沪科版七年级数学上第一章《有理数》第2节《数轴、相反数和绝对值》例题与讲解
2019年沪科版七年级数学上册第1章-有理数、数轴、相反数、绝对值讲义精选全文完整版
可编辑修改精选全文完整版2019年沪科版7(上)有理数——数轴、相反数、绝对值【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.要点二、有理数的分类(1)按定义分类:(2)按性质符号分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】1.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数. D .正整数和正分数统称正有理数.2.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同;(2)“0的相反数是0”是相反数定义的一部分,不能漏掉;(3)相反数是成对出现的,单独一个数不能说是相反数;(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为2.(1)如果a =-13,那么-a =______;(2) 如果 -a =-5.4,那么a =______;(3) 如果-x =-6,那么x =______;(4) -x =9,那么x =______.3. -4的倒数的相反数是( )A .-4B .4C .-D . 4.填空:(1) -(-2.5)的相反数是 ;(2) 是-100的相反数;(3) 155-是 的相反数; (4) 的相反数是-1.1;(5)8.2和 互为相反数;(6)a 和 互为相反数.(7)______的相反数比它本身大, ______的相反数等于它本身.5. 已知21m -与172m -互为相反数,求m 的值.6.化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)}.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较41411.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .2.法则比较法: 两个数比较大小,按数的性质符号分类,情况如下: 两数同号 同为正号:绝对值大的数大 同为负号:绝对值大的反而小 两数异号正数大于负数 -数为0 正数与0:正数大于0负数与0:负数小于0要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2) 比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)|2.若|a ﹣1|=1﹣a ,则a 的取值范围是( )A. a ≥1B. a ≤1C. a <1D. a >13. 若a >3,则|6﹣2a|= (用含a 的代数式表示).4. 如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .5.化简||||x x x +的结果是 . 6. 比大小:(1) -0.3 31- (2)⎪⎭⎫ ⎝⎛--91 101--.7. 若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来.8. 已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:.9. 已知|a -2|+|b -3|=0,求a -b 的值.10. 已知b 为正整数,且a 、b 满足,求的值.【练习】1、下列说法中,错误的个数有( ).①绝对值是它本身的数有两个:0和1②一个有理数的绝对值必为正数③0.5的倒数的相反数的绝对值是2④任何有理数的绝对值都不是负数A 、1个B 、2个C 、3个D 、4个2、在-(-2.5),3,0,-5,-0.25,中正整数有( ).A .1个B .2个C .3个D .4个3、在数轴上表示-2的点离开原点的距离等于( ).A .2B .-2C .±2D .44、有理数a 在数轴上的位置如图所示:化简1+a 的结果是( )12-A 、b a +B 、1+-aC 、1-aD 、1--a5、若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是( ).A .a >bB .|a |>|b |C .-a <-bD .-a <|b |6、若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则x 2+5(a +b )-8c d =______. 7、若实数a ,b 满足|3a -1|+(b -2)2=0,则a b =______.8、(1)当x =______时,|x -3|+1有最小值为_______;(2)当x =______时,2-|x -1|有最大值为________.9、已知|a|=4,|b|=2,且ab <0,则a +b =_________.10、若|m -n|=n -m ,且|m|=4,|n|=3,则m +n =_________.11、若x =8-,则=x ;若8-=-x ,则x = .12、若a a -=-,则=a .13、13=-x ,则=x .14、如果a <0,b >0且|a|<|b|,则a +b 0.15、已知|x +2|+(2y -3)²=0,求x +2y 的值.【思考题】求的最小值.。
沪科版数学七年级上册1-2 数轴、相反数和绝对值
感悟新知
2.画数轴的步骤
知1-讲
(1)画直线,取原点:在直线上任取一个点表示数 0,
这个点叫做原点 。
(2)标正方向:通常规定直线上从原点向右(或上)为正方
向,从原点向左(或下)为负方向;
感悟新知
知1-讲
(3)选取单位长度,标数: 选取适当的长度为单位长度, 直线上从原点向右,每隔一个单位长度取一个点,依次表示 1,2,3,…;从原点向左,用类似方法依次表示- 1, - 2, - 3,…。
感悟新知
