−1)÷x+1(x+1)2−xx−1=x−2(x+1)(x−1)⋅(x+1)2x+1−xx−1=x−2x−1−xx−1=−2x−1,当x=√2−1=√2+1时,原式=√2+1−1=−√2.解析:原式第一项利用除以一个数等于乘以这个数的倒数将除法运算化为乘法运算,约分后利用同分母分式的减法法则计算得到最简结果,将x的值代入计算即可求出值.此题考查了分式的化简求值,分式的加减运算关键是通分,通分的关键是找最简公分母;分式的乘除运算关键是约分,约分的关键是找公因式.16.答案:解:设甲种票买了x张,则乙种票买了(35−x)张.由题意,得24x+18(35−x)=750,解得x=20,所以35−x=15.答:甲种票买了20张,乙种票买了15张.解析:设甲种票买了x张,则乙种票买了(35−x)张.然后根据购票总张数为35张,总费用为750元列方程求解即可.考查了一元一次方程的应用.正确得出等式是解题关键.17.答案:解:图象如右图.在Rt△ABC中,∵AB=2,AC=3,∴BC=√AB2+AC2=√13,∴线段BC旋转过程中所扫过的面积=90⋅π⋅BC2360=13π4.解析:根据题意画出△ABC绕着点B顺时针旋转90°后得到△A1BC1,线段BC旋转过程中扫过的面积为扇形BCC1的面积,求出即可.此题考查了作图−旋转变换、以及扇形面积,作出正确的图形是解本题的关键.18.答案:解:(1)第二条边长为:a+2b−(b−2)=(a+b+2)厘米,第三条边长为:a+b+2−3=(a+b−1)厘米,a+2b+a+b+2+a+b−1=3a+4b+1,综上,该三角形周长为(3a+4b+1)厘米(2)当a=2,b=3时,周长为:3×2+4×3+1=19(厘米).解析:(1)分别表示出另外两条边长,然后求出周长;(2)将a、b的值代入求解即可.本题考查了整式的加减,解答本题的关键是根据题意列出代数式,然后代数式求值.19.答案:9.6解析:解:(1)∵由已知得:在Rt△ADE中,∠α=28°,DE=BC=15.2米,∴AE=DE×tanα=15.2×tan28°≈8.04米,∴AB=AE+EB=1.56+8.04≈9.6米,答:旗杆的高约为9.6米;(2)四组学生测量旗杆高度的平均值为(9.8+9.6+9.7+9.6)÷4≈9.7米.(1)首先在直角三角形ADE中利用∠α和BE的长求得线段AE的长,然后与线段BE相加即可求得旗杆的高度;(2)利用算术平均数求得旗杆的平均值即可.本题考查了解直角三角形的知识,了解仰角及俯角的定义是解答本题的关键,难度不大.20.答案:(1)证明:∵AB=BC,∠A=45°,∴∠ACB=∠A=45°.∴∠ABC=90°,∴AB⊥BC,∵AB是⊙O的直径,∴BC是⊙O的切线.(2)求解思路如下:①连接AD,由AB为直径可知,∠ADB=90°,进而可知∠BAD=∠CBD;②由BD=m,tan∠CBD=n,在Rt△ABD中,可求AD=m;n③在Rt△ABD中,由勾股定理可求AB的长.解析:(1)欲证明BC是⊙O的切线,只需推知∠ABC=90°即可;(2)①连接AD,利用圆周角定理和等角的余角相等推知∠BAD=∠CBD;②通过解直角Rt△ABD可;③在Rt△ABD中,由勾股定理可求AB的长.求AD=mn本题考查了切线的判定与性质:经过半径的外端且垂直于这条半径的直线是圆的切线;圆的切线垂直于经过切点的半径.判定切线时“连圆心和直线与圆的公共点”或“过圆心作这条直线的垂线”;有切线时,常常“遇到切点连圆心得半径”.也考查了圆周角定理.21.答案:120 30°解析:解:(1)回收的问卷数为30÷25%=120(份),“严加干涉”部分对应扇形的圆心角度数为=30°,360°×10120故答案为:120、30°;(2)稍加询问的份数为120−(30+10)=80(份),补全图形如下:(3)画树状图如下:,由树状图可知,共有6种可能的情况,其中恰好选中甲和乙的情况有2种,∴甲、乙家长被同时选中的概率为26=13.(1)由从来不管的份数及其所占百分比求出总份数,再用360°乘以严加干涉的份数占总份数的比例即可得;(2)用总份数减去另外两个类别的份数求出稍加询问的份数,从而补全图形;(3)首先画出树状图,进而求出恰好选中甲和乙的概率.此题考查了扇形统计图以及树状图法求概率,弄清题意得出正确信息是解本题的关键.22.答案:解:(1)若商店经营该商品不降价,则一天可获利润为:100×(100−80)=2000(元);(2)设后来该商品每件降价x元,依题意,得y=(100−80−x)(100+10x)=−10x2+100x+2000,①令y=2210,−10x2+100x+2000=2210,化简得x2−10x+21=0.解得x1=3,x2=7,即每件商品应降价3元或7元;②y=−10x2+100x+2000=−10(x−5)2+2250,∵−10<0,∴当x=5时,y有最大值2250(元),此时商品定价为95元,答:商品定价为95元时可使商场所获利润最多,最多为2250元.解析:(1)根据进价为80元,售价为100元,销售量为100件,求出利润;(2)可根据利润y=降价后的单件利润×降价后销售的商品的件数列出函数关系式,①令y=2210,列方程求出x的值;②运用配方法求二次函数的最大值即可.本题考查了二次函数的应用,解答本题的关键是根据“利润=总销量×(售价−进价)”列数函数关系式,注意掌握运用配方法求二次函数的最大值.23.答案:(1)证明:如图①,∵BD⊥AC,∠ABC=90°,∴∠ADB=∠ABC,又∵∠A=∠A,∴△ADB∽△ABC,∴AB AC =ADAB,∴AB 2=AD⋅AC.(2)解:方法一:如图②,过点C作CG⊥AD交AD的延长线于点G,∵BE⊥AD,∴∠CGD=∠BED=90°,CG//BF.∵AB BC =BDDC=1,∴AB=BC=2BD=2DC,BD=DC,又∵∠BDE=∠CDG,∴△BDE≌△CDG,∴ED=GD=12EG.由(1)可得:AB 2=AE⋅AD,BD 2=DE⋅AD,∴AE DE =AB2BD2=(2BD)2BD2=4,∴AE=4DE,∴AE EG =4DE2DE=2.∵CG//BF,∴AF FC =AEEG=2.方法二:如图③,过点D作DG//BF,交AC于点G,∵AB BC =BDDC=1,∴BD=DC=12BC,AB=BC.∵DG//BF,∴FG FC =BDBC=12,FC=2FG.由(1)可得:AB 2=AE⋅AD,BD 2=DE⋅AD,∴AE DE =AB2BD2=(2BD)2BD2=4,∵DG//BF,∴AF FG =AEDE=4,∴AF FC =AF2FG=2.(3)解:点D为直线BC上的动点(点D不与B、C重合),有三种情况:(I)当点D在线段BC上时,如图④所示:过点D作DG//BF,交AC边于点G.∵AB BC =BDDC=n,∴BD=nDC,BC=(n+1)DC,AB=n(n+1)DC.∵DG//BF,∴FG GC =BDDC=n,∴FG=nGC,FG=nn+1FC.由(1)可得:AB 2=AE⋅AD,BD 2=DE⋅AD,∴AE DE =AB2BD2=[n(n+1)DC]2(nDC)2=(n+1) 2;∵DG//BF,∴AF FG =AEDE=(n+1) 2,即AFnn+1FC=(n+1) 2,化简得:AFFC=n 2+n;(II)当点D在线段BC的延长线上时,如图⑤所示:过点D作DG//BE,交AC边的延长线于点G.同理可求得:AFFC=n 2−n;(III)当点D在线段CB的延长线上时,如图⑥所示:过点D作DG//BF,交CA边的延长线于点G.同理可求得:AFFC=n−n 2.解析:(1)本问是射影定理的证明.首先证明一对相似三角形△ADB∽△ABC,然后利用相似三角形比例线段的关系得到AB2=AD⋅AC;(2)构造平行线,得到线段之间的比例关系,并充分利用(1)中的结论;(3)本问是将(2)中的结论推广到一般情形,解题方法与(2)相同.注意有三种情形,如图④、⑤、⑥所示,不要遗漏.。

安徽省合肥瑶海区四校联考2020届数学中考模拟试卷

安徽省合肥瑶海区四校联考2020届数学中考模拟试卷

安徽省合肥瑶海区四校联考2020届数学中考模拟试卷一、选择题1.下列各式中,不相等的是 ( ) A.32-和 3-2 B.()23-和 23 C.()32-和 32- D.()23-和 23- 2.如图,经过点B (﹣2,0)的直线y =kx+b 与直线y =4x+2相交于点A (﹣1,﹣2),4x+2<kx+b <0的解集为( )A.x <﹣2B.﹣2<x <﹣1C.x <﹣1D.x >﹣13.如图,正方形ABCD 中,E 、F 分别为BC 、CD 的中点,AF 与DE 交与点G .则下列结论中:①AF ⊥DE ;②AD =BG ;③GE+GF ;④S △AGB =2S 四边形ECFG .其中正确的是( )A.1个B.2个C.3个D.4个4.在数﹣3,﹣(﹣2),01和2之间的数是( )A.﹣3B.﹣(﹣2)C.0 5.若关于x 的一元二次方程(a ﹣1)x 2﹣2x+1=0有实数根,则整数a 的最大值为( ) A .0 B .﹣1 C .1D .2 6.如图,▱ABCD 中,∠B =70°,BC =6,以AD 为直径的⊙O 交CD 于点E ,则DE 的长为( )A .13πB .23πC .76πD .43π 7.计算(3x ﹣1)(3x+1)的结果是( )A .3x 2﹣1B .3x 2+1C .9x 2+1D .9x 2﹣18.如图1,在Rt ABC ∆中,090C ∠=,点P 从点A 出发,沿A C B →→的路径匀速运动到点B 停止,作PD AB ⊥于点D ,设点P 运动的路程为x ,PD 长为y ,y 与x 之间的函数关系图象如图2所示,当12x =时,y 的值是( )A .6B .245C .65D .29.如图是二次函数2y ax bx c =++的图象过点(-1,0),其对称轴为1x =,下列结论:①0abc >;②20a b +=;③420a b c ++<;④此二次函数的最大值是a b c ++,其中结论正确的是( )A .①②B .②③C .②④D .①③④10.如图,点A 在反比例函数y =8x(x >0)图象上,点B 在y 轴负半轴上,连结AB 交x 轴于点C ,若△AOC 的面积为1,则△BOC 的面积为( )A .14B .13C .12D .111.如图,将直线y=x 向下平移b 个单位长度后得到直线l ,l 与反比例函数2y x=(x >0)的图像相交于点A ,与x 轴相交于点B ,则22OA OB -的值是( )A .4B .3C .2D .112.下列命题中,其中正确命题的个数为( )个.①方差是衡量一组数据波动大小的统计量;②影响超市进货决策的主要统计量是众数;③折线统计图反映一组数据的变化趋势;④水中捞月是必然事件.A .1B .2C .3D .4二、填空题13.在一个不透明的纸箱里装有2个红球、1个黄球、1个蓝球,这些球除颜色外完全相同,小明从纸箱里随机摸出1个球,记下颜色后放回,再由小亮随机摸出1个球,则两人摸到的球颜色不同的概率为______14.一组数据3,4,x ,5,8的平均数是6,则该组数据的中位数是__________.15.如图,已知90ACB ∠=︒,直线//MN AB ,若133∠=︒,则2∠=___________.16.含45°角的直角三角板如图放置在平面直角坐标系中,其中A(-2,0),B(0,1),则直线BC 的解析式为______.17.如图,在V ABC 中,MN BC ,分别交AB AC 、于点M N 、,若1AM =,52MB = ,3BC = ,则MN 的长为___.18.﹣12018﹣1)0=_____.三、解答题19.如图,∠BCD =90°,且BC =DC ,直线PQ 经过点D .设∠PDC =α(45°<α<135°),BA ⊥PQ 于点A ,将射线CA 绕点C 按逆时针方向旋转90°,与直线PQ 交于点E .(1)当α=125°时,∠ABC = °;(2)求证:AC =CE ;(3)若△ABC 的外心在其内部,直接写出α的取值范围.20.如图,在△ACD 中,DA =DC ,点B 是AC 边上一点,以AB 为直径的⊙O 经过点D ,点F 是直径AB 上一点(不与A 、B 重合),延长DF 交圆于点E ,连结EB .(1)求证:∠C =∠E ;(2)若弧AE =弧BE ,∠C =30°,DF ,求AD 的长.BP、EQ.(1)求证:△BOQ≌△EOP;(2)求证:四边形BPEQ是菱形;(3)若AB=6,F为AB的中点,OF+OB=9,求PQ的长.22.为了让更多的失学儿童重返校园,某社区组织“献爱心手拉手”捐款活动.对社区部分捐款户数进行调查和分组统计后,将数据整理成如图所示的统计图(图中信息不完整).已知A、B两组捐款户数的比为1 : 5.请结合图中相关数据回答下列问题.请结合以上信息解答下列问题.(1) A组捐款户数为,本次调查样本的容量是;(2) C组捐款户数为,请补全“捐款户数直方图”;(3) 若该社区有500户住户,请根据以上信息估计,全社区捐款不少于300元的户数是多少?23.如图,已知▱ABCD.(1)作∠B的平分线交AD于E点。

安徽省合肥市2020年中考数学模拟试卷(二)及答案

安徽省合肥市2020年中考数学模拟试卷(二)及答案

2020年安徽省合肥市中考数学模拟试卷(二)一.选择题(共12小题,满分36分,每小题3分)1.若|a|=﹣a,则a一定是()A.正数B.负数C.正数或零D.负数或零2.随着我国金融科技的不断发展,网络消费、网上购物已成为人们生活不可或缺的一部分,今年“双十一”天猫成交额高达2135亿元.将数据“2135亿”用科学记数法表示为()A.2.135×1011 B.2.135×107C.2.135×1012 D.2.135×1033.如图,点A、O、B在一条直线上,∠1是锐角,则∠1的余角是()A.∠2﹣∠1B.∠2﹣∠1C.(∠2﹣∠1)D.(∠1+∠2)4.下列计算正确的是()A.a3+a3=a6B.(x﹣3)2=x2﹣9C.a3•a3=a6D.5.从三个不同方向看一个几何体,得到的平面图形如图所示,则这个几何体是()A.圆柱B.圆锥C.棱锥D.球6.下列事件中,属于必然事件的是()A.三角形的外心到三边的距离相等B.某射击运动员射击一次,命中靶心C.任意画一个三角形,其内角和是180°D.抛一枚硬币,落地后正面朝上7.某游客乘坐“金碧皇宫号游船”在长江和嘉陵江的交汇处A点,测得来福土最高楼顶点F的仰角为45°,此时他头项正上方146米的点B处有架航拍无人机测得来福士最高楼顶点F的仰角为31°,游船朝码头方向行驶120米到达码头C,沿坡度i=1:2的斜坡CD走到点D,再向前走160米到达来福士楼底E,则来福士最高楼EF的高度约为()(结果精确到0.1,参考数据:sin31°≈0.52,cos31°≈0.87,tan31°≈0.60)A.301.3米B.322.5米C.350.2米D.418.5米8.定义“取整函数”[x]为不超过x的最大整数,例如[4.5]=4,[5]=5,若整数x、y满足:,则有序数对(x、y)共有()对.A.12B.8C.6D.49.如图,矩形AOBC的面积为4,反比例函数y=(k≠0)的图象的一支经过矩形对角线的交点P,则该反比例函数的解析式是()A.y=B.y=C.y=﹣D.y=﹣10.如图,正方形ABCD和正△AEF都内接于⊙O,EF与BC、CD分别相交于点G、H,则的值是()A.B.C.D.211.根据有关测定,当外界气温处于人体正常体温的黄金比值时,人体感到最舒适(人体正常体温约为37℃),这个气温大约为()A.23℃B.28℃C.30℃D.37℃12.如图,在菱形ABCD中,∠A=60°,E、F分别是AB、AD的中点,DE、BF相交于点G,连接BD、CG.给出以下结论,其中正确的有()①∠BGD=120°;②BG+DG=CG;③△BDF≌△CGB;④S=AB2.△ADEA.1个B.2个C.3个D.4个二.填空题(共4小题,满分12分,每小题3分)13.若tan(α﹣15°)=,则锐角α的度数是.14.若关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,则k的取值范围.15.如图,AB和CD是圆柱ABCD的两条高,现将它过点A用尽可能大的刀切一刀,截去图中阴影部分所示的一块立体图形,截面与CD的交点为P,连结AP,已知该圆柱的底面半径为2,高为6,截去部分的体积是该圆柱体积的,则tan∠BAP的值为.16.已知二次函数y=ax2+bx+c的图象如图所示,以下关于a,b,c的不等式中正确的序号是.①abc>0 ②b2﹣4ac>0 ③2a+b>0 ④4a﹣2b+c<0.三.解答题(共7小题,满分52分)17.先化简,再求值:﹣,其中a=﹣5.18.解不等式组19.某中学为了相应国家发展足球的战略方针,激发学生对足球的兴趣,特举办全员参与的“足球比赛”,赛后,全校随机抽查部分学生,其成绩(百分制)整理分为5组,并制成频数分布表和扇形统计图,请根据所提供的信总解答下列问题:组成绩(分)频数A50<x<606B60<x<70mC70<x<8020D80<x<9036E90<x<100n (1)频数分布表中的m=,n=.(2)样本中位数所在成绩的级别是,扇形统计图中,E组所对应的扇形圆心角的度数是.(3)若该校共有2000名学生,请你估计“足球比赛”成绩不少于80分的大约有多少人?20.如图,已知AB是OD的直径,AM和BN是⊙O的两条切线,点E是⊙O上一点,点D 是AM上一点,连接DE并延长交BN于点C,连接OD、BE,且OD∥BE.(1)求证:DE是⊙O的切线;(2)若AD=1,BC=4,求直径AB的长.21.某年五月,我国南方某省A、B两市遭受严重洪涝灾害,邻近县市C、D决定调运物资支援A、B两市灾区.已知C市有救灾物资240吨,D市有救灾物资260吨,现将这些救灾物资全部调往A、B两市,A市需要的物资比B市需要的物资少100吨.已知从C 市运往A、B两市的费用分别为每吨20元和25元,从D市运往往A、B两市的费用分别为每吨15元和30元,设从D市运往B市的救灾物资为x吨.(1)A、B两市各需救灾物资多少吨?(2)设C、D两市的总运费为w元,求w与x之间的函数关系式,并写出自变量x的取值范围;(3)经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变.若C、D两市的总运费的最小值不小于10320元,求m的取值范围.22.(10分)已知Rt△ABC中,AC=BC=2.一直角的顶点P在AB上滑动,直角的两边分别交线段AC,BC于E.F两点(1)如图1,当=且PE⊥AC时,求证:=;(2)如图2,当=1时(1)的结论是否仍然成立?为什么?(3)在(2)的条件下,将直角∠EPF绕点P旋转,设∠BPF=α(0°<α<90°).连结EF,当△CEF的周长等于2+时,请直接写出α的度数.23.如图1,过原点的抛物线与x轴交于另一点A,抛物线顶点C的坐标为,其对称轴交x轴于点B.(1)求抛物线的解析式;(2)如图2,点D为抛物线上位于第一象限内且在对称轴右侧的一个动点,求使△ACD 面积最大时点D的坐标;(3)在对称轴上是否存在点P,使得点A关于直线OP的对称点A'满足以点O、A、C、A'为顶点的四边形为菱形.若存在,请求出点P的坐标;若不存在,请说明理由.参考答案与试题解析一.选择题(共12小题,满分36分,每小题3分)1.【分析】根据绝对值的定义,绝对值等于它的相反数的数是负数或零.【解答】解:∵a的相反数是﹣a,且|a|=﹣a,∴a一定是负数或零.故选:D.【点评】本题主要考查了绝对值的定义,属于基础题型.注意不要忽略零.2.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:2135亿=213500000000=2.135×1011,故选:A.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【分析】由图知:∠1和∠2互补,可得∠1+∠2=180°,即(∠1+∠2)=90°;而∠1的余角为90°﹣∠1,可将上式代入90°﹣∠1中,即可求得结果.【解答】解:由图知:∠1+∠2=180°;∴(∠1+∠2)=90°;∴90°﹣∠1=(∠1+∠2)﹣∠1=(∠2﹣∠1).故选:C.【点评】此题综合考查余角与补角,难点在于将∠1+∠2=180°进行适当的变形,从而与∠1的余角产生联系.4.【分析】直接利用合并同类项法则以及完全平方公式和同底数幂的乘除运算法则分别计算得出答案.【解答】解:A、a3+a3=2a3,故此选项错误;B、(x﹣3)2=x2﹣6x+9,故此选项错误;C、a3•a3=a6,正确;D、+无法计算,故此选项错误.故选:C.【点评】此题主要考查了合并同类项以及完全平方公式和同底数幂的乘除运算,正确掌握相关运算法则是解题关键.5.【分析】由主视图和左视图可得此几何体为柱体,根据俯视图是圆可判断出此几何体为圆柱.【解答】解:∵主视图和左视图都是长方形,∴此几何体为柱体,∵俯视图是一个圆,∴此几何体为圆柱.故选:A.【点评】此题考查利用三视图判断几何体,三视图里有两个相同可确定该几何体是柱体,锥体还是球体,由另一个视图确定其具体形状.6.【分析】必然事件就是一定发生的事件,依据定义即可作出判断.【解答】解:A、三角形的外心到三角形的三个顶点的距离相等,三角形的内心到三边的距离相等,只有三角形是等边三角形时才符合,故本选项不符合题意;B、某射击运动员射击一次,命中靶心是随机事件,故本选项不符合题意;C、三角形的内角和是180°,是必然事件,故本选项符合题意;D、抛一枚硬币,落地后正面朝上,是随机事件,故本选项不符合题意;故选:C.【点评】解决本题需要正确理解必然事件、不可能事件、随机事件的概念.必然事件指在一定条件下一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件.不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.7.【分析】根据已知角的三角函数构造直角三角形即可求解.【解答】解:如图所示:延长AC 和FE 交于点G ,过点B 作BM ⊥FE 于点M ,作DH ⊥AG 于点H ,得矩形ABMG 、DHEG ,设DH =x ,则HC =2x ,BM =AG =160+120+2x =280+2x .EG =DH =x ,∵∠FAG =45°,∠FGA =90°,∴∠AFG =45°,∴FG =AG ,EF =FG ﹣EG =AG ﹣EG =280+2x ﹣x =280+x ,∴FM =FG ﹣MG =280+2x ﹣146=134+2x ,在Rt △FBM 中,tan31°=,即=0.6, 解得x =42.5,则EF =280+x =322.5.故选:B .【点评】本题考查了解直角三角形的应用﹣仰角俯角问题,解决本题的关键是添加适当的辅助线构造直角三角形.8.【分析】由取整函数定义列出关于x 、y 的不等式组,解之求得x 、y 的值,从而得到整数x 、y 的值,据此可得答案.【解答】解:由题意知,解得:,∵x 、y 均为整数, ∴x =4、5,y =5、6,则有序数对(x ,y )有(4,5)、(4,6)、(5,5)、(5,6),故选:D .【点评】本题主要考查解一元一次不等式组,解题的关键是根据取整函数的定义列出关于x 、y 的不等式组.9.【分析】过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,根据矩形的性质得S 矩形OEPF =S 矩形OACB =1,然后根据反比例函数的比例系数k 的几何意义求解.【解答】解:过P 点作PE ⊥x 轴于E ,PF ⊥y 轴于F ,如图,∵四边形OACB 为矩形,点P 为对角线的交点,∴S 矩形OEPF =S 矩形OACB =×4=1.∴k =﹣1,故该反比例函数的解析式是:y =﹣.故选:D .【点评】本题考查了反比例函数的比例系数k 的几何意义:在反比例函数y =图象中任取一点,过这一个点向x 轴和y 轴分别作垂线,与坐标轴围成的矩形的面积是定值|k |. 10.【分析】首先设⊙O 的半径是r ,则OF =r ,根据AO 是∠EAF 的平分线,求出∠COF =60°,在Rt △OIF 中,求出FI 的值是多少;然后判断出OI 、CI 的关系,再根据GH ∥BD ,求出GH 的值是多少,再用EF 的值比上GH 的值,求出的值是多少即可.【解答】解:如图,连接AC 、BD 、OF ,,设⊙O 的半径是r ,则OF =r ,∵AO 是∠EAF 的平分线,∴∠OAF =60°÷2=30°,∵OA =OF ,∴∠OFA =∠OAF =30°,∴∠COF =30°+30°=60°,∴FI=r•sin60°=,∴EF=,∵AO=2OI,∴OI=,CI=r﹣=,∴,∴,∴=,即则的值是.故选:C.【点评】此题主要考查了正多边形与圆的关系,要熟练掌握,解答此题的关键是要明确正多边形的有关概念:①中心:正多边形的外接圆的圆心叫做正多边形的中心.②正多边形的半径:外接圆的半径叫做正多边形的半径.③中心角:正多边形每一边所对的圆心角叫做正多边形的中心角.④边心距:中心到正多边形的一边的距离叫做正多边形的边心距.11.【分析】根据黄金比的值知,身体感到特别舒适的温度应为37度的0.618倍.【解答】解:根据黄金比的值得:37×0.618≈23℃.故选:A.【点评】本题考查了黄金分割的知识,解答本题的关键是要熟记黄金比的值为≈0.618.12.【分析】由条件可判定△ABD为等边三角形,可得出DE⊥AB、BF⊥AD,可求得∠FGE,可判断①;由条件可证得△DCG≌△BCG,可判断②;在△BDF和△CGB中可得出BD=AB2可判断④.可得出答案.≠CG,可判断③;由等边三角形的面积可知S△ABD【解答】解:∵四边形ABCD为菱形,∴AD=AB,且∠A=60°,∴△ABD为等边三角形,又∵E、F分别是AB、AD的中点,∴DE⊥AB,BF⊥AD,∴∠GFA =∠GEA =90°,∴∠BGD =∠FGE =360°﹣∠A ﹣∠GFA ﹣∠GEA =120°,∴①正确;∵四边形ABCD 为菱形,∴AB ∥CD ,AD ∥BC ,∴∠CDG =∠CBG =90°,在Rt △CDG 和Rt △CBG 中,,∴Rt △CDG ≌Rt △CBG (HL ),∴DG =BG ,∠DCG =∠BCG =∠DCB =30°,∴DG =BG =CG ,∴DG +BG =CG ,∴②正确;在Rt △BDF 中,BD 为斜边,在Rt △CGB 中,CG 为斜边,且BD =BC ,在Rt △CGB 中,显然CG >BC ,即CG >BD ,∴△BDF 和△CGB 不可能全等,∴③不正确;∵△ABD 为等边三角形,∴S △ABD =AB 2,∴S △ADE =S △ABD =AB 2, ∴④不正确;综上可知正确的只有两个,故选:B .【点评】本题主要考查菱形的性质及等边三角形的性质,熟练掌握菱形的四边相等、对边平行及等边三角形的性质是解题的关键.二.填空题(共4小题,满分12分,每小题3分)13.【分析】直接利用特殊角的三角函数值计算得出答案.【解答】解:∵tan (α﹣15°)=,∴α﹣15°=60°,∴α=75°.故答案为:75°.【点评】此题主要考查了特殊角的三角函数值,正确记忆相关数据是解题关键.14.【分析】因为关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,所以k≠0且△=b2﹣4ac>0,建立关于k的不等式组,解得k的取值范围即可.【解答】解:∵关于x的一元二次方程kx2﹣6x+9=0有两个不相等的实数根,∴k≠0,且△=b2﹣4ac=36﹣36k>0,解得k<1且k≠0.故答案为k<1且k≠0.【点评】本题考查了一元二次方程根的判别式的应用.切记不要忽略一元二次方程二次项系数不为零这一隐含条件.总结:一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.15.【分析】根据题意得出线段PE上面部分的体积是该圆柱体积的,线段PE下面部分的体积是该圆柱体积的,即可得出AE的长,进而求出即可.【解答】解:过点P作PE⊥AB于点E,∵如图所示:截去部分的体积是该圆柱体积的,∴线段PE上面部分的体积是该圆柱体积的,∴线段PE下面部分的体积是该圆柱体积的,∴PC=DC=6×=2,∴AE=DP=6﹣2=4,∵圆柱的底面半径为2,则PE=4,∴tan∠BAP===1.故答案为:1.【点评】此题主要考查了圆柱体的计算以及锐角三角函数应用等知识,根据题意得出各部分的体积比是解题关键.16.【分析】由抛物线的开口方向判断a与0的关系,由抛物线与y轴的交点判断c与0的关系,然后根据对称轴及抛物线与x轴交点情况进行推理,进而对所得结论进行判断.【解答】解:∵图象开口向上,∴a>0,∵图象与y轴交于负半轴,∴c<0,∵对称轴在y轴右侧,∴﹣>0,∴b<0,∴abc>0;故①正确,∵图象和x轴交于两点,∴△>0,∵对称轴在1的左边,∴﹣<1,又a>0,∴2a+b>0,当x=﹣2时,y=4a﹣2b+c,且根据图象可知4a﹣2b+c>0,∴①对;②对;③对;④错.故正确的序号是①②③.【点评】主要考查图象与二次函数系数之间的关系,会利用对称轴的范围求2a与b的关系,以及二次函数与方程之间的转换,根的判别式的熟练运用.三.解答题(共7小题,满分52分)17.【分析】先根据分式的混合运算顺序和运算法则化简原式,再将a的值代入计算可得.【解答】解:原式=•﹣=﹣=﹣,当a=﹣5时,原式=﹣=1.【点评】本题主要考查分式的化简求值,解题的关键是掌握分式的混合运算顺序和运算法则.18.【分析】分别求出两个不等式的解集,再求其公共解集.【解答】解:解不等式2x+1≥﹣1,得:x≥﹣1,解不等式x+1>4(x﹣2),得:x<3,则不等式组的解集为﹣1≤x<3.【点评】本题考查一元一次不等式组的解法,求不等式组的解集,要遵循以下原则:同大取较大,同小取较小,小大大小中间找,大大小小解不了.19.【分析】(1)由统计图表可得A组的有6人,占调查人数的6%,可求出调查人数,E 组的占30%,可求出E组人数,确定n的值,从调查总人数中减去其它各组的人数,可得B组的人数,即可确定m的值,(2)从样本的100个数据中,从小到大排列后处在第50、51位的两个数在D组,E组占30%,因此圆心角的度数占周角的30%即可,(3)样本估计总体,用样本中成绩不少于80分的所占的百分比估计总体的百分比.【解答】解:(1)6÷6%=100人,n=100×30%=30人,m=100﹣6﹣20﹣36﹣30=8人,故答案为:8,30.(2)样本中处在第50、51位的两个数都落在D组,因此中位数落在D组,360°×30%=108°,故答案为:D,108°.(3)2000×=1320人,答:该校2000名学生中“足球比赛”成绩不少于80分的大约有1320人.【点评】考查扇形统计图、频率分布表以及中位数的意义,理清统计图表中各个数量之间的关系式解决问题的关键,样本估计总体是统计中常用的方法.20.【分析】(1)连接OE,由OE=OB,利用等边对等角得到一对角相等,再由OD与BE平行,得到一对同位角及一对内错角相等,等量代换得到∠AOD=∠OBE=∠OEB=∠EOD,再由OA=OE,OD=OD,利用SAS得到三角形AOD与三角形EOD全等,由全等三角形对应角相等得到∠OAD=∠OED,根据AM为圆O的切线,利用切线的性质得到∠OAD=∠OED=90°,即可得证;(2)过点D作BC的垂线,垂足为H,由BN与圆O切线于点B,得到∠ABC=90°=∠BAD=∠BHD,利用三个角为直角的四边形为矩形得到ADHB为矩形,利用矩形的对边相等得到BH=AD=1,AB=DH,由BC﹣BH求出HC的长,AD、CB、CD分别切⊙O 于点A、B、E,利用切线长定理得到AD=DE=1,EC=BC=4,在直角三角形DHC中,利用勾股定理求出DH的长,即为AB的长.【解答】(1)证明:连接OE,在⊙O中,OA=OE=OB,∴∠OBE=∠OEB,∵OD∥BE,∴∠AOD=∠OBE=∠OEB=∠EOD,在△AOD和△EOD中,,∴△AOD≌△EOD(SAS),∴∠OAD=∠OED,∵AM是⊙O的切线,切点为A,∴BA⊥AM,∴∠OAD=∠OED=90°,∴OE⊥DE,∵OE是⊙O的半径,∴DE是⊙O的切线;(2)解:过点D作BC的垂线,垂足为H,∵BN切⊙O于点B,∴∠ABC=90°=∠BAD=∠BHD,∴四边形ABHD是矩形,∴AD=BH=1,AB=DH,∴CH=BC﹣BH=4﹣1=3,∵AD、CB、CD分别切⊙O于点A、B、E,∴AD=ED=1,BC=CE=4,∴DC=DE+CE=1+4=5,在Rt△DHC中,DC2=DH2+CH2,∴AB=DH==4.【点评】此题考查了切线的判定与性质,全等三角形的判定与性质,以及勾股定理,熟练掌握切线的判定与性质是解本题的关键.21.【分析】(1)根据题意,可以列出相应的方程,从而可以求得A、B两市各需救灾物资多少吨;(2)根据题意,可以写出w与x之间的函数关系式,并写出自变量x的取值范围;(3)根据题意,可以得到w与x的函数关系式,然后根据一次函数的性质和分类讨论的方法可以解答m的取值范围.【解答】解:(1)设A市需救灾物资a吨,a+a+100=260+240解得,a=200,则a+100=300,答:A市需救灾物资200吨,B市需救灾物资300吨;(2)由题意可得,w=20[200﹣(260﹣x)]+25(300﹣x)+15(260﹣x)+30x=10x+10200,∵260﹣x≤200且x≤260,∴60≤x≤260,即w与x的函数关系式为w=10x+10200(60≤x≤260);(3)∵经过抢修,从D市到B市的路况得到了改善,缩短了运输时间,运费每吨减少m 元(m>0),其余路线运费不变,∴w=10x+10200﹣mx=(10﹣m)x+10200,①当10﹣m>0,m>0时,即0<m<10时,则w随x的增大而增大,∴x=60时,w有最小值,w最小值是(10﹣m)×60+10200,∴(10﹣m)×60+10200≥10320,解得m≤8,又∵0<m<10,∴0<m≤8;②当10﹣m=0,即m=10时无论如何调运,运费都一样.w=10200<10320,不合题意舍去;③当10﹣m<0,即m>10时,则w随x的增大而减小,∴x=260时,w有最小值,此时最小值是(10﹣m)×260+10200,∴(10﹣m)×260+10200≥10320,解得,m≤,又∵m>10,∴m≤不合题意,舍去.综上所述,0<m≤8,即m的取值范围是0<m≤8.【点评】本题考查一次函数的应用、一元一次方程的应用、一元一次不等式的应用,解答本题的关键是明确题意,利用一次函数的性质和分类讨论的方法解答.22.【分析】(1)如图1,易证△AEP∽△PFB,然后运用相似三角形的性质即可解决问题;(2)连接CP,如图2,易证△APE≌△CPF,从而得到PE=PF,故(1)的结论不成立;(3)在(2)的条件下可得AE=CF,由此可得EC+CF=2,EF=,设CF=x,在Rt△CEF中运用勾股定理可求出CF的值.由于CF的值有两个,需分以下两种情况讨论:①若CF=,如图3,过点P作PH⊥BC于H,先求出PH、FH,然后在Rt△PHF中运用三角函数可求出∠FPH的度数,由此可求出α的值;②若CF=,如图4,过点P作PG⊥AC于G,同理可求出∠APE度数,由此可求出α的值.【解答】解:(1)如图1,∵PE⊥AC,∴∠AEP=∠PEC=90°.又∵∠EPF=∠ACB=90°,∴四边形PECF为矩形,∴∠PFC=90°,∴∠PFB=90°,∴∠AEP=∠PFB.∵AC=BC,∠C=90°,∴∠A=∠B=45°,∴∠FPB=∠B=45°,△AEP∽△PFB,∴PF=BF,=,∴==;(2)(1)的结论不成立,理由如下:连接PC,如图2.∵=1,∴点P是AB的中点.又∵∠ACB=90°,CA=CB,∴CP=AP=AB.∠ACP=∠BCP=∠ACB=45°,CP⊥AB,∴∠APE+∠CPE=90°.∵∠CPF+∠CPE=90°,∴∠APE=∠CPF.在△APE和△CPF中,,∴△APE≌△CPF,∴AE=CF,PE=PF.故(1)中的结论=不成立;(3)当△CEF的周长等于2+时,α的度数为75°或15°.提示:在(2)的条件下,可得AE=CF(已证),∴EC+CF=EC+AE=AC=2.∵EC+CF+EF=2+,∴EF=.设CF=x,则有CE=2﹣x,在Rt△CEF中,根据勾股定理可得x2+(2﹣x)2=()2,整理得:3x2﹣6x+2=0,解得:x1=,x2=.①若CF=,如图3,过点P作PH⊥BC于H,易得PH=HB=CH=1,FH=1﹣=,在Rt△PHF中,tan∠FPH==,∴∠FPH=30°,∴α=∠FPB=30+45°=75°;②若CF=,如图4,过点P作PG⊥AC于G,同理可得:∠APE=75°,∴α=∠FPB=180°﹣∠APE﹣∠EPF=15°.【点评】本题主要考查了相似三角形的判定与性质、全等三角形的判定与性质、矩形的判定与性质、等腰三角形的性质、直角三角形斜边上的中线等于斜边的一半、三角函数的定义、特殊角的三角函数值、勾股定理等知识,有一定的综合性,得到EC+CF=2是解决第(3)小题的关键.23.【分析】(1)设抛物线解析式为y=a(x﹣h)2+k,将顶点及原点坐标代入即可;(2)求出点A的坐标,直线AC的解析式,过点D作DF∥y轴交AC于点F,设,则,可用含m的代数式表示出△ACD的面积,由二次函数的图象及性质可求出S取最大值时对应的m值,即可求出点D的坐标;(3)证△AOC为等边三角形,分两种情况讨论:①当点P在C时,可直接写出点P的坐标;②作点C关于x轴的对称点C',当点A'与点C'重合时,点P是∠AOA'的角平分线与对称轴的交点,记为P2,在Rt△OBP2中由勾股定理可求出BP2的长,即可写出P2的坐标.【解答】解:(1)设抛物线解析式为y=a(x﹣h)2+k,(a≠0)∵顶点,∴,又∵图象过原点,∴,解出:,∴,即;(2)令y=0,即,解得:x1=0,x2=4,∴A(4,0),设直线AC的解析式为y=kx+b,将点A(4,0),代入,得,解得,∴直线AC的解析式为y=﹣x+4,过点D作DF∥y轴交AC于点F,设,则,∴,∴=,∴当m=3时,S有最大值,△ACD当m=3时,,∴;(3)∵∠CBO=∠CBA=90°,OB=AB=2,,∴,∴OA=OC=AC=4,∴△AOC为等边三角形,①如图3﹣1,当点P在C时,OA=AC=CA'=OA',∴四边形ACA'O是菱形,∴;②作点C关于x轴的对称点C',当点A'与点C'重合时,OC=AC=AA'=OA',∴四边形OCAA'是菱形,∴点P是∠AOA'的角平分线与对称轴的交点,记为P2,∴,∵∠OBP2=90°,OB=2,∴OP2=2BP2,∵∠OBP2=90°,OB=2,∴OP2=2BP2,设BP2=x,∴OP2=2x,又∵,∴(2x)2=22+x2,解得或,∴;综上所述,点P的坐标为或.【点评】本题考查了待定系数法求解析式,函数的思想求极值,菱形的性质与判定等,解题关键是注意分类讨论思想在解题中的运用.。

