第3章 匹配理论
合集下载
相关主题
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
直径,这又会使 Z 0 减小。
假设电流均匀地流过一个厚度等于趋肤深度 则写出:
的薄圆筒,
1 1 R [ ] 2 a b
1
第3章 匹配理论
可得衰减常数:
2
1
1 1 [ ] R 2 a b 2 Z 0 2[ 60 ln( b )] a r
求导并令其为0
V 2 [ Emax a ln(b a)]2 P Z 0 (60 r ) ln(b a)
2 r [ Emax a 2 ln(b a)]
60
dP d 2 b [a ln( )] 0 da da a b e a
代入:
Z0
60
r
ln(b a ) 30
将式(3-5)代入式(3-6), 则提供给负载的功率可写成
PL
bG (1 L ) 1 L G
2
2
2
(3-7)
bG1
2
1
bG bG1 G
bG1 G
2 bG1 2G
第3章 匹配理论
PL
bG (1 L )
2 2
1 L G
2
(3-7)
可见,PL 是bG 、Γ L 和Γ G 的函数,与前面的Us 、RL 和Rs 相对应。为了得到最大功率传输,必须满足
1 1 1 Rp jX p Rs jX s
第3章 匹配理论
Rs 1 Q 2 e (2)并转串公式 X Rs Rp s Xp (3)说明
① 式中, Qe
Xs Rs Rp Xp
Rp
② Xp 和 Xs 为实数 电感: XL = L
1 ③ 电容: XC C
第3章 匹配理论
2. 输入阻抗和输出阻抗不为纯电阻
如果输入阻抗和输出阻抗不是纯电阻,而是复数阻抗,处理 的方法是只考虑电阻部分,按照上述方法计算L型匹配电路中 的电容和电感值,再扣除两端的虚数部分,就可得到实际的匹 配电路参数。
例2: 已知信号源内阻Rs=12,并串有寄生电感Ls=1.2nH。 负载电阻为RL =58,并带有并联的寄生电容CL=1.8pF,
1 1 d d a b b a 0 0 ln( ) 1 da da ln( b ) a b a
通过迭代得到b/a的值约为3.6,相当于 Z 0 77
第3章 匹配理论 有线电视设备都是以75 Ω阻抗为基础,这是因为它对应
于最小的损耗,功率较低,功率传输不成问题。
工作频率为f=1.5GHz。设计L型匹配网络,使信号源与
负载达共扼匹配。
第3章 匹配理论
匹配前的电路原理图
第3章 匹配理论
S参数仿真结果
第3章 匹配理论
匹配后的电路原理图
第3章 匹配理论
S参数仿真结果
第3章 匹配理论
3. 关于L型匹配电路的其他说明
可传送最大功率,并且在馈线上功率损耗最小。
2、对阻抗匹配灵敏的接收机部件(如天线、低噪声 放大器)可改进系统的信噪比。 3、在功率分配网络中,阻抗匹配可降低振幅和相位 误差。
第3章 匹配理论
匹配网络的选择准则
1、简单性。选择满足性能的最简单的设计。价格便宜,可
靠,损耗小。
2、带宽。任何一个网络只能在单一的频率上实现匹配,想 要展宽带宽,电路设计非常复杂。 3、可实现性。射频电路大都采用微带传输线,所以可采用 集总参数元件、四分之一波长阻抗变换器、单枝支节或双枝
XL
RL QL
Rs
+
(2) Rs > RL, 图 (b) 所 示: XL=QLRL
Us
-
Rs
Xs
RL
RL
(b)
L型匹配电路(Rs>RL)
Xs
Rs Qs
第3章 匹配理论 步骤四: 若Rs <RL,如图3-6所示,选择 Ls-Cp 低通式或 Cs-Lp高通式电路。根据下列公式计算出电路所需电感及电容值: (1) Ls-Cp低通式:
当RL=Rs 时可获得最大输出功率,此时为阻抗匹配状态。
