黑龙江省高三模拟考试数学(理)试卷附答案解析
黑龙江省哈尔滨市第六中学校2023届高三第三次模拟考试数学试题

( 3c - 2a sin B) sin C = 3(bsin B - a sin A) ,则下列正确的是( )
A.5
B.9
C.13
D.18
4.已知
sin
æçèa
+
π3ö 3 ÷ø
=
5
,则
sin
æ çè
2a
+
π 6
ö ÷ø
=
(
)
A. 24 25
B.
-
24 25
C.
7 25
D.
-
7 25
5.正三棱柱 ABC -A1B1C1 的棱长均相等,E 是 B1C1 的中点,则异面直线 AB1 与 BE 所成 角的余弦值为( )
(1)证明: BF ^ DE ; (2)求平面 BB1C1C 与平面 DEF 所成的二面角正弦值的最小值及此时点 D 的位置. 20.哈六中举行数学竞赛,竞赛分为初赛和决赛两阶段进行.初赛采用“两轮制”方式 进行,要求每个学年派出两名同学,且每名同学都要参加两轮比赛,两轮比赛都通过 的同学才具备参与决赛的资格.高三学年派出甲和乙参赛.在初赛中,若甲通过第一轮与
A. 2 4
B. 2 3
C. 10 20
D. 3 10 20
6.算盘起源于中国,迄今已有 2600 多年的历史,是中国古代的一项伟大的发明.在阿 拉伯数字出现前,算盘是世界广为使用的计算工具.下图一展示的是一把算盘的初始状
态,自右向左分别表示个位、十位、百位、千位LL ,上面的一粒珠子(简称上珠)代表 5,下面的一粒珠子(简称下珠)代表 1,五粒下珠的大小等同于一粒上珠的大小.例如, 如图二,个位上拨动一粒上珠、两粒下珠,十位上拨动一粒下珠至梁上,代表数字 17. 现将算盘的个位、十位、百位、千位、万位分别随机拨动一粒珠子至梁上,则表示的五位 数至多含 3 个 5 的情况有( )
黑龙江高三模拟考试数学(理)试卷附答案解析

黑龙江高三模拟考试数学(理)试卷附答案解析班级:___________姓名:___________考号:___________一、单选题1.已知集合{}260A x x x =+-=和{}10B x ax =-=,若B A ⊆,则实数a 的值构成的集合是( )A .11,0,32⎧⎫-⎨⎬⎩⎭B .{}2,0-C .12,2⎧⎫-⎨⎬⎩⎭D .10,2⎧⎫⎨⎬⎩⎭2.已知()1i 2i z +=-,则z =( )A B C D .523.如图,在ABC ∆中点Q 为线段AC 上靠近点A 的三等分点,点P 为线段BQ 上靠近点B 的三等分点,则PA PC +=( )A .1233BA BC +B .5799BA BC +C .11099BA BC +D .2799BA BC +4.若3AB =,2AC CB =平面内一点P 满足PA PC PB PC PAPB⋅⋅=,则sin PAB ∠的最大值是 ( )A B .12C .13D 5.2021年5月30日清晨5时01分,天舟二号货运飞船在成功发射约8小时后,与中国空间站天和核心舱完成自主快速交接.如果下次执行空间站的任务由3名航天员承担,需要在3名女性航天员和3名男性航天员中选择,则选出的3名航天员中既有男性航天员又有女性航天员的概率为( ) A .67B .910 C .25D .4156.已知1,3OA OB ==,0,OA OB ⋅=点C 在AB 上,且AOC ∠30=︒,设 (,)OC mOA nOB m n R =+∈,则mn等于A .13B .3CD 7.已知函数()sin (0)6f x x πωω⎛⎫=+> ⎪⎝⎭在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为( )A .80,3⎛⎤⎥⎝⎦B .10,2⎛⎤ ⎥⎝⎦C .18,23⎡⎤⎢⎥⎣⎦D .3,28⎡⎤⎢⎥⎣⎦8.已知3log 0.2a =,0.912b ⎛⎫= ⎪⎝⎭和2log 3c =,则( ).A .c a b >>B .a c b >>C .b c a >>D .c b a >>二、多选题9.2021年是中国共产党建党100周年,为全面贯彻党的教育方针,提高学生的审美水平和人文素养,促进学生全面发展.某学校高一年级举办了班级合唱活动.现从全校学生中随机抽取部分学生,并邀请他们为此次活动评分(单位:分,满分100分),对评分进行整理,得到如图所示的频率分布直方图,则下列结论正确的是( )A .0.028a =B .若该学校有3000名学生参与了评分,则估计评分超过90分的学生人数为600C .学生评分的众数的估计值为85D .学生评分的中位数的估计值为8310.已知直线():10R l x my m -+=∈,圆()22:()(21)1R C x k y k k -+--=∈,则下列选项中正确的是( )A .圆心C 的轨迹方程为21y x =-B .12k =-时直线l C .若直线l 被圆C 截得的弦长为定值,则12m =D .1m =时若直线l 与圆相切,则k =11.如图,在菱形ABCD 中AB =2,3BAD π∠=,将ABD △沿BD 折起,使A 到A ',且点A '不落在底面BCD 内,若点M 为线段A C '的中点,则在ABD △翻折过程中以下命题中正确的是( )A .四面体A BCD -'的体积的最大值为1B .存在某一位置,使得BM ⊥CDC .异面直线BM 与AD '所成的角为定值 D .当二面角A BD C '--的余弦值为13时2A C '=12.已知函数()f x 的定义域为()0,∞+,且()()()f xy f x f y =+,当1x >时()0f x >,()21f =则下列说法正确的是( ) A .()10f =B .函数()f x 在()0,∞+上是增函数C .不等式()132f f x x ⎛⎫--≥- ⎪⎝⎭的解集为(]0,4D .()()()()1111232021202220212022202132f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+++++⋅⋅⋅++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭三、填空题13.6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项为________.14.设函数222e 1e (),()e +==x x x xf xg x ,对任意12,(0,)x x ∈+∞,不等式12()()1>+f x g x k k 恒成立,则正数k 的取值范围是_____.15.若曲线e x y =过点(2,0)-的切线恒在函数212()e 31e e x f x a x x ⎛⎫=-+-+- ⎪⎝⎭的图象的上方,则实数a 的取值范围是__________. 四、双空题16.甲、乙、丙三位教师分别在某校的高一、高二、高三这三个年级教不同的学科:语文、数学、外语,已知:①甲不在高一工作,乙不在高二工作; ②在高一工作的教师不教外语学科; ③在高二工作的教师教语文学科; ④乙不教数学学科.可以判断乙工作的年级和所教的学科分别是______、_____. 五、解答题17.如图,在四棱锥P ABCD -中底面ABCD 为长方形,2AB =和4=AD ,侧面PAD ⊥底面ABCD ,PAD 是正三角形,M 是PD 的中点,N 是AB 的中点.(1)求证://MN 平面PBC ; (2)求二面角A PB C --的正弦值.18.已知数列{}n a 的前n 项和为n S ,设n S n ⎧⎫⎨⎬⎩⎭是首项为1,公差为1的等差数列(1)求{}n a 的通项公式; (2)设21+81n n b a n =-,求数列{}n b 的前n 项的和n T .19.已知△ABC 中角A ,B ,C 的对边分别为a ,b ,c ,设△ABC 外接圆的半径为R ,且()2212cos cos bc R B C =+.(1)求角A 的大小;(2)若D 为BC 边上的点2AD BD ==,CD=1,求tan B .20.某射手每次射击击中目标的概率是23,且各次射击的结果互不影响 (1)假设这名射手射击5次,求恰有2次击中目标的概率;(2)假设这名射手射击5次,求有3次连续击中目标另外2次末击中目标的概率;(3)假设这名射手射击3次,每次射击,击中目标得1分,末击中目标得0分,在3次射击中若有2次连续击中而另外1次末击中则额外加1分;若3次全击中则额外加3分,记ξ为射手射击3次后的总的分数,求ξ的分布列及期望.21.动点(),M x y 与定点()4,0F 的距离和它到定直线9:4l x =的距离的比是常数43. (1)求动点M 的轨迹方程;(2)直线:l y kx b =+与M 的轨迹交于A ,B 两点,AB 的中点坐标为()6,2,求直线l 的方程.22.已知函数()()2ln 1f x ax bx x =+-+.(Ⅰ)当0a =时函数()f x 存在极值,求实数b 的取值范围;(Ⅱ)当1b =时函数()f x 在()0,∞+上单调递减,求实数a 的取值范围; (Ⅲ)求证:()()1*113ln 2122N 14nk n n k =-+<∈-∑. 参考答案与解析1.A【分析】解出集合A ,分0a =、0a ≠两种情况讨论,在0a =时直接验证B A ⊆;在0a ≠时可得出关于实数a 的等式,即可解得实数a 的值.综合可得出结果.【详解】因为{}{}2603,2A x x x =+-==-当0a =时B A =∅⊆,合乎题意;当0a ≠时则1B A a ⎧⎫=⊆⎨⎬⎩⎭,可得13a =-或12a =,解得13a =-或12.综上所述,实数a 的取值集合为11,0,32⎧⎫-⎨⎬⎩⎭.故选:A. 2.B【分析】根据复数模长的性质求解即可.【详解】由()1i 2i z +=-可得2i1i z -=+,故2i 1i 2z -===+故选:B 3.B【解析】23PA PC BA BP BC BP BA BC BQ +=-+-=+-,将13BQ BA AQ BA AC =+=+,AC BC BA =-代入化简即可.【详解】23PA PC BA BP BC BP BA BC BQ +=-+-=+-2()3BA BC BA AQ =+-+1233BA BC =+-⨯13AC 1257()3999BA BC BC BA BA BC =+--=+. 故选:B.【点睛】本题考查平面向量基本定理的应用,涉及到向量的线性运算、数乘运算,考查学生的运算能力,是一道中档题. 4.B【分析】由2AC CB =知C 为线段AB 的靠近B 的一个三等分点,且||2||AC CB =,由PA PC PB PC PAPB⋅⋅=推出PC 为APB ∠的平分线,根据角平分线定理得到||2||1PA PB =,设||PB m =,则||2PA m =,根据余弦定理以及基本不等式求出cos PAB ∠的最小值,从而可得sin PAB ∠的最大值.