激光原理第二章答案
激光原理第二章习题答案
2.1 证明:如图2.1所示,当光线从折射率1η的介质,向折射率为2η的介质折射时,在曲率半径R 的球面分界面上,折射光线所经受的变换矩阵为⎥⎥⎦⎤⎢⎢⎣⎡-2121201ηηηηηR 其中,当球面相对于入射光线凹(凸)面时,R 取正(负)值。
证明:由图可知 11201θ⋅+⋅=x x 又)()(222111θηθη-=-RxR x 21121122x R ηηηθθηη-∴=+ ⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡∴11212122201θηηηηηθx Rx ∴变换矩阵为⎥⎥⎦⎤⎢⎢⎣⎡-2121201ηηηηηR 2.2 试求半径R=4cm,折射率η=1.5的玻璃球的焦距和主面的位置1h 和2h 。
解:变换矩阵⎥⎥⎦⎤⎢⎢⎣⎡-⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=2112121221210110101n n R n n n l n n R n n n M 把11=n ,5.12=n ,cm R R 421=-=,cm l 8=代入,可得⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡=⎥⎥⎦⎤⎢⎢⎣⎡⨯-⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡--=3531316355.1145.115.10110815.145.1101M )(12f h A -=, f C 1-=, )(11f h D -= 求得 mm f 30-= mm h 201= mm h 202=2.3 焦距1f =5cm 和2f =-10c=m 的两个透镜相距5cm 。
第一个透镜前表面和第二个透镜后表面为参考平面的系统,其等效焦距为多少?焦点和主平面位置在何处?距1f 前表面20cm 处放置高为10cm 的物体,能在2f 后多远地方成像?像高为多少? 解:(1)2110101010********1131101011110552A B L M CD f f ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥====⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥-----⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥-⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦)(12f h A -=, f C 1-=, )(11f h D -=,求得cm f 5-= cm h 5.21= cm h 52-=第一个透镜前表面与前主面的距离为2.5cm ,第二个透镜后表面与后主面的距离为-5cm,前主面离焦点的距离为-5cm ,) (2)21201011===l x θ⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡-=⎥⎥⎦⎤⎢⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡=⎥⎦⎤⎢⎣⎡45252110235150235150111122θθθx x D C B A xcm l cm x 2,5.222-==(距2f 后表面-2cm )2.4 一块折射率为η,厚度为d 的介质放在空气中,其两界面分别为曲率半径等于R 的凹球面和平面,光线入射到凹球面上。
激光原理周炳坤-第2章习题答案
第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭ ⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
激光原理第二章答案解析
第二章 开放式光腔与高斯光束1. 证明如图2.1所示傍轴光线进入平面介质界面的光线变换矩阵为121 00 ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,根据几何关系可知211122, sin sin r r ηθηθ== 傍轴光线sin θθ则1122ηθηθ=,写成矩阵形式2121121 00 r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证 2. 证明光线通过图2.2所示厚度为d 的平行平面介质的光线变换矩阵为1210 1d ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11, r θ,出射光线坐标参数为22, r θ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d ,最后经界面2折射后出射。
根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。
3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。
激光原理第二章习题答案
2.19某共焦腔氦氖激光器,波长λ=0.6328μm ,若镜面上基模光斑尺寸为0.5mm ,试求共焦腔的腔长,若腔长保持不变,而波长λ=3.39μm ,问:此时镜面上光斑尺寸多大? 解:20/ 1.24s L m ωπλ=≈0/1.16mms L ωλπ==2.20考虑一台氩离子激光器,其对称稳定球面腔的腔长L=1m ,波长λ= 0.5145μm ,腔镜曲率半径R=4m ,试计算基模光斑尺寸和镜面上的光斑尺寸。
