线性代数 递推公式法(行列式例题)

合集下载

#线性代数技巧行列式的计算方法

#线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。

下面介绍几种常用的方法,并举例说明。

1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n=-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故(1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ijD a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i ia a =-,即 0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n nnnna a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n nn nnn a a a a a a D a a a a a a -----=- 12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------ (1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例3 计算n 阶行列式a b b b ba b b D bb a bbbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b a b bD a n bb a b a n bb b a+-+-=+-+- 11[(1)]11b b b a b b a n b b a b b ba =+- 100[(1)]00b bb a b a n b a b a b-=+--- 1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

[理学]线性代数技巧行列式的计算方法解析

[理学]线性代数技巧行列式的计算方法解析

计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。

下面介绍几种常用的方法,并举例说明。

1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n =-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ijji aa =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n n nnna a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n nn nn n a a a a a a D a a a a a a -----=-12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例3 计算n 阶行列式a b b b ba b b D bb a b bbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b a bb D a n bb a b a n bb b a+-+-=+-+-11[(1)]11b b b a b b a n b b a b b ba=+-100[(1)]000b b b a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

线性代数技巧行列式的计算方法

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。

下面介绍几种常用的方法,并举例说明。

1.利用行列式定义直接计算 例1 计算行列式00100201000000n D n n =-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ijji aa =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n n nnna a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n n n nnn a a a a a a D a a a a a a -----=-12131122321323312300(1)00n n n n nnna a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例3 计算n 阶行列式a b b b ba b b Dbb a b bbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b ab b D a n bb a b a n bb b a+-+-=+-+-11[(1)]11b b b a b b a n b b a b b ba=+-100[(1)]000b b b a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

线性代数行列式13

线性代数行列式13

证: 对D1的阶数使用数学归纳法
假设当D1的阶数为k-1时,结论成立.当D1的阶数为 k时,由行列式的定义
a21 a2, j 1 a2, j 1 D a1 j ( 1)
j 1 k
a2 k akk c1k cnk
0

0
1 j
ak 1 ak , j 1 ak , j 1 c11 cn1 c1, j 1 c1, j 1 c1, j 1 c1, j 1
例9:计算行列式
1 a1 1 Dn 1 1 1 1 1 a2 1
1 an
第一章 行列式
例10:计算行列式
x1 m Dn x1 x1
x2 x2

xn xn
x2 m
xn m
注意:n阶行列式的计算除了利用行列式的展开定 理和性质外,有些问题需要递推公式或利用数学归 纳法解决.
r3 r4

1 2 0 1 0 0 0 0
0 4 5
r4 4 r3

1 2 1 0 1 5 0 0 0 0 0
0 4 9
7 5
28 29
1 (1) (7) (9) 63
第一章 行列式
注意:例1是利用行列式的性质2、5将行列式主对 角线下方的元素全化为零(即化为上三角行列式) 行列式的值为主对角线上元素的连乘积.由于化简过 程具有程序化,因此工程技术上,常用计算机程序 计算高阶行列式的值.
注意:以上例子都是首先通过性质5将行列式某 一行(列)只保存一个非零元素,然后利用第二 节定理1.2.1推论,降阶计算行列式的值,这是计 算行列式常用的方法之一.
第一章 行列式
3、拆行拆列法

线性代数技巧行列式的计算方法

线性代数技巧行列式的计算方法

计算n 阶行列式的若干方法举例n 阶行列式的计算方法很多,除非零元素较多时可利用定义计算(①按照某一列或某一行展开②完全展开式)外,更多的是利用行列式的性质计算,特别要注意观察所求题目的特点,灵活选用方法,值得注意的是,同一个行列式,有时会有不同的求解方法。

下面介绍几种常用的方法,并举例说明。

1.利用行列式定义直接计算 例1 计算行列式001002001000000n D n n =-解 D n 中不为零的项用一般形式表示为112211!n n n nn a a a a n ---=.该项列标排列的逆序数t (n -1 n -2…1n )等于(1)(2)2n n --,故 (1)(2)2(1)!.n n n D n --=-2.利用行列式的性质计算例2 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由ijji aa =-知ii ii a a =-,即0,1,2,,ii a i n ==故行列式D n 可表示为1213112232132331230000n n n n nnna a a a a a D a a a a a a -=-----由行列式的性质A A '=1213112232132331230000n n n nnnn a a a a a a D a a a a a a -----=-12131122321323312300(1)0n n n n nnna a a a a a a a a a a a -=------(1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例3 计算n 阶行列式a b b b ba b b D bb a b bbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n b a bb D a n bb a b a n bb b a+-+-=+-+-11[(1)]11b b b a b b a n b b a b b ba=+-100[(1)]000b b b a b a n b a b a b-=+---1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