安徽省合肥瑶海区四校联考2019-2020学年中考数学模拟调研试卷

安徽省合肥瑶海区四校联考2019-2020学年中考数学模拟调研试卷

安徽省合肥瑶海区四校联考2019-2020学年中考数学模拟调研试卷一、选择题1.下列运算中,正确的是()A.x8÷x2=x4B.2x﹣x=1 C.(x3)3=x6D.x+x=2x2.已知⊙O1的半径r1=2,⊙O2的半径r2是方程321x x=-的根,当两圆相内切时,⊙O1与⊙O2的圆心距为()A.5 B.4 C.1或5 D.13.在Rt△ABC中,∠C=90°,若AB=4,sinA=,则斜边上的高等于()A. B. C. D.4.下列图形中,可以看作中心对称图形的是( )A. B. C. D.5.如果关于x的一元二次方程x2﹣kx+2=0中,k是投掷骰子所得的数字(1,2,3,4,5,6),则该二次方程有两个不等实数根的概率为()A. B. C. D.6.如图是由5个相同的小正方体组成的几何体,其左视图是()A.B.C.D.7.菱形ABCD中,对角线AC、BD相交于点O,H为AD边中点,菱形ABCD的周长为28,则OH的长等于()A.3.5 B.4 C.7 D.148.有31位学生参加学校举行的“最强大脑”智力游戏比赛,比赛结束后根据每个学生的最后得分计算出中位数、平均数、众数和方差,如果去掉一个最高分和一个最低分,则一定不发生变化的是()A.中位数B.平均数C.众数D.方差9.一个几何体的三种视图如图所示,则这个几何体是()A.长方体B.圆锥C.圆台D.圆柱10.如图,已知菱形ABCD的面积为3,对角线AC长为3M为BC的中点,若P为对角线AC上一动点,则PB与PM之和的最小值为()A .3B .23C .2D .4 11.下列分解因式正确的是( ) A.24(4)x x x x -+=-+B.2()x xy x x x y ++=+ C.2()()()x x y y y x x y -+-=- D.244(2)(2)x x x x -+=+- 12.如图,a ∥b ,点B 在直线b 上,且AB ⊥BC ,∠1=36°,那么∠2=( )A .54°B .56°C .44°D .46°二、填空题 13.若关于x 的一元二次方程x 2﹣4x ﹣c =0有一正一负两个实数根,则实数c 的值可以取_____(写出一个即可).14.将6 800 000用科学记数法表示_____.15.如图,DE ∥BC ,DE :BC =3:4,那么AE :CE =_____.16.中国的领水面积约为3700000km 2,将3700000用科学记数法表示为_____.17.一个不透明的盒中装有9个小球,其中有2个红球,3个黄球,4个蓝球,这些小球除颜色外无其它差别,从盒中随机摸出一个小球为红球的概率是______________.18.分解因式x 2﹣y 2﹣z 2﹣2yz =_____.三、解答题19.随着信息技术的快速发展,人们购物的付款方式更加多样、便捷.某校数学兴趣小组为了解人们最喜欢的付款方式设计了一份调查问卷,要求被调查者选且只选其中一种你最喜欢的付款方式.现将调查结果进行统计并绘制成如下两幅不完整的统计图,请根据统计图回答下列问题:(1)这次活动共调查了 人;在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数为 ;(2)补全条形统计图;(3)在一次购物中,小明和小亮都想从“微信”、“支付宝”、“银行卡”三种付款方式中选一种方式进行付款,请用树状图或列表法求出两人恰好选择同一种付款方式的概率.20.如图,在ABC △中,AB AC =,以AB 为直径的⊙O 分别交BC 于点D ,交CA 的延长线于点E ,过点D 作DH AC ⊥,垂足为点H ,连接DE ,交AB 于点F .(1)求证:DH 是⊙O 的切线;(2)若⊙O 的半径为4,①当AE FE =时,求»AD 的长(结果保留π);②当6sin 4B =时,求线段AF 的长.21.某公园内有一如图所示地块,已知∠A =30°,∠ABC =75°,AB =BC =8米,求C 点到人行道AD 的距离(结果保留根号).22.某特产店出售大米,一天可销售20袋,每袋可盈利40元,为了扩大销售,增加盈利,尽快减少库存,决定采取降价措施,据统计发现,若每袋降价2元,平均每天可多售4袋.(1)设每袋大米降价为x (x 为偶数)元时,利润为y 元,写出y 与x 的函数关系式.(2)若每天盈利1200元,则每袋应降价多少元?(3)每袋大米降价多少元时,商店可获最大利润?最大利润是多少?23.已知:如图,在平行四边形ABCD 中,BAD ∠的平分线交BC 于点E ,过点D 作AE 的垂线交AE 于点G ,交AB 延长线于点F ,连接EF ,ED .(1)求证:EF ED =;(2)若60ABC ∠=︒,6AD =, 2CE =, 求EF 的长.24.某种机器在加工零件的过程中,机器的温度会不断变化.当机器温度升高至40C ︒时,机器会自动启动冷却装置控制温度上升的速度;当温度升到100C ︒时,机器自动停止加工零件,冷却装置继续工作进行降温;当温度恢复至40C ︒时,机器自动开始继续加工零件,如此往复,机器从20C ︒时开始,机器的温度y (C ︒)随时间t (分)变化的函数图象如图所示.(1)当机器的温度第一次从40C ︒升至100C ︒时,求y 与t 之间的函数关系式;(2)冷却装置将机器温度第一次从100C ︒降至40C ︒时,需要多少分钟?(3)机器的温度在98C ︒以上(含98C ︒)时,机器会自动发出鸣叫进行报警.当0154t ≤≤时,直接写出机器的鸣叫时间.25.已知抛物线C 1:y =﹣x 2+bx+3与x 轴的一个交点为(1,0),顶点记为A ,抛物线C 2与抛物线C 1关于y 轴对称.(1)求抛物线C 2的函数表达式;(2)若抛物线C 2与x 轴正半轴的交点记作B ,在x 轴上是否存在一点P ,使△PAB 为等腰三角形?若存在,求出点P 的坐标;若不存在,请说明理由.【参考答案】***一、选择题 题号 1 2 3 4 5 6 7 8 9 10 11 12答案 D D C A A D A A D BC A13.114.66.810⨯15.316.7×10617.29 18.(x+y+z )(x ﹣y ﹣z )三、解答题19.(1) 200;72°;(2)见解析;(3)13【解析】【分析】(1)用选用“微信”、“支付宝”、“银行卡”的人数总和除以它们所占的百分比得到调查的总人数;用选用支付宝的人数的百分比乘以360度得到在扇形统计图中,表示“支付宝”付款的扇形圆心角的度数;(2)分别计算出选用微信、银行卡的人数,然后补全条形统计图;(3)画树状图展示所有9种等可能的结果数,找出两人恰好选择同一种付款方式的结果数,然后利用概率公式求解.【详解】解:(1)(50+45+15)÷(1﹣15%﹣30%)=200,所以这次活动共调查了200人;在扇形统计图中,表示“支付宝”支付的扇形圆心角的度数=360°×40200=72°;故答案为200;90°;(2)如图,使用微信支付的人数:200×30%=60(人)使用银行卡支付的人数:200×15%=30(人),(3)画树状图如下:共有9种等可能的结果数,其中两人恰好选择同一种付款方式的结果数为3,所以两人恰好选择同一种付款方式的概率=39=13.【点睛】本题考查了列表法与树状图法:利用列表法或树状图法展示所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,然后根据概率公式计算事件A或事件B的概率.也考查了统计图.20.(1)见解析;(2)①»AD的长=85;②AF=43.【解析】【分析】(1)根据同圆的半径相等和等边对等角证明:∠ODB=∠OBD=∠ACB,则DH⊥OD,DH是圆O的切线;(2)①根据等腰三角形的性质的∠EAF=∠EAF,设∠B=∠C=α,得到∠EAF=∠EFA=2α,根据三角形的内角和得到∠B=36°,求得∠AOD=72°,根据弧长公式即可得到结论;②连接AD,根据圆周角定理得到∠ADB=∠ADC=90°,解直角三角形得到AD=26,根据相似三角形的性质得到AH=3,于是得到结论.【详解】(1)连接OD,如图,∵OB=OD,∴△ODB是等腰三角形,∠OBD=∠ODB①,在△ABC中,∵AB=AC,∴∠ABC=∠ACB②,由①②得:∠ODB=∠OBD=∠ACB,∴OD ∥AC ,∵DH ⊥AC ,∴DH ⊥OD ,∴DH 是圆O 的切线;(2)①∵AE =EF ,∴∠EAF =∠EAF ,设∠B =∠C =α,∴∠EAF =∠EFA =2α,∵∠E =∠B =α,∴α+2α+2α=180°,∴α=36°,∴∠B =36°,∴∠AOD =72°,∴»AD 的长=72481805ππ⋅⨯=; ②连接AD ,∵AB 为⊙O 的直径,∴∠ADB =∠ADC =90°,∵⊙O 的半径为4,∴AB =AC =8,∵sin B =,∴84AD =,∴AD =,∵AD ⊥BC ,DH ⊥AC ,∴△ADH ∽△ACD , ∴AH AD AD AC=,8=, ∴AH =3,∴CH =5,∵∠B =∠C ,∠E =∠B ,∴∠E =∠C ,∴DE =DC ,∵DH ⊥AC ,∴EH =CH =5,∴AE =2,∵OD ∥AC ,∴∠EAF =∠FOD ,∠E =∠FDO ,∴△AEF ∽△ODF , ∴AF AE OF OD=,∴244AF AF =-, ∴AF =43. 【点睛】本题考查了等腰三角形的性质和判定、切线的性质和判定、三角形相似的性质和判定、圆周角定理,正确的作出辅助线是解题的关键.21.442+【解析】【分析】过点B 作BE ⊥AD 于E ,作BF ∥AD ,过C 作CF ⊥BF 于F ,在Rt △ABE 中求出BE ,在Rt △BCF 中求出CF 即可求解;【详解】解:过点B 作BE ⊥AD 于E ,作BF ∥AD ,过C 作CF ⊥BF 于F ,在Rt △ABE 中,∠A =30°,AB =8m ,∴BE =4m ,∵BF ∥AD ,∴∠ABF =30°,∵∠ABC =75°,∴∠CBF =45°,在Rt △BCF 中,CB =8m ,∴CF =sin45°×BC=42m ,∴C 点到人行道AD 的距离为442+米;【点睛】本题考查了含解直角三角形的应用;能够利用特殊角的三角函数值求出BE 与CF 是解题的关键.22.(1)y=-2x 2+60x+800(2)x=20(3)x=14或16时获利最大为1248元【解析】【分析】(1)根据题意设出每天降价x 元以后,准确表示出每天大米的销售量,列出利润y 关于降价x 的函数关系式;(2)根据题意列出关于x 的一元二次方程,通过解方程即可解决问题;(3)运用函数的性质即可解决.【详解】(1)当每袋大米降价为x (x 为偶数)元时,利润为y 元,则每天可出售20+4×2x =20+2x ; 由题意得:y=(40-x )(20+2x )=-2x 2+80x-20x+800=-2x 2+60x+800;(2)当y=1200时,-2(x-15)2+1250=1200,整理得:(x-15)2=25,解得x=10或20但为了尽快减少库存,所以只取x=20,答:若每天盈利1200元,为了尽快减少库存,则应降价20元;(3)∵y=-2(x-15)2+1250=1200,解得x=15,∵每袋降价2元,则当x=14或16时获利最大为1248元.【点睛】题考查了二次函数及一元二次方程在现实生活中的应用问题;解题的关键是准确列出二次函数解析式,灵活运用函数的性质解题.23.(1)详见解析;(2)EF =【解析】【分析】(1)根据题意AB 平分BAD ∠可得90AGF AGD ∠=∠=︒,从而证明()FAG DAG ASA ∆≅∆即可解答(2)由(1)可知6AF AD ==,再根据四边形ABCD 是平行四边形可得642BF AF AB =-=-=,过点F 作FH EB ⊥延长线于点H ,再根据勾股定理即可解答【详解】(1)证明:Q AB 平分BAD ∠FAG DAG ∴∠=∠DG AE ⊥Q90AGF AGD ∴∠=∠=︒又AG AG =Q()FAG DAG ASA ∴∆≅∆GF GD ∴=又DF AE ⊥QEF ED ∴=(2)FAG DAG ∆≅∆Q6AF AD ∴==Q 四边形ABCD 是平行四边形//AD BC ∴,6BC AD ==180********BAD ABC ∴∠=︒-∠=︒-︒=︒1602FAE BAD ∴∠=∠=︒ 60FAE B ∴∠=∠=︒ ABE ∴∆为等边三角形624AB AE BE BC CE ∴===-=-=642BF AF AB =-=-=过点F 作FH EB ⊥延长线于点H .在Rt BFH ∆中,60HBF ABC ∠=∠=︒30HFB ∴∠=︒112BH BF ∴== 2222213HF BF BH =-=-415EH BE BH =+=+= ()22223527EF FH EH =+=+=【点睛】此题考查三角形全等的判定与性质,勾股定理,平行四边形的性质,解题关键在于作好辅助线24.(1)36y t =+;(2)冷却装置将机器温度第一次从100C ︒降至40C ︒时,需要15分钟;(3)机器工作154分钟会鸣叫5分钟.【解析】【分析】(1)先设函数关系式,再从图中找到时间和温度的对应值,求出自变量,可得机器温度T (℃)与运行时间t (h )的函数关系式;(2)从函数图象可知机器开始第二次工作时的函数值为40,将y 100=代入函数关系式可求出第一次停机后多少小时机器开始第二次加工;(3)机器温度第一次由100C ︒降至40C ︒的过程中,先求y 与t 之间的函数关系式.根据y 值求t 值可得.【详解】 (1)根据图象可设11y k t b =+.由点()4,40和点()44,80在函数图象上,可得11114k b 40,44k b 80,+=⎧⎨+=⎩解得11k 1,b 36,=⎧⎨=⎩∴y 与t 之间的函数关系式为y t 36=+. (2)由(1)可得,当y 100=时,100t 36=+,得t 64=,所以冷却装置将机器温度第一次从100C ︒降至40C ︒时,需要796415-=(分钟).(3)设机器温度第一次由100C ︒降至40C ︒的过程中,y 与t 之间的函数关系式为22y k t b =+.由点()64,100和点()79,40在函数图象上,可得222264k b 100,79k b 40,+=⎧⎨+=⎩解得22k 4,b 356,=-⎧⎨=⎩∴y 4t 356=-+.当机器的工作温度为98C ︒时,由y t 36=+,得1t 62=;由y 4t 356=-+,得2t 64.5=,21t t 2.5-=(分).∵()()15447942-÷-=,∴2 2.55⨯=(分),∴机器工作154分钟会鸣叫5分钟.【点睛】本题主要考查一次函数的实际运用,必须学会从一次函数图象中找到对应的已知条件.25.(1)y =﹣x 2+2x+3;(2) 点P 坐标为(﹣5,0)或(3﹣2,0)或(2,0)或(﹣1,0)【解析】【分析】(1)把点(1,0)代入y=﹣x2+bx+3,解得b=﹣2,所以抛物线C1:y=﹣x2﹣2x+3,由抛物线C2与抛物线C1关于y轴对称.所以抛物线C2的函数表达式y=﹣(x﹣1)2+4;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或3,所以B(3,0),OB=3,A(﹣1,4),AB=,①当AP=AB=时,PB=8,P1(﹣5,0)②当BP=AB=时,P2(3﹣,0),P3(0)③当AP=BP时,点P在AB垂直平分线上,PA=PB=4,P4(﹣1,0).【详解】解:(1)把点(1,0)代入y=﹣x2+bx+3,﹣1+b+3=0,解得b=﹣2∴抛物线C1:y=﹣x2﹣2x+3,∴抛物线C1顶点坐标A(﹣1,4),与y轴交点(0,3),∵抛物线C2与抛物线C1关于y轴对称.∴抛物线C2的函数表达式y=﹣(x﹣1)2+4=﹣x2+2x+3;(2)令y=0,则﹣x2+2x+3=0,解得x=﹣1或3,∴B(3,0),OB=3,∵A(﹣1,4),∴AB=①当AP=AB=时,PB=8,∴P1(﹣5,0)②当BP=AB=时,P2(3﹣0),P3(,0)③当AP=BP时,点P在AB垂直平分线上,∴PA=PB=4,∴P4(﹣1,0)综上,点P坐标为(﹣5,0)或(3﹣,0)或(,0)或(﹣1,0)时,△PAB为等腰三角形.【点睛】本题考查了二次函数,熟练掌握二次函数的性质是解题的关键.。