解:1/42021/42242()(2)(22)(2) 4.65104L R L R L R L RL L mλωπλπ-⎡⎤--=⎢⎥-⎣⎦⎡⎤-==⨯⎢⎥⎣⎦1/42121/4222422()()(2)4.9810(2)L R R L L R L R L R L mRL L λωωπλπ-⎡⎤-==⎢⎥--⎣⎦⎡⎤==⨯⎢⎥-⎣⎦2.21腔长L =75cm 的氦氖平凹腔激光器,波长λ=0.6328μm ,腔镜曲率半径R =1m ,试求凹面镜上光斑尺寸,并计算该腔基模远场发散角θ。
解:1/41/4212211121121/41/422112212212()0.295mm()()(1)()0.591()()(1)s s R R L g L Lw L R L R R L g g g R R L g LL w mmL R L R R L g g g λλππλλππ⎡⎤⎡⎤-===⎢⎥⎢⎥-+--⎣⎦⎣⎦⎡⎤⎡⎤-===⎢⎥⎢⎥-+--⎣⎦⎣⎦1/41/42221212120212121212(2)(2)220.0014rad=0.0782()()()(1)L R R g g g g L R L R L R R L L g g g g λλθππ⎡⎤⎧⎫--+-===⎨⎬⎢⎥--+--⎣⎦⎩⎭2.22设稳定球面腔的腔长L =16cm ,两镜面曲率半径为1R =20cm ,2R =-32cm ,波长λ=410-cm ,试求:(1)最小光斑尺寸0ω和最小光斑位置;(2)镜面上光斑尺寸1s ω、2s ω;(3)0ω和1s ω、2s ω分别与共焦腔(1R =2R =L )相应值之比。
激光原理陈钰清浙江大学第二版第二章习题答案
第二章开放式光腔与高斯光束习题1试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且 两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
3.激光器的谐振腔由一面曲率半径为 1m 的凸面镜和曲率半径为 2m 的凹面镜组成,工作 物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
解:设两腔镜 M j 和M 2的曲率半径分别为 R 和R 2, R i=T m,R 2=2m其往返矩阵为:"A f 1 0、 A "1 0、<1B 3 11 =1 22C D ” 1 ■ --1 0 1 ―1 0 1 ,V R 1 丿R 2 丿J f2LL12L(1-_ )R2R 22 2 2L2L 2L 2L4 + - (1)] -[ (1- )(1-)]R 1 1 R 2一R 1 飞 ) 由于是共焦腔,往返矩阵变为r-1一1丿若光线在腔内往返两次,有T 2丿10)10(1)2 2工作物质长I = 0.5m ,折射率n =1.52 根据稳定条件判据:其中解:2I 2 2f 2 IB、y 1 0" z A 1 0)A1 I )1 1 2I )1=(1 1[1P D>.0 1丿「7 1 7 .0 1屮—— 1\ f 丿223I - 21甘2 由(1)解出 2m 〉L 、1m由(2)得 所以得到:L =L'+0.5x(1 -丄)=『 + 0.171.522.17m>L A1.17m4.图2.1所示三镜环形腔,已知I ,试画出其等效透镜序列图,并求球面镜的曲率半径在什么范围内该腔是稳定腔。
图示环形腔为非共轴球面镜腔。
在这种情况下,对于在由光轴组成 的平面内传输的子午光线,式(2.2.7)中的f =(Rcos8)/2,对于在与此垂直的平面内传输的弧矢光线,f=R/(2cos0), 0为光轴与球面镜法线的夹角。
激光原理周炳坤-第2章习题答案
第二章 开放式光腔与高斯光束习题(缺2.18 2.19 2.20)1. 题略证明:设入射光()11,r θ,出射光()22,r θ,由折射定理1122sin sin ηθηθ=,根据近轴传输条件,则1122sin ,sin θθθθ≈≈1122ηθηθ∴=,联立21r r =,则所以变换矩阵为 2. 题略证明:由题目1知,光线进入平面介质时的变换矩阵为:经过距离d的传播矩阵为: 光线出射平面介质时: 故3. 试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪⎪ ⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭212211100r r θηηθ⎛⎫⎛⎫⎛⎫= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭21100T ηη⎛⎫= ⎪⎝⎭121100T ηη⎛⎫= ⎪⎝⎭2100d T ⎛⎫=⎪⎝⎭312100T ηη⎛⎫= ⎪⎝⎭3113213112211101010000r r r d T T T θθηηηηθ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫== ⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭123211221101011000000d d T T T T ηηηηηη⎛⎫⎛⎫⎛⎫⎛⎫∴=== ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭由于是共焦腔,有 12R R L == 往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4. 试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
激光原理习题与答案
解: 1
1
q( z) R( z) i 2 ( z)
q0
i
2 0
,q
q0
l
q(0) 0.45i,q(0.3) 0.45i 0.3
q() 0
21.已知一二氧化碳激光谐振腔由曲个凹面 镜构成,R1=l m,R2=2m,L=0.5m。如 何选样南斯束腰斑0的大小和位置才能使它 成为该谐振腔中的自再现光束?