【详解】由2AC CB =知C 为线段AB 的靠近B 的一个三等分点,且||2||AC CB = 因为PA PC PB PC PAPB⋅⋅=,所以|||cos ||||cos ||||PA PC APC PB PC BPCPA PB ∠∠=所以cos cos APC BPC ∠=∠,所以APC BPC ∠=∠ 所以PC 为APB ∠的平分线 根据角平分线定理可得||||2||||1PA AC PB CB ==,设||PB m =,则||2PA m =所以222||||||cos 2||||PA AB PB PAB PA AB +-∠=224912m m m+-=344m m =+≥=当且仅当m 时等号成立所以1sin 2PAB ∠= 即sin PAB ∠的最大值是12. 故选:B【点睛】易错点睛:利用基本不等式求最值时要注意其必须满足的三个条件: (1)“一正二定三相等”“一正”就是各项必须为正数;(2)“二定”就是要求和的最小值,必须把构成和的二项之积转化成定值;要求积的最大值,则必须把构成积的因式的和转化成定值;(3)“三相等”是利用基本不等式求最值时必须验证等号成立的条件,若不能取等号则这个定值就不是所求的最值,这也是最容易发生错误的地方. 5.B【分析】利用对立事件和古典概型的概率公式求解即可.【详解】设“选出的3名航天员中既有男性航天员又有女性航天员”为事件M ,则()333336C C 91C 10P M ==+-. 故选:B. 6.B【分析】由已知得OA OB ⊥,以OA ,OB 为x 、y 轴建立直角坐标系,设OC t =,写出C 点坐标,代入OC mOA nOB =+,可得结论.【详解】因为0,OA OB ⋅=所以OA OB ⊥,以OA ,OB 为x 、y 轴建立直角坐标系,A (1,0),B (0,设OC t =,则C,12t )31(,)22OC t =,()mOA nOB m += 因为OC mOA nOB =+ 所以m =12t =,所以3m n =故选:B .【点睛】本题考查平面向量线性运算的坐标表示,考查向量垂直与数量积的关系.解题关键是建立平面直角坐标系,用坐标表示向量. 7.B【解析】由正弦函数的性质可得121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间列不等式组求ω解集即可.【详解】由函数解析式知:()f x 在()2,222k k k Z ππππ⎡⎤-+∈⎢⎥⎣⎦上单调递增∴121(2)(2),33k x k k Z ππππωω-≤≤+∈,()f x 单调递增又∵()f x 在区间2,43ππ⎡⎤-⎢⎥⎣⎦上单调递增∴12(2)3412(2)33k k πππωπππω⎧-≤-⎪⎪⎨⎪+≥⎪⎩,解得8831320k k k Z ωωω⎧≤-⎪⎪⎪≤+⎨⎪>⎪⎪∈⎩,所以当0k =时有102ω<≤故选:B【点睛】关键点点睛:利用整体代入法得到121(2)(2),33k x k k Z ππππωω-≤≤+∈,结合已知单调区间与所得区间的关系求参数范围. 8.D【分析】根据指数函数和对数函数单调性可分别求得,,a b c 的范围大小,即可比较得出结果. 【详解】由33log 0.2log 10a =<=,可得(),0a ∈-∞; 由指数函数值域和单调性可知0.9110122b ⎛⎫⎛⎫<=<= ⎪⎪⎝⎭⎝⎭,即()0,1b ∈; 而22log 3log 21c =>=,即()1,c ∈+∞,所以c b a >>. 故选:D 9.ABC【分析】对A ,由频率之和为1可得;对B ,根据频率分布直方图直接计算;对C ,由最高长方形底边中点对应的横坐标是样本数据的众数可得;对D ,先判断出中位数在[)80,90内,列出式子可求.【详解】对于A ,由频率分布直方图中各个小矩形的面积之和为1,知0.060.06100.40.21a ++++=,解得0.028a =,A 正确;对于B ,由频率分布直方图易知,估计参与评分的3000名学生中评分超过90分的人数为()30000.0210600⨯⨯=,B 正确;对于C ,由频率分布直方图可知,众数的估计值为85,C 正确;对于D ,前三组频率之和为()0.0060.0060.028100.4++⨯=,前四组频率之和为0.40.04100.8+⨯=,则中位数在[)80,90内设学生评分的中位数的估计值为x ,则()0.4800.040.5x +-⨯=,解得82.5x =,D 错误. 故选:ABC.【点睛】频率分布直方图中的常用结论:(1)频率分布直方图中所有小长方形的面积之和为1;(2)频率分布直方图中最高长方形底边中点对应的横坐标是样本数据的众数;(3)平分频率分布直方图中小矩形的面积且垂直于横轴的直线与横轴交点的横坐标是样本数据的中位数;(4)频率分布直方图中每个小长方形的面积与对应小长方形底边中点的横坐标的乘积之和是样本数据的平均数. 10.BC【分析】首先表示出圆心坐标,即可判断A ,再求出直线过定点坐标,由弦长公式判断B ,求出圆心到直线的距离,当距离为定值时弦长也为定值,即可判断C ,求出圆心到直线的距离,即可判断D ;【详解】解:圆()22:()(21)1R C x k y k k -+--=∈的圆心坐标为(),21C k k +所以圆心C 的轨迹方程为21y x =+,故A 错误;直线():10R l x my m -+=∈,令100x y +=⎧⎨-=⎩,解得10x y =-⎧⎨=⎩,即直线l 恒过点()1,0M -当12k =-时圆221:()12C x y ++=,圆心为1,02C ⎛⎫- ⎪⎝⎭,半径1r =,又11122MC ⎛⎫=---= ⎪⎝⎭所以直线l被圆截得的弦长的最小值为B 正确;对于C :若直线l 被圆C 截得的弦长为定值,则圆心到直线的距离d ==定值所以120m -=,解得12m =,故C 正确; 对于D :当1m =时直线:10l x y -+=,圆心到直线的距离d=若直线与圆相切,则k =D 错误; 故选:BC 11.ABD【分析】连接AC 交BD 于O ,连接OA ',取CD 的中点N ,连接,MN BN ,当平面A BD '⊥平面BCD 时四面体A BCD -'的体积最大,从而可判断A ;易得BN CD ⊥,说明MN CD ⊥成立,再根据线面垂直的判定定理及性质即可判断B ;证明异面直线BM ,A D '所成的角即为BMN ∠或其补角,再根据BM 不为定值,即可判断C ;说明A OC '∠即为二面角A BD C '--的平面角,再根据二面角A BD C '--的余弦值可得A C ',从而可判断D.【详解】解:连接AC 交BD 于O ,连接OA ',取CD 的中点N ,连接,MN BN 对于A ,当平面A BD '⊥平面BCD 时四面体A BCD -'的体积最大 点A '到平面BCD 的距离最大此时在菱形ABCD 中2AB = π3BAD ∠= 则,ABD BCD 都是等边三角形则OA OA OC '===此时四面体A BCD -'的体积为112132⨯⨯=所以四面体A BCD -'的体积的最大值为1,故A 正确; 对于B ,因为,M N 分别为,A C CD '的中点 所以BN CD ⊥MN A D '∥且112MN A D '== 由题意20,3A DC π⎛⎫'∠∈ ⎪⎝⎭,则20,3MNC π⎛⎫∠∈ ⎪⎝⎭当2MNC π∠=时MN CD ⊥因为MN BN N ⋂=,,MN BN ⊂平面BMN 所以2MNC π∠=时CD ⊥平面BMN又BM ⊂平面BMN 所以CD BM ⊥所以存在某一位置,使得BM CD ⊥,故B 正确; 对于C ,因为MN A D '∥所以异面直线BM ,A D '所成的角即为BMN ∠或其补角 2131cos 22BM BM BMN BM BM+-∠==-因为BM 不为定值,所以cos BMN ∠不为定值即异面直线BM ,A D '所成的角不为定值,故C 错误; 对于D ,因为,OC BD OA BD '⊥⊥所以A OC '∠即为二面角A BD C '--的平面角则2261cos 63A C A OC '-'∠===,所以2A C '=,故D 正确. 故选:ABD.12.AB【分析】利用赋值法求得()10f =,判断A ;根据函数的单调性定义结合抽象函数的性质,可判断函数的单调性,判断B ;求出1112422f f f ⎛⎫⎛⎫⎛⎫=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭,将()132f f x x ⎛⎫--≥- ⎪⎝⎭转化为11134f f f x x ⎛⎫⎛⎫⎛⎫+≥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭,即可解不等式组求出其解集,判断C ;利用()()()f xy f x f y =+,与()10f =可判断D. 【详解】对于A :令1x y == ,得()()()()11121f f f f =+=,所以()10f =,故A 正确; 对于B :令10y x =>,得()()110f f x f x ⎛⎫=+= ⎪⎝⎭,所以()1f f x x ⎛⎫=- ⎪⎝⎭任取()12,0,x x ∈+∞,且12x x <,则()()()2212111x f x f x f x f f x x ⎛⎫⎛⎫-=+= ⎪ ⎪⎝⎭⎝⎭因为211x x >,所以210x f x ⎛⎫> ⎪⎝⎭,所以()()21f x f x > 所以()f x 在()0,∞+上是增函数,故B 正确;对于C :因为()21f =,且()1f f x x ⎛⎫=- ⎪⎝⎭,所以()1212f f ⎛⎫=-=- ⎪⎝⎭所以1112422f f f ⎛⎫⎛⎫⎛⎫=+=- ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭所以()132f f x x ⎛⎫--≥- ⎪⎝⎭等价于11134f f f x x ⎛⎫⎛⎫⎛⎫+≥ ⎪ ⎪ ⎪-⎝⎭⎝⎭⎝⎭又()f x 在()0,∞+上是增函数,且()()()f xy f x f y =+,所以()113410103x x x x ⎧≥⎪-⎪⎪>⎨⎪⎪>⎪-⎩解得34x <≤,故C 错误;对于D :()()()()111123202120222022202132f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫++⋅⋅⋅+++++⋅⋅⋅++ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭()()()()11112022202132111102022202132f f f f f f f f ⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯+⋅⋅⋅+⨯+⨯=++⋅⋅⋅++= ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭故D 错误;故选:AB . 