高中数学必修一《集合》测试题 (577)

合集下载

(完整版)集合测试题及答案,推荐文档

(完整版)集合测试题及答案,推荐文档

=( )
A. {2,4}
B. {2,4,8}
C. {3,8}
D. {1,3,5,7}
7.若{1,2} A {1,2,3,4,5},则这样的集合 A 有( )
A.6 个
B.7 个
C.8 个
D.9 个
8.高一(3)班 50 名同学参加跳远和铅球测验,跳远和铅球测验成绩分别为及格 40 人和 31 人,
2 项测验成绩均不及格的有 4 人, 2 项测验成绩都及格的人数是( )
A.35. B.25 C.28. D.15.
9.集合 A={a²,a+1,-3},B={a-3,2a-1,a²+1},若 A∩B={-3},则 a 的值是( )
A.0
B. -1
C.1
D.2
10. 若集 A {x | kx2 4x 4 0} 合中有且仅有一个元素,则实数 k 的值为(
A. {x|x<0} B.{x|-2≤x<0} C.{x|x>3}
D.{x|-2≤x<3}
5.若集合 M={x∈R|-3<x<1},N={x∈Z|-1≤x≤2},} C. {-1,0}
D. {-1,0,1}
6.设 U={n|n 是小于 9 的正整数},A={n∈U|n 是奇数},B={n∈U|n 是 3 的倍数},则∁U(A∪B)
13. {1,2,3,4}
1
14. 3 、—
2
三、解答题
15.解:∵2∈M,∴3x2+3x-4=2 或 x2+x-4=2,即 x2+x-2=0 或 x2+x-6=0.
⑴.若 x2+x-2=0 x=-2 或 x=1。x=-2 时,M={-2,2,-2},与集合元素的互异性矛盾;

新北师大版高中数学必修一第一单元《集合》测试题(有答案解析)

新北师大版高中数学必修一第一单元《集合》测试题(有答案解析)

一、选择题1.设集合}{2230A x x x =+->,集合}{2210,0,B x x ax a =--≤>若A B 中恰含有一个整数 ,则实数a 的取值范围是( ) A .34,43⎡⎫⎪⎢⎣⎭B .30,4⎛⎫ ⎪⎝⎭C .3,4⎡⎫+∞⎪⎢⎣⎭D .()1,+∞2.定义集合运算{},,A B x x a b a A b B ⊗==⨯∈∈,设{0,1},{3,4,5}A B ==,则集合A B ⊗的真子集个数为( )A .16B .15C .14D .83.已知x ,y 都是非零实数,||||||x y xy z x y xy =++可能的取值组成的集合为A ,则下列判断正确的是( ) A .3A ∈,1A -∉ B .3A ∈,1A -∈C .3A ∉,1A -∈D .3A ∉,1A -∉4.下列各式中,正确的是( )A .{}22x x ⊆≤B .{32x x ∈>且}1x <C .{}{}41,21,x x k k Z x x k k Z =±∈≠=+∈D .{}{}31,32,x x k k Z x x k k Z =+∈==-∈5.已知集合{}4A x a x =<<,{}2|560B x x x =-+>,若{|34}A B x x ⋂=<<,则a 的值不可能为( )A B CD .36.已知集合2{|120}A x x x =--≤, {|211}B x m x m =-<<+.且A B B =,则实数m 的取值范围为 ( ) A .[-1,2)B .[-1,3]C .[-2,+∞)D .[-1,+∞)7.已知集合{}|10A x x =-<,{}2|20B x x x =-<,则AB =( )A .{}|0x x <B .{}|1x x <C .{}1|0x x <<D .{}|12x x <<8.设集合1{|0}x A x x a-=≥-,集合{}21B x x =->,且B A ⊆,则实数a 的取值范围是 () A .1a ≤B .3a ≤C .13a ≤≤D .3a ≥9.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤10.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤ ⎥⎝⎦11.已知3(,)|32y M x y x -⎧⎫==⎨⎬-⎩⎭,{(,)|20}N x y ax y a =++=,且M N ⋂=∅,则实数a =( ) A .6-或2-B .6-C .2或6-D .212.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,,C .{}123,,D .{}12, 二、填空题13.对非空有限数集12{,,,}n A a a a =定义运算“min”:min A 表示集合A 中的最小元素.现给定两个非空有限数集A ,B ,定义集合{|,,}M x x a b a A b B ==-∈∈,我们称min M 为集合A ,B 之间的“距离”,记为AB d .现有如下四个命题:①若min min A B =,则0AB d =;②若min min A B >,则0AB d >;③若0AB d =,则A B ⋂≠∅;④对任意有限集合A ,B ,C ,均有AB BC AC d d d +. 其中所有真命题的序号为__________.14.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2230,B x x x x R =--≥∈,则A B =_________. 15.已知集合:A ={x |x 2=1},B ={x |ax =1},且A ∩B =B ,则实数a 的取值集合为______. 16.若规定集合{}()*12,,,n M a a a n N=⋅⋅⋅∈的子集{}()12*,,,mi i i a aa m N ⋅⋅⋅∈为M 的第k个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是______.17.已知集合A ={x |x ≥2},B ={x ||x ﹣m |≤1},若A ∩B =B ,则实数m 的取值范围是______. 18.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.19.设,,x y z 都是非零实数,则可用列举法将x y z xy xyzx y z xy xyz++++的所有可能值组成的集合表示为________. 20.不等式31x x a-≥+的解集为M ,若2M -∉,则实数a 的取值范围为________. 三、解答题21.已知集合{}220,A x x x x R =+-=∈,集合{}20,B x x px p x R =++=∈. (1)若{}1A B ⋂=,求AB ;(2)若12,x x B ∈且22123x x +=,求p 的值.22.已知集合{}123A x a x a =-<<+,{}24B x x =-≤≤ (1)2a =时,求AB ;(2)若x A ∈是x B ∈的充分条件,求实数a 的取值范围.23.已知{}240A x x x =+=,(){}222110B x x a x a =+++-=,若B A ⊆,求a 的取值范围.24.已知函数()()2log 4f x x =-的定义域为集合A ,集合{}211B x m x m =-≤<+.(1)当0m =时,求A B ;(2)若B A ⊆,求实数m 的取值范围;(3)若AB =∅,求实数m 的取值范围.25.已知不等式()210x a x a -++≤的解集为A ,不等式2103x x +≤-的解集为B . (1) 当3a =时,求AB ;(2)若不等式的解集A B ⊆,求实数a 的取值范围. 26.设集合{}|36A x x =≤<,集合{}|19B x x =<≤. 求:(1)AB ;(2)()R C A B ⋃.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】先化简集合A ,再根据函数y =f (x )=x 2﹣2ax ﹣1的零点分布,结合A ∩B 恰有一个整数求解. 【详解】A ={x |x <﹣3或x >1},函数y =f (x )=x 2﹣2ax ﹣1的对称轴为x =a >0,而f (﹣3)=6a +8>0,f (﹣1)=2a >0,f (0)<0,故其中较小的零点为(-1,0)之间,另一个零点大于1,f (1)<0, 要使A ∩B 恰有一个整数, 即这个整数解为2, ∴f (2)≤0且f (3)>0,即44109610a a --≤⎧⎨-->⎩,解得:3443a a ⎧≥⎪⎪⎨⎪<⎪⎩, 即34≤a <43, 则a 的取值范围为34,43⎡⎫⎪⎢⎣⎭. 故答案为:A. 【点睛】本题主要考查集合的交集运算的应用以及二次函数的零点分布问题,还考查了转化求解问题的能力,属于中档题.2.B解析:B 【分析】根据新定义得到{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=,再计算真子集个数得到答案. 【详解】{0,1},{3,4,5}A B ==,{}{},,0,3,4,5A B x x a b a A b B ⊗==⨯∈∈=其真子集个数为:42115-= 故选:B 【点睛】本题考查了集合的新定义问题,真子集问题,意在考查学生的应用能力.3.B解析:B 【分析】分别讨论,x y 的符号,然后对||||||x y xyz x y xy =++进行化简,进而求出集合A ,最后根据集合元素的确定性即可得出答案. 【详解】当0x >,0y >时,1113z =++=; 当0x >,0y <时,1111z =--=-; 当0x <,0y >时,1111z =-+-=-; 当0x <,0y <时,1111z =--+=-. 所以3A ∈,1A -∈. 故选:B. 【点睛】本题考查了对含有绝对值符号的式子的化简,考查了集合元素的特点,考查了分类讨论思想,属于一般难度的题.4.D解析:D 【分析】根据元素与集合的关系,集合与集合的关系即可求解. 【详解】因为2与集合{}2x x ≤的关系是属于或者不属于,故A 选项错误; 因为{2x x >且}1x <是空集,3不是集合中的元素,故B 选项错误;因为集合{}{}41,,21,x x k k Z x x k k Z =±∈=+∈都表示奇数构成的集合,相等,故C 选项错误;因为集合{}{}31,,32,x x k k Z x x k k Z =+∈=-∈都表示被3整数余1的整数构成的集合,故D 选项正确. 【点睛】本题主要考查了集合的描述法,元素与集合的关系,集合与集合的关系,属于中档题.5.A解析:A 【分析】求出{2B x x =<或}3x >,利用{|34}A B x x ⋂=<<,得23a ≤≤. 【详解】集合{}4A x a x =<<,{}{25602B x x x x x =-+=<或}3x >,{|34}A B x x ⋂=<<, ∴23a ≤≤,∴a故选:A. 【点睛】本题考查了根据集合间的基本关系求解参数范围的问题,属于中档题.解决此类问题,一般要把参与运算的集合化为最简形式,借助数轴求解参数的范围.6.D解析:D 【分析】 先求出集合A ,由A B B =,即B A ⊆,再分B φ=和B φ≠两种情况进行求解.【详解】由2120x x --≤,得34x -≤≤. 即[3,4]A =-. 由AB B =,即B A ⊆.当B φ=时,满足条件,则211m m -≥+解得2m ≥.当B φ≠时,要使得B A ⊆,则12121314m m m m +>-⎧⎪-≥-⎨⎪+≤⎩.解得:12m -≤<.综上满足条件的m 的范围是:1m ≥-. 故选:D. 【点睛】本题主要考查集合的包含关系的判断及应用,以及集合关系中的参数范围问题,考查分类讨论思想,属于中档题.7.C解析:C 【分析】求出A 、B 中不等式的解集确定出A 、B ,找出A 与B 的交集即可. 【详解】集合{}{}|10|1A x x x x =-<=<,集合{}{}2|20|02B x x x x x =-<=<<,所以A B ={}1|0x x <<.故选:C【点睛】此题考查了交集及其运算,熟练掌握交集的定义是解本题的关键.8.C解析:C 【解析】 【分析】先求出集合B ,比较a 与1的大小关系,结合B A ⊆,可求出实数a 的取值范围. 【详解】解不等式21x ->,即21x -<-或21x ->,解得1x <或3x >,{1B x x ∴=<或}3x >.①当1a =时,{}1A x x =≠,则B A ⊆成立,符合题意; ②当1a <时,{A x x a =<或}1x ≥,B A ⊄,不符合题意;③当1a >时,{1A x x =≤或}x a >,由B A ⊆,可得出3a ≤,此时13a .综上所述,实数a 的取值范围是13a ≤≤. 故选:C. 【点睛】本题考查集合之间关系的判断,涉及分式、绝对值不等式的解法,解分式不等式一般要转化为整式不等式,有参数时,一般要分类讨论.9.B解析:B 【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.10.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.11.A解析:A 【解析】 【分析】先确定集合M,N,再根据M N ⋂=∅确定实数a 的值. 【详解】由题得集合M 表示(32)3y x -=-上除去(2)3,的点集,N 表示恒过(10)-,的直线方程. 根据两集合的交集为空集:M N ⋂=∅.①两直线不平行,则有直线20ax y a ++=过(2)3,,将2x =,代入可得2a =-, ②两直线平行,则有32a-=即6a =-, 综上6a =-或2-, 故选:A . 【点睛】本题主要考查集合的化简和集合的关系,意在考查学生对这些知识的理解掌握水平,属于基础题.12.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2A B =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.二、填空题13.①③【分析】根据题意可得①③正确通过举反例可得②④错误【详解】对于结论①若则中最小的元素相同故①正确;对于结论②取集合满足但故②错误;对于结论③若则中存在相同的元素则交集非空故③正确;对于结论④取集解析:①③ 【分析】根据题意可得①③正确,通过举反例可得②④错误. 【详解】对于结论①,若min min A B =,则A ,B 中最小的元素相同,故①正确;对于结论②,取集合{}1,2A =,{}0,2B =,满足min min A B >,但0AB d =,故②错误;对于结论③,若0AB d =,则,A B 中存在相同的元素,则交集非空,故③正确; 对于结论④,取集合{}1,2A =,{}2,3B =,{}3,4C =,可知0AB d =,0BC d =,1AC d =,则AB BC AC d d d +≥不成立,故④错误. 故答案为:①③.14.【分析】分别根据分式不等式和一元二次不等式的解法求出集合和再根据交集的定义求出【详解】∵集合∴故答案为【点睛】本题考查集合的交集的运算解题时要认真审题注意分式不等式和一元二次不等式的合理运用是基础题解析:(]5,1--. 【分析】分别根据分式不等式和一元二次不等式的解法求出集合A 和B ,再根据交集的定义求出A B ⋂.【详解】 ∵集合2{|0}{|52}5x A x x x x -=<=-<<+, 2{|230}{|13}B x x x x R x x x =--≥∈=≤-≥,或,∴{|51}A B x x ⋂=-<≤-,故答案为(]5,1--. 【点睛】本题考查集合的交集的运算,解题时要认真审题,注意分式不等式和一元二次不等式的合理运用,是基础题.15.{-101}【分析】由已知得B ⊆A 从而B=∅或B={-1}或B={1}进而或=-1或由此能求出实数a 的取值集合【详解】∵A={x|x2=1}={-11}A∩B=B ∴B ⊆A ∴B=∅或B={-1}或B=解析:{-1,0,1} 【分析】由已知得B ⊆A ,从而B=∅或B={-1},或B={1},进而0a =,或1a =-1或11a=,由此能求出实数a 的取值集合. 【详解】∵A={x|x 2=1}={-1,1}, A∩B=B ,∴B ⊆A , ∴B=∅或B={-1},或B={1}, ∴0a =,或1a =-1或11a=, 解得a=0或a=-1或a=1.∴实数a 的取值集合为{-1,0,1}. 故答案为:{-1,0,1}. 【点睛】本题考查集合的求法,是基础题,解题时要认真审题,注意交集的性质的合理运用.16.【分析】根据子集的定义将表示为求出即可求解【详解】的第25个子集是故答案为:【点睛】本题考查新定义的理解认真审题领会题意是关键属于中档题 解析:{}145,,a a a【分析】根据子集的定义将25表示为1211125222m i i i ---=++⋅⋅⋅+,求出12,m i i i ,即可求解【详解】03411415125222222---=++=++,1231,4,5i i i ===,M 的第25个子集是{}145,,a a a ,故答案为:{}145,,a a a . 【点睛】本题考查新定义的理解,认真审题,领会题意是关键,属于中档题.17.3+∞)【分析】先求出集合再利用交集定义和不等式性质求解【详解】∵集合解得∴实数m 的取值范围是故答案为:【点睛】本题考查实数的取值范围的求法解题时要认真审题注意不等式性质的合理运用是基础题解析:[3,+∞) 【分析】先求出集合B ,再利用交集定义和不等式性质求解. 【详解】∵集合{|2}A x x =≥,{|||1}{|11}B x x m x m x m =-≤=-≤≤+,A B B =,12m ∴-≥,解得3m ≥,∴实数m 的取值范围是[)3,+∞. 故答案为:[)3,+∞. 【点睛】本题考查实数的取值范围的求法,解题时要认真审题,注意不等式性质的合理运用,是基础题.18.【分析】根据函数性质求值域解出两个集合再根据新定义运算求交集并集进而求解【详解】对于P 集合即对于Q 集合即则故答案为:【点睛】本题考查函数的值域求法观察法集合的交集并集运算新定义题型属中等题 解析:{}01,2y y y ≤≤>根据函数性质求值域,解出两个集合,再根据新定义运算求交集并集,进而求解P Q ,【详解】对于P 集合,y =2,2x,[]0,2y ∈,即{}=02P y y ≤≤对于Q 集合,4xy =,()0,x ∈+∞,()1,y ∈+∞,即{}1Q y y => {}12P Q y y ⋂=<≤,{}0P Q y y ⋃=≥ 则{}01,2P Q y y y =≤≤> 故答案为:{}01,2y y y ≤≤>【点睛】本题考查函数的值域求法观察法,集合的交集并集运算,新定义题型,属中等题.19.【分析】由题意分类讨论实数xyz 的符号列表求解所给式子的值然后确定其值组成的集合即可【详解】分类讨论xyz 的符号列表求值如下:x y z 计算结果 大于零 大于零 大于零 1 1 1 1 解析:{}5,1,1,3--【分析】由题意分类讨论实数x ,y ,z 的符号列表求解所给式子的值,然后确定其值组成的集合即可. 【详解】分类讨论x ,y ,z 的符号列表求值如下:据此可得:x y z xy xyz++++的所有可能值组成的集合表示为{}5,1,1,3--. 故答案为:{}5,1,1,3--.本题主要考查分类讨论的数学思想,集合中元素的互异性等知识,意在考查学生的转化能力和计算求解能力.20.【分析】由题意可知实数满足或解出即可得出实数的取值范围【详解】由题意可知实数满足或解不等式即即解得或因此实数的取值范围是故答案为【点睛】本题考查利用元素与集合的关系求参数解题的关键在于将问题转化为不 解析:()[),32,-∞-⋃+∞【分析】由题意可知,实数a 满足2312a--<-+或20a -+=,解出即可得出实数a 的取值范围. 【详解】由题意可知,实数a 满足2312a--<-+或20a -+=. 解不等式2312a --<-+,即5102a +>-,即302a a +>-,解得3a <-或2a >. 因此,实数a 的取值范围是()[),32,-∞-⋃+∞. 故答案为()[),32,-∞-⋃+∞. 【点睛】本题考查利用元素与集合的关系求参数,解题的关键在于将问题转化为不等式进行求解,考查化归与转化思想的应用,属于中等题.三、解答题21.(1)12,,12A B ⎧⎫⋃=--⎨⎬⎩⎭;(2))322p =-或)322p =或1p =-.【分析】(1)由{}1A B ⋂=可得1B ∈,求出p 后可求B ,从而可求A B .(2)利用韦达定理可得关于p 的方程,从而可求p 的值. 【详解】(1)因为{}1A B ⋂=,故1B ∈,所以2110p p +⨯+=,解得12p =-, 故20x px p ++=即为211022x x --=,其解为1211,2x x ==-,故11,2B ⎧⎫=-⎨⎬⎩⎭,而{}2,1A =-, 故12,,12A B ⎧⎫⋃=--⎨⎬⎩⎭.(2)因为12,x x B ∈,故12,x x 为20x px p ++=的根. 若12x x =,则122x x ==或122x x ==-,此时20x px p ++=,故)322p =-或)322p =.若12x x ≠,则12,x x 为20x px p ++=的两个不同的解,而22123x x +=即为()2121223x x x x +-=,所以2230p p --=,解得1p =-或3p =.又240p p ∆=->,故0p <或4p >,故3p =舍去.故p的值为)322p =-或)322p =或1p =-.【点睛】易错点点睛:本题中,注意12,x x B ∈的含义为12,x x 为方程的根,解析中要注意根据两者是否相等分类讨论.22.(1){}|27A B x x ⋃=-≤<;(2)()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦.【分析】(1)把2a =代入A 确定出A ,求出A B 即可;(2)由x A ∈是x B ∈成立的充分条件,得到A 为B 的子集,分A 为空集与A 不为空集两种情况求出a 的范围即可. 【详解】(1)当2a =时,{}17A x x =<<, 则{}|27A B x x ⋃=-≤<; (2)x A ∈是x B ∈成立的充分条件,A B ∴⊆,①若A =∅,则123a a ->+,解得4a ;②若A ≠∅,由A B ⊆得到,12312234a a a a -+⎧⎪--⎨⎪+⎩解得:112a-, 综上:a 的取值范围是()1,41,2⎡⎤-∞-⋃-⎢⎥⎣⎦.【点睛】本题考查了交、并、补集的混合运算,考查充分必要条件的应用,熟练掌握运算法则是解本题的关键,属于中档题. 23.{1a a =或}1a ≤- 【分析】求出集合A ,对集合B 中的元素个数进行分类讨论,结合B A ⊆可得出实数a 所满足的等式或不等式,进而可求得实数a 的取值范围. 【详解】{}{}2404,0A x x x =+==-,(){}222110B x x a x a =+++-=,对于方程()222110x a x a +++-=,()()()22414181a a a ∆=+--=+,且B A ⊆.①当B =∅时,∆<0,可得1a <-,合乎题意;②当集合B 中只有一个元素时,0∆=,可得1a =-,此时{}{}200B x x A ===⊆,合乎题意;③当集合B 中有两个元素时,B A =,则()221410a a ⎧+=⎨-=⎩,解得1a =.综上所述,实数a 的取值范围是{1a a =或}1a ≤-. 【点睛】本题考查利用集合的包含关系求参数,考查分类讨论思想的应用,考查计算能力,属于中等题. 24.(1)[)1,4A B =-(2)3,4⎛⎫+∞ ⎪⎝⎭(3)[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦【分析】(1)计算得到142A xx ⎧⎫=<<⎨⎬⎩⎭,[)1,1B =-,求并集得到答案. (2)讨论B =∅和B ≠∅两种情况,分别计算到答案. (3)讨论B =∅和B ≠∅两种情况,分别计算到答案. 【详解】 (1)由40210x x ->⎧⎨->⎩,解得142A x x ⎧⎫=<<⎨⎬⎩⎭,当0m =时,[)1,1B =-,所以[)1,4AB =-.(2)当B =∅时,211m m -≥+,2m ≥,符合B A ⊆.当B ≠∅时,根据B A ⊆得211121214m m m m -<+⎧⎪⎪->⎨⎪+≤⎪⎩,解得324m <<.综上所述,m 的取值范围是3,4⎛⎫+∞⎪⎝⎭. (3)当B =∅时,211m m -≥+,2m ≥,符合A B =∅.当B ≠∅时,211112m m m -<+⎧⎪⎨+≤⎪⎩或211214m m m -<+⎧⎨->⎩,解得12m ≤-. 综上所述,m 的取值范围是[)1,2,2⎛⎤-∞-+∞ ⎥⎝⎦.【点睛】本题考查了集合的并集,根据集合包含关系求参数,根据交集结果求参数,意在考查学生对于集合运算的综合应用.25.(1){}|13A B x x ⋂=≤<(2)132a -≤< 【分析】先求解不等式,可得1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,{}|13A x x =≤≤,再由交集的定义求解即可; (2)由A B ⊆,判断a 与集合B 的端点的位置即可. 【详解】由题,因为()210x a x a -++≤,则()()10x a x --≤,因为2103x x +≤-,即()()213030x x x ⎧+-≤⎨-≠⎩,所以132x -≤<,即集合1|32B x x ⎧⎫=-≤<⎨⎬⎩⎭, (1)当3a =时,()()310x x --≤,解得13x ≤≤,即{}|13A x x =≤≤, 所以{}|13A B x x ⋂=≤<(2)由题,当1a <时,{}|1A x a x =≤≤;当1a ≥时,{}|1A x x a =≤≤, 因为A B ⊆,所以132a -≤< 【点睛】本题考查集合的交集运算,考查已知集合的包含关系求参数问题,考查解一元二次不等式和分式不等式.26.(1){}|36A B x x ⋂=≤<;(2)()R C A B R ⋃= 【分析】(1)根据集合的交集运算即可(2)根据集合的补集、并集运算. 【详解】因为集合{}|36A x x =≤<,集合{}|19B x x =<≤所以{}|36A B x x ⋂=≤<. 所以{|3R C A x x =<或}6x ≥, ∴R C A B R ⋃=. 【点睛】本题主要考查了集合的交集,补集,并集运算,属于容易题.。

北师大版高中数学必修一第一单元《集合》检测卷(答案解析)

北师大版高中数学必修一第一单元《集合》检测卷(答案解析)

