(完整版)考研数学三必背知识点:概率论与数理统计
考研数学三必背知识点:概率论与数理统计

概率论与数理统计必考知识点一、随机事件和概率1、 随机事件及其概率运算律名称 表达式交换律A B B A +=+ BA AB =结合律 C B A C B A C B A ++=++=++)()( ABC BC A C AB ==)()(分配律 AC AB C B A ±=±)( ))(()(C A B A BC A ++=+德摩根律B A B A =+ B A AB +=2、概率的定义及其计算公式名称公式表达式 求逆公式 )(1)(A P A P -= 加法公式 )()()()(AB P B P A P B A P -+=+条件概率公式 )()()(A P AB P A B P =乘法公式 )()()(A B P A P AB P = )()()(B A P B P AB P =全概率公式∑==ni iiA B P A P B P 1)()()(贝叶斯公式 (逆概率公式) ∑∞==1)()()()()(i ijj j j A B P A P A B P A P B A P伯努力概型公式 n k p p C k P k n kk n n ,1,0,)1()(=-=-两件事件相互独立相应公式)()()(B P A P AB P =;)()(B P A B P =;)()(A B P A B P =;1)()(=+A B P A B P ;1)()(=+A B P A B P二、随机变量及其分布1、分布函数性质)()(b F b X P =≤ )()()(a F b F b X a P -=≤<2、 散型随机变量分布名称 分布律0–1分布),1(p B 1,0,)1()(1=-==-k p p k X P k k二项分布),(p n Bn k p p C k X P k n kk n ,,1,0,)1()( =-==-泊松分布)(λP,2,1,0,!)(===-k k ek X P kλλ几何分布)(p G,2,1,0,)1()(1=-==-k p p k X P k超几何分布),,(n M N H),min(,,1,,)(M n l l k C C C k X P nNkn MN k M +===--3..续型随机变量分布名称密度函数 分布函数均匀分布),(b a U⎪⎩⎪⎨⎧<<-=其他,0,1)(b x a ab x f⎪⎪⎩⎪⎪⎨⎧≥<≤--<=b x b x a a b a x a x x F ,1,,0)(指数分布)(λE⎪⎩⎪⎨⎧>=-其他,00,)(x e x f x λλ⎩⎨⎧≥-<=-0,10,0)(x e x x F xλ 正态分布),(2σμN+∞<<∞-=--x ex f x 222)(21)(σμσπ ⎰∞---=xt t ex F d21)(222)(σμσπ标准正态分布)1,0(N+∞<<∞-=-x ex x 2221)(πϕ⎰∞---=xt t ex F d21)(222)(σμσπ三、多维随机变量及其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j i2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E +=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y C o v Y X C o v =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X a b C o v d bY c aX Cov =++8、常见数学分布的期望和方差分布 数学期望方差0-1分布),1(p B p)1(p p - 二行分布),(p n B np)1(p np -泊松分布)(λP λλ几何分布)(p G p1 21pp -超几何分布),,(n M N H N M n1)1(---N mN N M N M n均匀分布),(b a U 2b a + 12)(2a b - 正态分布),(2σμN μ2σ指数分布)(λEλ1 21λ五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X 1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X 1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X 1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n =η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X 的联合分布为)(),(121k nk n x F x x x F =∏=2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距: 2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1(6)次序统计量:设样本),(21n X X X 的观察值),(21n x x x ,将n x x x 21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤ ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤ 为样本),(21n X X X 的次序统计量。
山东省考研数学复习资料概率论与数理统计重点知识点整理

山东省考研数学复习资料概率论与数理统计重点知识点整理概率论与数理统计是数学的重要分支,广泛应用于各个领域。
在山东省考研的数学科目中,概率论与数理统计是必考内容之一。
为了帮助考生复习,本文将针对概率论与数理统计的重点知识点进行整理,并提供相应的考点解析和习题练习。
一、概率论基础知识1. 随机事件与概率:事件的概念、随机事件的概率、事件的运算(包括事件的和、积,互斥事件,逆事件等)2. 条件概率与独立性:条件概率的概念、乘法定理、全概率公式、贝叶斯公式、独立事件的概念与性质3. 随机变量与分布函数:随机变量的概念、离散型随机变量、连续型随机变量、随机变量函数的分布4. 数学期望与方差:随机变量的数学期望、方差的性质与计算、条件期望、协方差与相关系数的定义与计算二、概率分布1. 离散型随机变量的分布:伯努利分布、二项分布、泊松分布等,包括分布的概率函数、分布函数、数学期望和方差的计算2. 连续型随机变量的分布:均匀分布、指数分布、正态分布等,包括分布的密度函数、分布函数、数学期望和方差的计算3. 两个随机变量的分布:随机变量之和的分布、两个随机变量的函数的分布三、大数定律与中心极限定理1. 大数定律:切比雪夫不等式、大数定律的独立同分布条件、伯努利大数定律、辛钦大数定律2. 中心极限定理:中心极限定理的独立同分布条件、独立同分布情况下的林德伯格-列维定理、棣莫弗-拉普拉斯中心极限定理四、参数估计与假设检验1. 点估计:估计量与矩估计、最大似然估计、无偏性与有效性、均方误差2. 区间估计:置信区间的构造与解释、枢轴变量法构造置信区间、大样本置信区间与小样本置信区间3. 假设检验:假设检验的基本原理与步骤、拒绝域与接受域、显著性水平与p值、参数检验与非参数检验五、相关分析与方差分析1. 相关分析:相关系数的计算与解释、相关系数的性质与应用、线性回归与最小二乘法2. 方差分析:单因素方差分析、双因素方差分析、方差分析的假设条件与检验方法六、样本调查与抽样分布1. 随机抽样:简单随机抽样、分层抽样、整群抽样、多阶段抽样等抽样方法2. 样本调查:样本容量的确定、调查问卷设计与分析、样本误差与抽样误差3. 抽样分布:统计量与抽样分布、正态分布与t分布、卡方分布与F分布通过对概率论与数理统计的重点知识点进行整理,希望能够帮助山东省考研数学的考生有一个清晰的复习框架。
概率论与数理统计重点和必考点

05 数理统计基本概念与方法
总体与样本概念辨析
总体
研究对象的全体,是一个随机变 量,有确定的分布但未知。
样本
从总体中随机抽取的一部分个体, 用于推断总体的性质。
样本容量
样本中包含的个体数目,用n表示。
统计量与抽样分布
统计量
由样本构造出的一个或多个不含总体分布未知参数的函数。
抽样分布
统计量的分布,描述了样本统计量在不同样本下的可能取值及概 率。
03 多维随机变量及其分布
二维随机变量联合分布
01
联合分布函数
对于二维随机变量$(X,Y)$,其联合分布函数$F(x,y)$描述了随机点
$(X,Y)$落在以$(x,y)$为顶点的左下方区域的概率。
02 03
联合概率密度函数
若二维随机变量$(X,Y)$的分布函数可微,则存在非负函数$f(x,y)$,使 得$F(x,y)$等于$f(x,y)$在对应区域的二重积分,称$f(x,y)$为$(X,Y)$的 联合概率密度函数。
假设检验与方差分析
假设检验是统计推断中的另一种重要 方法,用于判断总体参数是否满足某 个假设。方差分析则是一种特殊的假 设检验方法,用于比较多个总体的均 值是否存在显著差异。
回归分析与相关分析
回归分析和相关分析是统计推断中的 两种常用方法,用于研究变量之间的 关系。回归分析通过建立回归方程来 描述变量之间的依赖关系;而相关分 析则是通过计算相关系数来衡量变量 之间的相关程度。这些方法在社会科 学、生物医学、经济金融等领域有着 广泛的应用。
随机变量的分类
根据随机变量可能取的值的个数分为离散型随机变量和连续型随机变量。
离散型随机变量分布律
分布律的定义
对于一个离散型随机变量X,其所有可能取的值为$x_k$,称$P{X=x_k}=p_k$为随 机变量X的分布律。
考研概率论与数理统计知识点梳理

考研概率论与数理统计知识点梳理概率论与数理统计是考研数学的重要组成部分,对于数学专业的考生来说,掌握好概率论与数理统计的知识点是至关重要的。
本文将对考研概率论与数理统计的知识点进行梳理,以帮助考生更好地备考。
一、概率论知识点梳理1. 事件与概率概率论的基本概念是事件和概率。
事件是指随机试验中一些可能出现的事情,而概率则是事件发生的可能性大小。
概率的计算方法包括古典概型、几何概型和统计概型等。
2. 随机变量与概率分布随机变量是指随机试验结果的数值表示,概率分布是指随机变量可能取值的概率分布情况。
常见的概率分布包括离散型随机变量的二项分布和泊松分布,连续型随机变量的正态分布和指数分布等。
3. 随机变量的数字特征随机变量的数字特征是描述随机变量性质的统计量,包括数学期望、方差、协方差和相关系数等。
这些数字特征可以帮助我们更好地理解和描述随机变量的性质。
4. 大数定律与中心极限定理大数定律和中心极限定理是概率论的两个重要定理。
大数定律指出,随着随机试验次数的增加,随机变量的频率逐渐趋近于其概率。
中心极限定理则指出,若随机变量满足一定条件,其和的分布将趋于正态分布。
二、数理统计知识点梳理1. 统计数据的整理与分析数理统计的基本任务是整理和分析统计数据。
常用的统计图表包括频数分布表、频率分布直方图和箱线图等,可以直观地展示数据的分布情况。
2. 抽样与抽样分布抽样是从总体中选取样本进行统计推断的方法,抽样分布是样本统计量的概率分布。
常见的抽样分布包括正态分布的抽样分布和t分布的抽样分布等。
3. 参数估计与假设检验参数估计是利用样本统计量来估计总体参数的值,常见的参数估计方法包括点估计和区间估计。
假设检验是利用样本数据对总体参数进行检验的方法,常用的假设检验方法包括单样本假设检验和双样本假设检验等。
4. 方差分析与回归分析方差分析是用于比较两个或多个总体均值是否有显著差异的方法,回归分析是用于建立变量之间关系的方法。
考研数学中的概率论与数理统计知识点总结