13.35【分析】由多项式的乘法法则可知,6321(1)x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项是由1乘以621x x ⎛⎫+ ⎪⎝⎭展开式中的常数项和3x 乘以621x x ⎛⎫+ ⎪⎝⎭展开式中的3x -项两个部分组成.【详解】解:因为621x x ⎛⎫+ ⎪⎝⎭展开式的通项为66316621rr r r rr T C x C x x --+⎛⎫== ⎪⎝⎭所以()63211x x x ⎛⎫++ ⎪⎝⎭展开式中的常数项共有两种来源:①630r -=,解得2r =,此时常数为2615C =;②633r -=-,解得3r =,此时常数为3620C =;所以展开式中的常数项为2366152035C C .故答案为:35.14.1k > 【分析】将不等式12()()1>+f x g x k k恒成立转化为min max ()()1f x g x k k >+,接下来求(),()f x g x 的最小值与最大值,列出关于k 的不等式,解k 即可 【详解】对任意12,(0,)x x ∈+∞,不等式12()()1>+f x g x k k恒成立min max()()1f x g x k k ⇒>+由2e (1)()0exx g x -'== ,得1x = (0,1)x ∴∈ 时()0g x '> ,()g x 在(0,1) 上递增(1,)x ∈+∞ 时()0g x '< ,()g x 在(1,)+∞ 上递减 max ()(1)eg x g k k k== 由222e 1()0x f x x-'== ,得1e x = 1(0,)e x ∴∈ 时()0f x '<,()f x 在1(0,)e上递减1(,)ex ∈+∞ 时()0f x '>,()f x 在1(,)e +∞ 上递增min1()()2e e 111f f x k k k ==+++ 由min max ()()1f x g x k k >+即2e e1k k>+ ,又因为k 为正实数 解得1k > 故答案为:1k > 15.2(,e )∞--所以2x =-为()g x 的极小值点,又因为x →+∞时()0g x +→ 2(2)e 0g -=-< 所以2min ()(2)e g x g =-=-,所以2e a <-. 故答案为2(,e )∞--. 16. 高三 外语【分析】首先判断乙教的学科是外语,再判断乙工作年级为高三,得到答案. 【详解】由①乙不在高二工作③在高二工作的教师教语文学科④乙不教数学学科 推断乙所教的学科为外语②在高一工作的教师不教外语学科,推断乙不在高一工作 又根据①乙不在高二工作,推断乙再高三工作 故乙再高三教外语故答案为 (1). 高三 (2). 外语【点睛】本题考查了逻辑推理,意在考查学生的逻辑推理能力. 17.(1)证明见及解析【分析】(1)取PC 中点为E ,连结,BE ME ,证明MNBE 为平行四边形,得MN EB ∥,再由线面平行的判定定理得证;(2)建立如图所示的空间直角坐标系,用空间向量法求二面角.设平面PAB的法向量为()111,,n x y z =,则0n AB n PB ⎧⋅=⎪⎨⋅=⎪⎩,即111120220x x y =⎧⎪⎨--=⎪⎩,∴1110x y =⎧⎪⎨=⎪⎩,令11z =,所以()0,3,1;n =- 设平面PBC 的法向量为()222,,m x y z = 同理00m BC m PB ⎧⋅=⎪⎨⋅=⎪⎩得:222240220y x y =⎧⎪⎨--=⎪⎩∴222y x =⎧⎪⎨=⎪⎩,令21z =,则()3,0,1m =设二面角A PB C --的平面角为α,∴1cos ,4n m n m n m ⋅==⋅ 所以1cos 4α=,∴sin α=A PB C --18.(1)21n a n =-(2)44n nT n =+【分析】(1)根据等差数列的性质求解得nS n n=,即2n S n =,结合n a 与n S 即可求得{}n a 的通项公式; (2)直接应用裂项相消法求和即可.【详解】(1)解:因为n S n ⎧⎫⎨⎬⎩⎭是首项为1,公差为1的等差数列所以1(1)n S n n n=+-=,则2n S n =于是当1n =时21111S a ===当2n ≥时221(1)21n n n a S S n n n -=-=--=-则11a =符合上式,所以21n a n =-. (2)解:222111111+81(21)814441n n b a n n n n n n n ⎛⎫====- ⎪--+-++⎝⎭则12311111111111141242343441n n T b b b b n n ⎛⎫⎛⎫⎛⎫⎛⎫=++++=-+-+-++-⎪ ⎪ ⎪ ⎪+⎝⎭⎝⎭⎝⎭⎝⎭1114144n n n ⎛⎫=-=⎪++⎝⎭. 19.(1)π3A = (2)tanB =【分析】(1)根据题意,由正弦定理可得24sin sin bc R B C =,再由三角恒等变换化简即可得到结果; (2)根据题意,可得2π3C B =-,再由正弦定理化简,即可得到结果. 【详解】(1)由正弦定理可得,2sin sin b cR B C==与24sin sin bc R B C = 2sin sin 12cos cos B C B C =+和1cos()cos 2B C A +=-=-1cos 2A =,(0,π)A ∈ 所以π3A =(2)2CDA B ∠=∠ 2π3C B =- sin sin CD ADDAC C =∠,即2sin sin 33CD ADB B ππ=⎛⎫⎛⎫-- ⎪ ⎪⎝⎭⎝⎭11sin 2sin 22B B B B ⎫+=-⎪⎪⎝⎭3sin 2B B =tan B =20.(1)40243;(2)881; (3)分布列见解析;期望为8627.【分析】(1)设X 为射手在5次射击中击中目标的次数,则25,3X B ⎛⎫⎪⎝⎭,利用二项分布概率公式即得; (2)利用互斥事件概率求和公式及独立事件概率公式即得;(3)由题可得ξ的所有可能取值为0,1,2,3,6,分别求概率,进而可得分布列及期望. (1)设X 为射手在5次射击中击中目标的次数,则25,3X B ⎛⎫ ⎪⎝⎭. 则在5次射击中恰有2次击中目标的概率为:()232522402C 133243P X ⎛⎫⎛⎫==⨯⨯-=⎪ ⎪⎝⎭⎝⎭; (2)设“第i 次射击击中目标”为事件()1,2,3,4,5i A i =;“射手在5次射击中有3次连续击中目标,另外2次末击中目标”为事件A ,则()P A ()()()123451234512345P A A A A A P A A A A A P A A A A A =++ 3232321121123333333⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=⨯+⨯⨯+⨯ ⎪ ⎪ ⎪ ⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭881=; (3)由题意可知,ξ的所有可能取值为0,1,2,3,6()()3123110327P P A A A ξ⎛⎫====⎪⎝⎭ ()()()()1231231231P P A A A P A A A P A A A ξ==++222112112233333339⎛⎫⎛⎫=⨯+⨯⨯+⨯= ⎪ ⎪⎝⎭⎝⎭ ()()1232124233327P P A A A ξ===⨯⨯=()()()22123123211283333327P P A A A P A A A ξ⎛⎫⎛⎫==+=⨯+⨯=⎪ ⎪⎝⎭⎝⎭()()3123286327P P A A A ξ⎛⎫====⎪⎝⎭ 所以ξ的分布列是:12488+1+2+3+6=2792(72727)=0E ξ⨯⨯⨯⨯⨯8627. 21.(1)22197x y -= (2)7123y x =-【分析】(143=,整理即可得出答案;(2)设()()1122,,,A x y B x y ,则有22112222197197x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩,两式相减即可求得k ,再将点()6,2代入求得b ,即可得出答案.【详解】(1)解:因为点(),M x y 与定点()4,0F 的距离和它到定直线9:4l x =的距离的比是常数4343=化简得22197x y -=所以动点M 的轨迹方程为22197x y -=;(2)解:设()()1122,,,A x y B x y 则121212,4x x y y +=+=则有22112222197197x y x y ⎧-=⎪⎪⎨⎪-=⎪⎩ 两式相减得2222121297x x y y --=,即()()()()1212121297x x x x y y y y -+-+= 所以121273y y k x x -==- 所以直线7:3l y x b =+ 将点()6,2代入得214b =+,所以12b =- 所以直线l 的方程为7123y x =-. 22.(Ⅰ)0b >;(Ⅱ)12a ≤-;(Ⅲ)证明见解析.【分析】(Ⅰ)首先求出函数的导函数为()()11bx b f x x --'=+,再对参数b 分类讨论;(Ⅱ)要使函数()f x 在()0,∞+上单调递减,即导函数()201xf x ax x '=+≤+恒成立,参变分离即可求出a 的取值范围;(Ⅲ)由(Ⅱ)知:当12a =-时()()21ln 12f x x x x =-+-+在()0,∞+递减,即()2ln 12x x x -+<,令221x n =-,则()22212ln 212121n n n n +-<---,利用放缩可得()()22222111441412121n n n n n n n ⎛⎫<<=- ⎪-+--⎝⎭-最后累加即可得证;【详解】解:(Ⅰ)当0a =时()()()ln 11f x bx x x =-+>- ()()1111bx b f x b x x --'=-=++①当0b ≤时()0f x '<,则()f x 在()1,-+∞递减,无极值; ②当0b >时令()1'0,11f x x b==->- 1()0,(1,1),()f x x f x b'<∈--单调递减1()0,(1,),()f x x f x b '>∈-+∞单调递增所以11,()x f x b=-取得极小值. 综上可知0b >.(Ⅱ)当1b =时()()()2ln 10f x ax x x x =+-+>()1212011x f x ax ax x x '=+-=+≤++恒成立 121a x ⇔-≥+对一切()0,x ∈+∞恒成立 ∵11x +>,∴1011x <<+,∴21a -≥,∴12a ≤-.(Ⅲ)由(Ⅱ)知:当12a =-时()()21ln 12f x x x x =-+-+在()0,∞+递减∴()()00f x f ≤=,即:()2ln 12x x x -+<令221x n =-,则()22212ln 212121n n n n +-<--- 当2n ≥时()2222122ln 212144121n n n n n n +-<=---+-()21114121n n n n ⎛⎫<=- ⎪--⎝⎭∴23ln 2ln 311-=- 2511ln 13322⎛⎫-<- ⎪⎝⎭27111ln 55223⎛⎫-<- ⎪⎝⎭……221111ln 212121n n n n n +⎛⎫-<- ⎪---⎝⎭累加得,()11112ln 212ln 31212nk n k n =⎛⎫⋅-+<-+- ⎪-⎝⎭∑第 21 页 共 21 页 5153ln3ln32222n =--<-< 当1n =时131ln 324-<,即:1ln 32> 综上()1113ln 212124nk n k =-+<-∑. 【点睛】本题考查利用导数研究函数的极值、单调性,放缩法证明不等式,综合性强,属于较难题.。
