(完整版)高一物理力学典型例题
高一物理力学典型例题
以下是一些高一物理力学的典型例题:1. 一个物体在水平地面上做匀速直线运动,受到的摩擦力是20N,那么物体受到的拉力是()A. 大于20NB. 等于20NC. 小于20ND. 无法判断答案:B解析:物体做匀速直线运动时,处于平衡状态,受到的摩擦力和拉力是一对平衡力,所以拉力等于摩擦力等于20N。
2. 一辆汽车在平直的公路上行驶,从甲地经过乙地到达丙地,若汽车在甲、乙两地间的平均速度为v1,在乙、丙两地间的平均速度为v2,则汽车从甲地到丙地的平均速度为()A. (v1+v2)/2B. v1+v2C. v1v2/(v1+v2)D. v1v2/v1+v2答案:C解析:设甲、乙两地间的距离为s1,乙、丙两地间的距离为s2,则汽车从甲地到乙地的时间t1=s1/v1,从乙地到丙地的时间t2=s2/v2,则汽车从甲地到丙地的平均速度v=s1+s2/t1+t2=s1+s2/s1/v1+s2/v2=v1v2/v1+v2。
3. 一个物体在竖直方向上做自由落体运动,其在t时间内位移为x,在紧接着的t时间内位移为x\prime,则物体刚下落时离地面的高度为()A. x+x\prime/t\textsuperscript{2}B. x-x\prime/t\textsuperscript{2}C.x+x\prime/t\textsuperscript{2}-gt\textsuperscript{2}/4D.x+x\prime/t\textsuperscript{2}+gt\textsuperscript{2}/4 答案:C解析:根据自由落体运动的位移时间关系公式,有x=gt\textsuperscript{2}/2;x′=g(t+t\textsubscript{0})\textsuperscript{2}/2,其中t\textsubscript{0}=t,解得物体刚下落时离地面的高度h=x+x′/t\textsuperscript{2}-gt\textsuperscript{2}/4。
高一物理力学典型试题及答案
高一物理力学典型试题及答案一、单选题(本大题共10小题,共40.0分)1.下列说法中正确的是( )A. 物体所受合外力越大,则速度一定越大B. 物体在某时刻的速度方向与该时刻的加速度方向可能相反C. 只要物体所受合外力不为零,则物体的速率一定在改变D. 恒定的合外力作用在物体上,物体可能会作匀速运动2.已知甲物体受到2N的合力作用时,产生的加速度为4m/s2,乙物体受到3N的合力作用时,产生的加速度为6m/s2,则甲、乙物体的质量之比m甲,m乙等于( )A. 1:3B. 2:3C. 1:1D. 3:23.如图所示,位于水平地面上的质量为M的小木块,在大小为F、方向与水平方向成α角的拉力作用下沿地面作加速运动。
若木块与地面之间的动摩擦因数为μ,则木块的加速度为( )A. FM B. FcosαMC. (Fcosα−μMg)M D. [Fcosα−μ(Mg−Fsinα)]M4.某同学在粗糙水平地面上用水平力F向右推一木箱沿直线前进.已知推力大小是80N,物体的质量是20kg,物体与地面间的动摩擦因数μ=0.2,取g=10m/s2,下列说法正确的是( )A. 物体受到地面的支持力是40NB. 物体受到地面的摩擦力大小是40NC. 物体沿地面将做匀速直线运D. 物体将做加速度为a=4m/s2的匀加速直线运动5.跨过定滑轮的绳的一端挂一吊板,另一端被吊板上的人拉住,如图所示.已知人的质量为70kg,吊板的质量为10kg,绳及定滑轮的质量、滑轮的摩擦均可不计.取重力加速度g=10m/s2.当人以440N的力拉绳时,人与吊板的加速度a和人对吊板的压力F分别为( )A. a=1.0m/s2,F=260NB. a=1.0m/s2,F=330NC. a=3.0m/s2,F=110ND. a=3.0m/s2,F=50N6.质量m=2kg的滑块,以4m/s的初速度在光滑水平面上向左滑行,从某一时刻起受一向右、大小为4N的水平恒力作用,此后滑块前进距离s时速度变为零,则s为( )A. 2mB. 4mC. 6mD. 8m7.如图所示,物体P置于光滑的水平面上,用轻细线跨过质量不计的光滑定滑轮连接一个重力G=10N的重物,物体P向右运动的加速度为a1;若细线下端不挂重物,而用F=10N的力竖直向下拉细线下端,这时物体P的加速度为a2,则( )A. a1<a2B. a1=a2C. a1>a2D. 条件不足,无法判断8.如图,顶端固定着小球的直杆固定在小车上,当小车向右做匀加速运动时,球所受合外力的方向沿图中的( )A. OA方向B. OB方向C. OC方向D. OD方向9.如图示水平地面上有一个圆柱体,现在A与竖直墙之间放一完全相同的圆柱体B,不计一切摩擦,将A缓慢向左移动(B未与地面接触),则在此过程中A对B的弹力F1、墙对B的弹力F2( )A. F1变小、F2变小B. F1变小、F2变大C. F1变大、F2变大D. F1变大、F2变小10.一条轻绳跨过光滑的轻质定滑轮,绳的一端系一质量m=15kg的重物,重物静置于地面上,有一质量m′﹦l0kg的猴子,从绳子的另一端沿绳向上爬,如图所示,在重物不离开地面的条件下,猴子向上爬的最大加速度为(g=10m/s2)( )A. 5m/s2B. l0m/s2C. 15m/s2D. 25m/s2二、多选题(本大题共4小题,共16.0分)11.