数学建模-最优化模型

合集下载

数学建模最优化模型

数学建模最优化模型

火被t1 扑灭的时刻为 。 时t刻2 森t 林烧毁的面
积为 , 为b(t烧) 毁c1单位面积森林的损失费,
则火灾造成的损失费为

w1 c1 * b(t2 )

易见
db dt
表示单位时间内烧毁的森林面积
当t

0,
t
2时,
db dt

0;设当
t

t1
时,db
dt
得其最大值 h。db
为 a设在0;a0,称t1为中火,d势t 为蔓延t的速线度性;函在数t,1,t2其 中斜,率ddbt
x* a v
c1vh2 2c2ah 2c3v 2
一般优化模型的总结
说明:
确定目标
建立目标函数;
分析因素
对影响目标函数变化的各个因素
进行定性或定量分析,而对那些随机性大、影响度很小的 因素可以假设掉。
确定决定性因素
确定影响问题变化的主要因素
(利用相关度),同时达到简化问题的作用,为模型的建 立和求解奠定基础。
为 t 的线性函数,其斜率为 a v * x 0,其
中 x 为救火队员人数,v 为每个队员的平均
灭火速度。
• 每个救火队员单位时间的费用为c2 ,一次性 支出的费用为c3 ,于是得到救火费用为
w2 c3 * x c2 (t2 t1) * x
• 不考虑森林地形分布的差异,人员都正常工作。
谢 谢!!!
在森林失火时,应派多少消防队员去救火最 合适?派的队员越多,灭火的速度越快,火灾 造成的损失越小,但救援的开支会增大。我们 的问题是:派出多少队员救火,才能使火灾损 失费与救火费用之和最小?
模型的假设

数学建模~最优化模型(课件)

数学建模~最优化模型(课件)

投资组合优化
在风险和收益之间寻求平衡,通 过优化投资组合实现最大收益。
03
非线性规划模型
非线性规划问题的定义
目标函数
一个或多个非线性函数,表示 要最小化或最大化的目标。
约束条件
决策变量的取值受到某些限制 ,通常以等式或不等式形式给 出。
决策变量
问题中需要求解的未知数,通 常表示为x1, x2, ..., xn。
这是一种常用的求解整数规划问题的算法,通过不断将问题分解为更 小的子问题,并确定问题的下界和上界,逐步逼近最优解。
割平面法
该方法通过添加割平面来限制搜索区域,从而逼近最优解。
迭代改进法
该方法通过不断迭代和改进当前解,逐步逼近最优解。
遗传算法
这是一种基于生物进化原理的优化算法,通过模拟自然选择和遗传机 制来寻找最优解。
定义域
决策变量的取值范围,通常是 一个闭区间或开区间。
非线性规划问题的求解方法
梯度法
利用目标函数的梯度信息,通过迭代方法寻 找最优解。
共轭梯度法
结合梯度法和牛顿法的思想,通过迭代方法 寻找最优解。
牛顿法
利用目标函数的二阶导数信息,通过迭代方 法寻找最优解。
信赖域方法
在每次迭代中,通过限制搜索步长来保证求 解的稳定性。
02
线性规划模型
线性规划问题的定义
01
02
03
线性规划问题
在给定一组线性约束条件 下,求一组线性函数的最 大值或最小值的问题。
约束条件
包括资源限制、物理条件 等,通常以等式或不等式 形式给出。
目标函数
需要最大化或最小化的线 性函数,通常表示为决策 变量的线性组合。
线性规划问题的求解方法