一、选择题1.已知集合{}11M x Z x =∈-≤≤,{}Z (2)0N x x x =∈-≤,则如图所示的韦恩图中的阴影部分所表示的集合为( )A .{}0,1B .{}1,2-C .{}1,0,1-D .1,0,1,22.已知集合{|0}M y y =≥,2{|1}N y y x ==-+,则M N =( )A .()0,1B .[]0,1C .[)0,+∞D .[)1,+∞3.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( )A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,4.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( )A .-3或-1或2B .-3或-1C .-3或2D .-1或25.设有限集合A =123{,,,}n a a a a ,则称123A n S a a a a =++++为集合A 的和.若集合M ={x ︳2,N ,6x t t t *=∈<},集合M 的所有非空子集分别记为123,,,k P P P P ,则123k P P P P S S S S ++++=( )A .540B .480C .320D .2806.如图所示的韦恩图中,A 、B 是非空集合,定义*A B 表示阴影部分的集合,若x ,y ∈R ,2{|4}{|3,0}x A x y x x B y y x ==-==>,则A *B 为( )A .{|04}x x <≤B .{|01x x ≤≤或4}x >C .{|01x x ≤≤或2}x ≥D .{|01x x ≤≤或2}x >7.已知集合{}|02A x x =<<,集合{}|11B x x =-<<,集合{}|10C x mx =+>,若()A B C ⊆,则实数m 的取值范围为( )A .{}|21m m -≤≤B .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭C .1|12m m ⎧⎫-≤≤⎨⎬⎩⎭D .11|24m m ⎧⎫-≤≤⎨⎬⎩⎭8.定义一个集合A 的所有子集组成的集合叫做A 的幂集,记为()P a ,用()n A 表示有限集A 的元素个数,给出下列命题:(1)对于任意集合A ,都有()A P A ∈;(2)存在集合A ,使得()3nP A =;(3)若AB =Φ,则()()P A P B ⋂=Φ;(4)若A B ⊆,则()()P A P B ⊆;(5)若()()1n A n B -=,则[][]()2()n P A n P B =.其中正确命题的序号为( )A .(1)(2)(5)B .(1)(3)(5)C .(1)(4)(5)D .(2)(3)(4)9.能正确表示集合{}02M x x =∈≤≤R 和集合{}20N x x x =∈-=R 的关系的韦恩图的是( )A .B .C .D .10.已知()()()()22221234()4444f x x x c xx c x x c x x c =-+-+-+-+,集合{}{}127()0,,,M x f x x x x Z ===⋯⊆,且1234c c c c ≤≤≤,则41c c -不可能的值是( ) A .4B .9C .16D .6411.已知集合{}1A x x =>,{}1B x x =≥,则( ) A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R12.若{}{}0,1,2,3,|3,A B x x a a A ===∈,则A B 的子集个数是()A .6B .8C .4D .2二、填空题13.已知,a b ∈R ,若{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为_____________.14.已知集合1{}2A =-,,1{}0|B x mx =+>,若A B B ⋃=,则实数m 的取值范围是________.15.若关于x 的方程2210ax x ++=的解集有唯一子集 ,则实数a 的取值范围是_____.16.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.17.若{}|224xA x ≤≤,1|1x B x a x -⎧⎫=<⎨⎬+⎩⎭,若A B =∅,则实数a 的取值范围为_________;18.已知全集U =R 集合1|1A x x ⎧⎫=≤⎨⎬⎩⎭,则UA_______.19.设集合A 、B 是实数集R 的子集,[2,0]AB =-R,[1,2]BA =R,()()[3,5]A B =R R ,则A =________20.已知集合{}{}2430,21xA x x xB x =++≥<,则AB =____________三、解答题21.已知全集U =R ,集合{}2450A x x x =--≤,{}2124x B x -=≤≤.(1)求()UAB ;(2)若集合{}4,0C x a x a a =≤≤>,且满足C A A =,C B B =,求实数a 的取值范围. 22.设集合1|2432x A x -⎧⎫=≤≤⎨⎬⎩⎭,{}22|3210B x x mx m m =-+--<. (1)当x ∈Z 时,求A 的非空真子集的个数; (2)若B =∅,求m 的取值范围; (3)若A B ⊇,求m 的取值范围.23.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求UB A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.24.已知集合{1,2,3}A =,2{|(1)0,}B x x a x a x R =-++=∈,若A B A ⋃=,求实数a ;25.设全集U =R .(1)解关于x 的不等式|1|10()x a a R -+->∈;(2)记A 为(1)中不等式的解集,B 为不等式组2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩的整数解集,若()U C A B ⋂恰有三个元素,求a 的取值范围.26.已知集合{}212520A x x x =-->,{}20B x x ax b =-+≤满足AB =∅,(]=-4,8A B ⋃,求实数a ,b 的值.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】阴影部分可以用集合M N 、表示为()()M N C M N ⋃⋂,故求出M N 、、M N ⋃,M N ⋂即可解决问题. 【详解】解:由题意得,{}1,0,1M =-,{}0,1,2N ={}1,0,1,2M N ⋃=-,{}0,1M N ⋂=阴影部分为()(){}1,2M N C M N ⋃⋂=-故选B 【点睛】本题考查用韦恩图表示的集合的运算,解题时要能用集合的运算表示出阴影部分.2.B解析:B 【解析】∵集合{}2{|1}1N y y x y y ==-+=≤,{|0}M y y =≥,∴[]0,1M N ⋂=,故选B.3.A解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭.故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.4.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.5.B解析:B 【分析】求出{2,4.6.8.10}M =后,分别求出含有2,4,6,8,10的子集个数,然后可求得结果. 【详解】{2,4.6.8.10}M =,其中含有元素2的子集共有4216=个,含有元素4的子集共有4216=个,含有元素6的子集共有4216=个,含有元素8的子集共有4216=个,含有元素10的子集共有4216=个, 所以123k P P P P S S S S ++++(246810)16480=++++⨯=.故选:B 【点睛】本题考查了对新定义的理解能力,考查了集合的子集个数的计算公式,属于基础题.6.B解析:B 【分析】弄清新定义的集合与我们所学知识的联系:所求的集合是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合.再利用函数的定义域、值域的思想确定出集合A ,B ,代入可得答案. 【详解】依据定义,*A B 就是指将A B ⋃除去A B ⋂后剩余的元素所构成的集合;对于集合A ,求的是函数y 解得:{|04}A x x =≤≤;对于集合B ,求的是函数3(0)xy x =>的值域,解得{}1B y y =;依据定义,借助数轴得:*{|01A B x x =≤≤或4}x >. 故选:B . 【点睛】本小题考查数形结合的思想,考查集合交并运算的知识,借助数轴保证集合运算的准确性,属于中档题.7.B解析:B 【分析】求出A ∪B ={x |﹣1<x <2},利用集合C ={x |mx +1>0},(A ∪B )⊆C ,分类讨论,可得结论. 【详解】由题意,A ∪B ={x |﹣1<x <2}, ∵集合C ={x |mx +1>0},(A ∪B )⊆C ,①m <0,x 1m -<,∴1m -≥2,∴m 12≥-,∴12-≤m <0; ②m =0时,C =R,成立;③m >0,x 1m ->,∴1m-≤-1,∴m ≤1,∴0<m ≤1, 综上所述,12-≤m ≤1, 故选:B . 【点睛】此题考查了并集及其运算,以及集合间的包含关系,考查分类讨论的数学思想,属于中档题.8.C解析:C 【分析】直接利用新定义判断五个命题的真假即可. 【详解】由P (A )的定义可知①正确,④正确, 设n (A )=n ,则n (P (A ))=2n ,∴②错误, 若A ∩B =∅,则P (A )∩P (B )={∅},③不正确; n (A )﹣n (B )=1,即A 中元素比B 中元素多1个, 则n [P (A )]=2×n [P (B )].⑤正确, 故选:C . 【点睛】本题考查集合的子集关系,集合的基本运算,新定义的理解与应用.9.B解析:B 【分析】根据题意,{0N =,1},而{|02}M x R x =∈,易得N 是M 的子集,分析选项可得答案.【详解】{}{}{}200,102N x x x M x x =∈-==⊆=∈≤≤R R ,故选B.【点睛】本题考查集合间关系的判断以及用venn 图表示集合的关系,判断出M 、N 的关系,是解题的关键.10.A解析:A 【分析】先设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,4,i i i i i x y x y c +=⋅=,再依题意分析根均为整数,列举根的所有情况,确定44c =和1c 的可能情况,得到41c c -的最小取值和其他可能的情况,即得结果. 【详解】设,i i x y 是方程204i x x c -+=()1,2,3,4i =的根,则由根和系数的关系知4,i i i i i x y x y c +=⋅=,又{}{}127()0,,,M x f x x x x Z ===⋯⊆,说明方程204i x x c -+=()1,2,3,4i =有一个方程是两个相等的根,其他三个方程是两个不同的根,由于根均为整数且和为4,则方程的根有以下这些情况:…,()()()()()()()()()6,105,9,4,8,3,7,2,6,1,5,0,4,1,3,2,2------,乘积分别为…,-60,-45,-32,-21,-12,-5,0,3,4.因为1234c c c c ≤≤≤,故44c =,123,,c c c 来自于4前面的任意可能三个不同的数字,1c 最小,故当15c =时41c c -最小,等于9,故不可能取4,能取9;当112c =-或160c =-时41c c -可以取16,64. 故选:A. 【点睛】本题解题关键是能依据题意分析方程204i x x c -+=()1,2,3,4i =的根的可能情况,既是整数又满足和为4,判断44c =,再根据1c 的可能情况,确定41c c -的可能结果,以突破难点.11.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.12.C解析:C 【分析】先求得B 的具体元素,然后求A B ,进而确定子集的个数.【详解】依题意{}0,3,6,9B =,所以{}0,3A B ⋂=,其子集个数为224=,故选C. 【点睛】本小题主要考查集合元素的识别,考查两个集合的交集,考查集合子集的个数计算,属于基础题.二、填空题13.【分析】由集合相等可求出直接计算即可【详解】即故解得故答案为:【点睛】本题主要考查了集合相等的概念集合中元素的互异性属于中档题 解析:1-【分析】由集合相等可求出,a b ,直接计算20192019a b +即可. 【详解】{}2,,1,,0b a a a b a ⎧⎫=+⎨⎬⎩⎭, 0,0a b ∴≠=,即{}{}2,0,1,,0a a a =,故21,1a a =≠,解得1a =-,2019201920192019(1)01a b +=-+=-故答案为:1- 【点睛】本题主要考查了集合相等的概念,集合中元素的互异性,属于中档题.14.【分析】讨论和及确定集合利用列不等式求解【详解】由题意知则当时∵∴解得当时∵∴解得当时也有综上实数m 的取值范围是故答案为:【点睛】本题考查集合的包含关系考查一次不等式解集注意m=0的讨论是易错题解析:1(,1)2-【分析】讨论0m >和0m <及0m =确定集合B ,利用A B ⊆列不等式求解 【详解】由题意知A B B ⋃=,则A B ⊆,当0m >时,1{|}B x x m=>-, ∵1{}2A =-,, ∴11m-<- 解得01m <<, 当0m <时,1{|}B x x m=<-, ∵1{}2A =-,, ∴12m -> 解得102m -<<,当0m =时也有A B ⊆.综上,实数m 的取值范围是1(,1)2- 故答案为:1(,1)2-. 【点睛】本题考查集合的包含关系,考查一次不等式解集,注意m =0的讨论,是易错题15.【分析】由题意知关于的方程无实数解可得出由此可解出实数的取值范围【详解】由题意知关于的方程无实数解当时原方程为解得不合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】本题考查利用集合的 解析:()1,+∞【分析】由题意知,关于x 的方程2210ax x ++=无实数解,可得出0a ≠⎧⎨∆<⎩,由此可解出实数a 的取值范围. 【详解】由题意知,关于x 的方程2210ax x ++=无实数解.当0a =时,原方程为210x +=,解得12x =-,不合乎题意;当0a ≠时,则有440a ∆=-<,解得1a >. 综上所述,实数a 的取值范围是()1,+∞. 故答案为:()1,+∞. 【点睛】本题考查利用集合的子集个数求参数,将问题转化为方程无实解是解题的关键,考查分类讨论思想的应用,属于中等题.16.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题解析:{0a a =或}1a ≥ 【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果 【详解】0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意; 0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥ 【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题.17.【分析】计算集合等价于在上恒成立计算的最小值得到答案【详解】等价于在上恒成立即设易知函数在单调递减故故答案为:【点睛】本题考查了集合的关系求参数将等价于在上恒成立是解题的关键解析:13a ≤- 【分析】计算集合{}12A x x =≤≤,AB =∅等价于在[]1,2上11xa x -≥+恒成立,计算 21()1x f x -++=的最小值得到答案. 【详解】{}{}|22412x A x x x =≤≤=≤≤,11x B x a x ⎧⎫-=<⎨⎬+⎩⎭A B =∅,等价于在[]1,2上11x a x -≥+恒成立,即122111x x x a --+=-+++≤ 设21()1x f x -++= 易知函数在[]1,2单调递减,min 1()(2)3f x f ==-,故13a ≤- 故答案为:13a ≤- 【点睛】本题考查了集合的关系求参数,将A B =∅等价于在[]1,2上11xa x -≥+恒成立是解题的关键.18.【分析】先解分式不等式确定集合A 再求补集即可【详解】则故答案为:【点睛】本题考查补集运算准确求得集合A 是关键是基础题解析:[0,1)【分析】先解分式不等式确定集合A,再求补集即可【详解】()1|1=,0[1,)A x x ⎧⎫=≤-∞⋃+∞⎨⎬⎩⎭,则[0,1)U A故答案为:[0,1)【点睛】 本题考查补集运算,准确求得集合A 是关键,是基础题19.【分析】根据条件可得结合的意义可得集合【详解】因为集合是实数集的子集若则但不满足所以因为所以所以有又因为表示集合的元素去掉集合中的元素表示A 集合和B 集合中的所有元素所以把中的元素去掉中元素即为所求的 解析:(,1)(2,3)(5,)-∞+∞【分析】根据条件()()[3,5]A B =R R 可得()(),35,A B =-∞+∞,结合[1,2]B A =R 的意义,可得集合A .【详解】因为集合A 、B 是实数集R 的子集,若A B =∅,则[2,0]A B A =-=R ,[1,2]BA B ==R ,但不满足()()[3,5]A B =R R ,所以A B ⋂≠∅. 因为()()[3,5]A B =R R ,所以()()()[3,5]AB A B ==R R R ,所以有()(),35,A B =-∞+∞.又因为[1,2]B A =R 表示集合B 的元素去掉集合A 中的元素,()(),35,A B =-∞+∞表示A 集合和B 集合中的所有元素,所以把()(),35,A B =-∞+∞中的元素去掉[1,2]B A =R 中元素,即为所求的集合A ,所以(,1)(2,3)(5,)A =-∞+∞.故答案为(,1)(2,3)(5,)-∞+∞. 【点睛】本题主要考查集合的运算,根据集合的运算性质可求也可借助数轴或者韦恩图求解,侧重考查逻辑推理的核心素养.20.【解析】【分析】根据一元二次不等式的解法和指数函数的单调性求出集合和集合然后进行交集的运算即可求解【详解】根据一元二次不等式的解法可得集合由指数函数的单调性可得集合所以【点睛】本题主要考查了集合表示 解析:(][),31,0-∞-⋃-【解析】【分析】根据一元二次不等式的解法和指数函数的单调性,求出集合A 和集合B ,然后进行交集的运算,即可求解.【详解】根据一元二次不等式的解法,可得集合(][),31,A =-∞-⋃-+∞,由指数函数的单调性,可得集合(),0B =-∞,所以A B =(][),31,0-∞-⋃-.【点睛】本题主要考查了集合表示方法、一元二次不等式的解法和指数函数的单调性,以及交集的运算,着重考查了推理与运算能力,属于基础题.三、解答题21.(1)()U {|12Ax B x =-≤<或45}x <≤.(2)514a ≤≤. 【分析】(1)解不等式确定集合,A B ,然后由集合运算法则计算;(2)由CA A =,CB B =,得BC A ⊆⊆,利用包含关系可得参数满足的不等关系,从而得出结论. 【详解】(1){}2450{|15}A x x x x x =--≤=-≤≤,{}2124{|022}{|24}x B x x x x x -=≤≤=≤-≤=≤≤.∴{|2U B x x =<或4}x >,∴()U {|12A x B x =-≤<或45}x <≤.(2)∵CA A =,CB B =,∴BC A ⊆⊆, ∴12445a a -≤≤⎧⎨≤≤⎩,解得514a ≤≤. 【点睛】关键点点睛:本题考查集合的综合运算,考查集合的包含关系.集合的运算中确定集合中的元素是解题关键.本题有两个结论值得注意:C A A C A =⇔⊆,C B B =B C ⇔⊆.22.(1)254个;(2)2m =-;(3)2m =-或12m -【分析】(1)利用指数函数的性质化简集合A ,再利用子集个数公式求解即可;(2)由由B =∅,223210x mx m m -+--<无解,则其对应的方程的0∆≤ (3)讨论三种情况,分别化简集合B ,利用包含关系列不等式求出m 的范围,综合三种情况可得结果.【详解】解:化简集合{|25}A x x =-≤≤,集合{}|(1)(21)0B x x m x m =-+--<. (1){},2,1,0,1,2,3,4,5x Z A ∈∴=--,即A 中含有8个元素,故A 的非空真子集数为822254-=个.(2)由B =∅,则22(3)4(21)0m m m ∆=----≤,得2(2)0m +≤,得2m =-.(3)①2m =-时,B A =∅⊆;②当2m <-时,()()21120m m m +--=+<,所以()21,1B m m =+-,因此,要B A ⊆,则只要21236152m m m +≥-⎧⇒-≤≤⎨-≤⎩,所以m 的值不存在; ③当2m >- 时,()1,21B m m =-+ ,因此,要B A ⊆,则只要1212215m m m -≥-⎧⇒-≤≤⎨+≤⎩. 综上所述,知m 的取值范围是2m =-或12m -≤≤.【点睛】本题考查集合的真子集个数的求数,考查满足条件的实数的取值范围的求法,考查了分类讨论思想的应用,属于中档题.23.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.24.1a =或2或3【分析】由A B A ⋃=可得B A ⊆,分别讨论B =∅与B ≠∅的情况,进而求解即可【详解】由A B A ⋃=可得B A ⊆,若B =∅,则()2140a a ∆=+-<,解得a ∈∅;若B ≠∅,则()()10x a x --=,解得1x a =,21x =,①当1a =,则{}1B =,符合题意;②当2a =,则{}1,2B =,符合题意;③当3a =,则{}1,3B =,符合题意;综上,1a =或2或3【点睛】本题考查已知集合的包含关系求参数,考查分类讨论思想25.(1)见解析(2)10a -<≤【分析】(1)通过讨论a 的取值范围,求出不等式的解集即可.(2)解不等式组求得集合B ,通过讨论a 的范围求出A 的补集,再根据()U C A B ⋂恰有三个元素,建立不等式求解.【详解】(1)因为|1|10()x a a R -+->∈,所以|1|1->-x a ,当10a -< 即1a > 时,解集为R ,当10a -= 即1a = 时,解集为{}|1x x ≠ ,当10a -> 即1a < 时,11->-x a 或11-<-x a ,所以2x a >-或x a <,所以解集为{|2x x a >- 或}x a <.综上:1a > 时,解集为R ;1a = 时,解集为{}|1x x ≠ ; 1a < 时,解集为{|2x x a >- 或}x a <.(2)因为2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩,所以23510410x x x x -⎧-≤⎪+⎨⎪-+≥⎩,所以()()29404210x x x x x ⎧⎛⎫+-≤≠-⎪ ⎪⎝⎭⎨⎪-+≥⎩, 解得942x -<≤ . 因为B 为不等式组2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩的整数解集,所以{}3,2,1,0,1,2,3,4B =--- ,当1a > 时,U A =∅ 不满足()U C A B ⋂恰有三个元素. 当1a = 时,{}=1U A 不满足()U C A B ⋂恰有三个元素. 当1a < 时,{}=≤≤-|2U A x a x a ,21a -> ,因为()U C A B ⋂恰有三个元素,所以12224a a a a a <⎧⎪--≥⎨⎪--<⎩, 解得10a -<≤ .综上:a 的取值范围是10a -<≤.【点睛】本题主要考查了绝对值不等式,分式不等式及一元二次不等式的解法和集合的基本运算,还考查了转化化归的思想和运算求解的能力,属于中档题.26.19,122a b == 【分析】 先化简集合A ,再根据AB =∅,(]=-4,8A B ⋃,确定集合B 求解. 【详解】 因为{}231252042A x x x x x ⎧⎫=-->=-<<⎨⎬⎩⎭,{}20B x x ax b =-+≤ 满足A B =∅,(]=-4,8A B ⋃, 所以{}23082B x x ax b x x ⎧⎫=-+≤=≤≤⎨⎬⎩⎭,所以3,82是方程20x ax b-+=的两个根,所以382382ab⎧+=⎪⎪⎨⎪⨯=⎪⎩,解得19,122a b== .【点睛】本题主要考查了集合的基本运算,还考查了理解辨析,运算求解的能力,属于中档题.。

北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)

北师大版高中数学必修一第一单元《集合》检测卷(有答案解析)

一、选择题1.由实数x ,﹣x ,|x | ) A .2个B .3个C .4个D .5个2.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-3.对于非空集合A ,B ,定义运算:{},A B x x A B x A B ⊕=∈⋃∉⋂且,已知{}M x a x b =<<,{}N x c x d =<<,其中a 、b 、c 、d 满足a b c d +=+,0ab cd <<,则M N ⊕=( )A .()(),,a d b c B .()(),,c a b dC .(][),,a c d bD .()(),,c a d b4.已知}{|21M x x =-<<,3|0x N x x ⎧-⎫=≤⎨⎬⎭⎩,则M N ⋂=( ) A .()0,1B .[)0,1C .(]1,3D .[]0,35.在整数Z 集中,规定被5除所得余数为k 的所有整数组成“一类”,记为[]k ,即[]{}|5,k x x n n Z k ==+∈,0,1,2,3,4k =,给出如下四个结论:①[]20183∈;②[]20183-∈;③[][][][][]01234Z =;④“整数a ,b 属于同‘一类’”的充要条件是“[]0a b -∈”;其中正确结论的个数是( )A .1B .2C .3D .46.已知集合A ={x |-3≤x -1<1},B ={-3,-2,-1,0,1,2},若C ⊆A ∩B ,则满足条件的集合C的个数是( ). A .7B .8C .15D .167.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B =B .ABC .B AD .A B =∅8.对于非空实数集A ,定义{|A z *=对任意},x A z x ∈≥.设非空实数集(],1C D ≠⊆⊂-∞.现给出以下命题:(1)对于任意给定符合题设条件的集合C ,D ,必有D C **⊆;(2)对于任意给定符合题设条件的集合C ,D ,必有C D *≠∅;(3)对于任意给定符合题设条件的集合C ,D ,必有CD *=∅;(4)对于任意给定符合题设条件的集合C ,D ,必存在常数a ,使得对任意的b C *∈,恒有a b D *+∈.以上命题正确的个数是( ) A .1B .2C .3D .49.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭10.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇11.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,, C .{}123,, D .{}12, 12.设集合{}21xA y y ==-,{}1B x x =≥,则()R A C B =( )A .(],1-∞-B .(),1-∞C .()1,1-D .[)1,+∞二、填空题13.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 14.已知集合{}1,1A =-,{}|10B x ax =+=,若B A ⊆,则实数a 所有取值的集合为_____15.已知集合{}10,A x ax x R =+=∈,集合{}2280B x x x =--=,若A B ⊆,则a 所有可能取值构成的集合为______________16.已知集合()(){}250M x x x =+->,集合()(){}10N x x a x a =---<,若M N N =,则实数a 的取值范围是_____________17.设全集{|35}U x x =-≤≤,集合1{|||1},{|0}2A x xB x x =≤=>+,则()UC A B ⋂=_____________.18.任意两个正整数x 、y ,定义某种运算⊗:()()x y x y x y x y x y +⎧⊗=⎨⨯⎩与奇偶相同与奇偶不同,则集合{(,)|6,,}M x y x y x y =⊗=∈*N 中元素的个数是________ 19.设集合1{|0}x A x x a-=≥-,集合{}21B x x =-,且B A ⊆,则实数a 的取值范围为______.20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.已知集合4231a A a a ⎧⎫-=≤⎨⎬+⎩⎭,{}12B a a =+≤,{3}C x m x m =-<≤+(1)求AB ;(2)若()C AC ⊆,求m 的取值范围.22.已知全集U =R ,集合{4A x x =<-或1}x >,{|312}B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{|211}M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围. 23.已知集合{}2230A x x x =--≤,{}22210B x x mx m =-+-≤.(1)若332A B x x ⎧⎫⋃=-≤≤⎨⎬⎩⎭,求实数m 的值;(2)x A ∈是x B ∈的________条件,若实数m 的值存在,求出m 的取值范围;若不存在,说明理由.(请在①充分不必要,②必要不充分,③充要;中任选一个,补充到空白处) 24.已知全集U =R ,集合{|4A x x =<-或1}x >,{}312B x x =-≤-≤, (1)求AB 、()()U UA B ;(2)若集合{}2121M x k x k =-≤≤+是集合A 的子集,求实数k 的取值范围. 25.已知集合|1|{|28}x A x -=<,2{|log (51)2}B x x =->,求AB .26.已知集合{}2|280A x x x =+-≤,[)1,B =-+∞,设全集为U =R .(1)求()UA B ∩;(2)设集合(1,1)C a a =-+,若C A B ⊆⋃,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.A 解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.2.B解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101a b +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.3.C解析:C 【分析】先判断0a c d b <<<<,再计算(,),(,)M N a b M N c d ⋃=⋂=,得到答案. 【详解】根据a b c d +=+,0ab cd <<得到:0a c d b <<<<{}M x a x b =<<,{}N x c x d =<<故(,),(,)M N a b M N c d ⋃=⋂=(][),,M N a c d b ⊕=故选:C 【点睛】本题考查了集合的新定义问题,确定0a c d b <<<<是解题的关键.4.A【分析】根据分式不等式的解法,求得{}03N x x =<≤,再结合集合的交集的运算,即可求解. 【详解】由题意,集合{}3|003x N x x x x ⎧-⎫=≤=<≤⎨⎬⎭⎩, 又由}{|21M x x =-<<,所以{}()010,1M N x x ⋂=<<=. 故选:A. 【点睛】本题主要考查了集合交集的概念及运算,以及分式不等式的求解,其中解答中正确求解集合N 是解答的关键,着重考查运算与求解能力.5.C解析:C 【分析】根据“一类”的定义分别进行判断即可. 【详解】 ①201854033÷=⋯,2018[3]∴∈,故①正确;②20185(404)2-=⨯-+,2018[3]-∉,故②错误; ③因为整数集中的数被5除的数可以且只可以分成五类,故[0][1][2][3][4]Z =⋃⋃⋃⋃,故③正确;④整数a ,b 属于同 “一类”, ∴整数a ,b 被5除的余数相同,从而-a b 被5除的余数为0,反之也成立,故“整数a ,b 属于同一“类”的充要条件是“[0]a b -∈”.故④正确. 正确的结论为①③④3个. 故选:C . 【点睛】本题主要考查新定义的应用,利用定义正确理解“一类”的定义是解决本题的关键,是中档题.6.D解析:D 【分析】推导出C ⊆A ∩B ={-2,-1,0,1},由此能求出满足条件的集合C 的个数. 【详解】∵集合A ={x |-3≤x -1<1}={x |-2≤x <2},B ={-3,-2,-1,0,1,2},C ⊆A ∩B ={-2,-1,0,1}, ∴满足条件的集合C 的个数是:24=16. 故选:D .本题考查满足条件的集合C 的个数的求法,考查交集定义等基础知识,考查运算求解能力,是基础题.7.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.8.B解析:B 【分析】根据题干新定义{|A z *=对任意},x A z x ∈≥,通过分析举例即可判断。