考研数学中的概率论与数理统计知识点总结随着社会的发展,考研越来越受到广大学子的关注和追捧。
为了帮助考研学子们更好地备考,本文将对考研数学中的概率论与数理统计知识点进行总结和梳理。
一、概率论1.基本概念概率是研究随机事件发生可能性的一种数学方法。
其中,随机事件是指在相同的条件下可能出现也可能不出现的事件。
2.概率的计算概率有三种计算方法:古典概型、几何概型和统计概型。
其中,古典概型适用于有限个等可能性事件的概率计算;几何概型适用于连续性问题的概率计算;统计概型适用于大量重复实验的概率计算。
3.条件概率条件概率是指在已知事件B发生的情况下,事件A发生的概率。
其计算公式为P(A|B)=P(AB)/P(B)。
4.独立事件当事件A和事件B的发生没有相互影响时,称它们是独立事件。
根据概率乘法公式可以得到独立事件的计算公式为P(AB)=P(A)P(B)。
5.随机变量随机变量是指一个随机试验结果所对应的数值,可以分为离散型和连续型两种。
其中,离散型随机变量是指取到有限个或无限个可数值的随机变量,例如掷骰子的点数;连续型随机变量是指取到某一区间内任意一个数值的随机变量,例如人的身高。
二、数理统计1.基本概念数理统计是利用概率论在统计学中进行数据分析和研究的一种数学方法。
其中,总体是指含有可度量或可观察的某种特征的全部个体群体;样本是指对总体的部分观测数据。
2.参数估计参数估计是指通过样本中的数据对总体中某个或某些参数进行估计的方法。
其中,点估计是指通过样本数据直接估计总体参数的值;区间估计是指通过样本数据估计总体参数的值所在的区间。
3.假设检验假设检验是指在已知总体参数的情况下,通过样本所得到的样本统计量来推断总体参数是否符合某种假设的方法。
其中,显著性水平是指假设检验中犯错误的概率,一般取0.05或0.01。
4.方差分析方差分析是指通过方差比较来确定组间差异和组内差异及其大小的方法。
其中,单因素方差分析是指只考虑一个因素对结果影响的方差分析;双因素方差分析是指考虑两个因素对结果影响的方差分析。
《概率论与数理统计》知识点整理

《概率论与数理统计》知识点整理概率论与数理统计是数学中的一个重要分支,它研究随机现象发生的规律以及对这些规律的推断和决策问题。
在现代科学、金融、医学、工程等领域中都有广泛的应用。
下面是《概率论与数理统计》的一些重要知识点:一、概率论:1.概率的基本概念:随机试验、样本空间、事件、概率公理化定义等。
2.条件概率与概率的乘法定理:条件概率的定义、条件概率的乘法定理、独立事件的定义与性质等。
3.全概率公式与贝叶斯公式:全概率公式的推导与应用、贝叶斯公式的推导与应用等。
4.随机变量与概率分布:随机变量的定义与分类、概率分布的基本性质、离散型随机变量与连续型随机变量的概率分布等。
5.两随机变量函数的概率分布:随机变量的函数、数学期望的定义与性质、方差的定义与性质等。
6.多维随机变量及其分布:二维随机变量的概率分布、联合分布函数与边缘分布、条件分布等。
二、数理统计:1.统计数据的描述:数据的集中趋势度量(均值、中位数、众数)、数据的离散程度度量(极差、方差、标准差)、数据的分布形态度量(偏度、峰度)等。
2.参数估计:点估计的概念与方法、矩估计法、极大似然估计法、最小二乘估计法等。
3.假设检验:假设检验的基本概念、显著性水平与拒绝域、假设检验的步骤、单侧检验与双侧检验等。
4.统计分布:正态分布的性质与应用、t分布与χ²分布的概念与性质、F分布的概念与性质等。
5.方差分析与回归分析:方差分析的基本原理与应用、单因素方差分析、回归分析的基本原理与应用、简单线性回归分析等。
三、随机过程:1.随机过程的基本概念与性质:随机过程的定义、状态与状态转移概率、齐次性与非齐次性等。
2.马尔可夫链:马尔可夫链的定义与性质、状态空间的分类、平稳分布与极限等。
3.随机过程的描述:概率密度函数、概率生成函数、随机过程的矩、协方差函数等。
4.随机过程的分类:齐次与非齐次、连续与间断、宽离散与窄离散等。
(完整版)概率论与数理统计知识点总结(免费超详细版)

《概率论与数理统计》第一章 概率论的基本概念§2.样本空间、随机事件1.事件间的关系 B A ⊂则称事件B 包含事件A ,指事件A 发生必然导致事件B 发生B }x x x { ∈∈=⋃或A B A 称为事件A 与事件B 的和事件,指当且仅当A ,B 中至少有一个发生时,事件B A ⋃发生B }x x x { ∈∈=⋂且A B A 称为事件A 与事件B 的积事件,指当A ,B 同时发生时,事件B A ⋂发生B }x x x { ∉∈=且—A B A 称为事件A 与事件B 的差事件,指当且仅当A 发生、B 不发生时,事件B A —发生φ=⋂B A ,则称事件A 与B 是互不相容的,或互斥的,指事件A 与事件B 不能同时发生,基本事件是两两互不相容的且S =⋃B A φ=⋂B A ,则称事件A 与事件B 互为逆事件,又称事件A 与事件B 互为对立事件2.运算规则 交换律A B B A A B B A ⋂=⋂⋃=⋃结合律)()( )()(C B A C B A C B A C B A ⋂=⋂⋃⋃=⋃⋃ 分配律 )()B (C A A C B A ⋃⋂⋃=⋂⋃)( ))(()( C A B A C B A ⋂⋂=⋃⋂ 徳摩根律B A B A A B A ⋃=⋂⋂=⋃ B —§3.频率与概率定义 在相同的条件下,进行了n 次试验,在这n 次试验中,事件A 发生的次数A n 称为事件A 发生的频数,比值n n A 称为事件A 发生的频率概率:设E 是随机试验,S 是它的样本空间,对于E 的每一事件A 赋予一个实数,记为P (A ),称为事件的概率 1.概率)(A P 满足下列条件:(1)非负性:对于每一个事件A 1)(0≤≤A P (2)规范性:对于必然事件S 1)S (=P(3)可列可加性:设n A A A ,,,21 是两两互不相容的事件,有∑===nk kn k kA P A P 11)()( (n 可以取∞)2.概率的一些重要性质: (i ) 0)(=φP(ii )若n A A A ,,,21 是两两互不相容的事件,则有∑===nk kn k kA P A P 11)()((n 可以取∞)(iii )设A ,B 是两个事件若B A ⊂,则)()()(A P B P A B P -=-,)A ()B (P P ≥ (iv )对于任意事件A ,1)(≤A P(v ))(1)(A P A P -= (逆事件的概率)(vi )对于任意事件A ,B 有)()()()(AB P B P A P B A P -+=⋃§4等可能概型(古典概型)等可能概型:试验的样本空间只包含有限个元素,试验中每个事件发生的可能性相同 若事件A包含k个基本事件,即}{}{}{2]1k i i i e e e A =,里个不同的数,则有中某,是,,k k n 2,1i i i ,21 ()中基本事件的总数包含的基本事件数S }{)(1j A n k e P A P kj i ===∑= §5.条件概率(1) 定义:设A,B 是两个事件,且0)(>A P ,称)()()|(A P AB P A B P =为事件A 发生的条件下事件B 发生的条件概率(2) 条件概率符合概率定义中的三个条件1。
概率论与数理统计知识点总结免费超详细版

概率论与数理统计知识点总结免费超详细版概率论与数理统计是一门研究随机现象及其规律的数学学科,它在自然科学、工程技术、社会科学、经济金融等众多领域都有着广泛的应用。
以下是对概率论与数理统计主要知识点的详细总结。
一、随机事件与概率1、随机事件随机事件是指在一定条件下,可能出现也可能不出现的事件。
我们通常用大写字母A、B、C 等来表示。
随机事件的关系包括包含、相等、互斥(互不相容)和对立等。
2、概率的定义概率是用来度量随机事件发生可能性大小的数值。
概率的古典定义是:如果一个试验有 n 个等可能的结果,事件 A 包含其中的 m 个结果,则事件 A 发生的概率为 P(A) = m / n 。
概率的统计定义是:在大量重复试验中,事件 A 发生的频率稳定地接近于某个常数 p,就把 p 称为事件 A 的概率。
3、概率的性质概率具有非负性(0 ≤ P(A) ≤ 1)、规范性(P(Ω) = 1,其中Ω 表示样本空间)和可加性(对于互斥事件 A 和 B,有 P(A∪B) = P(A) +P(B))。
二、条件概率与乘法公式1、条件概率条件概率是指在事件 B 发生的条件下,事件 A 发生的概率,记作P(A|B)。
其计算公式为 P(A|B) = P(AB) / P(B) ,其中 P(AB) 表示事件A 和B 同时发生的概率。
2、乘法公式乘法公式有两种形式:P(AB) = P(A|B)P(B) 和 P(AB) =P(B|A)P(A) 。
三、全概率公式与贝叶斯公式1、全概率公式设 B₁,B₂,,Bₙ 是样本空间Ω 的一个划分,且 P(Bᵢ) > 0(i =1, 2,, n),则对于任意事件 A,有 P(A) =Σ P(Bᵢ)P(A|Bᵢ) 。
2、贝叶斯公式在全概率公式的基础上,如果已知 P(A) 和 P(Bᵢ)、P(A|Bᵢ)(i = 1, 2,,n),则对于任意事件 Bᵢ(i = 1, 2,, n),有 P(Bᵢ|A) = P(Bᵢ)P(A|Bᵢ)/Σ P(Bₙ)P(A|Bₙ) 。
概率论与数理统计知识点总结(PDF)