第二章
8.今有一球面腔,Rl=1.5m,R 2=—1m,L =80cm。试证明该腔为稳定腔;求出它的等 价共焦腔的参数;在图上画出等价共焦腔的具 体位置。
13.某二氧化碳激光器,采用平—凹腔,凹面 镜的R=2m,胶长L=1m。试给出它所产生 的高斯光束的腰斑半径0的大小和位置、该 高斯束的f及0的大小。
束腰处R1右0.37mR2左边0.13m。半径为1.28mm
第四章习题解答
第五章习题
精品课件!
精品课件!
第七章习题
z解1 : (L
L(R2 L) R1) (L
R2 )
0.37
z2
(L
L(R1 L) R1) (L
R2 )
0.13
f
sqrt(
L(
R1 L)(R2 L)(R1
(L R1) (L R2
R2
)2ຫໍສະໝຸດ L))0.48
0
f 1.28 *103 m
解: g1g2 0.5 z1 0, z2 1, f 1
0
f 1.84 *103m
0 2
3.68 *103 rad f
激光与原理习题解答第二章
激光原理第二章习题答案1.估算2C O 气体在室温(300K)下的多普勒线宽D ν∆和碰撞线宽系数α。
并讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。
解:2C O 气体在室温(300K)下的多普勒线宽D ν∆为11822770693103007.16107.161010.61044 0.05310H zD T M νν---⨯⎛⎫⎛⎫∆=⨯=⨯⨯⨯ ⎪ ⎪⨯⎝⎭⎝⎭=⨯ 2C O 气体的碰撞线宽系数α为实验测得,其值为49K H z/Pa α≈2C O 气体的碰撞线宽与气压p 的关系近似为L p να∆=当L D νν∆=∆时,其气压为930.053101081.6Pa 4910Dp να∆⨯===⨯所以,当气压小于1081.6P a 的时候以多普勒加宽为主,当气压高于1081.6P a 的时候,变为以均匀加宽为主。
2.考虑某二能级工作物质,2E 能级自发辐射寿命为s τ,无辐射跃迁寿命为τ。
假定在t=0时刻能级2E 上的原子数密度为2(0)n ,工作物质的体积为V ,自发辐射光的频率为ν,求:(1)自发辐射光功率随时间t 的变化规律;(2)能级2E 上的原子在其衰减过程中发出的自发辐射光子数;(3)自发辐射光子数与初始时刻能级2E 上的粒子数之比2η,2η称为量子产额。
解:(1) 在现在的情况下有可以解得:11()22()(0)stn t n eττ-+=可以看出,t 时刻单位时间内由于自发辐射而减小的能级之上的粒子数密度为2/s n τ,这就是t 时刻自发辐射的光子数密度,所以t 时刻自发辐射的光功率为:222()()sdn t n n dtττ=-+(2) 在t dt →时间内自发辐射的光子数为:所以(3) 量子产额为:3.根据红宝石的跃迁几率数据:7151332312121310.510,310,0.310,S s A sA s S S ---=⨯=⨯=⨯=估算13W 等于多少时红宝石对694.3n m λ=的光是透明的。
激光原理习题答案第二章
第二章 开放式光腔与高斯光束习题1.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,有12R R L ==往返矩阵变为若光线在腔内往返两次,有可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