黑龙江省哈尔滨市第三中学校2024届高三学年第一次模拟考试数学试卷及答案

2024哈三中高三学年第一次模拟考试数学试卷考试说明:(1)本试卷满分150分.考试时间为120分钟;(2)回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑.如需要改动,用橡皮擦干净后,再选涂其他答案标号.回答非选择题时,将答案写在答题卡上.写在本试卷上无效.(3)考试结束后,将答题卡交回.一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.若3-i1+iz =,i 为虚数单位,则z ()A .2i -B .12i -C .12i+D .2i+2.设集合1{1},12A xB x x ⎧⎫=<=-<<⎨⎩⎭,则A B = ()A .(,1)-∞B .11,2⎛⎫- ⎪⎝⎭C .(1,1)-D .10,2⎛⎫ ⎪⎝⎭3.冰嘎别名冰尜,是东北民间少年儿童游艺品,俗称“陀螺”.通常以木镟之,大小不一,一般径寸余,上端为圆柱形,下端为锥形.如图所示的是一个陀螺立体结构图.己知,B C 分别是上、下底面圆的圆心,6,2AC AB ==,底面圆的半径为2,则该陀螺的体积为()图1图2A .803πB .703πC .20πD .563π4.在ABC 中,角,,A B C 的对边分别为,,a b c ,若sin cos 2Bb Cc =,且||||CA CB CA CB +=- ,则A =()A .6πB .3πC .4πD .2π5.已知某商品近期价格起伏较大,假设第一周和第二周的该商品的单价分别为m 元和n 元()m n ≠,甲、乙两人购买该商品的方式不同,甲每周购买100元的该商品,乙每周购买20件该商品,若甲、乙两次购买平均单价分别为12,a a ,则()A .12a a =B .12a a <C .12a a >D .12,a a 的大小无法确定6.已知数列{}n a 为等比数列,n S 为数列{}n a 的前n 项和,若4863,,5a a a 成等差数列,则1056S a a =+()A .1219B .114C .314D .211367.有3台车床加工同一型号的零件,第1,2,3台加工的次品率分别为5%,2%,4%,加工出来的零件混放在一起.己知第1,2,3台车床加工的零件数的比为4: 5: 11,现任取一个零件,记事件i A =“零件为第i 台车床加工”(1,2,3)i =,事件B =“零件为次品”,则()1P A B =()A .0.2B .0.05C .537D .10378.设0a >且1a ≠,若函数()()32223722,0()2log ,0e a x x a a x x f x x x x ⎧-+-++≤⎪=⎨->⎪⎩有三个极值点,则实数a 的取值范围是()A .10,(2,e)e ⎛⎫ ⎪⎝⎭B .1,1(1,e)e ⎛⎫ ⎪⎝⎭C .1,1(1,2)e ⎛⎫ ⎪⎝⎭D .1,1(1,2)3⎛⎫ ⎪⎝⎭二、选择题:本题共3小题,每小题6分,共18分.在每小题给出的选项中,有多项符合题目要求.全部选对的得6分,部分选对的得部分分,有选错的得0分.9.杭州亚运会于2023年9月23日至10月8日举办,某学校举办了一场关于杭州亚运会相关知识问答竞赛,比赛采用计分制(满分100分),该校学生成绩绘制成如下频率分布直方图,图中3b a =.则下列结论正确的是()A .0.01a =B .该校学生成绩的众数为80分C .该校学生成绩的75%分位数是85分D .该校学生成绩的平均分是76.510.已知抛物线2:2(0)C y px p =>的焦点F 与椭圆22154x y +=的右焦点重合,,A B 是抛物线C 上不同的两点,O 为坐标原点,则()A .抛物线C 的标准方程为24y x=B .若直线AB 经过点F ,则以线段AB 为直径的圆与y 轴相切C .若点(1,1),Q P 为抛物线C 上的动点,则PQF 周长的最小值为3+D .若0OA OB ⋅=,则||||32OA OB ⋅≥11.如图,已知正三棱台111ABC A B C -是由一个平面截棱长为6的正四面体所得,其中12AA =,以点A 为球心,11BCC B 的交线为曲线,P Γ为Γ上一点,则下列结论中正确的是()A .点A 到平面11BCCB 的距离为B .曲线Γ的长度为4πC .CP 的最小值为2D .所有线段AP 所形成的曲面的面积为3三、填空题:本题共3小题,每小题5分,共15分.12.已知52345012345(23)x a a x a x a x a x a x +=+++++,则1a =_______.(用数字作答)13.已知圆221:3C x y +=,圆222:(1)(2)3C x y -+-=,直线:2l y x =+.若直线l 与圆1C 交于,A B 两点,与圆2C 交于,D E 两点,,M N 分别为,AB DE 的中点,则||MN =________.14.设*{1,2,,}m N m = 表示不超过()*m m N∈的正整数集合,kA 表示k 个元素的有限集,()S A 表示集合A中所有元素的和,集合(){}*,m k k k m T S A A =⊆N ,则3,2T =_________;若(),32024m S T ≤,则m 的最大值为_________.四、解答题:本题共5小题,共77分.解答应写出文字说明、证明过程或演算步骤.15.已知函数21()sincos (0)2f x x x x ωωωω=->.(1)当1ω=时,求函数()f x 在0,2π⎛⎫⎪⎝⎭上的值域;(2)在ABC 中,内角,,A B C 的对边分别为,,,a b c AD 为BAC ∠的平分线,若()f x 的最小正周期是2,0,23A f a AD π⎛⎫===⎪⎝⎭,求ABC 的面积.16.如图1,在平行四边形ABCD 中,60,22D DC AD =︒==,将ADC 沿AC 折起,使点D 到达点P 位置,且PC BC ⊥,连接PB 得三棱锥P ABC -,如图2.图1图2(1)证明:平面PAB ⊥平面ABC ;(2)在线段PC 上是否存在点M ,使平面AMB 与平面MBC 的夹角的余弦值为58,若存在,求出||||PM PC 的值,若不存在,请说明理由.17.已知函数()e xf x ax =+.(1)若1a =-,求函数()f x 的单调区间;(2)当0x >时,2()1f x x >+恒成立,求实数a 的取值范围.18.这个冬季,哈尔滨文旅持续火爆,喜迎大批游客,冬天里哈尔滨雪花纷飞,成为无数南方人向往的旅游胜地,这里的美景,美食,文化和人情都让人流连忘返,严寒冰雪与热情服务碰撞出火花,吸引海内外游客纷至沓来.据统计,2024年元旦假期,哈尔滨市累计接待游客304.79万人次,实现旅游总收入59.14亿元,游客接待量与旅游总收入达到历史峰值.现对某一时间段冰雪大世界的部分游客做问卷调查,其中75%的游客计划只游览冰雪大世界,另外25%的游客计划既游览冰雪大世界又参观群力音乐公园大雪人.每位游客若只游览冰雪大世界,则得到1份文旅纪念品;若既游览冰雪大世界又参观群力音乐公园大雪人,则获得2份文旅纪念品.假设每位来冰雪大世界景区游览的游客与是否参观群力音乐公园大雪人是相互独立的,用频率估计概率.(1)从冰雪大世界的游客中随机抽取3人,记这3人获得文旅纪念品的总个数为X ,求X 的分布列及数学期望;(2)记n 个游客得到文旅纪念品的总个数恰为1n +个的概率为n a ,求{}n a 的前n 项和n S ;(3)从冰雪大世界的游客中随机抽取100人,这些游客得到纪念品的总个数恰为n 个的概率为n b ,当n b 取最大值时,求n 的值.19.在平面直角坐标系xOy 中,双曲线2222:1(0,0)x y H a b a b-=>>的实轴长为4,渐近线方程为20x y ±=.(1)求双曲线H 的标准方程;(2)过点(4,0)P 作直线l 交双曲线H 左右两支于,A B 两点(异于顶点),点A 关于x 轴的对称点为E ,证明直线BE 过定点Q ;(3)过双曲线H 上任意不同的两点,C D 分别作双曲线H 的切线,若两条切线相交于点M ,且0MC MD ⋅=,在第(2)的条件下,求MPQ S 的最大值及此时点M 的坐标.2024哈三中高三学年第一次模拟考试数学答案1-4CCDA5-8BADC9ACD10AD11ACD12.2401314.{3,4,5};2215.(1)1,12⎛⎤-⎥⎝⎦(2)216.(1)略(2)2317.(1)单调递减区间(,0)-∞单调递增区间(0,)+∞(2)2a e>-18.(1)2727(3)(4)6464P X P X ====91(5)(6)6464P X P X ====15()4E X =(2)34(4)4nn S n ⎛⎫=-+ ⎪⎝⎭(3)12519.(1)2214x y -=(2)(1,0)Q (3)(0,MPQ S M =。
黑龙江省哈尔滨十九中2024学年高三数学第一学期期末经典模拟试题含解析

黑龙江省哈尔滨十九中2024学年高三数学第一学期期末经典模拟试题注意事项1.考生要认真填写考场号和座位序号。
2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。
第一部分必须用2B 铅笔作答;第二部分必须用黑色字迹的签字笔作答。
3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。
一、选择题:本题共12小题,每小题5分,共60分。
在每小题给出的四个选项中,只有一项是符合题目要求的。