概率论与数理统计 知识点总结一、随机事件与概率1.随机事件(1)事件间的关系与运算● 事件的差:A B A AB AB -=-= ● 对立事件:,AA A A =∅⋃=Ω ● 完备事件组:设12,,,,n A A A 是有限或可数个事件,如果其满足:① ,,,1,2,i j A A i j i j =∅≠=; ②i iA =Ω,则称12,,,,n A A A 是一个完备事件组.(2)随机事件的运算律 ● 求和运算:①A B B A +=+(交换律)②()()A B C A B C A B C ++=++=++(结合律) ● 求交运算:①AB BA =(交换律)②()()AB C A BC ABC ==(结合律) ● 求和运算与求交运算的混合:①()()()A B C AB AC +=+(第一分配律) ②()()()A BC A B A C +=++(第二分配律) ● 求对立事件的运算:()A A =(自反律) ● 和及交事件的对立事件:①A B AB +=(第一对偶律) ②AB A B =+(第二对偶律)2.随机事件的概率(1)概率的公理化定义● 公理1:()1P Ω=;公理2:对任意事件A ,有()0P A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A P A ∞∞===∑.(2)概率测度的其他性质 ● 性质1:()0P ∅=性质2(有限可加性):12,,,n A A A 是两两互不相容的,则有11()()nni i i i P A P A ===∑性质3:()1()P A P A =-性质4:()()()P A B P A P AB -=-特别地,若A B ⊃,则①()()()P A B P A P B -=-;②()()P A P B ≥ 性质5:0()1P A ≤≤性质6:()()()()P A B P A P B P AB +=+-推论:()()()()()()()()P A B C P A P B P C P AB P AC P BC P ABC ++=++---+3.古典概型与几何概型(1)古典概型● 古典概型的概率测度:()==A A P A Ω中元素个数使发生的基本事件数中元素个数基本事件总数(2)几何概型● 几何概型的概率测度:()()()S A P A S =Ω 4.条件概率(1)条件概率的数学定义 ●()()(()0)()P AB P B A P A P A =>● ()1()P B A P B A =- ●()1()P B A P B A =-● 条件概率测度满足概率的三条公理:公理1:()1P A Ω=;公理2:对任意事件B ,有()0P B A ≥;公理3:对任意可数个两两不相容的事件12,,,,n A A A ,有11()()i i i i P A A P A A ∞∞===∑.(2)乘法公式 ● ()()(),()0P AB P A P B A P A => ● ()()(),()0P AB P B P A B P B => ● ()()()()P ABC P A P B A P C AB = ●12121312121()()()()()n n n P A A A P A P A A P A A A P A A A A -=(3)全概率公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且i iA =Ω,则对任意事件B ,有()()()i i iP B P A P B A =∑.(4)贝叶斯公式● 设{}i A 是一列有限或可数无穷个两两不相容的非零概率事件,且1i i A ∞==Ω,则对任意事件B , ()0P B >,有()()()()()()()i i i i j j jP A P B A P A B P A B P B P A P B A ==∑. 5.事件的独立性(1)两个事件的独立性 ●()()()P AB P A P B =(2)有限个事件的独立性● 两两独立:()()()i j i j P A A P A P A = ● 相互独立:1212()()()()k k i i i i i i P A A A P A P A P A =(3)相互独立性的性质 ● 性质1:如果n 个事件12,,,n A A A 相互独立,则将其中任何(1)m m n ≤≤个事件改为相应的对立事件,形成的新的n 个事件仍然相互独立. 性质2:如果n 个事件12,,,n A A A 相互独立,则有1111()1(1())n n ni i i i i i P A P A P A ===⎛⎫=-=-- ⎪⎝⎭∏∏(4)伯努利概型● 伯努利定理:在一次试验中,事件A 发生的概率为(01)p p <<,则在n 重伯努利试验中,事件A 恰好发生k 次的概率为:(;,)C k k n kn b k n p p q-=,其中1q p =-. ● 在伯努利试验序列中,设每次试验中事件A 发生的概率为p ,“事件A 在第k 次试验中才首次发生”(1)k ≥,这一事件的概率为1(,)k g k p q p -=.二、随机变量的分布与数字特征1.随机变量及其分布(1)离散型随机变量的概率分布● 离散型随机变量的概率分布满足性质:①()0,1,2,i p x i ≥=②()1iip x =∑● 一旦知道一个离散型随机变量X 的概率分布{}i p x (),便可求得X 所生成的任何事件的概率.特别地,对任意a b ≤,有{}({}){}()i i i i i i a x ba x ba x bP a X b P X x P X x p x ≤≤≤≤≤≤≤≤=====∑∑.一般地,若I 是一个区间,则{}=()i ix IP X I p x ∈∈∑.(2)分布函数● 随机变量的分布函数性质:①单调性,若12x x <,则12()()F x F x ≤; ②()lim ()0x F F x →-∞-∞==,()lim ()1x F F x →+∞+∞==;③右连续性,(0)()F x F x +=. (3)连续型随机变量及其概率密度 ●(){}()xF x P X x f t dt -∞=≤=⎰,()f x 为X 的概率密度函数.● 密度函数性质:①()0,(,)f x x ≥∈-∞+∞; ②()1f x dx +∞-∞=⎰.● {}()()()b aP a X b F b F a f x dx <≤=-=⎰● {}0P X x ==(连续型)●'()()F x f x =2.随机变量的数字特征(1)离散型随机变量的数学期望 ●1=i i i EX x p ∞=∑(2)连续型随机变量的数学期望 ●()EX xf x dx +∞-∞=⎰(3)随机变量函数的数学期望● 设X 是一个随机变量,()g x 是一个实函数.①若X 为离散型随机变量,概率分布为{},1,2,i i P X x p i ===.且1()iii g x p∞=<∞∑,则()Eg X 存在,且1()()i i i Eg X g x p ∞==∑.②若X 为连续型随机变量,()f x 是其密度函数,且()()g x f x dx +∞-∞<∞⎰,则()Eg X 存在,且()()()Eg X g x f x dx +∞-∞=⎰.(4)数学期望的性质● ①对任意常数a ,有Ea a =;②设12,αα为任意实数,12(),()g x g x 为任意实函数,如果12(),()Eg X Eg X 均存在,则11221122[()()]()()E g X g X Eg X Eg X αααα+=+;③如果EX 存在,则对任意实数a ,有()E X a EX a +=+. (5)随机变量的方差 ● 离差:X EX -● 方差:2()DX E X EX =-● ● ①若X 为离散型随机变量,其概率分布为{},1,2,i i P X x p i ===,则22()()i i iDX E X EX x EX p =-=-∑②若X 为连续型随机变量,()f x 为其密度函数,则22()()()DX E X EX x EX f x dx +∞-∞=-=-⎰③22()DX EX EX =-● 方差的基本性质:设X 的方差DX 存在,a 为任意常数,则 ①0Da =;②()D X a DX +=; ③2()D aX a DX =.(6)随机变量的矩与切比雪夫不等式● 矩定义:X 为一个随机变量,k 为正整数,如果kEX 存在(即kE X<∞),则称kEX 为X的k 阶原点矩,称kE X 为X 的k 阶绝对矩.定理:随机变量X 的t 阶矩存在,则其s 阶矩(s t <为正整数)也存在. 推论:设k 为正整数,C 为常数,如果kEX 存在,则()kE X C +存在,特别地,)k E X EX -(存在.● 中心矩定义:X 为一个随机变量,k 为正整数,如果k EX 存在,则称()kE X EX -为X 的k阶中心矩,称kE X EX -为X 的k 阶绝对中心矩.● 定理:设()h x 是x 的一个非负函数,X 是一个随机变量,且()Eh X 存在,则对任意0ε>,有(){()}Eh X P h X εε≥≤.推论1(马尔可夫不等式):设X 的k 阶矩存在(k 为正整数),即kE X <∞,则对任意0ε>有{}kkE XP X εε≥≤.推论2(切比雪夫不等式):设X 的方差存在,则对任意0ε>有2{}DXP X EX εε-≥≤.推论3:随机变量X 的方差为0当且仅当存在一个常数a ,使得{}=1P X a =.3.常用的离散型分布,n),n kp -,ndef(,),g k p k =几何分布的无记忆性:设{P X二项分布可作为超几何分布的近似,即1212C C Ck n kk n kN N k n nNN N C N N --⎛⎫⎛⎫≈ ⎪ ⎪⎝⎭⎝⎭.这一近似关系的严格数学表述是:当N →∞时,1N →∞,2N →∞,且1N p N →,21Np N→-,则对任意给定的n 和k ,有()12C C lim1Ck n kn kN N k kn nN NC p p --→∞=-.泊松定理:在n 重伯努利试验中,事件A 在每次试验中发生的概率为n p (注意这与试验的次数n 有关),如果n →∞时,n np λ→(0λ>为常数),则对任意给定的k ,有lim (;,)e !kn n b k n p k λλ-→∞=.当二项分布(,)b n p 的参数n 很大,而p 很小时,可以将它用参数为np λ=的泊松分布来近似,即有()(;,)e !k npnp b k n p k -≈.4.常用的连续型分布正态分布● 定理:设2~(,),,,X N Y aX b a b μσ=+为常数,且0a ≠,则22~(,)Y N a b aμσ+.推论1:如果2~(,)X N μσ,则~(0,1)X N μξσ-=.ξ通常称为X 的标准化.推论2:2~(,)X N μσ的充要条件是存在一个随机变量~(0,1)N ξ,使得X σξμ=+. 推论3:设2~(,),(),()X N x x μσϕΦ分别为其分布函数与密度函数,00(),()x x ϕΦ是标准正态分布的分布函数和密度函数,则有00()(),1()().x x x x μσμϕϕσσ-Φ=Φ-=● 一般正态分布的概率计算:【例】已知2~(,)X N μσ,求()a Φ. 解 0(){}{}{}()X a X a P X a P P b b μμμσσσ---Φ=≤=≤=≤=Φ5.随机变量函数的分布(1)离散型随机变量函数的分布● 离散型随机变量函数的概率分布的一般方法:先根据自变量X 的可能取值确定因变量Y 的所有可能取值,然后对Y 的每一个可能取值(1,2,)i y i =确定相应的{()}i j j i C x g x y ==,则有{}{()}{},{}{}{},j ii i i i i jx C Y y g X y X C P Y y P X C P X x ∈====∈==∈==∑从而求得Y 的概率分布. (2)连续型随机变量函数的分布● 连续型随机变量函数的概率分布的一般方法:一般地,已知X 的分布函数()X F x 或密度函数()X f x ,为求()Y g X =的分布函数,有()(){()}{},Y x F x P Y x P g X x P X C =≤=≤=∈其中{()}x C t g t x =≤.而{}x P X C ∈往往可由X 的分布函数()X F x 来表达或用其密度函数()X f x 的积分来表达:{}()xx X C P X C f t dt ∈=⎰.进而,Y 的密度函数,可直接从()Y F x 导出.三、随机向量1.随机向量的分布(1)随机向量及其分布函数 ●1212{,}P x X x y Y y <≤<≤22122111(,)(,)(,)(,)F x y F x y F x y F x y =--+● 由(联合)分布函数的定义得出性质:①0(,)1F x y ≤≤;②(,)F x y 关于x 和y 均单调非降、右连续; ③(,)lim (,)0,x F y F x y →-∞-∞==(,)lim (,)0,y F x F x y →-∞-∞==(,)(,)(,)lim (,)0,x y F F x y →-∞-∞-∞-∞== (,)(,)(+,+)lim(,) 1.x y F F x y →+∞+∞∞∞==●(,)F x y 的边缘分布函数:(){}{,}(,)X F x P X x P X x Y F x =≤=≤<+∞=+∞, (){}{,}(,)Y F y P Y y P X Y y F y =≤=<+∞≤=+∞.(2)离散型随机向量的概率分布● 离散型随机向量的概率分布{,},,1,2,i i ij P X x Y y p i j ====,ij p 满足性质:①0,,1,2,ij p i j ≥=;②1ijijp=∑∑.● 边缘概率分布:{},1,2,X i i ij jp P X x p i ====∑ {},1,2,Y j j ij ip P Y y p j ====∑(3)连续型随机向量的概率密度函数 ● 二维连续型随机向量(,)(,)x yF x y f s t dsdt -∞-∞=⎰⎰,(,)f x y 为(),X Y 的概率密度函数或X 与Y 的联合密度函数. (,)f x y 具有性质:①(,)0f x y ≥; ②(,)1f x y dxdy +∞+∞-∞-∞=⎰⎰;③若D 是平面上的一个区域,则(){,}(,)DP X Y D f x y dxdy ∈=⎰⎰● 边缘密度函数:()(,)()(,)X Y f x f x y dyf y f x y dx+∞-∞+∞-∞==⎰⎰● 均匀分布的密度函数:1,(,)()(,)0,x y G S G f x y ⎧∈⎪=⎨⎪⎩其他,若(),X Y 服从G 上的均匀分布,则对任何平面区域D ,有()1(){,}(,)=()()DD GS D G P X Y D f x y dxdy dxdy S G S G ⋂⋂∈==⎰⎰⎰⎰. (4)二元正态分布 ● 密度函数:()2211222221212()()()()122(1),x x y y x y μμμμρσσρσσϕ⎡⎤------+⎢⎥-⎢⎥⎣⎦=,记作()221212,~(,;,;)X Y N μμσσρ.● 边缘密度函数分布:()2121()2()=,x X x x y dy μσϕϕ--+∞-∞⎰,()2222()2()=,y Y y x y dx μσϕϕ--+∞-∞⎰.注意:比较联合密度函数(),x y ϕ和边缘密度函数()X x ϕ,()Y y ϕ,当且仅当0ρ=时,对一切(),x y ,有(),()()X Y x y x y ϕϕϕ=.2.条件分布与随机变量的独立性(1)条件分布与独立性的一般概念● 随机变量X 和Y 相互独立:(,)()()X Y F x y F x F y =● 定理1:随机变量X 和Y 相互独立的充要条件是X 所生成的任何事件与Y 生成的任何事件独立,即对任意实数集A 和B ,有{,}{}{}P X A Y B P X A P Y B ∈∈=∈∈.定理2:如果随机变量X 和Y 相互独立,则对任意函数12(),()g x g y ,均有1()g X 与2()g Y 相互独立. ● 相互独立:12,,,n X X X 相互独立,()121122,,,()()()n n n F x x x F x F x F x =.(2)离散型随机变量的条件概率分布与独立性 ● 概率分布:{,},,1,2,i j ij P X x Y y p i j ====●i j p (当{}0i P Y y =>时):{,}{}{}iji i i j Y i jP P X x Y y P X x Y y P Y y P =======性质:①0i j p ≥;②1i jip=∑.● 已知j Y y =的条件下X 的条件概率分布:{},1,2,i i i j P X x Y y p i ====; 已知i X x =的条件下Y 的条件概率分布:{},1,2,i i j i P Y y X x p j ====.●X Y ij i j j i i j p p p p p =⋅=⋅● 定理:设,X Y 是离散型随机变量,其联合概率分布为{,}(,1,2,)i j ij P X x Y y p i j ====,边缘概率分布分别为X i p 和Yj p (,1,2,)i j =,则X 与Y 相互独立的充要条件是,,1,2,X Y ij i j p p p i j ==.(3)连续型随机变量的条件密度函数与独立性● 在Y y =的条件下X 的条件分布:0(,){,}{}lim {}()xy Y f u y du P X x y y Y y P X x Y y P y y Y y f y -∞∆→≤-∆<≤≤===-∆<≤⎰● 条件分布和条件密度函数● (,)()()()()X Y Y X X Y f x y f x f y x f y f x y ==● 定理:设连续型随机向量(),X Y 的密度函数为(,)f x y ,边缘密度函数分别为()X f x 和()Y f y ,则X 与Y 相互独立的充要条件是(,)()()X Y f x y f x f y =.3.随机向量的函数的分布与数学期望(1)离散型随机向量的函数分布 ●(,){}{(,)}{,},1,2,i j kk k i j g x y z P Z z P g X Y z P X x Y y k ========∑● 设,X Y 是两个相互独立的随机变量,分别服从参数为1λ和2λ的泊松分布,则X Y ξ=+的分布为()()1212e ,0,1,2,!kk k λλλλ-++=,可见X Y ξ=+服从参数为()12λλ+的泊松分布.结论:泊松分布具有独立可加性.2,(2)连续型随机向量的函数分布● 分布函数:(){}{(,)}{(,)}(,)zZ z D F z P Z z P g X Y z P X Y D f x y dxdy =≤=≤=∈=⎰⎰,其中z D ={(,)(,)}x y g x y z ≤. ● 密度函数:'()=()Z Z f z F z .● 随机变量的和:设(,)X Y 的联合密度函数为(,)f x y ,则X Y +的密度函数为()=(,)Z f z f z y y dy +∞-∞-⎰或 ()=(,)Z f z f x z x dx +∞-∞-⎰特别地,如果X 和Y 是相互独立的随机变量,则有(卷积公式)()=()()Z X Y f z f x f z x dx +∞-∞-⎰或 ()=()()Z X Y f z f z y f y dy +∞-∞-⎰即,()=*()*()Z X Y Y X f z f f z f f z =.● 独立正态随机变量之和:设随机变量221122~(,),~(,)X N Y N μσμσ,且X 与Y 独立,则221212~(,)X Y N μμσσ+++,即2122212()2()()z X Y f z μμσσ⎡⎤---⎢⎥+⎢⎥⎣⎦+=,结论:独立正态分布的和服从正态分布.推论:X 与Y 相互独立且分别服从正态分布211(,)N μσ和222(,)N μσ,则其任意非零线性组合仍服从正态分布,且22221212~(,)aX bY N a b a b μμσσ+++.进一步地,12,,n X X X 相互独立,2~(,)i i iX N μσ,则22111~(,)n n ni i i i i i i i i a X N a a μσ===∑∑∑.● 随机变量的商:设二维随机向量(,)X Y 的密度函数为(,)f x y ,则XZ Y=的密度函数为'()=()(,)Z Z f z F z y f zy y dy +∞-∞=⎰.● 最大值与最小值:设,X Y 的分布函数分别为(),()F x G x ,密度函数分别为(),()f x g x ,且X与Y 相互独立,令max{,},min{,}M X Y N X Y ==,则有(3)随机向量函数的数学期望● 二维离散型随机向量的数学期望:,(,)(,)ijiji jEZ Eg X Y g x y p==∑.● 二维连续型随机向量的数学期望:(,)(,)(,)EZ Eg X Y g x y f x y dxdy +∞+∞-∞-∞==⎰⎰.●(,)g X Y XY =型:()(),,,(,),,i j ij i jx y p X Y EXY xyf x y dxdy X Y +∞+∞-∞-∞⎧⎪=⎨⎪⎩∑⎰⎰若为离散型若为连续型 (4)数学期望的进一步性质● (1)对任意两个随机变量,X Y ,如果其数学期望均存在,则()E X Y +存在,且()=E X Y EX EY ++(2)设,X Y 为任意两个相互独立的随机变量,数学期望均存在,则EXY 存在,且=EXY EXEY推广: (1)12,,,n X X X 是任意n 个随机变量,数学期望均存在,则()12n E X X X +++存在,且()1212n n E X X X EX EX EX +++=+++(2)设12,,,n X X X 是个相互独立的随机变量,且数学期望均存在,则()12n E X X X 存在,且()1212n n E X X X EX EX EX =.4.随机变量的数字特征(1)协方差● 协方差:()()()cov ,X Y E X EX Y EY =--⎡⎤⎣⎦1,2,)●()cov ,X Y EXY EXEY =-● 定理:(1)()cov ,X X DX = (2)()()cov ,cov ,X Y Y X =(3)()()cov ,cov ,,,aX bY ab X Y a b =为任意常数 (4)()cov ,0,C X C =为任意常数(5)()()()1212cov ,cov ,cov ,X X Y X Y X Y +=+ (6)如果X 与Y 相互独立,则()cov ,0X Y =推论:设,X Y 为任意两个随机变量,如果其方差均存在,则X Y +的方差也存在,且()()2cov ,D X Y DX DY X Y +=++.()()2cov ,D X Y DX DY X Y -=+-特别地,如果X 与Y 相互独立,则()D X Y DX DY +=+.● 定理:设()12,,,n X X X 是n 维随机向量,如果()1,2,,i X i n =的方差均存在,则对任意实向量()12,,,n λλλ,1ni i i X λ=∑的方差必存在,且()21112cov ,n n i i i i i j i j i i i j n D X DX X X λλλλ==≤<≤⎛⎫=+ ⎪⎝⎭∑∑∑.特别地,如果12,,,n X X X 两两独立,则211n n i i i i i i D X DX λλ==⎛⎫= ⎪⎝⎭∑∑. (2)协方差矩阵 ● 记()T 12,,,n X X X =X ,其协差阵通常记作D X .对任意实向量()T12,,,n λλλ=λ,有()T T D D =λX λX λ.对任意实向量()T12,,,n λλλ=λ,()T T 0D D =≥λX λλX .(3)相关系数 ●,cov ,X Y X Y ρ,,1X Y ρ≤● 定理:设(),X Y 是一个二维随机向量,,DX DY 均存在且为正,则,1X Y ρ=的充要条件是X 与Y 具有线性关系,即存在常数0a ≠及常数b ,使得{}1P Y ax b =+=.而且,当0a >时,,1X Y ρ=;当0a <时,,1X Y ρ=-.● 如果,DX DY 均存在且为正,那么X 与Y 不相关等价以下条件:①()cov ,0X Y =; ②EXY EXEY =;③()D X Y DX DY +=+; ④,0X Y ρ=.5.大数定律与中心极限定理(1)依概率收敛 ● 定义:设12,,,,,n X X X X 是一列随机变量,如果对任意0ε>,恒有{}lim 0n n P X X ε→∞->=,则称{}n X 依概率收敛到X ,记作Pn X X −−→或lim n n P X X →∞-=.(2)大数定律 ● 定理:①伯努利大数定律:设n μ是n 重伯努利试验中事件A 发生的次数,已知在每次试验中A 发生的概率为()01p p <<,则对任意0ε>,有lim 0n n P p n με→∞⎧⎫->=⎨⎬⎩⎭, 即Pnp nμ−−→或limnn P p nμ→∞-=.②切比雪夫大数定律:设12,,,n ξξξ是一列两两不相关的随机变量,它们的数学期望iE ξ和方差i D ξ均存在,且方差有界,即存在常数C ,使得()1,2,i D C i ξ≤=,则对任意0ε>,有1111lim 1n ni i n i i P E n n ξξε→∞==⎧⎫-<=⎨⎬⎩⎭∑∑. 推论:设12,,,nξξξ是一列独立同分布的随机变量,其数学期望和方差均存在,记=i E ξμ,则对任意0ε>,有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. 即11n Pi i n ξμ=−−→∑.③辛钦大数定律:设12,,,nξξξ是一列相互独立同分布的随机变量,且数学期望存在,记=i E ξμ,则有11lim 1n i n i P n ξμε→∞=⎧⎫-<=⎨⎬⎩⎭∑. (3)中心极限定理● 定理:林德伯格-列维 设12,,,n ξξξ是一列相互独立同分布的随机变量,且=i E ξμ,2=0,1,2,,i D i ξσ>=则有22lim en t i xn n P x dt ξμ--∞→∞⎧⎫-⎪⎪⎪≤=⎬⎪⎪⎪⎩⎭∑.● 定理:设()~,,01,n X b n p p <<则22lim et xn P x dt --∞→∞⎧⎫⎪≤=⎬⎪⎭.四、数理统计的基础知识1.总体与样本样本与样本分布● 总体X 的分布函数为()F x ,则样本()12,,,n X X X 的分布函数为:()()121,,,nn n i i F x x x F x ==∏,称之为样本分布.特别地,若总体X 为连续型随机变量,其密度函数为()f x ,则样本的密度函数为()()121,,,nn n i i f x x x f x ==∏.若总体X 为离散型随机变量,概率分布为(){}p x P X x ==,x 取遍X 所有可能取值,则样本的概率分布为()()()1211221,,,,,,nn n n n i i p x x x P X x X x X x p x ======∏.),n i x =∏为伯努利总体,如果它服从以}{,p P X =)12,,,n X X X 的概率分布为,n n X i =取1或0,而n i +,它恰等于样本中取值为服从参数为λ的泊松分布,)12,,,n X X 为其样本,则样本的概率分布为)21,,ee !!!!kinn n n k k k n i X i X i i i i i λλλλ--======∏,其中取非负整数,而n i ++.2.统计量常用的统计量)n X +2)X -1(ni i X X =-∑3.常用的统计分布(1)分位数● 上侧分位数:设随机变量X 的分布函数为()F x ,对给定的实数(01)αα<<,如果实数F α满足{}P X F αα>=,即()1F F αα-=或()1F F αα=-,则称F α为随机变量X 的分布的水平α上的上侧分位数. ● 有关等式:{}1P X F αα-≤= 1221P F X F ααα-⎧⎫<≤=-⎨⎬⎩⎭推论:()()122,,P X F m n X F m n ααα-⎛⎫⎧⎫⎧⎫<⋃>= ⎪⎨⎬⎨⎬ ⎪⎩⎭⎩⎭⎝⎭或()()122,,1P F m n X F m n ααα-⎧⎫<<-⎨⎬⎩⎭. ● 双侧分位数:设X 是对称分布的连续型随机变量,其分布函数为()F x ,对给定的实数(01)αα<<,如果正实数T α满足{}P X T αα>=,即()()1F T F T ααα--=-.则称T α为随机变量X 的分布的水平α的双侧分位数. 注意:由于对称性,上式可改写为:()12F T αα=-或{}()12P X T F T ααα>=-=.对于具有对称密度函数的分布函数的上侧分位数,恒有1F F αα-=-. (2)2χ分布 ● 命题:设()12,,,n X X X 是n 个相互独立的随机变量,且()~0,1,1,2,,i X N i n =,则22212n X X X X=+++的密度函数为()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭.● Γ函数:()()10e 0a x a x dx a +∞--Γ=>⎰.●2χ分布:一个随机变量X 称为服从以n 为自由度的2χ分布,如果其密度函数由()1122221;e,022n x n x n xx n χ--=>⎛⎫Γ ⎪⎝⎭给出,记作()2~X n χ.● 命题:①若()()22~,~X m Y n χχ,且X 与Y 相互独立,则()2~X Y m n χ++. ②若()2~X n χ,则,2EX n DX n ==.(3)F 分布 ● 命题:设Z 由/=/X m n X Z Y n m Y=(设()()22~,~X m Y n χχ,且X 与Y 相互独立.)所定义,则Z 的密度函数为()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭.● B 函数:()()()1110,=10,0q p p q x x dx p q --B ->>⎰.●F 分布:如果一个随机变量X 的密度函数由()()11221;,1,0,22m m n m m m f x m n x x x m n n n n --+⎛⎫⎛⎫⎛⎫=+> ⎪⎪ ⎪⎛⎫⎝⎭⎝⎭⎝⎭B ⎪⎝⎭给出,则称其服从第一自由度为m ,第二自由度为n 的F 分布,记作()~,X F m n . ● 若()~,X F m n ,则()1~,XF n m -.● 当α接近1时,可利用()()11,=,F m n F n m αα-求出所需上侧分位数.(3)t 分布● 定义式:设()()2~0,1,~X N Y n χ,且X 与Y相互独立,记T =,则()2~1,/X T F n Y n=.● 命题:T 的密度函数为()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭.●t 分布:如果一个随机变量X 的密度函数由()122;1,n x t x n x n +-⎫=+-∞<<+∞⎪⎭⎝⎭给出,则称其为服从自由度为n 的t 分布,记作()~X t n .注意:当自由度n 很大时,t 分布接近于标准正态分布,因为2+11222lim 1=en x n x n --→∞⎛⎫+ ⎪⎝⎭.●当α接近1时,()()1t n t n αα-=-.4.抽样分布(1)正态总体的抽样分布● 定理:设总体()()212~,,,,,n X N X X X μσ是其容量为n 的一个样本,X 与2S 分别为此样本的样本均值与样本方差,则有①2~,X N n σμ⎛⎫⎪⎝⎭;②()2221~1n S n χσ--;③X 与2S 相互独立. ● 单正态总体的抽样分布定理:设()12,,,n X X X 为正态总体()2~,X N μσ的样本,X 与2S 分别为该样本的样本均值与样本方差,则有①()~0,1X U N =;②()2221~1n S n χσ--;③()~1X T t n =-.● 双正态总体的抽样分布定理:设()211~,X N μσ与()222~,Y N μσ是两个相互独立的正态总体.又设()112,,n X X X是总体X 的容量为1n 的样本,X 与21S 分别为该样本的样本均值与样本方差.再设()212,,n Y Y Y 是总体Y 的容量为2n 的样本,Y 与22S 分别为此样本的样本均值与样本方差.记2S 是21S 与22S 的加权平均:222121212121122n n S S S n n n n --=++-+-,则有 ①()()~0,1X Y U N μμ---=;②()222112212~1,1S F F n n S σσ⎛⎫=-- ⎪⎝⎭;③当22212==σσσ时,()12~2X Y T t n n μμ---=+-.(2)一般总体抽样分布的极限分布 ● 定理:设()12,,,n X X X 为总体X 的样本,并设总体X 的数学期望与方差均存在,分别记为2,EX DXμσ==.再记n n X X U T ==X 与S 分别表示上述样本的样本均值与样本方差,则有①()()0n dU F x x −−→Φ; ②()()0n dT F x x =−−→Φ.以上()n U F x ,n T F 与()0x Φ分别表示n U ,n T 及标准正态分布的分布函数.五、参数估计与假设检验1.点估计概述评价估计量的标准 ),n X 为参数的有偏估计量.若),n X 为未知参数}-<=θε),n X 为取自总体①样本均值X 是μ的无偏估计量;②样本方差2S 是σ③未修正的样本方差,即样本二阶中心矩),n X 是取自总体,n .则1n 的相合估计量,,n .(~,X N μ),n X 为其样本,则样本方差2S 是2σ的相合估计2.参数的最大似然估计与矩估计(1)最大似然估计 ● ),n x ,存在),n x ,使()*1,,n x x θ为θ的最大似然估计值,称相应的统),n X 为的最大似然估计量.它们统称为θ的最大似然估计,可MLE . 如果未知参数为12,,,r θθθ,那么似然函数是多元函数(,,)r L θθ.若对任意),n x 存在),,,1,2,=n x i r ,使1*1(,,),,)max (,,)∈Θ=r r r L θθθθθ,则称*i θ为i θ的,1,2,,=MLE i r .当似然函数关于未知参数可微时,一般可通过求导数得到MLE ,其主要步骤①写出似然函数1(,,)r L θθ;0∂=∂L θ或ln 0,1,,∂==∂L i r θ,从中求得驻点注意,函数L 与ln L有相同的最值点,而使用后者往往更方便;③判断驻点为最大值点; MLE .● 最大似然估计的不变性:如果ˆθ为θ的最大似然估计,()=u g θ是θ的函数且存在单值反函数()=h u θ.那么()ˆg θ是()g θ的最大似然估计. (2)矩估计 ● 1,2,,ˆ2,3,=k B β.这种求点估计的方用矩法确定的估计量称为矩估计量,相应的估计值为矩估计值,矩估计量. 表示为总体矩的函数,即)2,;,l s αββ; k B 分别替换g 中的k α,)()1212ˆˆˆˆ,,;,,;,,=l s l sg A A B B ααββ即为θ的3.置信区间(1)寻求置信区间的方法● ①选取θ的一个较优的点估计ˆθ; ②围绕ˆθ寻找一个依赖于样本与θ的函数()1,,;=n u u X X θ.u 的分布为已知分布.像u 这样的函数,称为枢轴量;③对给定的置信水平1-α,确定1λ与2λ,使{}121<<=-P u λλα,一般可选取满足{}{}122≤=≥=P u P u αλλ的1λ与2λ;④利用不等式变形导出套住θ的置信区间(),θθ. (2)正态总体参数的置信区间4.假设检验概述假设检验的一般步骤 ①建立零假设0H ;②构造一个含待检验参数θ(不含其他未知参数)且分布已知的枢轴量()12,,,;n u X X X θ,并确定其分布;③对给定的显著性水平α,由上述枢轴量及其分布,结合零假设0H ,确定拒绝域C ,使得(){}120,,,∈≤n P X X X C H α;④根据样本值()12,,,n x x x 是否落在C 中做出是否拒绝0H 的统计决断:如果()12,,,∈n x x x C ,则拒绝0H ,如果()12,,,∉n x x x C ,则不能拒绝0H .5.单正态总体的参数假设检验编辑:李雪伟 2013年5月25日。
概率论与数理统计知识点总结

