解线性方程组用克莱姆法则
克莱姆法则
作者介绍
克莱姆(Cramer,Gabriel,瑞士数学家 1704-1752)克莱姆1704年7月31日生于日内瓦,早年在日内瓦读书, 1724年起在日内瓦加尔文学院任教,1734年成为几何学教授,1750年任哲学教授。他自 1727年进行为期两年的 旅行访学。在巴塞尔与约翰.伯努利、欧拉等人学习交流,结为挚友。后又到英国、荷兰、法国等地拜见许多数 学名家,回国后在与他们的长期通信中,加强了数学家之间的联系,为数学宝库也留下大量有价值的文献。他一 生未婚,专心治学,平易近人且德高望重,先后当选为伦敦皇家学会、柏林研究院和法国、意大利等学会的成员。
克莱姆法则
线性代数中一个关于求解线性方程组的定理
01 作者介绍
目录
02 基本介绍
03 法则总结
04 技术应用
05 不确定的情况
克莱姆法则,又译克拉默法则(Cramer's Rule)是线性代数中一个关于求解线性方程组的定理。它适用于 变量和方程数目相等的线性方程组,是瑞士数学家克莱姆(1704-1752)于1750年,在他的《线性代数分析导言》 中发表的。其实莱布尼兹〔1693〕,以及马克劳林〔1748〕亦知道这个法则,但他们的记法不如克莱姆。
记法1:若线性方程组⑴的系数矩阵可逆(非奇异),即系数行列式 D≠0。有唯一解,其解为 记法2:若线性方程组⑴的系数矩阵可逆(非奇异),即系数行列式 D≠0,则线性方程组⑴有唯一解,其解 为 其中Dj是把D中第j列元素对应地换成常数项而其余各列保持不变所得到的行列式。 记法1是将解写成矩阵(列向量)形式,而记法2是将解分别写成数字,本质相同。
《线性代数》1.5第五节 克莱姆法则
按第一行展开. 由于第一行第 j 1 列的元素 aij 的代数 余子式为
b1 A1 j 1 1
1 j 1
a11 a21 an1
a1 j 1 a2 j 1 anj 1
a1 j 1 a2 j 1 anj 1
a1n a2 n ann
b2 bn
把 A1 j 1 的第1列依次与第2列、第3列、…、第j列 互换,有 所以有
现在验证(2)式是方程组(1)的解,也就是要证明
ai1
D1 D D ai 2 2 ain n bi , D D D
(i 1,2, , ,n)
即 ai1 D1 ai 2 D2 ain Dn bi D 考虑有两行相同的 n 1 阶行列式
bi b1 B b2 bn ai1 a11 a21 an1 ain a1n a2 n 0, ann (i 1, 2, , n)
D1
2 4 1 4 1 2 3 1
1 0 2 2 1 0 2 2
1 2 1 4 1 1 2 4 1 4 0 2 2 4 0 2
= 2,D2=
1 2 3 1 1 2 3
2 4 1 4 1 0 2 2 1 1 1
1 2 1 4 1 1 2 4 1 0 2
线 性 代 数
(第二版)
第五节 克莱姆法则
现在,我们应用 n阶行列式来解含有n个未知量的 n 个线性方程的方程组. 一、克莱姆(Cramer)法则 定理1.5.1(克莱姆法则)若线性方程组
a11 x1 a12 x2 a x a x 21 1 22 2 an1 x1 an 2 x2 a1n xn b1 , a2 n xn b2 , ann xn bn .
克莱姆法则解线性方程组三
D a ij Aij a1 j A1 j a 2 j A2 j a nj Anj j 1,2,, n
i 1
n
一、行列式计算(续) 1.递推行列式 例1:计算下列行列式
1 1 0 0 1 1 Dn 0 0 0 0 0 1 1 1
线性代数
0 0 0 0 1 1 0 1 1 1 1
内容概括讲练结合讲授方法行列式按行列展开难点行列式按行列展开矩阵概念重点作业要求掌握行列式按行按列展开的性质和定理会用行列式的性质和余子式定理求行列式的值理解克莱姆法则
第三讲 行列式计算续与矩阵的概念
班级: 时间: 年 月 日;星期
教学目的 重点
掌握行列式按行按列展开的性质和定理,会用行 列式的性质和余子式定理求行列式的值,理解克 莱姆法则。 行列式按行(列)展开、矩阵概念
2 5 0 2 4.