2020年安徽省合肥市瑶海区中考数学模拟试卷1含解析版

2020年安徽省合肥市瑶海区中考数学模拟试卷1含解析版

绝密★启用前2020年安徽省合肥市瑶海区中考数学模拟试卷1注意事项:1.答题前填写好自己的姓名、班级、考号等信息2.请将答案正确填写在答题卡上,在试卷上作答无效,选择题需使用2B铅笔填涂一、选择题(本大题共10小题,每小题4分,共40分)1.在2、0、﹣1、﹣2四个数中,最小的是()A.2B.0C.﹣1D.﹣22.如图所示,圆柱的俯视图是()A.B.C.D.3.2018年我省生产总值首度突破3万亿大关,其中3万亿用科学记数法表示为()A.3×1010B.3×1011C.3×1012D.3×10134.下列计算正确的是()A.a2•a3=a5B.a2+a3=a5C.(a3)2=a5D.a3÷a2=1 5.不等式3x﹣1>x+3的解集在数轴上表示正确的是()A.B.C.D.6.如图,直线a∥b,若∠1=50°,∠3=95°,则∠2的度数为()A.35°B.40°C.45°D.55°7.某公司今年销售一种产品,一月份获得利润10万元,由于产品畅销,利润逐月增加,第一季度共获利42万元,已知二月份和三月份利润的月增长率相同.设二、三月份利润的月增长率x,那么x满足的方程为()A.10(1+x)2=42B.10+10(1+x)2=42C.10+10(1+x)+10(1+2x)=42D.10+10(1+x)+10(1+x)2=428.甲、乙两名同学某学期的四次数学测试成绩(单位:分)如下表:据上表计算,甲、乙两名同学四次数学测试成绩的方差分别为S甲2=17、S乙2=25,下列说法正确的是()A.甲同学四次数学测试成绩的平均数是89分B.甲同学四次数学测试成绩的中位数是90分C.乙同学四次数学测试成绩的众数是80分D.乙同学四次数学测试成绩较稳定9.如图,二次函数y=ax2+bx的图象开口向下,且经过第三象限的点P.若点P的横坐标为﹣1,则一次函数y=(a﹣b)x+b的图象大致是()A.B.C.D.10.如图,在Rt△ABC中,∠ACB=90°,∠B=30°,AB=4,点D、F分别是边AB,BC 上的动点,连接CD,过点A作AE⊥CD交BC于点E,垂足为G,连接GF,则GF+FB 的最小值是()A.B.C.D.二、填空題(本大题共4小题,每小题5分,满分20分)11.若在实数范围内有意义,则x的取值范围是.12.分解因式:x3﹣4x2+4x=.13.如图,△ABC是圆O的内接三角形,则∠ABC﹣∠OAC=.14.如图,有一张面积为12的锐角三角形纸片,其中一边BC为4,把它剪两刀拼成一个无缝隙、无重叠的矩形,且矩形的一边与BC平行,则矩形的周长为.三、(本大题共2小题每小题8分满分16分)15.计算:+()﹣1﹣2cos60°+(2﹣π)0.16.下列每一幅图都是由白色小正方形和和黑色小正方形组成.(1)第10幅图中有个白色正方形,个黑色正方形;(2)第n个图形中白色小正方形和黑色小正方形的个数总和等于.(用n表示,n是正整数)四、(本大题共2小题每小题8分,满分16分)17.如图,在平面直角坐标系中,△ABC的三个顶点都在格点上,点A的坐标为(2,4),请解答下列问题:(1)画出△ABC关于y轴对称的△A1B1C1,并写出点A1的坐标;(2)画出△A1B1C1关于原点O的中心对称图形△A2B2C2,并写出点A2的坐标.18.如图,山坡AC的坡比为3:4,在与山脚C距离200米的D处,测得山顶A的仰角为26.6°,求山高AB(结果取整数:参考数据:sin26.6°=0.45,cos26.6°=0.89,tan26.6°=0.50).五、(本大题共2小题,每小题10分.满分20分)19.在一个不透明的纸箱里装有红、黄、蓝三种颜色的小球,它们除颜色外完全相同,其中红球有2个,黄球有1个,蓝球有1个.现有一张电影票,小明和小亮决定通过摸球游戏定输赢(赢的一方得电影票).游戏规则是:两人各摸1次球,先由小明从纸箱里随机摸出1个球,记录颜色后放回,将小球摇匀,再由小亮随机摸出1个球.若两人摸到的球颜色相同,则小明赢,否则小亮赢.这个游戏规则对双方公平吗?请你利用树状图或列表法说明理由.20.如图,在平面直角坐标系xOy中,一次函数y=x+1的图象与反比例函数图象交于点A 和点B,两个点的横坐标分别为2、﹣3.(1)求反比例函数的解析式;(2)若P是y轴上一点,且满足△PAB的面积是5,直接写出点P的坐标.六、(本题满分12分)21.如图,已知⊙O的直径AB=10,弦AC=8,D是的中点,过点D作DE⊥AC交AC 的延长线于点E.(1)求证:DE是⊙O的切线;(2)求AE的长.七、(本题满分12分)22.家用电器开发公司研制出一种新型电子产品,每件的生产成本为18元,按定价40元出售,每月可销售20万件,为了增加销量,公司决定采取降价的办法,经过市场调研,每降价1元,月销售量可增加2万件.(1)求出月销售利润W(万元)与销售单价x(元)之间的函数关系式.(2)为了获得最大销售利润,每件产品的售价定为多少元?此时最大月销售利润是多少?(3)请你通过(1)中函数关系式及其大致图象帮助公司确定产品的销售单价范围,使月销售利润不低于480万元.八、(本题满分14分)23.如图,在△ABC中,分别以AB、AC为腰向外侧作等腰Rt△ADB与等腰Rt△AEC,∠DAB=∠EAC=90°,连接DC、EB相交于点O.(1)求证:BE⊥DC;(2)若BE=BC.①如图1,G、F分别是DB、EC中点,求的值.②如图2,连接OA,若OA=2,求△DOE的面积.参考答案与试题解析一、选择题(本大题共10小题,每小题4分,共40分)1.【分析】根据正数大于零,零大于负数,可得答案.【解答】解:由正数大于零,零大于负数,得2>0>﹣1>﹣2,最小的数是﹣2,故选:D.【点评】本题考查了有理数大小比较,正数大于零,零大于负数,注意两个负数比较大小,绝对值大的负数反而小.2.【分析】找到从上面看所得到的图形即可.【解答】解:圆柱由上向下看,看到的是一个圆.故选:C.【点评】本题考查了三视图的知识,俯视图是从物体的上面看得到的视图.3.【分析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n 的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>1时,n是正数;当原数的绝对值<1时,n是负数.【解答】解:3万亿用科学记数法表示为3×1012.故选:C.【点评】此题考查科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4.【分析】直接利用同底数幂的乘法运算法则和幂的乘方运算以及同底数幂的除法运算法则分别计算得出即可.【解答】解:A、a2•a3=a5,正确;B、a2+a3无法计算,故此选项错误;C、(a3)2=a6,故此选项错误;D、a3÷a2=a,故此选项错误.故选:A.【点评】此题主要考查了同底数幂的乘法运算和幂的乘方运算以及同底数幂的除法运算等知识,正确掌握运算法则是解题关键.5.【分析】先求出不等式的解集,再在数轴上表示出来即可.【解答】解:解不等式3x﹣1>x+3得,x>2,在数轴上表示为:.故选:D.【点评】本题考查的是在数轴上表示不等式的解集,熟知实心原点与空心原点的区别是解答此题的关键.6.【分析】根据三角形的一个外角等于与它不相邻的两个内角的和,得到∠4的度数,再根据平行线的性质,即可得出∠2的度数.【解答】解:根据三角形外角性质,可得∠3=∠1+∠4,∴∠4=∠3﹣∠1=95°﹣50°=45°,∵a∥b,∴∠2=∠4=45°.故选:C.【点评】本题考查了平行线的性质,以及三角形的一个外角等于与它不相邻的两个内角的和的性质,熟记性质并准确识图是解题的关键.7.【分析】设二、三月份利润的月增长率x,则二月份获得利润10(1+x)万元,三月份获得利润10(1+x)2万元,根据第一季度共获利42万元,即可得出关于x的一元二次方程,此题得解.【解答】解:设二、三月份利润的月增长率x,则二月份获得利润10(1+x)万元,三月份获得利润10(1+x)2万元,依题意,得:10+10(1+x)+10(1+x)2=42.故选:D.【点评】本题考查了由实际问题抽象出一元二次方程,找准等量关系,正确列出一元二次方程是解题的关键.8.【分析】根据算术平均数的计算公式、中位数、众数的概念和方差的性质进行判断即可.【解答】解:甲同学四次数学测试成绩的平均数是(87+95+85+93)=90,A错误;甲同学四次数学测试成绩的中位数是90分,B正确;乙同学四次数学测试成绩的众数是80分和90分,C错误;∵S<S,∴甲同学四次数学测试成绩较稳定,D错误,故选:B.【点评】本题考查的是算术平均数、中位数、众数和方差的计算和性质,掌握它们的概念、性质和计算公式是解题的关键.9.【分析】根据二次函数的图象可以判断a、b、a﹣b的正负情况,从而可以得到一次函数经过哪几个象限,本题得以解决.【解答】解:由二次函数的图象可知,a<0,b<0,当x=﹣1时,y=a﹣b<0,∴y=(a﹣b)x+b的图象在第二、三、四象限,故选:D.【点评】本题考查二次函数的性质、一次函数的性质,解答本题的关键是明确题意,利用函数的思想解答.10.【分析】由FB联想到给FB构造含30°角的直角三角形,故把Rt△ABC补成等边△ABP,过F作BP的垂线FH,故GF+FB=GF+FH,易得当G、F、H成一直线时,GF+ FB最短.又由于点G为动点,易证点G在以AC为直径的圆上,求点G到PB的最短距离即当点G在点O到BP的垂线段上时,GQ的长度.【解答】解:延长AC到点P,使CP=AC,连接BP,过点F作FH⊥BP于点H,取AC 中点O,连接OG,过点O作OQ⊥BP于点Q,∵∠ACB=90°,∠ABC=30°,AB=4∴AC=CP=2,BP=AB=4∴△ABP是等边三角形∴∠FBH=30°∴Rt△FHB中,FH=FB∴当G、F、H在同一直线上时,GF+FB=GF+FH=GH取得最小值∵AE⊥CD于点G∴∠AGC=90°∵O为AC中点∴OA=OC=OG=AC∴A、C、G三点共圆,圆心为O,即点G在⊙O上运动∴当点G运动到OQ上时,GH取得最小值∵Rt△OPQ中,∠P=60°,OP=3,sin∠P=∴OQ=OP=∴GH最小值为故选:C.【点评】本题考查了含30°直角三角形性质,垂直平分线性质,点到直线距离,圆上点与直线距离,最短路径.解题关键是找到点G运动到什么位置时,GH最小,进而联想到找出点G运动路径再计算.二、填空題(本大题共4小题,每小题5分,满分20分)11.【分析】根据二次根式有意义的条件列出不等式,解不等式即可.【解答】解:由题意得,2﹣x≥0,解得,x≤2,故答案为:x≤2.【点评】本题考查的是二次根式有意义的条件,掌握二次根式中的被开方数必须是非负数是解题的关键.12.【分析】首先提取公因式x,然后利用完全平方式进行因式分解即可.【解答】解:x3﹣4x2+4x=x(x2﹣4x+4)=x(x﹣2)2,故答案为x(x﹣2)2.【点评】本题考查了提公因式法,公式法分解因式,提取公因式后利用完全平方公式进行二次分解,注意分解要彻底.13.【分析】作直径AD,连接CD,由圆周角定理得出∠ACD=90°,得出∠OAC+∠D=90°,由圆内接四边形的性质得出∠ABC+∠D=180°,两式相减即可得出结果.【解答】解:作直径AD,连接CD,如图所示:∵AD是圆O的直径,∴∠ACD=90°,∴∠OAC+∠D=90°,∵∠ABC+∠D=180°,∴∠ABC﹣∠OAC=180°﹣90°=90°;故答案为:90°.【点评】本题考查了圆周角定理、圆内接四边形的性质、直角三角形的性质;熟练掌握圆周角定理,作出直径是解题的关键.14.【分析】画出符合的两种图形,根据面积求出高AD长,再根据矩形的性质求出四条边的长,即可求出矩形的周长.【解答】解:①如图①中,作AD⊥BC于D,作线段CD,BD的垂直平分线,可得矩形EFGH.∵•BC•AD=12,BC=4,∴AD=6,∴EF=GH=AD=6,EH=FG=2,∴矩形的周长=2×(6+2)=16.②如图②中,作线段AD的垂直平分线,可得矩形EFBC,易知OD=EC=BF=3,EF=BC=4,∴矩形EFBC的周长=2(3+4)=14,故答案为16或14.【点评】本题考查了三角形的中位线定理,矩形的性质,三角形的面积等知识点,能画出符合的两种图形是解此题的关键.三、(本大题共2小题每小题8分满分16分)15.【分析】直接利用特殊角的三角函数值以及负指数幂的性质和零指数幂的性质分别化简得出答案.【解答】解:原式=2+2﹣2×+1=4.【点评】此题主要考查了实数运算,正确化简各数是解题关键.16.【分析】观察不难发现,白色正方形的个数是相应序数的平方,黑色正方形的个数是相应序数的4倍,根据此规律写出即可.【解答】解:第1个图形:白色正方形1个,黑色正方形4×1=4个,共有1+4=5个;第2个图形:白色正方形22=4个,黑色正方形4×2=8个,共有4+8=12个;第3个图形:白色正方形32=9个,黑色正方形4×3=12个,共有9+12=21个;…,第n个图形:白色正方形n2个,黑色正方形4n个,共有n2+4n个.(1)第10幅图中有100个白色正方形,40个黑色正方形;故答案为:100,40;(2)第n个图形中白色小正方形和黑色小正方形的个数总和等于n2+4n.故答案为:n2+4n.【点评】本题是对图形变化规律的考查,把小正方形分成黑、白两个部分求出变化规律是解题的关键,要注意个数与序数的关系.四、(本大题共2小题每小题8分,满分16分)17.【分析】(1)作出A,B,C的对应点A1,B1,C1即可.(2)点A1,B1,C1的对应点A2,B2,C2即可.【解答】解:(1)如图△A1B1C1即为所求.A1(﹣2,4)(2)如图△A2B2C2即为所求.A2(2,﹣4)【点评】本题考查作图﹣旋转变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.18.【分析】首先在直角三角形ABC中根据坡角的正切值用AB表示出BC,然后在直角三角形DBA中用BA表示出BD,根据BD与BC之间的关系列出方程求解即可.【解答】解:∵在直角三角形ABC中,=tanα=,∴BC=AB,∵在直角三角形ADB中,∴=tan26.6°=0.50即:BD=2AB∵BD﹣BC=CD=200∴2AB﹣AB=200解得:AB=300米,答:山高为300米.【点评】本题考查了解直角三角形的应用,解题的关键是从实际问题中整理出直角三角形并求解.五、(本大题共2小题,每小题10分.满分20分)19.【分析】游戏是否公平,关键要看游戏双方获胜的机会是否相等,即判断双方取胜的概率是否相等,或转化为在总情况明确的情况下,判断双方取胜所包含的情况数目是否相等.【解答】解:此游戏不公平.理由如下:列树状图如下,列表如下,由上述树状图或表格知:所有可能出现的结果共有16种.P(小明赢)=,P(小亮赢)=.∴此游戏对双方不公平,小亮赢的可能性大.(说明:答题时只需用树状图或列表法进行分析即可)【点评】本题考查的是游戏公平性的判断.判断游戏公平性就要计算每个事件的概率,概率相等就公平,否则就不公平.用到的知识点为:概率=所求情况数与总情况数之比.20.【分析】(1)把点A和点B的横坐标代入一次函数解析式,得出A、B两点的坐标,进而得出反比例函数的解析式;(2)由一次函数解析式可以求得点C的坐标,然后根据三角形的面积公式来求点P的坐标.【解答】解:(1)∵y=x+1,点A和点B的横坐标分别为2、﹣3,∴A(2,3),B(﹣3,﹣2),∴反比例函数的解析式为;(2)∵y=x+1,∴C(0,1),∵△PAB的面积等于5,∴×PC×2+×PC×3=5,解得:PC=2,∴点P的坐标是(0,3)或(0,﹣1).【点评】本题考查了一次函数与反比例函数的交点问题.利用函数图象上点的坐标特征求得相关点的坐标,然后由坐标与图形的性质得到相关线段的长度是解题的关键.六、(本题满分12分)21.【分析】(1)连接OD,由D为弧BC的中点,得到两条弧相等,进而得到两个同位角相等,确定出OD与AE平行,利用两直线平行同旁内角互补得到OD与DE垂直,即可得证;(2)过O作OF垂直于AC,利用垂径定理得到F为AC中点,再由四边形OFED为矩形,求出FE的长,由AF+EF求出AE的长即可.【解答】(1)证明:连接OD,∵D为的中点,∴=,∴∠BOD=∠BAE,∴OD∥AE,∵DE⊥AC,∴∠AED=90°,∴∠ODE=90°,∴OD⊥DE,则DE为圆O的切线;(2)解:过点O作OF⊥AC,∵AC=8,∴AF=CF=AC=4,∵∠OFE=∠DEF=∠ODE=90°,∴四边形OFED为矩形,∴FE=OD=AB,∵AB=10,∴FE=5,则AE=AF+FE=5+4=9.【点评】此题考查了切线的性质与判定,勾股定理,以及垂径定理,熟练掌握各自的性质及定理是解本题的关键.七、(本题满分12分)22.【分析】(1)根据月销售利润=每件利润×月销售量得到W=(x﹣18)[20+2(40﹣x)],整理即可;(2)把W=﹣2x2+136x﹣1800配成二次函数的顶点式得到W=﹣2(x﹣34)2+512,然后根据二次函数的性质回答即可;(3)先计算出y=480时x所对应的值,然后画出此函数的图象大致,再根据函数性质和图象进行回答即可.【解答】解:(1)W=(x﹣18)[20+2(40﹣x)]=﹣2x2+136x﹣1800;(2)W=﹣2x2+136x﹣1800=﹣2(x﹣34)2+512,∵a=﹣2<0,W有最大值512∴当x=34时,W有最大值512万元,所以当每件产品的售价定为34元时,最大月销售利润是512万元;(3)令W=480,则﹣2(x﹣34)2+512=480,解得x1=30,x2=38,此函数的图象大致为:观察图象可得,当30≤x≤38时,W≥480,所以销售单价范围为不低于30元不高于38元时,月销售利润不低于480万元.【点评】本题考查了二次函数的应用:先得到二次函数的顶点式y=a(x﹣h)2+k,当a <0,x=h时,y有最大值k;当a<0,x=h时,y有最小值k.八、(本题满分14分)23.【分析】(1)证明△BAE≌△DAC,根据全等三角形的性质证明结论;(2)①取DE的中点H,连接GH、FH,根据三角形中位线定理得到GH∥BE,GH=BE,得到GH=FH,GH⊥FH,根据勾股定理计算,得到答案;②作AM⊥BE于M,AN⊥CD于N,证明△BAE≌△BAC,得到∠BAE=∠BAC=135°,证明△ODA∽△OAE,根据相似三角形的性质求出OD•OE,根据三角形的面积公式就是,得到答案.【解答】(1)证明:∵∠DAB=∠EAC=90°,∴∠EAB=∠CAD,在△BAE和△DAC中,,∴△BAE≌△DAC(SAS),∴∠ABE=∠ADC,∵∠BAD=90°,∴∠DOB=90°,即BE⊥DC;(2)解:①取DE的中点H,连接GH、FH,∵点G是BD的中点,∴GH∥BE,GH=BE,同理,FH∥CD,FH=CD,∵BE=CD.BE⊥DC,∴GH=FH,GH⊥FH,∴△HGF为等腰直角三角形,∴GF=GH,∵GH=BE,∴GF=BE,∵BE=BC,∴=;②作AM⊥BE于M,AN⊥CD于N,在△BAE和△BAC中,,∴△BAE≌△BAC(SSS),∴∠BAE=∠BAC=135°,∴∠DAE=135°﹣90°=45°,即∠OAD+∠OAE=45°,∵△BAE≌△DAC,∴AM=AN,又AM⊥BE,AN⊥CD,∴OA平分∠BOC,∴∠BOA=∠COA=45°,∴∠DOA=∠EOA=135°,∴∠ODA+∠OAD=45°,∴∠OAE=∠ODA,∴△ODA∽△OAE,∴=,即OD•OE=OA2=4,∴△DOE的面积=×OD•OE=2.【点评】本题考查的是相似三角形的判定和性质、全等三角形的判定和性质、等腰直角三角形的性质,掌握相似三角形的判定定理和性质定理是解题的关键.。

2020届中考复习安徽省合肥市瑶海区中考数学二模试题有配套答案

2020届中考复习安徽省合肥市瑶海区中考数学二模试题有配套答案

安徽省合肥市瑶海区中考数学二模试卷一、选择题(每小题4分,共40分)1.(4分)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.22.(4分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长6.7%,将74.4万亿用科学记数法表示是()A.7.44×104B.7.44×108C.74.4×1012D.7.44×10133.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.4.(4分)下列计算结果等于a5的是()A.a3+a2B.a3•a2C.(a3)2D.a10÷a25.(4分)如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π6.(4分)已知某公司10月份的销售额为500万元,如果该公司后期每月的销售额月平均增长率为x,那么第四季销售总额用代数式可表示为(单位:万元)()A.500(1+x)2B.500+500x+500x2C.500+500(1+x)+500(1+2x)D.500+500(1+x)+500(1+x)27.(4分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或108.(4分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE 的度数为()A.15°B.15°或45°C.45°D.45°或60°9.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36 B.48 C.60 D.7210.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0 B.a<0 C.0<a<2 D.a≤0或a=2二、填空题(每小题5分,满分20分)11.(5分)计算: += .12.(5分)当a=2017时,代数式的值为.13.(5分)合肥市初中毕业学业体育考试项目分必考项1项和选考项2项,在8个选考项目中,张明同学可在立定跳远、跳绳和坐位体前屈三个项目模考中基本拿满分,现计划从这三个项目中任选两项作为中考选考项,则跳绳能被选上的概率为.14.(5分)如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PCD、△PDA的面积分别为S1、S2、S3、S4,以下判断:①PA+PB+PC+PD的最小值为10;②若△PAB≌△PDC,则△PAD≌△PBC;③若S1=S2,则S3=S4;④若△PAB∽△PDA,则PA=2.4其中正确的是.三、解答题(每小题8分,满分16分)15.(8分)解不等式:≥.16.(8分)观察下列关于自然数的等式:(1)1﹣=12×①(2)2﹣=22×②(3)3﹣=32×③…根据上述规律解决下列问题:(1)写出第4个等式:= ;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.四、解答题(每小题8分,满分16分)17.(8分)如图,在9×8的正方形的网格中,△ABC的三个顶点和点O都在格点上.(1)画出△ABC关于直线l成轴对称△A1B1 C;(2)将△ABC以点A为旋转中心逆时针旋转90°,画出旋转后的△AB2C2.18.(8分)某品牌羽绒服按成本提高50%作为标价,由于换季,商家决定降价销售,促销措施为:买一件以八折(标价的80%)出售,买两件或两件以上七折(标价的70%)出售.已知顾客买一件商家能获利28元,若顾客同时买两件,商家每件还能获利多少元?五、(每小题10分,满分20分)19.(10分)2017年初,合肥市积极推进共享单车服务(如图1),努力创造绿色环保出行,图2是某品牌单车的车架示意图,其中ED=40cm,∠DEF=60°,∠F=45°,求传动轮轴心E到后轮轴心F的距离EF的长.(结果精确到1cm,参考数据:≈1.41,≈1.73)20.(10分)如图,矩形ABCD中,AD=5,AB=10,分别以AD、BC为斜边向矩形外作Rt△ADF ≌Rt△CBE,延长FA、EB交于点G.(1)求证:△ADF∽△BAG;(2)若DF=4,请连接EF并求出EF的长.六、(本题满分12分)21.(12分)2016年合肥市初中生学业质量绿色指标综合评价在合肥12个县(市)、区312所学校进行,某校八年级根据比例被随机抽取了40名学生参与了语文、数学、英语、科学等四个科目的测试,根据这40位同学的数学成绩,绘制了如下条形统计图.(1)结合以上信息完成下表:平均成绩(分)中位数(分)众数(分)86.85(2)根据评价标准,96分以上(含96分)可评为优秀,该校八年级共有学生500名若全部参加测试,估计有多少学生的成绩能达到优秀?(3)张明同学的数学成绩为88分,他认为自己成绩超过平均分,排名应该处于中上等水平,这种说法对吗?为什么?七、(本题满分12分)22.(12分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形O EDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为(直接写出结果).八、(本题满分14分)23.(14分)【阅读理解】我们知道,在正比例函数y=ax(a>0)中y随x的增大而增大,当x取最小值时y有最小值;在反比例函数y=(k>0)中,当x>0时y随x的增大而减小,当x取最大值时y有最小值,那么当x>0时函数y=ax+(a>0,k>0)是否存在最值呢?下面以y=2x+为例进行探究:∵x>0,∴y=2x+=2(x+)=2[+]=[﹣6++6]=2[+6]=2+12∴当﹣=0,即x=3时y有最小值,这时y=12.最小【现学现用】已知x>0,当x= 时,函数y=x+有最值(填“大”或“小”),最值为.【拓展应用】A、B两城市相距400千米,限速为300千米/小时的高铁从A城到B城的运行成本(万元)由可变成本和固定成本两部分构成,每小时的可变成本与行驶速度v(千米/小时)的平方成正比,且比例系数k,固定成本为每小时4万元,在试运行过程中经测算,当行驶速度为100千米/小时时,可变成本为每小时1万元.(1)试把每小时运行总成本y(万元)表示成速度v(千米/小时)的函数;(2)为了使全程运行成本z最低,高铁行驶的速度应为多少?安徽省合肥市瑶海区中考数学二模试卷参考答案与试题解析一、选择题(每小题4分,共40分)1.(4分)在﹣3,﹣1,0,2这四个数中,最小的数是()A.﹣3 B.﹣1 C.0 D.2【解答】解:这四个数在数轴上的位置如图所示:由数轴的特点可知,这四个数中最小的数是﹣3.故选A.2.(4分)2017年3月5日,十二届全国人大五次会议顺利召开,李克强总理在政府工作报告中指出,2016年国内生产总值达到74.4亿元,比上年增长6.7%,将74.4万亿用科学记数法表示是()A.7.44×104B.7.44×108C.74.4×1012D.7.44×1013【解答】解:将74.4万亿用科学记数法表示为:7.44×1013.故选:D.3.(4分)下列几何体中,左视图为三角形的是()A.B.C.D.【解答】解:A.圆柱的左视图是长方形,不合题意;B.长方体的左视图是长方形,不合题意;C.圆锥的左视图是三角形,符合题意;D.三棱柱的左视图是长方形,不合题意;故选:C.4.(4分)下列计算结果等于a5的是()A.a3+a2B.a3•a2C.(a3)2D.a10÷a2【解答】解:A、不是同底数幂的乘法,故A不符合题意;B、a3•a2=a5,故B符合题意;C、(a3)2=a6,故C不符合题意;D、a10÷a2=a8,故D不符合题意;故选:B.5.(4分)如图,PA切⊙O于点A,PB切⊙O于点B,如果∠APB=60°,⊙O半径是3,则劣弧AB的长为()A.B.πC.2πD.4π【解答】解:连接OA,OB.则OA⊥PA,OB⊥PB∵∠APB=60°∴∠AOB=120°∴劣弧AB的长是: =2π.故选C.6.(4分)已知某公司10月份的销售额为500万元,如果该公司后期每月的销售额月平均增长率为x,那么第四季销售总额用代数式可表示为(单位:万元)()A.500(1+x)2B.500+500x+500x2C.500+500(1+x)+500(1+2x)D.500+500(1+x)+500(1+x)2【解答】解:10月份的销售额为500万元,11月份的销售额为500(1+x)万元,12月份的销售额为500(1+x)2万元,则第四季销售总额用代数式可表示为:500+500(1+x)+500(1+x)2,故选:D.7.(4分)已知x=2是关于x的方程x2﹣(m+4)x+4m=0的一个实数根,并且这个方程的两个实数根恰好是等腰三角形ABC的两条边长,则△ABC的周长为()A.6 B.8 C.10 D.8或10【解答】解:把x=2代入方程x2﹣(m+4)x+4m=0得4﹣2(m+4)+4m=0,解得m=2,方程化为x2﹣6x+8=0,解得x1=4,x2=2,因为2+2=4,所以三角形三边为4、4、2,所以△ABC的周长为10.故选C.8.(4分)如图,在△OAB中,OA=OB,∠AOB=15°,在△OCD中,OC=OD,∠COD=45°,且点C在边OA上,连接CB,将线段OB绕点O逆时针旋转一定角度得到线段OE,使得DE=CB,则∠BOE 的度数为()A.15°B.15°或45°C.45°D.45°或60°【解答】解:如图,当OE在∠BOD内部时,若∠DOE=∠COB=15°,则由OD=OC,∠DOE=∠COB,OB=OE可得,△ODE≌△OCB,故DE=CB,此时∠BOE=45°﹣15°﹣15°=15°;当OE'在∠BOD外部时,则由OD=OC,∠DOE'=∠COB,OB=OE可得,△ODE'≌△OCB,故DE'=CB,此时∠BOE'=45°﹣15°+15°=45°;故选:B.9.(4分)如图,在△ABC中,BC=10,D、E分别为AB、AC的中点,连接BE、CD交于点O,OD=3,OE=4,则△ABC的面积为()A.36 B.48 C.60 D.72【解答】解:∵D、E分别为AB、AC的中点,∴DE∥BC,∴△DOE∽△BOC,∴,∴OB=8,OD=6,∴BC=10,∴△BOC是直角三角形,∴△BOC的面积是24,∴△BEC的面积是36,△BDE的面积是18,∴△ABC的面积是72,故选D10.(4分)函数y=,当y=a时,对应的x有唯一确定的值,则a的取值范围为()A.a≤0 B.a<0 C.0<a<2 D.a≤0或a=2【解答】解:由题意可知:y=a时,对应的x有唯一确定的值,即直线y=a与该函数图象只有一个交点,∴a≤0或a=2故选(D)二、填空题(每小题5分,满分20分)11.(5分)计算: += 8 .【解答】解: +=4+4=8.故答案为:8.12.(5分)当a=2017时,代数式的值为.【解答】解:当a=2017时,∴原式===故答案为:13.(5分)合肥市初中毕业学业体育考试项目分必考项1项和选考项2项,在8个选考项目中,张明同学可在立定跳远、跳绳和坐位体前屈三个项目模考中基本拿满分,现计划从这三个项目中任选两项作为中考选考项,则跳绳能被选上的概率为.【解答】解:画树状图如下:共有6种情况,跳绳能被选上的有4种情况,所以,P(跳绳能被选上)==.故答案为:.14.(5分)如图,点P是矩形ABCD内一点,连接PA、PB、PC、PD,已知AB=3,BC=4,设△PAB、△PBC、△PCD、△PDA的面积分别为S1、S2、S3、S4,以下判断:①PA+PB+PC+PD的最小值为10;②若△PAB≌△PDC,则△PAD≌△PBC;③若S1=S2,则S3=S4;④若△PAB∽△PDA,则PA=2.4其中正确的是①②③④.【解答】解:①当点P是矩形ABCD两对角线的交点时,PA+PB+PC+PD的值最小,根据勾股定理得,AC=BD=5,所以PA+PB+PC+PD的最小值为10,故①正确;②若△PAB≌△PCD,则PA=PC,PB=PD,所以P在线段AC、BD的垂直平分线上,即P是矩形ABCD 两对角线的交点,所以△PAD≌△PBC,故②正确;③若S1=S2,易证S1+S3=S2+S4,则S3=S4,故③正确;④若△PAB~△PDA,则∠PAB=∠PDA,∠PAB+∠PAD=∠PDA+∠PAD=90°,∠APD=180°﹣(∠PDA+∠PAD)=90°,同理可得∠APB=90°,那么∠BPD=180°,B、P、D三点共线,P是直角△BAD斜边上的高,根据面积公式可得PA=2.4,故④正确.故答案为①②③④.三、解答题(每小题8分,满分16分)15.(8分)解不等式:≥.【解答】解:≥1﹣,去分母得:2(2x﹣1)≥6﹣3(5﹣x),去括号得:4x﹣2≥6﹣15+3x,移项合并得:x≥﹣7.16.(8分)观察下列关于自然数的等式:(1)1﹣=12×①(2)2﹣=22×②(3)3﹣=32×③…根据上述规律解决下列问题:(1)写出第4个等式:4﹣= 42×;(2)写出你猜想的第n个等式(用含n的式子表示),并证明其正确性.【解答】解:(1)根据题意,第4个等式为4﹣=42×,故答案为:4﹣,42×;(2)第n个等式为n﹣=n2×,左边===n2•=右边,∴第n个等式成立.四、解答题(每小题8分,满分16分)17.(8分)如图,在9×8的正方形的网格中,△ABC的三个顶点和点O都在格点上.(1)画出△ABC关于直线l成轴对称△A1B1 C;(2)将△ABC以点A为旋转中心逆时针旋转90°,画出旋转后的△AB2C2.【解答】解:(1)如图所示,△A1B1C即为所求;(2)如图所示,△AB2C2即为所求.18.(8分)某品牌羽绒服按成本提高50%作为标价,由于换季,商家决定降价销售,促销措施为:买一件以八折(标价的80%)出售,买两件或两件以上七折(标价的70%)出售.已知顾客买一件商家能获利28元,若顾客同时买两件,商家每件还能获利多少元?【解答】解:设该品牌羽绒服的成本价为x元,根据题意得:80%×(1+50%)x﹣x=28,解得:x=140,∴140×(1+50%)×70%﹣140=7(元).答:若顾客同时买两件,商家每件还能获利7元.五、(每小题10分,满分20分)19.(10分)2017年初,合肥市积极推进共享单车服务(如图1),努力创造绿色环保出行,图2是某品牌单车的车架示意图,其中ED=40cm,∠DEF=60°,∠F=45°,求传动轮轴心E到后轮轴心F的距离EF的长.(结果精确到1cm,参考数据:≈1.41,≈1.73)【解答】解:如图2中,作DH⊥EF于H.在Rt△EDH中,∵sin∠DEH=,∴DH=DE×sin40°=40×=20cm,∵cos∠DEH=,∴EH=DE×cos60°=40×=20cm,在Rt△DHF中,∵∠F=45°,∴HF=DH=20cm,∴EF=EH+HF=20+20≈55cm,∴传动轮轴心E到后轮轴心F的距离EF的长约为55cm.20.(10分)如图,矩形ABCD中,AD=5,AB=10,分别以AD、BC为斜边向矩形外作Rt△ADF ≌Rt△CBE,延长FA、EB交于点G.(1)求证:△ADF∽△BAG;(2)若DF=4,请连接EF并求出EF的长.【解答】解:(1)∵四边形ABCD为矩形,∴∠DAB=90°,即∠DAF+∠BAG=90°,又∵∠DAF+∠ADF=90°,∴∠ADF=∠BAG,同理∠ECB=∠GBA,∵△ADF≌△CBE,∴∠ECB=∠DAF,∴∠DAF=∠GBA,∵在△ADF和△BAG中,,∴△ADF∽△BAG;(2)连接EF,如图,∵在Rt△ADF中,AD=5,DF=4,∴AF==3,∵△ADF∽△BAG,∴==,∠AGB=∠AFD=90°,∴AG=8,BG=6,∴FG=AF+AG=11,EG=EB+BG=DF+BG=4+6=10,∴在Rt△EFG中,EF==.六、(本题满分12分)21.(12分)2016年合肥市初中生学业质量绿色指标综合评价在合肥12个县(市)、区312所学校进行,某校八年级根据比例被随机抽取了40名学生参与了语文、数学、英语、科学等四个科目的测试,根据这40位同学的数学成绩,绘制了如下条形统计图.(1)结合以上信息完成下表:平均成绩(分)中位数(分)众数(分)86.8590 90(2)根据评价标准,96分以上(含96分)可评为优秀,该校八年级共有学生500名若全部参加测试,估计有多少学生的成绩能达到优秀?(3)张明同学的数学成绩为88分,他认为自己成绩超过平均分,排名应该处于中上等水平,这种说法对吗?为什么?【解答】解:(1)40名学生的数学成绩分别为:68,68,68,68,78,78,78,78,78,78,78,80,80,80,88,88,88,88,88,90,90,90,90,90,90,90,90,90,96,96,96,96,96,96,100,100,100,100,100,则中位数为90,众数为90;故答案为:90;90;(2)根据题意得:500×≈138,则估计有138名学生可达到游戏;(3)这种说法不对,∵全班的中位数为90分,张明的成绩为88分,∴他的成绩排名应该是中游偏下.七、(本题满分12分)22.(12分)如图,在△ABC中,AB=10,∠BAC=60°,∠B=45°,点D是BC边上一动点,连接AD,以AD为直径作⊙O交边AB、AC于点E、F,连接OE、OF、DE、DF、EF.(1)求的值;(2)当AD运动到什么位置时,四边形OEDF正好是菱形,请说明理由.(3)点D运动过程中,线段EF的最小值为5(直接写出结果).【解答】解:(1)∵∠BAC=60°,∴∠EOF=120°,∵OE=OF,∴=;(2)当AD平分∠BAC时,四边形OEDF是菱形,理由:∵AD平分∠BAC,∴DE=DF,∠BAD=30°,∵AD是⊙O的直径,∴∠DEA=90°,∴∠EDA=60°,∵OE=OD,∴△OED是等边三角形,即ED=OE,∴OE=OF=DE=DF,∴四边形OEDF是菱形;(3)由垂线的性质可知,当AD⊥BC时,直径AD最短,即⊙O最小,即EF有最小值,如图,过O作OH⊥EF于H,在Rt△ADB中,∵∠ABC=45°,AB=10,∴AD=BD=10,即此时,⊙O的直径为10,∵∠EOH=∠EOH=∠BAC=60°,∴EH=OE•sin∠EOH=5×=,由垂径定理可得EF=2EH=5.线段EF的最小值为5,故答案为:5.八、(本题满分14分)23.(14分)【阅读理解】我们知道,在正比例函数y=ax(a>0)中y随x的增大而增大,当x取最小值时y有最小值;在反比例函数y=(k>0)中,当x>0时y随x的增大而减小,当x取最大值时y有最小值,那么当x>0时函数y=ax+(a>0,k>0)是否存在最值呢?下面以y=2x+为例进行探究:∵x>0,∴y=2x+=2(x+)=2[+]=[﹣6++6]=2[+6]=2+12=12.∴当﹣=0,即x=3时y有最小值,这时y最小【现学现用】已知x>0,当x= 1 时,函数y=x+有最大值(填“大”或“小”),最值为 2 .【拓展应用】A、B两城市相距400千米,限速为300千米/小时的高铁从A城到B城的运行成本(万元)由可变成本和固定成本两部分构成,每小时的可变成本与行驶速度v(千米/小时)的平方成正比,且比例系数k,固定成本为每小时4万元,在试运行过程中经测算,当行驶速度为100千米/小时时,可变成本为每小时1万元.(1)试把每小时运行总成本y(万元)表示成速度v(千米/小时)的函数;(2)为了使全程运行成本z最低,高铁行驶的速度应为多少?【解答】解:【现学现用】∵y=x+=(﹣)2+2,∴当=时,y有最大值2,∴x=1时,y有最大值2,故答案为1,大,2.【拓展应用】(1)∵当v=100时,kv2=1,k=,∴y=+4(0<v≤300).(2)由(1)可知y=+4,∴z=(+4)•=+=(﹣)2+16≥16,∴当=时,即v=200时,z有最小值16,∴为了使全程运行成本z最低,高铁行驶的速度应为200千米/小时.。