数学建模最优化模型

数学建模最优化模型

数学建模最优化模型随着科学与技术的不断发展,数学建模已经成为解决复杂实际问题的一种重要方法。

在众多的数学建模方法中,最优化模型是一种常用的方法。

最优化模型的目标是找到最佳解决方案,使得一些目标函数取得最大或最小值。

最优化模型的基本思想是将实际问题抽象为一个数学模型,该模型包含了决策变量、约束条件和目标函数。

决策变量是需要优化的变量,约束条件是对决策变量的限制条件,目标函数是优化的目标。

最优化模型的求解方法可以分为线性规划、非线性规划和整数规划等。

线性规划是最优化模型中最基本的一种方法,其数学模型可以表示为:max/min c^T xs.t.Ax<=bx>=0其中,c是目标函数的系数向量,x是决策变量向量,A是约束条件的系数矩阵,b是约束条件的右边向量。

线性规划的目标是找到最优的决策变量向量x,使得目标函数的值最大或最小。

非线性规划是最优化模型中更为复杂的一种方法,其数学模型可以表示为:max/min f(x)s.t.g_i(x)<=0,i=1,2,...,mh_i(x)=0,i=1,2,...,p其中,f(x)是目标函数,g_i(x)是不等式约束条件,h_i(x)是等式约束条件。

非线性规划的求解过程通常需要使用迭代的方法,如牛顿法、拟牛顿法等。

整数规划是最优化模型中另一种重要的方法,其数学模型在线性规划的基础上增加了决策变量的整数限制。

max/min c^T xs.t.Ax<=bx>=0x是整数整数规划的求解通常更为困难,需要使用特殊的算法,如分支定界法、割平面法等。

最优化模型在实际问题中有着广泛的应用,如资源调度、生产计划、路线选择、金融投资等。

通过建立数学模型并求解,可以得到最优的决策方案,提高效益和效率。

总结起来,最优化模型是数学建模的重要方法之一、通过建立数学模型,将实际问题转化为数学问题,再通过求解方法找到最佳解决方案。

最优化模型包括线性规划、非线性规划和整数规划等方法,应用广泛且效果显著。

最优化问题数学模型

最优化问题数学模型
• 飞机飞行的方向角调整幅度不应超过30 ; • (因飞机飞行的速度变化不大)所有飞机的飞行 速度 v 均为800km/h;

• 进入该区域的飞机在到达区域边缘时,与区域内 飞机的距离应在60km以上;
根据当年竞赛题目给出的数据,可以验证 新进入的飞机与区域内的飞机的距离超过 60公里。
• 最多需考虑六架飞机;
cij xij 表示该队员的成 目标函数:当队员i入选泳姿j时, 绩,否则 cij xij 0 。于是接力队的成绩可表示为
f cij xij .
j 1 i 1
4
5
约束条件:根据接力队要求, xij 满足约束条件
a. 每人最多只能入选4种泳姿之一,即
x
j 1
4
ij
1.
b. 每种泳姿必须有1人而且只能有一人入选,即
分析,对实际问题进行合理的假设、简化,首先考虑用
线性规划模型,若线性近似误差较大时,则考虑用非线 性规划.
例题讲解
例1 1995年全国数学建模A题:飞行管理问题 在约1万米的高空的某边长为160km的正方 形区域内,经常有若干架飞机作水平飞行,区 域内每架飞机的位置和速度向量均由计算机记 录其数据,以便进行飞行管理。当一架欲进入 该区域的飞机到达区域边缘时,计算机记录其 数据后,要立即计算并判断是否会发生碰撞。 若会发生碰撞,则应计算如何调整各架飞机 (包括新进入的飞机)飞行的方向角,以避免 碰撞,且使飞机的调整的幅度尽量小,
目标:求函数极值或最值,求取得极值时变量的取值。
x
1.线性规划
问题:某工厂在计划期内要安排生产I、II两种产品,已 知生产单位产品所需的设备台时及A、B两种原材料的消 耗,如下表所示
I 设备 1 II 2 8台时