2 5
线性代数
第一章 行列式
17
第三讲 行列式计算续与矩阵的概念
例3(2001.4)设行列式
3 0 4 2 2 2 D 0 7 0 5 3 2
0 2 0 2
则第4行各元素余子式之和的值为_____
分析:本题求得是余子式,可将其转换为代数余子式求解,即
M41 M42 M43 M44 A41 A42 A43 A44
a11 a1n
a11 Ai 1 a12 Ai 2 a1n Ain
a11 a1n a j1
线性代数 第一章 行列式
0 a jn
13
an1 ann
第三讲 行列式计算续与矩阵的概念
同理,用第j行元素对应取代第i行元素,则由于行列式两 行元素相等,得0值。 a11 a1n
用克莱姆法则解线性方程组
用克莱姆法则解线性方程组
克莱姆法则(Cramer's rule)是一种用来求解线性方程组的方法,它可以用来求解n 元线性方程组。
假设有n元线性方程组Ax = b,其中A是系数矩阵,x是未知向量,b是常数向量。
克莱姆法则的基本步骤是:
求出系数矩阵A的行列式值。
从A中删去第i列,用b中的第i个元素来代替原来的第i列,这样得到一个新矩阵Ai。
求出Ai的行列式值。
计算x的第i个元素为Ai的行列式值除以A的行列式值。
需要注意的是,克莱姆法则的求解结果只有在行列式的值不为零时才有意义。
克莱姆法则的优点是可以在不使用矩阵逆的情况下求解线性方程组,并且对于小型线性方程组具有较高的精度。
然而,克莱姆法则对于大型线性方程组的求解效率较低,并且容易出现数值误差。
总之,克莱姆法则是一种用来求解线性方程组的方法,但是它的应用范围有限,对于大型线性方程组效率较低,并且容易出现数值误差。
在实际应用中需要根据线性方程组的规模和要求来选择合适的求解方法。
需要注意的是,当矩阵的行列式值为0时,克莱姆法则就不能使用了。
这种情况下就需要使用其他的方法来求解线性方程组,比如高斯消元法或者矩阵的逆。
总的来说,克莱姆法则是一种有效的求解线性方程组的方法,但是由于它的应用
范围有限,在实际应用中需要考虑使用其他的方法来求解线性方程组。
行列式克莱姆法则
利用克莱姆法则,可以将一个行列式表示为一个数值,通过计算该数值即可得到行列式的值。这种方法适用于系 数行列式不为零的情况,可以简化行列式的计算过程。
实例三:解的唯一性验证
总结词
克莱姆法则可以用于验证线性方程组解的唯一性。
详细描述
通过计算系数矩阵的行列式,利用克莱姆法则判断解的唯一性。如果行列式不为零,则线性方程组有 唯一解;如果行列式为零,则线性方程组可能无解或有无穷多解。这种方法可以用于判断线性方程组 解的情况,为求解问题提供依据。
03 适用范围
研究克莱姆法则的适用范围,探索其在更广泛领 域的应用可能性。
应用领域的拓展
数值分析
将行列式克莱姆法则应用于数值分析中,解决 大规模线性方程组的求解问题。
科学计算
将克莱姆法则与其他科学计算方法相结合,提 高计算效率和精度。
工程领域
将克莱姆法则应用于工程领域,解决实际工程问题,如结构分析、流体动力学 等。
线性方程组解的唯一性条件是克莱姆法则应用的 重要前提之一,它确保了线性方程组的解是唯一 的,从而使得行列式中的每个子式可以代表一个 唯一的解向量。
03
克莱姆法则的推导过程
推导步骤一:行列式的计算
计算行列式的值
根据行列式的定义,按照行或列展开,计算得到行列 式的值。
展开方式的选择
选择合适的展开方式,使得计算过程简化,提高计算 效率。
计算方法的改进
算法优化
优化克莱姆法则的计算方法,提高计算效率,减少计算量。
并行计算
利用并行计算技术,实现克莱姆法则的高效计算,处理大规模数 据。
软件实现
开发适用于克莱姆法则的软件或库,方便用户进行实际应用和计 算。
THANKS