2020年安徽省合肥市瑶海区中考数学二模试卷

2020年安徽省合肥市瑶海区中考数学二模试卷

中考数学二模试卷题号一二三四总分得分一、选择题(本大题共10小题,共40.0分)1.下列各数中,比0小的是()A. B. -(-1) C. |-1| D. -20192.据报道,2019年参加全国硕士研究生考试的人数约有260万人.其中,“260万”用科学记数法可表示为()A. 26×108B. 2.6×106C. 0.26×108D. 260×1043.计算(-3a3)2的结果是()A. -3a6B. 3a6C. -9a6D. 9a64.下图中的几何体的左视图是()A. B. C. D.5.1261年,我国南宋数学家杨辉用图中的三角形解释二项和的乘方规律,我们把这个三角形称为“杨辉三角”,请观察图中的数字排列规律,则代数式a+b+c的值为()A. 22B. 41C. 50D. 516.整数n满足n-1<3<n,则n的值为()A. 7B. 8C. 9D. 107.如图,AB为⊙O的直径,CD切⊙O于点C,交AB的延长线于点D,且CO=CD,则∠A的度数为()A. 45°B. 30°C. 22.5°D. 37.5°8.抽查员随机抽取甲、乙、丙、丁四台机器生产10个乒乓球直径的长度(规格为直径40mm),整理的平均数(单位:mm)分别为39.96、40.05、39.96、40.05;方差(单位:mm2)分别为:0.36、1.12、0.20、0.5.这四台机器生产的乒乓球既标准又稳定的是()A. 甲B. 乙C. 丙D. 丁9.甲打字员计划用若干小时完成文稿的电脑输入工作,两小时后,乙打字员协助此项工作,且乙打字员文稿电脑输入的速度是甲的1.5倍,结果提前6小时完成任务,则甲打字员原计划完成此项工作的时间是()A. 17小时B. 14小时C. 12小时D. 10小时10.如图1,点P从△ABC的顶点B出发,沿B→C→A匀速运动到点A,图2是点P运动时,线段BP的长度y随时间x变化的函数关系图象,其中M为曲线部分的最低点下列说法错误的是()A. △ABC是等腰三角形B. AC边上的高为4C. △ABC的周长为16D. △ABC的面积为10二、填空题(本大题共4小题,共20.0分)11.化简:-=______.12.已知关于x的一元二次方程x2-4x+m=0有两个不相等的实数根,则字母m的最大整数值为______.13.如图,矩形ABCD中,AB=3,BC=2,E为BC的中点,AF=1,以EF为直径的半圆与DE交于点G,则劣弧的长为______.14.在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,点P为边AC上一点,且AP=5cm.点Q为边AB上的任意一点(不与点A,B重合),若点A关于直线PQ的对称点A'恰好落在△ABC的边上,则AQ的长为______cm.三、计算题(本大题共1小题,共8.0分)15.先化简,再求值:,其中x+y=-3.四、解答题(本大题共8小题,共82.0分)16.互联网给生活带来极大的方便据报道,2016底全球支付宝用户数为4.5亿,2018年底达到9亿.(1)求平均每年增长率;(2)据此速度,2020底全球支付宝用户数是否会超过17亿?请说明理由.(参考数据:≈1.414)17.在边长为1的正方形网格中建立如图所示的平面直角坐标系,点A、B、C的坐标分别为(2,1)(5,0)(1,0).(1)求证:△OAC∽△OBA;(2)在平面直角坐标系内找一点D(不与点B重合,使△OAD与△OAB全等,请直接写出所有可能的点D的坐标.18.法国数学家费尔马早在17世纪就研究过形如x2+y2=z2的方程,显然,这个方程有无数组解.我们把满足该方程的正整数的解(x,y,z)叫做勾股数.如,(3,4,5)就是一组勾股数.(1)请你再写出两组勾股数:(______),(______);(2)在研究直角三角形的勾股数时,古希腊的哲学家柏拉图曾指出:如果n表示大于1的整数,x=2n,y=n2-1,z=n2+1,那么,以x,y,z为三边的三角形为直角三角形(即a,y,z为勾股数),请你加以证明.19.为开发大西北,某工程队承接高铁修筑任务,在山坡处需要修建隧道,为了测量隧道的长度,工程队用无人机在距地面高度为500米的C处测得山坡南北两端A、B 的俯角分别为∠DCA=45°、∠DCB=30°(已知A、B、C三点在同一平面上),求隧道两端A、B的距离.(参考数据:≈1.73)20.如图,在平面直角坐标系xOy中,直线y=x+1与双曲线y=的一个交点为P(m,2).(1)求k的值;(2)M(,a),N(n,b)是双曲线上的两点,直接写出当a>b时,n的取值范围.21.某校为了解学生每月零用钱情况,从七、八、九年级1200名学生中随机抽取部分学生,对他们今年4月份的零用钱支出情况进行调查统计并绘制成如下统计图表:组别零用钱支出x(单位:元)频数(人数)频率节俭型x<1020.05 10≤x<2040.10富足型20≤x<3012 30≤x<40m奢侈型40≤x<50n x≥502请根据图表中所给的信息,解答下列问题:(1)在这次调查中共随机抽取了______名学生,图表中的m=______,n=______;(2)请估计该校今年4月份零用钱支出在“30≤x<40范围的学生人数;(3)在抽样的“节俭型”学生中,有2位男生和4位女生,校团委计划从中随机抽取两人参与“映山红”的公益活动,求恰好抽中一男一女的概率.22.我国为了实现到2020年达到全面小康社会的目标,近几年加大了扶贫工作的力度,合肥市某知名企业为了帮助某小型企业脱贫,投产一种书包,每个书包制造成本为18元,试销过程中发现,每月销售量y(万个)与销售单价x(元)之间的关系可以近似看作一次函数y=kx+b,据统计当售价定为30元/个时,每月销售40万个,当售价定为35元/个时,每月销售30万个.(1)请求出k、b的值.(2)写出每月的利润w(万元)与销售单价x(元)之间的函数解析式.(3)该小型企业在经营中,每月销售单价始终保持在25≤x≤36元之间,求该小型企业每月获得利润w(万元)的范围.23.如图,在凸四边形ABCD中,AB=BC=CD,∠ABC+∠BCD=240°.设∠ABC=α.(1)利用尺规,以CD为边在四边形内部作等边△CDE.(保留作图痕迹,不需要写作法)(2)连接AE,判断四边形ABCE的形状,并说明理由.(3)求证:∠ADC=α;(4)若CD=6,取CD的中点F,连结AF,当∠ABC等于多少度时,AF最大,最大值为多少.(直接写出答案,不需要说明理由).答案和解析1.【答案】D【解析】解:根据有理数比较大小的方法,可得-2019<0<<-(-1)=|-1|,∴各数中比0小的是-2019.故选:D.有理数大小比较的法则:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小,据此判断即可.此题主要考查了有理数大小比较的方法,要熟练掌握,解答此题的关键是要明确:①正数都大于0;②负数都小于0;③正数大于一切负数;④两个负数,绝对值大的其值反而小.2.【答案】B【解析】解:“260万”用科学记数法可表示为2.6×106,故选:B.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值大于10时,n是正数;当原数的绝对值小于1时,n是负数.此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.3.【答案】D【解析】解:(-3a3)2=9a6,故选:D.根据积的乘方和幂的乘方法则进行计算即可.本题考查了对积的乘方和幂的乘方法则的应用,主要考查学生运用法则进行计算的能力,注意:①积的乘方,把积的每个因式分别乘方,再把所得的幂相乘,②幂的乘方,底数不变,指数相乘.4.【答案】B【解析】解:从左面看从左往右的正方形个数分别为2,1.故选:B.根据左视图是从左面看到的图象判定则可.本题考查了三视图的知识,左视图是从物体的左面看得到的视图.5.【答案】B【解析】解:由图可得,a=1+5=6,b=5+10=15,c=10+10=20,∴a+b+c=6+15+20=41,故选:B.根据题目中的数据可知,a、b、c分别为上一行中左上角和右上角的数字之和,从而可以求得所求式子的值.本题考查数字的变化类,解答本题的关键是明确题意,发现题目中数字的变化规律,求出a、b、c的值.6.【答案】A【解析】解:∵3=,且36<45<49,∴6<=3<7,∴n=7,故选:A.根据36<45<49,得出的取值范围,即可确定n的值.本题考查了估算无理数的大小,运用“夹逼法”是解决本题的关键.7.【答案】C【解析】解:∵CD切⊙O于C,∴OC⊥CD,∴∠OCD=90°,∵CO=CD,∴∠COD=∠D=45°,∵OA=CO,∴∠OAC=∠OCA,∵∠COD=∠OAC+∠OCA=45°,∴∠A=22.5°.故选:C.因为∠COD=∠A+∠OCA,∠A=∠COA,所以求出∠COD即可解决问题.本题考查切线的性质,等腰直角三角形的性质,三角形的外角的性质,熟练掌握这些性质是解决问题的关键.8.【答案】C【解析】【分析】本题考查了方差的意义.方差是用来衡量一组数据波动大小的量,方差越大,表明这组数据偏离平均数越大,即波动越大,数据越不稳定;反之,方差越小,表明这组数据分布比较集中,各数据偏离平均数越小,即波动越小,数据越稳定.先比较出平均数,再根据方差的意义即可得出答案.【解答】解:∵甲、乙、丙、丁的平均数(单位:mm)分别为39.96、40.05、39.96、40.05,∴甲和丙比较标准,∵甲、乙、丙、丁的方差(单位:mm2)是0.36、1.12、0.20、0.5,∴0.20<0.36<0.5<1.12,∴这四台机器生产的乒乓球既标准又稳定的是丙;故选:C.9.【答案】C【解析】解:设甲打字员原计划完成此项工作的时间是x小时,则甲的工作效率是,乙的工作效率是甲的1.5倍,即,依题意得:+=1,整理得:2x-12+3(x-8)=2x,解得:x=12,经检验,x=12是所列分式方程的解,即甲打字员原计划完成此项工作的时间是12小时;故选:C.设甲打字员原计划完成此项工作的时间是x小时,则甲的工作效率是,乙的工作效率是.根据根据“提前6小时完成任务”列出方程并解答.本题考查了分式方程的应用、分式方程的解法;设出未知数表示出甲和乙的工作效率,列出分式方程是解题的关键.10.【答案】D【解析】解:由图1看到,点P从B运动到A的过程中,y=BP先从0开始增大,到达点C时达到最大,对应图2可得此时y=5,即BC=5;点P从C运动到A的过程中,y=BP 先减小,到达BP⊥AC时达到最小,对应图2可得此时BP=4;而后BP又开始增大,到达点A时达到最大y=5,即BA=5,所以△ABC为等腰三角形.由图形和图象可得BC=BA=5,BP⊥AC时,BP=4过点B作BD⊥AC于D,则BD=4∴AD=CD=,∴AC=6,∴△ABC的周长为:5+5+6=16,∴S△ABC=AC•BD=×6×4=12故选项A、B、C正确,选项D错误.故选:D.由图1看到,点P从B运动到A的过程中,y=BP先从0开始增大,到达点C时达到最大,对应图2可得此时y=5,即BC=5;点P从C运动到A的过程中,y=BP先减小,到达BP⊥AC时达到最小,对应图2可得此时BP=4;而后BP又开始增大,到达点A时达到最大y=5,即BA=5,所以△ABC为等腰三角形.作AC边上的高BD=4,即能求得AD=CD=3,即AC=6,再求得△ABC面积.本题考查了函数图象的理解和应用,等腰三角形的性质.把图形和图象结合理解得到线段长度是解决本题的关键.11.【答案】【解析】解:原式=2-=.故答案为:.先把各根式化为最简二次根式,再根据二次根式的减法进行计算即可.本题考查的是二次根式的加减法,熟知二次根式相加减,先把各个二次根式化成最简二次根式,再把被开方数相同的二次根式进行合并,合并方法为系数相加减,根式不变是解答此题的关键.12.【答案】3【解析】解:根据题意得△=(-4)2-4m>0,解得m<4,所以字母m的最大整数值为3.故答案为3.根据判别式的意义得到△=(-4)2-4m>0,再解不等式得到m的范围,然后在求出范围内确定最大整数即可.本题考查了根的判别式:一元二次方程ax2+bx+c=0(a≠0)的根与△=b2-4ac有如下关系:当△>0时,方程有两个不相等的两个实数根;当△=0时,方程有两个相等的两个实数根;当△<0时,方程无实数根.13.【答案】π【解析】解:连接OG,DF,∵BC=2,E为BC的中点,∴BE=EC=1,∵AB=3,AF=1,∴BF=2,由勾股定理得,DF==,EF==,∴DF=EF,在Rt△DAF和Rt△FBE中,,∴Rt△DAF≌Rt△FBE(HL)∴∠ADF=∠BFE,∵∠ADF+∠AFD=90°,∴∠BFE+∠AFD=90°,即∠DFE=90°,∵FD=FE,∴∠FED=45°,∵OG=OE,∴∠GOE=90°,∴劣弧的长==π,故答案为:π.连接OG,DF,根据勾股定理分别求出DF、EF,证明Rt△DAF≌Rt△FBE,求出∠DFE=90°,得到∠GOE=90°,根据弧长公式计算即可.本题考查的是弧长的计算、矩形的性质、全等三角形的判定和性质、等腰直角三角形的性质,掌握弧长公式是解题的关键.14.【答案】或4【解析】解:在Rt△ABC中,∠C=90°,AB=10cm,AC=8cm,∴BC=6cm,①若点A'落在BC上,如图:点A关于直线PQ的对称点A',∵点A关于直线PQ的对称点A',∴A'Q=AQ,AP=A'P,∵AP=5,∴PC=3,A'C=4,A'B=2,∴A'A=4,作A'H垂直AB,由勾股定理可得:,设AQ=AQ'=x,BH=y,∴,解得:,故AQ的长为.②若点A'落在AB上,如图:∵点A关于直线PQ的对称点A',∴PQ⊥AB,∴△APQ~△ABC,∴,∴,∴AQ=4.综上所述:若点A关于直线PQ的对称点A'恰好落在△ABC的边上,则AQ的长为或4cm.故答案为或4..由对称可知AP=A'P,AQ=A'Q,由勾股定理可计算A'C,A'P,作A'H⊥AB构造直角三角形,用勾股定理列方程组即可计算AQ的长.本题考查了轴对称的性质和勾股定理的应用,常设要求的线段长为x,然后根据折叠和轴对称的性质用含x的代数式表示其他线段的长度,选择适当的直角三角形,运用勾股定理列出方程求出答案.15.【答案】解:==(x+y)2,当x+y=-3时,原式=(-3)2=9.【解析】根据分式的除法可以化简题目中的式子,然后将x+y的值代入化简后的式子即可解答本题.本题考查分式的化简求值,解答本题的关键是明确题意分式化简求值的方法.16.【答案】解:(1)设平均每年增长率为x,依题意,得:4.5(1+x)2=9,解得:x1=0.414=41.4%,x2=-2.414(舍去).答:平均每年增长率为41.4%.(2)9×(1+41.4%)2≈17.995(亿).∵17.995>17,∴2020底全球支付宝用户数会超过17亿.【解析】(1)设平均每年增长率为x,根据2016年底及2018年底全球支付宝用户数,即可得出关于x的一元二次方程,解之取其正值即可得出结论;(2)根据2020年底全球支付宝用户数=2018年底全球支付宝用户数×(1+增长率)2,即可求出2020年底全球支付宝用户数,将其与17亿比较后即可得出结论.本题考查了一元二次方程的应用,找准等量关系,正确列出一元二次方程是解题的关键.17.【答案】解:(1)∵OA==,OC=1,OB=5,∴=,=,∴,∵∠AOC=∠BOA,∴△OAC∽△OBA;(2)如图所示,△OAD即为所求,D(-3,1).【解析】(1)根据勾股定理得到OA==,OC=1,OB=5,求得,根据相似三角形的判定定理即可得到结论;(2)根据全等三角形的判定定理即可得到结论.本题考查了作图-应用与设计作图,相似三角形的判定和性质,全等三角形的判定,正确的作出图形是解题的关键.18.【答案】6,8,10 9,12,15【解析】解:(1)请你再写出两组勾股数:(6,8,10),(9,12,15),故答案为:6,8,10;9,12,15;(2)证明:x2+y2=(2n)2+(n2-1)2=4n2+n4-2n2+1=n4+2n2+1=(n2+1)2=z2,即x,y,z为勾股数.(1)根据勾股数扩大相同的正整数倍仍是勾股数,可得答案;(2)根据勾股定理的逆定理,可得答案.本题考查了勾股数,利用了勾股数扩大相同的正整数倍仍然是勾股数.19.【答案】解:作CM⊥AB于M,如图所示:根据题意得:∠CAM=∠DCA=45°,∠CBM=∠DCB=30°,CM=500米,则AM=CM=500米,BM=CM=500千米,则AB=BM-AM=(500-500)千米≈365千米,答:隧道两端A、B的距离约为365千米.【解析】作CM⊥AB于M,根据题意得出∠CAM=∠DCA=45°,∠CBM=∠DCB=30°,CM=50-米,得出AM=CM=500米,BM=500千米,即可得出结果.此题主要考查了解直角三角形的应用-俯角;根据题意得出AM和BM的长是解题关键.20.【答案】解:(1)∵直线y=x+1与双曲线y=的一个交点为P(m,2).∴∴m=1,k=2;(2)∵k=2,∴双曲线每个分支上y随x的增大而减小,当N在第一象限时,∵a>b∴n>,当N在第三象限时,∴n<0综上所述:n>或n<0.【解析】(1)将点P坐标代入两个解析式可求m,k的值;(2)根据反比例函数图象性质可求解.本题考查了一次函数和反比例函数交点问题,函数图象的性质,熟练掌握函数图象上点的坐标满足函数解析式.21.【答案】40 16 4【解析】解:(1)本次调查的总人数为2÷0.05=40(人),m=40×(1-15%+15%)-12=16,n=40×15%-2=4,故答案为:40、12、4;(2)估计该校今年4月份零用钱支出在“30≤x<40范围的学生人数约为1200×=480(人);3男男女女女女男(男,男)(女,男)(女,男)(女,男)(女,男)男(男,男)(女,男)(女,男)(女,男)(女,男)女(男,女)(男,女)(女,女)(女,女)(女,女)女(男,女)(男,女)(女,女)(女,女)(女,女)女(男,女)(男,女)(女,女)(女,女)(女,女)女(男,女)(男,女)(女,女)(女,女)(女,女)所以恰好抽中一男一女的概率为=.(1)由x<10的人数及其频率可得总人数,总人数乘以20≤x<40的百分比,再减去20≤x <30的人数即可得m的值,同理计算出n的值;(2)总人数乘以“30≤x<40范围的学生人数对应比例;(3)列表得出所有等可能结果数,再利用概率公式计算可得.本题考查读频数分布直方图的能力和利用统计图获取信息的能力;利用统计图获取信息时,必须认真观察、分析、研究统计图,才能作出正确的判断和解决问题,本题根据B 组的人数与所占的百分比求解是解题的关键,也是本题的突破口.22.【答案】解:(1)由题意得:,解得.答:k的值为-2,b的值为100.(2)由题意得w=(x-18)(-2x+100)=-2x2+136x-1800,答:函数解析式为:w=-2x2+136x-1800.(3)∵w=-2x2+136x-1800=-2(x-34)2+512,∴当x=34时,w取最大值,最大值为512;当x<34时,w随着x的增大而增大;当x>34时,w随着x的增大而减小.∵当x=25时,w=-2×252+136×25-1800=350;当x=36时,w=-2×362+136×36-1800=504.综上,w的范围为350≤w≤512.答:该小型企业每月获得利润w(万元)的范围是350≤w≤512.【解析】(1)待定系数法求出k和b的值即可;(2)利用(售价-成本)乘以销售量等于利润可列式求解;(3)根据二次函数的顶点值,及顶点左右两侧增减变化的性质来求解即可.本题属于二次函数的应用题,解题时需要明确利润与成本及销量的关系,求符合要求的值时需要结合二次函数对称轴左右两侧函数值的变化性质综合考虑求解.23.【答案】(1)解:如图1所示:①分别以C、D为圆心,以CD从为半径画弧,两弧交于点E,②连接DE、CE,△CDE即为所求;(2)解:如图2所示:四边形ABCE是菱形;理由如下:∵△CDE是等边三角形,∴∠CDE=∠CED=∠DCE=60°,DE=CE=CD,∵AB=BC=CD,∠ABC+∠BCD=240°,∴AB=CE,∠ABC+∠BCE=240°-60°=180°,∴AB∥CE,∴四边形ABCE是平行四边形,∵AB=BC,∴四边形ABCE是菱形;(3)证明:连接AC,如图3所示:∵四边形ABCE是菱形,∴AE=CE=DE,∠ABC=∠AEC,∴点E是△ACD的外接圆圆心,∴∠AEC=2∠ADC,∴∠ABC=2∠ADC,∴∠ADC=α;(4)解:如图4所示:当A、E、F三点共线时,AF的值最大=AE+EF,∵△CDE是等边三角形,F是D的中点,∴EF⊥CD,DF=3,∠DEF=∠CED=30°,∴EF=DF=3,∴AF=AE+EF=6+3,由(2)得:AE=CE=CD=DE=6,∴∠EAD=∠EDA=∠DEF=15°,∴∠ADC=15°+60°=75°,由(3)得:∠ABC=2∠ADC=150°,∴当∠ABC等于150°时,AF最大,最大值为6+3.【解析】(1)①分别以C、D为圆心,以CD从为半径画弧,两弧交于点E,②连接DE、CE,△CDE即为所求;(2)由等边三角形的性质得出∠CDE=∠CED=∠DCE=60°,DE=CE=CD,得出AB=CE,∠ABC+∠BCE=180°,证出AB∥CE,得出四边形ABCE是平行四边形,即可得出结论;(3)连接AC,由菱形的性质得出AE=CE=DE,∠ABC=∠AEC,得出点E是△ACD的外接圆圆心,由圆周角定理得出∠AEC=2∠ADC,即可得出结论;(4)当A、E、F三点共线时,AF的值最大=AE+EF,由等边三角形的性质和勾股定理求出EF=DF=3,得出AF=AE+EF=6+3,求出∠ADC=75°,由(3)得:∠ABC=2∠ADC=150°即可.本题是四边形综合题目,考查了菱形的判定与性质、平行四边形的判定、平行线的判定、等边三角形的判定与性质、圆周角定理、直角三角形的性质、勾股定理等知识;本题综合性强,熟练掌握等边三角形的性质和圆周角定理,证明四边形ABCE是菱形是解题的关键.。

2020年安徽省合肥市九年级中考数学全真模拟试题(三)(含答案及解析)

2020年安徽省合肥市九年级中考数学全真模拟试题(三)(含答案及解析)