数学建模最优化模型PPT学习教案

数学建模最优化模型PPT学习教案

第16页/共64页
最优化方法主要内容
根据目标函数,约束条件的特点将最优化方法包含的主要内容大致 如下划分: 线性规划 整数规划 非线性规划 动态规划 多目标规划
对策论
第17页/共64页
两个引例
问题一:某工厂在计划期内要安排生产I、II两种产品, 已知生产单位产品所需的设备台时及A、B两种原材料的 消耗,如下表所示
第13页/共64页
例 用fminsearch函数求解 输入命令:
f='100*(x(2)-x(1)^2)^2+(1-x(1))^2'; [x,fval,exitflag,output]=fminsearch(f,[-1.2 2])
运行结果:
x =1.0000 1.0000 fval =1.9151e-010 exitflag = 1
第30页/共64页
这是一个典型的最优化问题,属线性规划。
假设:产品合格且能及时销售出去;工作无等待情况等
变量说明:
xj:第j种产品的生产量(j=1,2,……,6) aij:第i车间生产单位第j种产品所需工作小时数
(i=1,2,3,4;j=1,2,……,6)
则:
bi:第i车间的最大工作上限 cj:第j种产品的单位利润 cjxj为第j种产品的利润总额; aijxj表示第i车间生产第j种产品所花时间总数;
第31页/共64页
于是,我们可建立如下数学模型:
6
max z c j x j j 1
s.t.
6
aij x j bi
j 1
0
xj
bi ,且为整数
max
1i4
{aij
}
计算结果:
i 1,2,3,4 j 1,2,3,4,5,6

数学建模讲座之七最优化模型

数学建模讲座之七最优化模型

什么是七最优化模型
七最优化模型是一种数学建模方法,旨在解决具有多个决策 变量和约束条件的优化问题。它通过寻找满足一定条件下的 最优解,为实际问题的解决提供数学模型。
七最优化模型的核心思想是在给定的约束条件下,寻找使目 标函数达到最优值的决策变量值。这个过程涉及到对数学方 程、不等式以及函数的运用,通过建立数学模型来描述实际 问题中的最优化问题。
物流优化
总结词
物流优化是利用七最优化模型来规划物流运输和配送路线,以最小化运输成本、 最大化运输效率的过程。
详细描述
通过数学建模,将物流问题转化为最优化问题,利用七最优化模型求解,可以找 到最优的运输和配送路线,包括车辆调度、货物配载、路径规划等,从而实现运 输成本最小化、运输效率最大化的目标。
物流优化
线性规划的解法包括单纯形法、 对偶理论和分解算法等。
非线性规划
非线性规划是优化技术中的一种, 它处理的是目标函数或约束条件
是非线性的问题。
非线性规划的应用领域包括机器 学习、图像处理、化学工程等。
非线性规划的解法包括梯度下降 法、牛顿法、拟牛顿法等。
非线性规划
非线性规划是优化技术中的一种, 它处理的是目标函数或约束条件
动态规划的解法包括递归法、自底向 上法等。
动态规划的应用领域包括机器学习、 控制系统、生物信息学等。
动态规划
动态规划是数学优化技术中的一种, 它处理的是决策过程具有时间顺序或 阶段性的问题。
动态规划的解法包括递归法、自底向 上法等。
动态规划的应用领域包括机器学习、 控制系统、生物信息学等。
启发式算法
详细描述
人工智能优化主要考虑算法复杂度、计算精 度、系统稳定性等多个因素,通过建立数学 模型,对算法进行优化,提高人工智能系统 的性能和效率。具体来说,可以采用遗传算 法、模拟退火算法、粒子群算法等方法,对

数学建模~最优化模型(课件ppt)

数学建模~最优化模型(课件ppt)

用Matlab编程求解程序如下:
[X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b) f = -[10 5]; A = [0.3 0.4;0.5 0.2]; B = [9;8];
[X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b)
X= 10.0000
2
建立无约束优化模型为:min y =- ( 3 2 x ) x , 0< x <1.5
2
先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval
控制,计划聘请两种不同水平的检验员.一级检验员的标准为: 速度25件/小时,正确率98%,计时工资4元/小时;二级检验员 的标准为:速度15件/小时,正确率95%,计时工资3元/小时.检 验员每错检一次,工厂要损失2元.为使总检验费用最省,该工 厂应聘一级、二级检验员各几名?
解 设需要一级和二级检验员的人数分别为x1、x2人, 则应付检验员的工资为:
综上得,
函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
用MATLAB解无约束优化问题
1. 一元函数无约束优化问题: min f ( x )
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x,fval]= fminbnd(…) (4)[x,fval,exitflag]= fminbnd(…)