克莱姆法则系数行列式为0 -回复
克莱姆法则系数行列式为0 -回复克莱姆法则是线性方程组求解中的一种常用方法,通过行列式来判断方程组是否有解以及解的个数。
克莱姆法则系数行列式为0这个条件则是一个重要的定理。
为了更好地理解该定理的含义,我们首先需要了解一些基本的线性代数知识。
在线性代数中,有一个重要的概念叫做矩阵。
矩阵可以看作是一个数表,其中的元素按照一定的规则排列成多行多列的形式。
一个线性方程组可以用矩阵的形式表示。
例如,对于一个包含两个未知数x和y的线性方程组:a₁x + b₁y = c₁a₂x + b₂y = c₂可以用矩阵表示为:⎡a₁b₁⎤⎡x ⎡= ⎡c₁⎤⎡a₂b₂⎦⎡y ⎡⎡c₂⎦在克莱姆法则中,我们通过计算系数行列式来求解线性方程组。
系数行列式表示的是由方程组中的系数所组成的矩阵的行列式。
对于上述的二元一次线性方程组,系数行列式为:D = ⎡a₁b₁⎤⎡a₂b₂⎦克莱姆法则定理是指,当系数行列式D等于0时,线性方程组无解或者有无数解。
为了证明这个定理,我们先来看当系数行列式D不等于0时,方程组有唯一解的情况。
假设系数行列式D不等于0,那么根据矩阵的性质,D的逆矩阵D⁻¹存在。
根据克莱姆法则,线性方程组的解可以表示为:⎡x ⎡⎡D₁⎡⎡y ⎡= ⎡D₂⎡其中,D₁和D₂分别是由方程组中的常数项所组成的矩阵的行列式。
通过简单的推导,我们可以得到:x = D₁/Dy = D₂/D其中,D表示系数行列式D。
由于D不等于0,所以D的逆矩阵D⁻¹存在。
我们可以将x和y表示为:D₁/D = (1/D)⋅D₁= (D⁻¹⋅D₁)D₂/D = (1/D)⋅D₂= (D⁻¹⋅D₂)这说明,当系数行列式D不等于0时,线性方程组有唯一解,解的表达式为x = D⁻¹⋅D₁,y = D⁻¹⋅D₂。
下面我们来证明当系数行列式D等于0时,线性方程组无解或者有无数解。
对于无解的情况,假设在方程组中存在两个不同的解x₁和x₂。
1.4 克莱姆( Cramer )法则
1 1 6 1 1 1 6 1 D3 144, 1 2 6 8 1 2 6 8
1 1 1 1 D4 1 2 1 2
1 6 1 6 72, 4 6 4 6
D1 576 所以 a0 8, D 72
D3 144 a2 2, D 72
D2 72 a1 1, D 72
(1 ) (2 )
2
因为方程组有非零解, 则
D (1 )2 (2 ) 0
故 λ =1 或 λ= −2.
12
例3 问 取何值时, 齐次线性方程组
1 x1 2 x2 4 x3 0 2 x1 3 x2 x3 0 有非零解? x x 1 x 0 2 3 1
其余 xi ( i j ) 的系数均等于0, 而等式右端为 D j 于是
Dx j Dj j 1, 2,
,n
2
当D≠0时, 方程组(2)有唯一的一个解为
D3 D1 D2 x1 , x2 , x3 , D D D
D3 D1 D2 x1 , x2 , x3 , D D D
3
(1)
的系数行列式 D
a21 a n1
0
则线性方程组(1)有唯一解,且
D3 D1 D2 x1 , x2 , x3 , D D D Dn , xn . D
其中Dj 是把系数行列式 D 中第 j 列的元素用方程组
右端的常数项代替后所得到的 n 阶行列式, 即
a11 Dj a n1
解 先求系数行列式,得
2 1 5 1 1 3 0 6 D 0 2 1 2 1 4 7 6
r1 2r2
线性代数课件1-5克莱姆法则
线性方程组的解的个数
有唯一解
当系数矩阵的行列式不为零时,线性方 程组有唯一解。
VS
无解或多解
当系数矩阵的行列式为零时,线性方程组 可能无解或多解,此时克莱姆法则不适用 。
03
克莱姆法则的证明过程
系数矩阵的行列式的性质