概率论与数理统计知识点总结一、概率的基本概念1.概率的定义:概率是描述事件发生可能性的数字,表示为一个介于0和1之间的数。
2.事件与样本空间:事件是可能发生的结果的集合,样本空间是所有可能结果的集合。
3.事件的运算:事件的运算包括并、交、差等,分别表示两个事件同时发生、至少一个事件发生、一个事件发生而另一个事件不发生等。
4.概率的性质:概率具有非负性、规范性、可列可加性等性质。
二、随机变量与概率分布1.随机变量的定义:随机变量是一个变量,它的值由随机事件决定。
2.离散随机变量:离散随机变量只能取有限或可数个值,其概率表示为离散概率分布函数。
3.连续随机变量:连续随机变量可以取任意实数值,其概率表示为概率密度函数。
4.分布函数:分布函数描述随机变量的概率分布情况,包括累积分布函数和概率质量函数。
三、常见概率分布1.离散分布:包括伯努利分布、二项分布、泊松分布等。
2.连续分布:包括均匀分布、正态分布、指数分布、伽玛分布等。
正态分布在自然界和社会现象中广泛存在。
3.其他分布:包括卡方分布、指数分布、F分布、t分布等。
四、抽样与统计推断1.抽样:抽样是从总体中选择一部分个体进行实验或调查的方法,常用的抽样方法包括随机抽样、分层抽样、整群抽样等。
2.统计推断:通过从样本中获得的数据,对总体做出有关参数的推断。
包括点估计和区间估计两种方法。
3.假设检验:通过对样本数据的统计量进行计算,判断总体参数是否满足其中一种假设。
包括单样本假设检验、两样本假设检验、方差分析等。
五、回归分析与相关分析1.回归分析:研究两个或多个变量之间关系的统计方法,包括一元线性回归分析、多元线性回归分析等。
2.相关分析:研究两个变量之间相关性的统计方法,常用的相关系数包括皮尔逊相关系数和斯皮尔曼相关系数。
六、贝叶斯统计学1.贝叶斯定理:根据先验概率和条件概率,计算后验概率的统计方法。
2.贝叶斯推断:根据贝叶斯定理以及样本数据,推断参数的后验分布。
考研数学概率论与数理统计笔记知识点(全)