行列式的递推公式

行列式的递推公式

行列式的递推公式
古今中外,行列式自古以来便属于数学中一种不可或缺的解决问题的方法。


人惊异的是,它可以采用递推公式来计算任意阶行列式的值。

行列式递推公式指的是对于行列式A_(n*n),如果将A_(n*n)分解为多个子行
列式的乘积,A_(n*n)=(-1)^(i+j)A_ij(i+j-2),那么可以根据每个子行列式的进
行递推,将A_(n*n )表达为A_{1*1}, A_{2*2}, A_{3*3},… A_{(n-1)*(n-1)}的
函数,即为行列式递推公式。

通过行列式递推公式,可以简化计算高阶行列式的步骤,可为用户省去大量宝
贵的时间,大大提高工作效率。

例如,假设一个求解n阶行列式的算式,通过行列式递推公式,只需求解n-1阶、n-2阶…… 1阶行列式,然后逐步算出n阶行列式的值,甚至可以算出更高阶的行列式。

本质上,行列式递推公式是根据行列式乘法定理得出,这里所指的行列式乘法
定理就是说,对于给定a_(ij)为任意常数,如果将矩阵A写成大行列式,把横纵
坐标都标上数字i和j,则大行列式表达式由基本行列式组成,即a_(ij)等于某个子行列式的值,而子行列式是可以由若干行列式乘积而得,以此方法得出递推公式。

综上所述,行列式递推公式是一种很神奇、又古老而新颖的方法,它不仅能够
帮助用户更轻松地计算高阶行列式,还可以用于理解行列式乘法定理,更重要的是,它可以让数学更加容易、更有趣。

线性代数专题:行列式计算

线性代数专题:行列式计算
2
β + α
β β = 1+ + + α α
β α =
n +1
β + α ⋅
n
−1 =
1
β −1 α
αn
β n +1 − α n +1 β −α
∴ Dn =
β n +1 − α n +1 , 当 β≠α β −α
Dn
(3)
当 β = α,从
= ( x + y ) Dk −1 − xy 0 0 = ( x + y ) Dk −1 − xyDk − 2 Dk −1 = x k −1 + x k − 2 y + D k − 2 = x k − 2 + x k −3 y +
= ( x + y )( x k −1 + x k − 2 y + − xy ( x k − 2 + x k −3 y + = x k + x k −1 y +
a x −a
a a x
a a a a x
Dn = − a − a x … −a −a −a
a = −a −a x a … x −a −a −a
a + −a … a x −a ②
−a −a
= − a( x − a) n −1 + ( x + a) Dn −1
①×(x + a) ②×(x – a)
( x + a ) Dn = a ( x + a ) n + ( x 2 − a 2 ) Dn −1 ( x − a ) Dn = − a ( x − a ) n + ( x 2 − a 2 ) Dn −1

线性代数习题参考答案

线性代数习题参考答案

第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i= ,j= 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式(1)201141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式(1) ()33ax by ay bzaz bx x y z D ay bzaz bx ax by a b yz x az bx ax by ay bzzxy+++=+++=++++ (提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2)()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n n n n n x x x a x a x a x a a a a x a ------=++++-+ (提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。

线性代数 行列式例题讲解

线性代数 行列式例题讲解

例7
1 D4 x1 x12 x
1 x 1 x1 x12 x13 x14
4 1
1 x2
2 x2
1 x3
2 x3
1 x4
2 x4
x
1 x2 x2 2 x23 x2 4
4 2
x
1 x3 x32 x33 x34
4 3
x
1 x4 x4 2 x43 x4 4
4 4
解:构造下面的范德蒙行列式
D5 x 2 x3 x4
例1 (行(列)和相同,提取公因子)
c1 c2 c3 c4 a c d b a c b d 提取第一列公因子 c a b d
1 a d (a b c d ) 1 c 1 c 1 a d b b b b d d
c
a d
b
r3 r2 r4 r1
1 a (a b c d ) 1 c
行和相同,提取公因子
( x1 x2 xn m)
ri r1,i 2,3 , n
... xn m
1 ( m xi )
i 1 n
x2 ... 0
... ...
xn 0 ...
0 ... 0
m ...
... m
xi n (1 )( m) i 1 m
(ad bc) n
递推法
d
例5
1 1 Dn 1 1
2 2 0 0
3 ... n 0 ... 0 3 ... 0 0 n

爪型行列式
r1 r2 r3 rn
cn c2 c3 c1 2 3 n Dn (n 2) n !
... ... ... ... ...