系数矩阵的行列式不为零
克莱姆法则的前提条件是系数矩阵的行列式 不为零,这是保证线性方程组有唯一解的重 要条件。
线性方程组解的个数的判断
总结词
克莱姆法则可以用于判断线性方程组解的个数。
详细描述
通过计算系数矩阵的行列式值和各列的代数余子式,可 以确定线性方程组的解的个数。如果行列式值不为零, 则线性方程组有唯一解;如果行列式值为零且系数矩阵 的秩等于增广矩阵的秩,则线性方程组有无穷多解;如 果行列式值为零且系数矩阵的秩不等于增广矩阵的秩, 则线性方程组无解。
Ax=b,其中A是系数矩阵,x是未知数矩阵,b是常数矩阵。
特殊形式
当系数矩阵A为方阵时,即行数和列数相等的矩阵,克莱姆法则适用。
系数矩阵的行列式
非零行列式
克莱姆法则的前提是系数矩阵的行列式不为零,即|A|≠0。
行列式的计算
行列式的值是通过其对应元素的代数余子式计算得出的,即|A|=Σ(-1)^(i+j)a_{ij},其中a_{ij}是A的元 素。
解的唯一性
除了证明解的存在性,还需要证明解是唯一 的。这可以通过利用系数矩阵的行列式不为 零的条件和线性方程组的解的性质来证明。
克莱姆法则的证明
证明过程
克莱姆法则的证明过程涉及多个步骤,包括利用代数余子式计算系数矩阵的行列式、将 线性方程组的解表示为系数矩阵的行列式的值等。这个过程需要仔细推导和计算,确保
克莱姆法则解方程组解法
克莱姆法则是一种用于解线性方程组的方法,它基于行列式的性质。下面是使用克莱姆法 则解方程组的步骤:
1. 给定一个线性方程组,假设有n个未知数和n个方程。
2. 将方程组的系数矩阵记为A,常数矩阵记为B。
3. 计算系数矩阵A的行列式,记为|A|。
4. 对于每个未知数Xi,将系数矩阵A中第i列替换为常数矩阵B的列,得到新的矩阵Ai。
克莱姆法则解方程组解法
此外,克莱姆法则的计算复杂度较高,特别Байду номын сангаас对于大型的方程组来说,计算行列式和替换 矩阵的操作都需要较大的计算量。因此,在实际应用中,通常会使用更高效的解方程组的方 法,如高斯消元法或矩阵求逆等。
克莱姆法则解方程组解法
5. 计算新矩阵Ai的行列式,记为|Ai|。
6. 使用克莱姆法则的公式,解出每个未知数的值:Xi = |Ai| / |A|。
7. 重复步骤6,依次解出所有未知数的值。
需要注意的是,克莱姆法则只适用于方程组的系数矩阵满足非奇异(可逆)的条件,即 |A| ≠ 0。如果方程组的系数矩阵是奇异的,即|A| = 0,那么克莱姆法则无法使用。
克莱姆(Cramer)法则
0 2 1 2
1 4 7 6
又
8 1 5 1
9 3 0 6
D1 5
2
1
81 2
0 4 7 6
2 8 5 1
1 9 0 6
D2 0 5 1
108 2
1 0 7 6
21 8 1
1 3 9 6
D3 0
2
5
27 2
14 0 6
2 1 5 8
1 3 0 9
D4 0
2
27 1 5
Байду номын сангаас
1 4 7 0
1 cn cn2 cnn
为 n+1阶范德蒙行列式的转置,故D≠0 .由定
理1.4.2,齐次线性方程组(1.4.7)只有零解,从
而 an=0,此与题设条件矛盾.
n
bk Akj ( j 1,2,, n)
k 1
于是
n aij
j 1
Dj D
1 D
n j 1
aij
n
( bk
k 1
Akj )
1 D
nn
aijbk Akj
j1 k 1
1 D
n
(
k 1
n
aij Akj
j 1
)bk
1 D
bi
(
n
aij Aij
j 1
)
1 D
bi D
bi
(i 1,2,,n)
k1 1 D 1 k 1 (k 1)(k 4)
2 1 1
所以, k = 1或k=4 ,且易验证k = 1或k=4 时方程组确有非零解.