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案

高一数学必修一集合练习试题及答案高一数学必修一集合练习试题及答案一、选择题1.下列各组对象能构成集合的有()①美丽的小鸟;②不超过10的非负整数;③立方接近零的正数;④高一年级视力比较好的同学A.1个B.2个C.3个D.4个【解析】①③中“美丽”“接近零”的范畴太广,标准不明确,因此不能构成集合;②中不超过10的非负整数有:0,1,2,3,4,5,6,7,8,9,10共十一个数,是确定的,故能够构成集合;④中“比较好”,没有明确的界限,不满足元素的确定性,故不能构成集合.【答案】A2.小于2的自然数集用列举法可以表示为()A.{0,1,2}B.{1}C.{0,1}D.{1,2}【解析】小于2的自然数为0,1,应选C.【答案】C3.下列各组集合,表示相等集合的是()①M={(3,2)},N={(2,3)};②M={3,2},N={2,3};③M={(1,2)},N={1,2}.A.①B.②C.③D.以上都不对【解析】①中M中表示点(3,2),N中表示点(2,3),②中由元素的无序性知是相等集合,③中M表示一个元素:点(1,2),N中表示两个元素分别为1,2.【答案】B4.集合A中含有三个元素2,4,6,若a∈A,则6-a∈A,那么a为()A.2B.2或4C.4D.0【解析】若a=2,则6-a=6-2=4∈A,符合要求;若a=4,则6-a=6-4=2∈A,符合要求;若a=6,则6-a=6-6=0∉A,不符合要求.∴a=2或a=4.【答案】B5.(2013•曲靖高一检测)已知集合M中含有3个元素;0,x2,-x,则x满足的条件是()A.x≠0B.x≠-1C.x≠0且x≠-1D.x≠0且x≠1【解析】由x2≠0,x2≠-x,-x≠0,解得x≠0且x≠-1.【答案】C二、填空题6.用符号“∈”或“∉”填空(1)22________R,22________{x|x7};(2)3________{x|x=n2+1,n∈N+};(3)(1,1)________{y|y=x2};(1,1)________{(x,y)|y=x2}.【解析】(1)22∈R,而22=87,∴22∉{x|x7}.(2)∵n2+1=3,∴n=±2∉N+,∴3∉{x|x=n2+1,n∈N+}.(3)(1,1)是一个有序实数对,在坐标平面上表示一个点,而{y|y=x2}表示二次函数函数值构成的集合,故(1,1)∉{y|y=x2}.集合{(x,y)|y=x2}表示抛物线y=x2上的点构成的集合(点集),且满足y=x2,∴(1,1)∈{(x,y)|y=x2}.【答案】(1)∈∉(2)∉(3)∉∈7.已知集合C={x|63-x∈Z,x∈N_},用列举法表示C=________.【解析】由题意知3-x=±1,±2,±3,±6,∴x=0,-3,1,2,4,5,6,9.又∵x∈N_,∴C={1,2,4,5,6,9}.【答案】{1,2,4,5,6,9}8.已知集合A={-2,4,x2-x},若6∈A,则x=________.【解析】由于6∈A,所以x2-x=6,即x2-x-6=0,解得x=-2或x=3.【答案】-2或3三、解答题9.选择适当的方法表示下列集合:(1)绝对值不大于3的整数组成的集合;(2)方程(3x-5)(x+2)=0的实数解组成的集合;(3)一次函数y=x+6图像上所有点组成的集合.【解】(1)绝对值不大于3的整数是-3,-2,-1,0,1,2,3,共有7个元素,用列举法表示为{-3,-2,-1,0,1,2,3};(2)方程(3x-5)(x+2)=0的实数解仅有两个,分别是53,-2,用列举法表示为{53,-2};(3)一次函数y=x+6图像上有无数个点,用描述法表示为{(x,y)|y=x+6}.10.已知集合A中含有a-2,2a2+5a,3三个元素,且-3∈A,求a的值.【解】由-3∈A,得a-2=-3或2a2+5a=-3.(1)若a-2=-3,则a=-1,当a=-1时,2a2+5a=-3,∴a=-1不符合题意.(2)若2a2+5a=-3,则a=-1或-32.当a=-32时,a-2=-72,符合题意;当a=-1时,由(1)知,不符合题意.综上可知,实数a的值为-32.11.已知数集A满足条件:若a∈A,则11-a∈A(a≠1),如果a=2,试求出A中的所有元素.【解】∵2∈A,由题意可知,11-2=-1∈A;由-1∈A可知,11--1=12∈A;由12∈A可知,11-12=2∈A.故集合A中共有3个元素,它们分别是-1,12,2.学好数学的几条建议1、要有学习数学的兴趣。

完整版)高一数学集合试题及答案

完整版)高一数学集合试题及答案

完整版)高一数学集合试题及答案1.已知集合M={-1,1,-2,2},N={y|y=x,x∈M},则M∩N是{1,-1}。

2.设全集U=R,集合A={x|x^2≠1},则C U A={-1,1}。

3.已知集合U={x|x>0},C U A={x|0<x<2},那么集合A={x|x≤0或x≥2}。

4.设全集I={0,-1,-2,-3,-4},集合M={0,-1,-2},N={0,-3,-4},则(I-M)∩N={-3,-4}。

5.已知集合M={x∈N|4-x∈N},则集合M中元素个数是3.6.已知集合A={-1,1},则如下关系式正确的是AA∈,AB∈,AC{}∈,AD∅。

7.集合A={-2<x<2},B={-1≤x<3},那么A∪B={-2<x<3}。

8.已知集合A={x|x^2-1=0},则下列式子表示正确的有①1∈A,②{-1}∈A,③∅⊆A,④{1,-1}⊆A。

9.已知U={1,2,a^2+2a-3},A={|a-2|,2},C U A={0},则a的值为-3或1.10.若集合A={6,7,8},则满足A∪B=A的集合B的个数是7.11.已知集合M={x≤-1},N={x>a},若MN≠∅,则有a<-1.12.已知全集U={0,1,2,4,6,8,10},A={2,4,6},B={1},则(C U A)∪B={0,1,8,10}。

13.设U={三角形},A={锐角三角形},则C U A={直角三角形,钝角三角形}。

14.已知A={0,2,4},C U A={-1,1},C U B={-1,2},则B={1,2}。

15.已知全集U={2,4,a^2-a+1},A={a+1,2},C U A={7},则a=3.16.集合{}是空集。

1.集合B= {-1,0,2}2.已知全集U=R,集合A={x|1≤2x+1<9},则C UA={x|x<1或x≥5}3.实数a的取值范围为a≥419.因为AB=A,所以5∈B,即5²+5m+n=0,代入A={3,5}得到两个方程:9+15m+n=0,25+25m+n=0,解得m=-2,n=-39或m=-2,n=-23.因此,m=-2,n=-39或m=-2,n=-23.20.A={1,2},因此,B的两个根都必须是1或2,即(m-1)²-2(m-1)+m-2=0,解得m=2或m=4.因此,实数m的取值范围为m=2或m=4.21.A∩B={x|a-1<x<1},因此,若AB=∅,则A与B的交集为空集,即a-1≥1或2a+1≤-1,解得a≤0或a≤-1.因此,实数a的取值范围为a≤-1.22.A={a。

北师大版高中数学必修一第一单元《集合》测试题(有答案解析)

北师大版高中数学必修一第一单元《集合》测试题(有答案解析)

一、选择题1.下列表示正确的个数是( ) (1){}{}2100;(2)1,2;(3){(,)}3,435x y x y x y +=⎧∉∅∅⊆=⎨-=⎩;(4)若A B ⊆则A B A =A .0B .1C .2D .32.已知集合{}2230A x x x =--=,{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( )A .11,03⎧⎫-⎨⎬⎩⎭,B .{}1,0-C .11,3⎧⎫-⎨⎬⎩⎭D .103⎧⎫⎨⎬⎩⎭,3.已知集合{|20}A x x =-<,{|}B x x a =<,若A B A =,则实数a 的取值范围是( )A .(,2]-∞-B .[2,)+∞C .(,2]-∞D .[2,)-+∞4.已知全集U =R ,集合{|23}M x x =-≤≤,{|24}N x x x =<->或,那么集合()()C C U U M N ⋂等于( )A .{|34}x x <≤B .{|34}x x x ≤≥或C .{|34}x x ≤<D .{|13}x x -≤≤ 5.已知集合{,}P a b =,{|}Q M M P =⊆,则P 与Q 的关系为( ) A .P Q ⊆B .Q P ⊆C .P Q ∈D .P Q ∉6.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<7.设所有被4除余数为()0,1,2,3k k =的整数组成的集合为k A ,即{}4,k A x x n k n Z ==+∈,则下列结论中错误的是( )A .02020A ∈B .3a b A +∈,则1a A ∈,2b A ∈C .31A -∈D .k a A ∈,k b A ∈,则0a b A -∈8.已知集合A ,B 是实数集R 的子集,定义{},A B x x A x B -=∈∉,若集合1113A y y x x ⎧⎫==≤≤⎨⎬⎩⎭,,{}21,12B y y x x ==--≤≤,则B A -=( )A .[]1,1-B .[)1,1-C .[]0,1D .[)0,19.已知集合{}1A x x =>,{}1B x x =≥,则( ) A .A ⊆BB .B ⊆AC .A∩B=φD .A ∪B=R10.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<11.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1612.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-二、填空题13.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围为________.14.非空集合G 关于运算*满足:① 对任意,a b G ∈,都有a b G *∈;② 存在e G ∈使对一切a G ∈都有a e e a a *=*=,则称G 是关于运算*的融洽集,现有下列集合及运算:①G 是非负整数集,*运算:实数的加法; ②G 是偶数集,*运算:实数的乘法;③G 是所有二次三项式组成的集合,*运算:多项式的乘法;④{|,}G x x a a b Q ==+∈,*运算:实数的乘法; 其中为融洽集的是________15.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________16.设集合{}24,,3A m m m =+中实数m 的取值集合为M ,则R C M =_____.17.已知有限集{}123,,,,(2)n A a a a a n =≥. 如果A 中元素(1,2,3,,)i a i n =满足1212n n a a a a a a =+++,就称A 为“复活集”,给出下列结论:①集合⎪⎪⎩⎭是“复活集”; ②若12,a a R ∈,且12{,}a a 是“复活集”,则124a a >; ③若*12,a a N ∈,则12{,}a a 不可能是“复活集”; ④若*i a N ∈,则“复活集”A 有且只有一个,且3n =.其中正确的结论是____________.(填上你认为所有正确的结论序号) 18.对于集合M ,定义函数1()1M x Mf x x M ∈⎧=⎨-∉⎩,对于两个集合M 、N ,定义集合{|()()1}M N M N x f x f x *=⋅=-,用()Card M 表示有限集合M 所含元素的个数,若{1,2,4,8}A =,{2,4,6,8,10}B =,则能使()()Card X A Card X B *+*取最小值的集合X 的个数为________.19.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.20.若不等式34x b -<的解集中的整数有且仅有5,6,则b 的取值范围是______.三、解答题21.已知全集U =R ,集合1{|28},{22x A x B x x m =<≤=<-或2}x m >+ (1)若A {}|03R B x x ⋂=≤≤,求实数m 的值; (2)若AB =B ,求实数m 的取值范围.22.已知集合{}02A x x =<<,{}1B x x a =<<-(1)若3a =-,求()R A B ⋃;(2)若AB B =,求a 的取值范围.23.已知集合A ={x |12x -≤≤},B ={x |123m x m +≤≤+} (1)当m =1时,求AB ;(2)若B A ⊆,求实数m 的取值范围24.已知集合{}25A x x =-≤≤,集合{}121B x p x p =+≤≤-,若A B B =,求实数p 的取值范围.25.已知集合A x y ⎧⎫⎪==⎨⎪⎩,集合1228xB x ⎧⎫=<<⎨⎬⎩⎭. (1)求AB ;(2)若集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,求实数a 的取值范围. 26.设集合{}2|320A x x x =++=,{}2|2(1)30B x x a x a =++++=. (1)若{1}A B ⋂=-,求实数a 的值; (2)若A B A ⋃=,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【解析】选项(1)中元素与空集的关系是不属于,正确;(2)空集是非空集的子集正确;(3)集合前后不相等,一个是方程的根构成的集合,有一个元素,一个是两个实数构成的集合,故不正确;(4)根据集合子集的意义知若A B ⊆则AB A =正确.2.A解析:A 【分析】解方程求得集合A ,分别在B =∅和B ≠∅两种情况下,根据包含关系构造方程求得结果. 【详解】由2230x x --=得:1x =-或3x =,即{}1,3A =-; ①当0a =时,B =∅,满足B A ⊆,符合题意; ②当0a ≠时,{}110B x ax a ⎧⎫=-==⎨⎬⎩⎭,B A ⊆,11a ∴=-或13a =,解得:1a =-或13a =;综上所述:实数a 的值构成的集合是11,0,3⎧⎫-⎨⎬⎩⎭. 故选:A . 【点睛】本题考查根据集合的包含关系求解参数值的问题,易错点是忽略子集为空集的情况,造成求解错误.3.B解析:B 【解析】由题意可得{}|2A x x =<,结合交集的定义可得实数a 的取值范围是[)2,+∞ 本题选择B 选项.4.A解析:A 【分析】先分别求出C ,C U U M N ,再求()()C C U U M N ⋂即可 【详解】∵C {|}23U M x x x =<>-或,C {|24}U N x x =-≤≤, ∴()()C C {|34}U U M N x x ⋂=<≤. 故选:A . 【点睛】本题考查交集与补集的混合运算,属于中档题5.C解析:C 【分析】用列举法表示集合Q ,这样就可以选出正确答案. 【详解】{}M P M a ⊆⇒=或{}b 或{},a b 或∅.因此{}{}{}{}{|},,,,Q M M P a b a b =⊆=∅,所以P Q ∈.故选:C 【点睛】本题考查了集合与集合之间的关系,理解本题中集合Q 元素的属性特征是解题的关键.6.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.7.B解析:B 【分析】首先根据题意,利用k A 的意义,再根据选项判断. 【详解】A.202045050=⨯+,所以02020A ∈,正确;B.若3a b A +∈,则12,a A b A ∈∈,或21,a A b A ∈∈或03,a A b A ∈∈或30,a A b A ∈∈,故B 不正确;C.()1413-=⨯-+,所以31A -∈,故C 正确;D.4a n k =+,4b m k =+,,m n Z ∈,则()40,a b n m -=-+()n m Z -∈,故0a b A -∈,故D 正确.故选:B 【点睛】关键点点睛:本题考查集合新定义,关键是理解k A 的意义,再将选项中的数写出k A 中的形式,就容易判断选项了.8.B解析:B 【分析】先根据题意得{}13A y y =≤≤,{}13B y y =-≤≤,再根据集合运算即可得答案. 【详解】解:根据题意得{}111133A y y x y y x ⎧⎫==≤≤=≤≤⎨⎬⎩⎭,, {}{}21,1213B y y x x y y ==--≤≤=-≤≤,再根据集合的运算得}{11B A y y -=-≤<. 故选:B. 【点睛】本题考查集合的运算,函数值域的求解,考查运算能力,是中档题.9.A解析:A 【分析】根据数轴判断两集合之间包含关系. 【详解】因为{}1A x x =>,{}1B x x =≥,所以A ⊆B ,选A. 【点睛】本题考查集合之间包含关系,考查基本判断分析能力.10.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤. 故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.11.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.12.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解.当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意; 当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.二、填空题13.【分析】由分和两种情况分别讨论进而建立不等关系可求出答案【详解】当即时此时满足;当即时此时由可得解得综上实数的取值范围为故答案为:【点睛】本题考查根据集合的包含关系求参数的范围其中的易漏点在于漏掉考 解析:(,3]-∞【分析】由B A ⊆,分B =∅和B ≠∅两种情况分别讨论,进而建立不等关系,可求出答案.【详解】当121m m +>-,即2m <时,此时B =∅,满足B A ⊆;当121m m +≤-,即2m ≥时,此时B ≠∅,由B A ⊆,可得12215m m +≥-⎧⎨-≤⎩,解得23m ≤≤.综上,实数m 的取值范围为(,3]-∞.故答案为:(,3]-∞ 【点睛】本题考查根据集合的包含关系求参数的范围,其中的易漏点在于漏掉考虑子集为空集的情况,易错点在于弄错不等关系,结合数轴依次分类讨论即可避免此类问题.14.①④【分析】逐一验证几个选项是否分别满足融洽集的两个条件若两个条件都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意非负整数则仍为非负整数即;取则故①符合题意;②对于任意偶数则仍为偶数即;但是解析:①④ 【分析】逐一验证几个选项是否分别满足“融洽集”的两个条件,若两个条件都满足,是“融洽集”,有一个不满足,则不是“融洽集” 【详解】①对于任意非负整数,a b ,则+a b 仍为非负整数,即a b G +∈;取0e =,则00a a a +=+=,故①符合题意;②对于任意偶数,a b ,则ab 仍为偶数,即ab G ∈;但是不存在e G ∈,使对一切a G ∈都有ae ea a ==,故②不符合题意;③对于G 是所有二次三项式组成的集合,若,a b G ∈,ab 不再是二次三项式,故③不符合题意;④对于{|,}G x x a a b Q ==+∈,设1x a =+2x c =+,则()(122x x ac bd ad bc ⋅=+++,即12x x G ⋅∈;取1e =,则11a a a ⨯=⨯=,故④符合题意,故答案为:①④ 【点睛】本题考查对新定义“融洽集”的理解,考查理解分析能力15.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若A B B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈-故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.16.【分析】根据集合中的元素的互异性列出不等式组求解【详解】由题:集合则化简得:解得:即所以故答案为:【点睛】此题考查根据集合中元素的互异性求参数的取值范围需要注意不重不漏 解析:{}4,2,0,1,4--【分析】根据集合中的元素的互异性,列出不等式组求解. 【详解】由题:集合{}24,,3A m m m =+,则224343m m m m m m ≠⎧⎪+≠⎨⎪+≠⎩,化简得:()()()441020m m m m m ⎧≠⎪+-≠⎨⎪+≠⎩, 解得:()()()()()(),44,22,00,11,44,m ∈-∞----+∞,即()()()()()(),44,22,00,11,44,M =-∞----+∞,所以{}4,2,0,1,4R C M =--. 故答案为:{}4,2,0,1,4-- 【点睛】此题考查根据集合中元素的互异性求参数的取值范围,需要注意不重不漏.17.①③④【分析】根据已知中复活集的定义结合韦达定理以及反证法依次判断四个结论的正误进而可得答案【详解】对于①故①正确;对于②不妨设则由韦达定理知是一元二次方程的两个根由可得或故②错;对于③不妨设中由得解析:①③④ 【分析】根据已知中“复活集”的定义,结合韦达定理以及反证法,依次判断四个结论的正误,进而可得答案.【详解】对于①,1==-,故①正确; 对于②,不妨设1212a a a a t +==,则由韦达定理知12,a a 是一元二次方程20x tx t -+=的两个根, 由>0∆,可得0t <或4t >,故②错; 对于③,不妨设A 中123n a a a a <<<<,由1212n n n a a a a a a na =+++<得121n a a a n -<,当2n =时,即有12a <,∴11a =,于是221a a +=,2a 无解,即不存在满足条件的“复活集”A ,故③正确;对于④,当3n =时,123a a <,故只能11a =,22a =,求得33a =, 于是“复活集” A 只有一个,为{}1,2,3, 当4n ≥时,由()1211231n a a a n -≥⨯⨯⨯⨯-,即有()1!n n >-,也就是说“复活集”A 存在的必要条件是()1!n n >-,事实上()()()()221!1232222n n n n n n n -≥--=-+=--+>,矛盾,∴当4n ≥时不存在“复活集”A ,故④正确.故答案为:①③④ 【点睛】本题主要考查了集合新定义,需理解“复活集”的定义,考查了学生的知识迁移能力以及分析问题的能力,属于中档题.18.【分析】通过定义可以用集合中的补集来解释再根据取最小值时所满足的条件最后可以求出集合的个数【详解】因为所以有要想最小只需最大且最小要使最小则有所以集合是集合和集合子集的并集因此集合的个数为个故答案为 解析:8【分析】通过定义可以用集合中的补集来解释,再根据()()Card X A Card X B *+*取最小值时所满足的条件,最后可以求出集合X 的个数. 【详解】因为{|()()1}M N M N x f x f x *=⋅=-,所以有()MNM N C M N *=⋂,要想()Card X A *最小,只需()Card X A ⋂最大,且()Card X A ⋃最小,要使 ()()Card X A Card X B *+*最小, 则有A B X A B ⋂⊆⊆⋃,{}{}1,2,4,6,8,10,2,4,8A B A B ⋃=⋂=,所以集合X 是集合{}2,4,8和集合{}1,6,10子集的并集,因此集合X 的个数为328=个.故答案为:8【点睛】本题考查了新定义题,考查了集合与集合之间的关系,考查了数学阅读能力.19.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.20.【分析】先求得不等式的解集根据不等式的解集中的整数有且仅有得出不等式组即可求解得到答案【详解】由题意不等式即解得要使得不等式的解集中的整数有且仅有则满足解得即实数的取值范围是故答案为【点睛】本题主要 解析:[]16,17【分析】先求得不等式34x b -<的解集4433b b x -++<<,根据不等式34x b -<的解集中的整数有且仅有5,6,得出不等式组44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,即可求解,得到答案. 【详解】 由题意,不等式34x b -<,即434x b -<-<,解得4433b b x -++<<, 要使得不等式34x b -<的解集中的整数有且仅有5,6, 则满足44534673b b -+⎧≤<⎪⎪⎨+⎪<≤⎪⎩,解得1617b ≤≤,即实数b 的取值范围是[]16,17.故答案为[]16,17.【点睛】本题主要考查了绝对值不等式的求解,以及集合的应用,其中解答中正确求解绝对值不等式,根据题设条件得到不等式组是解答的关键,着重考查了分析问题和解答问题的能力,属于中档试题.三、解答题21.(1)m =2;(2){5m m >或3}m ≤-..【分析】(1)分别求集合A 和B R ,根据运算结果,求实数m 的值;(2)根据运算结果,转化为A B ⊆,列不等式求m 的取值范围. 【详解】解:(1)由已知得{}13A x x =-<≤,{}22R B x m x m =-≤≤+,∵A {}|03R B x x ⋂=≤≤, ∴2023m m -=⎧⎨+≥⎩,,即 2.1m m =⎧⎨≥⎩∴m =2.(2)A B B =,∴A B ⊆.∴23m ->或21m +≤-,∴5m >或3m ≤-.即实数m 的取值范围为{5m m >或3}m ≤-.【点睛】易错点点睛:1.一般涉及集合运算时,需注意端点值的开闭,以及列不等式时,需注意参数的端点值的开闭;2.根据集合交,并集的运算结果,转化为子集问题时,需注意有时有空集的情况,这点容易忽略.22.(1){2x x <或3x ≥};(2)[)2-+∞,. 【分析】(1)3a =-时,先计算B R ,再进行并集运算即可; (2)先利用交集结果判断B A ⊆,再讨论B 是否空集使其满足子集关系,列式计算即得结果.【详解】(1)因为3a =-,所以{}13B x x =<<,=B R {1x x ≤或3x ≥}, 故()=⋃R A B {2x x <或3x ≥};(2)因为AB B =,所以B A ⊆. 若B =∅,则1a -≤,解得1a ≥-;若B ≠∅,则12a a ->⎧⎨-≤⎩,解得21a -≤<-. 综上所述,a 的取值范围为[)2-+∞,. 【点睛】易错点睛:已知B A ⊆求参数范围时,需讨论集合B 是否是空集,因为空集是任意集合的子集,直接满足B A ⊆.23.(1){}2;(2)1,2⎛⎤-∞ ⎥⎝⎦. 【分析】(1)根据集合的交集运算求解即可;(2)讨论集合B 是否为空集,根据包含关系列出不等式,即可得出实数m 的取值范围.【详解】(1)当m =1时,B ={x |2≤x ≤5},因此A B ={2} (2)A B ⇔B A ⊆,则①当B =∅时,即123m m +>+,即2m <-,符合题意②当B ≠∅时,要满足B A ⊆,则12311232m m m m +≤+⎧⎪+≥-⎨⎪+≤⎩2212m m m ⎧⎪≥-⎪⇒≥-⎨⎪⎪≤-⎩122m ⇒-≤≤-综上所述,当B A ⊆时,实数m 的取值范围时1(,2)2,2⎡⎤-∞-⋃-⎢⎥⎣⎦=1,2⎛⎤-∞ ⎥⎝⎦ 【点睛】本题考查交集的运算,同时也考查了利用集合的包含关系求参数,解题的关键就是对含参集合分空集和非空集合两种情况讨论,考查分类讨论思想的应用,属于中档题. 24.3p ≤【分析】根据题意,由集合的性质,可得若满足A B B =,则B A ⊆,进而分:①121p p +>-,②121p p +=-,③121p p +<-,三种情况讨论,讨论时,先求出p 的取值范围,进而可得B ,讨论集合B 与A 的关系可得这种情况下p 的取值范围,对三种情况下求得的p 的范围求并集可得答案.【详解】解:根据题意,若AB B =,则B A ⊆; 分情况讨论:①当121p p +>-时,即2p <时,B =∅,此时B A ⊆,则A B B =,则2p <时,符合题意;②当121p p +=-时,即2p =时,{}{}333B x x =≤≤=,此时B A ⊆,则A B B =, 则2p =时,符合题意;③当121p p +<-时,即2p >时,{}121B x p x p =+≤≤-,若B A ⊆,则有21512p p -≤⎧⎨+≥-⎩,解可得33p -≤≤, 又由2p >,则当23p <≤时,符合题意;综上所述,满足AB B =成立的p 的取值范围为3p ≤. 【点睛】本题考查根据集合的包含关系求参数的取值范围,易错点为遗漏B =∅的情况,考查了分类讨论的思想,属于中档题.25.(1)()3,0-;(2)312a -<<-或1a >. 【分析】(1)由已知条件分别计算出集合A 和集合B ,然后再计算出A B 的结果.(2)由已知条件()A B C ⋂⊇,则分类讨论C =∅和C ≠∅两种情况,求出实数a 的取值范围.【详解】(1)已知集合A x y ⎧⎫⎪==⎨⎪⎩,则230x x -->,解得30x -<<,即()3,0A =-,集合1228x B x ⎧⎫=<<⎨⎬⎩⎭,解得31x -<<,即()3,1B =-,所以()3,0A B ⋂=- (2)因为集合{}21C x a x a =≤≤+,且()A B C ⋂⊇,由(1)得()3,0A B ⋂=-,则当C =∅时,21a a >+,即1a >, 当C ≠∅时,212310a a a a ≤+⎧⎪>-⎨⎪+<⎩,得312a -<<-,综上,312a -<<-或1a >. 【点睛】本题考查了集合的交集运算和子集运算,在含有参量的子集题目中需要注意分类讨论,尤其不要漏掉空集情况,然后求解不等式组得到结果.本题较为基础.26.(1)2(2)21a -<≤【分析】(1)先化简{}{}2|3202,1=++==--A x x x ,再由{1}A B ⋂=-,则1B -∈,代入求解.(2)将A B A ⋃=转化为B A ⊆,再分B 是空集和不是空集两种情况讨论求解.【详解】(1)因为{}{}2|3202,1=++==--A x x x 又因为{1}A B ⋂=-所以1B -∈所以()12(1)130++⨯-++=a a解得:2a =(2)因为A B A ⋃=所以B A ⊆当()2[2(1)]430∆=+-+<a a 时 解得21a -<<,B =∅ 成立当()2[2(1)]430∆=+-+=a a 时 解得:2a =-或1a =当2a =-时, {}1B =,不成立,当1a =时,{}2B =-,成立,当()2[2(1)]43>0∆=+-+a a 时 解得:2a <-或>1a ,此时{}2,1==--B A 才成立,而2(a+1)=-332a ⎧⎨+=⎩ ,解得 5=-21a a ⎧⎪⎨⎪=-⎩无解. 综上:实数a 的取值范围21a -<≤【点睛】本题主要考查了集合的基本运算和已知集合关系求参数的问题,还考查了分类讨论的思想和运算求解的能力,属于中档题.。