1.已知正方体1111ABCD A B C D -的棱长为2,点P 在线段1CB 上,且12B P PC =,平面α经过点1,,A P C ,则正方体1111ABCD A B C D -被平面α截得的截面面积为( )A .36B .26C .5D 532.已知EF 为圆()()22111x y -++=的一条直径,点(),M x y 的坐标满足不等式组10,230,1.x y x y y -+≤⎧⎪++≥⎨⎪≤⎩则ME MF ⋅的取值范围为( )A .9,132⎡⎤⎢⎥⎣⎦B .[]4,13C .[]4,12D .7,122⎡⎤⎢⎥⎣⎦3.若直线240x y m ++=经过抛物线22y x =的焦点,则m =( ) A .12B .12-C .2D .2-4.已知2π()12cos ()(0)3f x x ωω=-+>.给出下列判断: ①若12()1,()1f x f x ==-,且12minπx x -=,则2ω=;②存在(0,2)ω∈使得()f x 的图象向右平移6π个单位长度后得到的图象关于y 轴对称;③若()f x 在[]0,2π上恰有7个零点,则ω的取值范围为4147,2424⎡⎫⎪⎢⎭⎣; ④若()f x 在ππ,64⎡⎤-⎢⎥⎣⎦上单调递增,则ω的取值范围为20,3⎛⎤ ⎥⎝⎦.其中,判断正确的个数为( ) A .1B .2C .3D .45.已知向量()3,2AB =,()5,1AC =-,则向量AB 与BC 的夹角为( ) A .45︒B .60︒C .90︒D .120︒6.已知向量()()1,3,2a m b ==-,,且()a b b +⊥,则m =( ) A .−8 B .−6 C .6D .87.集合{}2|30A x x x =-≤,(){}|lg 2B x y x ==-,则A B ⋂=( )A .{}|02x x ≤<B .{}|13x x ≤<C .{}|23x x <≤D .{}|02x x <≤8.已知12,F F 是椭圆和双曲线的公共焦点,P 是它们的-一个公共点,且1223F PF π∠=,设椭圆和双曲线的离心率分别为12,e e ,则12,e e 的关系为( )A .2212314e e += B .221241433e e += C .2212134e e += D .221234e e +=9.小王因上班繁忙,来不及做午饭,所以叫了外卖.假设小王和外卖小哥都在12:00~12:10之间随机到达小王所居住的楼下,则小王在楼下等候外卖小哥的时间不超过5分钟的概率是( ) A .12B .45C .38D .3410.在复平面内,复数(2)i i +对应的点的坐标为( ) A .(1,2)B .(2,1)C .(1,2)-D .(2,1)-11.已知定义在[)1,+∞上的函数()f x 满足()()33f x f x =,且当13x ≤≤时,()12f x x =--,则方程()()2019f x f =的最小实根的值为( )A .168B .249C .411D .56112.数列{}n a 满足:21n n n a a a +++=,11a =,22a =,n S 为其前n 项和,则2019S =( ) A .0B .1C .3D .4二、填空题:本题共4小题,每小题5分,共20分。
黑龙江省哈三中高三下学期第二次高考模拟数学(理)试题及答案

黑龙江省哈三中20xx届高三下学期第二次高考模拟数学(理)考试说明:本试卷分第I卷(选择题)和第1I卷(非选择题)两部分,满分1 50分,考试时间120分钟.(1)答题前,考生先将自己的姓名、准考证弓‘码填。
与清楚;(2)选择题必须使用2B铅笔填涂,非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整,字迹清楚;(3)请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效,在草稿纸、试题卷上答题无效;(4)保持卡面清洁,小得折替、小要弄破、弄皱,不准使用涂改液、刮纸刀.第I卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题EI要求的.)1.设集合A={1,2,3},B={0,1,2,4},定义集合,则集合S中元素的个数是A.5 B.6 C.8 D.92.设i为虚数单位,则复数31izi=-在复平面内对应的点位于A.第一象限B.第_象限C.第三象限D.第四象限3.幂函数1()(2,),()278f x f x x--=的图象经过点则满足的的值是A.12B.13C.14D.154.如果执行右面的程序框图,那么输出的S为A.96 B.768C.1 536 D.7685.已知a ,b ,l ,表示三条不同的直线,,,αβγ表示三个不同的平面,有下列四个命题:A .①②B .①④C .②③D .③④6.已知二项等差数列{}n a ,若存在常数t ,使得2n n a ta =对一切*n N ∈成立,则t 的集合是A .{1}B .{1,2}C .{2}D .{1,22}7.已知二项式(2nx-展开式中的第5项为常数项,则展开式中各项的二项式系数之和为 A .1 B .32 C .64 D .1288.一只蚂蚁从正方体ABCD —A 1B 2C 1D 1的顶点A 处出发,经正方体的表面,按最短路线爬行到顶点C 。
处,则下列图形中可以表示正方体及蚂蚁最短爬行路线的正视图的是A.(1)(2)B.(1)(3)C.(2)(4)D.(3)(4)9.在△ABC中,内角A,B,C的对边长分别为a,b,c,且22tan2,3,tanAa c bC-==则b等于A.3 B.4 C.6 D.710.11.对实数a和b,定义运算“*”:a*b=,1,1a a bb a b-≤⎧⎨->⎩,设函数f(x)=(21x+)*(x+2),若函数y=f(x)一c的图像与x轴恰有两个公共点,则实数C的取值范围是A.(2,4](5,+∞)B.(1,2] (4,5]C.(一∞,1)(4,5] D.[1,2]第II卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分,将答案填在答题卡相应的位置上.)13.设x ,y 满足约束条件11,(2,)(1,1),//,2210x y x a y x m b a b x y ≥⎧⎪⎪≥=-=-⎨⎪+≤⎪⎩向量且则m 的最小值为 .14.有4张分别标有数字1,2,3,4的红色卡片和4张分别标有数字1,2,3,的蓝色卡片,从这8张卡片中取出4张卡片排成一行,则这一行的4张卡片所标数字之和等于10的概率为.三、解答题(本大题共6小题,共70分,解答应写出文字说明,证明过程或演算步骤.) 17.(本小题满分12分) 已知(I )求f (x )的最大值及取到最大值时相应的x 的集合;-(II )若函数()[0,]2y f x m π==-在区间上恰好有两个零点,求实数m 的取值范围.18.(本小题满分12分) 如图,四边形ABCD 是边长为2的正方形,△ABE 为等腰三角形,AE=BE ,平面ABCD ⊥平面ABE ,动点F 在校CE 上,无论点F 运动到何处时,总有BF ⊥AE . (I )试判断平面ADE 与平面BCE 是否垂直,并证明你的结论; (II )求二面角D —CE —A 的余弦值的大小。
黑龙江省哈尔滨市第三中学高三学年第一次模拟考试理科数学试题答案

2020年哈三中高三学年第一次模拟考试 数学试卷(理工类)答案及评分标准一、选择题:二、填空题: 13. [0,23) 14. [80,120] 15.1e或1 16. 152,2三、解答题:17. (1) 由 c a A b =+23cos , 余弦定理bc a c b A 2cos 222−+= 有c a bc a c b b =+−+⋅232222, 即ac c a b 3222−+= 有232cos 222=−+=ac b c a B由π<<B 0, 则6π=B ……………………………………………………..……3分又因为2cossin sin 2AC B = 有2cos 1sin 21A C +=, 即2)65cos(1sin 21C C −+=π, 有C C C sin 21cos 231sin +−=, 即1cos 23sin 21=+C C , 则1)3sin(=+πC , 由π<<C 0, 即23ππ=+C , 则6π=C ……………………………….………6分(2)延长线段AM 至D, 满足BM=MD, 联结AD在ABD ∆中, ()65,,,3122ππ=−=∠==+==B BAD c AB a AD AM BD , 满足余弦定理())23(2314222−−+=+ac c a ……………………………..9分 因为ac c a 222≥+,所以()ac ac c a )32()23(2314222+≥−−+=+, 则()ac )32(3142+≥+, 即8≤ac , 当且仅当c a =时取”=” 那么2218212121sin 21=⨯⨯≤==∆ac B ac S ABC, 当且仅当4==c a 时取”=” 则ABC ∆面积的最大值为2…………………………………….………………..12分18. (1)在ACD ∆中3111120cos 222=++=⋅⋅−+=︒CD AD CD AD AC ,232cos 222=⋅−+=∠AC AD CD AC AD DAC , 则6π=∠DAC在ABC ∆中212cos 222=⋅−+=∠AC AB BC AC AB BAC , 则3π=∠BAC ,那么2π=∠BAD , 即⊥AB AD因为⊥PA 平面ABCD …………………………………………………………………1分 所以, 分别以直线AB AD AP 为z y x ,,轴如图建立空间直角坐标系有()0,0,0A , ()0,0,3B , ⎪⎪⎭⎫ ⎝⎛0,23,23C , ()0,1,0D , ()3,0,0P , ⎪⎪⎭⎫ ⎝⎛0,43,43M ,设平面ACP 的法向量为()z y x m ,,=, 由于⎪⎪⎭⎫⎝⎛=0,23,23AC 且()3,0,0=AP满足⎪⎩⎪⎨⎧==+0302323z y x , 令3=x , 有⎪⎩⎪⎨⎧=−==013z y x , 则()0,1,3−=m ………...…….3分 设平面BCP 的法向量为()z y x n ,,=, 由于⎪⎪⎭⎫⎝⎛−=0,23,23BC 且()3,0,3−=BP 满足⎪⎩⎪⎨⎧=+−=+−03302323z x y x , 令3=x , 有⎪⎩⎪⎨⎧===313z y x , 则()3,1,3=n ……….……5分则7774013,cos =⨯+−>=<n m , 那么二面角B PC A −−的余弦值为77….…6分(2)设平面PCD 的法向量为()z y x a ,,=, 由于⎪⎪⎭⎫⎝⎛−=3,23,23PC 且()3,1,0−=PD满足⎪⎩⎪⎨⎧=−=−+03032323z y z y x , 令3=y , 有⎪⎩⎪⎨⎧==−=131z y x , 则()1,3,1−=a ……..…..8分 设()z y x N ,,且BP BN λ=,()10≤≤λ, 满足()()3,0,3,,3−=−λz y x有⎪⎩⎪⎨⎧==−=−λλ3033z y x , 则()λλ3,0,33−N , 则⎪⎭⎫⎝⎛−−=λλ3,43,3343MN则0=⋅a MN , 即033433433=+−−λλ, 有43=λ则⎪⎭⎫ ⎝⎛−=343,43,0MN ………………………………………………………………….10分 因为平面ACP 的法向量为()0,1,3−=m , 有4123243,cos =⨯>=<MN m那么直线MN 与平面PAC 所成角的正弦值为41………………………………………12分19. 