三 二二维连续型随机变量量(积分积出来的就是连续的)
1.定义:概率密度积分(二二重积分)
2.联合概率密度
1)性质:1.非非负性;2.规范性
2)应用用:求P,就是求二二重积分
在f(x,y)的连续点上,分布求二二阶倒数就是概率密度
步骤:1)画图(为了了解不不等式)
2)讨论
3)代入入(注意端点)
第三章 多维随机变量量及其分布
知识点:一一 二二维随机变量量及其分布函数 二二 二二维离散型随机变量量 三 二二维连续型随机变量量 四 二二维随 机变量量函数的分布
一一 二二维随机变量量及其分布函数
1.二二维随机变量量就是一一个(X,Y)向量量
要注意是一一维的(是用用一一个变量量表示)
4.离散+连续(一一定是使用用全概率公式的)
定义:X为离散型,Y为连续型,且相互独立立
六 全概率公式与⻉贝叶斯公式(关键在于完备事件组)
1.完备事件组:互斥是对立立的前提条件
2.全概率公式:由因到果(推导,画图)(全部路路径)
3.⻉贝叶斯公式:由果到因(推导,画图)(所占的比比例例)
Note:关键是1.完备事件组必须完备;2.要画图3注意抽签原理理
题型一一:概率的基本计算
1.事件决定概率,但是概率推不不出事件
3.边缘概率密度
1)具体就是边缘分布函数求导(详⻅见笔记)
Note:注意边缘的公式,在求时,注意取值范围,以及上下限(一一根直线传过去)(类似于 二二重积分的先积部分——后积先定限,限内画条线)
2)G是从几几何看出来的,不不要死记公式,要结合图像(G为非非零区域)
Note:1.在写公式之前要先保证分⺟母不不为0,即要先确定范围
概率论与数理统计知识点总结