线性代数_ 行列式_17 行列式计算的经典例子_

线性代数_ 行列式_17 行列式计算的经典例子_

行列式计算的一个经典例子
5/18
解法二. 将各列都加到第一列, 得
Dn =
x + (n − 1)a x + (n − 1)a
... x + (n − 1)a
a ··· a
x ··· a
...
. ..
a ··· x
再将第一行乘以 (−1) 依次加到其余各行, 得
Dn =
x + (n − 1)a a a ··· a
x a ··· a
a ...
x ··· . ..
a . ...
a a ··· x
线性代数 (第一章 行列式)
行列式计算的一个经典例子
4/18
继续观察:n 阶行列式
Dn =
x a ··· a
a ...
x ··· . ..
a . ...
a a ··· x
各行元素之和, 相等.
线性代数 (第一章 行列式)
x + (n − 1)a a a ··· a
0
x − a 0 ··· 0
Dn =
0
...
0 x − a ··· 0
...
...
...
0
0
= [x + (n − 1)a (x] − a)n−1.
0··· x − a
线性代数 (第一章 行列式)
行列式计算的一个经典例子
3/18
继续观察:n 阶行列式
Dn =
x
再将第一行乘以 (−1) 依次加到其余各行, 得
x + (n − 1)a a a ··· a
0
x − a 0 ··· 0
Dn =
0
...

行列式递推公式法特征方程

行列式递推公式法特征方程

行列式递推公式法特征方程行列式递推公式法是求解特征方程的一种常用方法,在线性代数中有着重要的应用。

特征方程是指线性方程组中各个未知数的系数与常数项满足的关系式。

通过求解特征方程,可以得到线性方程组的特征值和特征向量,从而进一步研究线性方程组的性质和解的结构。

我们来了解一下行列式的概念。

行列式是一个方阵(n行n列的矩阵)所对应的一个数值,用来描述线性变换的性质。

对于一个n阶方阵A,其行列式记作det(A),可以通过求解线性方程组的方法来计算。

现在,我们假设A是一个n阶方阵,其特征方程为|A-λI|=0,其中I是单位矩阵,λ是特征值。

根据行列式的性质,我们可以将特征方程展开为一个关于λ的多项式。

为了求解特征方程,我们可以利用行列式的递推公式来简化计算过程。

行列式的递推公式是指通过对方阵的某一行或某一列进行展开,得到一个低阶行列式的计算式。

具体来说,对于n阶方阵A,我们可以选择第一行展开,得到如下的递推公式:det(A) = a11C11 + a12C12 + ... + a1nC1n其中,Cij表示元素aij的代数余子式,即将元素aij所在的行和列划去后,所得到的(n-1)阶行列式乘以一个符号因子(-1)^(i+j)。

通过递推公式,我们可以将n阶行列式的计算转化为(n-1)阶行列式的计算,再递归地进行下去,直到计算到1阶行列式为止。

这样,我们就可以通过行列式递推公式法求解特征方程。

接下来,我们以一个三阶方阵A为例来说明行列式递推公式法的应用。

假设A的特征方程为|A-λI|=0,展开特征方程后得到一个三次多项式。

利用递推公式,我们可以将这个三次多项式转化为一个二次多项式的计算过程。

我们选择第一行展开,得到det(A) = a11C11 - a12C12 + a13C13。

其中,C11、C12和C13分别表示元素a11、a12和a13的代数余子式。

然后,我们继续对代数余子式C11、C12和C13进行展开,得到一个二次多项式的计算过程。

试举例说明行列式的计算方法

试举例说明行列式的计算方法

一:行列式的定义
定义计算( 阶乘项 阶乘项) 二:定义计算(n阶乘项) 定义计算
三:简单的方法
一:行列式的定义
由n2个元素 aij (i, j = 1,2,L, n) 组成的记号
a11 a 21 L a n1 a12 L a1n
a 22 L a 2 n L L L a n 2 L a nn
称为n 阶行列式
三 :
设 D= L
ak1 M a n1