3.激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为1.52,求腔长L 在什么范围内是稳定腔。
解:设两腔镜1M 和2M 的曲率半径分别为1R 和2R ,121m,2m R R =-=122212111210101122110101212(1) 222222[(1)][(1)(1)]A B L L T C D R R L L L R R L L L L R R R R R R ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫ ⎪ ⎪== ⎪ ⎪ ⎪⎪ ⎪--⎝⎭⎝⎭⎝⎭⎪ ⎪⎝⎭⎝⎭⎛⎫-- ⎪⎪= ⎪-+----- ⎪⎝⎭1001T -⎛⎫= ⎪-⎝⎭21001T ⎛⎫= ⎪⎝⎭工作物质长0.5m l =,折射率 1.52η=⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-=⎥⎦⎤⎢⎣⎡=101100110100110112011c n b n a R D C B A T⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎦⎤⎢⎣⎡⎥⎥⎦⎤⎢⎢⎣⎡-101100110100110112012a nb nc R⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++--++⎥⎥⎥⎥⎦⎤⎢⎢⎢⎢⎣⎡+++--++=1)(2211)(2212211n bc a R R nb c a n bc a R R nb c a⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++---+-⎥⎥⎥⎦⎤⎢⎢⎢⎣⎡++-----+-=1)52.15.05.0(222252.15.05.011)52.15.05.0(121252.15.05.01L L L L⎥⎦⎤⎢⎣⎡---⎥⎦⎤⎢⎣⎡+-=L L L L 171.11171.01658.022171.01⎥⎦⎤⎢⎣⎡-++-----=)171.1)(658.02()171.0(22342.1)171.2)(171.0(171.1L L L L L L L要达到稳定腔的条件,必须是()1211<+<-D A ,按照这个条件,得到腔的几何长度为: 2.17m 1.17m L >>,单位是米。
激光原理第二章作业的答案
3. 设稳定球面腔的腔长L=16cm,两镜面曲率半径为R1=20cm,R2=- 32cm,波长λ=10-4cm,试求:(1)最小光斑尺寸ω0和最小光斑位置; (2)镜面上光斑尺寸ω01、ω02;(3)ω0和ω01、ω02分别与共焦腔 (R1=R2=L)相应值之比。
2g1g2 2
g1g2(g1g2 1) 1
(L R1)(L R2)
3.472
往 返 (M a (M 1)2 a1 ) 2a1 21M 120.917
单 程 11往 返 1M 10.712
7.设虚共焦非稳定腔的腔长L=0.25m,凸球面镜M2的 直径和曲率半径分别为2a2=3cm和R2=-1m ,若 保持镜M2尺寸不变,并从镜M2单端输出,试问:凹 面镜M1尺寸应选择多大?此时腔的往返放大率为多 大?