第3章 匹配理论 如下图的交流电路中: 当负载阻抗ZL=RL+jXL与信号源阻抗ZS=RS+jXS共轭时,当 RS=RL 且jXS= - jXL时,即ZL=Z*s,负载能够获得最大的功率, 称作共轭匹配或广义阻抗匹配。
Zs
+
Po N ZL
Cs
Ls
Cp
Lp
(a)
(b)
图3-7 Rs>RL的L型匹配电路 (a) Cp-Ls低通式L型; (b) Lp-Cs高通式L型
第3章 匹配理论 例1: 在1GHz的频率下,设计一个匹配电路把负载 Z L 10 的匹配到特性阻抗为 Z 0 50 的传输线。
Qe
Xs Rs
Rp Xp
L G
(3-8)
2 2
将式(3-8)代入式(3-7),可得
P
所以,Γ L=Γ
*
bG
1 G
(3-9)
G是阻抗共轭匹配的一种等效方式。
在射频/微波电路中经常会用到这个条件。
第3章 匹配理论
3.3 集总参数匹配电路
一、L型匹配电路 1. 输入阻抗和输出阻抗均为纯电阻
设计步骤 步骤一: 确定工作频率fc、输入阻抗Rs 及输出阻 抗RL。 步骤二: 由图3-5(a)所示的L型匹配电路中, 将构成匹配电路的两个元件分别与输入阻抗Rs和输出阻抗RL 结合。阻抗并联和串联转换时,Q值不变。
第3章 匹配理论
第3章 匹配理论
3.1 基本阻抗匹配理论
3.2 射频/微波匹配原理 3.3 集总参数匹配电路 3.4 微带线型匹配电路 3.5 波导和同轴线型匹配电路
3.6 微波网络参数
第3章 匹配理论
为什么要采用50 Ω(或者75 Ω)
例:以一根空气为电介质的同轴电缆为例。会存在某
节或多枝节实现匹配网络。
既要考虑生产工艺的可实现性,又要考虑尺寸要求的可 实现性。
4、可调整性。变化的负载需要可调整的匹配网络。
第3章 匹配理论 如下图的直流电路中,Us为信号源电压,Rs为信号源 内阻,RL为负载电阻。
Rs
+
1 0.75
Po
Us
-
RL
Po /Pi 0.5 0.25 0 1 k
bG L 1 L G
(3-4)
第3章 匹配理论 因为ΓL=b1/a1,式
b1 bG L 1 L G
变为 (3-5)
a1=bG+b1ΓG
提供给负载的功率为
PL=|a1|2-|b1|2=|a1|2(1-|ΓL|2) (3-6)
bG 信号发生器 a1 b1 双口网络
Ls Cs
(3-14)
Cp
Lp
(a)
(b)
图 3-6 Rs<RL的L型匹配电路 (a)Ls-Cp低通式L型;(b) Cs-Lp高通式L型
第3章 匹配理论 步骤五: 若Rs >RL,如图3-7所示,选择 Cp-Ls 低通式 或Lp-Cs高通式电路。按下列公式计算出电路所需电感及电容 值: (1) Cp-Ls低通式:
1、图中虚线所示参考面上, 入射波为a1,反射波为b1,
1
bG1
等效负载的反射系数为
bG bG1 G
ΓL=b1/a1。 2、信号发生器发出的波幅为bG,即第 一个入射波为bG,bG的反射波为bGΓL, bGΓL的反射波为bGΓLΓG。
bG1 G
2 bG1 2G
2
3、依次类推,朝着信号发生器方向的反射波总和为 b1=bGΓL[1+ΓLΓG+(ΓLΓG) 2+…]
1 Cp 2f c X L Xs Ls 2f c
Cs
(3-13)
Ls
Cp
Lp
(a)
(b)
图 3-6 Rs<RL的L型匹配电路 (a)Ls-Cp低通式L型;(b) Cs-Lp高通式L型
第3章 匹配理论 (2) Cs-Lp高通式:
1 Cs 2f c X s XL Lp 2f c
上述各式表明,Qe 取定后,Rp 和 Rs,Xp 和 Xs 之间可 以相互转换。转换前后的电抗性质不变( Xs 和 Xp 有相同的 正负号)。
第3章 匹配理论
• • • •
在单一频率上匹配两个不相等的电阻器,有以下两种可供使用的拓朴结构: 1、高通电路 2、低通电路 经过适当选择的二单元LC电路段,总可以使两个不相等的电阻终端达到匹配。串 联单元总是放在低阻抗的一边,而并联单元应放在高阻抗终端负载旁边。