高中数学必修一集合测试题含详细答案

高中数学必修一集合测试题含详细答案

高中数学必修一集合测试题含详细答案(120分钟150分)一、选择题(本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的)1.已知集合A={x|x2-2x>0},B={x|-5<x<5},则( )A.A∩B=∅B.A∪B=RC.B⊆AD.A⊆B2.已知集合S={1,2},集合T={a},∅表示空集,如果S∪T=S,那么a的值构成的集合是( )A.∅B.{1}C.{2}D.{1,2}3.已知命题p:∃x0∈R,-3x0+3≤0,则下列说法正确的是( )A.p:∃x0∈R,-3x0+3>0,且p为真命题B.p:∃x0∈R,-3x0+3>0,且p为假命题C.p:∀x∈R,x2-3x+3>0,且p为真命题D.p:∀x∈R,x2-3x+3>0,且p为假命题4.已知集合A={0,1,2,3,4},B={x||x|<2},则A∩B=( )A.{0}B.{0,1}C.{0,2}D.{0,1,2}5.已知ab>0,若a>b,则<的否命题是( )A.已知ab≤0,若a≤b,则≥B.已知ab≤0,若a>b,则≥C.已知ab>0,若a≤b,则≥D.已知ab>0,若a>b,则≥6.已知集合{1,2,3,4,5}的非空子集A具有性质P:当a∈A时,必有6-a∈A.则具有性质P的集合A的个数是( )A.8B.7C.6D.57.设a,b为实数,则“0<ab<1”是“b<”成立的( )A.充分不必要条件B.必要不充分条件C.充分必要条件D.既不充分也不必要条件8.给定下列两个命题:①“p∨q”为真是“p”为假的必要不充分条件;②“∃x0∈R,使sinx0>0”的否定是“∀x∈R,使sinx≤0”.其中说法正确的是( )A.①真②假B.①假②真C.①和②都为假D.①和②都为真9.给定两个命题p,q,若p是q的必要而不充分条件,则p是q的( )A.充分而不必要条件B.必要而不充分条件C.充要条件D.既不充分也不必要条件10.)给出下列命题:(1)等比数列{a n}的公比为q,则“q>1”是“a n+1>a n(n∈N*)”的既不充分也不必要条件;(2)“x≠1”是“x2≠1”的必要不充分条件;(3)函数y=lg(x2+ax+1)的值域为R,则实数-2<a<2;(4)“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充要条件.其中真命题的个数是( )A.1B.2C.3D.411.已知函数f(x)=x2+bx+c,则“c<0”是“∃x0∈R,使f(x0)<0”的( )A.充分而不必要条件B.必要而不充分条件C.充分必要条件D.既不充分也不必要条件12.已知下列四个命题:①命题“若α=,则tanα=1”的逆否命题为假命题;②命题p:∀x∈R,sinx≤1,则p:∃x0∈R,使sinx0>1;③“φ=+kπ(k∈Z)”是“函数y=sin(2x+φ)为偶函数”的充要条件;④命题p:“∃x0∈R,使sinx0+cosx0=”;命题q:“若sinα>sinβ,则α>β”,那么(p)∧q为真命题.其中正确的个数是( )A.1B.2C.3D.4二、填空题(本大题共4小题,每小题5分,共20分.请把正确答案填在题中横线上)13.若命题“∃x0∈R,+(a-3)x0+4<0”为假命题,则实数a的取值范围是.14.已知A=,B={x|log2(x-2)<1},则A∪B= .15.已知命题p:函数f(x)=2ax2-x-1(a≠0)在(0,1)内恰有一个零点;命题q:函数y=x2-a在(0,+∞)上是减函数.若p且q为真命题,则实数a的取值范围是.16.已知下列四个结论:①命题“若p,则q”与命题“若q,则p”互为逆否命题;②命题p:∃x0∈[0,1],≥1,命题q:∃x0∈R,+x0+1<0,则p∨q为真;③若p∨q为假命题,则p,q均为假命题;④“若am2<bm2,则a<b”的逆命题为真命题.其中正确结论的序号是.三、解答题(本大题共6小题,共70分.解答时应写出必要的文字说明、证明过程或演算步骤)17.(10分)已知A={x||x-a|<4},B={x||x-2|>3}.(1)若a=1,求A∩B.(2)若A∪B=R,求实数a的取值范围.18.(12分)已知命题p:方程x2+mx+1=0有两个不相等的负实根,命题q:不等式4x2+4(m-2)x+1>0的解集为R.若p∨q为真命题、p∧q为假命题,求实数m的取值范围.19.(12分)已知全集U=R,集合A={x|(x-2)(x-3)<0},B={x|(x-a)(x-a2-2)<0}.(1)当a=时,求(∁U B)∩A.(2)命题p:x∈A,命题q:x∈B,若q是p的必要条件,求实数a的取值范围.20.(12分)设p:实数x满足x2-4ax+3a2<0,其中a≠0,q:实数x满足(1)若a=1,且p∧q为真,求实数x的取值范围.(2)若p是q的必要不充分条件,求实数a的取值范围.21.(12分)求证:方程ax2+2x+1=0有且只有一个负数根的充要条件为a≤0或a=1.22.(12分)已知函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0,求p的取值范围.答案解析1.【解析】选B.由A={x|x2-2x>0}得,A={x|x<0或x>2},又B={x|-5<x<5},所以A∪B=R.2.【解析】选D.因为S={1,2},T={a},S∪T=S,所以T⊆S,a∈S,所以a=1或a=2,故选D.3.【解析】选C.依题意,命题p:∃x0∈R,-3x0+3≤0的否命题为不存在x∈R,使得x2-3x+3≤0,即对任意的x∈R,x2-3x+3>0.又x2-3x+3=+>0,所以命题p为假命题,所以p为真命题.4.【解析】选B. B={x||x|<2}={x|-2<x<2},则A∩B={0,1,2,3,4}∩{x|-2<x<2}={0,1}.5.【解析】选C.条件ab>0是大前提,所以其否命题是:已知ab>0,若a≤b,则≥.6.【解析】选B.由题意,知3∈A可以,若1∈A,则5∈A,若2∈A,则4∈A,所以具有性质P的集合A有{3},{1,5},{1,3,5},{2,4},{2,3,4},{1,2,4,5},{1,2,3,4,5},共7个.7.【解析】选D.若0<ab<1,则当a>0时,有b<,当a<0时,有b>.当b<时,不妨设b=-1,a=1,则满足b<,但ab=-1,不满足0<ab<1.所以0<ab<1是b<成立的既不充分也不必要条件,选D.【解析】选B.由10a>10b得a>b.由lga>lgb得a>b>0,所以“10a>10b”是“lga>lgb”的必要不充分条件,选B.8.【解析】选D.①中,“p∨q”为真,说明,p,q至少有一为真,但不一定p为真,即“p”不一定为假;反之,“p”为假,那么p一定为真,即“p∨q”为真,命题①为真;特称命题的否定是全称命题,所以,②为真,综上知,①和②都为真.9.【解析】选A.因为p是q的必要而不充分条件,所以q是p的必要而不充分条件,即p是q的充分而不必要条件.【解析】选A.因为函数f(x)=a x在R上是减函数,所以0<a<1.由函数g(x)=(2-a)x3在R上是增函数可得:2-a>0,即a<2.所以若0<a<1,则a<2,而若a<2,推不出0<a<1.所以“函数f(x)=a x在R上是减函数”是“函数g(x)=(2-a)x3在R上是增函数”的充分不必要条件.10.【解析】选B.若首项为负,则公比q>1时,数列为递减数列,a n+1<a n(n∈N*),当a n+1>a n(n∈N*)时,包含首项为正,公比q>1和首项为负,公比0<q<1两种情况,故(1)正确;“x≠1”时,“x2≠1”在x=-1时不成立,“x2≠1”时,“x≠1”一定成立,故(2)正确;函数y=lg(x2+ax+1)的值域为R,则x2+ax+1=0的Δ=a2-4≥0,解得a≥2或a≤-2,故(3)错误;“a=1”时,“函数y=cos2x-sin2x=cos2x的最小正周期为π”,但“函数y=cos2ax-sin2ax的最小正周期为π”时,“a=±1”,故“a=1”是“函数y=cos2ax-sin2ax的最小正周期为π”的充分不必要条件,故(4)错误.故选B.【解析】选C.由p∨q为假命题知,p,q都是假命题,所以p,q都为真命题,故(p)∧(q)为真命题,A正确;在△ABC中,A=B⇔a=b⇔sinA=sinB,所以B正确;由p为真知,p为假,所以p∧q为假,反过来,若p∧q为假,则p与q都假或一个为假,所以p不一定为真,故“p”为真是“p∧q”为假的充分不必要条件,所以C错误;因为x=y=0的否定是x≠0或y≠0,即实数x,y中至少有一个不为0,所以D正确.11.【解析】选A.若c<0,则Δ=b2-4c>0,所以∃x0∈R,使f(x0)<0,成立.若∃x0∈R,使f(x0)<0,则有Δ=b2-4c>0,即b2-4c>0即可,所以当c=1,b=3时,满足Δ=b2-4c>0,所以“c<0”是“∃x0∈R,使f(x0)<0”的充分不必要条件,故选A.12.【解析】选B.①中的原命题为真,所以逆否命题也为真,所以①错误.②根据全称命题的否定是特称命题知,②为真.③当函数为偶函数时,有φ=+kπ(k∈Z),所以为充要条件,所以③正确.④因为sinx+cosx=sin的最大值为<,所以命题p为假命题,p为真,三角函数在定义域上不单调,所以q为假命题,所以(p)∧q为假命题,所以④错误.所以正确的个数为2,故选B.13.【解析】由题意,知“∀x∈R,x2+(a-3)x+4≥0”是真命题.故Δ=(a-3)2-16≤0,即a2-6a-7≤0,解得-1≤a≤7,即a∈[-1,7].答案:[-1,7]14.【解析】因为A=={x|2-3<2-x<2-1}={x|1<x<3},B={x|log2(x-2)<1}={x|0<x-2<2}={x|2<x<4},所以A∪B={x|1<x<4}.答案:{x|1<x<4}答案:{x|1≤x<2}15.【解析】若p为真,则f(0)·f(1)=-1·(2a-2)<0,即a>1,若q为真,则2-a<0,即a>2,所以q 为真时,a ≤2,故p ∧q 为真时,1<a ≤2.答案:(1,2]16.【解析】根据四种命题的关系,结论①正确;②中命题p 为真命题、q 为假命题,故p ∨q 是真命题,结论②正确;根据或命题的真假判断方法知结论③正确; ④中命题的逆命题是“若a<b,则am 2<bm 2”,这个命题在m=0时不成立,结论④不正确.答案:①②③17.【解析】(1)当a=1时,A={x|-3<x<5},B={x|x<-1或x>5}.所以A ∩B={x|-3<x<-1}.(2)因为A={x|a-4<x<a+4},B={x|x<-1或x>5},且A ∪B=R ,所以a 41,a 45-<-⎧⎨+>⎩⇒1<a<3. 所以实数a 的取值范围是(1,3).18.【解析】命题p 为真时,实数m 满足Δ1=m 2-4>0且-m<0,解得m>2;命题q 为真时,实数m 满足Δ2=16(m-2)2-16<0,解得1<m<3.p ∨q 为真命题、p ∧q 为假命题,等价于p 真且q 假或者p 假且q 真. 若p 真且q 假,则实数m 满足m>2且m ≤1或m ≥3,解得m ≥3;若p 假且q 真,则实数m 满足m ≤2且1<m<3,解得1<m ≤2.综上可知,所求m 的取值范围是(1,2]∪[3,+∞).19.【解析】(1)A={x|2<x<3},当a=时,B=.∁U B=,(∁U B)∩A=.(2)由若q是p的必要条件知p⇒q,可知A⊆B. 由a2+2>a知B={x|a<x<a2+2}.所以解得a≤-1或1≤a≤2.即a∈(-∞,-1]∪[1,2].20.【解析】(1)由得q:2<x≤3. 当a=1时,由x2-4x+3<0,得p:1<x<3,因为p∧q为真,所以p真,q真.由得2<x<3,所以实数x的取值范围是(2,3).(2)由x2-4ax+3a2<0,得(x-a)(x-3a)<0.①当a>0时,p:a<x<3a,由题意,得(2,3](a,3a),所以即1<a≤2;②当a<0时,p:3a<x<a,由题意,得(2,3](3a,a),所以无解.综上,可得a∈(1,2].21.【证明】充分性:当a=0时,方程为2x+1=0,其根为x=-,方程只有一负根.当a=1时,方程为x2+2x+1=0,其根为x=-1,方程只有一负根.当a<0时,Δ=4(1-a)>0,方程有两个不相等的根,且<0,方程有一正一负两个根.必要性:若方程ax2+2x+1=0有且只有一负根.当a=0时,符合条件.当a≠0时,方程ax2+2x+1=0有实根,则Δ=4-4a≥0,所以a≤1,当a=1时,方程有一负根x=-1.当a<1时,若方程有且只有一负根,则所以a<0.综上,方程ax2+2x+1=0有且只有一个负根的充要条件为a≤0或a=1.22.【解析】记p的取值范围是I,原题可作为命题:若p∈I,则函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上至少存在一个实数x0,使f(x0)>0. 若函数f(x)=4x2-2(p-2)x-2p2-p+1在区间[-1,1]上对任意的x都有f(x)≤0,则p ∈∁I.由对任意的x都有f(x)≤0,结合图形知⇒⇒p≤-3或p≥,即∁I=,所以I=,故所求p 的取值范围为.【解析】由y2-(a2+a+1)y+a(a2+1)>0,得(y-a)(y-a2-1)>0,由于a2+1-a=+>0,所以A=(-∞,a)∪(a2+1,+∞).集合B为函数y=x2-x+,0≤x≤3的值域,二次函数y=x2-x+的对称轴方程为x=1,故在[0,3]上,当x=1时函数值最小,当x=3时函数值最大,故可得B=[2,4].(1)若A∩B=∅,则只要a2+1≥4且a≤2即可,解得a≤-或≤a≤2,即实数a的取值范围是(-∞,-]∪[,2].(2)不等式x2+1≥ax对任意x恒成立的充要条件是a2-4≤0,解得-2≤a≤2,最小a 值为-2,此时A=(-∞,-2)∪(5,+∞),∁R A=[-2,5],所以(∁R A)∩B=[2,4].。

新北师大版高中数学必修一第一单元《集合》检测卷(答案解析)

新北师大版高中数学必修一第一单元《集合》检测卷(答案解析)