如图所示,小车向右运动的过程中,某段时间内车中悬挂的小球A和车水平底板上的物块B都相对车厢静止,悬挂小球A的悬线与竖直线有一定夹角,下述判断中正确的是( )A. 小车向右加速运动B. 小车向右减速运动C. 物体B受到2个力的作用D. 物体B受到3个力的作用12.一个质量为2kg的物体在五个共点力作用下保持.平衡.现在撤掉其中两个力,这两个力的大小分别为25N和20N,其余三个力保持不变,则物体此时的加速度大小可能是( )A. 1m/s2B. 10m/s2C. 20m/s2D. 30m/s213.如图所示,A和B的质量分别是1kg和2kg,弹簧和悬线的质量不计,在A上面的悬线烧断的瞬间,则A. A的加速度等于3gB. A的加速度等于gC. B的加速度为零D. B的加速度为g14.如下图所示,光滑大球固定不动,它的正上方有一个定滑轮,放在大球上的光滑小球(可视为质点)用细绳连接,并绕过定滑轮,当人用力F缓慢拉动细绳时,小球所受支持力为N,则N,F的变化情况是:( )A. N不变B. N变小C. F变小D. F不变三、实验题(本大题共1小题,共15.0分)15.在“探究加速度与力、质量的关系”实验中,采用如图甲所示的装置.(1)本实验应用的实验方法是______A.控制变量法B.假设法C.理想实验法(2)下列说法中正确的是______A.在探究加速度与质量的关系时,应改变小车所受拉力的大小B.在探究加速度与外力的关系时,应改变小车的质量C.在探究加速度a与质量m的关系时,作出a—1图象容易更直观判断出二者间的关系mD.无论在什么条件下,细线对小车的拉力大小总等于砝码盘和砝码的总重力大小(3)在探究加速度与力的关系时,若取车的质量M=0.5kg,改变砝码质量m的值,进行多次实验,以下m的取值最不合适的一个是______A.m1=4gB.m2=10gC.m3=40gD.m4=500g(4)在平衡小车与长木板之间摩擦力的过程中,打出了一条纸带如图乙所示.计时器打点的时间间隔为0.02s.从比较清晰的点起,每5个点取一个计数点,量出相邻计数点之间的距离,根据图中给出的数据求出该小车的加速度a=__________m/s2(结果保留两位有效数字).(5)如图丙所示为甲同学在探究加速度a与力F的关系时,根据测量数据作出的a--F图象,说明实验存在的问题是______.四、计算题(本大题共3小题,共30.0分)16.如图所示,质量m=1.0kg的物体静止在水平地面上,物体与地面间的动摩擦因数μ=0.4.在水平拉力F的作用下,物体由静止开始做匀加速直线运动,加速度的大小a=2.0m/s2,经过10s后撤去拉力F,取重力加速度g=10m/s2.求:(1)撤去拉力时物体速度的大小;(2)物体所受拉力F的大小;(3)撤去外力F后物体运动的距离.17.如图所示,传送带与水平成α=37°,传送带A、B间距L=5.8m,传送带始终以4m/s速度顺时针转动,将一小物体轻轻释放在A处,小物体与传送带间动摩擦因数为μ=0.5.(sin37°=0.6,cos37°=0.8)(取g=10m/s2)试求:(1)刚释放时,小物体加速度的大小?(2)小物体从A运动到B所需时间?18.如图所示,可看成质点的物体A放在长L=1m的木板B的右端,木板B静止于水平面上,已知A的质量m A和B的质量m B均为2.0kg,A、B之间的动摩擦因数μ1=0.2,B与水平面之间的动摩擦因数μ2=0.1,最大静摩擦力与滑动摩擦力大小视为相等,重力加速度取g=10m/s2.若从t=0开始,木板B受F=16N的水平恒力作用,求:(1)木板B受F=16N的水平恒力作用时,A、B的加速度a A、a B;(2)物体A经多长时间从木板B上滑下;(3)当t=2s时,木板B的速度v.答案和解析1.【答案】B【解析】【分析】物体的速度大小与受力无关;物体的速度与加速度无关;力是改变物体运动状态的原因,有力就会产生加速度,而加速度是描述速度变化快慢的物理量。
高中物理 必修一【力的合成与分解】典型题(带解析)
高中物理必修一【力的合成与分解】典型题1.物体受共点力F1、F2、F3作用而做匀速直线运动,若F1、F2、F3三个力不共线,则这三个力可能选取的数值为()A.15 N、5 N、6 N B.3 N、6 N、4 NC.1 N、2 N、10 N D.1 N、6 N、7 N解析:选B.物体在F1、F2、F3作用下而做匀速直线运动,则三个力的合力必定为零,只有B选项中的三个力的合力可以为零且三个力不共线,B正确.2. (多选)一个大人拉着载有两个小孩的小车(其拉杆可自由转动)沿水平地面匀速前进,则对小孩和车下列说法正确的是()A.拉力的水平分力等于小孩和车所受的合力B.拉力与摩擦力的合力大小等于车和小孩重力大小C.拉力与摩擦力的合力方向竖直向上D.小孩和车所受的合力为零解析:选CD.小孩和车整体受重力、支持力、拉力和摩擦力,根据共点力平衡条件,拉力的水平分力等于小孩和车所受的摩擦力,故选项A错误;拉力、摩擦力的合力与重力、支持力的合力平衡,重力、支持力的合力竖直向下,故拉力与摩擦力的合力方向竖直向上,故选项B错误,C正确;小孩和车做匀速直线运动,故所受的合力为零,故选项D正确.3.