j1 j2 L jn
且第i行与第k行相同,即 aij = akj ,j = 1, 2,L , n
由于项 ( 1)τ ( i Li Li L j ) a1 j L aij L akj L anj
1 i k n 1 i k
1 k i n 1 k i

n
与项 ( 1)τ ( i L i L i L j ) a1 j L a ij L a kj L a nj 同时出现,且a ij = a k j ,a ijk = a kjn
n 1 L 0 0 0 0 L 0 0 n
解 Dn中不为零的项用一般形式表示为
a1n 1a2 n 2 L an 11ann = n !
该项列标排列的逆序数t(n-1 n-2…1n) 等于
(n 1)(n 2) 2

Dn = (1)
( n 1)( n 2) 2
n !.
返回

性质1 行列互换,行列式不变, 性质 行列互换,行列式不变,即
= L = an + an 1 x + L + a1 x n 1 + x n
返回
i i
n

三 :
①与②除去符号外,具有相同的数值, 但排列 i1 L ii L ik L jn 与 i1 L ik L ii L 相差一个一个对换,具有相反的奇偶 性. ①、②的符号相反,即①+②=0.

整理线性代数递推公式法行列式例题

整理线性代数递推公式法行列式例题

例颗A4打印/可编辑《经济数学基础》教学大纲一、大纲说明(一)课程的目的与要求[.使学生对极限的思想和方法有一左认识,对具体与抽象、特殊与一般、有限与无限等辩证关系有初步的了解,掌握微积分的基本知识、基本理论和基本技能,建立变量的思想,培养辩证唯物主义观点,并受到运用变量数学方法解决实际问题的训练。

2.使学生熟悉线性代数的研究方法,提髙学生抽象思维、逻辑推理以及运算能力。

(二)课程的教学要求层次教学要求中,有关左义、左理、性质、特征等概念的内容按“知道、了解、理解”三个层次要求;有关计算、解法、公式、法则等方法的内容按“会、掌握、熟练掌握”三个层次要求。

二、教学媒体和教学建议(一)学时和学分1.学时分配(90学时)2.学分本课程共5学分。

(二)教材1.本课程的文字教材有主教材和辅助教材。

主教材是学生学习的主要用书,它是教和学的主要依据。

根据远距离教育要求和电大学生入学时水平参差不齐的实际情况,主教材以外,应配辅助教材。

文字教材是学生获得知识和能力的重要媒体,教材中对概念的叙述要直观无误,论证要淸楚,要适合成人、以业余学习为主的特点,要便于自学。

2.电视录像教材是学生获得本课程知识的主要媒体之一。

本课程的电视课、VOD点播(共35讲)及IP课件以重点内容系统讲授和非重点内容糟讲相结合的方式进行。

精讲是讲要点、讲方法,或解答疑难问题。

(三)教学环节1.先修课程中等教育基本数学知识。

2.而授辅导或自学本课程是一门理论性较强、内容较抽象的综合课程,因此面授辅导或自学,将是不可缺少的辅助教学手段,开设该课程的地方电大,要聘请有经验、认真负责的教师,为学生进行面授辅导或答疑,及时解答学生的疑难问题。

要求教师认真钻研教学大纲,认真备课,批改作业。

自学是电大学生获得知识的重要方式,自学能力的培养也是高等教冇的目的之一,要注意对学生自学能力的培养,学生自己更应重视自学和自学能力的提高。

3.作业本课程由于学时所限,理论推证和例题都较少,因此必须通过做练习题来加深对概念的理解和掌握,熟悉公式的运用,从而达到消化、掌握所学知识的目的。

计算n阶行列式的若干方法举例

计算n阶行列式的若干方法举例

计算n阶行列式的若干方法举例例2 一个n 阶行列式n ij D a =的元素满足,,1,2,,,ij ji a a i j n =-=则称D n 为反对称行列式,证明:奇数阶反对称行列式为零. 证明:由i j j i a a =-知i i i ia a =-,即 0,1,2,,ii a i n ==故行列式D n 可表示为121311223213233123000n n n n nnna a a a a a D a a a a a a -=----- 由行列式的性质A A '=1213112232132331230000n n n n nn n a a a a a a D a a a a a a -----=- 12131122321323312300(1)n n n n nnna a a a a a a a a a a a -=------ (1)n n D =-当n 为奇数时,得D n =-D n ,因而得D n = 0.3.化为三角形行列式若能把一个行列式经过适当变换化为三角形,其结果为行列式主对角线上元素的乘积。