例1.4.4 试证: n次多项式
f (x) a0 a1x an x n (an 0)
克莱姆法则的证明及应用
克莱姆法则的证明及应用a_{11}x_1+a_{12}x_2+...+a_{1n}x_n=b_1,a_{21}x_1+a_{22}x_2+...+a_{2n}x_n=b_2,...a_{n1}x_1 + a_{n2}x_2 + ... + a_{nn}x_n = b_n.我们将系数矩阵记作A,未知数向量记作X,常数向量记作B,则上述线性方程组可以写成矩阵形式为AX=B。
根据矩阵的乘法,可以将AX表示为列向量的线性组合:AX=x_1A_1+x_2A_2+...+x_nA_n其中A_1,A_2,...,A_n分别是A的列向量。
现在我们假设A_1,A_2,...,A_{i-1},B,A_{i+1},...,A_n都不变,而将A_i替换成B。
则记新的系数矩阵为A'。
原方程组可以写成AX=B,新的方程组可以写成A'X=B。
根据线性方程组的解唯一性定理,在方程组有解时,系数矩阵A和B之间存在一个可逆矩阵C,使得AX=B等价于CAX=CB。
即X=C^-1B。
而根据矩阵乘法的结合性,CAX=CB可以改写为ACX=CB。
我们可以将AC视为n个列向量A_1,A_2,...,A_{i-1},C,A_{i+1},...,A_n组成的矩阵形式。
同样,我们可以将CB视为n个列向量A_1,A_2,...,A_{i-1},B,A_{i+1},...,A_n组成的矩阵形式。
则ACX=CB可以写成AX=B的形式。
由于X=C^-1B,所以原方程组的解为X=C^-1B。
同理,新方程组的解为X'=(AC)^-1CB。
我们可以通过计算矩阵(AC)^-1和AC,然后使用矩阵乘法运算得出X'。
将X'中位于第i行的元素记作x'_i。
则根据X'=(AC)^-1CB得出x'_i=,AC_i,/,A,其中,X,表示矩阵X的行列式。
克莱姆法则的应用可以用于求解n个方程和n个未知数的线性方程组。
线性代数 1.4克莱姆法则
本章大作业: 本章大作业:见TAS,作业 ,
预习 §2.1 消元法
课后习题: 课后习题 P34
22(2), 23
13
10
解
(1) 构造行列式 )
1 1 1 L 1 1 2 0 L 0 D1 = 1 0 3 L 0 M M M O M 1 0 0 L n
按第一行展开, 则,对D1按第一行展开,得
D1 = A11 + A12 + L + A1n
n 1 = n! 1 − ∑ . j j=2
11
( i = 1,2,L n)
2
定理1 定理1
克莱姆( 克莱姆(Cramer)法则 )
方程的线性方程组(1) 如果含 n 个未知量 n 个方程的线性方程组
a11 x1 + a12 x 2 + L + a1n x n = b1 a x a x L a x 21 1 + 22 2 + + 2 n n = b2 (1) LLLLLLLL a n1 x1 + a n 2 x 2 + L + a nn x n = bn 那么它有唯一解 其解为: 有唯一解, 系数行列式 D ≠ 0 ,那么它有唯一解,其解为:
1) F是一些数的集合; 是一些数的集合; 是一些数的集合 2) 0∈ F ,1 ∈ F ; ∈ 3) F中任意两个数的和、差、积、商(除数不为 中任意两个数的和、 中任意两个数的和
0)仍然是F中的数。(即:关于四则运算封闭 )仍然是 中的数 即 关于四则运算封闭) 中的数。 实数域R,复数域C, 例 实数域 ,复数域 有理数域 【注】 “代数”研究的主要是代数运算与性质,以数域 代数” 代数 研究的主要是代数运算与性质, 为对象,保证了代数运算后仍属于该集合. 为对象,保证了代数运算后仍属于该集合. “线性代数”在不同的数域上讨论问题会有不同 线性代数” 线性代数 的结论,我们主要在实数域上讨论问题,个别地方扩 的结论,我们主要在实数域上讨论问题, 大到复数域. 大到复数域. 9
线性代数—克莱姆法则
D 0,则(2)必有非零解.
8
例2 问 取何值时,齐次线性方程组
x1 x 2 x 3 0
x1
x2
x3
0
x1 x2 x3 0
有非零解?
解 1 1 2 1 1
11 1
D 1 1 2 1 ( 2) 1 1
3 2
0 1
9 27,
5
14 0 6
1 4 7 0
x1
D1 D
81 27
3,
x2
D2 D
108 27
4,
x3
D3 D
27 27
1,
x4
D4 D
27 27
1.