2020年安徽省合肥市中考数学全真模拟试卷(三)一、选择题1.对二次函数21213y x x =+-进行配方,其结果及顶点坐标是( ) A. 21(3)4,(3,4)3y x =+-- B. 21(1)1,(1,1)3y x =+-- C. 21(3)4,(3,4)3y x =+--- D. 21(1)1,(1,1)3y x =+--- 【答案】C【解析】【分析】把利用分配率二次项的系数化1,在括号内进行配方,变形可得答案. 【详解】解:21213y x x =+-, =21(6)13x x +-, =21(699)13x x ++--, =21(3) 4.3x +- ∴顶点坐标是(﹣3,﹣4).故选:C .【点睛】本题考查的是把二次函数的一般式化成顶点式,掌握配方法是解题的关键.2.如图,△ABC 在边长为1个单位的方格纸中,它的顶点在小正方形的顶点位置.如果△ABC 的面积为10,且sinA ,那么点C 的位置可以在( )A. 点C 1处B. 点C 2处C. 点C 3处D. 点C 4处【答案】D【解析】如图:∵AB=5,10ABC S =△, ∴D 4C =4, ∵5sin A =54DC AC AC==,∴5∵在RT △AD 4C 中,D 44C =,AD=8, ∴A 4C 228445+=故答案为D.3.函数y=﹣2x 2先向右平移1个单位,再向下平移2个单位,所得函数解析式是( )A. y=﹣2(x ﹣1)2+2B. y=﹣2(x ﹣1)2﹣2C. y=﹣2(x+1)2+2D. y=﹣2(x+1)2﹣2 【答案】B【解析】【分析】根据函数图像的平移口诀“左加右减,上加下减”即可得出答案.【详解】解:函数y=﹣2x 2先向右平移1个单位可得到:y=﹣2(x-1)2,再向下平移2个单位可得到:y=﹣2(x-1)2-2,故答案选择B.【点睛】本题主要考查图形的平移和二次函数的图像与性质,属于基础知识点,比较简单.4.若双曲线y =3k x -在每一个象限内,y 随x 的增大而减小,则k 的取值范围是( ) A. k ≠3B. k <3C. k ≥3D. k >3【答案】D【解析】【分析】根据反比例函数的性质可解.【详解】∵双曲线y=3k x -在每一个象限内,y 随x 的增大而减小, ∴k-3>0∴k >3故选D .【点睛】本题考查了反比例函数的性质,掌握反比例函数y=k x ,当k >0,双曲线的两支分别位于第一、第三象限,在每一象限内y 随x 的增大而减小;当k <0,双曲线的两支分别位于第二、第四象限,在每一象限内y 随x 的增大而增大.5.已知抛物线y =ax 2+bx +c (a <0)过A (﹣3,0)、O (1,0)、B (﹣5,y 1)、C (5,y 2)四点,则y 1与y 2的大小关系是( )A. y 1>y 2B. y 1=y 2C. y 1<y 2D. 不能确定 【答案】A【解析】【分析】根据A (-3,0)、O (1,0)两点可确定抛物线的对称轴,再根据开口方向,B 、C 两点与对称轴的远近,判断y 1与y 2的大小关系.【详解】解:∵抛物线过A (-3,0)、O (1,0)两点,∴抛物线的对称轴为x=312-+=-1, ∵a <0,抛物线开口向下,离对称轴越远,函数值越小,比较可知C 点离对称轴远,对应的纵坐标值小,即y 1>y 2.故选A .【点睛】此题主要考查了二次函数图象上点的坐标特征,比较抛物线上两点纵坐标的大小,关键是确定对称轴,开口方向,两点与对称轴的远近.6.如图,在ABC 中,D 、E 分别在边AB 、AC 上,//DE BC ,//EF CD 交AB 于F ,那么下列比例式中正确的是( )A. AF DEDF BC= B.DF AFDB DF= C.EF DECD BC= D.AF ADBD AB=【答案】C【解析】【分析】根据平行线分线段成比例定理和相似三角形的性质找准线段的对应关系,对各选项分析判断.【详解】A、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE DEAC BC=,∵CE≠AC,∴AF DEDF BC≠,故本选项错误;B、∵EF∥CD,DE∥BC,∴AF AEDF EC=,AE ADEC BD=,∴AF ADDF BD=,∵AD≠DF,∴DF AFDB DF≠,故本选项错误;C、∵EF∥CD,DE∥BC,∴DE AEBC AC=,EF AECD AC=,∴EF DECD BC=,故本选项正确;D、∵EF∥CD,DE∥BC,∴AD AEAB AC=,AF AEAD AC=,∴AF ADAD AB=,∵AD≠DF,∴AF ADBD AB≠,故本选项错误.故选C.【点睛】本题考查了平行线分线段成比例的运用及平行于三角形一边的直线截其它两边,所得的新三角形与原三角形相似的定理的运用,在解答时寻找对应线段是关健.7.若二次函数y=ax2+bx+c的图象在平面直角坐标系中的位置如图所示,则一次函数y=ax+b与反比例函数y=cx在同一平面直角坐标系的图象可能是()A. B.C. D.【答案】C【解析】【分析】由已知图像判断,,a b c 的符号可得答案.【详解】解:∵二次函数图象开口方向向下,∴a <0, ∵对称轴为直线02b x a =->, ∴b >0,∵与y 轴的正半轴相交,∴c >0,∴y =ax +b 的图象经过第一、二、四象限,反比例函数c y x=图象在第一三象限, 只有C 选项图象符合.故选:C .【点睛】本题考查系数与二次函数,一次函数与反比例函数的图像的关系,掌握三种函数的性质是解题的关键.8.已知二次函数()20y ax bx c a =++≠的图象如图所示,下列结论:①0abc >,②20a b +<,③420a b c -+<,④20a b c ++>,其中正确结论的个数为( )A. 4个B. 3个C. 2个D. 1个【答案】B【解析】【分析】由抛物线的开口方向、对称轴、与y 轴的交点位置,可判断a 、b 、c 的符号,可判断①,利用对称轴可判断②,由当x=-2时的函数值可判断③,当x=1时的函数值可判断④,从而得出答案.【详解】解:∵抛物线开口向下,与y 轴的交点在x 轴上方,∴a <0,c >0,∵0<-2b a <1,∴b >0,且b <-2a ,∴abc <0,2a+b <0,故①不正确,②正确; ∵当x=-2时,y <0,∴4a-2b+c <0,故③正确;∵当x=1时,y >0,∴a+b+c >0,又c >0,∴a+b+2c >0,故④正确;综上可知正确的有②③④,故选:B .【点睛】本题主要考查二次函数图象与系数之间的关系,解题关键是注意掌握数形结合思想的应用. 9.如图,在等腰直角三角形ABC 中,∠C =90°,AC =6,D 是BC 上一点,若tan ∠DAB =15,则AD 的长为( )A. 22B. 13C. 213D. 8【答案】C【解析】【分析】 过点D 作DE ⊥AB 于点E ,由等腰直角三角形的性质可得AB=62,∠B=45°,可得DE=BE ,由题意可得AE=5DE ,即可求AE ,DE 的值,由勾股定理可求AD 的长.【详解】解:如图,过点D 作DE ⊥AB 于点E ,∵等腰直角三角形ABC 中,∠C=90°,AC=6,∴2B=45°,且DE ⊥AB∴∠EDB=∠B=45°,∴DE=BE ,∵tan ∠DAB=15=DE AE , ∴AE=5DE , ∵AB=AE+BE=5DE+DE=6DE=62∴DE=2,AE=52∴AD=22AE DE +=213故选C . 【点睛】本题考查了解直角三角形的应用,等腰直角三角形的性质,勾股定理,添加恰当辅助线构造直角三角形是本题的关键.10.如图,在四边形ABCD 中,//,AD BC A ∠为直角,动点P 从点A 开始沿A B C D →→→的路径匀速前进D ,在这个过程中,APD ∆的面积S 随时间t 的变化过程可以用图像近似的表示为( )A. B. C. D.【答案】B【解析】【分析】根据点P 的运动过程可知:△APD 的底边为AD ,而且AD 始终不变,点P 到直线AD 的距离为△APD 的高,根据高的变化即可判断S 与t 的函数图象.【详解】设点P 到直线AD 的距离为h ,∴△APD 的面积为:S=12AD ⋅h , 当P 在线段AB 运动时,此时h 不断增大,S 也不端增大当P 在线段BC 上运动时,此时h不变,S也不变,当P在线段CD上运动时,此时h不断减小,S不断减少,又因为匀速行驶且CD>AB,所以在线段CD上运动的时间大于在线段AB上运动的时间故选B.【点睛】本题考查函数图象问题,熟练掌握计算法则是解题关键.二、填空题11.如果2a=5b(b≠0),那么ab=_____.【答案】5 2【解析】【分析】利用比例的基本性质可得答案.【详解】解:∵2a=5b(b≠0),∴5.2 ab=故答案为:5 2【点睛】本题考查的是比例的基本性质,掌握基本性质是解题的关键.12.如图,已知双曲线kyx=(k<0)经过直角三角形OAB斜边OA的中点D,且与直角边AB相交于点C,若点A的坐标为(﹣6,4),则△AOC的面积为_____.【答案】9【解析】【分析】要求△AOC的面积,已知OB为高,只要求AC长,即点C的坐标即可,由点D为三角形OAB斜边OA的中点,且点A 的坐标(﹣6,4),可得点D 的坐标为(﹣3,2),代入双曲线()0k y k x=<可得k ,又AB ⊥OB ,所以C 点的横坐标为﹣6,代入解析式可得纵坐标,继而可求得面积. 【详解】解:∵点D 为△OAB 斜边OA 的中点,且点A 的坐标(﹣6,4),∴点D 的坐标为(﹣3,2),把(﹣3,2)代入双曲线()0k y k x =< 可得k =﹣6,即双曲线解析式为6y x =-,∵AB ⊥OB ,且点A 的坐标(﹣6,4),∴C 点的横坐标为﹣6,代入解析式6y x =-,y =1,即点C 坐标为(﹣6,1),∴AC =3,又∵OB =6,∴S △AOC =12×AC×OB =9. 故答案为9.【点睛】本题考查反比例函数系数k 的几何意义及其函数图象上点的坐标特征,体现了数形结合的思想. 13.如图,D 、E 分别是△ABC 的边AB 、BC 上的点,DE ∥AC ,若S △BDE :S △CDE =1:3,则S △DOE :S △AOC 的值为_____.【答案】1:16 【解析】【分析】证明BE:EC=1:3,进而证明BE:BC=1:4;证明△DOE∽△AOC,得到DE BEAC BC==14,借助相似三角形的性质即可解决问题.【详解】∵S△BDE:S△CDE=1:3,∴BE:EC=1:3;∴BE:BC=1:4;∵DE∥AC,∴△BDE∽△BAC,△DOE∽△AOC,∴DE BEAC BC==14,∴S△DOE:S△AOC=(DEAC)2=116;故答案为:1:16.【点睛】本题主要考查了相似三角形的判定及其性质的应用问题;解题的关键是灵活运用形似三角形的判定及其性质来分析、判断、推理或解答.14.在矩形ABCD中,AB=5,BC=12.点P在矩形ABCD的内部,点E在边BC上,满足△PBE∽△DBC,若△APD 是等腰三角形,则PE的长为_____.【答案】52或513【解析】【分析】根据点E在边BC上,满足△PBE∽△DBC,△APD是等腰三角形的要求,存在两种情况,分别作图,利用两三角形相似的性质进行计算即可.详解】①如图,若△APD是等腰三角形,则AP=DP△PBE∽△DBC DC=AB=512PE PB DC DB ∴== 5PE 2∴=②如图,若△APD 是等腰三角形,则AD=DP=BC=12PB=BD-DP=13-12=1△PBE∽△DBC113PE PB DC DB ∴== 5PE 13∴= 故答案为52 或 513【点睛】此题重点考察学生对矩形的实际应用能力,抓住题目中的要求分别作图,利用两三角形相似的性质是解题的关键.三、解答题15.计算:201921(1)()0322sin6---︒+ 【答案】133-【解析】分析】根据实数的性质即可化简求解. 【详解】201921(1)()0322sin6---︒+ =-1-4×33=-1-233=133-【点睛】此题主要考查实数的运算,解题的关键是熟知实数的性质.16.已知:△ABC三个顶点的坐标分别为A(﹣2,﹣2),B(﹣5,﹣4),C(﹣1,﹣5).(1)画出△ABC关于x轴对称的△A1B1C1;(2)以点O为位似中心,将△ABC放大为原来的2倍,得到△A2B2C2,请在网格中画出△A2B2C2.(3)①点B1的坐标为;②求△A2B2C2的面积.【答案】(1)详见解析;(2)详见解析;(3)①(﹣5,4);②22【解析】【分析】(1)分别作出点A、B、C关于x轴的对称点,再首尾顺次连接即可得;(2)根据位似变换的概念作出三个顶点在第一象限的对应点,再首尾顺次连接即可得;B的坐标,②由所作图形和割补法求解可得.(3)①由图像直接写出1【详解】解:(1)如图所示,△A1B1C1即为所求.(2)如图所示,△A2B2C2即为所求.(3)①由图知点B1的坐标为(﹣5,4);②△A2B2C2的面积为8×6﹣12×2×6﹣12×6×4﹣12×2×8=22.故答案为:(﹣5,4).【点睛】本题主要考查作图-位似变换、轴对称变换,解题的关键是掌握位似变换和轴对称变换的概念与性质,并据此得出变换后的对应点.17.如图,在平面直角坐标系中,一次函数y=kx+b的图象与x轴交于点A(﹣1,0),与反比例函数y=mx在第一象限内的图象交于点B(12,n).连接OB,若S△AOB=1.(1)求反比例函数与一次函数的关系式;(2)直接写出不等式组xmkx bx>⎧⎪⎨>+⎪⎩的解集.【答案】(1) y=1x,y=43x+43;(2) 0<x<12.【解析】【分析】(1)由S△AOB=1与OA=1,即可求得A与B的坐标,则可利用待定系数法即可求得反比例函数与一次函数的关系式;(2)根据图象可得在第一象限且反比例函数的函数值大于一次函数的函数值部分.【详解】解:(1)由题意得OA=1.∵S△AOB=1,∴12×1×n=1,解得:n=2,∴B点坐标为(12,2),代入y=mx得:m=1,∴反比例函数关系式为y=1x;∵一次函数的图象过点A、B,把A、B点坐标代入y=kx+b得:122k bk b-+=⎧⎪⎨+=⎪⎩,解得:4343kb⎧=⎪⎪⎨⎪=⎪⎩,∴一次函数的关系式为y=43x+43;(2)由图象可知,不等式组的解集为:0<x<12.【点睛】本题考查了一次函数与反比例函数的知识.注意待定系数法与数形结合思想的应用.18.如图,在△ABC中,点P、D分别在边BC、AC上,PA⊥AB,垂足为点A,DP⊥BC,垂足为点P,AP BPPD CD=.(1)求证:∠APD=∠C;(2)如果AB=3,DC=2,求AP的长.【答案】(1)见解析;(23【解析】【分析】(1)通过证明Rt△ABP∽Rt△PCD,可得∠B=∠C,∠APB=∠CDP,由外角性质可得结论;(2)通过证明△APC∽△ADP,可得=AP ADAC AP,即可求解.【详解】证明:(1)∵PA⊥AB,DP⊥BC,∴∠BAP=∠DPC=90°,∵=AP BPPD CD∴=AP PDBP CD,∴Rt△ABP∽Rt△PCD,∴∠B=∠C,∠APB=∠CDP,∵∠DPB =∠C+∠CDP =∠APB+∠APD ,∴∠APD =∠C ;(2)∵∠B =∠C ,∴AB =AC =3,且CD =2,∴AD =1,∵∠APD =∠C ,∠CAP =∠PAD ,∴△APC ∽△ADP , ∴=AP AD AC AP, ∴AP 2=1×3=3 ∴AP =3.【点睛】本题考查了相似三角形的判定和性质,熟练掌握和应用是解题的关键.19.随着中国经济的快速发展以及科技水平的飞速提高,中国高铁正迅速崛起.高铁大大缩短了时空距离,改变了人们的出行方式.如图,A ,B 两地被大山阻隔,由A 地到B 地需要绕行C 地,若打通穿山隧道,建成A ,B 两地的直达高铁,可以缩短从A 地到B 地的路程.已知:∠CAB=30°,∠CBA=45°,AC=640公里,求隧道打通后与打通前相比,从A 地到B 地的路程将约缩短多少公里?(参考数据:3≈1.7,2≈1.4)【答案】224【解析】【分析】过点C 作CD ⊥AB 于点D ,利用锐角三角函数的定义求出CD 及AD 的长,进而可得出结论.【详解】过点C 作CD ⊥AB 于点D ,在Rt △ADC 和Rt △BCD 中,∵∠CAB=30°,∠CBA=45°,AC=640, ∴3203203CD AD ==,,∴3203202BD CD BC===,,∴64032021088AC BC+=+≈,∴3203320864AB AD BD=+=+≈,∴1088﹣864=224(公里),答:隧道打通后与打通前相比,从A地到B地的路程将约缩短224公里.【点睛】本题考查的是解直角三角形的应用﹣方向角问题,解题的关键是学会添加常用辅助线,构造直角三角形解决问题,需要熟记锐角三角函数的定义.20.如图,△ABC中,AB=AC=13,BD⊥AC于点D,sin A=12 13(1)求BD的长;(2)求tan C的值.【答案】(1)12;(2)3 2【解析】【分析】(1)根据三角函数得出BD=12即可;(2)利用勾股定理得出AD=5,进而得出DC=8,利用三角函数解答即可.【详解】解:(1)∵△ABC中,AB=AC=13,BD⊥AC于点D,sin A=12 13∴12,13 BDAB=即12, 1313 BD=解得:BD=12;(2)∵AC=AB=13,BD=12,BD⊥AC,∴AD=5,∴DC=8,∴tan∠C=123.82 BDDC==【点睛】此题考查解直角三角形问题,关键是根据三角函数得出BD的值.21.如图1,在平面直角坐标系中,抛物线y=ax2+bx+3(a≠0)与x轴分别交于A(﹣3,0),B两点,与y 轴交于点C,抛物线的顶点E(﹣1,4),对称轴交x轴于点F.(1)请直接写出这条抛物线和直线AE、直线AC的解析式;(2)连接AC、AE、CE,判断△ACE的形状,并说明理由;(3)如图2,点D是抛物线上一动点,它的横坐标为m,且﹣3<m<﹣1,过点D作DK⊥x轴于点K,DK分别交线段AE、AC于点G、H.在点D的运动过程中,①DG、GH、HK这三条线段能否相等?若相等,请求出点D的坐标;若不相等,请说明理由;②在①的条件下,判断CG与AE的数量关系,并直接写出结论.【答案】(1)y=﹣x2﹣2x+3;y=2x+6,y=x+3;(2)直角三角形,见解析;(3)①相等,(﹣2,3);②AE =2CG【解析】【分析】(1)设顶点式,将A点坐标代入,再化为一般式,根据常数项等于3即可求出a的值,由此可得抛物线解析式,设直线AE和AC的解析式,再分别将A点、E点代入即可求出直线AE的解析式,将A点、C点代入即可求出直线AC解析式;(2)分别求出AC2,CE2,AE2,利用勾股定理的逆定理即可判定;(3)①设出点D、G、H的坐标,表示DG、HK、GH长度,先根据DG=HK列出方程求得x值,再据此求得DG、HK、GH长度,即可得解;②分别求出CG和AE的长度,即可得出它们的数量关系.【详解】解:(1)抛物线的表达式为:y=a(x+1)2+4=ax2+2ax+a+4,故a+4=3,解得:a=﹣1,故抛物线的表达式为:y=﹣x2﹣2x+3;=+,设直线AE的解析式为:y kx b将点A (﹣3,0)、E (﹣1,4)的坐标代入一次函数表达式得034k b k b =-+⎧⎨=-+⎩, 解得:26k b =⎧⎨=⎩, 故直线AE 的表达式为:y =2x+6,设直线AC 的解析式为:y mx n =+,将点A (﹣3,0)、C (0,3)的坐标代入一次函数表达式得033m n n =-+⎧⎨=⎩, 解得:13m n =⎧⎨=⎩, 故直线AC 的表达式为:y =x+3;(2)点A 、C 、E 的坐标分别为:(﹣3,0)、(0,3)、(﹣1,4),则AC 2=22(30)(03)--+-=18,CE 2=22(01)(34)++-=2,AE 2=22(31)(04)-++-=20, 故AC 2+CE 2=AE 2,则△ACE 为直角三角形;(3)①设点D 、G 、H 的坐标分别为:(x ,﹣x 2﹣2x+3)、(x ,2x+6)、(x ,x+3),DG =﹣x 2﹣2x+3﹣2x ﹣6=﹣x 2﹣4x ﹣3;HK =x+3;GH =2x+6﹣x ﹣3=x+3;当DG =HK 时,﹣x 2﹣4x ﹣3=x+3,解得:x =﹣2或﹣3(舍去﹣3),故x =﹣2,当x =﹣2时,DG =HK =GH =1,故DG 、GH 、HK 这三条线段相等时,点D 的坐标为:(﹣2,3);②由①的点G 的坐标为:(﹣2,2)CG AE故AE =2CG .【点睛】本题考查求一次函数解析式,求二次函数解析式,勾股定理的逆定理.(1)中熟练掌握求二次函数解析式的几种方法,并能根据已知点坐标灵活运用是解题关键;(2)掌握两点之间距离的计算方法是解题关键;(3)中能表示DG 、GH 、HK 的长度,并依据DG =HK 列出方程是解题关键.22. 某企业设计了一款工艺品,每件的成本是50元,为了合理定价,投放市场进行试销.据市场调查,销售单价是100元时,每天的销售量是50件,而销售单价每降低1元,每天就可多售出5件,但要求销售单价不得低于成本.(1)当销售单价为70元时,每天的销售利润是多少?(2)求出每天的销售利润y (元)与销售单价x (元)之间的函数关系式,并求出自变量的取值范围;(3)如果该企业每天的总成本不超过7000元,那么销售单价为多少元时,每天的销售利润最大?最大利润是多少?(每天的总成本=每件的成本×每天的销售量)【答案】(1)4000;(2)y=-52800275000x x +-=(50≤x≤100);(3)销售单价为82元时,每天的销售利润最大,最大利润为4480元.【解析】【分析】(1)根据“利润=(售价-成本)×销售量”即可求解;(2))根据“利润=(售价-成本)×销售量”即可求得函数关系式,根据售价不小于50元即可确定x 的取值范围;(3)先由“每天的总成本不超过7000元”列出关于x 的不等式50(-5x+550)≤7000,通过解不等式来求x 的取值范围,再把(2)中的二次函数解析式转化为顶点式方程,利用二次函数图象的性质进行解答即可.【详解】解:(1)当销售单价为70元时,每天的销售利润是:[50+(100-70)]×(70-50)=4000(元)(2)由题得 y=[50+5(100-x )](x-50)=-5280027500x x +-由x≥50,100-x≥50得50≤x≤100∴y=-5280027500x x +-(50≤x≤100)(3)∵该企业每天总成本不超过7000元∴50[50+5(100-x )]≤7000解得x≥82由(2)可知50≤x≤100∴82≤x≤100∵抛物线y=-52800275000x x +-=的对称轴为x=80且a =-5<0∴抛物线开口向下,在对称轴右侧,y 随x 增大而减小.∴当x =82时,y 最大=4480,即 销售单价为82元时,每天的销售利润最大,最大利润为4480元.考点:二次函数的应用.23.如图,在△ABC中,AB=AC=10cm,BD⊥AC于点D,BD=8cm.点M从点A出发,沿AC的方向匀速运动,速度为2cm/s;同时直线PQ由点B出发,沿BA的方向匀速运动,速度为1cm/s,运动过程中始终保持PQ∥AC,直线PQ交AB于点P、交BC于点Q、交BD于点F.连接PM,设运动时间为t秒(0<t<5).(1)当t为何值时,四边形PQCM是平行四边形?(2)设四边形PQCM的面积为ycm2,求y与t之间的函数关系式;(3)是否存在某一时刻t,使S四边形PQCM=S△ABC?若存在,求出t的值;若不存在,说明理由;(4)连接PC,是否存在某一时刻t,使点M在线段PC的垂直平分线上?若存在,求出此时t的值;若不存在,说明理由.【答案】(1)当t=103时,四边形PQCM是平行四边形;(2)y=25t2﹣8t+40;(3)不存在;详见解析;(4)t=2017s时,点M在线段PC的垂直平分线上.【解析】【分析】(1)假设PQCM为平行四边形,根据平行四边形的性质得到对边平行,进而得到AP=AM,列出关于t的方程,求出方程的解得到满足题意t的值;(2)根据PQ∥AC,利用相似三角形的性质可得三角形BPQ也为等腰三角形,即BP=PQ=t,用含t的代数式就可以表示出BF,进而得到梯形的高DF=48,5t又点M的运动速度和时间可知点M走过的路程AM=2t,所以梯形的下底CM=10-2t.最后根据梯形的面积公式即可得到y与t的关系式;(3)根据三角形的面积公式,先求出三角形ABC的面积,又根据S四边形PQCM=S△ABC,求出四边形PQCM 的面积,从而得到了y的值,代入第二问求出的y与t的解析式中求出t的值即可;(4)假设存在,则根据垂直平分线上的点到线段两端点的距离相等即可得到MP=MC,过点M作MH垂直AB,由一对公共角的相等和一对直角的相等即可得到△AHM∽△ADB,由相似得到对应边成比例进而用含t的代数式表示出AH和HM的长,再由AP的长减AH的长表示出PH的长,从而在直角三角形PHM中根据勾股定理表示出MP的平方,再由AC的长减AM的长表示出MC的平方,根据两者的相等列出关于t的方程进而求出t的值.【详解】解:(1)假设四边形PQCM 是平行四边形,则PM ∥QC ,∴AP :AB =AM :AC ,∵AB =AC ,∴AP =AM ,即10﹣t =2t , 解得:10,3t =∴当103t =时,四边形PQCM 是平行四边形;(2)∵PQ ∥AC ,∴△PBQ ∽△ABC ,∴△PBQ 为等腰三角形,PQ =PB =t ,∴,BF BP BD BA = 即,810BF t = 解得:4,5BF t = ∴FD =BD ﹣BF =8﹣45t , 又∵MC =AC ﹣AM =10﹣2t , ∴y =12(PQ +MC )•FD =2142(102)(8)840,255t t t t t +--=-+ (3)不存在;∵S △ABC =1110840,22AC BD •=⨯⨯= 当S 四边形PQCM =S △ABC 时,y =2284040,5t t -+= 解得:t =0,或t =20,都不合题意,因此不存在;(4)假设存在某一时刻t ,使得M 在线段PC 的垂直平分线上,则MP =MC ,过M 作MH ⊥AB ,交AB 与H ,如图所示:∵∠A =∠A ,∠AHM =∠ADB =90°,∴△AHM ∽△ADB , ∴,HM AH AM BD AD AB== 又∵AD 221086,-= ∴2,8610HM AH t == ∴86,,55HM t AH t == ∴HP =10﹣t ﹣65t =10﹣115t 在Rt △HMP 中,222281137()(10)44100,555t MP t t t t =+-=-+ 又∵MC 2=2(102)t -=100﹣40t +4t 2,∵MP 2=MC 2, ∴223744100100404,5t t t t -+=-+ 解得1220,017t t ==(舍去), ∴2017t s =时,点M 在线段PC 的垂直平分线上. 【点睛】本题综合考查了平行四边形的性质,三角形相似的判定与性质,垂直平分线的性质以及勾股定理的应用.第二问的解题关键是相似三角形的性质列出关系式,进而求出y 与t 的函数关系式,第三问和第四问都属于探究性试题,需要采用“逆向思维”,都应先假设存在这样的情况,从假设出发作为已知条件,寻找必要条件,从而达到解题的目的.。