概率论与数理统计知识点总结1. 概率论基础- 随机事件:一个事件是随机的,如果它可能发生也可能不发生。
- 样本空间:所有可能事件发生的集合。
- 事件的概率:事件发生的可能性的度量,满足0≤P(A)≤1。
- 条件概率:在另一个事件发生的条件下,一个事件发生的概率。
- 贝叶斯定理:描述了随机事件A和B的条件概率和边缘概率之间的关系。
- 独立事件:两个事件A和B是独立的,如果P(A∩B) = P(A)P(B)。
- 互斥事件:两个事件A和B是互斥的,如果它们不能同时发生,即P(A∩B) = 0。
2. 随机变量及其分布- 随机变量:将随机事件映射到实数的函数。
- 离散随机变量:取值为有限或可数无限的随机变量。
- 连续随机变量:可以在某个区间内取任意值的随机变量。
- 概率分布函数:描述随机变量取值的概率。
- 概率密度函数:连续随机变量的概率分布函数的导数。
- 累积分布函数:随机变量取小于或等于某个值的概率。
- 期望值:随机变量的长期平均值。
- 方差:衡量随机变量取值的离散程度。
3. 多维随机变量及其分布- 联合分布:描述两个或多个随机变量同时取特定值的概率。
- 边缘分布:通过联合分布求得的单个随机变量的分布。
- 条件分布:给定一个随机变量的值时,另一个随机变量的分布。
- 协方差:衡量两个随机变量之间的线性关系。
- 相关系数:协方差标准化后的值,表示变量间的线性相关程度。
4. 大数定律和中心极限定理- 大数定律:随着试验次数的增加,样本均值以概率1收敛于总体均值。
- 中心极限定理:独立同分布的随机变量之和,在适当的标准化后,其分布趋近于正态分布。
5. 数理统计基础- 样本:从总体中抽取的一部分个体。
- 总体:研究对象的全体。
- 参数估计:用样本统计量来估计总体参数。
- 点估计:给出总体参数的一个具体估计值。
- 区间估计:给出一个包含总体参数可能值的区间。
- 假设检验:对总体分布的某些假设进行检验。
- 显著性水平:拒绝正确假设的最大概率。
(完整版)概率论与数理统计知识点总结

第1章随机事件及其概率在第二步某事件发生条件下第一步某事件的概率,就用贝叶斯公式我们作了 n 次试验,且满足每次试验只有两种可能结果, A 发生或A 不发生;n次试验是重复进行的,即 A 发生的概率每次均一样;每次试验是独立的,即每次试验 A 发生与否与其他次试验 A 发 生与否是互不影响的。
这种试验称为伯努利概型,或称为 n 重伯努利试验。
用P 表示每次试验A 发生的概率,则A 发生的概率为1 p q ,用Pn (k ) 表示n 重伯努利试验中A 出现k (0 k n)次的概率,P n (k) C :P k q nkk 0,1,2, ,n5第二章随机变量及其分布(1)设离散型随机变量X 的可能取值为X k (k=1,2,…)且取各个值的概率, 即事件(X=X k )的概率为P(X=x k )=p k , k=1,2,…, 则称上式为离散型随机变量 X 的概率分布或分布律。
有时也用分 布列的形式给出: X | x 1,x 2, , x k ,P(X x k ) p 1, p 2,, p k ,。
显然分布律应满足下列条件:p k 1(1 )宀 0 , k1,2,, ( 2 ) k1(14)伯努利 概型散 随变 的 布(2 ) 设F (x )是随机变量X 的分布函数,若存在非负函数f(x ),对任意实数X ,有XF(x) f (x)dx则称X 为连续型随机变量。
f (X )称为X 的概率密度函数或密度函数, 简称概率密度。
密度函数具有下面4个性质:分布仁 f(x) 03、P(X i X X 2) F(X 2)F(X J f (x)dxX i4、P(x=a)=O,a为常数,连续型随机变量取个别值的概率为 0连 型 机 量 续 随变 的 密度2、f(x)dx 1。
第三章二维随机变量及其分布如果二维随机向量 (X , Y )的所有可能取值为至多可 列个有序对(x,y ),则称 为离散型随机量。
设=(X ,Y )的所有可能取值为(人『)(门1,2,),且事 件{= (X i ,y j )}的概率为 p ij,,称P {(X,Y ) (X i ,y j )} P j (i,j 1,2,)为=(X ,Y )的分布律或称为 X 和Y 的联合分布律。
海南省考研数学(三)复习资料概率论与数理统计重点整理

海南省考研数学(三)复习资料概率论与数理统计重点整理概率论与数理统计是海南省考研数学(三)课程中的重要内容,对于考生来说是必须要掌握的知识点。
为了帮助考生更好地复习和准备这一部分内容,本文将对概率论与数理统计的重点进行整理,并提供相应的复习资料。
一、概率论概率论是研究不确定性情况下事件发生可能性的数学理论。
在海南省考研数学(三)中,概率论的复习重点主要包括以下几个方面:1. 随机变量与概率分布随机变量是指能够随机地取某个值的变量,概率分布描述了随机变量所取各个取值的概率。
在复习此部分内容时,可以重点关注离散型和连续型随机变量的概率分布,如二项分布、泊松分布、正态分布等。
2. 大数定律与中心极限定理大数定律描述了在独立重复试验的条件下,随着试验次数的增加,频率会趋近于概率的稳定值。
中心极限定理则指出,对于独立同分布的随机变量和,其和的标准化形式近似服从标准正态分布。
复习时需掌握大数定律和中心极限定理的表述和应用。
3. 随机过程随机过程可以看作是随机变量在时间上的演化,其中最重要的是马尔可夫过程和泊松过程。
对于海南省考研数学(三)而言,掌握其定义、特性和应用是重点内容。
二、数理统计数理统计是利用统计方法对数据进行收集、整理、分析和解释的学科。
在海南省考研数学(三)中,数理统计的复习重点主要包括以下几个方面:1. 参数估计参数估计是根据样本数据来估计总体参数值的方法,其中最常用的是点估计和区间估计。
复习时要熟悉常用的参数估计方法,如最大似然估计、矩估计等,并了解其性质和应用。
2. 假设检验假设检验是根据样本数据来对总体参数的假设进行检验的方法。
重点复习假设检验的基本思想、步骤和常见检验方法,如正态总体均值的检验、两样本均值的检验等。
3. 方差分析与回归分析方差分析用于比较两个或多个总体均值是否存在显著差异,回归分析则是用于研究自变量与因变量之间的关系。
在复习这两个部分时,需熟悉其基本原理和应用方法,并能够理解和解释相应的统计结果。
考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结引言《概率论与数理统计》是考研数学中的一个重要分支,它不仅要求学生掌握理论知识,还要求能够运用这些知识解决实际问题。
本文档旨在对《概率论与数理统计》的核心知识点进行总结,帮助考生系统复习。
第一部分:概率论基础1. 随机事件与样本空间随机事件:在一定条件下可能发生也可能不发生的事件。
样本空间:所有可能结果的集合。
2. 概率的定义古典定义:适用于有限样本空间,每个样本点等可能发生。
频率定义:长期频率的极限。
主观定义:基于个人信念或偏好。
3. 概率的性质非负性:概率值非负。
归一性:所有事件的概率之和为1。
加法定理:互斥事件概率的和。
4. 条件概率与独立性条件概率:已知一个事件发生的情况下,另一个事件发生的概率。
独立性:两个事件同时发生的概率等于各自概率的乘积。
5. 随机变量及其分布离散型随机变量:可能取有限个或可数无限个值。
连续型随机变量:可能取无限连续区间内的任何值。
分布函数:随机变量取值小于或等于某个值的概率。
第二部分:随机变量及其分布1. 离散型随机变量的分布概率质量函数:描述离散型随机变量取特定值的概率。
常见分布:二项分布、泊松分布、几何分布等。
2. 连续型随机变量的分布概率密度函数:描述连续型随机变量在某区间的概率密度。
常见分布:均匀分布、正态分布、指数分布等。
3. 多维随机变量及其分布联合分布:描述多个随机变量联合取值的概率。
边缘分布:从联合分布中得到的单一随机变量的分布。
条件分布:给定一个随机变量的条件下,另一个随机变量的分布。
第三部分:数理统计基础1. 数理统计的基本概念总体与样本:总体是研究对象的全体,样本是总体中所抽取的一部分。
统计量:根据样本数据计算得到的量。
2. 参数估计点估计:用样本统计量估计总体参数的单个值。
区间估计:在一定概率下,总体参数落在某个区间的估计。
3. 假设检验原假设与备择假设:研究问题中的两个对立假设。
检验统计量:用于决定是否拒绝原假设的量。
概率论与数理统计知识点总结(免费超详细版)