7
a11 x1 a12 x2 a1n xn 0
称方程组 a21x1a22x2a2nxn 0
D 27,
8 1 5 1
2 8 5 1
9 D1 5
3 2
0 1
6
1
2 81, D2 0
9 5
0 1
6 108,
2
0 4 7 6
1 0 7 6
21 8 1
2 1 5 8
1 D3 0
3 2
9 5
6 2
27, D4
1)
an1 x1 an2 x2 ann xn bn
的系数行列式不等于零,即
a11 a12 a1n
D a21 a22 a2n
0,
an1 an2 ann
用克莱姆法则求解方程 概述及解释说明
用克莱姆法则求解方程概述及解释说明1. 引言1.1 概述本文将介绍克莱姆法则在解方程中的应用。
克莱姆法则是一种求解线性方程组的方法,通过使用矩阵和行列式的概念,能够简洁地求得方程组的解。
本文将详细说明该方法的原理、适用条件、算法步骤以及其在不同领域中的应用。
1.2 文章结构文章分为以下几个部分:引言、克莱姆法则概述、克莱姆法则的应用领域、克莱姆法则局限性与优缺点分析以及结论和总结。
下面将对每个部分进行详细说明。
1.3 目的本文旨在全面介绍克莱姆法则,并通过实例和案例分析展示其在实际问题中的应用。
同时,对于该方法所具有的局限性和优缺点进行客观评述,以便读者深入理解和掌握克莱姆法则并对其进行合适的应用选择。
请根据以上内容撰写“1. 引言”部分内容,确保信息传达清晰连贯,并避免包含网址或其他特殊格式。
2. 克莱姆法则概述:2.1 原理说明:克莱姆法则(Cramer's Rule)是一种用于求解线性方程组的方法。
它基于矩阵论和行列式的相关知识,通过分别计算系数矩阵和增广矩阵的行列式来求解未知量。
克莱姆法则适用于含有n个方程、n个未知量的线性方程组,并且假设该方程组有唯一解。
在克莱姆法则中,我们首先需要构建一个系数矩阵A,然后将其与一个列向量B 进行合并形成增广矩阵。
接下来,我们可以通过计算A和B的行列式来求得每个未知量对应的结果。
具体而言,若方程组为Ax=B,则克莱姆法则给出了如下公式:x_i = det(A_i) / det(A)其中,x_i表示第i个未知量的值,det(A_i)表示将第i列替换为B所形成的新矩阵A_i的行列式,det(A)表示原始系数矩阵A的行列式。
2.2 适用条件:克莱姆法则适用于以下条件:- 方程组必须是线性方程组;- 方程组中包含的未知量个数和方程个数相同;- 系数矩阵A必须是一个非奇异矩阵,即其行列式不为零。
2.3 算法步骤:克莱姆法则的求解步骤如下:1. 根据给定的线性方程组,构建系数矩阵A和列向量B。
线性代数 克莱姆法则
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a n1 x1 a n 2 x 2 a nn x n bn
(1)
齐次线性方程组的相关定理 a11 x1 a12 x 2 a1 n x n 0 a x a x a x 0 21 1 22 2 2n n a n1 x1 a n 2 x 2 a nn x n 0
例2 问 取何值时,齐次方程组
2y 2z 0 (5 λ)x 2x (6 λ)y 0 2x (4 λ)z 0
有非零解?
5 2 6 0 2 0 4
解
D
2 2
5 2 8
5 6 4 44 46
1 3
1 3 0 1
1 5
27,
D1 81 x1 3, D 27 D3 27 x3 1, D 27
D2 108 x2 4, D 27 D4 27 x4 1. D 27
线性方程组
定理1.7 如果线性方程组1 的系数行列式D 0, 则1 一定有解,且解是唯一的 . 定理(逆否) 若线性方程组 1无解或有两个不同的解,则它的 系数行列式必为零.
3 2
齐次方程组有非零解,则 D 0 所以 0 , 2 或
3 时齐次方程组有非零解.
y a 0 a 1 x a 2 x 2 a 3 x 3 通过四点(1, 3)、 补例 设曲线 (2, 4)、(3, 3)、(4, -3), 求该曲线。
解:把四个点的坐标代入曲线方程,得方程组
1.3 克莱姆(Cramer)法则
个方程相加, 再将 n 个方程相加,得
n n n n ∑ ak 1 Ak 1 x1 + ∑ ak 2 Ak 1 x2 + L + ∑ a k n Ak 1 xn = ∑ bk Ak 1 . k =1 k =1 k =1 k =1
第 一 章 行 列 式
§1.3 克莱姆(Cramer)法则
四、齐次线性方程组的有解问题
考虑齐次线性方程组
显然,它总存在一组全为零的解(称为零解) 显然,它总存在一组全为零的解(称为零解): 零解
x1 = x2 = L = xn = 0 .
定义 若齐次线性方程组的一组解不全为零 则称为非零解 若齐次线性方程组的一组解不全为零, 则称为非零解 非零解.