因此化三角形是行列式计算中的一个重要方法。

例3 计算n 阶行列式a b b b b a b b D bb a b bbba=解:这个行列式的特点是每行(列)元素的和均相等,根据行列式的性质,把第2,3,…,n 列都加到第1列上,行列式不变,得(1)(1)(1)(1)a n b b b b a n ba bb D a n bb a b a n bb ba +-+-=+-+- 11[(1)]11b b ba b b a n b b a b b ba=+- 100[(1)]000bb b a b a n b a b a b-=+--- 1[(1)]()n a n b a b -=+--4.降阶法降阶法是按某一行(或一列)展开行列式,这样可以降低一阶,更一般地是用拉普拉斯定理,这样可以降低多阶,为了使运算更加简便,往往是先利用列式的性质化简,使行列式中有较多的零出现,然后再展开。

线性代数习题--行列式

线性代数习题--行列式

行列式二阶、三阶行列式—对角线原理■计算下列二阶行列式2312; 22b a ba1log log 1ba ab ;θθθcos 1sin tan ;cos sin sin cos θθθθ-;1111121221212222a b a b a b a b ++++;1112111221222122a ab b a a b b +. 解22ba b a =22ba ab -; 1log log 1b aa b =-1a b log b a log 110=-=;θθθcos 1sin tan =0sin cos tan =-⋅θθθ;■计算下列三阶行列式(1)111111111--- (2)38114112---; (3)b a c a c b c b a (4)222111c b a c b a(5)00000d c ba (6)ed ba00000. (7)y x y x x y x y yx y x +++.解 111111111---=111(1)(1)(1)11111(1)⨯⨯+-⨯-⨯-+⨯⨯-⨯⨯-(1)111(1)1--⨯⨯-⨯-⨯1111114=-++++=381141102---=2⨯(-4)⨯3+0⨯(-1)⨯(-1)+1⨯1⨯8-0⨯1⨯3-2⨯(-1)⨯8-1⨯(-4)⨯(-1)=-24+8+16-4=-4.=ba c a cb cb a ccc aaa bbb cba bac acb ---++ 3333c b a abc ---==222111c b a c b a 222222cb ba ac ab ca bc ---++ ))()((a c c b b a ---=00000d c b a =00000000000ac bd ab cd ⨯⨯+⋅+⋅-⨯⨯-⋅-⋅=; 0000ab c de=00000000abe c d b cda e abe acd ++---=-.yx y x x y x y yx y x +++=x (x +y )y +yx (x +y )+(x +y )yx -y 3-(x +y )3-x 3 =3xy (x +y )-y 3-3x 2 y -x 3-y 3-x 3=-2(x 3+y 3).行列式的定义排列与逆序■计算以下各个排列的逆序数, 并指出它们的奇偶性: 1234 4132 2413314265 ;314265789; 542391786; 134785692 139782645987654321; 246813579;(1)21n n -.(4)13…)12(-n 24 …)2(n ; (5)13…)12(-n )2(n )22(-n … 2. (6)1(2)3(22)5(24)(21)2n n n n ---.解逆序数为0逆序数为4: 41, 43, 42, 32. 逆序数为3.(314265)2114τ=++= 偶排列(314265789)2114τ=++= 偶排列 (542391786)431141115τ=++++++= 奇排列 11; 17.(987654321)8765432136τ=+++++++= 偶排列 (246813579)123410τ=+++= 偶排列1((1)21)(1)(2)21(1)2n n n n n n τ-=-+-+++=-, 这表明该排列的逆序数与n 有关, 故要对n 进行讨论:当4,41n k k =+时1(1)2n n -为偶数,此时排列(1)21n n -.为偶排列;当42,43n k k =++时1(1)2n n -为奇数,此时排列(1)21n n -.为奇排列.(4)逆序数为2)1(-n n . 