特别警示 在画数轴时常出现以下三种错误:
1.“三要素”不全; 2. 单位长度不统一; 3. 标数时顺序不对 。
知1-练
感悟新知
知识点 2 数轴上的点与有理数的关系
知2-讲
对应关系 都可以用数轴上的点表示
有理数 不都表示有理数
数轴上的点
感悟新知
知2-讲
知识链接 有理数与数轴上的点的对应关系: (1)正有理数可以用数轴上原点右边(或上边)的点表示。 (2)负有理数可以用数轴上原点左边(或下边)的点表示。 (3) 0用原点表示 。
答案:C
感悟新知
知识点 4 绝对值
知4-讲
1. 定义 在数轴上,表示数 a 的点到原点的距离,叫做数 a 的绝对值,记作 | a |,读作“a 的绝对值” 。
感悟新知
2. 性质 一个正数的绝对值是它本身; 一个负数的绝对值是它的相反数; 0 的绝对值是 0。
a( a>0), 即: |a|=ቐ 0( a=0),
感悟新知
画法提醒
知2-练
根据给出的数画数轴,关键要把握两点:
(1) 确定原点的位置,一般地,原点居中,若给出的
正数较多,原点靠左边,若给出的负数较多,原
2019年沪科版七年级数学上册第1章 有理数、数轴、相反数、绝对值讲义
2019年沪科版7(上)有理数——数轴、相反数、绝对值【要点梳理】要点一、正数与负数像+3、+1.5、12+、+584等大于0的数,叫做正数;像-3、-1.5、12-、-584等在正数前面加“-”号的数,叫做负数.要点诠释:(1)一个数前面的“+”“-”是这个数的性质符号,“+”常省略,但“-”不能省略. (2)用正数和负数表示具有相反意义的量时,哪种为正可任意选择,但习惯把“前进、上升”等规定为正,而把“后退、下降”等规定为负.(3)0既不是正数也不是负数,它是正数和负数的“分水岭”.要点二、有理数的分类(1)按定义分类:(2)按性质符号分类:要点诠释:(1)有理数都可以写成分数的形式,整数也可以看作是分母为1的数.(2)分数与有限小数、无限循环小数可以互化,所以有限小数和无限循环小数可看作分数,但无限不循环小数不是分数,例如π.(3)正数和零统称为非负数;负数和零统称为非正数;正整数、0、负整数统称整数.【典型例题】1.下面说法中正确的是( ).A.非负数一定是正数.B.有最小的正整数,有最小的正有理数.C.a-一定是负数. D .正整数和正分数统称正有理数.2.请把下列各数填入它所属于的集合的大括号里.1, 0.0708, -700, -3.88, 0, 3.14159265,723-,.正整数集合:{ …},负整数集合:{ …},整数集合:{ …},正分数集合:{ …},负分数集合:{ …},分数集合:{ …},非负数集合:{ …},非正数集合:{ …}.【要点梳理】要点一、数轴1.定义:规定了原点、正方向和单位长度的直线叫做数轴.要点诠释:(1)原点、正方向和单位长度是数轴的三要素,三者缺一不可.(2)长度单位与单位长度是不同的,单位长度是根据需要选取的代表“1”的线段,而长度单位是为度量线段的长度而制定的单位.有km、m、dm、cm等.(3)原点、正方向、单位长度可以根据实际灵活选定,但一经选定就不能改动.2. 数轴与有理数的关系:任何一个有理数都可以用数轴上的点来表示,但数轴上的点不都表示有理数,还可以表示其他数,比如 .要点诠释:(1)一般地,数轴上原点右边的点表示正数,左边的点表示负数;反过来也对,即正数用数轴上原点右边的点表示,负数用原点左边的点表示,零用原点表示.(2)在数轴上表示的两个数,右边的数总比左边的数大.要点二、相反数1.定义:只有符号不同的两个数互为相反数,0的相反数是0.要点诠释:(1)“只”字是说仅仅是符号不同,其它部分完全相同;(2)“0的相反数是0”是相反数定义的一部分,不能漏掉;(3)相反数是成对出现的,单独一个数不能说是相反数;(4)求一个数的相反数,只要在它的前面添上“-”号即可.2.性质:(1)互为相反数的两数的点分别位于原点的两旁,且与原点的距离相等(这两个点关于原点对称).(2)互为相反数的两数和为0.要点三、多重符号的化简多重符号的化简,由数字前面“-”号的个数来确定,若有偶数个时,化简结果为正,如-{-[-(-4)]}=4 ;若有奇数个时,化简结果为负,如-{+[-(-4)]}=-4 .要点诠释:(1)在一个数的前面添上一个“+”,仍然与原数相同,如+5=5,+(-5)=-5. (2)在一个数的前面添上一个“-”,就成为原数的相反数.如-(-3)就是-3的相反数,因此,-(-3)=3.【典型例题】1.数轴上点A、B的位置如图所示,若点B关于点A的对称点为C,则点C表示的数为2.(1)如果a=-13,那么-a=______;(2) 如果-a=-5.4,那么a =______;(3) 如果-x=-6,那么x=______;(4) -x=9,那么x=______.3. -4的倒数的相反数是( )A .-4B .4C .-D . 4.填空:(1) -(-2.5)的相反数是 ;(2) 是-100的相反数;(3) 155-是 的相反数; (4) 的相反数是-1.1;(5)8.2和 互为相反数;(6)a 和 互为相反数.(7)______的相反数比它本身大, ______的相反数等于它本身.5. 已知21m -与172m -互为相反数,求m 的值.6.化简:(1)﹣{+[﹣(+3)]}; (2)﹣{﹣[﹣(﹣|﹣3|)}.【要点梳理】要点一、绝对值1.定义:一般地,数轴上表示数a 的点与原点的距离叫做数a 的绝对值,记作|a|. 要点诠释:(1)绝对值的代数意义:一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.即对于任何有理数a 都有:(2)绝对值的几何意义:一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大;离原点的距离越近,绝对值越小.(3)一个有理数是由符号和绝对值两个方面来确定的.2.性质:绝对值具有非负性,即任何一个数的绝对值总是正数或0.要点二、有理数的大小比较1.数轴法:在数轴上表示出这两个有理数,左边的数总比右边的数小. 