如图所示是轿车常用的千斤顶,当摇动把手时,螺纹轴就能迫使千斤顶的两臂靠拢,从而将汽车顶起.当车轮刚被顶起时,汽车对千斤顶的压力为1.0×105 N,此时千斤顶两臂间的夹角为120°.下列判断正确的是()A.此时千斤顶每臂受到的压力大小均为5.0×104 NB.此时千斤顶对汽车的支持力为1.0×104 NC.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将增大D.若继续摇动把手,将汽车顶起,千斤顶每臂受到的压力将减小解析:选D.汽车对千斤顶的压力大小为1.0×105 N,根据牛顿第三定律,千斤顶对汽车的支持力也为1.0×105 N,B项错误;两臂夹角为120°,由力的合成可知千斤顶每臂受到的压力为1.0×105 N,A项错误;继续摇动把手,将汽车顶起,千斤顶两臂夹角减小,每臂受到的压力减小,C项错误,D项正确.4.(多选)如图所示是某同学为颈椎病人设计的一个牵引装置的示意图.一根绳绕过两个定滑轮后两端各挂着一个相同质量的重物,与动滑轮相连的帆布带拉着病人的颈椎(图中是用手指代替颈椎做实验),整个装置在同一竖直平面内.如果要增大颈椎所受的拉力,可采取的办法是()A.只增加绳的长度B.只增加重物的重量C.只将手指向下移动D.只将手指向上移动解析:选BC.对力进行合成,可知颈椎所受的拉力F=2mg cos θ,增加mg或减小θ,都可以增大F,选项B、C正确.5.如图所示,一个“U”形弹弓顶部跨度为L,在左、右顶部分别连接两根相同的橡皮条,橡皮条均匀且弹性良好,其自由长度均为L,在两橡皮条的末端用一块软羊皮(长度不计)做成裹片可将弹丸发射出去.若橡皮条伸长时的弹力满足胡克定律,且劲度系数为k,发射弹丸时每根橡皮条的最大长度为2L(弹性限度内),则弹丸被发射过程中所受的最大合力为()A.152kL B.32kLC.2kL D.kL解析:选A.当橡皮条伸长L时,弹力最大,为kL,弹丸受合力最大,由几何关系可得4L 2-14L 22L =12FkL ,得F =152kL ,故A 正确. 6.(多选)已知力F 的一个分力F 1跟F 成30°角,大小未知,另一个分力F 2的大小为33F ,方向未知,则F 1的大小可能是( )A .3F3B .3F2C .23F 3D .3F解析:选AC .如图所示,因F 2=33F >F sin 30°,故F 1的大小有两种可能情况,由ΔF =F 22-(F sin 30°)2=36F ,即F 1的大小分别为F cos 30°-ΔF 和F cos 30°+ΔF ,即F 1的大小分别为33F 和233F ,A 、C 正确.7.(多选)如图所示是李强同学设计的一个小实验,他将细绳的一端系在手指上,细绳的另一端系在直杆的A 端,杆的左端顶在掌心上,组成一个“三角支架”.在杆的A 端悬挂不同的重物,并保持静止.通过实验会感受到( )A .细绳是被拉伸的,杆是被压缩的B .杆对手掌施加的作用力的方向沿杆由C 指向A C .细绳对手指施加的作用力的方向沿细绳由B 指向AD .所挂重物质量越大,细绳和杆对手的作用力也越大解析:选ACD .重物所受重力的作用效果有两个,一是拉紧细绳,二是使杆压紧手掌,所以重力可分解为沿细绳方向的力F 1和垂直于掌心方向的力F 2,如图所示,由三角函数得F 1=Gcos θ,F 2=G tan θ,故选项A 、C 、D 正确.8.蹦床可简化为如图所示的完全相同的网绳构成的正方形,点O 、a 、b 、c 等为网绳的结点.当网水平张紧时,若质量为m 的运动员从高处竖直落下,并恰好落在O 点,当该处下凹至最低点时,网绳aOe 、cOg 均成120°向上的张角,此时O 点受到的向下的冲击力为F ,则这时O 点周围每根网绳的拉力的大小为( )A .F4B .F 2C .F +mg 4D .F +mg2解析:选B .设每根网绳的拉力大小为F ′,对结点O 有: 4F ′cos 60°-F =0,解得F ′=F2,选项B 正确.9.如图所示,小球A 、B 通过一条细绳跨过定滑轮连接,它们都套在一根竖直杆上.当两球平衡时,连接A 、B 两球的细绳与水平方向的夹角分别为θ 和2θ.假设装置中的各处摩擦均不计,则A 、B 球的质量之比为( )A .2cos θ∶1B .1∶2cos θC .tan θ∶1D .1∶2sin θ解析:选B .对A 、B 两球受力分析如图所示,由力的平衡条件可知,T ′sin θ=m A g ,T sin 2θ=m B g ,T ′=T ,解得m A ∶m B =sin θ∶sin 2θ=1∶2cos θ,B 正确.10.(多选)如图所示,重物A 被绕过小滑轮P 的细线所悬挂,重物B 放在粗糙的水平桌面上;小滑轮P 被一根斜拉短线系于天花板上的O 点;O ′是三根线的结点,bO ′水平拉着B 物体,cO ′沿竖直方向拉着弹簧;弹簧、细线、小滑轮的重力和细线与滑轮间的摩擦力均可忽略,整个装置处于静止状态,g =10 m/s 2.若悬挂小滑轮的斜线OP 的张力是20 3 N ,则下列说法中正确的是()A.弹簧的弹力为10 NB.重物A的质量为2 kgC.桌面对B物体的摩擦力为10 3 ND.OP与竖直方向的夹角为60°解析:选ABC.O′点是三根线的结点,属于“死结”,而小滑轮重力不计且与细线间的摩擦力可忽略,故P处为“活结”.