z1 = -17.4545cm
g1=1-L/R1=0.2 g2 = 1-L/R2=1.5 L λ带入公式
z2 =-1.4545cm f = 6.6656cm
w0 = 0.0146 cm
w1 = 0.0408 cm
w2 = 0.0149 cm
L= 160cm w0 = 0.01596cm w1 = w2 =sqrt(2)w0=0.02257cm
L = R 1 -R 2 0.2 5 22
R 1 = 1 .5 m
M =m 2=
R1 R2
1 .5
2 a1 m 2 * 2 a 2 4 .5 cm
8.考虑一虚共焦非稳定腔,工作波长λ= 1.06um,腔长L=0.3m,有效菲涅耳数Nef =0.5,往返损耗率δ=0.5,试求单端输出
时,镜M1和M2半径和曲率半径。
激光原理(陈钰清)第二章习题答案2
2.6 对 于 图 2.2 所 示 的 腔 , 忽 略 像 散 对 稳 定 性 影 响 。 证 明 : 当 R1 2 L1, R2 2 L2时,该腔是非稳定;仅当 R1 R2 时,该腔是临 界腔
知识点一:一些光学元件的传播矩阵 P48 图2.2
2.6 对 于 图 2.2 所 示 的 腔 , 忽 略 像 散 对 稳 定 性 影 响 。 证 明 : 当 R1 2 L1, R2 2 L2时,该腔是非稳定;仅当 R1 R2 时,该腔是临 界腔
1 (A+D) 1时,序列是稳定的 2
P49 (2-4-17)
2.14 腔内有其它元件的两镜腔中,除两个反射镜外的其余部分的变 换矩阵为 ,腔镜曲率半径为 R1 , R2 ,证明:稳定性条件为
0 g1 g 2 1
其中 = D B R1 ; g 2 A B R2
2A 2B 2 A B C( ) AB B D ( ) x R2 R2 x2 1 2 A C - 2 A )(D - 2 B ) C - 2 A )B C - 2 A )(D - 2 B ) D - 2 B )1 ( ( ( ( R1 R1 R2 R1 R1 R2
R R (1) 1 2 L1 ,2 2 L2 时,
1 1 1 L L L2 L1 L2 ( A D) 1 L( ) (1 ) 1 2 2 L1 2 L2 L1 2 L2 2 L1 L 1 L ( 2 1 ) 1 2 L1 L2
所以该腔是非稳定腔
g1 g 2 1 R2 >0 g1 g 2 <1 (1)当L< (2)当L= (3)当L>
2 R2 n0 时,0<g1 g 2 <1,该腔稳定 n0 1 2 R2 n0 时,g1 g 2 =0,该腔为临界腔 n0 1 2 R2 n0 时,g1 g 2 0,该腔不稳定 n0 1
激光与原理习题解答第二章
激光原理第二章习题答案1.估算2CO 气体在室温(300K)下的多普勒线宽D ν∆和碰撞线宽系数α。
并讨论在什么气压范围内从非均匀加宽过渡到均匀加宽。
解:2CO 气体在室温(300K)下的多普勒线宽D ν∆为11822770693103007.16107.161010.61044 0.05310HzD T M νν---⨯⎛⎫⎛⎫∆=⨯=⨯⨯⨯ ⎪ ⎪⨯⎝⎭⎝⎭=⨯ 2CO 气体的碰撞线宽系数α为实验测得,其值为49KHz/Pa α≈2CO 气体的碰撞线宽与气压p 的关系近似为L p να∆=当L D νν∆=∆时,其气压为930.053101081.6Pa 4910Dp να∆⨯===⨯所以,当气压小于1081.6Pa 的时候以多普勒加宽为主,当气压高于1081.6Pa 的时候,变为以均匀加宽为主。
2.考虑某二能级工作物质,2E 能级自发辐射寿命为s τ,无辐射跃迁寿命为τ。
假定在t=0时刻能级2E 上的原子数密度为2(0)n ,工作物质的体积为V ,自发辐射光的频率为ν,求:(1)自发辐射光功率随时间t 的变化规律;(2)能级2E 上的原子在其衰减过程中发出的自发辐射光子数;(3)自发辐射光子数与初始时刻能级2E 上的粒子数之比2η,2η称为量子产额。
解:(1) 在现在的情况下有可以解得:11()22()(0)s tn t n eττ-+=可以看出,t 时刻单位时间内由于自发辐射而减小的能级之上的粒子数密度为2/s n τ,这就是t 时刻自发辐射的光子数密度,所以t 时刻自发辐射的光功率为:222()()s dn t n ndt ττ=-+(2) 在t dt →时间内自发辐射的光子数为:所以(3) 量子产额为:3.根据红宝石的跃迁几率数据:7151332312121310.510,310,0.310,S sA sA s S S ---=⨯=⨯=⨯=估算13W 等于多少时红宝石对694.3nm λ=的光是透明的。