如:a 与b 在数轴上的位置如图所示,则a <b .41412.法则比较法:要点诠释:利用绝对值比较两个负数的大小的步骤:(1)分别计算两数的绝对值;(2) 比较绝对值的大小;(3)判定两数的大小.3. 作差法:设a 、b 为任意数,若a-b >0,则a >b ;若a-b =0,则a =b ;若a-b <0,a <b ;反之成立.4. 求商法:设a 、b 为任意正数,若1a b >,则a b >;若1a b =,则a b =;若1a b<,则a b <;反之也成立. 若a 、b 为任意负数,则与上述结论相反.5. 倒数比较法:如果两个数都大于0,那么倒数大的反而小.【典型例题】1.计算:(1)145-- (2)|-4|+|3|+|0| (3)-|+(-8)|2.若|a ﹣1|=1﹣a ,则a 的取值范围是( )A. a ≥1B. a ≤1C. a <1D. a >13. 若a >3,则|6﹣2a|= (用含a 的代数式表示).4. 如果数轴上的点A 到原点的距离是6,则点A 表示的数为 .如果|x -2|=1,那么x = ;如果|x |>3,那么x 的范围是 .5.化简||||x x x +的结果是 . 6. 比大小: (1) -0.3 31-(2)⎪⎭⎫ ⎝⎛--91 101--.7. 若m >0,n <0,且|m|>|n|,用“>”把m ,-m ,n ,-n 连接起来.8. 已知有理数a ,b ,c 在数轴上对应的点的位置如图所示:化简:.9. 已知|a -2|+|b -3|=0,求a -b 的值.10. 已知b 为正整数,且a 、b 满足,求的值.【练习】1、下列说法中,错误的个数有( ).①绝对值是它本身的数有两个:0和1②一个有理数的绝对值必为正数③0.5的倒数的相反数的绝对值是2④任何有理数的绝对值都不是负数A 、1个B 、2个C 、3个D 、4个2、在-(-2.5),3,0,-5,-0.25,中正整数有( ).A .1个B .2个C .3个D .4个3、在数轴上表示-2的点离开原点的距离等于( ).A .2B .-2C .±2D .44、有理数a 在数轴上的位置如图所示:化简1+a 的结果是( )A 、b a +B 、1+-aC 、1-aD 、1--a5、若两个有理数a 、b 在数轴上表示的点如图所示,则下列各式中正确的是().12-A .a >bB .|a |>|b |C .-a <-bD .-a <|b |6、若a ,b 互为相反数,c ,d 互为倒数,x 的绝对值等于2,则x 2+5(a +b )-8c d =______. 7、若实数a ,b 满足|3a -1|+(b -2)2=0,则a b =______.8、(1)当x =______时,|x -3|+1有最小值为_______;(2)当x =______时,2-|x -1|有最大值为________.9、已知|a|=4,|b|=2,且ab <0,则a +b =_________.10、若|m -n|=n -m ,且|m|=4,|n|=3,则m +n =_________.11、若x =8-,则=x ;若8-=-x ,则x = .12、若a a -=-,则=a .13、13=-x ,则=x .14、如果a <0,b >0且|a|<|b|,则a +b 0.15、已知|x +2|+(2y -3)²=0,求x +2y 的值.【思考题】求的最小值.。
2024七年级数学上册第1章有理数1.2数轴相反数和绝对值第1课时数轴课件新版沪科版
B. -2 023
A. 2 023
C.
)
D. -
1
2
3
4
5
6
7
8
9
10
11
12
13
【点拨】
因为 OA = OB ,点 A 表示的数是2 023,
所以 OB = OA =2 023.
因为点 B 在点 O 左侧,
所以点 B 表示的数为-2 023.
【答案】B
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
6. 如图,数轴的单位长度为1,如果点 A 表示的数是-2,那
么点 B 表示的数是(
A. -1
D
)
B. 0
C. 1
D. 2
【点拨】
根据点 A 表示的数是-2,画出数轴的原点,如图,
则点 B 表示的数为2.故选D.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
知识点3
数轴上点的运动
7. 在数轴上,点 A 表示-2.若从点 A 出发,沿数轴的正方向
4
5
6
7
8
9
10
11
12
13
【点拨】
求较大范围内的整数点时,可类比较小范围内的
情况.由图可知,1 cm长的线段盖住的整数点的个数
为1或2,2 cm长的线段盖住的整数点的个数为2或
3,….故长为1 000 cm的线段盖住的整数点的个数为
1 000或1 001.
1.2 第1课时 数轴课件 (共20张PPT)沪科版(2024)数学七年级上册
A
B
数轴
应用
用数轴上的点表示给定的有理数
根据数轴上的点读出有理数
数形结合解决问题
画法
一画:
二定:
三选:
四统一:
画直线
定原点
选正方向
统一单位长度
定义
单位长度
原点
正方向
1.在数轴上,原点及原点右边的点表示的数是( )A. 正数 B. 负数C. 非正数 D. 非负数
画数轴注意事项:
用数轴上的点表示有理数
数轴上能表示分数或小数吗?
比如你能表示 1.5 吗?
例1 说出图所示的数轴上 A,B,C,D 各点表示的数.
解:点 C 在原点表示 0,
点 A 在原点左边与原点距离 2 个单位长度,故表示 -2.
同理,点 B 表示 -3.5.
点 D 在原点右边与原点距离 2 个单位长度,故表示 2.
C
4.有理数 a,b,c 在数轴上的位置如图所示,则 ( )A. a,b,c 均是正数 B. a,b,c 均是负数C. a,b 是正数,c 是负数 D. a,b 是负数,c 是正数
D
5. 画出数轴并表示下列有理数:
解:如下图所示.
6. 在数轴上,老师不小心把一滴墨水滴在画好的数轴上,如图所示,试根据图中标出的数值判断被墨水盖住的整数,并把它写出来.