由m A g=F O′a,F OP=2F O′a cos 30°可解得:F O′a=20 N,m A=2 kg,选项B正确;OP的方向沿绳子张角的角平分线方向,故OP与竖直方向间的夹角为30°,选项D错误;对O′受力分析,由平衡条件可得:F弹=F O′a sin 30°,F O′b=F O′a cos 30°,对物体B有:f B=F O′b,联立解得:F弹=10 N,f B=103N,选项A、C均正确.11.如图所示,一固定的细直杆与水平面的夹角为α=15°,一个质量忽略不计的小轻环C套在直杆上,一根轻质细线的两端分别固定于直杆上的A、B两点,细线依次穿过小环甲、小轻环C和小环乙,且小环甲和小环乙分居在小轻环C的两侧.调节A、B间细线的长度,当系统处于静止状态时β=45°.不计一切摩擦.设小环甲的质量为m1,小环乙的质量为m2,则m1∶m2等于()A.tan 15°B.tan 30°C.tan 60°D.tan 75°解析:选C.小环C为轻环,重力不计,受两边细线的拉力的合力与杆垂直,C环与乙环的连线与竖直方向的夹角为60°,C环与甲环的连线与竖直方向的夹角为30°,A点与甲环的连线与竖直方向的夹角为30°,乙环与B点的连线与竖直方向的夹角为60°,设细线拉力为T,根据平衡条件,对甲环有2T cos 30°=m1g,对乙环有2T cos 60°=m2g,得m1∶m2=tan 60°,故选C.12.(2019·全国卷Ⅲ)用卡车运输质量为m的匀质圆筒状工件,为使工件保持固定,将其置于两光滑斜面之间,如图所示.两斜面Ⅰ、Ⅱ固定在车上,倾角分别为30°和60°.重力加速度为g .当卡车沿平直公路匀速行驶时,圆筒对斜面Ⅰ、Ⅱ压力的大小分别为F 1、F 2,则( )A .F 1=33mg ,F 2=32mg B .F 1=32mg ,F 2=33mg C .F 1=12mg ,F 2=32mgD .F 1=32mg ,F 2=12mg 解析:选D .如图所示,卡车匀速行驶,圆筒受力平衡,由题意知,力F 1′与F 2′相互垂直.由牛顿第三定律知F 1=F 1′,F 2=F 2′,则F 1=mg sin 60°=32mg ,F 2=mg sin 30°=12mg ,选项D 正确.13.如图所示,由两种材料做成的半球面固定在水平地面上,半球右侧面是光滑的,左侧面粗糙,O 点为球心,A 、B 是两个相同的小物块(可视为质点),物块A 静止在左侧面上,物块B 在图示水平力F 作用下静止在右侧面上,A 、B 处在同一高度,AO 、BO 与竖直方向的夹角均为θ,则A 、B 分别对半球面的压力大小之比为( )A .sin θ∶1B .sin 2θ∶1C .cos θ∶1D .cos 2θ∶1解析:选D .分别对A 、B 进行受力分析,如图所示,由物体的平衡条件知N A =mg cos θ,同理可知N B cos θ=mg ,则N AN B =cos 2θ,再根据牛顿第三定律知A 、B 分别对半球面的压力大小之比为cos 2θ∶1,故D 选项正确.14.(多选)如图所示,叠放在一起的A 、B 两物体放置在光滑水平地面上,A 、B 之间的水平接触面是粗糙的,细线一端固定在A 物体上,另一端固定于N 点,水平恒力F 始终不变,A、B两物体均处于静止状态,若将细线的固定点由N点缓慢下移至M点(线长可变),A、B两物体仍处于静止状态,则()A.细线的拉力将减小B.A物体所受的支持力将增大C.A物体所受摩擦力将增大D.水平地面所受压力将减小解析:选A B.以A、B两物体组成的系统作为研究对象,受力分析如图甲所示.水平方向:F T cos α=F,竖直方向:F N+F T sin α=(m A+m B)g,因为细线与水平地面的夹角α减小,cos α增大,sin α减小,F T将减小,F N将增大,所以细线所受拉力减小,地面受到的压力增大,A正确,D错误;以物体A为研究对象,受力分析如图乙所示,竖直方向:F N A +F T sin α=m A g,F T减小,sin α减小,所以F N A增大,B正确;以B为研究对象,在水平方向上由力的平衡可得F f=F,B物体所受摩擦力不变,故A物体所受摩擦力不变,C错误.。
高一物理-力学-打印
1.水平面上,橡皮绳一端固定,另一端连接两根弹簧,连接点P 在F1、F2和F3三力作用下保持静止,下列判断正确的A .F1>F2>F3B .F3>F1>F2C .F2>F1>F3D .F3>F2>F12. 如图所示,A 、B 两物块叠放在一起,在粗糙的水平面上保持相对静止地向右做匀减速直线运动,运动过程中B 受到的摩擦力A .方向向左,大小不变B .方向向左,逐渐减小C .方向向右,大小不变D .方向向右,逐渐减小3.如图所示,石拱桥的正中央有一质量为m 的对称楔形石块,侧面与竖直方向的夹角为α,重力加速度为g ,若接触面间摩擦力忽略不计,则石块侧面所受弹力的大小( )A .B .C .D .4.一根轻质弹簧一端固定,用大小为F 1的力压弹簧的另一端,平衡时长度为l 1;改用大小为F 2的力拉弹簧,平衡时长度为l 2。