3 2 (1个) 5 2, 5 4(2个) 7 2, 7 4, 7 6(3个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个)(5)逆序数为)1(-n n .3 2(1个) 5 2, 54 (2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n -1)2, (2n -1)4, (2n -1)6, ⋅ ⋅ ⋅, (2n -1)(2n -2) (n -1个) 4 2(1个) 6 2, 6 4(2个) ⋅ ⋅ ⋅ ⋅ ⋅ ⋅(2n )2, (2n )4, (2n )6, ⋅ ⋅ ⋅, (2n )(2n -2) (n -1个) (6)当n 为偶数时,2n k =,排列为143425212221223412k k k k k kk k --+++-[]1122(1)(1)t k k k =+++++-+-+L [](1)(2)21k k +-+-+++L()()()()()22(1)1313142n k k k k k k n 轾+++++++++-=-=-犏臌L 其中11(1)(1)k k +++-+-L 为1434252122k k k k --+的逆序数;k 为21k +与它前面数构成的逆序数;(1)(2)21k k -+-+++L 为23,25,,2(21)k k k k +++-L 与它们前面数构成的逆序数的和;()()()()()()113131k k k k ++++++++-L 为2k ,22,24,,2k k --L 与它们前面数构成的逆序数的和.当n 为奇数时,21n k =+,排列为142345212223225412k k k k k kk k ++++++()1122t k k =+++++++L [](1)21k k ++-+++L()()()2213323432n k k k k k k n +轾++++?+=+=-臌L其中1122k k ++++++L 为1423452122k k k k +++的逆序数;(1)21k k +-+++L 为23,25,,2(21)k k k k ++++L 与它们前面数构成的逆序数的和;()()()3323k k k k +++?+L为2,22,,2k k -L 与它们前面数构成的逆序数的和.■确定,i j ,使6元排列2316i j 为奇排列.■在由1, 2, 3, 4, 5, 6, 7, 8, 9组成的下述9阶排列中, 选择i j 与使得: (1)2147958i j 为偶排列; (2)1254896i j 为奇排列; (3)4125769i j 偶排列; (3)3142786i j 奇排列. 均要求说明理由.分析 排列1254896i j 中的两个未知数i j 与据排列的定义只能取3或7. 因而只有两种情况:1132574896与2172534896,然而我们只需计算上述的一个排列就可得知结果,因为1与2是3和7作一次对换得到的,而作一次对换必改变排列的奇偶性,也就是说若1为偶排列, 则2必为奇排列. 其余题解法也类似.解 (1)取3,6i j ==有(214739568)11226τ=+++=为偶排列, 符合题目要求.(2)取3,7i j ==有(132574896)112116τ=++++=为偶排列, 故取7,3i j ==时172534896为奇排列, 符合题目要求.(3)取3,8i j ==有(412357698)3115τ=++=为偶排列,符合题目要求.(4)取5,9i j ==有(531429786)42131112τ=+++++=为偶排列. 故取9,5i j ==时931425786为奇排列, 符合题目要求.■写出四阶行列式中含有因子2311a a 的项. 解 由定义知,四阶行列式的一般项为43214321)1(p p p p t a a a a -,其中t 为4321p p p p 的逆序数.由于3,121==p p 已固定,4321p p p p 只能形如13□□,即1324或1342.对应的t 分别为10100=+++或22000=+++故44322311a a a a -和42342311a a a a 为所求.■写出4阶行列式ij a 中包含因子4223a a 的项, 并指出正负号.解 4阶行列式ij a 中包含因子4223a a 的项有11233442a a a a 和14233142a a a a . 由于(1342)2τ=,故11233442a a a a 取正号; (4312)5τ=,故14233142a a a a 取负号.■当i =___, k =___时13242553i k a a a a a 成为5阶行列式ij a 中一个取负号的项,为什么?解 i 和k 只能取1,4或者4,1.