数学建模讲座之七最优化模型

数学建模讲座之七最优化模型

④编写程序,利用计算机求解。
⑤对结果进行分析,讨论诸如:结果的合理性、正确性,
算法的收敛性,模型的适用性和通用性,算法效率与
误差等。
2020/1/10
数学建模
线性规划
某豆腐店用黄豆制作两种不同口感的豆腐出售。 制作口感较鲜嫩的豆腐每千克需要0.3千克一级 黄豆及0.5千克二级黄豆,售价10元;制作口感 较厚实的豆腐每千克需要0.4千克一级黄豆及0.2 千克二级黄豆,售价5元。现小店购入9千克一级 黄豆和8千克二级黄豆。
或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...);
或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...);
或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...);
有约束最优化问题的数学建模
有约束最优化模型一般具有以下形式:
min f (x)
x

s.t. ......
max f (x) x
s.t. ......
其中f(x)为目标函数,省略号表示约束式子,可以是 等式约束,也可以是不等式约束。
2020/1/10
数学建模
最优化方法主要内容
根据目标函数,约束条件的特点将最优 化方法包含的主要内容大致如下划分:
综上得,
函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
2020/1/10
数学建模
2020/1/10
数学建模

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结

数学建模模型常用的四大模型及对应算法原理总结四大模型对应算法原理及案例使用教程:一、优化模型线性规划线性回归是利用数理统计中回归分析,来确定两种或两种以上变量间相互依赖的定量关系的一种统计分析方法,在线性回归分析中,只包括一个自变量和一个因变量,且二者的关系可用一条直线近似表示,这种回归分析称为一元线性回归分析。

如果回归分析中包括两个或两个以上的自变量,且因变量和自变量之间是线性关系,则称为多元线性回归分析。

案例实操非线性规划如果目标函数或者约束条件中至少有一个是非线性函数时的最优化问题叫非线性规划问题,是求解目标函数或约束条件中有一个或几个非线性函数的最优化问题的方法。

建立非线性规划模型首先要选定适当的目标变量和决策变量,并建立起目标变量与决策变量之间的函数关系,即目标函数。

然后将各种限制条件加以抽象,得出决策变量应满足的一些等式或不等式,即约束条件。

整数规划整数规划分为两类:一类为纯整数规划,记为PIP,它要求问题中的全部变量都取整数;另一类是混合整数规划,记之为MIP,它的某些变量只能取整数,而其他变量则为连续变量。

整数规划的特殊情况是0-1规划,其变量只取0或者1。

多目标规划求解多目标规划的方法大体上有以下几种:一种是化多为少的方法,即把多目标化为比较容易求解的单目标,如主要目标法、线性加权法、理想点法等;另一种叫分层序列法,即把目标按其重要性给出一个序列,每次都在前一目标最优解集内求下一个目标最优解,直到求出共同的最优解。