一、选择题1.若集合{}2560A x x x =+-=,{}222(1)30B x x m x m =+++-=.若{}1A B ⋂=,求实数m 的值为( ) A .0B .-2C .2D .0或-22.设集合{,}A a b =,{}220,,B a b =-,若A B ⊆,则⋅=a b ( )A .-1B .1C .-1或1D .03.设集合{}21|10P x x ax =++>,{}22|20P x x ax =++>,{}21|0Q x x x b =++>,{}22|20Q x xx b =++>,其中,a b ∈R ,下列说法正确的是( )A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集4.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B =B .ABC .B AD .A B =∅5.若集合{}2|560A x x x =-->,{}|21xB x =>,则()R C A B =( )A .{}|10x x -≤<B .{}|06x x <≤C .{}|20x x -≤<D .{}|03x x <≤6.设全集为R ,集合{}2log 1A x x =<,{B x y ==,则()RAB =( )A .{}02x x <<B .{}01x x <<C .{}11x x -<<D .{}12x x -<<7.已知集合{}|15A x x =≤<,{}|3B x a x a =-<≤+.若B A B =,则a 的取值范围为( ) A .3,12⎛⎤-- ⎥⎝⎦B .3,2∞⎛⎤-- ⎥⎝⎦C .(],1-∞-D .3,2⎛⎫-+∞ ⎪⎝⎭8.若集合2{||31|2},{|0},1x A x x B x x -=-≥=≤-则()R C A B =( )A .1[,2]3-B .∅C .1(,)(1,2]3-∞-⋃ D .1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭9.已知集合A ={}{}3(,),(,)x y y x B x y y x ===,则A ∩B 的元素个数是( )A .4B .3C .2D .110.已知集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,若B A ⊆,则实数m 的取值范围是( ) A .3m <B .23m ≤≤C .3m ≤D .23m <<11.如果集合{}2210A x ax x =--=只有一个元素,则a 的值是( ) A .0B .0或1C .1-D .0或1-12.设{}2|8150A x x x =-+=,{}|10B x ax =-=,若AB B =,求实数a 组成的集合的子集个数有 A .2B .3C .4D .8二、填空题13.集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,用列举法表示集合M =________. 14.非空集合G 关于运算*满足:① 对任意,a b G ∈,都有a b G *∈;② 存在e G ∈使对一切a G ∈都有a e e a a *=*=,则称G 是关于运算*的融洽集,现有下列集合及运算:①G 是非负整数集,*运算:实数的加法; ②G 是偶数集,*运算:实数的乘法;③G 是所有二次三项式组成的集合,*运算:多项式的乘法;④{|,}G x x a a b Q ==+∈,*运算:实数的乘法; 其中为融洽集的是________15.已知集合{}2|20A x x x x R =--<∈,,集合{}|21B x x x R =-∈≥,,则A B =________.16.已知集合{|68}A x x =-≤≤,{|}B x x m =≤,若A B B ≠且A B ⋂≠∅,则m的取值范围是________17.若集合{}2210,A x ax x a R =++=∈至多有一个元素,则a 的取值范围是___________.18.设A 是集合{}123456S =,,,,,的非空子集,称A 中的元素之和为A 的“容量”,则S 的所有非空子集的“容量”之和是_______19.设,,x y z 都是非零实数,则可用列举法将x y z xy xyz x y z xy xyz++++的所有可能值组成的集合表示为________.20.设a 、b R ∈,集合{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,则b a -=__________.三、解答题21.设集合{}|34A x x =-≤≤,{|132}B x m x m =-≤≤- (1)若x A ∈是x B ∈的充分不必要条件,求实数m 的取值范围; (2)若AB B =,求实数m 的取值范围.22.已知集合2212x A x x ⎧+⎫=<⎨⎬-⎩⎭,{}254B x x x =>-,{}1,C x x m m =-<∈R ,(1)求AB ;(2)若()A B C ⋂⊆,求m 的取值范围.23.已知集合{}|123A x a x a =-<<+,2{|280}B x x x =--≤. (1)当a =2时,求AB ;(2)若___________,求实数a 的取值范围.在①AB A =,②()R AC B A =,③A B ⋂=∅这三个条件中任选一个,补充在(2)问中的横线上,并求解.(注:如果选择多个条件分别解答,按第一个解答计分)24.已知集合{}|13A x x =-<<,集合(){}2|25250B x x k x k =+--<,k ∈R .(1)若1k =时,求B R,A B ;(2)若“x A ∈”是“x B ∈”的充分不必要条件,求实数k 的取值范围.25.设关于x 的不等式2(21)(2)(1)0x a x a a -+++->和2()()0x a x a --<的解集分别为A 和B .(1)求集合A ;(2)是否存在实数a ,使得A B =R ?如果存在,求出a 的值,如果不存在,请说明理由;(3)若A B ⋂≠∅,求实数a 的取值范围.26.已知集合A ={x|2a +1≤x≤3a -5},B ={x|x <-1,或x >16},分别根据下列条件求实数a 的取值范围.(1)A∩B =∅;(2)A ⊆(A∩B ).【参考答案】***试卷处理标记,请不要删除一、选择题 1.D 解析:D 【分析】根据A ∩B ={1}可得出,1∈B ,从而得出1是方程x 2+2(m +1)x +m 2﹣3=0的根,1代入方程即可求出m 的值;【详解】 A ={﹣6,1}; ∵A ∩B ={1}; ∴1∈B ;即1是方程x 2+2(m +1)x +m 2﹣3=0的根; ∴1+2(m +1)+m 2﹣3=0; ∴m 2+2m =0; ∴m =0或m =﹣2;当m =0时,B ={﹣3,1},满足A ∩B ={1}; 当m =﹣2时,B ={1},满足A ∩B ={1}; ∴m =0或m =﹣2; 故选:D 【点睛】考查交集的定义及运算,元素与集合的关系,描述法、列举法的定义,一元二次方程实根的情况,是基础题.2.A解析:A 【分析】由集合的包含关系得,a b 的方程组,求解即可 【详解】A B ⊆,由集合元素互异性得0,0,a b a b ≠≠≠ 则22a a b b ⎧=⎨=-⎩ 或22b a a b ⎧=⎨=-⎩解得11a b =⎧⎨=-⎩或11b a =⎧⎨=-⎩故选: A 【点睛】本题考查集合的包含关系,考查元素的互异性,是基础题3.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集.对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选B. 【点睛】本小题主要考查子集的判断,考查恒成立问题和存在性问题的求解策略,属于基础题.4.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.5.B解析:B 【解析】 【分析】求得集合{|1A x x =<-或6}x >,{}|0B x x =>,根据集合运算,即可求解,得到答案. 【详解】由题意,集合{}2|560{|1A x x x x x =-->=<-或6}x >,{}{}|21|0x B x x x =>=>,则{}|16R C A x x =-≤≤,所以(){}|06R C A B x x =<≤.故选B . 【点睛】本题主要考查了集合的混合运算,其中解答中正确求解集合,A B ,结合集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.6.B解析:B 【解析】 【分析】解出集合A 、B ,再利用补集和交集的定义可得出集合()RA B .【详解】由2log 1x <,02x <<,{}02A x x ∴=<<.由210x -≥,得1x ≤-或1x ≥,则{}11B x x x =≤-≥或,{}11R B x x ∴=-<<, 因此,(){}01A B x x ⋂=<<R ,故选:B. 【点睛】本题考查交集和补集的混合运算,同时也考查了对数不等式以及函数定义域的求解,考查计算能力,属于中等题.7.C解析:C 【分析】首先确定B A ⊂,分B φ=和B φ≠两种情况讨论,求a 的取值范围. 【详解】B A B =B A ∴⊂,当B φ=时,332a a a -≥+⇒≤-; 当B φ≠时,3135a a a a -<+⎧⎪-≥⎨⎪+<⎩,312a ∴-<≤- , 综上:1a ≤-, 故选C. 【点睛】本题考查根据集合的包含关系,求参数取值范围,意在考查分类讨论的思想,属于基础题型.8.D解析:D 【分析】解绝对值不等式求得集合A ,解分式不等式求得集合B ,求得集合A 的补集,然后求此补集和集合B 的并集,由此得出正确选项. 【详解】由|31|2x -≥得312x -≤-或312x -≥,解得13x ≤-或1x ≥,故1,13R C A ⎛⎫=- ⎪⎝⎭.由201x x -≤-得()()12010x x x ⎧--≤⎨-≠⎩,解得12x <≤,所以()R C A B =1,1(1,2]3⎛⎫-⋃ ⎪⎝⎭.故选:D. 【点睛】本小题主要考查绝对值不等式的解法,考查分式不等式的解法,考查集合补集、并集的计算,属于基础题.9.B解析:B 【解析】 【分析】首先求解方程组3y x y x⎧=⎨=⎩,得到两曲线的交点坐标,进而可得答案.【详解】联立3y x y x⎧=⎨=⎩,解得1,0,1x =-即3y x =和y x =的图象有3个交点()11--,,()0,0,(11),, ∴集合A B 有3个元素,故选B.【点睛】本题考查了交集及其运算,考查了方程组的解法,是基础题.10.C解析:C 【分析】由B A ⊆,分B =∅和B ≠∅两种情况讨论,利用相应的不等式(组),即可求解. 【详解】由题意,集合{}25A x x =-≤≤,{}121B x m x m =+≤≤-,因为B A ⊆, (1)当B =∅时,可得121m m +>-,即2m <,此时B A ⊆,符合题意;(2)当B ≠∅时,由B A ⊆,则满足12121215m m m m +≤-⎧⎪-≤+⎨⎪-≤⎩,解得23m ≤≤,综上所述,实数m 的取值范围是3m ≤.故选:C. 【点睛】本题主要考查了了集合的包含关系求解参数的取值范围问题,其中解答中熟记集合件的基本关系,合理分类讨论列出方程组是解答的根据,着重考查分类讨论思想,以及运算能力.11.D解析:D 【分析】由题意得知关于x 的方程2210ax x --=只有一个实数解,分0a =和00a ≠⎧⎨∆=⎩两种情况讨论,可得出实数a 的值. 【详解】由题意得知关于x 的方程2210ax x --=只有一个实数解. 当0a =,{}12102A x x ⎧⎫=--==-⎨⎬⎩⎭,合乎题意; 当0a ≠时,则440a ∆=+=,解得1a =-. 综上所述:0a =或1-,故选D. 【点睛】本题考查集合的元素个数,本质上考查变系数的二次方程的根的个数,解题要注意对首项系数为零和非零两种情况讨论,考查分类讨论思想,属于中等题.12.D解析:D 【分析】先解方程得集合A ,再根据A B B =得B A ⊂,最后根据包含关系求实数a ,即得结果.【详解】{}2|8150{3,5}A x x x =-+==,因为AB B =,所以B A ⊂,因此,{3},{5}B =∅,对应实数a 的值为110,,35,其组成的集合的子集个数有328=,选D. 【点睛】本题考查集合包含关系以及集合子集,考查基本分析求解能力,属中档题.二、填空题13.【分析】由集合且求得得到且结合题意逐个验证即可求解【详解】由题意集合且可得则解得且当时满足题意;当时不满足题意;当时不满足题意;当时满足题意;当时满足题意;当时满足题意;综上可得集合故答案为:【点睛 解析:{1,2,3,4}-【分析】 由集合6|5M a a⎧=∈⎨-⎩N 且}a Z ∈,求得056a <-≤,得到15a -≤<且a Z ∈,结合题意,逐个验证,即可求解. 【详解】由题意,集合6|5M a a ⎧=∈⎨-⎩N 且}a Z ∈,可得65a∈-N ,则056a <-≤, 解得15a -≤<且a Z ∈, 当1a =-时,615(1)=∈--N ,满足题意;当0a =时,66505=∉-N ,不满足题意; 当1a =时,66514=∉-N ,不满足题意; 当2a =时,6252=∈-N ,满足题意; 当3a =时,6353=∈-N ,满足题意; 当4a =时,6654=∈-N ,满足题意; 综上可得,集合M ={1,2,3,4}-.故答案为:{1,2,3,4}-. 【点睛】本题主要考查了集合的表示方法,以及集合的元素与集合的关系,其中解答中熟记集合的表示方法,以及熟练应用元素与集合的关系,准确判定是解答的关键,着重考查了推理与运算能力,属于基础题.14.①④【分析】逐一验证几个选项是否分别满足融洽集的两个条件若两个条件都满足是融洽集有一个不满足则不是融洽集【详解】①对于任意非负整数则仍为非负整数即;取则故①符合题意;②对于任意偶数则仍为偶数即;但是解析:①④ 【分析】逐一验证几个选项是否分别满足“融洽集”的两个条件,若两个条件都满足,是“融洽集”,有一个不满足,则不是“融洽集” 【详解】①对于任意非负整数,a b ,则+a b 仍为非负整数,即a b G +∈;取0e =,则00a a a +=+=,故①符合题意;②对于任意偶数,a b ,则ab 仍为偶数,即ab G ∈;但是不存在e G ∈,使对一切a G ∈都有ae ea a ==,故②不符合题意;③对于G 是所有二次三项式组成的集合,若,a b G ∈,ab 不再是二次三项式,故③不符合题意;④对于{|,}G x x a a b Q ==+∈,设1x a =+2x c =+,则()(122x x ac bd ad bc ⋅=+++,即12x x G ⋅∈;取1e =,则11a a a ⨯=⨯=,故④符合题意,故答案为:①④ 【点睛】本题考查对新定义“融洽集”的理解,考查理解分析能力15.【分析】先解一元二次不等式得集合A 再解含绝对值不等式得集合B 最后求交集得结果【详解】因为所以故答案为:【点睛】本题考查解一元二次不等式解含绝对值不等式以及集合交集考查基本分析求解能力属基础题 解析:(]1,1-【分析】先解一元二次不等式得集合A ,再解含绝对值不等式得集合B,最后求交集得结果. 【详解】因为{}2|20(1,2)A x x x x R =--<∈=-,,{}|21(,1][3,)B x x x R =-∈=-∞+∞≥,, 所以A B =(]1,1-故答案为:(]1,1- 【点睛】本题考查解一元二次不等式、解含绝对值不等式以及集合交集,考查基本分析求解能力,属基础题.16.【分析】根据集合的并集和集合的交集得到关于的不等式组解出即可【详解】解:若且则解得即故答案为:【点睛】本题考查了集合的交集并集的定义属于基础题 解析:[6,8)-【分析】根据集合的并集和集合的交集得到关于m 的不等式组,解出即可. 【详解】解:{|68}A x x =-,{|}B x x m =, 若AB B ≠且A B ⋂≠∅,则68m m -⎧⎨<⎩,解得68m -≤<,即[)6,8m ∈- 故答案为:[)6,8-. 【点睛】本题考查了集合的交集、并集的定义,属于基础题.17.或【分析】根据讨论方程解的情况即得结果【详解】时满足题意;时要满足题意需综上的取值范围是或故答案为:或【点睛】本题考查根据集合元素个数求参数考查基本分析求解能力属中档题解析:{0a a =或}1a ≥ 【分析】根据a 讨论2210ax x ++=方程解的情况,即得结果 【详解】0a =时,21212102ax x x x ++=+=∴=-,12A ⎧⎫=-⎨⎬⎩⎭满足题意;0a ≠时,要满足题意,需4401a a ∆=-≤∴≥综上a 的取值范围是{0a a =或}1a ≥ 故答案为:{0a a =或}1a ≥ 【点睛】本题考查根据集合元素个数求参数,考查基本分析求解能力,属中档题.18.672【分析】在所有的子集中每个元素出现的次数都是个由此能求出结果【详解】在所有的子集中每个元素出现的次数都是个的所有非空子集的容量之和为故答案为:672【点睛】本题主要考查学生的对新定义的分析和解解析:672 【分析】在S 所有的子集中,每个元素出现的次数都是52个,由此能求出结果. 【详解】在S 所有的子集中,每个元素出现的次数都是52个,S ∴的所有非空子集的“容量”之和为5(123456)672+++++=2故答案为:672 【点睛】本题主要考查学生的对新定义的分析和解决的能力,主要考查了转化与划归的思想.19.【分析】由题意分类讨论实数xyz 的符号列表求解所给式子的值然后确定其值组成的集合即可【详解】分类讨论xyz 的符号列表求值如下:x y z 计算结果 大于零 大于零 大于零 1 1 1 1 解析:{}5,1,1,3--【分析】由题意分类讨论实数x ,y ,z 的符号列表求解所给式子的值,然后确定其值组成的集合即可. 【详解】分类讨论x ,y ,z 的符号列表求值如下:据此可得:x y z xy xyz++++的所有可能值组成的集合表示为{}5,1,1,3--. 故答案为:{}5,1,1,3--. 【点睛】本题主要考查分类讨论的数学思想,集合中元素的互异性等知识,意在考查学生的转化能力和计算求解能力.20.【分析】根据题意得出则则有可得出由此得出然后求出实数的值于是可得出的值【详解】由于有意义则则有所以根据题意有解得因此故答案为【点睛】本题考查利用集合相等求参数的值解题的关键就是根据题意列出方程组求解 解析:2【分析】根据题意得出0a ≠,则a b b +≠,则有0a b +=,可得出1ba=-,由此得出10b a b b a a ⎧⎪=⎪+=⎨⎪⎪=⎩,然后求出实数a 、b 的值,于是可得出b a -的值. 【详解】{}1,,0,,b a b a b a ⎧⎫+=⎨⎬⎩⎭,由于b a -有意义,则0a ≠,则有0a b +=,所以,1ba -=-.根据题意有10b a b ba a ⎧⎪=⎪+=⎨⎪⎪=⎩,解得11a b =-⎧⎨=⎩,因此,()112b a -=--=.故答案为2. 【点睛】本题考查利用集合相等求参数的值,解题的关键就是根据题意列出方程组求解,考查运算求解能力,属于中等题.三、解答题21.(1)4m ≥;(2)2m ≤. 【分析】(1)根据已知条件得集合A 是B 的真子集,由此可得答案;(2)由于A B B =,故B 是A 的子集,分两种情况,分别列不等式求得m 的取值范围.【详解】(1) 由x A ∈是x B ∈的充分不必要条件,所以AB ,13324m m -≤-⎧⎨-≥⎩等号不同时成立得4m ≥ ∴实数m 的取值范围为4m ≥ (2)由题意知B A ⊆ 当B =∅,3132,4m m m ->-<当B ≠∅,13324132m m m m -≥-⎧⎪-≤⎨⎪-≤-⎩,324m ≤≤综上所述:实数m 的取值范围为2m ≤. 【点睛】本题主要考查集合的运算,根据包含关系求参数的取值范围,属于基础题. 22.(1){}12x x <<;(2)12m ≤≤ 【分析】(1)解不等式,可求出集合,A B ,进而求出二者的交集即可;(2)结合(1),由()A B C ⋂⊆,可得{}12x x <<⊆{}11x m x m -<<+,进而可列出不等关系,求解即可. 【详解】 (1)由2212x x +<-,得402x x +<-,等价于()()420x x +-<,解得42x -<<, 所以集合{}42A x x =-<<,由254x x >-,解得1x >或5x <-,所以{1B x x =>或}5x <-,所以AB ={}42x x -<<{1x x >或}5x <-{}12x x =<<.(2)因为()A B C ⋂⊆,所以{}12x x <<⊆{}1,x x m m -<∈R , 即{}12x x <<⊆{}11x m x m -<<+,所以1112m m -≤⎧⎨+≥⎩,解得12m ≤≤.综上所述,实数m 的取值范围是12m ≤≤.【点睛】本题考查分式不等式、一元二次不等式的解法,考查集合的交集,考查根据集合的包含关系求参数,考查学生的推理能力与计算求解能力,属于中档题.23.(1){}|27A B x x ⋃=-≤<;(2)若选择①(]1,41,2⎡⎤-∞--⎢⎥⎣⎦;若选择②[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦.【分析】(1)当a =2时,得出集合A ,求得集合B ,根据集合的并集运算可得答案; (2)若选择①A B A =,则A B ⊆,分集合A 是空集和不是空集两种情况讨论得实数a的取值范围; 若选择②()R AC B A =,则A 是RB 的子集,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围; 若选择③A B =∅,分集合A 是空集和不是空集两种情况讨论得实数a 的取值范围.【详解】(1)当a =2时,集合{}|17A x x =<<,{}|24B x x =-≤≤,所以{}|27A B x x ⋃=-≤<;(2)若选择①A B A =,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得112a -≤≤;综上知:实数a 的取值范围(]1,41,2⎡⎤-∞--⎢⎥⎣⎦; 若选择②()R AC B A =,则A 是RB 的子集,(,2)(4,)R B =-∞-⋃+∞,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥,综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;若选择③A B =∅,当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩,或414a a >-⎧⎨-≥⎩,解得542a -<≤-或5a ≥,综上知:实数a 的取值范围[)5,5,2⎛⎤-∞-+∞ ⎥⎝⎦;【点睛】易错点睛:本题容易忽略集合A 是空集的情况,导致出错:空集是任何集合的子集,是任何非空集合的真子集.24.(1)[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,5,32⎛⎫- ⎪⎝⎭;(2)[)3,+∞.【分析】(1)若1k =,化简集合B ,利用补集和并集的定义进行计算可得答案; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,分52k <-,52k =-和52k >-分别求出集合B ,列出不等式可得实数k 的取值范围.【详解】(1)若1k =,{}25|2350|12B x x x x x ⎧⎫=+-<=-<<⎨⎬⎩⎭则R B =[)5,1,2⎛⎤-∞-⋃+∞ ⎥⎝⎦,A B =5,32⎛⎫- ⎪⎝⎭; (2)“x A ∈”是“x B ∈”的充分不必要条件,则集合A 是集合B 的真子集,(){}()(){}2|25250|250B x x k x k x x k x =+--<=-+<当52k <-时,5,2B k ⎛⎫=- ⎪⎝⎭,不合题意;当52k =-时,B φ=,不合题意; 当52k >-时,5,2B k ⎛⎫=- ⎪⎝⎭,只需3k ≥; 综上可得:实数k 的取值范围是[)3,+∞. 【点睛】结论点睛:本题考查集合的交并补运算,考查充分不必要条件的应用,一般可根据如下规则判断:(1)若p 是q 的必要不充分条件,则q 对应集合是p 对应集合的真子集; (2)p 是q 的充分不必要条件, 则p 对应集合是q 对应集合的真子集; (3)p 是q 的充分必要条件,则p 对应集合与q 对应集合相等;(4)p 是q 的既不充分又不必要条件, q 对的集合与p 对应集合互不包含. 25.(1){|2A x x a =>+或1}x a <-;(2)不存在;理由见解析;(3)01a <<. 【分析】(1)解一元二次不等式能求出集合A . (2)由AB R =,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,得到不存在实数a ,使得A B R =.(3)由AB ≠∅,根据2{|}B a a x a =<<和2{|}B a a x a =<<分类讨论,能求出实数a的取值范围. 【详解】解:(1)不等式2(21)(2)(1)0x a x a a -+++->可化为[(2)][(1)]0x a x a -+-->,解得1x a <-或2x a >+,所以不等式的解集为{|1A x x a =<-或2}x a >+; (2)当0a =时,不等式2()()0x a x a --<化为20x <,此时不等式无解, 当0a <时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<, 当01a <<时,2a a <,不等式2()()0x a x a --<的解集为2{|}x a x a <<, 当1a =时,2a a =,不等式2()()0x a x a --<化为2(10)x -<,此时不等式无解, 当1a >时,2a a >,不等式2()()0x a x a --<的解集为2{|}x a x a <<, 综上所述:当0a =或1a =时,B =∅, 当0a <或1a >时,2{|}B x a x a =<<, 当01a <<时,2{|}B x a x a =<<, 要使AB R =,当2{|}B a a x a =<<时,2a a >,2a x a <<,1a a - 或22a a +,无解, 当2{|}B a a x a =<<时,2a a <,2a x a <<,2a a +,21a a =-,无解, 故不存在实数a ,使得A B R =.(3)AB ≠∅,∴当2{|}B a a x a =<<时,1a a -<,或22a a +>,即220a a --<,解得10a -<< 或12a <<,此时实数a 的取值范围是(1-,0)(1⋃,2),当2{|}B a a x a =<<时,21a a -<或2a a +>,即210a a -+>, 解得01a <<,此时,实数a 的取值范围是(0,1). 【点睛】本题考查含参一元二次不等式的解法,解含参一元二次不等式需分类讨论,首先判断二次项系数是否为零,再对所对应的一元二次方程的根进行分类讨论; 26.(1){a|a≤7};(2){a|a <6或a >152} 【分析】(1)根据A∩B=∅,可得-1≤2a+1≤x≤3a -5≤16,解不等式可得a 的取值范围;(2)由A ⊆(A∩B )得A ⊆B ,分类讨论,A =∅与A≠∅,分别建立不等式,即可求实数a 的取值范围 【详解】(1)若A =∅,则A∩B =∅成立. 此时2a +1>3a -5, 即a <6.若A≠∅,则2135{2113516a aaa+≤-+≥--≤解得6≤a≤7.综上,满足条件A∩B=∅的实数a的取值范围是{a|a≤7}.(2)因为A⊆(A∩B),且(A∩B)⊆A,所以A∩B=A,即A⊆B.显然A=∅满足条件,此时a<6.若A≠∅,则2135{351a aa+≤--<-或2135{2116a aa+≤-+>由2135{351a aa+≤--<-解得a∈∅;由2135{2116a aa+≤-+>解得a>152.综上,满足条件A⊆(A∩B)的实数a的取值范围是{a|a<6或a>152}.考点:1.集合关系中的参数取值问题;2.集合的包含关系判断及应用。

高中必修一集合测试题(含答案)

高中必修一集合测试题(含答案)

集合单元测试姓名: 得分:一.填空题(每题5分,共70分)1.已知集合{1378},{2368}A B ==,,,,,,,则A B = .2.集合2{4,,}A y y x x N y N ==-+∈∈的真子集的个数为 .3.如果集合2{|210}A x ax x =++=中只有一个元素,则a 的值是 .4.设S 是全集,集合M P 、是它的子集,则图中阴影部分可表示为 .5.已知含有三个元素的集合2{,,1}{,,0},b a a a b a=+则20042005=a b + . 6.设集合{|12},B {|}A x x x x a =<<=<,且A B ⊆,则实数a 取值范围是 .7.已知2{1,},{1,}M y y x x R P x x a a R ==-∈==-∈,则集合M P 与的关系是8.已知集合2{|230}P x x x =--=,{|20}S x ax =+=,若S P ⊆,则实数a 的取值集合为 .9.已知集合2{10},A x x =+=若A R ⋂=∅,则实数m 的取值范围是 .10.定义集合运算{|(),,}A B z z xy x y x A y B ⊗==+∈∈,设A={0,1},B={2,3},则集合A B ⊗中所有元素之和为 .11.集合A B 、各有两个元素,A B 中有一个元素,若集合C 同时满足:(1) ⊆⋃C (A B),(2)⊇⋂C (A B),则满足条件C 的个数为 .12.设全集{(,),},I x y x y R =∈集合3{(,)1},{(,)1}2y M x y N x y y x x -===≠+-,那么()()=I I C M C N ⋂ .13.设{123456}U =,,,,,,若{2},(C ){4},(C )(C ){15}U U U A B A B A B ===,,则A = .14.已知集合31{|},{|}43M x m x m N x n x n =≤≤+=-≤≤,且M 、N 都是集合{|01}x x ≤≤的子集合,如果把b a -叫做集合{|}x a x b ≤≤的“长度”,那么集合M N⋂的“长度”最小值为 .二.解答题(15-17题每题14分,18-20题每题16分,共90分)15. 已知集合2{|0}5x A x x -=≤+,{|(1)(3)0}B x x x =-->,U R = (1)求A B ;(2)求)U A C B (16.设集合2{1,2,},{1,}A a B a a ==-,若A B ⊇求实数a 的值.17. 已知22{|320},{|410}A x x x B x mx x m =++≥=-+->,若A B φ=,A B A =,求m 的取值范围.18. 在全国高中数学联赛第二试中只有三道题,已知(1)某校25个学生参加竞赛,每个学生至少解出一道题;(2)在所有没有解出第一题的学生中,解出第二题的人数是解出第三题的人数的2倍;(3)只解出第一题的学生比余下的学生中解出第一题的人数多1;(4)只解出一道题的学生中,有一半没有解出第一题,问共有多少学生只解出第二题?19. 集合22{|190}A x x ax a =-+-=,22{|560},C {|280}B x x x x x x =-+==+-=(1)若A B A B =,求a 的值;(2)若AB φ≠,AC φ=,求a 的值20.对于整数,a b ,存在唯一一对整数0||q r r b ≤<和,.特别地,当0r =时,称b 能整除a ,记作|b a ,已知{123,23}A =,,,(1)存在q A ∈,使得2011=91(091)q r r +≤<,试求,q r 的值;(2)若,()12,((B A C a r d B C a r d B ⊆=指集合B 中的元素的个数),且存在,,|a b B b a b a ∈<,,则称B 为“和谐集”.请写出一个含有元素7的“和谐集”0B 和一个含有元素8的非“和谐集”C ,并求最大的m A ∈,使含m 的集合A 有12个元素的任意子集为“和谐集”,并说明理由。

高一数学集合测试题(含答案)

高一数学集合测试题(含答案)

高一数学集合测试题(含答案)一、单选题:1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则C(I-A)∪C(I-B)= {0}2.方程组 { 2x-3y=1.x-y=3 } 的解的集合是 {8.5}3.有下列四个命题:①∅是空集;②若a∈Z,则−a∉N;③集合A={x∈R|x^2-2x+1=0}是有两个元素;④集合B={x∈Q|x∈N}是有限集。

其中正确命题的个数是 24.如果集合A={x|ax^2+2x+1=0}中只有一个元素,则a的值是 15.已知 M={y|x^2-4≤y≤x≤2},P={x|-2≤x≤2},则M∩P={-2.-1.0.1.2}6.已知全集I=N,集合A={x| x=2n,n∈N},B={x| x=4n,n∈N},则 I=A∪B7.设集合M={x|x=k1/k2,k∈Z},N={x|x=k1/k2+1/2,k∈Z},则 M⊂N8.设集合A={x|1<x<2},B={x|x<a}满足A⊂B,则实数a的取值范围是(2.+∞)9.满足{1,2,3}⊂M⊂{1,2,3,4,5,6}的集合M的个数是 810.如右图所示,I为全集,M、P、S为I的子集。

则阴影部分所表示的集合为(M∩P)∪S二、填空题:11.已知 A={y|y=x^2+1,x∈R,y∈R},全集U=R,则C(A)=R-A={y|y≤0}12.已知 M={a,b},N={b,c,d},若集合P满足P⊆N,M∩P=∅,则 P={c。

d}13.设全集U={a,b,c,d,e},A={a,c,d},B={b,d,e},则∁(A∩∁B)={b,e}14.已知 $x|x^2+2013\cdot(a+2)x+a^2-4|=|x-a-2||x+a+2|$,则$a=-2$。

15.已知集合 $A=\{x|-1<x<3\}$,$A\cap B=\varnothing$,$A\cup B=\mathbb{R}$,求集合 $B=\{x|x\leq -1\text{ 或 }x\geq 3\}$。

高中数学集合测试题(含答案和解析)

高中数学集合测试题(含答案和解析)

集合测试题请认真审题,仔细作答,发挥出自己的真实水平!一、单项选择题 :1.设集合,则( ) A .{75}x x -<<-∣ B .{35}xx <<∣ C .{53}xx -<<∣ D .{|75}x x -<< 【答案】C【解析】考点:其他不等式的解法;交集及其运算.分析:由绝对值的意义解出集合S ,再解出集合T ,求交集即可.解答:由{|55}S x x =-<<,{|73}T x x =-<<故{|53}ST x x =-<<, 故选C2.已知集合,则集合等于( )A .{-1,1}B .{-1,0,1}C .{0,1}D .{-1,0}【答案】 A3.若集合,且,则实数m 的可取值组成的集合是( )A .B .C .D . {}()(){}5,730S x x T x x x =<=+-<S T ⋂={}}{Z n n x x N x x M ∈+==<-=,12,042N M ⋂{}{}260,10P x x x T x mx =+-==+=T P ⊆11,32⎧⎫-⎨⎬⎩⎭13⎧⎫⎨⎬⎩⎭11,,032⎧⎫-⎨⎬⎩⎭12⎧⎫-⎨⎬⎩⎭C4.若{1,2}A {1,2,3,4,5}则满足条件的集合A 的个数是( )A .6B .7C .8D .9【答案】C5.设P={x|x ≤8},,则下列关系式中正确的是( ).A .a PB .a PC .{a}PD .{a}P【答案】D6.已知集合{}(){}1,2,3,4,5,,,,A B x y x A y A x y A ==∈∈-∈,则B 中所含元素的个数为( )A .3B .6C . 8D .10 【答案】 D【解析】考点:元素与集合关系的判断.专题:计算题.分析:由题意,根据集合B 中的元素属性对x ,y 进行赋值得出B 中所有元素,即可得出B 中所含有的元素个数,得出正确选项解答:解:由题意,x=5时,y=1,2,3,4,x=4时,y=1,2,3,x=3时,y=1,2,⊆⊆⊆∉∈⊂综上知,B中的元素个数为10个故选D点评:本题考查元素与集合的关系的判断,解题的关键是理解题意,领会集合B中元素的属性,用分类列举的方法得出集合B中的元素的个数7.已知集合A={x|x2-x-2<0},B={x|-1<x<1},则()A.A B B.B A C.A=B D.A∩B=【答案】B【解析】考点:集合的包含关系判断及应用.专题:计算题.分析:先求出集合A,然后根据集合之间的关系可判断解答:解:由题意可得,A={x|-1<x<2} ∵B={x|-1<x<1}在集合B中的元素都属于集合A,但是在集合A中的元素不一定在集合B中,例如x=3/2∴B A故选B点评:本题主要考查了集合之间关系的判断,属于基础试题8.不等式﹣x2﹣5x+6≤0的解集为()【答案】D【解析】考点:一元二次不等式的解法。