【2020精品中考数学提分卷】合肥市瑶海区初三二模数学试卷+答案

【2020精品中考数学提分卷】合肥市瑶海区初三二模数学试卷+答案

2020年合肥瑶海区初三二模数学模试卷一、选择题(共10小题,每小题4分,满分40分)1.如图,在数轴上点A所表示的数的绝对值为()A.1 B.﹣1 C.0 D.22.下列计算正确的是()A.a3+a3=2a6B.(﹣a2)3=a6C.a6÷a2=a3D.a5•a3=a83.安徽电网今年来新能源装机发展迅速,截止2018年3月,全省新能源总装机达1190万千瓦,那么1190万用科学记数法可表示为()A.1190×104B.11.9×106C.1.19×107D.1.190×108 4.一元一次不等式2(1+x)>1+3x的解集在数轴上表示为()A.B.C.D.5.下列几何体的左视图既是中心对称又是轴对称图形的是()A.B.C.D.6.如图,平行四边形ABCD中,∠ABC的角平分线交边CD于点E,∠A=130°,则∠BEC 的度数是()A.20°B.25°C.30°D.50°7.为了解班级学生参加体育锻炼的情况,现将九年级(1)班同学一周的体育锻炼情况绘制如图所示的统计图,那么,关于该班同学一周参加体育锻炼时间的说法错误的是()A.中位数是8小时B.众数是8小时C.平均数是8.5小时D.锻炼时间超过8小时的有20人8.如图,点E是矩形ABCD边AD上的一个动点,且与点A、点D不重合,连结BE、CE,过点B作BF∠CE,过点C作CF∠BE,交点为F点,连接AF、DF分别交BC于点G、H,则下列结论错误的是()A.GH=BCB.S∠BGF+S∠CHF=S∠BCFC.S四边形BFCE=AB•ADD.当点E为AD中点时,四边形BECF为菱形9.观察下列等式:∠1=12;∠2+3+4=32;∠3+4+5+6+7=52;∠4+5+6+7+8+9+10=72;…请根据上述规律判断下列等式正确的是()A.1008+1009+…+3025=20162B.1009+1010+…+3026=20172C.1009+1010+…+3027=20182D.1010+1011+…+3028=2019210.如图,在平面直角坐标系中,抛物线y=﹣x2+2x的顶点为A点,且与x轴的正半轴交于点B,P点为该抛物线对称轴上一点,则OP+AP的最小值为()A.B.C.3D.2二、填空题(共4小题,每小题5分,满分20分)11.分解因式:m2n﹣2mn+n=.12.《九章算术》有个题目,大意是:“五只雀、六只燕,共重16两,雀重燕轻,互换其中一只,恰好一样重.”设每只雀、燕的重量分别为x两,y两,可得方程组是.13.关于x的一元二次方程ax2﹣x﹣=0有实数根,则a的取值范围为.14.如图,已知点A(0,4),B(8,0),C(8,4),连接AC,BC得到四边形AOBC,点D在边AC上,连接OD,将边OA沿OD折叠,点A的对应点为点P,若点P到四边形AOBC较长两边的距离之比为1:3,则点P的坐标为三、解答题(共9小题,满分90分)15.先化简:()÷,再从﹣2,﹣1,0,1这四个数中选择一个合适的数代入求值.16.“低碳环保,绿色出行”,自行车逐渐成为人们喜爱的交通工具.某品牌共享自行车在某区域的投放量自2018年逐月增加,据统计,该品牌共享自行车1月份投放了1600辆,3月份投放了2500辆.若该品牌共享自行车前4个月的投放量的月平均增长率相同,求4月份投放了多少辆?17.)如图,在边长为1的小正方形组成的网格中,∠ABC的三个顶点都在格点上.(1)在所给的网格中画出与∠ABC相似(相似比不为1)的∠A1B1C1(画出一个即可);(2)在所给的网格中,将∠ABC绕点C顺时针旋转90°得到∠A2B2C,画出∠A2B2C,并直接写出在此旋转过程中点A经过的路径长.18.如图,一艘轮船以每小时40海里的速度在海面上航行,当该轮船行驶到B处时,发现灯塔C在它的东北方向,轮船继续向北航行,30分钟后到达A处,此时发现灯塔C在它的北偏东75°方向上,求此时轮船与灯塔C的距离.(结果保留根号)19.如图,一次函数y1=kx+b的图象与反比例函数y2=的图象交于A(2,3),B(6,n)两点.(1)分别求出一次函数与反比例函数的解析式;(2)求∠OAB的面积.20.为进一步促进“美丽校园”创建工作,某校团委计划对八年级五个班的文化建设进行检查,每天随机抽查一个班级,第一天从五个班级随机抽取一个进行检查,第二天从剩余的四个班级再随机抽取一个进行检查,第三天从剩余的三个班级再随机抽取一个进行检查…,以此类推,直到检查完五个班级为止,且每个班级被选中的机会均等(1)第一天,八(1)班没有被选中的概率是;(2)利用网状图或列表的方法,求前两天八(1)班被选中的概率21.如图,BC为∠O的直径,点D在∠O上,连结BD、CD,过点D的切线AE与CB的延长线交于点A,∠BCD=∠AEO,OE与CD交于点F.(1)求证:OF∠BD;(2)当∠O的半径为10,sin∠ADB=时,求EF的长.22.如图,在平面直角坐标系中,二次函数y=x2+bx+c的图象与x轴交于A、C两点,点A 在点C的右边,与y轴交于点B,点B的坐标为(0,﹣3),且OB=OC,点D为该二次函数图象的顶点.(1)求这个二次函数的解析式及顶点D的坐标;(2)如图,若点P为该二次函数的对称轴上的一点,连接PC、PO,使得∠CPO=90°,请求出所有符合题意的点P的坐标;(3)在对称轴上是否存在一点P,使得∠OPC为钝角,若存在,请直接写出点P的纵坐标为y p的取值范围,若没有,请说明理由.23.如图1,在Rt∠ADE中,∠DAE=90°,C是边AE上任意一点(点C与点A、E不重合),以AC为一直角边在Rt∠ADE的外部作Rt∠ABC,∠BAC=90°,连接BE、CD.(1)在图1中,若AC=AB,AE=AD,现将图1中的Rt∠ADE绕着点A顺时针旋转锐角α,得到图2,那么线段BE.CD之间有怎样的关系,写出结论,并说明理由;(2)在图1中,若CA=3,AB=5,AE=10,AD=6,将图1中的Rt∠ADE绕着点A 顺时针旋转锐角α,得到图3,连接BD、CE.∠求证:∠ABE∠∠ACD;∠计算:BD2+CE2的值.2020年合肥瑶海区初三二模数学试卷参考答案与试题解析一、选择题(共10小题,每小题4分,满分40分)1.A 2.D 3.C 4.B 5.D 6.B 7.C 8.B 9.D 10.C 二、填空题(共4小题,每小题5分,满分20分)11.n(m﹣1)212.13.a≥﹣1且a≠0.14.(,3)或(,1)或(2,﹣2).三、解答题(共9小题,满分90分)15.解:原式=•=•=,∵由题意,x不能取1,﹣1,﹣2,∴x取0,当x=0时,原式===1.16.解:设月平均增长率为x,根据题意得1600(1+x)2=2500,解得:x1=0.25=25%,x2=﹣2.25(不合题意,舍去),∴月平均增长率为25%,∴4月份投放了2500(1+x)=2500×(1+25%)=3125.答:4月份投放了3125辆.17.解:(1)如图所示:△A1B1C1,即为所求;(2)如图所示:△A2B2C,即为所求,点A经过的路径长为:=π.18.解:过点A作AD⊥BC于点D.由题意,AB=×40=20(海里)∵∠PAC=∠B+∠C,∴∠C=∠PAC﹣∠B=75°﹣45°=30°,在Rt△ABD中,sin B=,∴AD=AB•sin B=20×=10(海里),在Rt△ACD中,∵∠C=30°,∴AC=2AD=20(海里),答:此时轮船与灯塔C的距离为20海里.19.解:(1)∵反比例函数y2=的图象过A(2,3),B(6,n)两点,∴m=2×3=6n.∴m=6,n=1,∴反比例函数的解析式为y=,B的坐标是(6,1).把A(2,3)、B(6,1)代入y1=kx+b.得:,解得,∴一次函数的解析式为y=﹣x+4.(2)如图,设直线y=﹣x+4与x轴交于C,则C(8,0).S△AOB=S△AOC﹣S△BOC=×8×3﹣×8×1=12﹣4=8.20.解:(1)第一天,八(1)班没有被选中的概率是.故答案为.(2)由树状图可知,一共有20种可能,八(1)班被选中的可能有8种可能,∴前两天八(1)班被选中的概率为=.21.(1)证明:连接OD,如图,∵AE与ʘO相切,∴OD⊥AE,∴∠ADB+∠ODB=90°,∵BC为直径,∴∠BDC=90°,即∠ODB+∠ODC=90°,∴∠ADB=∠ODC,∵OC=OD,∴∠ODC=∠C,而∠BCD=∠AEO,∴∠ADB=∠AEO,∴BD∥OF;(2)解:由(1)知,∠ADB=∠E=∠BCD,∴sin C=sin E=sin∠ADB=,在Rt△BCD中,sin C==,∴BD=×20=8,∵OF∥BD,∴OF=BD=4,在Rt△EOD中,sin E==,∴OE=25∴EF=OE﹣OF=25﹣4=21.22.解:(1)∵B(0,﹣3),∴OB=3,∵OB=OC,∴OC=3,∴C(0,﹣3),∴,∴,∴二次函数的解析式为y=x2+2x﹣3=﹣(x﹣1)2﹣4,∴D(﹣1,﹣4);(2)如图,过点P作PQ⊥x轴于点Q,设P(﹣1,p),∵∠COP+∠OPQ=90°,∠CPQ+∠OPQ=90°,∴∠COP=∠CPQ,∴tan∠COP=tan∠CPQ,在Rt△QOP中,tan∠COP=,在Rt△CPQ中,tan∠CPQ=,∴,∴PQ2=CQ×OQ=2(此处可以用射影定理,也可以判断出△CPQ∽△POQ),∵PQ>0,∴PQ=,∴p=或p=﹣,∴P(﹣1,)或(﹣1,﹣);(3)存在这样的点P,理由:如图,由(2)知,y P=时,∠OPC=90°,∵y P=0时,∠OPC是平角,∴当﹣<yP<且y P≠0时,∠OPC是钝角.23.解:(1)结论:BE=CD,BE⊥CD;理由:设BE与AC的交点为点F,BE与CD的交点为点G,如图2.∵∠CAB=∠EAD=90°∴∠CAD=∠BAE.在△CAD和△BAE中,,∴△CAD≌△BAE.∴CD=BE,∠ACD=∠ABE.∵∠BFA=∠CFG,∠BFA+∠ABF=90°,∴∠CFG+∠ACD=90°.∴∠CGF=90°.∴BE⊥CD.(2)①证明:设AE与CD于点F,BE与DC的延长线交于点G,如图3.∵∠CABB=∠EAD=90°∴∠CAD=∠BAE.∵CA=3,AB=5,AD=6,AE=10,∴==2,∴△BAE∽△CAD,②∵△BAE∽△CAD,∴∠AEB=∠CDA,∵∠AFD=∠EFG,∠AFD+∠CDA=90°,∴∠EFG+∠AEB=90°,∴∠DGE=90°.∴DG⊥BE.∴∠AGD=∠BGD=90°.∴CE2=CG2+EG2,BD2=BG2+DG2.∴BD2+CE2=CG2+EG2+BG2+DG2.∵CG2+BG2=CB2,EG2+DG2=ED2,∴BD2+CE2=CB2+ED2=CA2+AB2+AD2+AD2=170.。

2020年安徽省合肥市瑶海区中考数学二模试卷 解析版

2020年安徽省合肥市瑶海区中考数学二模试卷  解析版

2020年安徽省合肥市瑶海区中考数学二模试卷一.选择题(共10小题)1.在﹣3、0、、3中,最大的数是()A.﹣3B.0C.D.32.下列计算正确的是()A.2×32=36B.(﹣2a2b3)3 =﹣6a6b9C.﹣5a5b3c÷15a4b=﹣3ab2c D.(a﹣2b)2 =a2﹣4ab+4b23.某集成电路制造有限公司已于2019年第三季度成功量产了第一代14纳米FinFET工艺,这是国内第一条14nm工艺生产线,已知14nm为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣94.下列图形都是由大小相同的正方体搭成的,其三视图都相同的是()A.B.C.D.5.如图,点A、B分别在直线a、b上,且直线a∥b,以点A为圆心,AB长为半径画弧交直线a于点C,连接BC,若∠2=67°,则∠1=()A.78°B.67°C.46°D.23°6.如表是某班所有同学一周体育锻炼时间的统计情况,请通过表格中的数据可得该班级同学一周参加体育锻炼时间的众数与中位数分别是()锻炼时间(小时)78910人数(人)316147A.8与9B.8与8.5C.16与8.5D.16与10.57.已知点(a,m),(b,n)在反比例函数y=﹣的图象上,且a>b,则()A.m>n B.m<nC.m=n D.m、n的大小无法确定8.在边长为2的正方形ABCD中,点E是AD边上的中点,BF平分∠EBC交CD于点F,过点F作FG⊥AB交BE于点H,则GH的长为()A.B.C.D.9.如图所示,在△ABC中,AB=AC,动点D在折线段BAC上沿B→A→C方向以每秒1个单位的速度运动,过D垂直于BC的直线交BC边于点E.如果AB=5,BC=8,点D 运动的时间为t秒,△BDE的面积为S,则S关于t的函数图象的大致形状是()A.B.C.D.10.如图,菱形ABCD的边长为2,∠ABC=60°,点E、F在对角线BD上运动,且EF=2,连接AE、AF,则△AEF周长的最小值是()A.4B.4+C.2+2D.6二.填空题(共4小题)11.分解因式:3a3﹣12a=.12.命题:“如果|a|=|b|,那么a=b”的逆命题是:(填“真命题”或“假命题”).13.如图,四边形ABCD中,AB⊥AD,点E是BC边的中点,DA平分对角线BD与CD边延长线的夹角,若BD=5,CD=7,则AE=.14.如果二次函数y=x2+b(b为常数)与正比例函数y=2x的图象在﹣1≤x≤2时有且只有一个公共交点,那么常数b的值应为.三.解答题(共9小题)15.计算:2•sin30°+|﹣|+(﹣)﹣1﹣.16.如图,已知A(﹣3,3)、B(﹣4,1)、C(﹣1,1)是平面直角坐标系上的三点.(1)请画出△ABC绕点O逆时针旋转90°后的△A1B1C1;(2)请画出△A1B1C1关于y轴对称△A2B2C2;(3)判断以A、A1、A2为顶点的三角形的形状.(无需说明理由)17.新型冠状病毒肺炎疫情发生后,全社会的积极参与疫情防控工作下,才有了我们的平安复学.为了能在复学前将一批防疫物资送达校园,某运输公司组织了甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱防疫物资,且甲种货车装运900箱防疫物资所用车辆与乙种货车装运600箱防疫物资所用的车辆相等,求甲、乙两种货车每辆车可装多少箱防疫物资?18.化简:+++…+.为了能找到复杂计算问题的结果,我们往往会通过将该问题分解,试图找寻算式中每个式子是否存在某种共同规律,然后借助这个规律将问题转化为可以解决的简单问题.下面我们尝试着用这个思路来解决上面的问题.请你按照这个思路继续进行下去,并把相应横线上的空格补充完整.【分析问题】第1个加数:=﹣;第2个加数:=﹣;第3个加数:=﹣;第4个加数:=﹣;【总结规律】第n个加数:=﹣.【解决问题】请你利用上面找到的规律,继续化简下面的问题.(结果只需化简,无需求出最后得数)+++…+.19.寿春路桥(如图①)横跨合肥市母亲河﹣南淝河,它位于合肥市东西交通主干道寿春路上,建成于1987年年底,为中承式钢筋砼(tong)拱桥,桥的上部结构为2个钢筋混凝土半月形拱肋,如图②是桥拱肋的简化示意图,其中拱宽(弦AB)约100米.(1)在图②中,请你用尺规作图的方法首先找出弧AB所在圆的圆心O,然后确定弧AB、弦AB的中点C、D.(不要写作法,但保留作图痕迹)(2)在图②中,若∠AOB=80°,求该拱桥高CD约为多少米?(结果精确到0.1米,参考数据:sin50°≈0.77,cos50°≈0.6,tan50°≈1.19)20.如图,已知两个全等的等腰三角形如图所示放置,其中顶角顶点(点A)重合在一起,连接BD和CE,交于点F.(1)求证:BD=CE;(2)当四边形ABFE是平行四边形时,且AB=2,∠BAC=30°,求CF的长.21.央视举办的《中国诗词大会》受到广大学生群体广泛关注.某校的诗歌朗诵社团就《中国诗词大会》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中说给信息解答下列问题:(1)本次被调查对象共有人,扇形统计图中被调查者“非常喜欢”等级所对应圆心角的度数为;(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两名女生,其余是男生,从原“不太喜欢”的人中挑选两名学生了解不太喜欢的原因,请用画树状图或列表法求所选取的这两名学生恰好是一男一女的概率.22.随着时代的不断发展,新颖的网络购进逐渐融入到人们的生活中,“拼一拼”电商平台上提供了一种拼团购买方式,当拼团(单数不超过15单)成功后商家将会让利一定的额度给予顾客实惠.现在某商家准备出手一种每件成本25元/件的新产品,经市场调研发现,单价y(单位:元)、日销售量m(单位:件)与拼单数x(单位:单)之间存在着如表的数量关系:拼单数x(单位:单)24812单价y(单位:元)34.5034.0033.0032.00日销售量m(单位:件)687692108请根据以上提供的信息解决下列问题:(1)请直接写出单价y和日销售量m分别与拼单数x之间的一次函数关系式;(2)拼单数设置为多少单时的日销售利润最大,最大的销售利润是多少?(3)在实际销售过程中,厂家希望能有更多的商品出售,因此对电商每销售一件商品厂家就给予电商补助a元(a≤2),那么电商在获得补助之日后日销售利润能够随单数x的增大而增大,那么a的取值范围是什么?23.如图,在等边△ABC中,BD=CE,连接AD、BE交于点F.(1)求∠AFE的度数;(2)求证:AC•DF=BD•BF;(3)连接FC,若CF⊥AD时,求证:BD=DC.参考答案与试题解析一.选择题(共10小题)1.在﹣3、0、、3中,最大的数是()A.﹣3B.0C.D.3【分析】直接利用有理数的比较方法得出答案.【解答】解:在﹣3、0、、3中,最大的数是:3.故选:D.2.下列计算正确的是()A.2×32=36B.(﹣2a2b3)3 =﹣6a6b9C.﹣5a5b3c÷15a4b=﹣3ab2c D.(a﹣2b)2 =a2﹣4ab+4b2【分析】直接利用有理数的混合运算法则以及整式的除法运算法则、积的乘方运算法则分别计算得出答案.【解答】解:A、2×32=18,故此选项错误;B、(﹣2a2b3)3 =﹣8a6b9,故此选项错误;C、﹣5a5b3c÷15a4b=﹣ab2c,故此选项错误;D、(a﹣2b)2 =a2﹣4ab+4b2,正确.故选:D.3.某集成电路制造有限公司已于2019年第三季度成功量产了第一代14纳米FinFET工艺,这是国内第一条14nm工艺生产线,已知14nm为0.000000014米,数据0.000000014用科学记数法表示为()A.1.4×10﹣10B.1.4×10﹣8C.14×10﹣8D.1.4×10﹣9【分析】绝对值小于1的正数也可以利用科学记数法表示,一般形式为a×10﹣n,与较大数的科学记数法不同的是其所使用的是负指数幂,指数由原数左边起第一个不为零的数字前面的0的个数所决定.【解答】解:0.000000014=1.4×10﹣8.故选:B.4.下列图形都是由大小相同的正方体搭成的,其三视图都相同的是()A.B.C.D.【分析】根据三视图的概念逐一判断即可得.【解答】解:A.主视图是3个正方形,左视图是3个正方形,俯视图是3个正方形,故本选项不合题意;B.主视图是3个正方形,左视图是3个正方形,俯视图是3个正方形,故本选项不合题意;C.主视图是3个正方形,左视图是3个正方形,俯视图是3个正方形,故本选项符合题意;D.主视图是3个正方形,左视图是3个正方形,俯视图是3个正方形,故本选项不合题意.故选:C.5.如图,点A、B分别在直线a、b上,且直线a∥b,以点A为圆心,AB长为半径画弧交直线a于点C,连接BC,若∠2=67°,则∠1=()A.78°B.67°C.46°D.23°【分析】在△ABC中,利用等腰三角形的性质及三角形内角和定理可求出∠BAC的度数,由直线a∥b,利用“两直线平行,内错角相等”可求出∠1的度数.【解答】解:在△ABC中,AB=AC,∠ACB=67°,∴∠ABC=∠ACB=67°,∴∠BAC=180°﹣∠ABC﹣∠ACB=180°﹣67°﹣67°=46°.又∵直线a∥b,∴∠1=∠BAC=46°.故选:C.6.如表是某班所有同学一周体育锻炼时间的统计情况,请通过表格中的数据可得该班级同学一周参加体育锻炼时间的众数与中位数分别是()锻炼时间(小时)78910人数(人)316147A.8与9B.8与8.5C.16与8.5D.16与10.5【分析】根据众数和中位数定义进行解答即可.【解答】解:众数:8小时;中位数:9小时,故选:A.7.已知点(a,m),(b,n)在反比例函数y=﹣的图象上,且a>b,则()A.m>n B.m<nC.m=n D.m、n的大小无法确定【分析】根据a、b与0的大小关系利用反比例函数的性质确定答案即可.【解答】解:∵反比例函数y=﹣中k=﹣2<0,∴在每一象限内y随着x的增大而增大,∵点(a,m),(b,n)在反比例函数y=﹣的图象上,且a>b,∴当a>b>0时,m>n>0,当0>a>b时,m>n>0,当a>0>b时,m<0<n,∴m、n的大小无法确定,故选:D.8.在边长为2的正方形ABCD中,点E是AD边上的中点,BF平分∠EBC交CD于点F,过点F作FG⊥AB交BE于点H,则GH的长为()A.B.C.D.【分析】将△ABE绕B点旋转,使AB和BC重合,设△BCG是旋转后的△ABE,证明BE=AE+CF,由勾股定理得BE==,则CF=BE﹣AE=﹣1,易证四边形BCFG与四边形ADFG都是矩形,得出CF=BG=﹣1,GH∥AE,则△BGH∽△BAE,得出=,即可得出结果.【解答】解:∵四边形ABCD是正方形,∴AB=BC,∠BAE=∠BCD=90°,将△ABE绕B点旋转,使AB和BC重合,如图所示:设△BCG是旋转后的△ABE,∴△ABE≌△CBG,∴AE=CG,BE=BG,∠ABE=∠CBG,∠BAE=∠BCG=90°,∴G、C、F三点共线,∵BF是∠EBC的角平分线,∴∠EBF=∠FBC,∴∠ABE+∠EBF=∠GBC+∠FBC,∴∠ABF=∠FBG,∵四边形ABCD是正方形,∴AB=AD=2,AB∥CD,∴∠ABF=∠BFG,∴∠GBF=∠BFG,∴BG=GF,∵GF=CG+CF=AE+CF,BG=BE,∴BE=AE+CF,∵点E是AD边上的中点,∴AE=AD=1,由勾股定理得:BE===,∴CF=BE﹣AE=﹣1,∵四边形ABCD是正方形,FG⊥AB,∴四边形BCFG与四边形ADFG都是矩形,∴CF=BG=﹣1,GH∥AE,∴△BGH∽△BAE,∴=,即=,∴GH=,故选:A.9.如图所示,在△ABC中,AB=AC,动点D在折线段BAC上沿B→A→C方向以每秒1个单位的速度运动,过D垂直于BC的直线交BC边于点E.如果AB=5,BC=8,点D 运动的时间为t秒,△BDE的面积为S,则S关于t的函数图象的大致形状是()A.B.C.D.【分析】分点D在AB上、点D在BC上运动时两种情况,分别求出函数表达式,进而求解.【解答】解:过点A作AH⊥BC,∵AB=AC,∴HB=HC=BC=4,∴cos B==,则sin B=;当点D在AB上时,S=×AE×DE=AD sin B•AD cos B=t2,该函数为开口向上的抛物线;当点D在BC上时,同理可得:S=12﹣(18﹣t)2;该函数为开口向下的抛物线,故选:B.10.如图,菱形ABCD的边长为2,∠ABC=60°,点E、F在对角线BD上运动,且EF=2,连接AE、AF,则△AEF周长的最小值是()A.4B.4+C.2+2D.6【分析】如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小,进而得出△AEF周长的最小值即可.【解答】解:如图作AH∥BD,使得AH=EF=2,连接CH交BD于F,则AE+AF的值最小,即△AEF的周长最小.∵AH=EF,AH∥EF,∴四边形EFHA是平行四边形,∴EA=FH,∵F A=FC,∴AE+AF=FH+CF=CH,∵菱形ABCD的边长为2,∠ABC=60°,∴AC=AB=2,∵四边形ABCD是菱形,∴AC⊥BD,∵AH∥DB,∴AC⊥AH,∴∠CAH=90°,在Rt△CAH中,CH=,∴AE+AF的最小值4,∴△AEF的周长的最小值=4+2=6,故选:D.二.填空题(共4小题)11.分解因式:3a3﹣12a=3a(a+2)(a﹣2).【分析】先提取公因式3a,再对余下的多项式利用平方差公式继续分解.【解答】解:3a3﹣12a=3a(a2﹣4),=3a(a+2)(a﹣2).故答案为:3a(a+2)(a﹣2).12.命题:“如果|a|=|b|,那么a=b”的逆命题是:真命题(填“真命题”或“假命题”).【分析】分析是否为真命题,需要分别分析各题设是否能推出结论,可得答案.【解答】解:“如果|a|=|b|,那么a=b”的逆命题是“如果a=b,那么|a|=|b|”,为真命题,故答案为:真命题.13.如图,四边形ABCD中,AB⊥AD,点E是BC边的中点,DA平分对角线BD与CD边延长线的夹角,若BD=5,CD=7,则AE=6.【分析】取BD中点H,连AH、EH,根据角平分线和直角三角形斜边中线等于斜边一半,可得AH∥DF,又根据三角形中位线定理可得EH∥DC,可得A、H、E三点共线,进而可得AE的长.【解答】解:如图,取BD中点H,连AH、EH,∵AB⊥AD,∴AH=DH=BH=BD=2.5,∴∠HDA=∠HAD,∵DA平分∠FDB,∴∠FDA=∠HDA,∴∠FDA=∠HAD,∴AH∥DF,∵点E是BC边的中点,点H是BD的中点,∴EH∥CD,EH=CD=3.5,∴A、H、E三点共线,∴AE=AH+EH=2.5+3.5=6.故答案为:6.14.如果二次函数y=x2+b(b为常数)与正比例函数y=2x的图象在﹣1≤x≤2时有且只有一个公共交点,那么常数b的值应为﹣3≤b<0或b=1.【分析】分b>0、b=0、b<0三种情况,确定临界点即可求解.【解答】解:①当b>0时,抛物线与y=2x只有一个交点,则联立二次函数与y=2x并整理得:x2﹣2x+b=0,△=4﹣4b=0,解得:b=1;②当b=0时,则抛物线与正比例函数交点为(0,0)和(2,0),即两个交点,不符合题意;③当b<0时,当x=﹣1时,y=2x=﹣2,临界点为(﹣1,﹣2),将(﹣1,﹣2)代入y=x2+b得:﹣2=1+b,解得:b=3,此时抛物线不过(2,4)点,故﹣3≤b<0;故答案为:﹣3≤b<0或b=1.三.解答题(共9小题)15.计算:2•sin30°+|﹣|+(﹣)﹣1﹣.【分析】直接利用特殊角的三角函数值以及绝对值的性质、二次根式的性质分别化简得出答案.【解答】解:原式=2×+﹣2﹣2=1+﹣2﹣2=﹣1﹣.16.如图,已知A(﹣3,3)、B(﹣4,1)、C(﹣1,1)是平面直角坐标系上的三点.(1)请画出△ABC绕点O逆时针旋转90°后的△A1B1C1;(2)请画出△A1B1C1关于y轴对称△A2B2C2;(3)判断以A、A1、A2为顶点的三角形的形状.(无需说明理由)【分析】(1)根据图形旋转的性质画出△A2B2C2即可;(2)根据关于y轴对称的点的坐标特点即可得出结论;(3)根据图形即可得到结论.【解答】解:(1)如图,△A1B1C1即为所求;(2)如图,△A2B2C2即为所求;(3)△AA1A2关是等腰直角三角形.17.新型冠状病毒肺炎疫情发生后,全社会的积极参与疫情防控工作下,才有了我们的平安复学.为了能在复学前将一批防疫物资送达校园,某运输公司组织了甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱防疫物资,且甲种货车装运900箱防疫物资所用车辆与乙种货车装运600箱防疫物资所用的车辆相等,求甲、乙两种货车每辆车可装多少箱防疫物资?【分析】首先乙种货车每辆车可装x箱防疫物资,则甲种货车每辆车可装(x+20)箱防疫物资,根据关键语句“甲种货车装运900箱防疫物资所用车辆与乙种货车装运600箱防疫物资所用的车辆相等”列方程,再解即可.【解答】解:设乙种货车每辆车可装x箱防疫物资,则甲种货车每辆车可装(x+20)箱防疫物资,由题意得:,解得:x=40;经检验x=40是原方程的解,且符合题意.答:乙种货车每辆车可装40箱防疫物资,则甲种货车每辆车可装60箱防疫物资.18.化简:+++…+.为了能找到复杂计算问题的结果,我们往往会通过将该问题分解,试图找寻算式中每个式子是否存在某种共同规律,然后借助这个规律将问题转化为可以解决的简单问题.下面我们尝试着用这个思路来解决上面的问题.请你按照这个思路继续进行下去,并把相应横线上的空格补充完整.【分析问题】第1个加数:=﹣;第2个加数:=﹣;第3个加数:=﹣;第4个加数:=﹣;【总结规律】第n个加数:=﹣.【解决问题】请你利用上面找到的规律,继续化简下面的问题.(结果只需化简,无需求出最后得数)+++…+.【分析】观察前3个加数即可写出第4个加数;通过前4个加数即可发现规律写出第n 个加数;再根据规律即可化简下面的问题.【解答】解:(1)因为第1个加数:=﹣;第2个加数:=﹣;第3个加数:=﹣;所以第4个加数:=﹣;总结规律:所以第n个加数:=﹣.解决问题:原式=﹣+﹣+﹣+…+﹣=﹣=.故答案为:;;.19.寿春路桥(如图①)横跨合肥市母亲河﹣南淝河,它位于合肥市东西交通主干道寿春路上,建成于1987年年底,为中承式钢筋砼(tong)拱桥,桥的上部结构为2个钢筋混凝土半月形拱肋,如图②是桥拱肋的简化示意图,其中拱宽(弦AB)约100米.(1)在图②中,请你用尺规作图的方法首先找出弧AB所在圆的圆心O,然后确定弧AB、弦AB的中点C、D.(不要写作法,但保留作图痕迹)(2)在图②中,若∠AOB=80°,求该拱桥高CD约为多少米?(结果精确到0.1米,参考数据:sin50°≈0.77,cos50°≈0.6,tan50°≈1.19)【分析】(1)根据题意作出图形即可;(2)连接OA,OB,由垂径定理得到OC垂直平分AB且平分∠AOB;解直角三角形即可得到结论.【解答】解:(1)如图所示;(2)连接OA,OB,由垂径定理知:OC垂直平分AB且平分∠AOB;在Rt△AOD中,AD=50米,∠AOD=40°;tan40°=;解得OD≈42.0;sin50°=;∴OD≈64.9;即OC≈64.9;所以CD=OC﹣OD=22.9米.20.如图,已知两个全等的等腰三角形如图所示放置,其中顶角顶点(点A)重合在一起,连接BD和CE,交于点F.(1)求证:BD=CE;(2)当四边形ABFE是平行四边形时,且AB=2,∠BAC=30°,求CF的长.【分析】(1)根据全等三角形的性质得出AB=AC=AD=AE,∠BAC=∠DAE,求出∠BAD=∠CAE,根据全等三角形的判定得出△BAD≌△CAE,即可得出答案;(2)根据平行四边形的性质和全等三角形的性质得出EF=AB=2,解直角三角形求出CH,求出CE,即可求出答案.【解答】(1)证明:∵△ABC≌△ADE,AB=AC,∴AB=AC=AD=AE,∠BAC=∠DAE,∴∠BAC+∠CAD=∠DAE+∠CAD,即∠BAD=∠CAE,在△BAD和△CAE中∴△BAD≌△CAE(SAS),∴BD=CE;(2)解:∵△ABC≌△ADE,∠BAC=30°,∴∠BAC=∠DAE=30°,∵四边形ABFE是平行四边形,∴AB∥CE,AB=EF,由(1)知:AB=AC=AE,∴AB=AC=AE=2,即EF=2,过A作AH⊥CE于H,∵AB∥CE,∠BAC=30°,∴∠ACH=∠BAC=30°,在Rt△ACH中,AH===1,CH===,∵AC=AE,CH⊥CE,∴CE=2CH=2,∴CF=CE﹣EF=2﹣2.21.央视举办的《中国诗词大会》受到广大学生群体广泛关注.某校的诗歌朗诵社团就《中国诗词大会》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中说给信息解答下列问题:(1)本次被调查对象共有50人,扇形统计图中被调查者“非常喜欢”等级所对应圆心角的度数为108°;(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两名女生,其余是男生,从原“不太喜欢”的人中挑选两名学生了解不太喜欢的原因,请用画树状图或列表法求所选取的这两名学生恰好是一男一女的概率.【分析】(1)从两个统计图可得,“B组”的有20人,占调查人数的40%,可求出调查人数;再用“A组”的人数÷被调查的人数×360°即可得到结论;(2)求出“C组”和“D组”人数,即可补全条形统计图;(3)画树状图得出所有等可能的情况数,找出所选两位同学恰好都是男同学的情况数,即可求出所求的概率.【解答】解:(1)20÷40%=50人,360°×=108°,故答案为:50,108°;(2)“C组”人数:50×20%=10(人)50×10%=5人,补全条形统计图如图所示:(3)画树状图如图所示,∵所有等可能的情况有20种,其中所选2位同学恰好一男一女的情况有12种,∴两名学生恰好是一男一女的概率为:=.22.随着时代的不断发展,新颖的网络购进逐渐融入到人们的生活中,“拼一拼”电商平台上提供了一种拼团购买方式,当拼团(单数不超过15单)成功后商家将会让利一定的额度给予顾客实惠.现在某商家准备出手一种每件成本25元/件的新产品,经市场调研发现,单价y(单位:元)、日销售量m(单位:件)与拼单数x(单位:单)之间存在着如表的数量关系:拼单数x(单位:单)24812单价y(单位:元)34.5034.0033.0032.00日销售量m(单位:件)687692108请根据以上提供的信息解决下列问题:(1)请直接写出单价y和日销售量m分别与拼单数x之间的一次函数关系式;(2)拼单数设置为多少单时的日销售利润最大,最大的销售利润是多少?(3)在实际销售过程中,厂家希望能有更多的商品出售,因此对电商每销售一件商品厂家就给予电商补助a元(a≤2),那么电商在获得补助之日后日销售利润能够随单数x的增大而增大,那么a的取值范围是什么?【分析】(1)设单价y与拼单数x之间的一次函数关系式为y=kx+b,根据题意解方程组得到单价y与拼单数x之间的一次函数关系式为y=﹣x+35;设日销售量m与拼单数x之间的一次函数关系式为m=ax+n,根据题意解方程组得到日销售量m与拼单数x 之间的一次函数关系式为m=4x+60;(2)根据题意得到w=(﹣x+35﹣25)(4x+60)=﹣x2+25x+600=﹣(x﹣)2+;由于x取整数且1≤x≤15;于是得到结论;(3)设电商获得补助之日后日销售利润为w′,根据题意得二次函数解析式;根据销售利润随单数x的增大而增大得到结论.【解答】解:(1)设单价y与拼单数x之间的一次函数关系式为y=kx+b,∴,解得:,∴单价y与拼单数x之间的一次函数关系式为y=﹣x+35;设日销售量m与拼单数x之间的一次函数关系式为m=ax+n,∴,解得:,∴日销售量m与拼单数x之间的一次函数关系式为m=4x+60;(2)根据题意得,w=(﹣x+35﹣25)(4x+60)=﹣x2+25x+600=﹣(x﹣)2+;∵x取整数且1≤x≤15;∴当x=12或13时,w最大=756.5元;(3)设电商获得补助之日后日销售利润为w′,根据题意得,w′=﹣x2+25x+600+(4x+60)×a=﹣x2+(25+4a)x+600+60a;销售利润随单数x的增大而增大;所以对称轴x=≥15;解得:a≥;所以:a的取值范围是≤a≤2.23.如图,在等边△ABC中,BD=CE,连接AD、BE交于点F.(1)求∠AFE的度数;(2)求证:AC•DF=BD•BF;(3)连接FC,若CF⊥AD时,求证:BD=DC.【分析】(1)证明△ABD≌△BCE(SAS),得出∠BAD=∠CBE,则∠BFD=∠AFE=∠ABC=60°;(2)证明△ADB∽△BDF,得出,由AB=AC可得出结论;(3)延长BE至H,使FH=AF,连接AH,CH,证明△BAF≌△CAH(SAS),得出∠ABF=∠ACH,CH=BF,可证明AF∥CH,得出,则可得出答案.【解答】解:(1)∵△ABC是等边三角形,∴AB=AC=BC,∠ABD=∠BCE=60°,在△ABD和△BCE中,,∴△ABD≌△BCE(SAS),∴∠BAD=∠CBE,∵∠ADC=∠CBE+∠BFD=∠BAD+∠ABC,∴∠BFD=∠AFE=∠ABC=60°;(2)证明:由(1)知∠BAD=∠DBF,又∵∠ADB=∠BDF,∴△ADB∽△BDF,∴,又AB=AC,∴,∴AC•DF=BD•BF;(3)证明:延长BE至H,使FH=AF,连接AH,CH,由(1)知∠AFE=60°,∠BAD=∠CBE,∴△AFH是等边三角形,∴∠F AH=60°,AF=AH,∴∠BAC=∠F AH=60°,∴∠BAC﹣∠CAD=∠F AH﹣∠CAD,即∠BAF=∠CAH,在△BAF和△CAH中,,∴△BAF≌△CAH(SAS),∴∠ABF=∠ACH,CH=BF,又∵∠ABC=∠BAC,∠BAD=∠CBE,∴∠ABC﹣∠CBE=∠BAC﹣∠BAD,即∠ABF=∠CAF,∴∠ACH=∠CAF,∴AF∥CH,∵∠AFC=90°,∠AFE=60°,∴CF⊥CH,∠CFH=30°,∴FH=2CH,∴FH=2BF,∵FD∥CH,∴,∴BD=DC.。