目标规划目标规划是一种用来进行含有单目标和多目标的决策分析的数学规划方法,是线性规划的特殊类型。

目标规划的一般模型如下:设xj是目标规划的决策变量,共有m个约束条件是刚性约束,可能是等式约束,也可能是不等式约束。

设有l个柔性目标约束条件,其目标规划约束的偏差为d+, d-。

设有q个优先级别,分别为P1, P2, …, Pq。

在同一个优先级Pk中,有不同的权重,分别记为[插图], [插图](j=1,2, …, l)。

数学建模之优化模型

数学建模之优化模型
自底向上求解
从最小规模的子问题开始,逐步求解更大规模的子问 题,最终得到原问题的最优解。
自顶向下求解
从原问题开始,将其分解为子问题,通过迭代求解子 问题,最终得到原问题的最优解。
状态转移方程
通过状态转移方程描述子问题之间的关系,从而求解 子问题和原问题。
动态规划模型的应用实例
最短路径问题
如Floyd-Warshall算法,通过动 态规划求解所有节点对之间的最 短路径。
遗传算法
03
模拟生物进化过程的自然选择和遗传机制,通过种群迭代优化
,找到最优解。
整数规划模型的应用实例
生产计划问题
通过整数规划模型优化生产计划,提高生产效 率、降低成本。
投资组合优化
通过整数规划模型优化投资组合,实现风险和 收益的平衡。
资源分配问题
通过整数规划模型优化资源分配,提高资源利用效率。
THANKS
需要进行调整和改进。
02
CATALOGUE
线性规划模型
线性规划模型的定义与特点
线性规划模型是数学优化模型的 一种,主要用于解决具有线性约 束和线性目标函数的优化问题。
线性规划模型的特点是目标函数 和约束条件都是线性函数,形式
简单且易于处理。
线性规划模型广泛应用于生产计 划、资源分配、投资决策等领域
背包问题
如0-1背包问题、完全背包问题和 多重背包问题等,通过动态规划 求解在给定容量的限制下使得总 价值最大的物品组合。
排班问题
如工作调度问题,通过动态规划 求解满足工作需求和工人技能要 求的最优排班方案。
05
CATALOGUE
整数规划模型
整数规划模型的定义与特点
定义
整数规划是一种特殊的线性规划,要求决策变量取整数值。