2.在数轴上表示 -3 的点与表示 4 的点之间的距离是( )A. 7 B. -7C. 1 D. -1
D
A
3. 下列说法中,正确的是 ( )A. 数轴是一条规定了原点、正方向和单位长度的射线B. 离原点近的点所表示的有理数较小C. 数轴上的点可以表示任意有理数D. 原点在数轴的正中间
e7d195523061f1c0c2b73831c94a3edc981f60e396d3e182073EE1468018468A7F192AE5E5CD515B6C3125F8AF6E4EE646174E8CF0B46FD19828DCE8CDA3B3A044A74F0E769C5FA8CB87AB6FC303C8BA3785FAC64AF5424764E128FECAE4CC72932BB65C8C121A0F41C1707D94688ED66335DC6AE12288BF2055523C0C26863D2CD4AC454A29EEC183CEF0375334B579
七年级上册数学沪科版 第1章 有理数1.2 数轴、相反数和绝对值1.2.1 数轴习题课件
4.在数轴上,到原点的距离是3个单位长度的点所 表示的数是__±__3____.
返回
知识点 1 数轴
1.下列所画数轴正确的是( D )
返回
2.关于数轴,下列说法正确的是( D ) A.数轴必有单位长度、正方向和负方向 B.数轴只含有正数部分和负数部分 C.数轴上的点只能表示整数 D.数轴上的一个点只能表示一个数
原点,则点A所表示的数是__________. 7或-7
点拨 8题 返回
点拨: 点A的位置可能在原点的左边,也可能在原 点的右边.
返回
8.(中考·资阳)如图,已知数轴上的点A,B,C,D分
别表示数-2,1,2,3,点O为原点,则表示3-2
的点2P应落在线段(
) B
3
A.AO上 B.OB上 C.BC上 D.CD上
返回
9.(中考·扬州)若数轴上表示-1和3的两点分别是点A 和点B,则点A和点B之间的距离是( ) D
A.-4 B.-2 C.2 D.4
返回
10.(1)如图,根据数轴上各点的位置,写出它们所表 示的数.
解:点A,B,C,D,E,F所表示的
数分别是0,-1,4 1 ,-2 1,
2,-4.
22
(2)画出数轴并标出表示下列各数的点:
A.1 B.D5 C.1或5 D.1或-5
点拨 13题 返回
点拨: 与点A距离为3个单位长度的点位于其左右两边, 有两种可能.右边的点表示1,左边的点表示பைடு நூலகம்5.
返回
13.如图,数轴上一动点A先向左移动2个单位长度到 达点B,再向右移动5个单位长度到达点C.若点C 表示的数为1,则点A表示的数为( ) D
解: (1)10+14=24,即A,B两点间的距离为24. (2)24÷2=12,14-12=2,即点C表示的数是2. (3)24÷(1+2)=8(s),2×8=16,16-14=2. 由于点D在原点左边,因此点D表示的数是-2.
2024七年级数学上册第1章有理数1.2数轴相反数和绝对值第2课时相反数课件新版沪科版
等于它本身.
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
(3)计算: −{−[−… − (−)…]} +
个负号,是正整数
{
−[−(−… − (−)…)]} .
(−)个负号,是正整数
【解】原式=3-1=2.
返回
1
2
3
4
5
6
7
8
9
10
11
12
沪科版 七年级上
1.2
第1章 有理数
数轴、相反数和绝对值
第2课时 相反数
CONTENTS
目
录
01
名师点金
02
基础题
03
综合应用题
04
创新拓展题
相反数的意义
1. 代数意义:(1)成对出现.(2)只有符号不同,即 a 的相反数
是- a .特殊地:0的相反数是0.
2. 几何意义:数轴上原点两旁且到原点距离相等的两个点所
因为 M -1的相反数是3,所以 M -1=-3,解得 M
=-2.所以- M =2.
返回
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
13. (1)写出下列各数的相反数,并将这些数连同它们的相反
数在数轴上表示出来;
+2,-3,0,-(-1),-3 ,-(+4).
1
2
3
4
5
6
7
8
9
2021秋七年级数学上册第1章有理数1、2数轴相反数和绝对值1数轴授课课件新版沪科版
点的两侧,有两个点.
感悟新知
总结
知3-讲
距离是一个长度,在数轴上表示到某个点 的距离为a的点时,用分类讨论思想时要考虑在 这个点左侧且距此点a个单位长度有一个点;在 这个点右侧且距此点a个单位长度也有一个点.
感悟新知
例7 如图1,数轴上有三点A、B、C.请回答:
知3-练
(1)三点A、B、C中,任意两点之间的距离是多少个 单位长度?
感悟新知
1 下列所画数轴正确的是( )
A
B
知1-练
C
D
2 下列说法中,错误的是( )
A.在数轴上,原点位置的确定是任意的
B.在数轴上,正方向是从原点向左
C.在数轴上,确定单位长度时可根据需要任意选取
D.数轴是规定了原点、正方向、单位长度的直线
感悟新知
知识点 2 数轴上的点与有理数的对应关系 知2-讲
1.数轴的两个最基本的应用: 一是知点读数,二是知数画点,它是最直观的数形结 合体.
2.数轴上的点与有理数间的关系:数轴上的每一个点都 表示一个数,所有的有理数都可以用数轴上的点来表 示,但数轴上还有一部分点表示的不是有理数,它们 之间不是一一对应的关系,比如π这样的数也能在数 轴上表示.
感悟新知
4.易错警示:在画数轴时常出现以下几种错误: (1)没有正方向;(2)没有原点;(3)单位长度不统一; (4)标数时顺序不对.
感悟新知
例 1 图判断下列数轴是否正确 . 如果不正确,请指 出错在哪里 .