8
第 一 章 行 列 式
§1.3 克莱姆(Cramer)法则
四、齐次线性方程组的有解问题
定理 若齐次线性方程组的系数行列式 D ≠ 0 , 则它只有零解 则它只有零解. 证明 由于当线性方程组的系数行列式 D ≠ 0 时有惟一解, 由于当线性方程组的系数行列式 时有惟一解, 线性方程组 故齐次线性方程组的系数行列式 D ≠ 0 时只有零解. 齐次线性方程组的系数行列式 时只有零解 推论 若齐次线性方程组有非零解 则其系数行列式必为零 若齐次线性方程组有非零解, 则其系数行列式必为零. (此为上述定理的逆否命题) 此为上述定理的逆否命题) 思考 (1) 若齐次线性方程组的系数行列式 D = 0 , 则它是否 一定有非零解? 即定理的否命题是否成立? 一定有非零解? (即定理的否命题是否成立?) (2) 齐次线性方程组有非零解和它对应的非齐次线性 齐次线性方程组有非零解 有非零解和它对应的非齐次线性 方程组有无穷多解有何联系? 方程组有无穷多解有何联系? 有无穷多解有何联系 9
线性代数—克莱姆法则
取何值时, 例2 问 λ 取何值时,齐次线性方程组 λ x 1 + x 2 + x 3 = 0 有非零解? 有非零解? x1 + λx 2 + x 3 = 0 x + x + λx = 0 2 3 1 解
1 1 1 λ+2 1 1 D = 1 λ 1 = λ + 2 λ 1 = ( λ + 2) ⋅ 1 λ 1 1 1 λ λ+2 1 λ 1 1 λ 1 1 1 1 1 0 = (λ + 2)(λ − 1) 2 , = ( λ + 2) ⋅ 0 λ − 1 0 0 λ −1
解
2 1 −5 1 1 −3 0 −6 D= 0 2 −1 2 1 4 −7 6
r1 − 2r2 r4 − r2
− 5 13 1 −3 0 −6 0 2 −1 2 0 7 0 7 −7 12
4
− 5 13 7 − 5 13 1 −3 0 −6 = −2 −1 2 = 0 2 −1 2 7 − 7 12 0 7 − 7 12 0 7
第四节
音 乐
如果线性方程组
a11 x1 + a12 x 2 + L + a1n x n = b1 a x + a x + L + a x = b 21 1 22 2 2n n 2 LLLLLLLLLLLL a n1 x1 + a n 2 x 2 + L + a nn x n = bn
λ
所以当 λ = −2 或 λ = 1 时,方程组有非零解. 方程组有非零解.
9
练习: 练习:
P28 习题一
10
END
线性代数 克莱姆(Cramer)法则
其中 b j 称为右端项 (或常数项);
a11 a 21 D a n1 a12 a1n a 22 a 2 n a n 2 a nn
简记为
ai j x j bi ,
j 1
n
i 1 , 2 , , n .
称为系数行列式 .
2
§1.3 克莱姆(Cramer)法则 第 二、克莱姆(Cramer)法则 一 a11 x1 a12 x 2 a1n x n b1 , 章 a 21 x1 a 22 x 2 a 2 n x n b2 , 定理 考虑线性方程组 行 列 P 18 a n1 x1 a n 2 x 2 a nn x n bn . 定理 式 1.3 若系数行列式 D 0 ,则方程组有惟一解
再将 n 个方程相加,得
n n n n ak 1 Ak 1 x1 ak 2 Ak 1 x2 ak n Ak 1 xn bk Ak 1 . k 1 k 1 k 1 k 1
4
§1.3 克莱姆(Cramer)法则 第 一 章 行 列 式
6
§1.3 克莱姆(Cramer)法则 第 三、齐次与非齐次线性方程组 一 a11 x1 a12 x 2 a1n x n b1 , 章 a x a x a x b , 21 1 22 2 2n n 2 行 定义 设线性方程组为 列 P 21 a n1 x1 a n 2 x 2 a nn x n bn . 式 (1) 若常数项 b1 , b2 , , bn 不全为零, 则称此方程组为非齐次线性方程组; (2) 若常数项 b1 , b2 , , bn 全为零, 则称此方程组为齐次线性方程组; 注 通常还称齐次线性方程组为它所对应的非齐次线性 方程组的导出(方程)组. 7
克莱姆法则
ll2 1::a a2 1x x b b1 2yy cc1 2 0 0 充 要 条 件 a a1 2
b1 b2
c1 c2 0.