数学建模最优化模型例题

数学建模最优化模型例题

数学建模最优化模型例题好,咱们今天来聊聊数学建模和最优化模型这块儿。

数学建模,这名字听起来就挺高大上的,实际上,咱们日常生活中处处都是它的身影。

想象一下,早上起床,看到窗外阳光明媚,心里琢磨着今天去不去公园,顺便锻炼锻炼。

于是,你心里开始盘算,公园离家有多远,走路要多久,还是骑个单车比较快?这就是在用数学建模,算一算,看看哪个更划算。

再说说最优化模型,这就像是在挑选午饭一样。

你有一大堆选择,米饭、面条、快餐还是外卖,真是眼花缭乱。

你心里想,要是不吃太油腻的,又想吃得饱,还得好吃。

于是开始分析:今天外卖不如自己做,自己做的话,买啥材料比较好,怎么搭配更营养呢?这时候,你的脑子就像一个小计算机,开始进行各种选择。

想想,如果能把所有的选择变成一个数学问题,肯定能算出最优解,嘿,生活简直就像在解题一样,乐趣多多。

再说说商场里打折的那种,真是让人心痒痒的。

假如你打算买新鞋,满心期待。

可是一进商场,各种颜色、各种款式扑面而来,心里顿时就犯了选择困难症。

想要买的那双鞋打折了,可是另外一双颜色也不错,怎么办呢?这时候,最优化模型就可以帮你了。

想一想,你最看重什么,舒适、样式还是价格?用数学的眼光来审视,看看哪双鞋的性价比最高,没准儿就能找到那个最适合自己的了。

有些小伙伴可能会问了,数学建模到底有什么用呢?你知道吗,很多企业在决策的时候都离不开这些模型。

就拿快递公司来说,他们每天都要处理成千上万的包裹,怎么能保证包裹及时送到呢?他们需要用到最优化模型来安排路线,减少运输成本。

想象一下,如果没有这些模型,快递员可能跑了一大圈,最后才发现原来只需要直走就到了。

那可真是得不偿失,没准儿包裹还会晚到,这可就麻烦了。

数学建模的魅力就在于它能把复杂的问题简单化。

我们生活中遇到的各种难题,最终都可以转化为一个个数学问题。

你说这是不是挺神奇的?比如你要规划一次旅行,想去多少个地方,怎么安排最合适,住哪儿能便宜又舒服,这些全都可以用建模来解决。

优化模型

优化模型
12
MIN 66.8x11+75.6x12+87x13+58.6x14 +… … +67.4x51+71 x52+83.8x53+62.4x54 SUBJECT TO x11+x12+x13+x14 <=1 …… x41+x42+x43+x44 <=1 x11+x21+x31+x41+x51 =1 …… x14+x24+x34+x44+x54 =1 END INT 20
最优化模型
主讲人
张兴永
1
最优化模型
在数学建模竞赛中,经常会遇到有关最优化问题, 下面介绍几个简单的最优化模型。 最优化模型是在解决实际问题中应用最广泛的模 型之一,它涉及面广、内容丰富,且随着计算机的发 展,解决问题的范围越来越宽。一般地,人们做的任 何一件事情,小的如日常生活、学习工作等,大的如 工农业生产,国防建设及科学研究等,为了达到预先 设想的目的,都要做计划,选择好的方案,进行优化 处理。最优化模型主要有线性规划模型、整数规划模 型、非线性规划模型、动态规划模型等。
这样把多目标规划变成一个目标的线性规划,下 面给出三个单目标优化模型:
24
1、在实际投资中,投资者承受风险的程度不一样, 若给定风险一个界限a,使最大的一个风险qixi/M≤a, 可找到相应的投资方案。 模型1 固定风险水平,优化收益 目标函数:Q=max (ri pi ) xi i 0 约束条件: q x ≤a
9
问题二 混合泳接力队的选拔
5名候选人的百米成绩
蝶泳 仰泳 蛙泳 自由泳 甲 1’06”8 1’15”6 1’27” 58”6 乙 57”2 1’06” 1’06”4 53” 丙 1’18” 1’07”8 1’24”6 59”4 丁 1’10” 1’14”2 1’09”6 57”2 戊 1’07”4 1’11” 1’23”8 1’02”4

数学建模讲座之七---最优化模型

数学建模讲座之七---最优化模型

综上得,
函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
2013-8-6 数学建模
2013-8-6
数学建模
用MATLAB解无约束优化问题
1. 一元函数无约束优化问题: min f ( x )
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x,fval]= fminbnd(…) (4)[x,fval,exitflag]= fminbnd(…)
2013-8-6 数学建模
x
1、无约束极值问题的求解
例1:求函数y=2x3+3x2-12x+14在区间[-3,4]上的最 大值与最小值。 解:令f(x)=y=2x3+3x2-12x+14 f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142,
0.5x1 0.2 x2 8 x1 , x2 0
2013-8-6
数学建模
用Matlab编程求解程序如下:
[X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b) f = -[10 5]; A = [0.3 0.4;0.5 0.2]; B = [9;8];
[X,FVAL,EXITFLAG,OUTPUT] = LINPROG(f,A,b)
数学建模
s.t.
2013-8-6
问题二: 某厂每日8小时的产量不低于1800件.为了进行质量
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

output= iterations: 108 funcCount: 202 algorthm: 'Nelder-Mead simplex direct search
'
最优化问题的数学模型
建立数学模型时要尽可能简单,而且要能完整地描述 所研究的系统,具体建立怎样的数学模型需要丰富的经验和 熟练的技巧。即使在建立了问题的数学模型之后,通常也必 须对模型进行必要的数学简化以便于分析、计算。
min f ( x)
s.t. gi ( x) 0, i 1, 2,..., m hi ( x) 0, i 1, 2,..., n
x
其中,极大值问题可以转化为极小值问题来 进行求解。如求: max f ( x)
x
min f ( x ) 可以转化为:
x
1、无约束极值问题的求解
例 1 :求函数 y=2x3+3x2-12x+14 在区间 [-3,4] 上的最 大值与最小值。 解:令f(x)=y=2x3+3x2-12x+14 f’(x)=6x2+6x-12=6(x+2)(x-1) 解方程f’(x)=0,得到x1= -2,x2=1,又 由于f(-3)=23,f(-2)=34,f(1)=7,f(4)=142,
运行结果: xmin = 3.9270 xmax = 0.7854
ymin = -0.0279 ymax = 0.6448
例2 有边长为3m的正方形铁板,在四个角剪去相等的正方形以 制成方形无盖水槽,问如何剪法使水槽的容积最大?