知1-练
导引:(1)正确;(2)(3)(4)都不正确 . 其出错之处分别是: (2)中的数轴缺少原点; (3)中的数轴负半轴上所标的负数的顺序不对,应将“-2” 写在“-1”左边; (4)中的数轴上的单位长度不统一 .
2022秋七年级数学上册第1章有理数1.2数轴相反数和绝对值1数轴授课课件新版沪科版
课时导入
1.在如图所示的直线上画出点A,B两处的位置.
2.把向东走记作“+”,向西走记作“-”,在上面的直线 上标出与点A,B相对应的数.
感悟新知
知识点 1 数轴
下面,我们用直线上的点来表示数.
知1-讲
感悟新知
1.数轴的定义:规定了原点、正方向和单位长度的直 知1-讲 线叫做数轴.
2.要点精析: (1)数轴是一条直线,可以向两端无限延伸. (2)三要素:原点、正方向、单位长度,三者缺一不可. (3)原点的选定、正方向的选取、单位长度的确定都是 根据实际需要“规定”的,通常规定向右为正.在解 决具体问题时,可灵活选定原点的位置和单位长度 的大小,一经选定就不能随意改动.
写在“-1”左边; (4)中的数轴上的单位长度不统一 .
感悟新知
总结
知1-讲
认识数轴,要紧扣数轴的定义,围绕数轴的 “三要素”进行判断,三者缺一不可,同时还要注意 标数顺序.
感悟新知
例2 画出数轴,并说明画法.
知1-练
导引:画数轴,要紧扣数轴的三要素:原点、正方向、
单位长度.
解:如图.
画法:(1)画一条直线(水平);(2)取原点并标注 “0”;(3)画箭头(通常向右);(4)确定单位长度(适 当);(5)标注刻度数(直线下方).
1.数轴的两个最基本的应用: 一是知点读数,二是知数画点,它是最直观的数形结 合体.
2.数轴上的点与有理数间的关系:数轴上的每一个点都 表示一个数,所有的有理数都可以用数轴上的点来表 示,但数轴上还有一部分点表示的不是有理数,它们 之间不是一一对应的关系,比如π这样的数也能在数 轴上表示.
感悟新知
之间相隔多少个单位长度.切记,距离不可能是 负数!
初中数学沪科版七年级上册1.2 数轴、相反数和绝对值
1.什么叫做相反数?
2.两辆汽车从同一处O出发,分别向东、西方 向行驶10 km,到达A,B两处,它们的行驶路
线相同吗?它们的行驶路程相同吗?
结论:它们的行驶路线不同,行驶路程相同.
两只小狗分别 距原点多远?
大象距原点
距原点多远?
-- - 01234 32 1
观察下面数轴上的点,表示-3的点到 原点的距离是多少?表示3的点呢?-2和2呢?
列各数
1
+3,-4, 4 ,-1.5
1
-1.5
4
-4 -3 -2 -1 0 1 2 3 4
一般地,任何一个有理数都可以用数轴 上的一个点来表示。
3、下列命题正确的是( B ) A:数轴上的点都表示整数。 B:数轴上表示5与-5的点分别在原点的
两侧,并且到原点的距离都等于5个 单位长度。 C:数轴包括原点与正方向两个要素。 D:数轴上的点只能表示正数和零。
绝对值:一般地,数轴上表示数a的点与原点 的距离叫做数a的绝对值,记作|-a|
例如,上面的问题中在数轴上表示 -3的点和表示3的点到原点的距离都是3,所以3 和-3的绝对值都是3,即|-3|=| 3 |= 3.你能说说-2和2吗?
例3..分别写出下列个数的相反数
3,-7, 2
3
,-2.1
,-
5 11
,0,
20。
3
2.指出-2.4,5 ,-1.7,1各是什么数的相反数 ?
3.a 的相反数是什么?
a 的相反数是-a , a可表示任意数——正数、 负数、0,求任意一个数的相反数就可以在这 个数前加一个“-”号.
提出问题:若把 a分别换成+5,-7,0时,这 些数的相反数怎样表示?
4、填空:
七年级数学上册第1章有理数1.2数轴相反数和绝对值第2课时课件新版沪科版
构成互为相反数;④互为相反数的数是指两个不同的数;⑤符号
C.3 个
D.4 个
12.一个数在数轴上的对应点与它的相反数在数轴上的对应点的距离是 3 个
单位长度,那么这个数是( B )
A.3 或-3
B.32或-23
C.3 或-32
D.-3 或23
13.-(+27)的相反数为
7 2
;a 的相反数是-(-3.14),则 a= -3.14
.
14.若 a=3.5,则-a= -3.5 ;若-m=-(-10),则 m= -10 ;若
x=-x,则 x= 0 .
15.写出下列各数的相反数,并将这些数连同它们的相反数在数轴上表示出
来.
+2,-3,0,-(-1),-312,-(+2).
解:+2 的相反数是-2,-3 的相反数是 3,0 的相反数是 0,-(-1)的相反 数是-1,-321的相反数是 321,-(+2)的相反数是 2,图略.
自我诊断 2.下列各式中,化简正确的是( B )
A.-(-4)=-4
B.-(+4)=-4
C.+(-4)=4
D.-[+(-4)]=-4
易错点:对相反数的意义理解不清而出错.