概率论与数理统计知识点总结(免费超详细版) 题目:概率论与数理统计知识点总结摘要本文总结了概率论和数理统计方面的基础知识,涉及概率分布、参数估计、假设检验、卡方检验、多元分析等。
对这些知识点的理解和了解可以帮助人们更好地分析和利用数据,促进数据分析的发展。
关键词:概率论,数理统计,概率分布,参数估计,假设检验,卡方检验,多元分析正文1.概率论概率论是数理统计中一门重要科学,它是一门数学研究现实世界事件发生的规律性、可预测性及不确定性的学科。
在概率论中,我们引入了诸如概率、期望和方差等概念,用来描述和推断某种随机现象的发生。
2.概率分布概率分布是在给定的实际情况下随机变量取值的概率分布。
典型的概率分布包括正态分布、泊松分布和二项分布。
此外,也有一些联合分布,例如协方差、共轭先验、贝叶斯估计等。
3.参数估计参数估计是根据样本数据估计总体参数的统计方法。
它涉及到将总体参数估计为样本参数的过程,通常使用最大似然估计、贝叶斯估计和假定测试等方法。
4.假设检验假设检验是基于统计学原理,用来评估某一假设是否真实存在的方法。
其中包括t检验、F检验、Z检验等,它们之间的区别在于所使用的抽样分布不同。
5.卡方检验卡方检验是一种统计检验,用于直接检验某个抽样值是否遵循某种理论分布。
卡方检验可以根据观察到的抽样数据和理论分布之间的差异来衡量分布概率值的有效性。
6.多元分析多元分析是一种分析不同变量之间交互影响的统计方法。
它包括多元回归分析、多元判别分析、因子分析等,能够帮助我们了解多个变量之间的关系。
结论本文总结了概率论和数理统计方面的基础知识,包括概率分布、参数估计、假设检验、卡方检验和多元分析等。
了解这些知识点可以帮助人们更好地分析和利用数据,促进数据分析的发展。
概率论和数理统计方面的知识点在实际应用中有着重要作用。
概率论可以帮助研究人员对随机现象进行建模、分析和推断,其中包括使用概率分布建立统计模型和估计参数,并使用假设检验和卡方检验来检验假设,以及用多元分析来推断不同变量之间的关系。
考研数学《概率论与数理统计》知识点总结