设剪去的正方形的边长为 x ,则水槽的容积为: (3 2 x) 2 x
一般的模型简化工作包括以下几类:
(1)将离散变量转化为连续变量。
(2)将非线性函数线性化。
(3)删除一些非主要约束条件。
建立最优化问题数学模型的三要素:
(1)决策变量和参数。
决策变量是由数学模型的解确定的未知数。参数表 示系统的控制变量,有确定性的也有随机性的。
(2)约束或限制条件。
由于现实系统的客观物质条件限制,模型必须包括 把决策变量限制在它们可行值之内的约束条件,而这 通常是用约束的数学函数形式来表示的。
综上得,
函数f(x)在x=4取得在[-3,4]上得最大值f(4)=142,在 x=1处取得在[-3,4]上取得最小值f(1)=7
用MATLAB解无约束优化问题
1. 一元函数无约束优化问题: min f ( x )
常用格式如下: (1)x= fminbnd (fun,x1,x2) (2)x= fminbnd (fun,x1,x2 ,options) (3)[x,fval]= fminbnd(…) (4)[x,fval,exitflag]= fminbnd(…)
例 用fminsearch函数求解
输入命令:
f='100*(x(2)-x(1)^2)^2+(1-x(1))^2';
[x,fval,exitflag,output]=fminsearch(f,[-1.2 2])
运行结果:
x =1.0000 1.0000 fval =1.9151e-010 exitflag = 1
• 最优化是从所有可能方案中选择最合理的一种
以达到最优目标的学科。
• 最优方案是达到最优目标的方案。 • 最优化方法是搜寻最优方案的方法。 • 最优化理论就是最优化方法的理论。
经典极值问题
包括:
①无约束极值问题
②约束条件下的极值问题
1、无约束极值问题的数学模型 min f ( x)
x
2、约束条件下极值问题的数学模型
2 建立无约束优化模型为:min y =- (3 2 x) x , 0< x <1.5
先编写M文件fun0.m如下: function f=fun0(x) f=-(3-2*x).^2*x; 主程序为wliti2.m: [x,fval]=fminbnd('fun0',0,1.5); xmax=x fmax=-fval
s.t. Subject to.

利用在高等数学中所学的Lagrange乘子法可求解本问题
2 4 Lr.h. 2 rh 2 r r h 3 分别对r.h.λ求偏导数,并令其等于零.有:
2
L r 2 h 4 r 2rh 0 L 2 2 r r 0 h L 4 2 r h 0 3
r
2
4 3 h R 3