自我诊断 3.下列说法中正确的是( C ) A.一个数的相反数是负数 B.0 没有相反数 C.只有一个数的相反数等于它本身 D.表示相反数的两个点可以在原点的同一侧
编后语
做笔记不是要将所有东西都写下,我们需要的只是“详略得当“的笔记。做笔记究竟应该完整到什么程度,才能算详略得当呢?对此很难作出简单回答。 课堂笔记,最祥可逐字逐句,有言必录;最略则廖廖数笔,提纲挈领。做笔记的详略要依下面这些条件而定。
讲课内容——对实际材料的讲解课可能需要做大量的笔记。 最讲授的主题是否熟悉——越不熟悉的学科,笔记就越需要完整。 所讲授的知识材料在教科书或别的书刊上是否能够很容易看到——如果很难从别的来源得到这些知识,那么就必须做完整的笔记。 有的同学一味追求课堂笔记做得“漂亮”,把主要精力放在做笔记上,常常为看不清黑板上一个字或一句话,不断向四周同学询问。特意把笔记做得很
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
1.2数轴、相反数和绝对值1.数轴(1)数轴的概念规定了原点、正方向和单位长度的直线叫做数轴.如图所示.(2)数轴的概念包涵的意思①数轴是一条直线,可以向两端无限延伸;②数轴有三要素:原点、正方向、单位长度,三者缺一不可;③原点位置的选定,单位长度大小的确定都是根据实际而定的.一般取向右的方向为正方向.(3)数轴的画法:要正确迅速地画出数轴,可按以下步骤进行:①“画”就是先画一条水平的直线;②“取”就是在直线上选取一点表示原点(原点表示的数是0);③“选”就是选择向右的方向为正方向(用箭头表示),那么相反的方向,即从原点向左为负方向,然后选取适当的长度作为单位长度,用细短线在直线上画出;④“标”就是从原点向右,依次标出1,2,3,…;从原点向左,依次标出-1,-2,-3,….画数轴的步骤可简单归纳为“一画、二取、三选、四标”.解技巧确定数轴的单位长度画数轴时根据实际问题的需要可选取不同的距离作为单位长度,同一数轴上的单位长度必须一致.【例1】观察下列图形,数轴画得正确的是______.解析:判断一条直线是否为一数轴,关键看这条直线是否具有原点、正方向和单位长度这三要素.A没有原点,B没有正方向,C的单位长度不一致,E中负方向上所标注的数字顺序错误,只有D满足条件.答案:D辨误区画数轴常见的错误画数轴常出现的错误:(1)没有方向;(2)没有原点;(3)单位长度不一致;(4)标出的数值排列错误.2.有理数与数轴上的点之间的关系(1)数对应点:任何一个有理数,都可以用数轴上的一个点来表示.(2)在数轴上,正数和负数分别位于原点的两侧,所有正数对应的点都在数轴上原点的右侧,所有负数对应的点都在数轴上原点的左侧,与正数对称.(3)找出数轴上的点对应的有理数的步骤是:①确定点与原点的位置关系(左负右正);②确定点与原点的距离.辨误区有理数与数轴上的点的对应关系所有的有理数都可以用数轴上的点表示,但不能说数轴上所有的点都表示有理数,因为数轴上除了表示所有的有理数的点之外,还有表示所有的无理数的点(以后会学习).【例2-1】指出数轴上A,B,C,D,E,F各点分别表示什么数?分析:先确定已知点的位置是在原点的左边还是右边,再确定点对应的数值,特别是B ,E 两点,要看准它们所表示的数在哪两个数之间.解:A 表示4;B 表示2.5;C 表示1;D 表示0;E 表示-1.5;F 表示-3.【例2-2】把下列各数在数轴上表示出来:32,-5,0,3.6,-3,-12,-112.分析:第一步,画出数轴(按三要素);第二步,把这些数在数轴上的对应点找出来;0在原点,容易找到对应点.正数在原点的右边,所以32,3.6在原点的右边,且分别距原点32个单位长度、3.6个单位长度.负数在原点的左边,所以-5,-3,-12,-112在原点的左边,且分别距原点5个单位长度、3个单位长度、12个单位长度、112个单位长度.解:解技巧确定数在数轴上的对应点(1)确定有理数在数轴上的对应点,要先根据正负确定该点在原点的哪一边,然后再确定距原点多少个单位长度;(2)一般情况下,原数轴上的表示单位长度的数要标在数轴的下方,而要表示的数应标在数轴的上方.3.相反数(1)相反数的定义只有符号不同的两个数互为相反数,这就是说,其中一个是另一个的相反数,特别规定:0的相反数是0.辨误区相反数的意义①“0的相反数是0”是相反数定义的一部分,千万不能漏掉;②“只有符号不同”指的是除符号不同以外,其他完全相同,不能理解为只要符号不同的两个数就互为相反数,例如:-2和+3符号不同,但它们不互为相反数.(2)相反数的几何意义两个互为相反数的数在数轴上所表示的点在原点的两侧,与原点的距离相等.如:+3和-3,+4.4和-4.4互为相反数,在数轴上的位置如图所示:(3)相反数的表示方法一般地,数a 的相反数是-a ,这里a 表示任意一个数,它可以是正数、负数或者零.析规律相反数的表示方法在任意一个数前面添上“-”号,所得的数是原数的相反数,在一个数的前面添上一个“+”号,仍是原数.【例3】填空题:(1)-5的相反数是__________;(2)-(-6)的相反数__________;(3)__________的相反数是0.7;(4)18与__________互为相反数;(5)若a =13,则-a =__________.