l1:a3xb3yc30
a3 b3 c3
精选课件
37
三点共线充要条件:
x1 y1 1 x2 y2 1 0 x3 y3 1
精选课件
38
同理可得空间直线方程:
x
y
z1
y3 1
精选课件
40
证: 设圆的方程是
A x2 y2 Dx Ey F 0,
圆上任意点为 x, y .则有:
A x 2 y2 Dx Ey F 0
A x12 y12 Dx1 Ey1 F 0
A x22 y22 Dx2 Ey2 F 0
A x32 y32 Dx3 Ey3 F 0
x1D D128713,
2 1 5 8 1 3 0 9 D4 0 2 1 5 1 4 7 0
27,
x2D D 2217084,
x3D D 322771,
x4
D4 271. D 27
精选课件
12
例2 用克莱姆法则解方程组
3x1 5x2 2x3 x4 3,
3x2 4x4 x1 x2 x3
x13x26x4 9, 2x2x32x4 5,
x14x27x36x4 0.
解 2 1 5 1
0 7 5 13
1 3 0 6 r12r2 1 3 0 6
D 0 2 1 2
r4 r2
0 2 1 2
1 4 7 6
0 7 7 12
精选课件
10
7 5 13 2 1 2
7 7 12
c12c2 c32c2
35 3 1
线性代数 克莱姆(cramer)法则
而其余xi i j 的系数均为 0; 又等式右端为D j .
于是
Dx j D j j 1,2,, n.
2
当 D 0 时,方程组 2 有唯一的一个解
Dn D1 D2 D2 x1 , x2 , x3 , , xn . D D D D
由于方程组 2 与方程组 1 等价, 故
若常数项b1 , b2 ,, bn不全为零, 则称此方程组为非
齐次线性方程组; 若常数项 b1 , b2 ,, bn 全为零,
此时称方程组为齐次线性方程组.
一、克莱姆法则
如果线性方程组
a11 x1 a12 x 2 a1n x n b1 a x a x a x b 21 1 22 2 2n n 2 a n1 x1 a n 2 x 2 a nn x n bn (1)
在把 n 个方程依次相加,得
n n n ak 1 Akj x1 akj Akj x j akn Akj xn k 1 k 1 k 1 bk Akj ,
k 1 n
由代数余子式的性质可知, 上式中x j的系数等于D,
轴平行,故可设其方程为
y c bx ax 2 ,
此方程的系数行列式是范德蒙得行列式,而
1 D 1 1 1 2 3 1 9 1 1 1 2 4 1 3 3 2 3 12 1 2 0. 9
41
所以方程组有唯一解, 又
D1 14, D2 16, D3 4,
故 c 14 2 7,b 16 2 8,a 4 2 2.
2 y 7 8 x 2 x . 即所求的抛物线方程为
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
矩阵在线性方程组A X b
求解的应用
一、利用克拉默法则
1.克拉默法则若含有n个变量和n个方程的线性方程组
的系数行列式D不为零,则该方程组有且仅有惟一解x j=D j/D,j=1,2,...,n.
局限性:
(1)Crammer法则只能用于求解方程个数与未知数个数相等的线性方程组;
(2)Crammer法则只能求得系数行列式不为零时的线性方程组的唯一解;
即如果方程个数与未知数个数不相等,或系数行列式等于零,则Crammer法则失效。
(3)计算量大,要计算n+1 个n 阶行列式的值。
2.改进:
当系数矩阵A行列式不为零时,逆矩阵存在,此时X=A-1.b
二、Gauss消元法
一般的n元线性方程组
(或写成矩阵形式AX=B)解法是首先将其增广矩阵通过初等行变换化为阶梯形矩阵,这样方程组就等价于一个阶梯形的方程组,然后再把不处于每行中第一个非零系数的变元x j挪到方程的右边,令它们为任意参数,则方程组就可以解出了.
定理.设A与分别是n元线性方程组系数矩阵与增广矩阵.若秩,则方程组无解;若秩,则方程组有解.当时,方程组有惟一解;当时,有无穷多个解,且通解一定含n―r个任意常数.
在Mathcad中求解,我们首先利用上述定理判断是否有解,有解时调用rref函数,
计算出rref(),所得结果最右面的列就是该方程组的解
说明: rref(M) 返回对矩阵M的行施行初等变换后化简的矩阵
问题:
1.求解线性方程组
2.求解下列线性方程组
题A
题B
.
题C。