弹簧的拉伸或压缩均在弹簧限度范围内,该弹簧劲度系数为( )A. 2121F F l l --B. 2121F F l l ++C. 2121F F l l +-D. 2121F F l l -+ 5.两刚性球a 和b 的质量分别为ma 和mb 、直径分别为da 和db (da >db ).将a 、b 球依次放入一竖直放置平底圆筒内,如图所示.设a 、b 两球静止时对圆筒侧面的压力大小分别为f1和f2,筒底所受的压力大小为F .已知重力加速度大小为g .若所有接触面都是光滑的,则( )A .F=(ma+mb )g f1=f2B .F=(ma+mb )g f1≠f2C .mag <F <(ma+mb )g f1=f2D .mag <F <(ma+mb )g f1≠f26.用轻弹簧竖直悬挂质量为m 的物体,静止时弹簧伸长量为L ,现用该弹簧沿斜面方向拉住质量为2m 的物体,系统静止时弹簧伸长量也为L ,斜面倾角为30°,如图3所示,则物体所受摩擦力A .等于零B .大小为12mg ,方向沿斜面向下C .大小为3)2mg ,方向沿斜面向上D .大小为mg ,方向沿斜面向上7.质量为M 的楔形物块静置在水平地面上,其斜面的倾角为θ.斜面上有一质量为m的小物块,小物块与斜面之间存在摩擦.用恒力F 沿斜面向上拉小物块,使之匀速上滑.在小物块运动的过程中,楔形物块始终保持静止.地面对楔形物块的支持力为A.(M+m)gB.(M+m)g -FC.(M+m)g+Fsin θD.(M+m)g -Fsin θ8.如图所示,倾角为α的等腰三角形斜面固定在水平面上,一足够长的轻质绸带跨过斜面的顶端铺放在斜面的两侧,绸带与斜面间无摩擦.现将质量分别为M 、m (M >m )的小物块同时轻放在斜面两侧的绸带上.两物块与绸带间的动摩擦因数相等,且最大静摩擦力与滑动摩擦力大小相等.在α角取不同值的情况下,下列说法正确的有( )A .两物块所受摩擦力的大小总是相等B .两物块不可能同时相对绸带静止C .M 不可能相对绸带发生滑动D .m 不可能相对斜面向上滑动9.一质量为m 的物块恰好静止在倾角为的斜面上。
高中物理人教版必修一力学例题及解析
力学一、选择题:1.关于重力的说法,正确的是()A.重力就是地球对物体的吸引力B.只有静止的物体才受到重力C.同一物体在地球上无论怎样运动都受到重力D.重力是由于物体受到地球的吸引而产生的思路解析:重力是由于物体受到地球的吸引而产生的,地球对物体的吸引力产生两个效果:一个效果是吸引力的一部分使物体绕地球转动;另一个效果即另一部分力才是重力,也就是说重力通常只是吸引力的一部分.重力只确定于地球对物体的作用,而与物体的运动状态无关,也与物体是否受到其他的力的作用无关.2.下列说法正确的是()A.马拉车前进,马先对车施力,车后对马施力,否则车就不能前进B.因为力是物体对物体的作用,所以相互作用的物体肯定接触C.作用在物体上的力,不论作用点在什么位置,产生的效果均相同D.某施力物体同时也肯定是受力物体思路解析:对于A选项,马与车之间的作用无先后关系.对于B选项,力的作用可以接触,如弹力、拉力等,也可以不接触,如重力、磁力等;对于C选项,力的作用效果,确定于大小、方向和作用点.对于D选项,施力的同时,必需受力,这是由力的相互性确定的.3.下列说法中正确的是()A.射出枪口的子弹,能打到很远的距离,是因为子弹离开枪口后受到一个推力作用B.甲用力把乙推倒说明甲对乙有力的作用,乙对甲没有力的作用C.只有有生命或有动力的物体才会施力,无生命或无动力的物体只会受到力,不会施力D.任何一个物体,肯定既是受力物体,也是施力物体思路解析:子弹在枪管内受到火药爆炸产生的强大推力,使子弹离开枪口时有很大的速度,但子弹离开枪口后,只受重力和空气阻力作用,并没有一个所谓的推力,因为不行能找到这个所谓的推力的施力物体,故不存在,A错.物体间的作用力总是相互的,甲推乙的同时,乙也推甲,故B错.不论物体是否有生命或是否有动力,它们受到别的物体的作用时,都会施力,马拉车时,车也拉马,故C错.自然界中的物体都是相互联系的,每一个物体既受到力的作用,也对四周的物体施以力的作用,所以每一个物体既是受力物体又是施力物体,故D 正确.4.下列说法正确的是()A.力是由施力物体产生,被受力物体所接受的B.由磁铁间有相互作用力可知,力可以离开物体而独立存在C.一个力必定联系着两个物体,其中随意一个物体既是受力物体又是施力物体D.一个受力物体可以对应着一个以上的施力物体思路解析:力是物体与物体之间的相互作用,不是由哪个物体产生的;磁铁间的相互作用亦即磁场间的相互作用,磁场离不开磁铁,即磁力离不开磁铁,也就是离不开物体;力既有施力物体又有受力物体,这是由力的相互性确定的;一个物体可受多个力,因此有多个施力物体,因此,AB错,CD正确.5.铅球放在水平地面上处于静止状态,下列关于铅球和地面受力的叙述正确的是()A.地面受到向下的弹力是因为地面发生了弹性形变;铅球坚硬没发生形变B.地面受到向下的弹力是因为地面发生了弹性形变;铅球受到向上的弹力,是因为铅球也发生了形变C.地面受到向下的弹力是因为铅球发生了弹性形变;铅球受到向上的弹力,是因为地面发生了形变D.铅球对地面的压力即为铅球的重力思路解析:两个物体之间有弹力,它们必定相互接触且发生了形变,地面受到向下的弹力是因为铅球发生了形变,故A、B错.铅球对地面的压力的受力物体是地面而不是铅球,D错.只有C项正确.6.有关矢量和标量的说法中正确的是()A.凡是既有大小又有方向的物理量都叫矢量B.矢量的大小可干脆相加,矢量的方向应遵守平行四边形定则C.