解析:根据相反数的意义求出各数的相反数.(1)-5的相反数为5;(2)-(-6)表示-6的相反数,即-(-6)=6,所以求-(-6)的相反数就是求6的相反数;(3)-0.7的相反数是0.7;(4)18与-18互为相反数;(5)-a 表示a 的相反数,即求13的相反数,所以-a =-13.答案:(1)5(2)-6(3)-0.7(4)-18(5)-134.绝对值(1)绝对值的概念在数轴上,表示数a 的点到原点的距离,叫做数a 的绝对值,记作|a |.表示数0的点即原点,到原点的距离是0,故|0|=0.(2)一个数的绝对值与这个数的关系①一个正数的绝对值是它本身;一个负数的绝对值是它的相反数;0的绝对值是0.②绝对值实际上和四则运算“加、减、乘、除”一样,也是一种运算,绝对值运算的本质就是要把带有绝对值符号的数化为不带绝对值符号的数(即去绝对值).注意:既可以说0的绝对值是它本身,也可以说0的绝对值是它的相反数.故绝对值是它本身的数是正数和0;绝对值是它的相反数的数是负数和0.③互为相反数的两个数的绝对值相等;绝对值相等、符号相反的两个数互为相反数.谈重点绝对值的意义绝对值是初中代数中的重要概念,从数轴上看,一个数的绝对值就是表示这个数的点到原点的距离,离原点的距离越远,绝对值越大,离原点的距离越近,绝对值越小.由于距离总是正数或零,则有理数的绝对值不可能是负数.也就是说,任何一个有理数的绝对值都是非负数,即a 取任意有理数,都有|a |≥0,所以绝对值最小的数是0.【例4-1】下列说法正确的是().A .|-5|表示-5的绝对值,等于-5B .负数的绝对值等于它本身C .-4距离原点4个单位长度,所以-4的绝对值是4D .绝对值等于它本身的数有两个,是0和1解析:绝对值是一个距离,不能为负数,故选项A 错误;负数的绝对值等于它的相反数,故选项B 错误;一个数的绝对值是它在数轴上对应点与原点的距离,C 正确;正数的绝对值都等于它本身,故选项D 错误.答案:C【例4-2】回答问题:(1)绝对值是3的数有几个?各是什么?(2)绝对值是0的数有几个?各是什么?(3)绝对值是-2的数是否存在?若存在,请写出来.分析:本题要正确理解绝对值的概念,尤其要理解绝对值的几何意义:一个数a 的绝对值就是数轴上表示数a 的点与原点的距离.(1)表示到原点距离等于3的点对应的数有几个,显然,表示数3和-3的点到原点的距离都等于3,所以绝对值等于3的数有两个,它们互为相反数.(2)到原点的距离为0的点只有原点本身,它对应的数是0.(3)任意有理数的绝对值都是非负数,故不存在绝对值是-2的数.一般地,一个有理数的绝对值只有一个,但是绝对值为一个正数的有理数都有两个,它们互为相反数,没有绝对值为负数的有理数.解:(1)绝对值是3的数有两个,它们分别是3和-3.(2)绝对值是0的数只有一个,它是0.(3)绝对值是-2的数不存在.5.数轴上两点间的距离与点表示的数之间的关系(1)数轴使数和直线上的点建立了对应关系,它揭示了数和形的内在联系.正是这种联系,使得数轴上两点之间的距离与所表示的数之间存在密切关系.(2)数轴上表示数a 的点与原点之间的距离:当a 为一个正数时,它与原点的距离是a 个单位长度,当a 是负数时,它与原点的距离是|a |个单位长度;当a 是0时,距离为0.(3)注意:到某一点距离等于a (a 是正数)的点有两个,在原点的左右两侧各一个.解技巧确定数轴上两点间的距离解决此类问题的最好方法是画出数轴,并表示出所求的数,再求两点间的距离.【例5-1】如图,A ,B 两点在数轴上,点A 对应的数为2,若线段AB 的长为3,求点B 对应的数是多少?分析:由于点A 对应的数为2,说明它到原点的距离为2,又线段AB 的长为3,则点B 对应的数就很容易确定了.解:因为点A 对应的数为2,又线段AB 的长为3,所以点B 到原点的长为1.又因为点B 在原点的左边,所以点B 对应的数为-1.【例5-2】已知数轴上A ,B 表示的数互为相反数,并且A ,B 两点间的距离为6个单位长度,求A ,B 两点表示的数(A 在B 的左边).分析:互为相反数的数,位于原点的两侧,且到原点的距离相等,根据A ,B 的距离为6个单位长度,即可求出A ,B 两点表示的数.解:由点A ,B 表示的数互为相反数,且A ,B 两点间的距离为6,可知点A ,B 在原点的两侧,到原点距离都为3,又A 在B 的左边,所以A 点表示-3,B 点表示3.6.运用相反数化简符号(1)理解:①在任意-个数前面添上“-”号,新的数就是原数的相反数.如:+5的相反数表示为-(+5),而5的相反数就是-5,所以-(+5)=-5.因此运用相反数可以进行符号化简.(2)分类:简单的符号化简共有3种情况:①-(+a )=-a ;②+(-a )=-a ;③-(-a )=a .(3)延伸:①-[-(-a )]=-a ;-[+(-a )]=a 等.②-0=0,表示0的相反数是0.多重符号的结果是由“-”号的个数决定的,与“+”号无关,据此可以对带有多重符号的数进行化简.化简时“+”号的个数不影响结果,可省去;而“-”号的个数是偶数个时也可全部省去,奇数个时,结果保留一个“-”号即可.【例6-1】填空:(1)__________;(2),那么x =__________.