(好题)高中数学必修一第一单元《集合》测试卷(有答案解析)

(好题)高中数学必修一第一单元《集合》测试卷(有答案解析)

一、选择题1.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃2.由实数x ,﹣x ,|x | ) A .2个 B .3个C .4个D .5个3.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( )A .-3或-1或2B .-3或-1C .-3或2D .-1或24.已知集合A 、B 均为非空集合,定义{*|()A B x x A B =∈⋃且}()x A B ∉⋂,若{}1,0,1,2,3A =-,{}2|1,B x x t t A ==+∈,则集合*A B 的子集共( )A .64个B .63个C .32个D .31个5.已知区间1[,]3A m m =-和3[,]4B n n =+均为[]0,1的子区间,定义b a -为区间[],a b 的长度,则当A B 的长度达到最小时mn 的值为( )A .0B .112C .0或112D .0或16.已知集合()1lg 12A x x ⎧⎫=-<⎨⎬⎩⎭,{}22940B x x x =-+≥,则()RA B 为( )A .()1,4B .1,42⎛⎫⎪⎝⎭C .(4,1D .(1,1+7.已知{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈.定义集合{}12121122(,)(,),(,),A B x x y y x y A x y B ⊕=++∈∈,则A B ⊕的元素个数n 满足( ) A .77n =B .49n ≤C .64n =D .81n ≥8.集合{}*|421A x x N =--∈,则A 的真子集个数是( ) A .63B .127C .255D .5119.设集合{}2110P x x ax =++>,{}2220P x x ax =++>,{}210Q x x x b =++>,{}2220Q x x x b =++>,其中a ,b ∈R 下列说法正确的是( ) A .对任意a ,1P 是2P 的子集;对任意的b ,1Q 不是2Q 的子集 B .对任意a ,1P 是2P 的子集;存在b ,使得1Q 是2Q 的子集C .存在a ,使得1P 不是2P 的子集;对任意的b ,1Q 不是2Q 的子集D .存在a ,使得1P 不是2P 的子集;存在b ,使得1Q 是2Q 的子集10.已知集合22{|,N ,N}A t t m n m n = =+ ∈ ∈,且x A ∈,y A ,则下列结论中正确的是( ) A .x y A +∈ B .x y A -∈ C .xy A ∈D .xA y∈ 11.集合{}{}A x||x-a|<1,x R ,|15,.A B B x x x R =∈=<<∈⋂=∅若,则实数a 的取值 范围是( ) A .{}a |0a 6≤≤ B .{}|24a a a ≤≥或C .{}|06a a a ≤≥或D .{}|24a a ≤≤12.已知集合{}{}21239A B x x ==<,,,,则A B =( )A .{}210123--,,,,,B .{}21012--,,,, C .{}123,, D .{}12, 二、填空题13.已知集合2|05x A x x -⎧⎫=<⎨⎬+⎩⎭,{}2230,B x x x x R =--≥∈,则A B =_________. 14.集合1{}2|Ax x ≤=<,{|}B x x a =<,若A B B ⋃=,则a 的取值范围是_______.15.若规定集合{}()*12,,,n M a a a n N=⋅⋅⋅∈的子集{}()12*,,,mi i i a aa m N ⋅⋅⋅∈为M 的第k个子集,其中12111222m i i i k ---=++⋅⋅⋅+,则M 的第25个子集是______.16.已知点H 是正三角形ABC 内部一点,HAB ∆,HBC ∆,HCA ∆的面积值构成一个集合M ,若M 的子集有且只有4个,则点H 需满足的条件为________.17.若规定{}1210E a a a =⋯,,,的子集{}12,,n k k k a a a 为E 的第k 个子集,其中12111222n k k k k ---=++⋯+,则E 的第211个子集是____________. 18.若关于x 的方程2210ax x ++=的解集有唯一子集 ,则实数a 的取值范围是_____. 19.已知{}2|340,{|10}A x x x B x ax a =+-==-+=,且B A ⊆,则所有a 的值所构成的集合M =_________.20.若集合2{320}A x ax x =++=中至多有一个元素,则a 的取值范围是__________.三、解答题21.已知集合A ={x |3<x <7},B ={x |4<x ≤10},C ={x ||x -a |>2}. (1)求A ∪B 与RR ()()A B ⋂(2)若A ∩B ⊆C ,求a 的取值范围.22.已知集合{|A x y ==,{}22|60B x x ax a =--<,其中0a ≥.(1)当1a =时,求集合A B ⋃,()R C A B ⋂; (2)若()R C A B B ⋂=,求实数a 的取值范围. 23.在①A ∩B =A ,②A ∩(R B )=A ,③A ∩B =∅ 这三个条件中任选一个,补充到下面的问题中,求解下列问题:已知集合{|123}A x a x a =-<<+,{}2|280B x x x =--≤. (1)当2a =时,求A ∪B ; (2)若______,求实数a 的取值范围.注:如果选择多个条件分别解答按第一个解答计分.24.已知集{}28A x x =≤≤,{}26B x x m =≤≤-,{}112C x m x m =-≤≤+,U =R .(1)若()UA B =∅,求m 的取值范围; (2)若BC ≠∅,求m 的取值范围.25.设全集U =R ,函数2lg(4+3)y x x =-的定义域为A ,函数3[0]1y x m x =∈+,,的值域为B .(1)当4m =时,求UB A ;(2)若“Ux A ∈”是“x B ∈”的必要不充分条件,求实数m 的取值范围.26.已知不等式()210x a x a -++≤的解集为A . (1)若2a =,求集合A ;(2)若集合A 是集合{}4|2x x -≤≤的真子集,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.2.A解析:A 【分析】根据绝对值的定义和开平方、立方的方法,应对x 分0,0,0x x x >=<三种情况分类讨论,根据讨论结果可得答案. 【详解】当0x >时,0x x x ===-<,此时集合共有2个元素,当0x =时,0x x x ====-=,此时集合共有1个元素,当0x <时,0x x -===>,此时集合共有2个元素,综上所述,此集合最多有2个元素. 故选:A . 【点睛】本题考查了元素与集合关系的判断及根式的化简求值,其中解答本题的关键是利用分类讨论思想,对x 分三种情况进行讨论,是基础题.3.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.4.C解析:C 【分析】先求集合B ,再求并集、交集、补集,最后根据元素确定子集个数. 【详解】因为{}2|1,{1,2,5,10}B x x t t A ==+∈=, 所以{}{}1,0,1,2,3510,1,2,AB A B =-=,,*{1,0,3,5,10}A B ∴=-因此集合*A B 的子集有5232=个, 故选:C 【点睛】本题考查并集、交集、补集定义以及子集个数,考查综合本分析求解能力,属基础题.5.C解析:C 【分析】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时AB 的长度最小,解出方程组即可得结果.【详解】由于这两个集合都是区间[]0,1的子集,根据区间长度的定义可得当103314m n ⎧-=⎪⎪⎨⎪+=⎪⎩或10m n =⎧⎨=⎩时A B 的长度最小,解得1314m n ⎧=⎪⎪⎨⎪=⎪⎩或10m n =⎧⎨=⎩,即112mn =或0,故选C. 【点睛】本题主要考查集合的表示方法,两个集合的交集的定义,充分理解区间长度的定义是解题的关键,属于中档题.6.A解析:A 【分析】解对数不等式求得集合A ,解一元二次不等式求得RB ,由此求得()RAB【详解】 由于()1lg 12x -<=所以{(011,1A x x =<-<=+, 依题意{}2R2940B x x x =-+<,()()22944210x x x x -+=--<,解得142x <<,即R 1,42B ⎛⎫= ⎪⎝⎭,所以()()R1,4A B ⋂=.故选:A 【点睛】本小题主要考查集合交集和补集的运算,考查对数不等式和指数不等式的解法,属于中档题.7.A解析:A 【分析】先理解题意,然后分①当11x =±,10y =时,②当10x =,11y =±时, ③当10x =,10y =时,三种情况讨论即可. 【详解】解:由{}22(,)1,,A x y x y x Z y Z =+≤∈∈,{}(,)3,3,,B x y x y x Z y Z =≤≤∈∈, ①当11x =±,10y =时, 124,3,2,1,0,1,2,3,4x x +=----,123,2,1,0,1,2,3y y +=---,此时A B ⊕的元素个数为9763⨯=个,②当10x =,11y =±时, 123,2,1,0,1,2,3x x +=---,124,3,2,1,0,1,2,3,4y y +=----,这种情况和第①种情况除124,4y y +=-外均相同,故新增7214⨯=个, ③当10x =,10y =时, 123,2,1,0,1,2,3x x +=---,123,2,1,0,1,2,3y y +=---,这种情况与前面重复,新增0个,综合①②③可得:A B ⊕的元素个数为6314077++=个, 故选:A. 【点睛】本题考查了元素与集合关系的判断,重点考查了计数原理的应用,属中档题.8.B解析:B 【分析】先求得{}*|421A x x N =--∈的元素个数,再求真子集个数即可.【详解】由{}*|421A x x N=--∈,则421x --为正整数.则21x -可能的取值为0,1,2,3,故210,1,2,3x -=±±±,故x 共7个解.即{}*|421A x x N =--∈的元素个数为7故A 的真子集个数为721127-= 故选:B 【点睛】本题主要考查集合中元素个数的求解与知识点:元素个数为n 的集合的真子集有21n -个.属于基础题型.9.B解析:B 【分析】先证得1P 是2P 的子集,然后求得b 使1Q 是2Q 的子集,由此确定正确选项.【详解】对于1P 和2P ,由于210x ax ++>时222110x ax x ax ++=+++>,所以1P 的元素,一定是2P 的元素,故对任意a ,1P 是2P 的子集;对于1Q 和2Q ,根据判别式有140440b b -<⎧⎨-<⎩,即1b >时,12Q Q R ==,满足1Q 是2Q 的子集,也即存在b ,使得1Q 是2Q 的子集. 故选: B. 【点睛】方法点睛:该题主要考查子集的判断,解题方法如下:(1)利用子集的概念,可以判断出1P 的元素,一定是2P 的元素,得到对任意a ,1P 是2P 的子集;(2)利用R 是R 的子集,结合判别式的符号,存在实数1b >时,有12Q Q R ==,得到结果.10.C解析:C 【分析】 设22x m n =+,22N,N N,,,N n b b ya ma ,再利用22()()xy ma nb mb na =++-,可得解.【详解】 由x A ∈,yA ,设22x m n =+,22N,N N,,,N n b b y a m a ,所以22222222222222()()()()xy m n a b m a m b n a n b ma nb mb na =++=+++=++-, 且N,N ma nb mb na +-∈∈, 所以xy A ∈, 故选:C. 【点睛】关键点点睛,本题的解题关键是2222222222()()m a m b n a n b ma nb mb na +++=++-,另外本题可以通过列举法得到集合的一些元素,进而排除选项可得解.11.C解析:C|x-a|<1,∴a-1<x<a+1,∵A∩B=∅. ∴a-1≥5或a+1≤1,即a≤0或a≥6.故选C.12.D解析:D 【解析】 【分析】先求出集合B ,然后与集合A 取交集即可. 【详解】由题意,{}{}2933B x x x x =<=-<<,则{}1,2A B =.故答案为D. 【点睛】本题考查了集合的交集,考查了不等式的解法,考查了学生的计算能力,属于基础题.二、填空题13.【分析】分别根据分式不等式和一元二次不等式的解法求出集合和再根据交集的定义求出【详解】∵集合∴故答案为【点睛】本题考查集合的交集的运算解题时要认真审题注意分式不等式和一元二次不等式的合理运用是基础题解析:(]5,1--. 【分析】分别根据分式不等式和一元二次不等式的解法求出集合A 和B ,再根据交集的定义求出A B ⋂.【详解】 ∵集合2{|0}{|52}5x A x x x x -=<=-<<+, 2{|230}{|13}B x x x x R x x x =--≥∈=≤-≥,或,∴{|51}A B x x ⋂=-<≤-,故答案为(]5,1--. 【点睛】本题考查集合的交集的运算,解题时要认真审题,注意分式不等式和一元二次不等式的合理运用,是基础题.14.【分析】根据可知A 为B 的子集利用数轴求解即可【详解】根据题意作图如下:由图可知实数的取值范围为【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题常考题型 解析:2a >【分析】根据A B B ⋃=,可知A 为B 的子集,利用数轴求解即可.根据题意,作图如下:由图可知,实数a 的取值范围为2a >. 【点睛】本题考查利用集合的并运算求参数的取值范围;数轴的合理运用是求解本题的关键;属于中档题、常考题型.15.【分析】根据子集的定义将表示为求出即可求解【详解】的第25个子集是故答案为:【点睛】本题考查新定义的理解认真审题领会题意是关键属于中档题 解析:{}145,,a a a【分析】根据子集的定义将25表示为1211125222m i i i ---=++⋅⋅⋅+,求出12,m i i i ,即可求解【详解】03411415125222222---=++=++,1231,4,5i i i ===,M 的第25个子集是{}145,,a a a ,故答案为:{}145,,a a a . 【点睛】本题考查新定义的理解,认真审题,领会题意是关键,属于中档题.16.在的三条高上且不为重心【分析】由题意知若集合的子集只有个则集合有个元素可得出三个三角形的面积有两个相等分析点的位置即可得出结论【详解】若集合的子集只有个则集合有个元素是等边内部一点三个三角形的面积值解析:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【分析】由题意知,若集合M 的子集只有4个,则集合M 有2个元素,可得出HAB ∆,HBC ∆,HCA ∆三个三角形的面积有两个相等,分析点H 的位置,即可得出结论. 【详解】若集合M 的子集只有4个,则集合M 有2个元素,M 是等边ABC ∆内部一点, HAB ∆,HBC ∆,HCA ∆三个三角形的面积值构成集合M , 故HAB ∆,HBC ∆,HCA ∆三个三角形的面积有且只有两个相等.若HAB ∆,HBC ∆的面积相等,则点H 在边AC 的高上且不为ABC ∆的重心; 若HBC ∆,HCA ∆的面积相等,则点H 在边AB 的高上且不为ABC ∆的重心;若HAB ∆,HCA ∆的面积相等,则点H 在边BC 的高上且不为ABC ∆的重心. 综上所述,点H 在等边ABC ∆的三条高上且不为ABC ∆的重心. 故答案为:H 在ABC ∆的三条高上且H 不为ABC ∆重心 【点睛】本题考查子集的个数与元素个数之间的关系,根据已知条件得出集合元素的个数是解题的关键,考查推理能力,属于中等题.17.【分析】根据题意分别讨论的取值通过讨论计算的可能取值即可得出答案【详解】而的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含此时的第个子集包含的第个子集是故答案为:【点睛】本题主要 解析:{}12578,,,,a a a a a【分析】根据题意,分别讨论2n 的取值,通过讨论计算n 的可能取值,即可得出答案. 【详解】72128211=<,而82256211=>,E ∴的第211个子集包含8a ,此时21112883-=,626483=<,7212883=>,E ∴的第211个子集包含7a ,此时836419-=,421619=<,523219=>,E ∴的第211个子集包含5a ,此时19163-=,1223=<,2243=>,E ∴的第211个子集包含2a ,此时321-=,021=E ∴的第211个子集包含1a ,E ∴的第211个子集是{}12578,,,,a a a a a .故答案为:{}12578,,,,a a a a a 【点睛】本题主要考查了与集合有关的信息题,理解条件的定义是解决本题的关键.18.【分析】由题意知关于的方程无实数解可得出由此可解出实数的取值范围【详解】由题意知关于的方程无实数解当时原方程为解得不合乎题意;当时则有解得综上所述实数的取值范围是故答案为:【点睛】本题考查利用集合的 解析:()1,+∞【分析】由题意知,关于x 的方程2210ax x ++=无实数解,可得出00a ≠⎧⎨∆<⎩,由此可解出实数a 的取值范围.【详解】由题意知,关于x 的方程2210ax x ++=无实数解.当0a =时,原方程为210x +=,解得12x =-,不合乎题意; 当0a ≠时,则有440a ∆=-<,解得1a >.综上所述,实数a 的取值范围是()1,+∞.故答案为:()1,+∞.【点睛】本题考查利用集合的子集个数求参数,将问题转化为方程无实解是解题的关键,考查分类讨论思想的应用,属于中等题.19.【分析】计算根据得到四种情况分别计算得到答案【详解】当时:此时;当时:解得;当时:解得;当时:无解;综上所述:故答案为:【点睛】本题考查了根据集合关系求参数忽略掉空集是容易发生的错误 解析:110,,23⎧⎫-⎨⎬⎩⎭【分析】计算{}1,4A =-,根据B A ⊆得到B =∅,{}1B =,{}4B =-,{}1,4B =-四种情况,分别计算得到答案.【详解】{}{}2|3401,4A x x x =+-==-,B A ⊆当B =∅时:{|10}B x ax a =-+==∅,此时0a =;当{}1B =时:{}{|10}1B x ax a =-+==,解得12a =; 当{}4B =-时:{}{|10}4B x ax a =-+==-,解得13a =-;当{}1,4B =-时:{}{|10}1,4B x ax a =-+==-,无解; 综上所述:110,,23a ⎧⎫∈-⎨⎬⎩⎭故答案为:110,,23⎧⎫-⎨⎬⎩⎭【点睛】本题考查了根据集合关系求参数,忽略掉空集是容易发生的错误.20.或【分析】分情况讨论:当时和当时两种情况;当时由即可求出答案分类讨论最后把的范围合并即可【详解】若则集合符合题意;若则解得故答案为:或【点睛】本题考查集合中元素个数问题;分类讨论和两种情况是求解本题 解析:98a ≥或0a = 【分析】分情况讨论:当0a =时和当0a ≠时两种情况;当0a ≠时由0∆≤即可求出答案.分类讨论最后把a 的范围合并即可.【详解】若0a =,则集合2{|320}3A x x ⎧⎫=+==-⎨⎬⎩⎭,符合题意;若0a ≠,则980a ∆=-≤,解得98a ≥. 故答案为:98a ≥或0a =. 【点睛】本题考查集合中元素个数问题;分类讨论0a =和0a ≠两种情况是求解本题关键; 0a =时易忽略;属于中档题,易错题. 三、解答题21.(1){|310}A B x x ⋃=<,()(){|3R R A B x x ⋂=或10}x >;(2){|9a a 或2}a【分析】(1)直接进行并集、交集和补集的运算即可;(2)先得出{|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<,根据AB C ⊆即可得出27a -或24a +,解出a 的范围即可.【详解】(1)因为集合A ={x |3<x <7},B ={x |4<x ≤10},所以{|310}A B x x ⋃=<,{|3RA x x =或7}x , {|4RB x x =或10}x >;()(){|3R R A B x x ⋂=或10}x >;(2){|2C x x a =<-或2}x a >+,{|47}A B x x ⋂=<<;A B C ⋂⊆;27a ∴-,或24a +;9a ∴,或2a ;a ∴的取值范围为{|9a a 或2}a .【点睛】考查描述法表示集合的定义,绝对值不等式的解法,交集、并集和补集的运算,以及子集的概念.属于中档题.22.()[)()13,3,()1,3R A B C A B ⋃=-⋂= ()20a =【分析】(1)先求集合B,再根据交集、并集以及补集得定义求结果,(2)先根据条件化为集合关系,再结合数轴求实数a 的取值范围.【详解】(1){()(){}[]||3103,1A x y x x x ===+-≥=-当1a =时,{}{}()222|60|602,3B x x ax a x x x =--<=--<=-, 所以[)3,3,A B ⋃=-因为()()(),31,R C A =-∞-⋃+∞,所以()()1,3R C A B ⋂= (2)因为()R C A B B ⋂=,所以R B C A ⊆,当B =∅时,0a =,满足条件,{}()220|602,3a B x x ax a a a >=--<=-当时,不满足条件,因此0a =.【点睛】防范空集.在解决有关,A B A B ⋂=∅⊆等集合问题时,往往忽略空集的情况,一定先考虑∅是否成立,以防漏解.23.(1)A ∪B ={}|27x x -≤<;(2)答案见解析.【分析】(1)先化简集合,A B ,再求A ∪B ;(2)对集合A 分空集和非空集两种情况讨论,列不等式组即得解.【详解】(1)2a =时,集合{|17}A x x =<<,{|24}B x x =-≤≤,A ∪B ={}|27x x -≤<(2)若选择①A ∩B =A ,则A B ⊆,当123a a -≥+,即4a ≤-时,A =∅,满足题意; 当4a >-时,应满足12234a a -≥-⎧⎨+≤⎩,解得:112a -≤≤; 综上知,实数a 的取值范围是(-∞,-4]∪112⎡⎤-⎢⎥⎣⎦,.若选择②A ∩(R B )=A ,则A 是R B 的子集,R B =(-∞,-2)∪(4,+∞),当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩解得:-4<a ≤52-或a ≥5, 综合得:a 的取值范围是:(-∞,5 2-]∪[5,+ ∞) 若选择③A ∩B =∅,则当123a a -≥+,即4a ≤-时,A =∅,满足题意;当4a >-时,应满足4232a a >-⎧⎨+≤-⎩或414a a >-⎧⎨-≥⎩解得:-4<a ≤52-或a ≥5 综上知,实数a 的取值范围是:(-∞,5 2-]∪[5,+∞). 【点睛】易错点点睛:本题容易忽略集合A 是空集的情况,导致出错.空集是任何集合的子集,是任何非空集合的真子集.解答集合的关系和运算问题时,不要忽略了空集这种情况. 24.(1)2m ≥-;(2)1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【分析】(1)当()U A B =∅,在B A ⊆,然后针对B =∅与B ≠∅分类讨论求解; (2)若B C ≠∅,则B ≠∅,C ≠∅,若B C ≠∅,则只需1612m m m -≤-≤+或2126m m ≤+≤-,然后解出m 的取值范围.【详解】解:(1)∵{}28A x x =≤≤,∴{U |2A x x =<或}8x >, ∵()U A B =∅,则B A ⊆,当B =∅时,62m -<,即4m >,当B ≠∅时,62m -≥,68m -≤,解得24m -≤≤.综上所述:2m ≥-.(2)由题可知,B ≠∅,C ≠∅,62,121,m m m -≥⎧⎨+≥-⎩解得24m -≤≤. 若BC ≠∅时,则只需:1612m m m -≤-≤+或2126m m ≤+≤-, 解得:1722m ≤≤. ∴ 当BC ≠∅,m 的取值范围为1722m m ⎧⎫≤≤⎨⎬⎩⎭. 【点睛】 本题考查集合的运算结果求参数的取值范围问题,难度一般,解答时,因为空集是任何集合的子集,所以解答时注意空集的特殊性.25.(1)U B A =[35,3].(2)02m << 【分析】(1)先解不等式得集合A ,再根据单调性求分式函数值域得集合B ,最后根据补集以及并集概念求结果;(2)根据充要关系确定两集合之间包含关系,结合数轴列不等式解得结果.【详解】(1)由2430+x x ->,解得1x <或3x >,所以1[]3U A =,, 又函数31y x =+在区间[0]m ,上单调递减,所以3[3]1y m ∈+,,即3[3]1B m =+,, 当4m =时,3[3]5B =,,所以[3]35U B A =,. (2)首先要求0m >,而“U x A ∈”是“x B ∈”的必要不充分条件,所以,即3[3]1m +,[1]3,, 从而311m >+, 解得02m <<【点睛】本题考查函数定义域、值域,集合补集与并集以及根据充要关系求参数,考查基本分析求解能力,属基础题.26.(1){}|12x x ≤≤;(2)[]4,2.【分析】(1)当2a =时,不等式化为2320x x -+≤,结合一元二次不等式的解法,即可求解; (2)把不等式化为()()10x x a --≤,分类讨论,结合集合的包含关系,即可求解.【详解】(1)由题意,当2a =时,不等式()210x a x a -++≤,即2320x x -+≤, 即()()120x x --≤,解得12x ≤≤,所以集合{}|12A x x =≤≤.(2)由()210x a x a -++≤,可得()()10x x a --≤, 当1a <时,不等式()()10x x a --≤的解集为{}|1x a x ≤≤.由集合A 是集合{}4|2x x -≤≤的真子集可得4a ≥-,所以41a -≤<,当1a =时,不等式()()10x x a --≤的解集为{}|1x x =满足题意;当1a >时,不等式()()10x x a --≤的解集为{}|1x x a ≤≤,由集合A 是集合{}4|2x x -≤≤的真子集,可得2a ≤,所以11a <≤,综上可得:42x -≤≤,即实数a 的取值范围为[]4,2-.【点睛】本题主要考查了一元二次不等式的求解及其应用,其中解答中熟记一元二次不等式的解法,结合集合的关系求解是解答的关键,着重考查了推理与运算能力,属于中档试题.。