为金属比重. 0.R 1

r
2
4 h 3

4 r h 0 3
2
问题目标是圆柱体表面积最小。即 min
2rh 2 r
2

则得数学模型:
min 2 rh 2 r 2 4 2 s .t . r h 0 3
*
严格最优解:当 x x* ,有 f x* f x 则称 x *为问题的严 格最优解。
局部最优解
f(X)
整体最优解
求解 P 的基本方法(迭代算法) :
1 给定一个初始可行点 x0 D ;
2 产生可行点 x1 ,x 2 , …,x k , …, 记为 xk ;
最优化:在一定的条件下,寻求 使得目标最大(最小)的策略
• 约一半以上的问题与最优化问题有关。如: 飞行管理问题(95A) 最优捕鱼策略(96A) 节水洗衣机(96B) 零件的参数设计(97A) 投资收益和风险(98A) 钢管订购和运输(2000B) 电力市场的堵塞管理(2004B) ……
几个概念
例 1 求 x = 2 e x sin x 在 0< x <8 中的最小值与最大值 .
主程序为wliti1.m: f='2*exp(-x).*sin(x)'; fplot(f,[0,8]); %作图语句 [xmin,ymin]=fminbnd (f, 0,8) f1='-2*exp(-x).*sin (x)'; [xmax,ymax]=fminbnd (f1, 0,8)
3 使得或者某个 x k 恰好是问题的一个最优 解,或者该点列 xk 收敛到问题的一个最优解 x* 。
• 在各种科学问题、工程问题、生产管理、社会
经济问题中,人们总是希望在有限的资源条件
下,用尽可能小的代价,获得最大的收获。
(比如保险)
数学家对最优化问题的研究已经有很多年的 历史。 以前解决最优化问题的数学方法只限于古典 求导方法和变分法(求无约束极值问题),拉格 朗日(Lagrange)乘数法解决等式约束下的条件 极值问题。 计算机技术的出现,使得数学家研究出了许 多最优化方法和算法用以解决以前难以解决的问 题。
2
y
x
m a2 min yi a1 x x i 1 i 4 1 a ln 1 exp 3 a5
2
有约束最优化
最优化方法分类
(一)线性最优化:目标函数和约束条件都是线 性的则称为线性最优化。 非线性最优化:目标函数和约束条件如果含 有非线性的,则称为非线性最优化。 (二)静态最优化:如果可能的方案与时间无关, 则是静态最优化问题。 动态最优化:如果可能的方案与时间有关, 则是动态最优化问题
(3)目标函数。 这是作为系统决策变量的一个数学函数来衡量系统 的效率,即系统追求的目标。
例1.把半径为1的实心金属球熔化后,铸成一个实 心圆柱体,问圆柱体取什么尺寸才能使它的表面 积最小?
解:决定圆柱体表面积大小有两个决策变量: 圆柱体底面半径r、高h。 问题的约束条件是所铸圆柱体重量与球重相等。 即
最优化模型
一、最优化方法概述 二、无约束最优化问题
三、无约束最优化问题的MATLAB 求解 四、有约束最优化问题
最优化方法概述
1、最优化理论和方法是近二十多年来发展十分迅
速的一个数学分支。 2、在数学上,最优化是一种求极值的方法。 3、最优化已经广泛的渗透到工程、经济、电子技
术等领域。
• 在实际生活当中,人们做任何事情,不管是分 析问题,还是进行决策,都要用一种标准衡量 一下是否达到了最优。 (比如基金人投资)
MATLAB(wliti2)
运算结果为: xmax = 0.5000,fmax =2.0000.即剪掉的正方形的边 长为0.5m时水槽的容积最大,最大容积为2m3.
2.多元函数无约束优化问题
标准型为:min F ( X )
命令格式为: (1)x= fminunc(fun,X0 );或x=fminsearch(fun,X0 ) (2)x= fminunc(fun,X0 ,options); 或x=fminsearch(fun,X0 ,options) (3)[x,fval]= fminunc(...); 或[x,fval]= fminsearch(...) (4)[x,fval,exitflag]= fminunc(...); 或[x,fval,exitflag]= fminsearch (5)[x,fval,exitflag,output]= fminunc(...); 或[x,fval,exitflag,output]= fminsearch(...)
解:很显然对参数a1 a2 a3 a4 和 a5 任意给定的一组数值,就由上 式确定了 y关于x的一个函数关系式,在几何上它对应一条曲线,这条 曲线不一定通过那m个测量点,而要产生“偏差”.
将测量点沿垂线方向到曲线的距离的 平方和作为这种“偏差”的度量.即
m a2 S yi a1 x a i 1 i 4 1 a ln 1 exp 3 a5 显然偏差S越小,曲线就拟合得越好,说明参数值就选择得越好,从而 我们的问题就转化为5维无约束最优化问题。即:
相关文档
最新文档