速度是矢量,但速度不能按平行四边形定则求合速度,因为物体不能同时向两个方向运动D.只用大小就可以完整描述的物理量是标量思路解析:矢量的合成符合平行四边形定则,包括矢量的大小和方向.答案:AD7.关于弹力的下列说法中,正确的是()①相互接触的物体间必有弹力的作用②通常所说的压力、拉力、支持力等都是接触力,它们在本质上都是由电磁力引起的③弹力的方向总是与接触面垂直④全部物体弹力的大小都与物体的弹性形变的大小成正比A.①② B.①③ C.②③ D.②④思路解析:本题考查弹力的产生条件、弹力的方向与大小的确定因素,相互接触的物体间不肯定有弹性形变,故①错.弹力的大小一般随形变的增大而增大,但不肯定成正比,故④错.本题正确的选项是C.8.关于滑动摩擦力,下列说法正确的是()A.物体与支持面之间的动摩擦因数越大,滑动摩擦力也越大B.物体对支持面的压力越大,滑动摩擦力也越大C.滑动摩擦力的方向肯定与物体相对滑动的方向相反D.滑动摩擦力的方向肯定与物体运动的方向相反思路解析:滑动摩擦力的大小取决于接触面间的动摩擦因数和垂直于接触面的压力,故AB选项错误.滑动摩擦力的方向与物体相对运动方向相反,故D错.C项正确.9.如图4-1所示,木块A放在水平的长木板上,长木板放在光滑的水平桌面上.木块与水平的弹簧秤相连,弹簧秤的右端固定.若用水平向左的恒力拉动长木板以速度v匀速运动,弹簧秤的示数为F T.则()图4-1A.木块A受到的静摩擦力等于F TB.木块A受到的滑动摩擦力等于F TC.若用恒力以2v的速度匀速向左拉动长木板,弹簧秤的示数为F TD.若用恒力以2v的速度匀速向左拉动长木板,弹簧秤的示数为2F T思路解析:A受到的滑动摩擦力取决于A对木板的压力与A与木板间的动摩擦因数,与木板运动的速度无关,选项BC正确.10.关于弹簧的劲度系数k,下列说法正确的是()A.与弹簧所受的拉力大小有关,拉力越大,k值越大B.由弹簧本身确定,与弹簧所受的拉力大小与形变无关C.与弹簧发生的形变大小有关,形变越大,k值越大D.与弹簧本身的特性、所受拉力的大小、形变大小都无关思路解析:劲度系数由弹簧本身的属性确定,故D错.弹簧的形变量越大,受作用力越大,但k不变,故AC错,选11.如图4-2所示,有黑白两条毛巾交替折叠地放在地面上,在白毛巾的中部用线与墙壁连接着,黑毛巾的中部用线拉住,设线均水平,欲将黑白毛巾分别开来,若每条毛巾的质量均为m,毛巾之间与其跟地面间的动摩擦因数均为μ,则将黑毛巾匀速拉出需加的水平拉力为()图4-2A.2μmgB.4μmgC.6μmgD.5μmg答案:设白毛巾上半部和下半部分别为1和3,黑毛巾的上下半部分别为2和4,则两毛巾叠折时必有四个接触面,存在四个滑动摩擦力.1和2接触面间的滑动摩擦力 F 1=μF N12=21μmg2和3接触面间的滑动摩擦力 F 2=μF N23=μ(21mg+21mg)=μmg 3和4接触面的滑动摩擦力F 3=μF N34=μ(21mg+21mg+21mg)=23μmg 4和地面的滑动摩擦力F 4=μF N =μ(21mg+21mg+21mg+21mg)=2μmg 则F=F 1+F 2+F 3+F 4=5μmg.12.在图5-1中,要将力F 沿两条虚线分解成两个力,则A 、B 、C 、D 四个图中,可以分解的是( )图5-1思路解析:我们在分解力的时候两个分力应作为平行四边形的两个邻边,合力应作为平行四边形的对角线,13.水平横梁的一端A 插在墙壁内,另一端装有一小滑轮B 。
高一力学经典试题带详解答案
2021学年度高中物理力学试题一、选择题1.如图,粗糙的水平地面上有一斜劈,斜劈上一物块正在沿斜面以速度v0匀速下滑,斜劈维持静止,则地面对斜劈的摩擦力()A.等于零B.不为零,方向向右C.不为零,方向向左D.不为零,v0较大时方向向左,v0较小时方向向右【答案】A【解析】试题分析:以物块和斜劈整体为对象,整体处于平衡状态,因此整体水平方向上不受力,即地面没有给斜劈摩擦力,故A项正确,其它项错。
考点:本题考查了处于平衡状态下的物体的受力分析能力。
2.如图所示,竖直放置的弹簧,小球从弹簧正上方某一高处落下,从球接触弹簧到弹簧被紧缩到最大的进程中,关于小球运动情况,下列说法正确的是()A.加速度的大小先减小后增大B.加速度的大小先增大后减小C.速度大小不断增大D.速度大小不断减小【答案】A【解析】试题分析:随着弹簧被紧缩,弹簧的弹力愈来愈大,初始阶段弹力小于重力,小球加速向下运动,但合力是减小的,按照牛顿第二定律加速度也减小,当弹力恰等于重力时,合力为零,加速度也为零,速度达到最大,小球继续向下紧缩弹簧,弹力大于重力,小球向下做减速度运动,合力向上逐渐增大,按照牛顿第二定律加速度也增大,直到速度减为零,加速度达最大,所以这个紧缩弹簧的进程,加速度先减小后增大,速度先增大后减小,故只有A项正确,其它项错。
考点:本题考查了弹簧的弹力大小与形变量的关系、加速度与合力的关系、速度与合力的关系。