高一数学必修一《集合》测试卷

高一数学必修一《集合》测试卷

测试卷(一) 集合[测试范围 1.1集合的概念 1.2集合间的基本关系 1.3集合的基本运算](本卷满分150分,考试时间120分钟) 得分栏 一、单项选择题 二、多项选择题三、填空题 四、解答题 总得分第Ⅰ卷(选择题,共60分)一、单项选择题:本大题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.a 是R 中的元素但不是Q 中的元素,则a 可以是( )A.3.14B.-5C.37D.72.用描述法表示函数y =3x -1图象上的所有点的是( )A.{x |y =3x -1}B.{y |y =3x -1}C.{(x ,y )|y =3x -1}D.{y =3x -1}3.已知集合M ={x |x 2-3x +2=0},N ={0,1,2},则集合M 与N 的关系是( )A.M =NB.N MC.M ND.N ⊆M4.集合M ={(x ,y )|y =2x +1},N ={y |y =x -1}.则M ∩N =( )A.{-2}B.{(-2,-3)}C.∅D.{-3}5.已知集合A ={x |x -1≥0},B ={0,1,2},则A ∩B =( )A.{0}B.{1}C.{1,2}D.{0,1,2}6.已知集合A ={x |2≤x <4},B ={x |3x -7≥8-2x },则A ∪B =( )A.{x |3≤x <4}B.{x |x ≥2}C.{x |2≤x <4}D.{x |2≤x ≤3}7.已知集合P ={x |x >0},Q ={x |-1<x <1},则(∁R P )∩Q =( )A.{x |x >-1}B.{x |0<x <1}C.{x |-1<x ≤0}D.{x |-1<x <1}8.已知a ,b 是非零的实数,代数式|a |a +|b |b +|ab |ab的值组成的集合是M ,则下列判断正确的是( ) A.0∈M B.-1∈M C.3∉M D.1∈M二、多项选择题:本大题共4小题,每小题5分,共20分.在每小题给出的选项中有多项符合题目要求.全部选对得5分,部分选对得3分,有选错的得0分.9.若集合A ={x |x ≥0},则满足B ⊆A 的集合可以是( )A.{x |x ≥2}B.{-1}C.{1,2,3}D.{x |x ≥-1}10.方程组⎩⎪⎨⎪⎧x +y =3,x -y =1的解集可表示为( ) A.⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧x +y =3,x -y =1 B.⎩⎪⎨⎪⎧(x ,y )⎪⎪⎪⎭⎪⎬⎪⎫⎩⎪⎨⎪⎧x =2,y =1 C.(1,2) D.{(1,2)}11.已知集合A ={x |x 2=x },集合B 中有两个元素,且满足A ∪B ={0,1,2},则集合B 可以是( )A.{0,1}B.{0,2}C.{0,3}D.{1,2}12.设全集为U,则图中的阴影部分可以表示为()A.∁U(A∪B)B.(∁U A)∩(∁U B)C.∁U(A∩B)D.A∪(∁U B)第Ⅱ卷(非选择题,共90分)三、填空题:本大题共4小题,每小题5分,共20分.13.若集合A={x|ax+1=0,x∈R},不含有任何元素,则实数a=________.14.集合A={0,2,a2},B={1,a},若A∩B={1},则a=________.15.满足{1,3}∪A={1,3,5}的所有集合A的个数是________.16.已知集合A={x|x<a},B={x|1<x<2},A∪(∁R B)=R,则实数a的取值范围是________.四、解答题:本大题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17.(10分)已知集合P=∅,Q={-4,-1,1},若集合M满足P M Q.求所有满足条件的集合M.18.(12分)已知集合A={1,2,m3},B={1,m},B⊆A,求m的值.19.(12分)若集合A={x|ax2+2x+1=0,x∈R}只有一个真子集,求a的值.20.(12分)已知集合A={x|x2-px-2=0},B={x|x2+qx+r=0},若A∪B={-2,1,5},A∩B={-2},求p+q+r的值.21.(12分)已知集合A={x|x2-4x+2m+6=0},B={x|x<0},U=R,若A∩B≠∅,求实数m的取值范围.22.(12分)已知集合A={x|x<-1或x>4},B={x|2a≤x≤a+3},若A∩B=B,求实数a的取值范围.参考答案第一章集合与常用逻辑用语测试卷(一)集合1.解析R是实数集,Q是有理数集,7是实数但不是有理数.答案 D2.解析A,B都是数为元素,C表示函数y=3x-1图象上的所有点,D的集合是以式子y=3x-1为元素.答案 C3.解析M={1,2},N={0,1,2},∴M N.答案 C4.解析集合M是点的集合,集合N是数的集合,两个集合没有公共元素,M∩N=∅.答案 C5.解析∵A={x|x≥1},B={0,1,2},∴A∩B={1,2}.答案 C6.解析∵B={x|x≥3}.∴A∪B={x|x≥2}.答案 B7.解析∵∁R P={x|x≤0},∴(∁R P)∩Q={x|-1<x≤0}.答案 C8.解析当a,b都为正数时,代数式的值为3.当a,b都为负数时,代数式的值为-1.当a,b一正一负时,代数式的值为-1.综上可知B正确.答案 B9.解析只要满足B中的元素都在A中即可.答案AC10.解析因为方程组的解集为有序实数对,应是点集.答案ABD11.解析∵A={0,1}且A∪B={0,1,2},∴集合B中一定包含2,且不包含除0,1外的其他元素.故选B、D.答案BD12.AB13.解析由题意A=∅,即方程ax+1=0无解,∴a=0.答案014.解析∵A∩B=1,∴a2=1,∴a=±1,由集合元素的互异性知:a≠1,故a=-1.15.解析 {1,3}∪A ={1,3,5},说明集合A 中至少要有元素5,元素个数可以是一个的{5},也可以是两个的{1,5},{3,5},还可以是三个的{1,3,5}.故集合A 的个数是4.答案 416.解析 因为集合A ={x |x <a }=(-∞,a ),B ={x |1<x <2}={1,2},∁R B =(-∞,1]∪[2,+∞),若要A ∪(∁R B )=R ,必有a ≥2,即a ∈[2,+∞).答案 [2,+∞)17.解析 由题意知集合M 为Q 的一个非空真子集,这样的集合有6个分别为{-4},{-1},{1},{-4,-1},{-4,1},{-1,1}.18.解析 由B ⊆A 得m ∈A ,所以m =m 3或m =2,所以m =2或m =-1或m =1或m =0,又由集合中元素的互异性知m ≠1.所以m =0或2或-1.19.解析 当A 只有一个真子集时,A 为单元素集,这时有两种情况:当a =0时,方程化为2x +1=0,解得x =-12;当a ≠0时,由Δ=4-4a =0, 解得a =1.综上所述,a =0或1.20.解析 因为A ∩B ={-2},所以-2∈A ,代入x 2-px -2=0.解得p =-1,所以A ={-2,1},由A ∪B ={-2,1,5},A ∩B ={-2},得B ={-2,5}.所以-2,5是方程x 2+qx +r =0的两个根,由根与系数的关系可得-q =-2+5,r =(-2)×5.所以q =-3,r =-10,所以p +q +r =-14.21.解析 先求A ∩B =∅的m 的取值范围.①当A =∅时,方程x 2-4x +2m +6=0无实根,所以Δ=(-4)2-4(2m +6)<0,解得m >-1.②当A ≠∅时,方程x 2-4x +2m +6=0的根为非负实根,设方程x 2-4x +2m +6=0的两根为x 1,x 2,则⎩⎪⎨⎪⎧Δ=(-4)2-4(2m +6)≥0,x 1+x 2=4≥0,x 1x 2=2m +6≥0,即⎩⎪⎨⎪⎧m ≤-1,m ≥-3. 所以m 的取值范围为-3≤m ≤-1.22.解析 ①当B =∅时,只需2a >a +3,即a >3;②当B ≠∅时,根据题意作出如图所示的数轴,可得⎩⎪⎨⎪⎧a +3≥2a ,a +3<-1,或⎩⎪⎨⎪⎧a +3≥2a ,2a >4, 解得a <-4或2<a ≤3.综上可得,实数a 的取值范围为a <-4或a >2.。

新北师大版高中数学必修一第一单元《集合》测试卷(含答案解析)

新北师大版高中数学必修一第一单元《集合》测试卷(含答案解析)

一、选择题1.设集合2{|}A x x x =<,2}6{|0B x x x =+-<,则A B =( )A .(0,1)B .()()3,01,2-⋃C .(-3,1)D .()()2,01,3-⋃ 2.设集合A={2,1-a ,a 2-a +2},若4∈A ,则a =( ) A .-3或-1或2 B .-3或-1 C .-3或2D .-1或23.若{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,则20192019a b +的值为( ) A .0B .1-C .1D .1或1-4.记有限集合M 中元素的个数为||M ,且||0∅=,对于非空有限集合A 、B ,下列结论:① 若||||A B ≤,则A B ⊆;② 若||||AB A B =,则A B =;③ 若||0A B =,则A 、B 中至少有个是空集;④ 若AB =∅,则||||||A B A B =+;其中正确结论的个数为( ) A .1B .2C .3D .45.集合2|01x A x x -⎧⎫=<⎨⎬+⎩⎭,{|()()0}B x x a x b =--<,若“2a =-”是“A B ⋂≠∅”的充分条件,则b 的取值范围是( ) A .1b <-B .1b >-C .1b ≤-D .12b -<<-6.已知集合{}21,A x y x y Z ==+∈,{}21,B y y x x Z ==+∈,则A 、B 的关系是( ) A .A B =B .ABC .B AD .A B =∅7.已知0a b >>,全集为R ,集合}2|{ba xb x E +<<=,}|{a x ab x F <<=,}|{ab x b x M ≤<=,则有( )A . E M =(R C F )B .M =(RC E )F C .F E M =D .FE M =8.设{}|13A x x =≤≤,(){}|lg 321B x x =-<,则A B =( )A .3,2⎛⎫-∞ ⎪⎝⎭B .31,2⎡⎫⎪⎢⎣⎭C .31,2⎛⎫ ⎪⎝⎭D .3,32⎛⎤ ⎥⎝⎦9.已知集合{}2230A x x x =--≤,{}22B x m x m =-≤≤+.若R A C B A =,则实数m 的取值范围为( ) A .5m >B .3m <-C .5m >或3m <-D .35m -<<10.已知非空集合M 满足:对任意x M ∈,总有2x M ∉M ,若{}0,1,2,3,4,5M ⊆,则满足条件的M 的个数是( )A .11B .12C .15D .1611.下列结论正确的是() A .若a b <且c d <,则ac bd <B .若a b >,则22ac bc >C .若0a ≠,则12a a +≥ D .若0a b <<,集合1|A x x a ⎧⎫==⎨⎬⎩⎭,1|B x x b ⎧⎫==⎨⎬⎩⎭,则A B ⊇12.已知R 为实数集,集合{|lg(3)}A x y x ==+,{|2}B x x =≥,则()R C A B ⋃=( ) A .{|3}x x >-B .{3}x x |<-C .{|3}x x ≤-D .{|23}x x ≤<二、填空题13.已知集合{|M m Z =∈关于x 的方程2420x mx +-=有整数解},集合A 满足条件:①A 是非空集合且A M ⊆;②若a A ∈,则a A -∈.则所有这样的集合A 的个数为______. 14.在①AB A =,②A B ⋂≠∅,③R BC A ⊆这三个条件中任选一个,补充在下面问题中,若问题中的实数a 存在,求a 的取值范围;若不存在,说明理由.问题:已知集合{}20,,log (1)1,1x a A xx R B x x x R x -⎧⎫=<∈=-≤∈⎨⎬+⎩⎭∣∣,是否存在实数a ,使得___________?15.已知()2f x x ax b =++,集合(){}0A x f x =≤,集合(){}3B x f f x ⎡⎤=≤⎣⎦,若A B =≠∅,则实数a 的取值范围是______.16.设P Q 、是两个非空集合,定义集合间的一种运算“”:{},P Q x P Q x P Q =∈∉且,如果{P y y ==,{}|4,0x Q y y x ==>,则PQ =____________.17.已知集合(){}21210,,A x a x x a R x R =-++=∈∈,若集合A 至多有两个子集,则a 的取值范围是__________.18.记[]x 为不大于x 的最大整数,设有集合[]{}{}2|2=|2A x x x B x x =-=<,,则A B =_____.19.已知集合{}1,2,3,4,5P =,若,A B 是P 的两个非空子集,则所有满足A 中的最大数小于B 中的最小数的集合对(,)A B 的个数为____.20.若关于x 的不等式2054x ax ≤++≤的解集为A ,且A 只有二个子集,则实数a 的值为_____.三、解答题21.已知全集为R ,集合{}26A x x =≤≤, {}3782B x x x =-≥-. (1)求AB , ()RC A B ⋂;(2)若{}44M x a x a =-≤≤+,且R A C M ⊆,求a 的取值范围. 22.设全集U =R ,集合{}lg()0A x x a =->,{}2340B x x x =--<. (1)当1a =时,求AB ;(2)若A B A ⋃=,求实数a 的取值范围.23.已知集合A ={x |a -1≤x ≤2a +3},B ={x |-2≤x ≤4},全集U =R . (1)当a =2时,求A ∪B 和(∁R A )∩B ; (2)若A ∩B =A ,求实数a 的取值范围.24.已知{}240A x x x =+=,(){}222110B x x a x a =+++-=,若B A ⊆,求a 的取值范围. 25.设全集U =R .(1)解关于x 的不等式|1|10()x a a R -+->∈;(2)记A 为(1)中不等式的解集,B 为不等式组2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩的整数解集,若()U C A B ⋂恰有三个元素,求a 的取值范围.26.已知集合2211{|}A x x =-≤-≤,集合{}11B x a x a =-<<+. (1)若1a =,试通过运算验证:()()()RRR A B A B =;(2)若A B ⋂≠∅,求实数a 的取值范围.【参考答案】***试卷处理标记,请不要删除一、选择题 1.B 解析:B 【分析】化简集合A ,B ,根据交集运算即可求值. 【详解】因为2{|}A x x x =<(,0)(1,)=-∞⋃+∞,26{|}(32)0,B x x x =+-<=-所以()()3,01,2A B ⋂=-⋃. 故选:B 【点睛】本题主要考查了一元二次不等式的解法,集合的运算,属于中档题.2.C解析:C 【解析】若1−a =4,则a =−3,∴a 2−a +2=14,∴A ={2,4,14}; 若a 2−a +2=4,则a =2或a =−1,检验集合元素的互异性: a =2时,1−a =−1,∴A ={2,−1,4}; a =−1时,1−a =2(舍), 本题选择C 选项.3.B解析:B 【分析】根据集合相等以及集合元素的互异性可得出关于a 、b 的方程组,解出这两个未知数的值,由此可求得20192019a b +的值. 【详解】b a 有意义,则0a ≠,又{}21,,0,,b a a a b a ⎧⎫=+⎨⎬⎩⎭,0b a ∴=,可得0b =,所以,{}{}21,,00,,a a a =,21a ∴=,由集合中元素的互异性可得1a ≠,所以,1a =-, 因此,()2019201920192019101a b +=-+=-.故选:B. 【点睛】本题考查利用集合相等求参数,同时不要忽略了集合中元素互异性的限制,考查计算能力,属于中等题.4.B解析:B 【分析】先阅读题意,取特例{}1A = ,{}2B =,可得①③错误,由集合中元素的互异性可得②④正确. 【详解】解:对于①,取{}1A = ,{}2B =,满足||||A B ≤,但不满足A B ⊆,即①错误; 对于②,因为||||AB A B =,由集合中元素的互异性可得A B =,即②正确;对于③,取{}1A = ,{}2B =, 满足||0AB =,但不满足A 、B 中至少有个是空集,即③错误; 对于④,A B =∅,则集合A B 、中无公共元素,则||||||A B A B =+,即④正确;综上可得②④正确,故选B. 【点睛】本题考查了对新定义的理解及集合元素的互异性,重点考查了集合交集、并集的运算,属中档题.5.B解析:B 【分析】由题意知{}|12A x x =-<<,当2a =-时,()(){}|20B x x x b =+-<,且A B ⋂≠∅成立,通过讨论2b <-,2b =-,2b >-三种情况,可求出b 的取值范围.【详解】 解:{}2|0|121x A x x x x -⎧⎫=<=-<<⎨⎬+⎩⎭,当2a =-时,()(){}|20B x x x b =+-< 当2b <- 时,{}|2B x b x =<<-,此时A B =∅不符合题意;当2b =-时,B =∅ ,此时AB =∅不符合题意;当2b >-时,{}|2B x x b =-<<因为A B ⋂≠∅,所以1b >-.综上所述,1b >-. 故选:B. 【点睛】本题考查了分式不等式求解,考查了一元二次不等式,考查了由两命题的关系求参数的取值范围.本题的关键是由充分条件,分析出两集合的关系.6.C解析:C 【分析】由题意得出Z A ⊆,而集合B Z ,由此可得出A 、B 的包含关系.【详解】由题意知,对任意的x ∈Z ,21y x Z =+∈,Z A ∴⊆.{}21,B y y x x Z ==+∈,∴集合B 是正奇数集,则BZ ,因此,BA .故选:C. 【点睛】本题考查集合包含关系的判断,解题时要善于抓住代表元素,认清集合的特征,考查推理能力,属于中等题.7.A解析:A 【分析】首先分析得出2a ba b +>>>,根据集合的运算,即可求解. 【详解】由题意,因为0a b >>,结合实数的性质以及基本不等式,可得2a ba b +>>>,可得{|R C F x x =≤}x a ≥,所以(){|R E C F x b x =<≤,即()R M E C F =故选A. 【点睛】本题主要考查了集合的运算,以及基本不等式的应用,其中解答中结合实数的性质和基本不等式求得2a ba b +>>>是解答的关键,着重考查了推理与运算能力,属于基础题. 8.B解析:B 【分析】求出集合,A B 后可得A B .【详解】13{|}A x x =≤≤,73{|03210}{|}22B x x x x =<-<=-<<; ∴31,2A B ⎡⎫⎪⎢⎣=⎭⋂,故选:B. 【点睛】本题考查一元二次不等式的解、对数不等式的解及集合的交集运算,解对数不等式时注意真数恒为正,属于中档题.9.C解析:C 【分析】首先根据题意,求得{|2R C B x x m =>+或}2x m <-,由R AC B A =可以得到R A C B ⊆,根据子集的定义求得参数所满足的条件,得到结果.【详解】{}{}2230=|13A x x x x x =--≤-≤≤,∵{}22B x m x m =-≤≤+. ∴{2R C B x x m =>+或2}x m <-, ∵R AC B A =即R A C B ⊆,∴23m ->或21m +<-.即5m >或3m <-,即实数m 的取值范围是5m >或3m <-.故选:C. 【点睛】该题考查的是有关集合的问题,涉及到的知识点有集合的补集,根据子集求参数的取值范围,属于简单题目.10.A解析:A 【分析】可得集合M 是集合{}2,3,4,5的非空子集,且2,4不同时出现,即可得到结论. 【详解】由题意,可得集合M 是集合{}2,3,4,5的非空子集,共有42115-=个, 且2,4不能同时出现,同时出现共有4个, 所以满足题意的集合M 的个数为11个,故选A. 【点睛】本题主要考查了元素与集合的关系,以及集合的子集个数的判定及应用,着重考查了分析问题和解答问题的能力,属于中档试题.11.C解析:C 【分析】通过举例和证明的方式逐个分析选项. 【详解】A :取5,3,6,1a b c d =-==-=,则30,3ac bd ==,则ac bd >,故A 错误;B :取3,1,0a b c ===,则22ac bc =,故B 错误;C:21122a a a a ⎫+=+=+≥⎝成立,故C 正确;D :因为0a b <<,所以11a b>,则A B ,故D 错误;故选:C. 【点睛】本题考查不等关系和等式的判断,难度一般.判断不等关系是否成立,常用的方法有:(1)直接带值验证;(2)利用不等式的性质判断;(3)采用其他证明手段.(如借助平方差、完全平方公式等).12.C解析:C 【分析】化简集合,根据集合的并集补集运算即可. 【详解】因为{|lg(3)}{|3}A x y x x x ==+=>-, 所以AB {|3}x x =>-,()R C A B ⋃={|3}x x ≤-,故选C.【点睛】本题主要考查了集合的并集、补集运算,属于中档题.二、填空题13.15【分析】先依题意化简集合M 再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合即得这样的集合的个数【详解】设为方程的两个根则当时;当时;当时;当时;由条件①知且又由条件②知A 是有一些成对的解析:15 【分析】先依题意化简集合M ,再根据条件确定集合A 是由互为相反数的四组数字构成的非空集合,即得这样的集合的个数. 【详解】设a ,b 为方程2420x mx +-=的两个根,则a b m +=-,42ab =-, 当1=a ,42b =时,41m =±; 当2=a ,21b =时,19m =±; 当3a =,14b =时,11m =±; 当6a =,7b =时,1m =±;{}{}{}{}{}1,111,1119,1941,411,1,11,11,19,19,41,41M =-⋃-⋃-⋃-=----,由条件①知A ≠∅且A M ⊆,又由条件②知A 是有一些成对的相反数组成的集合. 所以M 的4对相反数共能组成42115-=个不同的非空集合A . 故答案为:15. 【点睛】 关键点点睛:本题解题关键在于明确题中条件要求集合A 是由互为相反数的四组数字构成的非空集合,即计算集合个数突破难点.14.答案见解析【分析】求得集合化简集合分三种情况讨论得到集合;再分别得若选择①若选择②若选择③时实数a 的取值范围【详解】当时;当时;当时若选择①则当时要使则所以当时满足题意当时不满足题意所以选择①则实数解析:答案见解析 【分析】求得集合[1,1)B =-,化简集合{()(1)0,}A xx a x x R =-+<∈∣,分1a >-,1a =-,1a <-三种情况讨论得到集合A ;再分别得若选择①,若选择②,若选择③时,实数a的取值范围. 【详解】{}2log (1)1,R [1,1)B x x x =-≤∈=-∣,0,{()(1)0,}1x a A x x R x x a x x R x -⎧⎫=<∈=-+<∈⎨⎬+⎩⎭∣∣,当1a >-时,(1,)A a =-; 当1a =-时,A =∅; 当1a <-时,(,1)A a =- 若选择①AB A =,则A B ⊆,当1a >-时,要使(1,)[1,1)a -⊆-,则1a ≤,所以11a -<≤ 当1a =-时,A =∅,满足题意 当1a <-时,(,1)A a =-不满足题意 所以选择①,则实数a 的取值范围是[-1,1] 若选择②A B ⋂≠∅,当1a >-时,(1,),[1,1)A a B =-=-,满足题意; 当1a =-时,A =∅,不满足题意;当1a <-时,(,1),[1,1)A a B =-=-,不满足题意 所以选择②,则实数a 的取值范围是(1,)-+∞. 若选择③RB A ⊆,当1a >-时,(1,),(,1][,)RA a A a =-=-∞-⋃+∞,而[1,1)B =-,不满足题意当1a =-时,,R RA A =∅=,而[1,1)B =-,满足题意当1a <-时,(,1),(,][1,)RA a A a =-=-∞⋃-+∞,而[1,1)B =-,满足题意.所以选择③,则实数a 的取值范围是(,1]-∞-,综上得:若选择①,则实数a 的取值范围是[-1,1];若选择②,则实数a 的取值范围是(1,)-+∞;若选择③,则实数a 的取值范围是(,1]-∞-.【点睛】本题考查集合间的包含关系,集合间的运算,属于中档题.15.【分析】根据设则设再根据则是的解集的子集求解【详解】因为设则设的解集为:所以是方程的两个根由韦达定理得:又因为所以所以即解得故答案为:【点睛】本题主要考查一元二次不等式的解法的应用还考查了转化求解的解析:⎡⎤⎣⎦【分析】根据A ≠∅,设{}01A x x x x =≤≤,则()204a b f x -≤≤,设 ()t f x =,再根据A B =,则2,04a b ⎡⎤-⎢⎥⎣⎦是()3f t ≤的解集的子集求解. 【详解】因为A ≠∅,设{}01A x x x x =≤≤,则()204a b f x -≤≤,设 ()t f x =, ()3f t ≤的解集为:()0|0t t t ≤≤ , 所以0,0t t t ==是方程23t at b ++=的两个根, 由韦达定理得:0,3t a b =-=,又因为A B =,所以2004a tb ≤-≤,所以2304a a -≤-≤,即22124120a a a ⎧≥⎨--≤⎩,解得 6a ≤≤.故答案为:⎡⎤⎣⎦【点睛】本题主要考查一元二次不等式的解法的应用,还考查了转化求解的能力,属于中档题16.【分析】根据函数性质求值域解出两个集合再根据新定义运算求交集并集进而求解【详解】对于P 集合即对于Q 集合即则故答案为:【点睛】本题考查函数的值域求法观察法集合的交集并集运算新定义题型属中等题 解析:{}01,2y y y ≤≤>【分析】根据函数性质求值域,解出两个集合,再根据新定义运算求交集并集,进而求解P Q ,【详解】对于P 集合,y =2,2x,[]0,2y ∈,即{}=02P y y ≤≤对于Q 集合,4xy =,()0,x ∈+∞,()1,y ∈+∞,即{}1Q y y => {}12P Q y y ⋂=<≤,{}0P Q y y ⋃=≥ 则{}01,2P Q y y y =≤≤> 故答案为:{}01,2y y y ≤≤>【点睛】本题考查函数的值域求法观察法,集合的交集并集运算,新定义题型,属中等题.17.或【分析】分集合为或有且仅有一个元素两种情况进行求解其中当集合有且仅有一个元素时注意对方程的二次项系数分和两种情况进行分别求解即可【详解】由题意可得集合为或有且仅有一个元素当时方程无实数根所以解得当 解析:2a ≥或1a =【分析】分集合A 为φ或有且仅有一个元素两种情况进行求解,其中当集合A 有且仅有一个元素时,注意对方程()21210a x x -++=的二次项系数分10a -=和10a -≠两种情况进行分别求解即可.【详解】由题意可得,集合A 为φ或有且仅有一个元素,当A φ=时,方程()21210a x x -++=无实数根, 所以()21024110a a -≠⎧⎨∆=-⨯-⨯<⎩, 解得2a >,当集合A 有且只有一个元素时,方程()21210a x x -++=有且只有一个实数根, 当10a -=,即1a =时,方程有一根12x =-符合题意; 当10a -≠,即1a ≠时,判别式()224110a ∆=-⨯-⨯=, 解得2a =;综上可知a 的取值范围为:2a ≥或1a =.故答案为:2a ≥或1a =【点睛】本题考查利用分类讨论思想求解方程根的个数问题;其中当一个方程的二次项系数含有参数,考虑其根的个数问题时,一定要注意对方程的二次项系数分为0和不为0两种情况进行讨论;属于中档题.18.【分析】求即需同时满足A 集合和B 集合的x 的取值范围先根据比较容易得出解集再将B 集合的解集代入A 集合中判断出可以成立的值即可得【详解】当时当时不满足;当时满足;当时不满足;当时满足;即同时满足和的值有解析:{-【分析】求A B 即需同时满足A 集合和B 集合的x 的取值范围,先根据{}{}=|2=|22B x x x x <-<<,比较容易得出解集, 再将B 集合的解集代入A 集合中,判断出可以成立的值,即可得A B【详解】 {}{}=|2=|22B x x x x <-<<当22x -<<时,[]2,1,0,1x =--,当[]2x =-时,[]2200x x x +==⇒=,不满足[]2x =-; 当[]1x =-时,[]2211x x x +==⇒=±,1x =-满足[]1x =-;当[]0x =时,[]222x x x +==⇒=,不满足[]0x =;当[]1x =时,[]223x x x +==⇒=x []1x =;即同时满足[]22x x -=和2x <的x 值有则A B ={-故答案为:{- 【点睛】本题考查了集合的计算,和取整函数的理解,针对两个集合求交集的情况,可先对较简单的或者不含参数的集合求解,再代入较复杂的或含参数的集合中去计算.本题属于中等题. 19.49【分析】分中的最大数为中的最大数为中的最大数为中的最大数为四种情况根据题意列举出满足条件的集合即可得出结果【详解】当中的最大数为即时;所以满足题意的集合对的个数为个;当中的最大数为即时;即满足题 解析:49【分析】分A 中的最大数为1,A 中的最大数为2,A 中的最大数为3,A 中的最大数为4,四种情况,根据题意列举出满足条件的集合,A B ,即可得出结果.【详解】当A 中的最大数为1,即{1}A =时,{2}B =,{3},{4},{5},{2,3},{2,4},{2,5},{3,4},{3,5},{4,5},{2,3,4},{2,3,5},{2,4,5},{3,4,5},{2,3,4,5}; 所以满足题意的集合对(,)A B 的个数为15个;当A 中的最大数为2,即{2},{1,2}A =时,{3}=B ,{4},{5},{3,4},{3,5},{4,5},{3,4,5};即满足题意的集合对(,)A B 的个数为2714⨯=个;当A 中的最大数为3,即{3},{1,3},{2,3},{1,2,3}A =时,{4},{5},{4,5}B =,即满足题意的集合对(,)A B 的个数4312⨯=个;当A 中的最大数为4,即{4},{1,4},{2,4},{3,4},{1,2,4},{1,3,4},{2,3,4},{1,2,3,4}A =时,{5}B =,即满足题意的集合对(,)A B 的个数为8个;所以总共个数为49个.【点睛】本题主要考查集合的应用,灵活运用子集的概念,用列举法表示集合即可,属于常考题型. 20.【分析】由题得集合A 里只有一个元素所以只有一个解令得到再检验得解【详解】因为集合只有二个子集所以集合A 里只有一个元素由题得只有一个解令令当时不等式(1)的解为不等式(2)解为不等式组的解集为不满足题 解析:2±【分析】由题得集合A 里只有一个元素.所以22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令12=00∆∆=,得到2a a =±=±,再检验得解.【详解】因为集合A 只有二个子集,所以集合A 里只有一个元素.由题得22+501102x ax x ax ⎧+≥⎨++≤⎩()()只有一个解,令21=200,a a ∆-=∴=±令22=40,2a a ∆-=∴=±.当a =1)的解为R ,不等式(2)解为22x -≤≤组的解集为{|22x x --≤≤,不满足题意;当a =-1)的解为R ,不等式(2)解为x -≤,不等式组的解集为{|x x -≤≤,不满足题意;当2a =时,不等式(1)的解集为R ,不等式(2)的解为1x =-,不等式组的解集为{|1}x x =-,满足题意;当2a =-时,不等式(1)的解集为R ,不等式(2)的解为1x =,不等式组的解集为{|1}x x =,满足题意.故答案为2a =±.【点睛】本题主要考查集合的子集的个数,考查一元二次不等式的解集,意在考查学生对这些知识的理解掌握水平和分析推理能力.三、解答题21.(1){}2A B x x ⋃=≥, (){}36R C A B x x x ⋂=或(2) ()(),210,-∞-⋃+∞【分析】(1)先求出集合B ,于是可得A B ⋃和A B ⋂,进而得到()R C A B ⋂;(2)先求出R C M ,再将R A C M ⊆转化为不等式求解,可得所求范围.【详解】(1)∵{}{}37823B x x x x x =-≥-=≥, ∴{}2A B x x ⋃=≥,{}36A B x x ⋂=≤≤,∴(){}3,6R C A B x x x ⋂=或. (2)由题意知M φ≠,且{}4,4R C M x x a x a =-+或. ∵{}26A x x =≤≤,R A C M ⊆,∴46a ->或42a +<,解得10a >或2a <-.故实数a 的取值范围为()(),210,-∞-⋃+∞.【点睛】本题考查集合的基本运算,解题时根据要求逐步求解即可,其中解答(2)的关键是将集合间的包含关系转化为不等式来求解,容易出现的错误是忽视不等式中的等号能否成立. 22.(1)(2,4]A B ⋂=;(2)(,2]-∞-.【分析】(1)当1a =时确定集合A ,根据交集的定义求解.(2)由A B A ⋃=得B A ⊆,得出a 的取值范围.【详解】(1)当1a =时,由lg(1)0x ->得11x ->,解得2x >,所以(2,)A =+∞, 由{}2340B x x x =--<解得[]1,4B =-,所以(2,4]A B ⋂=.(2){}{}lg()01A x x a x x a =->=+, {}2340B x x x =--<得{}|14B x x =-<<,由A B A ⋃=得B A ⊆,所以(1,4)(1,)a -⊆++∞,所以11a ≤-+,解得2a ≤-,所以实数a 的取值范围是(,2]-∞-.【点睛】关键点点睛:该题考查的是有关集合的问题,在解题的过程中,注意正确求解集合,再者就是能正确判断集合之间的关系.23.(1)A ∪B ={x |-2≤x ≤7};(∁R A )∩B ={x |-2≤x <1};(2){4a a <-或11}2a -≤≤.【分析】(1)由a =2,得到A ={x |1≤x ≤7},然后利用集合的基本运算求解.(2)由A ∩B =A ,得到A ⊆B .然后分A =∅,A ≠∅两种情况讨论求解. 【详解】(1)当a =2时,A ={x |1≤x ≤7},则A ∪B ={x |-2≤x ≤7},∁R A ={x |x <1或x >7},(∁R A )∩B ={x |-2≤x <1}. (2)∵A ∩B =A ,∴A ⊆B .若A =∅,则a -1>2a +3,解得a <-4;若A ≠∅,由A ⊆B ,得12312234a a a a -≤+⎧⎪-≥-⎨⎪+≤⎩,解得-1≤a ≤12综上,a 的取值范围是{4a a <-或 11}2a -≤≤.【点睛】本题主要考查集合的基本要和基本运算,还考查了分类讨论的思想和运算求解的能力,属于中档题.24.{1a a =或}1a ≤-【分析】求出集合A ,对集合B 中的元素个数进行分类讨论,结合B A ⊆可得出实数a 所满足的等式或不等式,进而可求得实数a 的取值范围.【详解】 {}{}2404,0A x x x =+==-,(){}222110B x x a x a =+++-=,对于方程()222110x a x a +++-=,()()()22414181a a a ∆=+--=+,且B A ⊆. ①当B =∅时,∆<0,可得1a <-,合乎题意;②当集合B 中只有一个元素时,0∆=,可得1a =-,此时{}{}200B x x A ===⊆,合乎题意;③当集合B 中有两个元素时,B A =,则()221410a a ⎧+=⎨-=⎩,解得1a =. 综上所述,实数a 的取值范围是{1a a =或}1a ≤-.【点睛】本题考查利用集合的包含关系求参数,考查分类讨论思想的应用,考查计算能力,属于中等题.25.(1)见解析(2)10a -<≤【分析】(1)通过讨论a 的取值范围,求出不等式的解集即可.(2)解不等式组求得集合B ,通过讨论a 的范围求出A 的补集,再根据()U C A B ⋂恰有三个元素,建立不等式求解.【详解】(1)因为|1|10()x a a R -+->∈,所以|1|1->-x a ,当10a -< 即1a > 时,解集为R ,当10a -= 即1a = 时,解集为{}|1x x ≠ ,当10a -> 即1a < 时,11->-x a 或11-<-x a ,所以2x a >-或x a <,所以解集为{|2x x a >- 或}x a <.综上:1a > 时,解集为R ;1a = 时,解集为{}|1x x ≠ ;1a < 时,解集为{|2x x a >- 或}x a <.(2)因为2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩, 所以23510410x x x x -⎧-≤⎪+⎨⎪-+≥⎩,所以()()29404210x x x x x ⎧⎛⎫+-≤≠-⎪ ⎪⎝⎭⎨⎪-+≥⎩, 解得942x -<≤ . 因为B 为不等式组2351410x x x x -⎧≤⎪+⎨⎪-+≥⎩的整数解集,所以{}3,2,1,0,1,2,3,4B =--- ,当1a > 时,U A =∅ 不满足()U C A B ⋂恰有三个元素. 当1a = 时,{}=1U A 不满足()U C A B ⋂恰有三个元素. 当1a < 时,{}=≤≤-|2U A x a x a ,21a -> ,因为()U C A B ⋂恰有三个元素,所以12224a a a a a <⎧⎪--≥⎨⎪--<⎩, 解得10a -<≤ .综上:a 的取值范围是10a -<≤.【点睛】本题主要考查了绝对值不等式,分式不等式及一元二次不等式的解法和集合的基本运算,还考查了转化化归的思想和运算求解的能力,属于中档题.26.(1)见解析;(2)3(,2)2-【分析】(1)先解不等式得集合A ,再分别求并集、补集、交集,根据结果进行验证; (2)结合数轴先求AB =∅情况,再根据补集得结果.【详解】 解:A ={2211}x x -≤-≤=1{|1}2x x -≤≤. (1)当1a =时,B ={02}x x <<∴A B =1{|1}2x x -≤≤{02}x x <<=1{|2}2x x -≤< ()R C A B =1{|2x x <-或2}x ≥ 又R C A =1{|2x x <-或1}x >,R C B ={|0x x ≤或2}x ≥ ∴()()R R C A C B =1{|2x x <-或2}x ≥ ∴()R C A B =()()R R C A C B . (2)若AB =∅,则:112a +≤-或11a -≥ ∴32a ≤-或2a ≥ ∴A B ⋂≠∅时,322a -<<,即实数a 的取值范围3(,2)2-. 【点睛】 本题考查集合交并补运算以及根据交集结果求参数,考查综合分析求解能力,属基础题.。