1 Cp 2f c X s XL Ls 2f c
Cs Lp
Ls
Cp
(a)
(b)
图3-7 Rs>RL的L型匹配电路 (a) Cp-Ls低通式L型; (b) Lp-Cs高通式L型
第3章 匹配理论 (2) Lp-Cs高通式:
1 Cs 2f c X L Xs Lp 2f c
输出功率为:
(a)
(b)
U s2 PL P0 I 2 RL RL 2 ( Rs RL )
令
U s2 RL k Rs , Pi Rs
k P0 P 2 i (1 k )
(3-1)
则
第3章 匹配理论 信号源的输出功率取决于Us、Rs和RL。 在信号源给定的情况下,输出功率取决于负载电阻与信号 源内阻之比k。
Us
-
Zs
ZL
图3-2 广义阻抗匹配
第3章 匹配理论 在射频电路设计中,阻抗匹配是不可缺少的。如:
放大器设计
混频器设计
第3章 匹配理论
3.2 射频/微波匹配原理
当ZL=Z*s时,电路处于阻抗匹配状态,得到最大输出功率。
a1 zG z0 UG ~ b1 zL
G
zG
L
zL
现在用源反射系数为Γ g描述信号发生器和用负载反射系 数Γ L 描述的负载,连接到特性阻抗为Z0 的传输线上的情况。 为了获得最大功率传递,必须同时满足 ZL=Z*G ZG=Z0 (3-2) (3-3)
一个电压会使电介质击穿。
当内导体直径固定时,加大外导体的直径将提高 这个击穿电压,但特性阻抗就会加大。这样又会减少
传送到负载上的功率。
Emax
V a ln(b a )
ln(b a ) 60 Z0 ln(b a ) 2 r
传送到负载的最大功率正比于 V 2 Z 0
第3章 匹配理论
第3章 匹配理论 通常,负载与信号源是不匹配的,需增加一个双端 口网络,与负载组合起来形成一个等效负载,如图:
bG 信号发生器 a1 b1 双口网络
1
bG1
bG bG1 G
bG1 G
2 bG1 2G
ຫໍສະໝຸດ Baidu
2
匹配的目标是寻求等效负载与信号源的匹配条件
第3章 匹配理论
bG 信号发生器 a1 b1 双口网络
Qs QL
R大 R小
-1
RP 1 Rs
(3-10)
第3章 匹配理论
串、并联阻抗转换公式 若将一个由电抗和电阻相串接的电路与相并接的电路 等效转换,根据等效原理,令两者的端导纳相等,
即 由此得
Rs2 X s2 Rp Rs (1 Qe2 ) Rs (1) 串转并公式 2 2 2 2 X Rs X s Rs (1 Qe ) Rp Rs p Xs Xs Xs
由于77 Ω时损耗最小而30 Ω时可得到最大的功率传输能
力,所以取一个合理的折中就是取某种平均值,最后取整后
都为50 Ω。
第3章 匹配理论
3.1 基本阻抗匹配理论
匹配的目标:
使信号源的功率尽可能多的送入负载RL ,使信号源 的输出功率尽可能的大。 匹配的重要性: 1、当负载与传输线匹配时(假定信号源是匹配的),
为了使一根外径一定的空气介质的传输线具有最大的功 率传输能力,我们希望选择使 Z 0 等于30 Ω的尺寸。
第3章 匹配理论
现在考虑损耗
由于电介质损耗引起的每单位长度的衰减实际上与导体
尺寸无关。所以只考虑电阻损耗引起的衰减:
R 2Z 0
R是每单位长度的串联电阻,在足够高的频率时,R主 要是由于趋肤效应引起的。为了减小R,要加大内部导体的
第3章 匹配理论
图 3-5 L型匹配电路的两种形式
Qs=Xs / Rs Rs
+
步 骤 三 : 判 别 Rs < RL
或Rs>RL。
Po
Xs Rs
(1) Rs < RL, 如 图 (a) 所示: Xs=QsRs
Us
-
XL
RL
RL
QL=RL / XL
(a)
L型匹配电路(Rs<RL)
XL Po
1) 设计方法还有两种:
a、解析法求元件值。
b、Smith圆图法求元件值。