解: (1) 由已知1)(0=B A P , 54)(4204191==C C B A P , 1912)(4204182==C C B A P …… 2分(2) X 可能的取值为2,1,0,· ……………………………… 3分所以9508771.02.07.0)0(420418420419=⨯+⨯+==C C C C X P ,950701.02.0)1(42031812420319=⨯+⨯==C C C C C X P , 95031.0)2(42021822=⨯==C C C X P . ………………………………… 6分 所以随机变量X 的分布列为4753895032950701=⨯+⨯=EX . ………………………………… 7分 (3) 由(1)知, =)(A P 950877)0(==X P , ………………………………… 8分按照设计方案购买的一箱粉笔中, 箱中每盒粉笔都是优质产品的概率为()A B P 0877665)()()()()(000===A PB P B A P A P AB P , ……………………………11分 因为107.0100877665100<⨯−⨯, 所以该方案无效. ……………………… 12分20.解(1)x mx x x m x x f 2222)(2++=++=‘()+∞∈,0x …………1分对于方程0222=++mx x 162−=∆m当44-≤≤m 时,0162≤−=∆m ,0)(≥x f ‘此时)(x f 没有极值点. …………………2分 当4−<m 时,方程0222=++mx x 两根为21,x x ,不妨设21x x <,0221>−=+mx x ,121=⋅x x ,210x x << 当0)(021>><<x f x x x x ‘,时或,当0)(21<<x f x x ‘时.此时21,x x 是函数)(x f 的两个极值点. ………………3分 当4>m 时,方程0222=++mx x 两根为43,x x ,0243<−=+mx x ,143=⋅x x ,所以004,3<<x x , ()+∞∈,0x 0)(>x f ‘,故)(x f 没有极值点.综上,当4−<m 时,函数)(x f 有两个极值点;当4−≥m 时,函数)(x f 没有极值点 …………. ………4分 (2)032ln 232-)(222≤−−++=−x e x mx x x e x f xx022ln 22≤−−+x e x mx x,x xe x x ln 222m 2−+≤x x e x x g x ln 222)(2−+=,22ln 11-)(x x e x x x g x +−+=)(‘……6分 ()1,0∈x ,0(<)‘x g ,)x g (单调递减;()+∞∈1,x ,0(>)‘x g )x g (单调递增; 11(+=≥e g x g )(),)1(2+≤e m ……8分(3)由(2)知当)1(2+=e m ,0ln )12≤−−++x e x x e x (恒成立,即 x x e x e x ln 1-2≥++)( 欲证xx e x e x 1-11-2≥++)( 只需证x x 1-1ln ≥,设x x x h 11ln )(+−=,21)(x x x h −=‘……10分 ()1,0∈x ,0('<)x h ,)x g (单调递减;()+∞∈1,x ,0(>)‘x h )x g (单调递增;01(=≥)()h x h ,所以xx 1-1ln ≥。
2023年哈三中高三一模数学试题含答案解析

设PEPC,则E(2,3,
3),AE(21,3,3
3)
OP平面ABC,D平面
AB的法向量n1(0,0,1)
,解得1,E(2,
3
3
平面ADE的法向量n2(0,2,1)
3
平面ADE与平面ABCD夹角的余弦值为cos
20.(1)①设事件A=“摸出的两个球中恰好有一个红球”
2e
a
D. 当a0时,a11
1212
b22b2
二、填空题:本题共4小题,每小题5分,共20分.
13.1212x4的展开式中,常数项为.
x
14.已知xy4,且xy0,则
的最小值为.
xyy
15.设Sn是数列{an}的前n项和,Sn2ann3,令bnlog4(an1),则
b1b2b125.
125
x2y2x2y2
sin(B)sin(2B)
33
3cosB1sinB2(3cosB1sinB)
2222
3sinB3cosB
22
tanB33
3a112d27
18.(1)
,d0,a11
a(a4d)(a
d)2
d2
111
an2n1
(2n1)2n
2n12n
(2)bn(2n1)(2n3)2n
32n1
2n12
Tn2n
19.(1)取AD中点O,连接OB,OP
①求摸出的两个球中恰好有一个红球的概率;
②记摸出的红球个数为X,求随机变量X的分布列和数学期望.
(2)若1号盒中有4个红球和4个白球,2号盒中有2个红球和2个白球,现甲、
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
黑龙江省高三模拟考试数学(理)试卷附答案解析班级:___________姓名:___________考号:___________一、单选题1.已知复数2z ai =-+(,a R i ∈是虚数单位)对应的点在复平面内第二象限,且6z z ⋅=,则=a AB.C .2D .2-2.全集[]1,10U =,集合{|(1)(8)0}A x x x =--≤和[]2,10B =,则()UA B =( )A .()2,8B .[]2,8C .[][]1,28,10⋃D .[)(]1,28,10⋃3.平面直角坐标系中角α的终边经过点()3,4P -,则2cos +π=2α⎛⎫ ⎪⎝⎭( )A .110B .15C .45D .9104.二项式1()(0,0)nax a b bx+>>的展开式中只有第6项的二项式系数最大,且展开式中的第3项的系数是第4项的系数的3倍,则ab 的值为( ) A .4B .6C .8D .105.下列命题正确的个数是( )①)0a b ab +≥>②若0a b >>,0c d << 则ac bd <;③不等式110x+>成立的一个充分不必要条件是1x <-或1x >; ④若i a 、i b 和()1,2i c i =是全不为0的实数,则“111222a b c a b c ==”是“不等式21110a x b x c ++>和22220a xb xc ++>解集相同”的充分不必要条件. A .1B .2C .3D .46.新闻出版业不断推进供给侧结构性改革,深入推动优化升级和融合发展,持续提高优质出版产品供给,实现了行业的良性发展.下面是2017年至2021年我国新闻出版业和数字出版业营收情况,则下列说法错误的是( )A .2017年至2021年我国新闻出版业和数字出版业营收均逐年增加B .2021年我国数字出版业营收超过2017年我国数字出版业营收的2倍C .2021年我国新闻出版业营收超过2017年我国新闻出版业营收的3倍D .2021年我国数字出版业营收占新闻出版业营收的比例未超过三分之一7.若函数()23f x x ax a =-++在[]1,2上单调递减,则a 的取值范围是( )A .3,4⎡⎫+∞⎪⎢⎣⎭B .3,2⎛⎤-∞ ⎥⎝⎦C .4,3⎡⎫+∞⎪⎢⎣⎭D .2,3⎛⎤-∞ ⎥⎝⎦8.记单调递增的等比数列{}n a 的前n 项和为n S ,若2410a a +=,23464a a a =则A .112n n n S S ++-=B .2n n a =C .21n n S =-D .121n n S -=-9.已知平面l αβ=,m 是α内不同于l 的直线,那么下列命题中错误..的是( ) A .若//m β,则//m l B .若//m l ,则//m β C .若m β⊥,则m l ⊥D .若m l ⊥,则m β⊥10.古希腊阿基米德被称为“数学之神”.在他的墓碑上刻着一个圆柱,圆柱里内切着一个球,这个球的直径恰好等于圆柱的高,则球的表面积与圆柱的表面积的比值为( ) A .12B .23C .34D .4511.已知向量,a b 满足1,a a b =⊥,则向量2a b -在向量a 方向上的投影向量为( ) A .a B .1 C .-1 D .a -12.已知函数()()()()1ln ,0,0x x x f x xe x -⎧-<⎪=⎨≥⎪⎩,若关于x 的方程22()()0f x af x a a -+-=有四个不等实根,则实数a 的取值范围为( ) A .(0,1]B .()[),11,-∞-⋃+∞C .(,1){1}-∞-D .(){}1,01-二、填空题13.已知(2,1),(,1)a b λ=-=-,若a 与b 夹角为钝角,则实数λ取值范围是___________.14.已知某批零件的长度误差(单位:毫米)服从正态分布(0,4)N ,从中随机取一件,其长度误差落在区间(2,4)内的概率为___________.(附:若随机变量ξ服从正态分布2(,)N μσ,则()0.6827P μσξμσ-<<+=,(22)0.9545P μσξμσ-<<+=) 15.过抛物线2:4C x y =的焦点Fl ,交抛物线于A ,B 两点,抛物线在A ,B 处的两条切线交于点M ,则MF =______.三、双空题16.海水受日月的引力,在一定的时候发生涨落的现象潮汐.一般地,早潮叫潮,晚潮叫汐.通常情况下,船在涨潮时驶进航道,靠近码头:卸货后,在落潮时返回海洋.下表是某港口某天的时刻与水深关系的预报,我们想选用一个函数来近似描述这一天港口的水深y 与时间x 之间的关系,该函数的表达式为__________________________.已知一条货船的吃水深度(船底与水面的距离)为4米,安全条例规定至少要有2.25米的安全间隙(船底与洋底的距离),则该船可以在此港口停留卸货的时间最长为_____________小时(保留整数).四、解答题17.(1)已知数列{}n a 的前n 项和Sn =n 2+n ,求数列{}n a 的通项公式;(2)设数列{}n a 的首项为a 1=1,递推公式为an=1+11n a - (2)n ≥,写出这个数列的前5项 18.如图,已知四棱锥V ABCD -的底面是矩形,VD ⊥平面,222,,,ABCD AB AD VD E F G ===分别是棱,,AB VC CD 的中点.(1)求证:EF ∥平面VAD ;(2)求平面AVE 与平面VEG 夹角的大小.19.甲乙丙三人进行竞技类比赛,每局比赛三人同时参加,有且只有一个人获胜,约定有人胜两局(不必连胜)则比赛结束,此人直接赢得比赛.假设每局甲获胜的概率为12,乙获胜的概率为14,丙获胜的概率为14,各局比赛结果相互独立. (1)求甲在3局以内(含3局)赢得比赛的概率;(2)记X 为比赛决出胜负时的总局数,求X 的分布列和均值(数学期望). 20.