2020年安徽省合肥市瑶海区中考数学一模试卷

2020年安徽省合肥市瑶海区中考数学一模试卷

2020年安徽省合肥市瑶海区中考数学一模试卷一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.(4分)3-的相反数是( ) A .3B .13C .3-D .13-2.(4分)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )A .B .C .D . 3.(4分)据安徽日报报道,2019年安徽省全年进出口总额为687.3亿美元.其中687.3亿用科学记数法可表示为( ) A .86.87310⨯ B .106.87310⨯ C .116.87310⨯ D .8687.310⨯ 4.(4分)估计273-的运算结果在( )A .1和2之间B .2和3之间C .3和4之间D .4和5之间5.(4分)计算2111x xx x -+-+的结果为( ) A .1-B .1C .11x + D .11x - 6.(4分)2019年第一季度,安徽省某企业生产总值为比2018年同期增长14%,2020年第一季度受新冠肺炎疫情影响,生产总值比2019年同期减少了9%,设2019年和2020年第一季度生产总值的平均增长率为x ,则可列方程( )A .214%9%x =-B .2(1)114%9%x +=+-C .2(1)(114%)(19%)x +=+-D .12(114%)(19%)x +=+-7.(4分)如图,D ,E 分别是ABC ∆的边AB ,AC 的中点,H ,G 是边BC 上的点,且12HG BC =,12ABC S ∆=,则图中阴影部分的面积为( )A .6B .4C .3D .2 8.(4分)校团委组织开展“援助武汉捐款”活动,小慧所在的九年级(1)班共40名同学都进行了捐款,已知该班同学捐款的平均金额为10元,而小慧捐款11元,下列说法错误的是( )A .10元是该班同学捐款金额的平均水平B .班上比小慧捐款金额多的人数可能超过20人C .班上捐款金额的中位数一定是10元D .班上捐款金额数据的众数不一定是10元 9.(4分)小明和小亮两人在长为50m 的直道(AB A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点⋯⋯若小明跑步的速度为5/m s ,小亮跑步的速度为4/m s ,则起跑后60s 内,两人相遇的次数为( )A .3B .4C .5D .6 10.(4分)如图所示,已知矩形ABCD ,4AB =,3AD =,点E 为边DC 上不与端点重合的一个动点,连接BE ,将BCE ∆沿BE 翻折得到BEF ∆,连接AF 并延长交CD 于点G ,则线段CG 长度的最大值是( )A .1B .1.5C .45-D .47-二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)因式分解:324x xy -= .12.(5分)如图,在平面直角坐标系中,点A 的坐标为(2,6)-,反比例函数(0)ky x x=<的图象经过线段OA 的中点B ,则k 的值为 .13.(5分)如图,正方形ABCD 的四个顶点分别在扇形OEF 的半径OE ,OF 和EF 上,且点A 是线段OB 的中点,若EF 的长为5π,则OD 长为 .14.(5分)抛物线223y x ax =+-与x 轴交于A ,(1,0)B 两点(点A 在点B 的左侧),与y 轴交于点C ,将抛物线沿y 轴平移(0)m m >个单位,当平移后的抛物线与线段OA 有且只有一个交点时,则m 的取值范围是 . 三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:021(2020)|2sin 45()2--+-︒-.16.(8分)解不等式组:223434x x x +⎧<⎪⎨⎪--⎩①②.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC ∆的顶点均在格点上.(1)将ABC ∆向下平移5个单位再向右平移1单位后得到对应的△111A B C ,画出△111A B C ; (2)画出△111A B C 关于y 轴对称的△222A B C ;(3)(,)P a b 是ABC ∆的AC 边上一点,请直接写出经过两次变换后在△222A B C 中对应的点2P 的坐标.18.(8分)观察下列等式的规律:第1个等式:21121321-=-;第2个等式:21123541-=-;第3个等式:21125761-=-; 第4个等式:21127981-=-;第5个等式:2112911101-=-;⋯⋯按照以上规律,解决下列问题:(1)直接写出第6个等式: ;(2)请写出你猜想的第n 个等式(用含n 的代数式表示),并证明. 五、(本大题共2小题,每小题10分,满分20分) 19.(10分)如表是小安填写的数学实践活动报告的部分内容.题目 测量铁塔顶端到地面的高度 测量 目标 示意图相关数据20CD m =,45α=︒,52β=︒【参考数据:sin520.79︒≈,cos520.62︒≈,tan52 1.28︒≈】20.(10分)(1)如图,在四边形ABCD 中,//AD BC ,90ABC ∠=︒,点P 是边AB 上一点,若PAD CBP ∆∆∽,请利用没有刻度的直尺和圆规,画出满足条件的所有点P ;(2)在(1)的条件下,若8AB =,3AD =,4BC =,则AP 的长是 .六、(本题满分12分) 21.(12分)为调查某市市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A :自行车,B :家庭汽车,C :公交车,D :电动车,E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了 名市民;扇形统计图中,A 项对应的扇形圆心角是 ︒; (2)补全条形统计图;(3)若甲上班时从A 、B 、C 三种交通工具中随机选择一种,乙上班时从B 、C 、D 三种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人都不选B 种交通工具上班的概率. 七、(本题满分12分) 22.(12分)如图,二次函数2(1)3y x n x =-+-+的图象与y 轴交于点A ,与x 轴的负半轴交于点(2,0)B -. (1)求二次函数的解析式; (2)若点P 是这个二次函数图象在第二象限内的一点,过点P 作y 轴的垂线与线段AB 交于点C ,求线段PC 长度的最大值.八、(本题满分14分) 23.(14分)如图1,正方形ABCD 中,点E 是BC 的中点,过点B 作BG AE ⊥于点G ,过点C 作CF 垂直BG 的延长线于点H ,交AD 于点F . (1)求证:ABG BCH ∆≅∆;(2)如图2,连接AH ,连接EH 并延长交CD 于点I . ①求证:2AB AE BH =; ②求DIIC的值.2020年安徽省合肥市瑶海区中考数学一模试卷参考答案一、选择题(本大题共10小题,每小题4分,满分40分)每小题都给出A 、B 、C 、D 四个选项,其中只有一个是正确的. 1.(4分)3-的相反数是( ) A .3B .13C .3-D .13-【解答】解:互为相反数相加等于0, 3∴-的相反数是3. 故选:A . 2.(4分)如图是由两个小正方体和一个圆锥体组成的立体图形,其主视图是( )A .B .C .D . 【解答】解:从正面看,圆锥看见的是:三角形,两个正方体看见的是两个正方形. 故选:B . 3.(4分)据安徽日报报道,2019年安徽省全年进出口总额为687.3亿美元.其中687.3亿用科学记数法可表示为( ) A .86.87310⨯B .106.87310⨯C .116.87310⨯D .8687.310⨯【解答】解:687.3亿用科学记数法可表示为106.87310⨯. 故选:B .4.(4273( ) A .1和2之间B .2和3之间C .3和4之间D .4和5之间【解答】27333323=923163234∴<<, 故选:C .5.(4分)计算2111x xx x -+-+的结果为( ) A .1-B .1C .11x + D .11x - 【解答】解:原式1(1)(1)1x xx x x -=++-+ 111xx x =+++ 11x x +=+ 1=.故选:B . 6.(4分)2019年第一季度,安徽省某企业生产总值为比2018年同期增长14%,2020年第一季度受新冠肺炎疫情影响,生产总值比2019年同期减少了9%,设2019年和2020年第一季度生产总值的平均增长率为x ,则可列方程( )A .214%9%x =-B .2(1)114%9%x +=+-C .2(1)(114%)(19%)x +=+-D .12(114%)(19%)x +=+-【解答】解:设2019年和2020年第一季度生产总值的平均增长率为x ,则可列方程2(1)(114%)(19%)x +=+-,故选:C .7.(4分)如图,D ,E 分别是ABC ∆的边AB ,AC 的中点,H ,G 是边BC 上的点,且12HG BC =,12ABC S ∆=,则图中阴影部分的面积为( )A .6B .4C .3D .2【解答】解:如图,连接DE ,作AF BC ⊥于F ,交DE 于M ,DG 与EH 交于点O ,D ,E 分别是AB ,AC 的中点, DE ∴是ABC ∆的中位线,12DE BC ∴=,//DE BC ,AM FM =,ADE ABC ∴∆∆∽,AM DE ⊥,ADE ∴∆的面积11234=⨯=,∴四边形DBCE 的面积1239=-=,12HG BC =,DE HG ∴=,DOE ∴∆的面积HOG +∆的面积12DE AM ADE =⨯=∆的面积3=,∴图中阴影部分的面积936=-=, 故选:A .8.(4分)校团委组织开展“援助武汉捐款”活动,小慧所在的九年级(1)班共40名同学都进行了捐款,已知该班同学捐款的平均金额为10元,而小慧捐款11元,下列说法错误的是( )A .10元是该班同学捐款金额的平均水平B .班上比小慧捐款金额多的人数可能超过20人C .班上捐款金额的中位数一定是10元D .班上捐款金额数据的众数不一定是10元【解答】解:A 、10元是该班同学捐款金额的平均水平,故选项说法正确.B 、由题意知,10元是同学们捐款的平均数,所以班上比小慧捐款金额多的人数可能超过一半,即20人,故选项说法正确.C 、班上捐款金额的中位数不一定是10元,故选项说法错误.D 、班上捐款金额数据最多的不一定是10元,即10不一定是众数,故选项说法正确. 故选:C . 9.(4分)小明和小亮两人在长为50m 的直道(AB A ,B 为直道两端点)上进行匀速往返跑训练,两人同时从A 点起跑,到达B 点后,立即转身跑向A 点,到达A 点后,又立即转身跑向B 点⋯⋯若小明跑步的速度为5/m s ,小亮跑步的速度为4/m s ,则起跑后60s 内,两人相遇的次数为( ) A .3 B .4 C .5 D .6 【解答】解:设两人起跑后60s 内,两人相遇的次数为x 次,依题意得;每次相遇间隔时间t ,A 、B 两地相距为S ,V 甲、V 乙分别表示小明和小亮两人的速度,则有:)(2V V t S +=乙甲,则250100549t ⨯==+, 则100609x =,解得: 5.4x =,x 是正整数,且只能取整, 5x ∴=. 故选:C .10.(4分)如图所示,已知矩形ABCD ,4AB =,3AD =,点E 为边DC 上不与端点重合的一个动点,连接BE ,将BCE ∆沿BE 翻折得到BEF ∆,连接AF 并延长交CD 于点G ,则线段CG 长度的最大值是( )A .1B .1.5C .45-D .47- 【解答】解:以B 为圆心,BC 长为半径作圆B ,如图所示: 四边形ABCD 是矩形,4CD AB ∴==,3BC AD ==,90BCE ADE ∠=∠=︒, 由折叠的性质得:90BFE BCE ∠=∠=︒,3BF BC ==, BF EF ∴⊥,当AF 与B 相切时,即E ,G 两点重合时,A 、F 、E 三点共线,CG 值最大, 四边形ABCD 是矩形, //AB CD ∴,CEB ABE ∴∠=∠,由折叠的性质得:AEB CEB ∠=∠, ABE AEB ∴∠=∠, 4AE AB ∴==,在Rt ADE ∆中,90ADE ∠=︒,2222437DE AE AD ∴=-=-=, AG ∴的最大值为:47CD DE -=-, 故选:D .二、填空题(本大题共4小题,每小题5分,满分20分) 11.(5分)因式分解:324x xy -= (2)(2)x x y x y +- . 【解答】解:324x xy -,22(4)x x y =-,(2)(2)x x y x y =+-.12.(5分)如图,在平面直角坐标系中,点A 的坐标为(2,6)-,反比例函数(0)ky x x=<的图象经过线段OA 的中点B ,则k 的值为 3- .【解答】解:如图,(2,6)A -,点B 是OA 的中点,(1,3)B ∴-,反比例函数(0)ky x x=<的图象经过线段OA 的中点B , ∴把(1,3)B -代入ky x=得:133k =-⨯=-,故答案为:3-.13.(5分)如图,正方形ABCD 的四个顶点分别在扇形OEF 的半径OE ,OF 和EF 上,且点A 是线段OB 的中点,若EF 的长为5π,则OD 长为 42 .【解答】解:四边形ABCD 是正方形, AD AB ∴=,90DAB ∠=︒, ∴点A 是线段OB 的中点, OA AB ∴=, OA AD ∴=,90OAD DAB ∠=∠=︒, 45EOF ∴∠=︒,EF 的长为5π,∴455180OF ππ=,45OF ∴=, 连接OC ,55OC OF ∴==, 设OA OB BC x ===, 2OB x ∴=,545OC x ∴==, 4x ∴=,4OA AD ∴==, 42OD ∴=, 故答案为:42.14.(5分)抛物线223y x ax =+-与x 轴交于A ,(1,0)B 两点(点A 在点B 的左侧),与y 轴交于点C ,将抛物线沿y 轴平移(0)m m >个单位,当平移后的抛物线与线段OA 有且只有一个交点时,则m 的取值范围是 03m <<或4m = .【解答】解:抛物线223y x ax =+-与x 轴交于A ,(1,0)B 两点(点A 在点B 的左侧),1230a ∴+-=,得1a =,223(3)(1)y x x x x ∴=+-=+-,当0y =时,13x =-,21x =, ∴点A 的坐标为(3,0)-,将抛物线沿y 轴平移(0)m m >个单位,∴平移后的抛物线解析式为2223(1)4y x x m x m =+-+=+-+, ∴当平移后的抛物线过点(0,0)时,20(01)4m =+-+,得3m =,当平移后抛物线的顶点在x 轴上时,抛物线与OA 有一个交点,即20(11)4m =-+-+,得4m =, 将抛物线沿y 轴平移(0)m m >个单位,平移后的抛物线与线段OA 有且只有一个交点,03m ∴<<或4m =,故答案为:03m <<或4m =.三、(本大题共2小题,每小题8分,满分16分) 15.(8分)计算:021(2020)|2|sin 45()2--+-︒-. 【解答】解:原式21242=+⨯- 114=+- 2=-.16.(8分)解不等式组:223434x x x +⎧<⎪⎨⎪--⎩①②.【解答】解:解不等式①,得:4x <, 解不等式②,得:0x ,则不等式组的解集为04x <.四、(本大题共2小题,每小题8分,满分16分) 17.(8分)如图所示,方格纸中的每个小方格都是边长为1个单位长度的正方形,在建立平面直角坐标系后,ABC ∆的顶点均在格点上.(1)将ABC ∆向下平移5个单位再向右平移1单位后得到对应的△111A B C ,画出△111A B C ; (2)画出△111A B C 关于y 轴对称的△222A B C ;(3)(,)P a b 是ABC ∆的AC 边上一点,请直接写出经过两次变换后在△222A B C 中对应的点2P 的坐标.【解答】解:(1)如图所示:△111A B C ,即为所求; (2)如图所示:△222A B C ,即为所求; (3)(,)P a b 是ABC ∆的AC 边上的一点,∴将ABC ∆向右平移1个单位再向下平移5个单位后得到对应的点的坐标为:(1,5)a b +-, (1,5)a b ∴+-关于y 轴对称点的坐标为:(1,5)a b ---.18.(8分)观察下列等式的规律:第1个等式:21121321-=-;第2个等式:21123541-=-;第3个等式:21125761-=-; 第4个等式:21127981-=-;第5个等式:2112911101-=-;⋯⋯按照以上规律,解决下列问题: (1)直接写出第6个等式:21121113121-=- ; (2)请写出你猜想的第n 个等式(用含n 的代数式表示),并证明. 【解答】解:(1)根据题意得,第6个等式:21121113121-=-, 故答案为:21121113121-=-; (2)根据题意得,第n 个等式为:2112212141n n n -=-+-. 证明:左边22112121212121(21)(21)(2)141n n n n n n n n +-+=-====-+-+--右边, ∴2112212141n n n -=-+-. 五、(本大题共2小题,每小题10分,满分20分) 19.(10分)如表是小安填写的数学实践活动报告的部分内容.题目 测量铁塔顶端到地面的高度 测量 目标 示意图相关数据20CD m =,45α=︒,52β=︒求铁塔的高度FE .(结果精确到1米)【参考数据:sin520.79︒≈,cos520.62︒≈,tan52 1.28︒≈】 【解答】解:在Rt DFH ∆中,45α=︒, DH FH ∴=,四边形DCEH 是矩形, DH CE ∴=, FH CE ∴=,设FE x =米,则(20)CE x =-米, 在Rt EFC ∆中,tan 20EF xCE x β==-, 即(20)tan52x x =-︒,解得:91x ≈,答:铁塔FE 的高度约为91米. 20.(10分)(1)如图,在四边形ABCD 中,//AD BC ,90ABC ∠=︒,点P 是边AB 上一点,若PAD CBP ∆∆∽,请利用没有刻度的直尺和圆规,画出满足条件的所有点P ;(2)在(1)的条件下,若8AB =,3AD =,4BC =,则AP 的长是 2或6 .【解答】解:(1)如图所示,点1P 和点2P 即为所求.(2)AB BC ⊥, 90B ∴∠=︒. //AD BC ,18090A B ∴∠=︒-∠=︒, 90PAD PBC ∴∠=∠=︒. 90ADP APD ∴∠+∠=︒, 由(1)知,90CPD ∠=︒, 90APD BPC ∴∠+∠=︒, ADP BPC ∴∠=∠, APD BPC ∴∆∆∽, ∴AD AP BP BC =,即384AP AP =-, 解得:2AP =或6AP =.故答案为:2或6. 六、(本题满分12分) 21.(12分)为调查某市市民上班时最常用的交通工具的情况,随机抽取了部分市民进行调查,要求被调查者从“A :自行车,B :家庭汽车,C :公交车,D :电动车,E :其他”五个选项中选择最常用的一项,将所有调查结果整理后绘制成如下不完整的条形统计图和扇形统计图,请结合统计图回答下列问题.(1)本次调查中,一共调查了 2000 名市民;扇形统计图中,A 项对应的扇形圆心角是 ︒; (2)补全条形统计图;(3)若甲上班时从A 、B 、C 三种交通工具中随机选择一种,乙上班时从B 、C 、D 三种交通工具中随机选择一种,请用列表法或画树状图的方法,求出甲、乙两人都不选B 种交通工具上班的概率. 【解答】解:(1)本次调查的总人数为50025%2000÷=人,扇形统计图中,B 项对应的扇形圆心角是100360182000︒⨯=︒, 故答案为:2000、18;(2)C 选项的人数为2000(100300500300)800-+++=, 补全条形图如下:故答案为:2000、54; (3)列表如下:A B CB(,)A B(,)B B(,)C B C(,)A C (,)B C (,)C C D(,)A D(,)B D(,)C D由表可知共有9种等可能结果,其中甲、乙两人都不选B 种交通工具上班的结果有4种, 所以甲、乙两人都不选B 种交通工具上班的概率为49. 七、(本题满分12分)22.(12分)如图,二次函数2(1)3y x n x =-+-+的图象与y 轴交于点A ,与x 轴的负半轴交于点(2,0)B -. (1)求二次函数的解析式; (2)若点P 是这个二次函数图象在第二象限内的一点,过点P 作y 轴的垂线与线段AB 交于点C ,求线段PC 长度的最大值.【解答】解:(1)二次函数2(1)3y x n x =-+-+的图象与x 轴的负半轴交于点(2,0)B -,20(2)(1)(2)3n ∴=--+-⨯-+,解得,12n =,2132y x x ∴=--+,即二次函数的解析式为2132y x x =--+;(2)2132y x x =--+,∴当0x =时,3y =, ∴点A 的坐标为(0,3),设过点(0,3)A ,(2,0)B -的直线解析式为y kx b =+,320b k b =⎧⎨-+=⎩,得323k b ⎧=⎪⎨⎪=⎩, 即直线AB 的解析式为332y x =+,设点P 的坐标为21(,3)2a a a --+,则点C 的坐标为221(33a a --,213)2a a --+,则222122(1)3333PC a a a a =---=-++,点P 是这个二次函数图象在第二象限内的一点, 20a ∴-<<,∴当1a =-时,线段PC 取得最大值,此时23PC =,即线段PC 长度的最大值是23.八、(本题满分14分) 23.(14分)如图1,正方形ABCD 中,点E 是BC 的中点,过点B 作BG AE ⊥于点G ,过点C 作CF 垂直BG 的延长线于点H ,交AD 于点F . (1)求证:ABG BCH ∆≅∆;(2)如图2,连接AH ,连接EH 并延长交CD 于点I . ①求证:2AB AE BH =; ②求DIIC的值.【解答】(1)证明:如图1中,四边形ABCD 是正方形,AB BC CD AD ∴===,90ABC BCD CDA DAB ∠=∠=∠=∠=︒, 90ABG HBC ∴∠+∠=︒, BG AE ⊥,CF BG ⊥, 90AGB BHC ∴∠=∠=︒, 90BAG ABG ∴∠+∠=︒, BAG HBC ∴∠=∠,()ABG BCH AAS ∴∆≅∆. (2)①证明:如图2中,90ABC BHC ∠=∠=︒, 又BAG CBH ∠=∠, ABE BHC ∴∆∆∽, ∴AB AE BH BC=, AB BC AE BH ∴=, AB BC =,2AB AE BH ∴=.②解:如图2中,延长EI 交AD 的延长线于M ,设2AB a =, BG AE ⊥,CF BG ⊥, //AE CF ∴,四边形ABCD 是正方形, //AF EC ∴,∴四边形AFCE 是平行四边形, AF CE ∴=,12CE BC a ==,2BC AD AB a ===, 12AF AD a ∴==,ABE BHC ∆∆∽, ∴AB BE BH CH =, ∴2BH AB CH==,5CH ∴=,AE AB ==,CFAE ∴==,FH CF CH ∴=-, //EC FM ,∴23EC CH FM FH ===, 32FM a ∴=,12DM FM DF a =-=,//EC DM ,∴1122aDI DM IC EC a ===.。