不妨先假设1,4i k ==, 则13242553i k a a a a a =1132442553a a a a a , 这个项的符号就是(13425)(12453(1)(1)1ττ+-=-=+, 不符合要求. 那么当4,1i k ==时13242553i k a a a a a =1432412553a a a a a , 它和1132442553a a a a a 相比就是交换了列指标1和4的位置, 因(12453)τ与(42153)τ相比改变了奇偶性, 所以1432412553a a a a a 的符号为负. 故应填4,1i k ==.■若(415)(12345)41213455(1)k i k i a a a a a ττ+-是5阶行列式ij a 中的一项, 则当i =___, k =___时该项的符号为正, 当i =___, k =___时该项的符号为负, 为什么?解 此问和问题3类似, i 和k 只能取2,3或者3,2.不妨先假设2,3i k ==, 则符号为(43125)(12345)(1)ττ+-=5(1)(1)-=-, 所以取的是负号. 那么由问题3的分析可知当3,2i k ==时符号取正. 所以当3,2i k ==时该项的符号为正, 当2,3i k ==时该项的符号为负.■在6阶行列式ij a 中, 下列项应该取什么符号? 为什么?(1) 233142561465a a a a a a ; (2) 324354116625a a a a a a ; (3) 215316426534a a a a a a ; (4) 511332442665a a a a a a . 解 (1) 因(234516)(312645)448ττ+=+=, 所以取正号;另一种方法是: 233142561465a a a a a a =142331425665a a a a a a , 因(431265)τ6=, 所以取正号. (2), (3), (4) 也可这样做, 不再列出.(2) 因(345162)(234165)7411ττ+=+=, 所以取负号; (3) 因(251463)(136254)6511ττ+=+=, 所以取负号; (4) 因(513426)(132465)628ττ+=+=, 所以取正号.■按行列式定义, 计算下列行列式((4)中1n >, 并均要求写出计算过程):0001100000100100=D=D 000000000000a c db .=D 00000000000a b c d ;=D 0001002003004000;=D 1234512345121212000000000a a a a ab b b b bc cd de e ;=D 000100002000010n n -=D n n 000000100200100-=D 000101001001000----.=D 11121,1121222,11,11,21000n n n n n n a a a a a a a a a a ----.解001100000100100=D =1=D 000000000000a c db (1342)(1)abcd abcd t =-==D 00000000000a b c d根据定义44ija ⨯=123412341234()1234(1)j j j j j j j j j j j j a a a a τ-∑.在行列式的通项中, 只有11233244a a a a 这一项的因子中不含零, 所以=D (1324)11233244(1)a a a a τ-=11233244a a a a -=abcd -.=D 0001002003004000(4321)(1)2424t =-==D 1234512345121212000000000a a a a ab b b b bc cd de e 根据定义,55ijD a ⨯==123451234512345()12345(1)j j j j j j j j j j j j j j j a a a a a τ-∑.在行列式D 的通项中每一个项1234512345j j j j j a a a a a 中最后三个因子345345,,j j j a a a 分别取值于行列式最后三行的不同列的三个数, 而行列式最后三行中均只有二个数不为零, 所以这三个因子中至少一个取零. 这样行列式的每一项中都含有因子零, 所以每项都为零, 从而0=D .=D 000100002000010 n n -所给行列式的展开式中只含有一个非零项1,12312n n n a a a a - ,它前面的符号应为()()()112311--=-n n τ ,所以D =()n n 11--!。