点(,)P x y 与定点(1,0)F 的距离和它到直线:4l x =距离的比是常数12. (1)求点P 的轨迹方程;(2)记点P 的轨迹为C ,过F 的直线l 与曲线C 交于点,M N ,与抛物线24y x =交于点,A B ,设(1,0)D -,记DMN 与DAB 面积分别是12,S S ,求21S S 的取值范围. 21.已知函数()2e ex xf x =和()221g x x x =-++. (1)求函数()f x 的单调区间和最值;(2)求证:当1x <时()()f x g x <;当1x >时()()f x g x >; (3)若存在12x x <,使得()()12f x f x =,证明122x x +>.22.已知双曲线C 的中心在原点,(1,0)D. (1)求双曲线C 的方程;(2)若过点(3,0)-任意作一条直线与双曲线C 交于A ,B 两点(A ,B 都不同于点D ),求证:DA DB ⋅为定值. 23.已知函数()2f x x =-.(1)解不等式()()242f x f x -+<;(2)若()()2133f x f x m m -++≥+对所有的x ∈R 恒成立,求实数m 的取值范围.参考答案与解析1.A【详解】试题分析:2(2)(2)46z z ai ai a ⋅=-+--=+= 和 22a = ,z 对应点在第二象限,则0a >,所以a =A .考点:复数的运算. 2.D【分析】解不等式确定集合A ,然后由集合的运算法则计算. 【详解】{|(1)(8)0}A x x x =--≤[1,8]=,[]2,10B = ∴[]2,8A B ⋂=. ∵[]1,10U =,∴()[)(]1,28,10UA B ⋂=⋃.故选:D . 3.B【分析】首先根据三角函数定义得到3cos 5α=-,再根据余弦二倍角公式和诱导公式求解即可.【详解】角α的终边经过点()3,4P -,5r == 所以3cos 5α=-.()2311+cos +2π1+cos 15cos +π====22225-ααα⎛⎫ ⎪⎝⎭.故选:B 4.C【分析】根据给定条件求出幂指数n 的值,再求出二项展开式的通项,利用给定关系式即可计算得解. 【详解】因为1()(0,0)nax a b bx+>>的展开式中只有第6项的二项式系数最大,则展开式共有11项,即10n =于是得101ax bx ⎛⎫+ ⎪⎝⎭的展开式的通项为1010102110101C ()()C r r r rr r r r a T ax x bx b ---+==⋅依题意得10210323101023C 3C a a b b--⋅=⋅⋅,化简得8ab =所以ab 的值为8. 故选:C 5.B【分析】利用基本不等式判断①,利用不等式的性质判断②,根据充分条件、必要条件的定义判断③④;【详解】解:对于①,当0a >,0b >时a b +≥当且仅当a b =时取等号,若1a =-、1b 满足0ab >,显然a b +<对于②,若0a b >>,0c d <<则0c d ->->,故ac bd ->-,故ac bd <,故②正确; 对于③,使不等式110x +>,整理得10x x +>,故0x >或1x <-,所以不等式110x+>成立的一个充分不必要条件是1x <-或1x >,故③正确;对于④,不等式210x x ++>与220x x ++>的解集都为R ,但是1112≠ 若111111==---,则不等式210x x ++>与210x x --->的解集不相同 故若i a 、i b 和(1,2)i c i =是全不为0的实数,则“111222a b c a b c ==”是 “不等式21110a x b x c ++>和22220a x b x c ++>解集相同”的既不充分也不必要条件,故④错误.故选:B . 6.C【分析】根据统计图逐个分析判断即可【详解】解:对于A ,由统计图可知2017年至2021年我国新闻出版业和数字出版业营收均逐年增加,所以A 正确;对于B ,由统计图可得2021年我国数字出版业营收为5720.9亿元,2017年我国数字出版业营收为1935.5亿元,5720.921935.5>⨯ 所以B 正确;对于C ,由统计图可得2021年我国新闻出版业营收为23595.8亿元,2017年我国新闻出版业营收为16635.3亿元,因为23595.8316635.3<⨯,所以C 错误;对于D ,由统计图可得,2021年我国数字出版业营收为5720.9亿元,新闻出版业营收23595.8亿元,而123595.87865.35720.93⨯≈>,所以D 正确故选:C 7.D【分析】结合二次函数的性质求解函数()f x 的单减区间为3[,)2a +∞,即[]31,2,2a ∞⎡⎫⊆+⎪⎢⎣⎭,列出不等关系求解即可.【详解】由题意,函数()f x 是开口向下的二次函数,对称轴为32ax = 故函数()f x 的单减区间为3[,)2a+∞ 即[]31,2,2a ∞⎡⎫⊆+⎪⎢⎣⎭,故312a ≤解得:23a ≤则a 的取值范围是2,3⎛⎤-∞ ⎥⎝⎦.故选:D 8.C【分析】先利用等比数列的性质得到3a 的值,再根据24,a a 的方程组可得24,a a 的值,从而得到数列的公比,进而得到数列的通项和前n 项和,根据后两个公式可得正确的选项.【详解】因为{}n a 为等比数列,所以2324a a a =,故3364a =即34a =由24241016a a a a +=⎧⎨=⎩可得2428a a =⎧⎨=⎩或2482a a =⎧⎨=⎩,因为{}n a 为递增数列,故2428a a =⎧⎨=⎩符合.此时24q =,所以2q或2q =-(舍,因为{}n a 为递增数列).故3313422n n n n a a q ---==⨯= ()1122112n n n S ⨯-==--.故选C.【点睛】一般地,如果{}n a 为等比数列,n S 为其前n 项和,则有性质: (1)若,,,*,m n p q N m n p q ∈+=+,则m n p q a a a a =;(2)公比1q ≠时则有nn S A Bq =+,其中,A B 为常数且0A B +=;(3)232,,,n n n n n S S S S S -- 为等比数列(0n S ≠ )且公比为n q .9.D【分析】A 选项.由线面平行的性质可判断;B 选项.由线面平行的判定可判断;C 选项.由线面垂直的性质可判断D 选项.由线面垂直的判定定理可判断. 【详解】A 选项://m β,由l αβ=,又m α⊂,则由线面平行的性质可得//m l ,故A 正确.B 选项://m l ,由l αβ=,m β⊄,l β⊂由线面平行的判定可得//m β,故B 正确. C 选项:由l αβ=,则l β⊂,又m β⊥所以m l ⊥,故C 正确.D 选项:因为一条直线垂直于平面内的一条直线不能推出直线垂直于平面,故D 错误.故选:D 10.B【分析】设球半径为R ,则圆柱底面半径为R ,圆柱的高为2R ,根据球和圆柱的表面积公式,即可求出比值.【详解】设球半径为R ,则圆柱底面半径为R ,圆柱的高为2R 则24S R π=球2222226S S S R R R R πππ=+=⋅+⨯=圆柱侧底所以23S S =球圆柱 故选:B. 11.A【分析】根据给定条件,求出(2)a b a -⋅,再借助投影向量的意义计算作答.【详解】因1,a a b =⊥,则2(2)21a b a a b a -⋅=-⋅=,令向量2a b -与向量a 的夹角为θ 于是得(2)|2|cos ||||||a ab a a a b a a a a θ-⋅-⋅=⋅= 所以向量2a b -在向量a 方向上的投影向量为a . 故选:A 12.A【分析】画出函数()f x 的图象,使用换元法,令()t f x =,并构造函数()22=-+-g t t at a a ,通过t 的范围,可得结果.【详解】当0x ≥时()1xf x xe -=,则()()'11-=-x f x x e令()'0f x >,则01x ≤<令()'0f x <,则1x >所以函数()f x 在[)0,1递增,在()1,+∞递减 则()()min 11==f x f ,且当0x ≥时()0f x > 函数()()()()1ln ,0,0x x x f x xe x -⎧-<⎪=⎨≥⎪⎩图象如图关于x 的方程22()()0f x af x a a -+-=有四个不等实根令()t f x = ()22=-+-g t t at a a则①0=t ,t=1所以()()22001110g a a a g a a a ⎧=-=⎪⇒=⎨=-+-=⎪⎩②()0,1t ∈ ()(),01,∈-∞⋃+∞t 由()()2110=-≥g a则函数()g t 一个根在()0,1,另外一个根在(),0∞-中所以()20001=-<⇒<<g a a a综上所述:(0,1]a ∈ 故选:A【点睛】本题考查方程根的个数求参数,学会使用等价转化的思想以及换元法,考验分析能力以及逻辑推理能力,采用数型结合的方法,形象直观,化繁为简,属难题. 13.1,2(2,)2⎛⎫-⋃+∞ ⎪⎝⎭【分析】根据a 与b 夹角为钝角可得(2,1)(,1)0a b λ⋅=-⋅-<,求得λ的范围,再去掉向量反向时的值即可得解.【详解】根据题意可得:(2,1)(,1)210a b λλ⋅=-⋅-=--< 可得12λ>-当2λ=,a b =-时,a 与b 方向相反夹角为180,不符题意 所以12λ>-且2λ≠故答案为1,2(2,)2⎛⎫-⋃+∞ ⎪⎝⎭.14.0.1359【分析】利用正态分布的对称性计算给定区间内的概率作答.【详解】因长度误差ξ(单位:毫米)服从正态分布(0,4)N ,则0,2μσ== 于是得(22)0.6827P ξ-<<= (44)0.9545P ξ-<<= 所以1(24)(0.95450.6827)0.13592P ξ<<=-=.故答案为:0.1359 15.4【分析】先求出直线l ,设1122(,),(,)A x y B x y ,将直线方程代入抛物线方程化简利用根与系数的关系,再利用导数的几何意求出切线的斜率,从而可求出在A ,B 处的切线方程,再求出点M 的坐标,进而可求出MF【详解】抛物线2:4C x y =的焦点为(0,1)F ,则直线l 为1y =+,设1122(,),(,)A x y B x y由214y x y⎧=+⎪⎨=⎪⎩,得240x --=则12124x x x x +==- 由214y x =,得12y x '=,则过点11(,)A x y 的切线的斜率为112x所以过点11(,)A x y 的切线方程为21111()42x y x x x -=-,即211124x y x x =-同理可得过22(,)B x y 的切线方程222124x y x x =-两切线方程联立,得221212112424x x x x x x -=-,得121()2x x x =+= 所以2111212111()12244x y x x x x x =⋅+-==-所以点M 的坐标为)1-所以4MF =故答案为:416. () 2.5sin()5372f x x π=+ 4【分析】第一空根据表中数据的周期性规律判断为正弦型函数,先由周期计算出ω,再由最值计算出A 和b ,最后由最大值处的数据计算出ϕ,即可得到函数的表达式;第二空先判断出水深的最小值,再由前面求得的函数列不等式,求出解集的宽度即为安全停留时长.