激光原理第二章习题答案
激光原理第二章习题答案2.19某共焦腔氦氖激光器,波长λ=0.6328μm ,若镜面上基模光斑尺寸为0.5mm ,试求共焦腔的腔长,若腔长保持不变,而波长λ=3.39μm ,问:此时镜面上光斑尺寸多大?解:20/ 1.24s L m ωπλ=≈01.16mms ω==2.20考虑一台氩离子激光器,其对称稳定球面腔的腔长L=1m ,波长λ= 0.5145μm ,腔镜曲率半径R=4m ,试计算基模光斑尺寸和镜面上的光斑尺寸。
解:1/42021/42242()(2)(22)(2) 4.65104L R L R L R L RL L mωλπ-??--=??-??-==1/42121/4222422()()(2)4.9810(2)R R L L R L R L R L mRL L ωωλπ-??-==--??==-??2.21腔长L =75cm 的氦氖平凹腔激光器,波长λ=0.6328μm ,腔镜曲率半径R =1m ,试求凹面镜上光斑尺寸,并计算该腔基模远场发散角θ。
解:1/41/4212211121121/41/422112212212()0.295mm()()(1)()0.591()()(1)s s R R L g w L R L R R L g g g R R L g w mm L R L R R L g g g ??-===??-+--?-===-+--?1/42221212120212121212(2)(2)20.0014rad=0.0782()()()(1)L R R g g g g L R L R L R R L g g g g λθπ--+-===?--+--o2.22设稳定球面腔的腔长L =16cm ,两镜面曲率半径为1R =20cm ,2R =-32cm ,波长λ=410-cm ,试求:(1)最小光斑尺寸0ω和最小光斑位置;(2)镜面上光斑尺寸1s ω、2s ω;(3)0ω和1s ω、2s ω分别与共焦腔(1R =2R =L )相应值之比。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第二章开放式光腔与高斯光束1.证明如图所示傍轴光线进入平面介质界面的光线变换矩阵为121 0ηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11,rθ,出射光线坐标参数为22,rθ,根据几何关系可知211122,sin sinr rηθηθ==傍轴光线sinθθ则1122ηθηθ=,写成矩阵形式2121121 0r rθθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证2.证明光线通过图所示厚度为d的平行平面介质的光线变换矩阵为1210 1dηη⎡⎤⎢⎥⎢⎥⎢⎥⎣⎦。
证明:设入射光线坐标参数为11,rθ,出射光线坐标参数为22,rθ,入射光线首先经界面1折射,然后在介质2中自由传播横向距离d,最后经界面2折射后出射。
根据1题的结论和自由传播的光线变换矩阵可得212121121 0 1 01 0 0 0 1r r d θθηηηη⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦ 化简后2121121 0 1d r r θθηη⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎢⎥⎣⎦得证。
3.试利用往返矩阵证明共焦腔为稳定腔,即任意傍轴光线在其中可以往返无限多次,而且两次往返即自行闭合。
证:设光线在球面镜腔内的往返情况如下图所示:其往返矩阵为:由于是共焦腔,则有12R R L ==将上式代入计算得往返矩阵121122110101A B L L T C D RR ⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥==⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎢⎥⎢⎥⎣⎦⎣⎦1001T -⎡⎤=⎢⎥-⎣⎦()()()121010110101n nnn n n r L r L ⎡⎤⎡⎤⎡⎤===-=-⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦A B C D T T T T T 可以看出,光线在腔内往返两次的变换矩阵为单位阵,所以光线两次往返即自行闭合。