安徽省合肥市中考数学模拟试卷含答案

安徽省合肥市中考数学模拟试卷含答案

安徽省合肥市中考数学模拟试卷一、选择题(本大题共10小题,共40.0分)1.下列各数中,比小的数是A. B. C. 0 D. 2【答案】A【解析】【分析】本题考查了有理数的大小比较,其方法如下:负数正数;两个负数,绝对值大的反而小.先根据正数都大于0,负数都小于0,可排除C、D,再根据两个负数,绝对值大的反而小,可得比小的数是.【解答】解:根据两个负数,绝对值大的反而小可知.故选A.2.计算的结果是A. B. C. D.【答案】C【解析】解:原式.故选:C.直接利用同底数幂的除法运算法则计算得出答案.此题主要考查了同底数幂的除法运算,正确掌握相关运算法则是解题关键.3.下面四个几何体中,主视图为三角形的是A. B. C. D.【答案】B【解析】解:A、主视图是圆,故A不符合题意;B、主视图是三角形,故B符合题意;C、主视图是矩形,故C不符合题意;D、主视图是正方形,故D不符合题意;故选:B.根据主视图是从正面看得到的图形,可得答案.本题考查了简单组合体的三视图,从正面看得到的图形是主视图.4.安徽省计划到2022年建成54700000亩高标准农田,其中54700000用科学记数法表示为A. B. C. D.【答案】D【解析】解:54700000用科学记数法表示为:.故选:D.科学记数法的表示形式为的形式,其中,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.此题考查科学记数法的表示方法,表示时关键要正确确定a的值以及n的值.5.下列方程中,有两个相等实数根的是A. B. C. D.【答案】A【解析】【试题解析】解:A、,有两个相等实数根;B、,没有实数根;C、,有两个不相等实数根;D、,有两个不相等实数根.故选:A.判断上述方程的根的情况,只要看根的判别式的值的符号就可以了.有两个相等实数根的一元二次方程就是判别式的值是0的一元二次方程.本题考查了根的判别式,总结:一元二次方程根的情况与判别式的关系:方程有两个不相等的实数根;方程有两个相等的实数根;方程没有实数根.6.冉冉的妈妈在网上销售装饰品.最近一周,每天销售某种装饰品的个数为:11,10,11,13,11,13,关于这组数据,冉冉得出如下结果,其中错误的是A. 众数是11B. 平均数是12C. 方差是D. 中位数是13【答案】D【解析】解:数据11,10,11,13,11,13,15中,11出现的次数最多是3次,因此众数是11,于是A选项不符合题意;将这7个数据从小到大排列后,处在中间位置的一个数是11,因此中位数是11,于是D符合题意;,即平均数是12,于是选项B不符合题意;,因此方差为,于是选项C不符合题意;故选:D.根据平均数、众数、中位数、方差的计算方法分别计算这组数据的平均数、众数、中位数、方差,最后做出选择.本题考查平均数、中位数、众数、方差的意义和计算方法,掌握计算方法是得出正确答案的前提.7.已知一次函数的图象经过点A,且y随x的增大而减小,则点A的坐标可以是A. B. C. D.【答案】B【解析】【分析】本题考查了一次函数的性质以及一次函数图象上点的坐标特征,根据点的坐标,利用一次函数图象上点的坐标特征求出k值是解题的关键.由点A的坐标,利用一次函数图象上点的坐标特征求出k值,结合y随x的增大而减小即可确定结论.【解答】解:A、当点A的坐标为时,,解得:,随x的增大而增大,选项A不符合题意;B、当点A的坐标为时,,解得:,随x的增大而减小,选项B符合题意;C、当点A的坐标为时,,解得:,选项C不符合题意;D、当点A的坐标为时,,解得:,随x的增大而增大,选项D不符合题意.故选B.8.如图,中,,点D在AC上,若,,则BD的长度为A.B.C.D. 4【答案】C【解析】解:,,,,,.,,故选:C.在中,由三角函数求得AB,再由勾股定理求得BC,最后在中由三角函数求得BD.本题主要考查了勾股定理,解直角三角形的应用,关键是解直角三角形.9.已知点A,B,C在上,则下列命题为真命题的是A. 若半径OB平分弦AC,则四边形OABC是平行四边形B. 若四边形OABC是平行四边形,则C. 若,则弦AC平分半径OBD. 若弦AC平分半径OB,则半径OB平分弦AC【答案】B【解析】解:A、如图,若半径OB平分弦AC,则四边形OABC不一定是平行四边形;原命题是假命题;B、若四边形OABC是平行四边形,则,,,,,,是真命题;C、如图,若,则弦AC不平分半径OB,原命题是假命题;D、如图,若弦AC平分半径OB,则半径OB不一定平分弦AC,原命题是假命题;故选:B.根据垂径定理,平行四边形的性质判断即可.本题考查的是命题的真假判断,正确的命题叫真命题,错误的命题叫做假命题.判断命题的真假关键是要熟悉课本中的性质定理.10.如图,和都是边长为2的等边三角形,它们的边BC,EF在同一条直线l上,点C,E重合.现将在直线l向右移动,直至点B与F重合时停止移动.在此过程中,设点C移动的距离为x,两个三角形重叠部分的面积为y,则y随x变化的函数图象大致为A. B.C. D.【答案】A【解析】解:如图1所示:当时,过点G作于H.和均为等边三角形,为等边三角形.,.当时,,且抛物线的开口向上.如图2所示:时,过点G作于H.同理,为等边三角形.而,,函数图象为抛物线的一部分,且抛物线开口向上.故选:A.分为、两种情况,然后依据等边三角形的性质和三角形的面积公式可求得y与x的函数关系式,于是可求得问题的答案.本题主要考查的是动点问题的函数图象,求得函数的解析式是解题的关键.二、填空题(本大题共4小题,共20.0分)11.______.【答案】2【解析】解:原式.故答案为:2.直接利用二次根式的性质化简进而得出答案.此题主要考查了实数运算,正确化简二次根式是解题关键.12.分解因式:____________.【答案】【解析】【分析】此题考查了提公因式法与公式法的综合运用,熟练掌握因式分解的方法是解本题的关键.首先将原式提取a,再利用平方差公式分解即可.【解答】解:原式,故答案为:13.如图,一次函数的图象与x轴和y轴分别交于点A和点与反比例函数的图象在第一象限内交于点C,轴,轴.垂足分别为点D,当矩形ODCE与的面积相等时,k的值为______.【答案】2【解析】解:一次函数的图象与x轴和y轴分别交于点A和点B,令,则,令,则,故点A、B的坐标分别为、,则的面积,而矩形ODCE的面积为k,则,解得:舍去或2,故答案为2.分别求出矩形ODCE与的面积,列出关于k的方程,即可求解.本题考查的是反比例函数与一次函数的交点问题,反比例函数k的几何意义,计算矩形ODCE与的面积是解题的关键.14.在数学探究活动中,敏敏进行了如下操作:如图,将四边形纸片ABCD沿过点A的直线折叠,使得点B落在CD上的点Q处.折痕为AP;再将,分别沿PQ,AQ折叠,此时点C,D落在AP上的同一点R处.请完成下列探究:的大小为______;当四边形APCD是平行四边形时,的值为______.【答案】;【解析】【分析】本题考查了翻折变换,平行四边形的性质,直角三角形的性质,熟练运用这些性质解决问题是本题的关键.由折叠的性质可得,,,,,,由平角的性质可得,,可证,由平行线的性质可得,即可求解;由平行四边形和折叠的性质可得,由直角三角形的性质可得,,即可求解.【解答】解:由折叠的性质可得:,,,,,,,,,,,,,,,,故答案为:30;由折叠的性质可得:,,四边形APCD是平行四边形,,,又,,,,,,,,故答案为:.三、解答题(本大题共9小题,共90.0分)15.解不等式:.【答案】解:去分母,得:,移项,得:,合并,得:,系数化为1,得:.【解析】根据解一元一次不等式基本步骤:去分母、移项、合并同类项、系数化为1可得.本题主要考查解一元一次不等式的基本能力,严格遵循解不等式的基本步骤是关键,尤其需要注意不等式两边都乘以或除以同一个负数不等号方向要改变.16.如图,在由边长为1个单位长度的小正方形组成的网格中,给出了以格点网格线的交点为端点的线段AB,线段MN在网格线上.画出线段AB关于线段MN所在直线对称的线段点,分别为A,B 的对应点;将线段绕点顺时针旋转得到线段,画出线段.【答案】解:如图线段即为所求.如图,线段即为所求.【解析】分别作出A,B的对应点,即可.作出点的对应点即可.本题考查作图旋转变换,轴对称变换等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.17.观察以下等式:第1个等式:,第2个等式:,第3个等式:,第4个等式:.第5个等式:.按照以上规律,解决下列问题:写出第6个等式:______;写出你猜想的第n个等式:______用含n的等式表示,并证明.【答案】【解析】解:第6个等式:;猜想的第n个等式:.证明:左边右边,等式成立.故答案为:;.根据题目中前5个等式,可以发现式子的变化特点,从而可以写出第6个等式;把上面发现的规律用字母n表示出来,并运用分式的混合运算法则计算等号的右边的值,进而得到左右相等便可.本题考查数字的变化类,解答本题的关键是明确题意,发现式子的变化特点,写出相应的等式,并证明猜想的正确性.18.如图,山顶上有一个信号塔AC,已知信号塔高米,在山脚下点B处测得塔底C的仰角,塔顶A的仰角,求山高点A,C,D在同一条竖直线上.参考数据:,,【答案】解:由题意,在中,,,,在中,,,,,,米,米,答:山高CD为75米.【解析】根据三角函数的定义和直角三角形的性质解答即可.本题考查了解直角三角形的应用仰角俯角问题,注意方程思想与数形结合思想的应用.19.某超市有线上和线下两种销售方式.与2019年4月份相比,该超市2020年4月份销售总额增长,其中线上销售额增长,线下销售额增长.设2019年4月份的销售总额为a元,线上销售额为x元,请用含a,x的代数式表示2020年4月份的线下销售额直接在表格中填写结果;时间销售总额元线上销售额元线下销售额元2019年4月份a x2020年4月份______求2020年4月份线上销售额与当月销售总额的比值.【答案】解:;依题意,得:,解得:,.答:2020年4月份线上销售额与当月销售总额的比值为.【解析】【分析】本题考查了一元一次方程的应用以及列代数式,找准等量关系,正确列出一元一次方程是解题的关键.由线下销售额的增长率,即可用含a,x的代数式表示出2020年4月份的线下销售额;根据2020年4月份的销售总额线上销售额线下销售额,即可得出关于x的一元一次方程,解之即可得出x的值用含a的代数式表示,再将其代入中即可求出结论.【解答】解:与2019年4月份相比,该超市2020年4月份线下销售额增长,该超市2020年4月份线下销售额为元.故答案为:.见答案.20.如图,AB是半圆O的直径,C,D是半圆O上不同于A,B的两点,,AC与BD相交于点是半圆O所在圆的切线,与AC的延长线相交于点E.求证:≌;若,求证:AC平分.【答案】证明:是半圆O的直径,,在与中,,≌;解:,由知,,是半圆O所在圆的切线,,,由知,,,,,,,平分.【解析】根据圆周角定理得到,根据全等三角形的判定定理即可得到结论;根据等腰三角形的性质得到,根据切线的性质得到,根据三角形的内角和以及角平分线的定义即可得到结论.本题考查了切线的性质,全等三角形的判定和性质,圆周角定理,正确的识别图形是解题的关键.21.某单位食堂为全体960名职工提供了A,B,C,D四种套餐,为了解职工对这四种套餐的喜好情况,单位随机抽取240名职工进行“你最喜欢哪一种套餐必选且只选一种”问卷调查.根据调查结果绘制了条形统计图和扇形统计图,部分信息如下:在抽取的240人中最喜欢A套餐的人数为______,扇形统计图中“C”对应扇形的圆心角的大小为______;依据本次调查的结果,估计全体960名职工中最喜欢B套餐的人数;现从甲、乙、丙、丁四名职工中任选两人担任“食品安全监督员”,求甲被选到的概率.【答案】60 108【解析】解:在抽取的240人中最喜欢A套餐的人数为人,则最喜欢C套餐的人数为人,扇形统计图中“C”对应扇形的圆心角的大小为,故答案为:60、108;估计全体960名职工中最喜欢B套餐的人数为人;画树状图为:共有12种等可能的结果数,其中甲被选到的结果数为6,甲被选到的概率为.用被调查的职工人数乘以最喜欢A套餐人数所占百分比即可得其人数;再由四种套餐人数之和等于被调查的人数求出C对应人数,继而用乘以最喜欢C套餐人数所占比例即可得;用总人数乘以样本中最喜欢B套餐的人数所占比例即可得;画树状图列出所有等可能结果,从中找到符合条件的结果数,利用概率公式求解可得答案.本题考查了列表法与树状图法:利用列表法或树状图法展示所有等可能的结果n,再从中选出符合事件A或B的结果数目m,然后利用概率公式计算事件A或事件B的概率.也考查了统计图.22.在平面直角坐标系中,已知点,,,直线经过点A,抛物线恰好经过A,B,C三点中的两点.判断点B是否在直线上,并说明理由;求a,b的值;平移抛物线,使其顶点仍在直线上,求平移后所得抛物线与y轴交点纵坐标的最大值.【答案】解:点B是在直线上,理由如下:直线经过点,,解得,直线为,把代入得,点在直线上;直线与抛物线都经过点,且B、C两点的横坐标相同,抛物线只能经过A、C两点,把,代入得,解得,;由知,抛物线为,设平移后的抛物线为,其顶点坐标为,顶点仍在直线上,,,抛物线与y轴的交点的纵坐标为q,,当时,平移后所得抛物线与y轴交点纵坐标的最大值为.【解析】本题考查了待定系数法求一次函数的解析式和二次函数的解析式,二次函数的图象与几何变换,二次函数的性质,题目有一定难度.根据待定系数法求得直线的解析式,然后即可判断点在直线上;因为直线经过A、B和点,所以经过点的抛物线不同时经过A、B点,即可判断抛物线只能经过A、C两点,根据待定系数法即可求得a、b;设平移后的抛物线为,其顶点坐标为,根据题意得出,由抛物线与y轴交点的纵坐标为q,即可得出,从而得出q的最大值.23.如图1,已知四边形ABCD是矩形,点E在BA的延长线上,与BD相交于点G,与AD相交于点F,.求证:;若,求AE的长;如图2,连接AG,求证:.【答案】证明:四边形ABCD是矩形,点E在BA的延长线上,,又,,≌,,,即,故BD,解:四边形ABCD是矩形,,,,∽,,即,设,则有,化简得,解得或舍去,.如图,在线段EG上取点P,使得,在与中,,,,≌,,,,为等腰直角三角形,.【解析】本题是四边形综合题,考查了矩形的性质,相似三角形的判定与性质,全等三角形的判定与性质,等腰直角三角形的判定与性质等知识,熟练掌握全等三角形的判定与性质是解题的关键.证明≌,得出,证得,则结论得出;证明∽,得出,即,设,则有,化简得,解方程即可得出答案;在线段EG上取点P,使得,证明≌,得出,,证得为等腰直角三角形,可得出结论.。

2020年中考数学全真模拟试卷10套附答案(适用于安徽省合肥市)

2020年中考数学全真模拟试卷10套附答案(适用于安徽省合肥市)

第 7 页,共 15 页
由圆周角定理可知:∠ADB=90°,求出∠OAD 即可解决问题. 本题考查平行线的性质,圆周角定理等知识,解题的关键是熟练掌握基本知识,属于中 考常考题型.
6.【答案】D
【解析】解:∵不等式组
的解集是 x>-1,
①2m+1>m+2,即 m>1, ∴2m+1=-1 ∴m=-1,与 m>1 矛盾; ②当 2m+1<m+2 时,即 m<1, ∴m+2=-1 ∴m=-3, ∴m 值是-3. 故选:D.
中考数学一模试卷
题号 得分




总分
一、选择题(本大题共 10 小题,共 40.0 分) 1. - 的绝对值是( )
A.
B. -2
C. -
D. 2
2. 计算正确的是( )
A. (-5)0=0
B. x2+x3=x5
C. (ab2)3=a2b5 D. 2a2•a-1=2a
3. 2019 年两会政府工作报告指出:我们要切实把宝贵的资金用好,努力办好人民满 意的交于,托起明天的希望,今年财力虽然很紧张,国家财政性教育经费占国内生
17. 列方程或方程组解应用题: 《九章算术》中有这样一个问题:“五只雀、六只燕,共重 1 斤(等于 16 两), 雀重燕轻,互换其中一只,恰好一样重,问;每只燕、雀的重量各为多少?” 译文如下:有 5 只麻雀和 6 只燕子,一共重 16 两;5 只麻雀的重量超过 6 只燕子 的重量,如果互换其中的一只,重量恰好相等.则每只麻雀、燕子的平均重量分别 为多少两?
二、填空题(本大题共 4 小题,共 20.0 分) 11. 分解因式:(y+2x)2-x2=______. 12. 如图,点 C 是以 AB 为直径的半圆 O 的三等分点,AC=2,

安徽省合肥市瑶海区2020年中考数学二模试卷及参考答案

安徽省合肥市瑶海区2020年中考数学二模试卷及参考答案

安徽省合肥市瑶海区2020年中考数学二模试卷一、单选题1. 在﹣3、0、 、3中,最大的数是( )A . ﹣3B . 0C .D . 32. 下列计算正确的是( )A . 2×3=3B . (﹣2a b )=﹣6a bC . ﹣5a b c÷15a b =﹣3ab cD . (a ﹣2b )=a ﹣4ab+4b 3. 某集成电路制造有限公司已于2019年第三季度成功量产了第一代14纳米FinFET 工艺,这是国内第一条14nm 工艺生产线,已知14nm 为0.000000014米,数据0.000000014用科学记数法表示为( )A . 1.4×B . 1.4×C . 14×D . 1.4×4. 下列图形都是由大小相同的正方体搭成的,其三视图都相同的是( )A .B .C .D .5. 如图,点A 、B 分别在直线a 、b 上,且直线a ∥b ,以点A 为圆心,AB 长为半径画弧交直线a 于点C ,连接BC ,若∠2=67°,则∠1=( )A . 78°B . 67°C . 46°D . 23°6. 如表是某班所有同学一周体育锻炼时间的统计情况,请通过表格中的数据可得该班级同学一周参加体育锻炼时间的众数与中位数分别是( )锻炼时间(小时)78910人数(人)316147A . 8与9B . 8与8.5C . 16与8.5D . 16与10.57. 已知点(a ,m),(b ,n)在反比例函数y =﹣ 的图象上,且a >b ,则( )A . m >nB . m <nC . m =nD . m 、n 的大小无法确定8. 在边长为2的正方形ABCD 中,点E 是AD 边上的中点,BF 平分∠EBC 交CD 于点F ,过点F 作FG ⊥AB 交BE 于点H ,则GH 的长为( )A .B .C .D . 9. 如图所示,在△ABC 中,AB =AC ,动点D 在折线段BAC 上沿B→A→C 方向以每秒1个单位的速度运动,过D 垂直于BC 的直线交BC 边于点E .如果AB =5,BC =8,点D 运动的时间为t 秒,△BDE 的面积为S ,则S 关于t 的函数图象的大致形状是( )A .B .C .D .10. 如图,菱形ABCD 的边长为2 ,∠ABC =60°,点E 、F 在对角线BD 上运动,且EF =2,连接AE 、AF ,则△AE 2623 3 695342 2 22F周长的最小值是( ) A . 4 B . 4+ C . 2+2 D . 6二、填空题11. 分解因式:3a -12a =________.12. 命题:“如果|a|=|b|,那么a =b”的逆命题是:________(填“真命题”或“假命题”).13. 如图,四边形ABCD 中,AB ⊥AD ,点E 是BC 边的中点,DA 平分对角线BD 与CD 边延长线的夹角,若BD =5,CD =7,则AE =________.14. 如果二次函数y =x +b (b 为常数)与正比例函数y =2x 的图象在﹣1≤x≤2时有且只有一个公共交点,那么常数b 的值应为________.三、解答题15. 计算:2•sin30°+|﹣|+(﹣)﹣ .16. 如图,已知A(﹣3,3)、B(﹣4,1)、C(﹣1,1)是平面直角坐标系上的三点.(1) 请画出△ABC 绕点O 逆时针旋转90°后的△A B C ;(2) 请画出△A B C 关于y 轴对称△A B C ;(3) 判断以A、A 、A 为顶点的三角形的形状.(无需说明理由)17. 新型冠状病毒肺炎疫情发生后,全社会的积极参与疫情防控工作下,才有了我们的平安复学.为了能在复学前将一批防疫物资送达校园,某运输公司组织了甲、乙两种货车,已知甲种货车比乙种货车每辆车多装20箱防疫物资,且甲种货车装运900箱防疫物资所用车辆与乙种货车装运600箱防疫物资所用的车辆相等,求甲、乙两种货车每辆车可装多少箱防疫物资?18. 化简:++…+ .为了能找到复杂计算问题的结果,我们往往会通过将该问题分解,试图找寻算式中每个式子是否存在某种共同规律,然后借助这个规律将问题转化为可以解决的简单问题.下面我们尝试着用这个思路来解决上面的问题.请你按照这个思路继续进行下去,并把相应横线上的空格补充完整.(1) (分析问题)第1个加数:=﹣ ;第2个加数:= ﹣;第3个加数:= ﹣ ;第4个加数:= ﹣ ;32﹣111111122212(2)(总结规律)第n个加数:=﹣.(3)(解决问题)请你利用上面找到的规律,继续化简下面的问题.(结果只需化简,无需求出最后得数) + +…+ .19. 寿春路桥(如图①)横跨合肥市母亲河﹣南淝河,它位于合肥市东西交通主干道寿春路上,建成于1987年年底,为中承式钢筋砼(tong)拱桥,桥的上部结构为2个钢筋混凝土半月形拱肋,如图②是桥拱肋的简化示意图,其中拱宽(弦AB)约100米.(1)在图②中,请你用尺规作图的方法首先找出弧AB所在圆的圆心O,然后确定弧AB、弦AB的中点C、D.(不要写作法,但保留作图痕迹)(2)在图②中,若∠AOB=80°,求该拱桥高CD约为多少米?(结果精确到0.1米,参考数据:sin50°≈0.77,cos50°≈0.6,tan50°≈1.19)20. 如图,已知两个全等的等腰三角形如图所示放置,其中顶角顶点(点A)重合在一起,连接BD和CE,交于点F.(1)求证:BD=CE;(2)当四边形ABFE是平行四边形时,且AB=2,∠BAC=30°,求CF的长.21. 央视举办的《中国诗词大会》受到广大学生群体广泛关注.某校的诗歌朗诵社团就《中国诗词大会》节目的喜爱程度,在校内对部分学生进行了问卷调查,并对问卷调查的结果分为“非常喜欢”、“比较喜欢”、“感觉一般”、“不太喜欢”四个等级,分别记作A、B、C、D.根据调查结果绘制出如图所示的扇形统计图和条形统计图,请结合图中说给信息解答下列问题:(1)本次被调查对象共有人,扇形统计图中被调查者“非常喜欢”等级所对应圆心角的度数为;(2)将条形统计图补充完整,并标明数据;(3)若选“不太喜欢”的人中有两名女生,其余是男生,从原“不太喜欢”的人中挑选两名学生了解不太喜欢的原因,请用画树状图或列表法求所选取的这两名学生恰好是一男一女的概率.22. 随着时代的不断发展,新颖的网络购进逐渐融入到人们的生活中,“拼一拼”电商平台上提供了一种拼团购买方式,当拼团(单数不超过15单)成功后商家将会让利一定的额度给予顾客实惠.现在某商家准备出手一种每件成本25元/件的新产品,经市场调研发现,单价y(单位:元)、日销售量m(单位:件)与拼单数x(单位:单)之间存在着如表的数量关系:拼单数x(单位:单)24812单价y(单位:元)34.5034.0033.0032.00日销售量m(单位:件)687692108请根据以上提供的信息解决下列问题:(1)请直接写出单价y和日销售量m分别与拼单数x之间的一次函数关系式;(2)拼单数设置为多少单时的日销售利润最大,最大的销售利润是多少?(3)在实际销售过程中,厂家希望能有更多的商品出售,因此对电商每销售一件商品厂家就给予电商补助a元(a≤2),那么电商在获得补助之日后日销售利润能够随单数x的增大而增大,那么a的取值范围是什么?23. 如图,在等边△ABC中,BD=CE,连接AD、BE交于点F.(1)求∠AFE的度数;(2)求证:AC•DF=BD•BF;(3)连接FC,若CF⊥AD时,求证:BD= DC.参考答案1.2.3.4.5.6.7.8.9.10.11.12.13.14.15.16.17.18.19.20.21.22.23.。

2020年安徽省合肥市瑶海区中考数学二模试卷 (含答案解析)

2020年安徽省合肥市瑶海区中考数学二模试卷 (含答案解析)

2020年安徽省合肥市瑶海区中考数学二模试卷一、选择题(本大题共10小题,共40.0分)1.−2,0,2,−3这四个数中最大的是()A. 2B. 0C. −2D. −32.下列运算正确的是()=−1A. (ab)3=a3bB. −a−ba+bC. a6÷a2=a3D. (a+b)2=a2+b23.“厉害了,华为!”2019年1月7日,华为宣布推出业界最高性能ARM−based处理器—锟鹏920.据了解,该处理器采用7纳米制造工艺.已知1纳米=0.000000001米,则7纳米用科学记数法表示为()A. 7×10−9米B. 7×10−8米C. 7×109米D. 0.7×10−8米4.下列立体图形中,俯视图与主视图不同的是()A. 正方体B. 圆柱C. 圆锥D. 球5.如图,已知直线AB//CD,∠BEG的平分线EF交CD于点F,若∠1=42°,则∠2等于()A. 159°B. 148°C. 142°D. 138°6.初三(1)班体育委员统计本班30名同学体育中考成绩数据如下表所示:成绩252627282930人数2356104则这30名同学成绩的众数和中位数分别是()A. 29,30B. 29,28C. 28,30D. 28,28的图象上,则()7.若点(−5,y1)、(−3,y2)、(3,y3)都在反比例函数y=−3xA. y1>y2>y3B. y2>y1>y3C. y3>y1>y2D. y1>y3>y28.如图,已知正方形ABCD的边长为1,CE平分∠ACD交BD于点E,则DE长()A. √2−1B. √22C. 1D. 1−√229.如图,在边长为4的正方形ABCD中,动点P从A点出发,以每秒1个单位长度的速度沿AB向B点运动,同时动点Q从B点出发,以每秒2个单位长度的速度沿BC→CD方向运动,当P运动到B点时,P、Q两点同时停止运动。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2020年九年级数学中考模拟试卷
一、选择题:
1.下列说法正确的是()
A.有理数的绝对值一定是正数
B.如果两个数的绝对值相等,那么这两个数相等
C.如果一个数是负数,那么这个数的绝对值是它的相反数
D.绝对值越大,这个数就越大
2.下列运算正确的是()
A.a2•a3=a6B.(a2)4=a6C.a4÷a=a3D.(x+y)2=x2+y2
3.据统计部门预测,到2020年武汉市常住人口将达到约14500000人,14500000用科学记数法表示为( )
A.0.145×108
B.1.45×107
C.14.5×106
D.145×105
4.如图是由4个大小相同的小立方块搭成的几何体,这个几何体的俯视图是()
A.
B. C.
D.
5.若x,y的值均扩大为原来的2倍,则下列分式的值保持不变的是()
A.B.
C.
D.
6.若关于x,y的多项式0.4x2y-7mxy+0.75y3+6xy化简后不含二次项,则m=( )
7.某校对全体学生开展心理健康知识测试,七、八、九三个年级共有800名学生,各年级的
年级七年级八年级九年级
合格人数270 262 254
B.八年级的学生人数为262名
C.八年级的合格率高于全校的合格率
D.九年级的合格人数最少
8.如图,在大小为4×4的正方形网格中,是相似三角形的是()
A.①和②
B.②和③
C.①和③
D.②和④
9.如图,把Rt△ABC放在直角坐标系内,其中∠CAB=90°,BC=5,点A、B的坐标分别为(1,0)、(4,0).将△ABC沿x轴向右平移,当点C落在直线y=2x﹣6上时,线段BC扫过的面积为()
A.4
B.8
C.16
D.8
10.如图,圆弧形桥拱的跨度AB=12米,拱高CD=4米,则拱桥的半径为()
A.6.5米 B.9米 C.13米 D.15米
二、填空题:
11.一元一次不等式﹣x≥2x+3的最大整数解是.
12.因式分解:x2﹣49= .
13.如图,正方形ABCD内接于⊙O,AD=2,弦AE平分BC交BC于P,连接CE,则CE的长为.
14.如图所示,一束光线从点A(3,3)出发,经过y轴上的C反射后经过点B(1,0),则光线从A点到B点经过的路线长是.
三、计算题:
15.计算:
16.解方程:3x2+5(2x+1)=0
四、解答题:
17.如图,阴影部分是由5个小正方形组成的一个直角图形,请用四种方法分别在如图方格内添涂黑二个小正方形,使阴影部分成为轴对称图形.
18.已知在直角坐标平面内,抛物线y=x2+bx+c经过点A(2,0)、B(0,6).
(1)求抛物线的表达式;
(2)抛物线向下平移几个单位后经过点(4,0)?请通过计算说明.
19.据调查,超速行驶是引发交通事故的主要原因之一.上周末,小明和三位同学用所学过的知识在一条笔直
的道路上检测车速.如图,观测点C到公路的距离CD为100米,检测路段的起点A位于点C的南偏西60°方向上,终点B位于点C的南偏西45°方向上.某时段,一辆轿车由西向东匀速行驶,测得此车由A处行驶到B处的时间为4秒.问此车是否超过了该路段16米/秒的限制速度?(参考数据:
≈1.4,≈1.7)
20.如图,一次函数y=﹣x+5的图象与反比例函数y=kx-1(k≠0)在第一象限的图象交于A(1,n)和B两点.
(1)求反比例函数的解析式与点B坐标;
(2)求△AOB的面积;
(3)在第一象限内,当一次函数y=﹣x+5的值小于反比例函数y=kx-1(k≠0)的值时,写出自变量x的取值范围.
21.某数学兴趣小组在全校范围内随机抽取了50名同学进行“舌尖上的长沙﹣我最喜爱的长沙小吃”调查活动,将调查问卷整理后绘制成如图所示的不完整条形统计图:
请根据所给信息解答以下问题:
(1)请补全条形统计图;
(2)若全校有2000名同学,请估计全校同学中最喜爱“臭豆腐”的同学有多少人?
(3)在一个不透明的口袋中有四个完全相同的小球,把它们分别标号为四种小吃的序号A、B、C、D,随机地摸出一个小球然后放回,再随机地摸出一个小球,请用列表或画树形图的方法,求出恰好两次都摸到“A”的概率.
五、综合题:
22.在平面直角坐标系中,二次函数y=x2+mx+2m﹣7的图象经过点(1,0).
(1)求抛物线的表达式;
(2)把﹣4<x<1时的函数图象记为H,求此时函数y的取值范围;
(3)在(2)的条件下,将图象H在x轴下方的部分沿x轴翻折,图象H的其余部分保持不变,得到一个新图象M.若直线y=x+b与图象M有三个公共点,求b的取值范围.
23.如图①,在平面直角坐标系中,点A(0,3).点B(-3,0),点C(1,0),点D(0,1).连AB, AC,BD.
(1)求证:BD⊥AC;
(2)如图②,将△BOD绕着点0旋转,得到△B'OD'当点D'落在AC上时,求AB'的长;
(3)试直接写出(2)中点B的坐标.
参考答案1.C
2.C.
3.B
4.A
5.A
6.B
7.D
8.C
9.C
10.A
11.答案为:﹣1
12.答案为:(x﹣7)(x+7).
13.答案为.
14.答案为:2+8.
15.答案略;
16.
17.【解答】解:如图所示:
18.【解答】解:(1)把A(2,0),B(0,6)代入y=x2+bx+c
得解得b=﹣5,c=6,
∴抛物线的表达式为y=x2﹣5x+6
(2)把x=4代入y=x2﹣5x+6得y=16﹣20+6=2.2﹣0=2.
故抛物线向下平移2个单位后经过点(4,0).
19.由题意得,在Rt△BCD中,
∵∠B DC=90°,∠BCD=45°,CD=100米,∴B D=CD=100米.
在Rt△ACD中,∵∠ADC=90°,∠ACD=60°,CD=100米,
∴A D=CD·tan∠
ACD=100(米).∴
AB=AD-BD=100-100≈70(米).∴此车的速度为
(米/秒).∵17.5>16,∴此车超过了该路段16米/秒的限
制速度.
20.
21.【解答】解:(1)根据题意得:喜欢“唆螺”人数为:50﹣(14+21+5)=10(人),
补全统计图,如图所示:
(2)根据题意得:2000××100%=560(人),则估计全校
同学中最喜爱“臭豆腐”的同学有560人;
(3
P=.
22.【解答】解:(1)∵二次函数y=x2+mx+2m﹣7的图象经过点(1,0),
∴1+m+2m﹣7=0,解得m=2.∴抛物线的表达式为y=x2+2x﹣3;
(2)y=x2+2x﹣3=(x+1)2﹣4.
∵当﹣4<x<﹣1时,y随x增大而减小;
当﹣1≤x<1时,y随x增大而增大,∴当x=﹣1,y最小=﹣4.
当x=﹣4时,y=5.∴﹣4<x<1时,y的取值范围是﹣4≤y<5;
(3)y=x2+2x﹣3与x轴交于点(﹣3,0),(1,0).新图象M如右图红色部分.
把抛物线y=x2+2x﹣3=(x+1)2﹣4的图象x轴下方的部分沿x轴翻折到x轴上方,则翻折部分的抛物线解析式为y=﹣(x+1)2+4(﹣3≤x≤1),
当直线y=x+b经过(﹣3,0)时,直线y=x+b与图象M有两个公共点,此时b=3;
当直线y=x+b与抛物线y=﹣(x+1)2+4(﹣3≤x≤1)相切时,直线y=x+b与图象M有两个公共点,
即﹣(x+1)2+4=x+b有相等的实数解,整理得x2+3x+b﹣3=0,△=32﹣4(b﹣3)=0,解得
b=.
结合图象可得,直线y=x+b与图象M有三个公共点,b的取值范围是3<b<
.23.。

相关文档
最新文档