3.如图所示,三根横截面完全相同的圆木材A、B、C按图示方式放在水平面上,它们均处于静止状态,则下列说法正确的是A.B、C所受的合力大于A受的合力B.B、C对A的作使劲的合力方向竖直向上C.B与C之间必然存在弹力D.若是水平面滑腻,则它们仍有可能维持图示的平衡【答案】B【解析】试题分析:因三个物体都处于静止状态,所受的合力均为零,故B、C所受的合力等于A受的合力,选项A错误;因为A受合力为零,故B、C对A的作使劲的合力方向与重力等大反向,即沿竖直向上的方向,选项B正确;B与C 之间虽然接触,可是不存在弹力作用,选项C错误;若是水平面滑腻,则对B来讲,由于受到A斜向下的压力作用,故不可能维持图示的平衡,选项D错误;故选B.考点:物体的平衡.4.如图所示,一物块静止在粗糙的斜面上。
高一必修一物理经典力学典型例题(有答案,含解析)
高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。
一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。
物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。
(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。
2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。
那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。
观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。
取g=10 m/s2。
试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。
高一物理力学经典例题
高一物理力学经典例题1. 一维运动中的速度与加速度计算题目描述一辆汽车以恒定速度v行驶了t时间,在某一时刻该车突然加速a,然后以加速度a行驶了一个时间间隔t1,最后以减速度b减速到停止。
求汽车以恒定速度v行驶的距离和总时间。
解答设汽车以恒定速度v行驶的距离为S1,加速度为a行驶的距离为S2,减速度为b行驶的距离为S3,总时间为T。
根据物理学中的基本关系式:速度v = 距离S / 时间t,我们可以得到以下关系:- 恒定速度v行驶的距离S1 = v × t - 初速度为v,加速度为a,时间间隔为t1时的位移S2 = v × t1 + 0.5 × a × t1² - 以减速度b减速到停止的位移S3 = 0.5 × b × (T - t -t1)² - 总时间T = t + t1 + (T - t - t1)代入上述方程,我们可以解得答案。
2. 牛顿第二定律与力的计算题目描述一个质量为m的物体,受到一个恒定的水平力F作用,获得了加速度a。
根据牛顿第二定律,计算物体所受的力F。
解答根据牛顿第二定律 F = ma,我们可以计算物体所受的力F。
给定质量m和加速度a,代入上述公式即可得到答案。
3. 竖直上抛运动中的最大高度和落地时间计算题目描述一个物体以初速度v0竖直向上抛出,经过一段时间后落回原点。
已知重力加速度g,求物体的最大高度和落地时间。
对于竖直上抛运动,我们可以利用运动学中的关系式来计算最大高度和落地时间。
1.计算最大高度:–最大高度h = (v0²) / (2g)2.计算落地时间:–首先计算上升时间t1 = v0 / g–再计算下降时间t2 = 2t1–最后计算落地时间t = t1 + t2代入已知的初速度v0和重力加速度g,即可计算出最大高度和落地时间。
4. 斜抛运动中的最大高度和飞行时间计算题目描述一个物体以初速度v0与水平面成角度θ斜抛出,求物体的最大高度和飞行时间。
高一物理力学典型例题
高一物理力学典型例题摘要:1.力的概念及分类2.牛顿三定律3.动能和势能4.机械能守恒定律5.动量守恒定律6.摩擦力和滑动摩擦力7.受力分析和解题方法8.实际问题应用正文:一、力的概念及分类力是物体之间相互作用的结果,可以改变物体的形状和运动状态。
力可分为接触力和非接触力两类。
接触力如推、拉、挤等,非接触力如磁力、电场力等。
二、牛顿三定律1.第一定律:物体在没有受到外力作用时,保持静止或匀速直线运动。
2.第二定律:物体所受合外力等于物体质量与加速度的乘积,即F=ma。
3.第三定律:任何两个物体间的作用力和反作用力,大小相等、方向相反、作用在同一直线上。
三、动能和势能1.动能:物体由于运动而具有的能量,公式为E_k=1/2mv^2。
2.势能:物体由于位置关系而具有的能量,公式为E_p=mgh。
四、机械能守恒定律在只有重力和弹力做功的系统中,物体的机械能(动能+势能)保持不变。
五、动量守恒定律在一个封闭系统中,物体所受的合外力为零时,物体的动量保持不变。
六、摩擦力和滑动摩擦力1.摩擦力:两个互相接触的物体在相对运动时,接触面产生的阻碍相对运动的力。
2.滑动摩擦力:一个物体在另一个物体表面上滑动时,产生的摩擦力。
七、受力分析和解题方法1.受力分析:分析物体在某一时刻所受到的各种力,包括主动力和约束力。
2.解题方法:运用牛顿定律、动能定理、机械能守恒定律等,求解物体在受力作用下的运动状态。
八、实际问题应用力学知识在日常生活和工程技术中具有广泛的应用,如汽车运动、桥梁设计、机械制造等领域。
通过掌握以上知识点,同学们可以更好地解决高一物理力学的典型例题,为后续学习打下坚实基础。