解析:(1)∵127,因此此题实际上是求127的相反数,∴-127;(2)是已知x 的相反数求原数x 的问题,∵-x =+(-80.5)=-80.5,∴x =80.5.答案:(1)-127(2)80.5【例6-2】化简下列各符号:(1)-[-(-2)];(2)+{-[-(+5)]};(3)-{-{-…-(-6)…}}(共n 个负号).分析:化简的法则是:结果的符号与负号的个数有关,有偶数个负号时,结果为正;有奇数个负号时,结果为负.解:(1)-2;(2)5;(3)当n 为偶数时,为6;当n 为奇数时,为-6.7.绝对值的化简和计算化简绝对值符号主要根据绝对值的非负性,解题时看清楚“-”号在绝对值符号的里面还是外面.如果“-”号在绝对值符号的里面,化简时把“-”号去掉;如果“-”号在绝对值符号的外面,化简时不能把“-”号去掉.解技巧准确化简绝对值符号化简绝对值符号的关键是判断绝对值符号内的数是正数、负数或是0.【例7】化简:(1)-|-23|;(2)+|(3)|;(4)|-(-7.5)|.分析:先判断绝对值符号内数的符号,再求绝对值.解:(1)-|-23|=-23;(2)+|;(3)|=312;(4)|-(-7.5)|=7.5.8.字母表示的数的绝对值的求法应用因为用字母所表示的数既可以是正数也可以是负数,还可以是0.它具有不确定性,而求绝对值首先要考虑的就是符号,因此求字母表示的数的绝对值时,必须考虑题目中给定的条件,若有限定条件,就按限定条件求出,若没有限定条件,则要分正、负、0三种情况讨论.解技巧求字母表示的数的绝对值(1)限制型逆用求法,如:|a |=6,那么a =±6;(2)开放型分类讨论求法:如求|x |+x 的值,当x >0时,|x |=x ,所以|x |+x =x +x =2x ,当x <0时,|x |=-x ,原式=0,当x =0时,原式=0;(3)化简型求法:如:|a |=|-8|,|-a |=|-8|,|-a |=|8|都能化为|a |=|8|=8解决.【例8-1】已知a =-5,|a |=|b |,则b 的值等于().A .+5B .-5C .0D .±5解析:因为a =-5,所以|a |=5.所以|b |=5.所以b =±5.注:本题常见的思维误区是由|a |=|b |推出a =b ,错选B.事实上,由|a |=|b |,可得b =±a ,所以b =a 或b =-a ,即b =5或b =-5.答案:D【例8-2】下面推理正确的是().A .若|m |=|n |,则m =nB .若|m |=n ,则m =nC .若|m |=-n ,则m =nD .若m =n ,则|m |=|n |解析:A 中若|m |=|n |,则m =±n ;B 中若|m |=n (n 一定是非负数),则m =±n ,例如|±2|=2,此时m =±2,n =2,显然m =±n ;C 中若|m |=-n ,则m =n 或m =-n ,例如|±3|=-(-3)(n 一定是非正数),此时m =±3,n =-3,所以m =±n .答案:D 9.利用数轴解决生活中的实际问题本节知识常与运动问题结合在一起,利用数形结合将运动问题解决.这种利用数形结合解决问题的方法是中考考查的热点题型之一.数轴是一种数学工具,它使数和数轴上的点建立了对应关系,运用数轴可以直观表示点的移动,正确找出数在数轴上的对应点,会由数轴上的点的位置确定对应的数,是解决这类问题的关键.解题时,通常根据题意正确地画出数轴,在选取长度单位时,要根据题目中的实际情况来确定,再在数轴上表示点的移动过程,用箭头和竖线来表示.【例9】超市、书店、玩具店依次坐落在一条东西走向的大街上,超市在书店西边20米处,玩具店位于书店东边50米处.小明从书店出来沿街向东走了50米,接着又向东走了-80米,此时小明的位置在何处?在数轴上标出超市、书店、玩具店的位置以及小明最后的位置.分析:书店处于超市和玩具店之间,且书店与玩具店之间的距离是50米,书店与超市之间的距离是20米,这样可以画出数轴,即可表示出小明最后的位置.解决点的移动问题,可画出数轴,在数轴上表示点的移动,关键是确定原点,最后的点相对于原点来说,若在原点的右侧,表示的是正数,若在原点的左侧,则表示的是负数.解:根据题意可以画出如图所示的数轴,小明位于超市西边10米处.10.利用绝对值解决实际问题绝对值的产生来源于实际问题的需要,反过来又可以运用它解决一些实际问题.利用绝对值求距离路程问题中,当出现用“+”、“-”号表示带方向的路程,求最后实际路程时,实际上是求绝对值的和.方法:①求各个数的绝对值;②求所有数的绝对值的和;③写出答案.【例10】一天上午,出租车司机小王在东西走向的中山路上营运,如果规定向东为正,向西为负,出租车的行车里程如下(单位:千米):+15,-3,+12,-11,-13,+3,-12,-18,请问小王将最后一位乘客送到目的地时,共行驶了多少千米?分析:本题是绝对值意义在实际问题中的具体应用,有理数中的“+”和“-”在本题中表示的是方向,而它们的绝对值是小王在营运中所行驶的路程,因此求共行驶的路程应是每次行车里程绝对值之和.解:|+15|+|-3|+|+12|+|-11|+|-13|+|+3|+|-12|+|-18|=15+3+12+11+13+3+12+18=87(千米).答:小王将最后一位乘客送到目的地时共行驶了87千米.。