(完整版)高一数学集合测试题及答案

(完整版)高一数学集合测试题及答案

高一数学集合测试题一、选择题(每小题 5分,共60分) 1 .下列八个关系式① {0}= ② =0③{ }④ 0⑦{0} ⑧{ }其中正确的个数()(A) 4 (B) 5(C) 6(D) 72 .集合{1 , 2, 3}的真子集共有()(A) 5 个(B) 6 个(C) 7 个(D)8 个3 .集合 A={x x 2k, k Z } B={ xx 2k 1, k Z } C={ a A,b B,则有()(A) (a+b)A (B) (a+b)B (C)(a+b)C (D) (a+b)4 .设A 、B 是全集U 的两个子集,且 A B,则下列式子成立的是( (C) A C U B= (D) C U A B=_ _ 2_ 一 一一 _2 0} B={ xx 4x3 0}则 A B =((A) R(C) { xx 1或x 2}(D) { xx 2或x 3}(E) U={0, 1, 2, 3, 4} , A={0, 1, 2, 3}, B={2, 3, 4},则(C U A)(A) {0} (B) {0,1}(A) C U A C U B (B) C U A C J B=U 6.设 f(n) = 2n + 1(nC N), P = {1 , 2, 3, 4, 5} , Q = {3 , 4, 5, 6, 7},记 P ={nC N|f(n)CP}, Q={n€ N|f(n)C Q},则(P n 5 Q)U(Q n 5 P )=() (A) {0 , 3} (B){1 , 2} (C) (3, 4, 5} (D){1 , 2, 6, 7} 7.已知 A={1, 2, a 2-3a-1},B={1,3},A B {3,1}则a 等于() (A) -4 或 1 (B) -1 或 4 (Q -1 (D) 4{ } ⑤{0}⑥xx 4k 1,k Z }又A 、B 、C 任一个 )5.已知集合A={ x x2(CUB)=()(C) {0,1, 4} (D) {0, 1, 2, 3, 4} 10.设 A={x Zx 2px 15 0},B={x一 2 一 一 ,一 …Zx 5x q 0},若 A B={2,3,5},A 、B 分别为()(A) {3, 5}、{2, 3}(C) {2, 5}、{3, 5}(B) {2, 3}、{3, 5} (D) {3, 5}、{2, 5}11 .设一元二次方程ax 2+bx+c=0(a<0)的根的判别式 一 2b 4ac 0 ,则不等式ax 2+bx+c 0的解集为()14.已知集合乂=6|口-1)(盅-#)>0},集合目二小||工+ 1| + |工-2 531,且(q02£・兄则实数a的取值范围是(A.S"[-1,2]「一 LA-F L 二 1则X O 的取值范围是((A) R (B)(C) { xxb2a }(D) { —}2a12 .已知 P={ m 4 0}, Q={m|mx 2 mx 1 0 ,对于一切x R 成立},则下列关系式中成立的是( (A) (B)(C) P=Q(D)Q 二13 .若 M={xn Z }, N={xnx 1…, …一——n Z},则M N 等于( (A) (B) { (Q {0}(D) ZB.C. D. 15.设 U={1 , 2, 3, 4, 5}, A, B 为 U 的子集, 若 A B={2} , (C U A) B={4} , (C U A) ( C U B)={1, (A) (C) 5},则下列结论正确的是(3 A,3 3 A,3(B) (D))A,3 A,316. 设集合A,r2,1 ,函数1,x A 四 2 ,右 X O x ,x BA,且 f f x 0 A ,A.10,- 4B.D- o,817. 在R 上定义运算 e : ae b ab 2a b ,则满足xe x 2 0的实数x 的取值范围为A. (0,2)B. (-1,2)C. 2 U 1,D. (-2,1).18.集合P={x|x 2=1} , Q={x|mx=1},若值P,则m等于( )A . 1B . -1C . 1 或-1 D , 0,1 或-119.设全集 U={(x,y) x, y R},集合 M={(x,y) -_2 1}, N={(x,y) I y x 4},x 2那么(QM) (CND等于( )(A) { (2,-2) } (B) { (-2, 2) }(C) (D) (C U N)20.不等式x2 5x 6 <x2-4的解集是( )(A) {x x 2,或x 2} (B) {x x 2}(C) { x x 3} (D) { x 2 x 3,且x 2}二、填空题1.在直角坐标系中,坐标轴上的点的集合可表示为2,若 A={1,4,x},B={1,x 2}且 A B=B,则 x=3.若人=仅x2 3x 10 0} B={x I |x 3 },全集 U=R 则 A (C U B)=4.如果集合T = {大卜=/ +上l+ I = 0}中只有一个元素,则 a的值是5.集合{a,b,c}的所有子集是真子集是;非空真子集是6.方程x2-5x+6=0的解集可表示为2x 3y 13方程组2x 3y的解集可表示为3x 2y 07.设集合A={x 3 x 2},B={x 2k 1 x 2k 1},且A B,则实数k的取值范围是__________________ o8.设全集 U={x x 为小于 20 的正奇数},若 A (C U B) ={3, 7, 15}, (CA) B={13, 17,19},又(GA) (QB)=,贝U A B=9.已知集合 A= {xC R | x2+2ax+2a2-4a+4 = 0},若5A,则实数a的取值是10.设全集为U,用集合A、日C的交、并、补集符号表图中的阴影部分。

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

高中数学新教材必修第一册第一章《集合》综合测试题(附答案)

新教材必修第一册第一章《集合》综合测试题(时间:120分钟 满分:150分)班级 姓名 分数一、选择题(每小题5分,共计60分)1.设全集I={0,1,2,3,4},集合A={0,1,2,3},集合B={2,3,4},则A C I ∪B C I =A .{0}B .{0,1}C .{0,1,4}D .{0,1,2,3,4}2.方程组3231x y x y -=⎧⎨-=⎩的解的集合是 A .{x =8,y=5} B .{8, 5} C .{(8, 5)}D .Φ3.有下列四个命题: ①{}0是空集; ②若Z a ∈,则a N -∉; ③集合{}2210A x R x x =∈-+=有两个元素;④集合6B x QN x ⎧⎫=∈∈⎨⎬⎩⎭是有限集。

其中正确命题的个数是A .0B .1C .2D .34. 已知{}{}22|1,|1==-==-M x y x N y y x , N M ⋂等于( )A. NB.MC.RD.∅ 5.如果集合A={x |ax 2+2x +1=0}中只有一个元素,则a 的值是 A .0 B .0 或1 C .1 D .不能确定6.已知}{R x x y y M∈-==,42,}{42≤≤=x x P 则M P 与的关系是 A .M P = B .M P ∈ C .M ∩P =Φ D . M ⊇P7.已知全集I =N ,集合A ={x |x =2n ,n ∈N},B ={x |x =4n ,n ∈N},则A .I =A∪BB .I =AC I ∪B C .I =A∪B C ID .I =A C I ∪B C I8.设集合M=},214|{},,412|{Z k k x x N Z k k x x ∈+==∈+=,则A .M =NB . M ≠⊂NC . N ≠⊂MD .M ∩=N Φ9. 已知函数2()1=++f x mx mx 的定义域是一切实数,则m 的取值范围是 ( )A.0<m ≤4B.0≤m ≤1C.m ≥4 D .0≤m ≤4 10.设集合A={x |1<x <2},B={x |x <a }满足A ≠⊂B ,则实数a 的取值范围是 A .[)+∞,2 B .(]1,∞- C .[)+∞,1D .(]2,∞-11.满足{1,2,3} ≠⊂M ≠⊂{1,2,3,4,5,6}的集合M 的个数是A .8B .7C .6D .512.如右图所示,I 为全集,M 、P 、S 为I 的子集。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

高中数学《集合》测试题
学校:__________ 姓名:__________ 班级:__________ 考号:__________
一、选择题
1.设集合{}{}{}1,2,3,4,5,1,2,3,2,3,4U A B ===,则()U A B =( B )
(A){}2,3 (B){}1,4,5 (C){}4,5 (D){}1,5(2008四川理)
2.设集合A=22
{(,)|1}416
x y x y +=,B={(,)|3}x x y y =,则A ∩B 的子集的个数是 A. 4 B.3 C.2 D.1(2007年高考)
3.设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是( )
(A) 13-<<-a (B) 13-≤≤-a (C) 3-≤a 或1-≥a (D) 3-<a 或1->a (2008天津卷理6)
4.设集合{}{}R T S a x a x T x x S =+<<=>-= ,8|,32|,则a 的取值范围是( )
A .13-<<-a
B .13-≤≤-a
C .3-≤a 或1-≥a
D .3-<a 或1->a (2008天津理) (6)
5.设集合(){}22,1,,M x y x
y x R y R =+=∈∈,(){}2,0,,N x y x y x R y R =-=∈∈,则集合M N 中元素的个数为( ) A.1
B.2
C.3
D.4(2004全国3理1) 6.已知集合M ={x |x 2<4},N ={x |x 2-2x -3<0},则集合M ∩N 等于( )
A.{x |x <-2}
B.{x |x >3}
C.{x |-1<x <2}
D.{x |2<x <3}(2004全国Ⅱ1)
7.设全集U=N M ={1,2,3,4,5},M U N ={2,4},则N=( )
(A ).{1,2,3} (B ).{1,3,5} (C ).{1,4,5} (D ).{2,3,4}(2011湖南文1)
8.若集合{}20A x x x =|-<,{|03}B x x =<<,则A B 等于( )
A .{}01x x |<<
B .{}03x x |<<
C .{}13x x |<<
D .∅(2008福建文)(1)
9.已知0>>b a ,全集U R =,集合{|},{|}2
a b M x b x N x ab x a +=<<=<<,{|}P x b x ab =<≤,则N M P ,,满足的关系是------------------------------------------( )
A.P M
N = B. P M N = C.()u P M N = D. ()u P M N =
二、填空题
10.集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a 的值为________.
11.设A ,B 是非空集合,定义{}B A x B A x x B A ⋂∉⋃∈=⨯,。

已知A = {x|y=2x - x 2}, B = { y|y=2 x
,x > 0},则=⨯B A ▲ 。

12.设全集U =R ,集合2|{2-==x x x M ,R}∈x ,21|{≤+=x x N ,R}∈x 则N M C U )(等于_______________
13.已知集合{,1}M a =,{2,2}a N =,且M ∪N={1,2,4},则M ∩N 为_____________
14.若集合{1,0,1},{cos ,},A B y y x x A =-==∈|则A
B = {}1 15.若集合2{440,}A x kx x x R =++=∈中只有一个元素,则实数k 的值为
16.设集合{}1A x x =>-,{}3B x x =≤,则A
B =___________.
17.已知全集U ={1,2,3,4,5,6,7},集合2{|650}M x x x =∈-+Z ≤,则集合U M = .18.集合A={x| x 2+x-6=0}, B={x| ax+1=0}, 若A B ⊆,则a=__________
19.若集合A ={1,2,3,4,5},B ={2,4,8},则A
B = ▲ .
20. 设集合A ={-1,1,3},B ={a +2,a 2+4},A ∩B ={3},则实数a =_1__.
21.已知集合},32|{<+∈=x R x A 集合},0)2)((|{<--∈=x m x R x B 且),,1(n B A -= 则m =__________,n = __________.
22.若集合{|20}P x x a =-<,{|30}Q x x b =-> ,,a b N ∈,且{1}P Q N ⋂⋂=,则满足条件的整数对(,)a b 的个数为______▲_______.
23.已知集合{}0),(=+=y x y x P ,{}
2),(=-=y x y x Q ,则=P Q . 24.集合}1,0,1{-共有___________个子集. (2013年普通高等学校招生全国统一招生考试江苏卷(数学)(已校对纯WORD 版含附加题))
25.设集合A ={x |-2-a <x <a ,a >0},命题p :1∈A ,命题q :2∈A .若p ∨q 为真命题,p ∧q 为假命题,则a 的取值范围是________.(1,2]
26.设P 、Q 是两个非空集合,定义P*Q={}Q b p a b a ∈∈,|),(,若P={}2,1,0 Q={
}4,3,2,1,则P*Q 中元素的个数是____________ 27.集合{}a A ,2,0=,{}2
,1a B =,若{}16,4,2,1,0=B A ,则a 的值为 . 28.集合{}Z x x x ∈≤<-,21|的真子集的个数为 。

29.设集合{}
2340A x x x =--≤,{}04B x x =≤≤,则A B = ▲ . 30.已知全集},3,2,1,0{=U 集合},3,2,1{},1,0{==B A 则=B A C U )( ▲ . 31.已知a R ∈,集合2{|1}A x x ==,集合{|1}B x ax ==,若A
B A =,则实数a
的所有可能值的集合为________________
32.若全集U R =,集合{01}A x x x =≤≥或,则U C A = .
三、解答题
33.已知集合{|(2)(25)0},A x x x a =---<函数2(2)lg 2x a y a x
-+=-的定义域为集合B 。

(1)若4a =,求集合A B ;
(2)已知,""2
a x A 3>-∈且是“x B ∈”的充分不必要条件,求实数a 的取值范围。

(本题14分)
34.已知关于x 的方程2370x px +-=的解集为A ,方程2370x x q -+=的解集为B ,若13⎧⎫=-⎨⎬⎩⎭
A B ,求A B .
35. 已知集合{}
3A x x =≤,{}(1)(21)0B x x m x m m =-+--<∈R ,.
(1)若m =3,求()A B R ; (2)若A B A =,求实数m 的取值范围.
36. 设集合22{430},{10}A x x x B x x ax a =-+==-+-=,且,A B A ⋃=求a 的值.
37.已知a b c >>,求证:
114a b b c a c +≥---
38.若集合{}25A x x =-≤≤,{}
121B x m x m =+≤≤-,且B A ⊆,求由m 的可取值组成的集合。

39.已知集合A={x|x ≤a+3},B={x|x<-1或x>5}.
(1) 若2R a A C B =-,求; (2) 若B A ⊆,求a 的取值范围.
40.已知非空集合A ={x |x 2-4mx +2m +6=0,x ∈R},若A ∩R -≠∅,求实数m 的取值
范围(R -表示负实数集,R +表示正实数集).。

相关文档
最新文档