【详解】观察表中数据可知,水深与时间近似为正弦型函数.设该函数表达式为()sin()f x A x b ωϕ=++由表中数据可知,一个周期为12小时24分,即744分钟 所以2372T ππω== max min ()()7.5 2.5 2.522f x f x A --=== max ()7.5 2.55b f x A =-=-= (186) 2.5sin()57.52f πϕ=++= 0ϕ∴= 则该函数的表达式为:() 2.5sin()5372f x x π=+.由题可知,水深为4 2.25 6.25+=米以上时安全令() 6.25f x ≥解得62310x ≤≤即安全时间为31062248-=分钟,约4小时. 故答案为:() 2.5sin()5372f x x π=+;4.17.(1)=2n a n ;(2)1=1a ,2a =2 345358,,235a a a ===. 【分析】(1)Sn =n 2+n ,21(2)n S n n n -=-≥ 两式相减即得解;(2)利用递推公式直接求解.【详解】解:(1)由题得Sn =n 2+n 221(1)1(2)n S n n n n n -=-+-=-≥所以两式相减得=2n a n ,又11=2a S =所以=2n a n 适合1n =.所以数列{}n a 的通项公式为=2n a n .(2)由题得1=1a ,2a =1+11=2a 3451325381,1,1223355a a a =+==+==+=. 所以数列的前5项为1=1a ,2a =2 345358,,235a a a ===. 18.(1)证明见详解; (2)π3【分析】(1)如图建立空间直角坐标系,求出平面VAD 的法向量,然后EF 与法向量垂直可证;(2)分别求出两个平面的法向量再根据平面AVE 与平面VEG 夹角公式可求得.【详解】(1)如图建系()()()()()()1000,100,0,0,1110,020,010,012D A V E C G F ⎛⎫ ⎪⎝⎭,,,,,,,,,,,,, ()()100,001DA DV ∴==,,,,,设平面VAD 的法向量为()=,,,n a b c所以0,0DA n a DV n c ⎧⋅==⎪∴⎨⋅==⎪⎩不妨取()=0,1,0,n 又111,0,,100100,22EF EF n ⎛⎫=-∴⋅=-⨯+⨯+⨯= ⎪⎝⎭ 又EF ⊄平面VAD ,EF ∴∥平面VAD ;(2)由(1)知:()()()()0,1,0,1,0,1,1,0,0,0,1,1AE AV GE GV ==-==-设平面AVE 的法向量为()1=,,n x y z ,平面VEG 的法向量()2=,,n p q r所以110,0AE n y AV n x z ⎧⋅==⎪⎨⋅=-+=⎪⎩不妨取()1=1,0,1;n同理220,0GE n p GV n q r ⎧⋅==⎪⎨⋅=-=⎪⎩不妨取()2=0,1,1;n 设平面AVE 与平面VEG 夹角为π,0,2θθ≤≤所以121πcos cos ,,.23n n θθ===∴= 19.(1)12(2)分布列见解析,()4516E X =【分析】(1)根据相互独立事件与互斥事件的概率公式计算可得.(2)依题意X 的可能取值为2、3、4,求出所对应的概率,即可得到分布列与数学期望.(1)解:用A 表示“甲在3局以内(含3局)赢得比赛”,k A 表示“第k 局甲获胜”,k B 表示“第k 局乙获胜”, k C 表示“第k 局丙获胜” 则()()()()12123213P A P A A P A A A P A A A =++11111111111222222222⎛⎫⎛⎫=⨯+⨯-⨯+-⨯⨯= ⎪ ⎪⎝⎭⎝⎭. (2)解:依题意X 的可能取值为2、3、4所以()()()()121212111111322244448P X P A A P B B P C C ==++=⨯+⨯+⨯= ()()()()()()()1231231231231231234P X P A B C P AC B P B A C P BC A P C A B P C B A ==+++++1113624416=⨯⨯⨯= ()()()7312416P X P X P X ==-=-== 所以X 的分布列为所以()373452348161616E X =⨯+⨯+⨯=20.(1)22143x y +=(2)4,3⎡⎫+∞⎪⎢⎣⎭ 【解析】(112=,化简即可求出; (2)当直线l 的斜率存在时将直线方程分别与椭圆和抛物线的方程联立,将两个三角形的面积比转化为弦长比,化为关于k 的关系式,求最值求值域即可,之后将直线l 的斜率不存在的情况求出,最后得到答案.【详解】(112= 化简得:223412x y +=,故1C 的方程为22143x y +=. (2)依题意21AB S S MN= ①当l 不垂直于x 轴时设l 的方程是()()10y k x k =-≠联立()21 4y k x y x⎧=-⎨=⎩,得()2222240k x k x k -++= 设()11,A x y , ()22,B x y 则212224k x x k ++= ()2122412k AB x x k +=++=;联立()221 34120y k x x y ⎧=-⎨+-=⎩得:()22223484120k x k x k +-+-= 设()33,M x y ,()44,N x y 则2342834k x x k +=+ 234241234k x x k -=+()2212134k MN k +==+ 则2221234414,333AB S k S MN k k +⎛⎫===+∈+∞ ⎪⎝⎭②当l 垂直于x 轴时易知AB 4= 223b MN a== 此时1243AB S S MN ==综上,21S S 的取值范围是4,3⎡⎫+∞⎪⎢⎣⎭. 【点睛】该题考查的是有关解析几何的问题,涉及到的知识点有动点轨迹方程的求解,直线被椭圆截得的弦长,直线被抛物线截得的弦长,属于较难题目.21.(1)单调递增区间为(),1-∞,单调递减区间为()1,+∞,最大值为2,无最小值(2)证明见解析(3)证明见解析【分析】(1)求出函数的导数,判断导数的正负,即可求得答案;(2)设()()()22e 21ex x h x f x g x x x =-=+--,求导,根据导数的正负,判断()h x 的单调性,结合()10h =,即可证明结论;(3)作出函数()2e e x x f x =,()221g x x x =-++的大致图象,数形结合,利用函数的图象,根据函数值判断根的情况,从而证明结论.(1)∵()()()()()22e e 2e e 2e 1e e x x x x x x x f x ''--'== ∴当1x <时0f x ,函数()f x 的单调递增区间为(),1-∞;当1x >时()0f x '<,函数()f x 的单调递减区间为()1,+∞.∴函数()f x 的最大值为()12f =,无最小值.(2)证明:设()()()22e 21ex x h x f x g x x x =-=+-- 则()()()()21e e 2e 122e e x x xx x h x x ---'=+-= ∴()0h x '≥,当且仅当1x =时等号成立∴函数()h x 单调递增,又()10h =∴当1x <时()0h x <,即()()f x g x <当1x >时()0h x >,即()()f x g x >.(3)证明:结合(1)(2)作出函数()2e e xx f x =,()221g x x x =-++的大致图象:当x →-∞时()f x →-∞;当x →+∞时()0f x →令()()12f x f x m ==,则()012m f <<=.又∵二次函数()g x 的图象开口向下,最大值为()12g =∴存在34x x <,使得()()()()3412g x g x f x f x ===.结合(2)的结论以及图象知3142x x x x <<<∵函数()g x 的图象关于直线1x =对称∴342x x +=∴12342x x x x +>+=【点睛】本题综合考查了导数的应用,考查导数与函数的单调性以及最值得关系,以及利用导数证明相关不等式问题,解答时要注意构造函数,从而利用导数判断新函数的性质,进而证明不等式.22.(1)2212y x -= (2)证明见解析【分析】(1)根据双曲线的性质及其点到直线的距离公式即可求解.(2)根据已知条件设出直线AB 方程及A ,B 的坐标,将直线与双曲线方程联立,得出关于y 的 一元二次方程,根据韦达定理得出12,y y 的关系,再根据向量的数量积的坐标运算即可求解.(1)因双曲线C 的中心在原点,一个顶点是(1,0)D ,则设双曲线C 的方程为:2221(0)y x b b -=>,则c()双曲线C 的渐近线为y bx ±=焦点()到渐近线y bx ±=的距离为d =b =所以双曲线C 的方程为2212y x -=. (2)显然直线AB 不垂直于y 轴,设直线AB 方程:3x ty =-由22322x ty x y =-⎧⎨-=⎩消去x 得:22(21)12160t y ty --+= 当2210t -≠时222(12)64(21)16(4)0t t t ∆=--=+>恒成立设1122(,),(,)A x y B x y ,则 所以1212221216,2121t y y y y t t +==-- 1122(1,),(1,)DA x y DB x y =-=-因此,12121212(1)(1)(4)(4)DA DB x x y y ty ty y y ⋅=--+=--+21212(1)4()16t y y t y y =+-++222216(1)481602121t t t t +=-+=-- 所以DA DB ⋅为定值0.23.(1)()2,2,3⎛⎫-∞-⋃-+∞ ⎪⎝⎭;(2)[]4,1-. 【解析】(1)利用分段讨论法去掉绝对值,求出不等式()()242f x f x -+<的解集;(2)由绝对值不等式的意义求出()()13f x f x -++的最小值,得出关于m 的不等式,求解即可.【详解】解:(1)由题知不等式()(24)2f x f x -+< 即2222x x --+<等价于12222x x x <-⎧⎨-+++<⎩或122222x x x -≤≤⎧⎨-+--<⎩ 或22222x x x >⎧⎨---<⎩; 解得<2x -或223x -<≤或2x >,即<2x -或23x >-(2)由题知(1)(3)31(3)(1)4f x f x x x x x -++=-+--+≥+= (1)(3)f x f x ∴-++的最小值为4234m m ∴+≤解得41m -≤≤∴实数m 的取值范围为[4-,1].。