考研数学《概率论与数理统计》知识点总结第一章概率论的基本概念1.A⊂B,A发生必导致B 发生.2.A B和事件,A少一个发生,A B发生.3.A B记AB积事件,A,B同时发生,AB发生.4.A-B差事件,AB不发生,A-B发生.5.A B=Ø,A与B互不相容(互斥),A与B不能同时发生,基本事件两两互不相容.6.A B=S且A B=ØB互为逆事件或对立事件,与B中必有且仅有一个发生,记B=ASA-=.交换律、结合律、分配率略.德摩根律:BABA=,BA 概率就是n趋向无穷时的频率,记P(A).1.P(Ø)= 0.2.(有限可加性)P(A1 AA n)=P(A1)+P(A2)+…+P(A n),A i互不相容.第二章随机变量及其分布!)1(lim k p p C nn ∞→=-,其中λ=np .当20≥n ,05.0≤p 应用泊松定理近似效果颇佳. }{)(x X P x F ≤=,+∞<<∞-x .)()(}{1221x F x F x X x P -=≤<.⎰∞-=xtt f x F d )()(,X 为连续型随机变量,)(x f 为X 的概率密度函数,简称概率密度.1.0)(≥x f ;2.1d )(=⎰+∞∞-x x f ;3.⎰=-=≤<)()(}{1221x F x F x X x P 4.)()(x f x F =',f (x )在x 点连续;5.P {X=a }=0.记X~U(a ,b );⎪⎩⎪⎨⎧<<-=其它,,01)(b x a ab x f ;⎧<ax ,0性质a ≤c <c +有1.f (x )关于x =μ对称,且P {μ-h <X ≤μ}=P {μ<X ≤2.有最大值f (μ)=(σπ2)-1.]2exp[21)(2x x -=πϕ;⎰∞--=Φxtt x d ]2ex p[21)(2π.即μ=0,σ=1时的正态分布X ~N(0,1)性质1)(x Φ-=-Φ 对),(~2σμN X 有)1,0(~N X Z σμ-=;且)(}{}{)(σμσμσμ-Φ=-≤-=≤=x x X P x X P x F .)()(}{1221σμσμ-Φ--Φ=≤<x x x X x P ;)()(}{=-Φ-Φ=+<<-t t t X t P σμσμ第三章多维随机变量及其分布2.0≤F (x ,y )≤1且F (−∞,y )=0,F (x ,−∞F (−∞,−∞)=0,F (+∞,+∞)=1.3.F (x +0,y )=F (x ,y ),F (x ,y +0)=F (x 即F (x ,y )关于x 右连续,关于y 也右连续.4.对于任意的(x 1,y 1),(x 2,y 2),x 2>x 1,y 2>P {x 1<X ≤x 2,y 1<Y ≤y 2}≥0. 0≥ij p ,111=∑∑∞=∞=ij j i p ,ijyy x x p y x F i i ∑∑=≤≤),(.连续型(X ,Y ):vu v u f y x F yxd d ),(),(⎰⎰∞-∞-=1.f (x ,y )≥0. 2.1),(d d ),(=∞∞=⎰⎰∞∞-∞∞-F y x y x f .3.yx y x f G Y X P G⎰⎰=∈d d ),(}),{(. 4.若f (x ,y )在点(x ,y )连续,则有),(),(2y x f yx y x F =∂∂∂.n 维随机变量及其分布函数是在二维基础上的拓展,性质与二维类似.]})())((2)([)1(21exp{121),(2222212121212221σμσσμμρσμρρσπσ-+-------=y y x x y x f .]2)(exp[21)(21211σμσπ--=x x f X ,∞<<∞-x .]2)(exp[21)(22222σμσπ--=y y f Y ,-jij j j i j i p p y Y P y Y x X P y Y x X P *=======}{},{}{.======i i i j x X P y Y x X P x X y Y P }{,{}{条件概率密度:)(),()(y f y x f y x f Y Y X =|| 条件分布函数:f y Y x X P y x F xY X }{)(⎰∞-==≤=|||)(),()(x f y x f x y f X X Y =||f x X y Y P x y F yX Y }{)(⎰∞-==≤=|||含义:当0→ε时,)|(d )|(}|{y x F x y x f y Y y x X P x=≈+≤<≤⎰ε对于二维正态随机变量(X ,Y ),X 和Y 相互对立的充要条件是:参数ρ=0.上述概念可推广至n 维随机变量,要注意的是边缘函数或边缘密度也是多元(1~n -1元)的.设(X 1,X 2,…,X m )和(Y 1,Y 2,…,Y n )相互独立,则X i 和Y j 相互独立.又若h ,g 是连续函数,则X 2,…,X m )和g (Y 1,Y 2,…,Y n )相互独立.若连续型(X ,Y )概率密度为f (x ,y ),则Z=X+Y 为连续型且其概率密度为 ⎰∞∞-+-=yy y z f z f Y X d ),()(或⎰∞∞-+=x f z fYX ()(记⎰∞∞-+-==y y f y z f z f f fY X Y X Y Xd )()()(*⎰∞∞--=xx z f x f Y X d )()(,其中除继上述条件,且X 和Y 相互独立,边缘密度分别为f (x )和第四章随机变量的数字特征数).1.离散型:分布律为P{X=x i,Y=y j}=p ij,则:ijjiijpyxgZE),()(11∑∑=∞=∞=.2.连续型⎰⎰∞∞-∞∞-=yxyxfyxgZE dd),(),()(设C是常数,X和Y 是随机变量,则:1.E(C)=C.2.E(CX)=CE(X).3.)=E(X)+E(Y).4.又若X和Y相互独立的E(XY)=E(X)E(Y).记D(X)或Var(X),D(X)=Var(X)=E{[X-E(X)]2}.标准差(均方差):记为σ(X),σ(X)=通式:22)]([)()(XEXEXD-=.kkkpXExXD21)]([)(-∑=∞=,⎰∞∞--=xExXD)]([)(D若),(~2i i i N X σμ,iC 是不全为0的常数),(~22112211i i n i i i ni n n C C N X C X C X C σμ∑∑+++== .22}{εσεμ≤≥-X P 或221}{εσεμ-≥<-X P ,其中)(X E =μ,(2X D =σ任意正数. 记)]}()][({[),Cov(Y E Y X E X E Y X --=.X 与Y的相关系数:(Cov(D XY =ρ.D (X +Y )=D (X )+D (Y )+2Cov(X ,Y ),Cov(X ,Y )=E (XY )-E (X )E (Y ).Y =a +bX ;反之亦然,当ρXY =0时,X 和Y 不相关.X 和Y 相互对立,则X 和Y 不相关;但X 和Y 不相关,X 和Y 不一定相互独立. k 阶矩(k 阶原点矩):E (X k ). n 维随机变量X i 的协方差矩阵: ⎪⎪⎪⎪⎪⎭⎫⎝⎛=nn n n n n c c c c c cc c c 212222111211C ,,Cov(i ij X X c ==E {[X i -E (X i )][X E (X j )]}.k +l 阶混合矩:E (X k Y l). k 阶中心矩:E {[X -E (X )] k}.k +l 阶混合中心矩:E {[X -E (X )]k[Y -E (Y )]l }.)}()(21ex p{det )2(1),,,(1T 221μX C μX C---=-n n x x x f π ,T21T 21),,,(),,,(n n x x x μμμ ==μX第五章大数定律及中心极限定理第六章样本及抽样分布的几个小矩形.线.纵坐标:频率/组距(总长度:<1/Δ;小区间长度:频率/组距).样本p分位数:记x p,有1.样本x i中有np个值≤x 本中有n(1-p)个值≥x p.x p 选择:记⎪⎩⎪⎨⎧∈+∉=++NnpxxNnpxxnpnpnpp当,当,][211)()()1]([.分位数x0.5,记为Q2称为样本中位数.分位数x0.25,记为为第一四分位数.分位数x0.75,记为为第三四分位数.图形:图形特点:M为数据中心,[min,Q1],[Q1,M],[M [Q3,max]数据个数各占1/4间越短数据密集.四分位数间距:记IQR=Q3-Q1;若数据X<Q1-min Q1 M Q3 max)(1)(x S nx F n =,∞<<∞-x .)(x S 表示F 的一个样本X 1,X 2,…不大于x 的随机变量的个数.记χ2~χ2(n ),222212nX X X +++= χ,其中X 1,X 2,…,X n 是来自总体N (0,1)的样本.E (χ2)=n ,D (χ2)=2n .χ12+χ22~χ2(n 1+n 2).⎪⎩⎪⎨⎧Γ=--,0)2(21)(122e x n yf n n .对于0<α<1,满足αχχαχα==>⎰∞y y f n P n )(222d )()}({,则称)(2n αχ为上α分位点.当n 充分大时(n >40),22)12(21)(-+≈n z n ααχ,其中αz 是标准正态分布的上α分位点.其中X~N (0,h (t )图形关于z α记F ~F (n 1,n 2),21nV nU F =,其中U~χ2(n 1),V~χ2(n 2),X ,Y 相互独立.1/F ~F (n 2,n 1)⎪⎩⎪⎨⎧+ΓΓ+Γ=+-,0]1)[2()2()](2)([)()(21211)2(221212111n y n n n y n n n n y n n n n ψ对于0<α<1,满足αψαα==>⎰∞y y n n F F P n n F ),(2121d )()},({,则称F ),(21n n F 的上α分位点.重要性质:F 1-α(n 1,n 2)=1/F α(n 1,n 2).设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,则有~N X 其中X 是样本均值.设X 1,X 2,…,X n 是来自N (μ,σ2)的样本,样本均值和样X ,2S ,则有1.)1(~)1(222--n S n χσ;2S 相互独立.第七章参数估计0品个体失效时间(0≤t 1≤t 2≤…≤t m ≤t 0)和失效产品数量.定数截尾样本:抽样n 件产品,固定失效产品数量数量m 记录产品个体失效时间(0≤t 1≤t 2≤…≤t m ).定数截尾样本:设产品寿命服从指数分布X~e (即产品平均寿命.产品t i 时失效概率P {t =t i }≈f (t i )d 命超过t m 的概率θm t me t t F -=>}{,则)(}){()(1imi mn mm nt P t t F C L =-∏>=θ得)(1)(m t s m e L ---=θθθ,由0)(ln d d =θθL 得:m t s m)(ˆ=θ,其中s (t m )=t +t m +(n -m )t m ,称为实验总时间. 定时截尾样本:与定数结尾样本讨论类似有s (t 0)=t 1+t 2+…+t m +(n -m )t 0,)(01)(t s m e L ---=θθθ,m t s )(ˆ0=θ,.估计量),,,(ˆ21nX X X θ的)ˆ(θE 存在且θθ=)ˆ(E ,则称θˆ是θ的无偏估计量. ),,,(ˆ211nX X X θ与),,,(ˆ212nX X X θ都是θ的无偏估计量)ˆ()ˆ(21θθD D ≤,则1ˆθ较2ˆθ有效.正态总体均值、方差的置信区间与单侧置信限(置信水平为α-1)σ2未知)1(~--=ntnSXtμ⎪⎭⎫⎝⎛±2αtnSXαμtnSX+=,μμ未知)1(~)1(2222--=nSnχσχ⎪⎪⎭⎫⎝⎛---2212222)1(,)1(ααχχSnSn2122)1(αχσ--=Sn,σσ12,σ22已知)1,0(~)(22212121NnnYXZσσμμ+---=⎪⎪⎭⎫⎝⎛+±-2221212nnzYXσσα2121zYXzYXμμμμαα--=-+-=-σ12 =σ22=σ2)2(~)()(21121121-++---=--nntnnSYXtwμμ)1()1(2222112-+-=SnSnS()12112--+±-nnStYXwα2wwSS=2121--=-+-=-StYXStYXααμμμμ单个总体X ~N (μ,σ2),两个总体X ~N (μ1,σ12),Y ~N (μ2,σ22).第八章 假设实验H 01原假设被拒绝后可供选择的假设.第Ⅰ类错误:H 0实际为真时,却拒绝H 0.第Ⅱ类错误:H 0实际为假时,却接受H 0.显著性检验:只对犯第第Ⅰ类错误的概率加以控制,而不考虑第Ⅱ类错误的概率的检验.P {当H 0为真拒绝H 0}≤α,α称为显著水平.拒绝域:取值拒绝H 0.临界点:拒绝域边界.双边假设检验:H 0:θ=θ0,H 1:θ≠θ0.右边检验:θ≤θ0,H 1:θ>θ0.左边检验:H 0:θ≥θ0,H 1:θ<正态总体均值、方差的检验法(显著性水平为α)原假设H 0 备择假设H 1 检验统计量 拒绝域μ≤μ0 μ>μ0 nX Z σμ0-=z ≥z αμ≥μ0 μ<μ0 z ≤-z αμ=μ0μ≠μ0 |z |≥z α/22022)1(σχSn -=σ2≥σ02σ2<σ02χ2≤χ21-α(n -σ2=σ02 σ2≠σ02χ2≥χ2α/2(n -χ2≤χ21-α/2(n σ12≤σ22σ12>σ222221S S F =F ≥F α(n 1-1,σ12≥σ22σ12<σ22F ≤F 1-α(n 1-11)σ12=σ22σ12≠σ22F ≥F α/2(n 1-11)或F ≤F 1-α/2(n 1--1) μD ≤0 μD >0 nS D t D 0-=t ≥t α(n -μD ≥0μD <0 t ≤-t α(n -μD =0μD ≠0|t |≥t α-2(n -。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
概率论与数理统计必考知识点一、随机事件和概率1、随机事件及其概率2、概率的定义及其计算二、随机变量及其分布1、分布函数性质FbF(aba<≤=P-X)(b()()bFX()P=≤)2、离散型随机变量3..连续型随机变量三、多维随机变量及其分布1、离散型二维随机变量边缘分布 ∑∑======⋅jjijjii i py Y x X P x X P p ),()(∑∑======⋅iiijjij j py Y x X P y Y P p ),()(2、离散型二维随机变量条件分布Λ2,1,)(),()(=========⋅i P p y Y P y Y x X P y Y x X P p jij j j i j i j iΛ2,1,)(),()(=========⋅j P p x X P y Y x X P x X y Y P p i ij i j i i j i j3、连续型二维随机变量( X ,Y )的分布函数⎰⎰∞-∞-=x ydvdu v u f y x F ),(),(4、连续型二维随机变量边缘分布函数与边缘密度函数 分布函数:⎰⎰∞-+∞∞-=xX dvdu v u f x F ),()( 密度函数:⎰+∞∞-=dv v x f x f X ),()( ⎰⎰∞-+∞∞-=yY dudv v u f y F ),()( ⎰+∞∞-=du y u f y f Y ),()(5、二维随机变量的条件分布 +∞<<-∞=y x f y x f x y f X X Y ,)(),()( +∞<<-∞=x y f y x f y x f Y Y X ,)(),()(四、随机变量的数字特征1、数学期望离散型随机变量:∑+∞==1)(k k k p x X E 连续型随机变量:⎰+∞∞-=dx x xf X E )()(2、数学期望的性质(1)为常数C ,)(C C E = )()]([X E X E E = )()(X CE CX E =(2))()()(Y E X E Y X E ±=± b X aE b aX E ±=±)()( )()()(1111n n n n X E C X E C X C X C E ΛΛ+=+ (3)若XY 相互独立则:)()()(Y E X E XY E = (4))()()]([222Y E X E XY E ≤ 3、方差:)()()(22X E X E X D -= 4、方差的性质(1)0)(=C D 0)]([=X D D )()(2X D a b aX D =± 2)()(C X E X D -<(2)),(2)()()(Y X Cov Y D X D Y X D ±+=± 若XY 相互独立则:)()()(Y D X D Y X D +=± 5、协方差:)()(),(),(Y E X E Y X E Y X Cov -= 若XY 相互独立则:0),(=Y X Cov6、相关系数:)()(),(),(Y D X D Y X Cov Y X XY ==ρρ 若XY 相互独立则:0=XY ρ即XY 不相关7、协方差和相关系数的性质(1))(),(X D X X Cov = ),(),(X Y Cov Y X Cov =(2)),(),(),(2121Y X Cov Y X Cov Y X X Cov +=+ ),(),(Y X abCov d bY c aX Cov =++8五、大数定律和中心极限定理1、切比雪夫不等式若,)(,)(2σμ==X D X E 对于任意0>ξ有2)(})({ξξX D X E X P ≤≥-或2)(1})({ξξX D X E X P -≥<-2、大数定律:若n X X Λ1相互独立且∞→n 时,∑∑==−→−ni iDni i X E nX n11)(11(1)若n X X Λ1相互独立,2)(,)(i i i i X D X E σμ==且M i ≤2σ则:∑∑==∞→−→−ni iPni i n X E nX n11)(),(11(2)若n X X Λ1相互独立同分布,且i i X E μ=)(则当∞→n 时:μ−→−∑=Pn i i X n 11 3、中心极限定理(1)独立同分布的中心极限定理:均值为μ,方差为02>σ的独立同分布时,当n 充分大时有:)1,0(~1N n n XY nk kn −→−-=∑=σμ(2)拉普拉斯定理:随机变量),(~)2,1(p n B n n Λ=η则对任意x 有: ⎰∞--+∞→Φ==≤--xt n x x dtex p np np P )(21})1({lim 22πη(3)近似计算:)()()()(11σμσμσμσμσμn n a n n b n n b n n Xn n a P b Xa P nk knk k-Φ--Φ≈-≤-≤-=≤≤∑∑==六、数理统计1、总体和样本总体X 的分布函数)(x F 样本),(21n X X X Λ的联合分布为)(),(121k nk n x F x x x F =∏=Λ2、统计量(1)样本平均值:∑==ni i X nX 11(2)样本方差:∑∑==--=--=ni i ni i X n X n X X n S 122122)(11)(11(3)样本标准差:∑=--=ni i X X n S 12)(11(4)样本k 阶原点距:Λ2,1,11==∑=kXn A ni ki k(5)样本k 阶中心距:∑==-==ni k ik k k X XnM B 13,2,)(1Λ(6)次序统计量:设样本),(21n X X X Λ的观察值),(21n x x x Λ,将n x x x Λ21,按照由小到大的次序重新排列,得到)()2()1(n x x x ≤≤≤Λ,记取值为)(i x 的样本分量为)(i X ,则称)()2()1(n X X X ≤≤≤Λ为样本),(21n X X X Λ的次序统计量。
),min(21)1(n X X X X Λ=为最小次序统计量;),max(21)(n n X X X X Λ=为最大次序统计量。
3、三大抽样分布(1)2χ分布:设随机变量n X X X Λ21,相互独立,且都服从标准正态分布)1,0(N ,则随机变量222212n X X X Λ++=χ所服从的分布称为自由度为n 的2χ分布,记为)(~22n χχ性质:①n n D n n E 2)]([,)]([22==χχ②设)(~),(~22n Y m X χχ且相互独立,则)(~2n m Y X ++χ (2)t 分布:设随机变量)(~),1,0(~2n Y N X χ,且X 与Y 独立,则随机变量:nY X T =所服从的分布称为自由度的n 的t 分布,记为)(~n t T性质:①)2(,2)]([,0)]([>-==n n nn t D n t E ②222)(21)1,0()(lim σμπ--∞→==x n e N n t(3)F 分布:设随机变量)(~),(~2212n V n U χχ,且U 与V 独立,则随机变量2121),(n V n U n n F =所服从的分布称为自由度),(21n n 的F 分布,记为),(~21n n F F 性质:设),(~n m F X ,则),(~1m n F X七、参数估计1、参数估计(1) 定义:用),,(21n X X X Λ∧θ估计总体参数θ,称),,(21n X X X Λ∧θ为θ的估计量,相应的),,(21n X X X Λ∧θ为总体θ的估计值。
(2) 当总体是正态分布时,未知参数的矩估计值=未知参数的最大似然估计值 2、点估计中的矩估计法:(总体矩=样本矩)离散型样本均值:∑===ni i X n X E X 11)( 连续型样本均值:dx x xf X E X ⎰+∞∞-==),()(θ离散型参数:∑==ni iXnX E 1221)(3、点估计中的最大似然估计最大似然估计法:n X X X Λ,,21取自X 的样本,设)]()()[,(~θθP X X P x f X i ==或则可得到概率密度:])()(),,([),(),,,(1121121∏∏∏=========ni in i in n ni in P x X P x X XX X P x f x x x f θθθΛΛ或基本步骤: ①似然函数:])([),()(11∏∏===ni in i iP x f L θθθ或②取对数:∑==ni iX f L 1),(ln ln θ③解方程:0ln ,,0ln 1=∂∂=∂∂kLL θθΛ最后得:),,(,),,,(212111n k k n x x x x x x ΛΛΛ∧∧∧∧==θθθθ。