于是光线在腔内往返任意多次均不会溢出腔外,所以共焦腔为稳定腔。
4.试求平凹、双凹、凹凸共轴球面镜腔的稳定性条件。
解:共轴球面腔稳定性条件1201g g <<其中121211,1L Lg g R R =--=- 对平凹共轴球面镜腔有12,0R R =∞>。
则1221,1Lg g R ==-,再根据稳定性条件1201g g <<可得22011LR R L <-<>⇒。
对双凹共轴球面腔有,120,0R R >>则12121,1L Lg g R R =-=-,根据稳定性条件1201g g << 可得11221212010 01 1R L R L R L R L R R L L R R L<<⎧>⎧⎪<<⎨⎨>⎛⎫⎛⎫<--<⇒ ⎪⎩⎪+> ⎪⎝⎭⎝⎭⎩ 或。
对凹凸共轴球面镜腔有,120,0R R ><则12121,1,0L Lg g R R =-=>-根据稳定性条件1201g g << 可得121120111R L R R R L L R L ⎛⎫⎛⎫<--<⇒ ⎪⎪⎝⎭+⎝><⎭⎧⎨⎩。
5. 激光器的谐振腔由一面曲率半径为1m 的凸面镜和曲率半径为2m 的凹面镜组成,工作物质长0.5m ,其折射率为,求腔长L 在什么范围内是稳定腔。
解:设两腔镜1M 和2M 的曲率半径分别为1R 和2R ,121m,2m R R =-= 工作物质长0.5m l =,折射率 1.52η=当腔内放入工作物质时,稳定性条件中的腔长应做等效,设工作物质长为l ,工作物质左右两边剩余的腔长分别为1l 和2l ,则12l l l L ++=。
设此时的等效腔长为L ',则光在腔先经历自由传播横向距离1l ,然后在工作物质左侧面折射,接着在工作物质中自由传播横向距离l ,再在工作物质右侧面折射,最后再自由传播横向距离2l ,则所以等效腔长等于 21()l lL l l L l ηη'=++=-+再利用稳定性条件由(1)解出 2m 1m L '>> 则011 1 (1)21L L ''⎛⎫⎛⎫<-+< ⎪⎪⎝⎭⎝⎭10.5(1)0.171.52L L L ''=+⨯-=+21211011101110010100101101L l l l l l l ηηη⎡⎤'⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎢⎥⎣⎦⎡⎤++⎢⎥=⎢⎥⎢⎥⎣⎦所以得到:1.17m<2.17m L <6. 图所示三镜环形腔,已知l ,试画出其等效透镜序列图,并求球面镜的曲率半径R 在什么范围内该腔是稳定腔。
图示环形腔为非共轴球面镜腔。
在这种情况下,对于在由光轴组成的平面内传输的子午光线,式(2.2.7)中的(cos )/2F R θ=,对于在与此垂直的平面内传输的弧矢光线,/(2cos )F R θ=,θ为光轴与球面镜法线的夹角。
图 解:22222101011211010111442132221A B l l C D FF l l l l F F F l l F l F ⎡⎤⎡⎤⎡⎤⎡⎤⎡⎤⎢⎥⎢⎥=⎢⎥⎢⎥⎢⎥⎢⎥⎢⎥--⎣⎦⎣⎦⎣⎦⎣⎦⎣⎦⎡⎤-+-⎢⎥⎢⎥=⎢⎥--⎢⎥⎣⎦()221312l l A D F F+=-+ 稳定条件 223111l lF F-<-+<左边有 22320210l lF F l l F F -+>⎛⎫⎛⎫--> ⎪⎪⎝⎭⎝⎭所以有21l lF F ><或对子午线: 对弧矢线: 对子午线和弧矢光线分别代入上述不等式得 子午光线弧矢光线任意光线需同时满足子午线与弧矢线的条件得7. 有一方形孔径的共焦腔氦氖激光器,L =30cm ,方形孔边长20.12cm d a ==,λ=632.8nm ,镜的反射率为121,0.96r r ==,其他的损耗以每程估计。
此激光器能否作单模运转如果想在共焦镜面附近加一个方形小孔阑来选择00TEM 模,小孔的边长应为多大试根据图 2.5.5作一个大略的估计。