线性代数习题参考答案

线性代数习题参考答案

第一章行列式§1 行列式的概念1.填空(1) 排列6427531的逆序数为,该排列为排列。

(2) i= ,j= 时,排列1274i56j9为偶排列。

(3) n阶行列式由项的代数和组成,其中每一项为行列式中位于不同行不同列的n个元素的乘积,若将每一项的各元素所在行标按自然顺序排列,那么列标构成一个n元排列。

若该排列为奇排列,则该项的符号为号;若为偶排列,该项的符号为号。

(4) 在6阶行列式中,含152332445166a a a a a a的项的符号为,含324314516625a a a a a a的项的符号为。

2.用行列式的定义计算下列行列式的值(1)112223323300 0aa aa a解:该行列式的3!项展开式中,有项不为零,它们分别为,所以行列式的值为。

(2)12,121,21,11, 12,100000nn nn n n n n n n n n nnaa aa a aa a a a------解:该行列式展开式中唯一不可能为0的项是,而它的逆序数是,故行列式值为。

3. 证明:在全部n 元排列中,奇排列数与偶排列数相等。

证明:n 元排列共有!n 个,设其中奇排列数有1n 个,偶排列数为2n 个。

对于任意奇排列,交换其任意两个元的位置,就变成偶排列,故一个奇排列与许多偶排列对应,所以有1n 2n ,同理得2n 1n ,所以1n 2n 。

4. 若一个n 阶行列式中等于0的元素个数比n n -2多,则此行列式为0,为什么?5. n 阶行列式中,若负项的个数为偶数,则n 至少为多少?(提示:利用3题的结果)6. 利用对角线法则计算下列三阶行列式(1)201141183---(2)222111ab c a b c§2 行列式的性质1.利用行列式的性质计算系列行列式。

(1) 2141 3121 1232 5062-(2)100 110 011 001abcd ---(3)ab ac ae bd cd de bf cf ef ---2. 证明下列恒等式(1) ()33ax by ay bzaz bx x y z D ay bzaz bx ax by a b yz x az bx ax by ay bzzxy+++=+++=++++ (提示:将行列式按第一列分解为两个行列式之和,再利用性质证明)(2)()()()()()()()()()()()()22222222222222221231230123123a a a a b b b b cc c cd d d d ++++++=++++++(3)1111221100001000001n n n n n n n x x x a x a x a x a a a a x a ------=++++-+ (提示:从最后一列起,后列的x 倍加到前一列)3. 已知四阶行列式D 的第三行元素分别为:1,0,2,4-;第四行元素的对应的余子式依次是2,10,a ,4,求a 的值。

《线性代数》第一章行列式精选习题及解答

《线性代数》第一章行列式精选习题及解答

4.利用行列式按某一行(列)展开定理计算行列式;
5.利用数学归纳法计算行列式;
6.利用递推公式计算行列式;
7.利用范德蒙行列式的结论计算特殊的行列式;
8.利用加边法计算行列式;
9.综合运用上述方法计算行列式.
1.3 例题分析
例 1.1 排列 14536287 的逆序数为 ( )
(A) 8 (B) 7
+L + a2n xn MMM
=
b2
⎪⎩an1 x1 + an2 x2 + L + ann xn = bn
的系数行列式 D

0 ,则方程组有唯一解 x1
=
D1 D

i=1,2,…,n),其中 Di 是 D 中第 i
列元素(即 xi 的系数)换成方程中右端常数项所构成的行列式.
2.如果线性齐次方程组
⎧ a11 x1 + a12 x2 + L + a1n xn = 0
即 ( A31 + A32 + A33 ) + 2( A34 + A35 ) =0. 同理 2( A31 + A32 + A33 ) + ( A34 + A35 ) =0
于是 A31 + A32 + A33 = 0, A34 + A35 = 0.
12345
12345
11122
11122
A51 + A52 + A53 + A54 + A55 = 3 2 1 4 6 r4 + r2 3 2 1 4 6 = 0
), x 3 的系数为(
).
3 2x 1

108行列式计算典型例子

108行列式计算典型例子

行列式计算典型例子1主讲老师:PPT制作:行列式计算典型例子1.掌握3阶、4阶行列式的计算2.会计算简单的n 阶行列式内容提要教学要求通过典型例子介绍行列式计算的常用方法与技巧行列式计算常用方法一---利用定义法(逆序数)计算行列式例计算行列式12,1212nn n n n n nna a a D a a a −=,1,n =1,n 2,1n − ,1n a (1)−1n −2n +1(1)2n n −(n行列式计算常用方法二---降阶法(按行按列展开定义)例求解把第3列的(-1)倍加到第1列,得12402123D λλλλ+−−−−−−−324220423D λλλ−−−=−−=−−−()124102123λλλ−−=+−−−−的根.()124102123D λλλ−−=+−−−−()124102047λλλ−−=+−−−()2147λλλ−=+−−()()2178λλλ=+−−()()218λλ=+−从而原方程的根为1231,8.λλλ==−=例求解沿第1列展开得11.11aaD a a =1111(1)11a D a +=×−+41(1)11aa a a +×−41a =−行列式计算常用方法三---递推公式法例计算n 阶三对角行列式2222121212n n a a a a D aa a =2222121212n n aa a a D a a a =解将D n 按第1行展开12n n D aD −=−2n D −1n n n D aD a−−=1n n n D aD a −=+12+(+)n n n a a aaD −−=222+n n a a D −== 11(1)n na D n a −=+−12(1)(1)n n n a a n a n a −=×+−=+()112n n n n D aD a D aD −−−−=−2122n n n D aD a D −−=−。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
相关文档
最新文档