氦氖增益由公式估算(l 为放电管长度,假设l L ≈)解:01TEM 模为第一高阶横模,并且假定00TEM 和01TEM 模的小信号cos 2RF θ=子午2cos RF θ=弧矢R R <<>或923R R <<>或2R R <<>或04e 1310g l l d-=+⨯增益系数相同,用0g 表示。
要实现单模运转,必须同时满足下面两个关系式根据已知条件求出腔的菲涅耳数由图2.5.5可查得00TEM 和01TEM 模的单程衍射损耗为氦氖增益由公式计算。
代入已知条件有0e 1.075g l =。
将0e g l 、00δ、01δ、1r 和2r 的值代入I 、II 式,两式的左端均近似等于,由此可见式II 的条件不能满足,因此该激光器不能作单模运转。
为了获得基模振荡,在共焦镜面附近加一个方形小孔阑来增加衍射损耗。
若满足II 式的条件,则要求010.047δ>根据图2.5.5可以查出对应于01δ的腔菲涅耳数 '0.90N < 由菲涅耳数的定义可以算出相应的小孔阑的边长00001e 0.003) 1 I e0.003) 1 IIg g δδ-->--<2270.06 1.930632.810a N L λ-===⨯⨯8.37006011010δδ--≈≈04e 1310g l L d-=+⨯220.83mma==同理利满足I式的条件可得20.7mma>因此,只要选择小孔阑的边长满足0.720.83mmmm a<<即可实现00TEM模单模振荡。
8.试求出方形镜共焦腔面上30TEM模的节线位置,这些节线是等距分布的吗解:在厄米-高斯近似下,共焦腔面上的30TEM模的场分布可以写成令X=,则I式可以写成()22(/)30303(,)H ex yLv x y C Xλπ+-=式中()3H X为厄米多项式,其值为()33H8-12XX X=由于厄米多项式的零点就是场的节点位置,于是令()3H0X=,得1230;X X X===考虑到0sω=22(/)30303(,)H e Ix yLv x y Cλπ+-⎫=⎪⎪⎭120s30s0;;22x x x===-所以,30TEM 模在腔面上有三条节线,其x 坐标位置分别在0和0s /2处,节线之间位置是等间距分布的,其间距为0s /2;而沿y方向没有节线分布。
9. 求圆形镜共焦腔20TEM 和02TEM 模在镜面上光斑的节线位置。
解:在拉盖尔—高斯近似下,可以写成如下的形式()⎩⎨⎧⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛=-ϕϕωωϕυωm m er L r C r sr s n m ms mn mn sin cos 22,2022020 对于mn TEM ,两个三角函数因子可以任意选择,但是当m 为零时,只能选余弦,否则无意义对于20TEM :()⎩⎨⎧⎪⎪⎭⎫ ⎝⎛⎪⎪⎭⎫⎝⎛=-ϕϕωωϕυω2sin 2cos 22,20220220202020sr s s er L r C r 并且1220220=⎪⎪⎭⎫⎝⎛s r L ω,代入上式,得到()⎩⎨⎧⎪⎪⎭⎫⎝⎛=-ϕϕωϕυω2sin 2cos 2,202202020sr s e r C r , 取余弦项,根据题中所要求的结果,我们取()02cos 2,202202020=⎪⎪⎭⎫⎝⎛=-ϕωϕυωsr s e r C r ,就能求出镜面上节线的位置。
即43,402cos 21πϕπϕϕ==⇒=同理,对于02TEM ,()202202202020220202000202222,ssr sr s s e rL C er L r C r ωωωωωϕυ--⎪⎪⎭⎫ ⎝⎛=⎪⎪⎭⎫⎝⎛⎪⎪⎭⎫⎝⎛=404202202022412s s s r r r L ωωω+-=⎪⎪⎭⎫ ⎝⎛,代入上式并使光波场为零,得到()02412,202404202000202=⎪⎪⎭⎫ ⎝⎛+-⎪⎪⎭⎫⎝⎛=-sr s s s er r r C r ωωωωϕυ显然,只要0241240420220202=+-=⎪⎪⎭⎫ ⎝⎛s s s r r r L ωωω即满足上式镜面上节线圆的半径分别为:s s r r 0201221,221ωω-=+= 10. 今有一球面腔,1 1.5m R =,21m R =-,80cm L =。
试证明该腔为稳定腔;求出它的等价共焦腔的参数;在图上画出等价共焦腔的具体位置。