在学习过程中,要注重理论与实际相结合,提高解题能力和应用能力。
高一物理力学例题经典
高一物理力学例题经典第一章力例题1 把一个大小为10N的力沿相互垂直的两个方向分解,两个分力的大小可能为(A) 1N,9N (B)6N,8N(C)(99.99)1/2N,0.1N (D)11N,11N解:两个分力的平方和应等于102,等于100.选项(B)(C)正确.例题2 一个大小为1N的力可以分解为多大的两个力?(A) 0.2N,1.2N (B)1N,1N (C)100N,100N (D)1N,1000N解:大小为0.2N和1.2N的两个力方向相反时合力为1N,选项(A)正确;大小均为1N的两个力互成120°角时,合力为1N,选项(B)正确;大小均为100N的两个力互成适当小的角度时,合力可为1N,选项(C)正确;大小为1N和1000N的两个力的合力大小在999N与1001N之间,不可能为1N,选项(D)不对.总之选项(A)(B)(C)正确.例题3 作用于同一质点的三个力大小均为10N.(1)如果每两个力之间的夹角都是120°角,那么合力多大?(2)如果两两垂直,那么合力多大?解:(1)合力为零.(2)根据题意,可以设F1向东,F2向南,F3向上.F1、F2的合力F12,沿东南方向,大小为10N.F3与F12相垂直,所以三个力的合力大小为F=(102+(10)2)1/2=10N例题4 (1)大小为5N、7N、8N的三个共点力,合力最小值为____;(2)大小为5N、7N、12N的三个共点力,合力最小值为____;(3)大小为5N、7N、13N的三个共点力,合力最小值为____;(4)大小为5N、7N、40N的三个共点力,合力最小值为____.答:(1)0;(2)0;(3)1N;(4)28N.例题5 如图1-2所示,六个力在同一平面内,相邻的两个力夹角都等于60°,F1=11N,F2=12N,F3=13N,F4=14N,F5=15N,F6=16N.六个力合力的大小为___N.解:F1与F4的合力F14沿F4方向,大小为3N,F2与F5的合力F25沿F5方向,大小为3N,F3与F6的合力F36沿F6方向,大小为3N.所以六个力的合力等于图1-3中三个力的合力.F14与F36的合力F1436沿F25方向,大小为3N.F1436与F25的合力,沿F25方向,大小为6N.总之六个力的合力大小为6N,沿F5方向.例题6 质点受到五个力:F1、F2、F3、F4、F5,图1-4中作出了五个力的图示,两条实线和四条虚线正好构成一个正六边形.已知F3=10牛,求五个力的合力多大.解:容易看出,F1和F2的合力等于F3(大小和方向等于F3的大小和方向),F2和F5的合力等于F3,所以五个力的合力为F=3F3=30牛.例题7 图1-5(a)中三个力为共点力,平移后构成三角形,图1-5(b)也是这样.图1-5(a)中三个力的合力大小为____N;图1-5(b)中三个力的合力大小为____N.解:根据三角形定则,图(a)中,F2与F3的合力等于F1,所以三个力的合力等于2F1=40N(向左).根据三角形定则,图(b)中,F2与F3的合力向右,大小等于F1,所以三个力的合力等于零.从多边形定则可以直接得出这个结论.例题8 如图1-6所示,十三个力在同一平面内,大小均为1N,相邻的两个力夹角都是15°,求十三个力的合力.解:F1与F13的合力为零;F2与F12互成150°角,合力沿F7方向,利用余弦定理,可算出合力大小为(12+12+2×1×1cos150°)1/2N=(12+12-2×1×1cos30°)1/2N=(2-)1/2N;F3与F11互成120°角,合力沿F7方向,合力大小为1N;F4与F10互成90°角,合力沿F7方向,合力大小为N;F5与F9互成60°角,合力沿F7方向,合力大小为N;F6与F8互成30°角,合力沿F7方向,利用余弦定理,可算出合力大小为(12+12+2×1×1cos30°)1/2N=(2+)1/2N;所以十三个力的合力沿F7方向,大小为F=(2-)1/2N+1N+N+N+(2+)1/2N+1N=(2+(2+)1/2+(2-)1/2++)N.例题9 如图1-7,有同一平面内5个共点力,相邻的两个力之间的夹角都是72度.F1大小为90N,其余各力大小均为100N.求5个力的合力.解:F1可以分解为沿F1方向的大小为100N的分力F1a,和沿F1反方向的大小为10N的分力F1b.这样原题转化为求解F1a、F1b和F2、F3、F4、F5等6个力的合力.易知,其中F1a和F2、F3、F4、F5等5个力的合力为零.所以F1、F2、F3、F4、F5的合力等于F1b:大小为10N,沿F1的反方向.例题10 有n个大小为F的共点力,沿着顶角为120°的圆锥体的母线方向,如图1-8所示.相邻两个力的夹角都是相等的.这n个力的合力大小为_____.解:将每个力沿圆锥体的对称线方向和平行于底面的方向分解,得到n个沿着对称线方向的分力,和n个平行于底面方向的分力.每个沿着对称线方向的分力大小都等于F/2,所以n个沿着对称线方向的分力的合力,大小为nF/2.另一方面,n个平行于底面方向的分力的合力为零.所以本题所求n个力的合力大小等于nF/2.例题11 下面每组共点力,大小是确定的.试分别判断各组力之合力是否可能为零,如不可能为零,最小值多大.(A)1N,2N,3N,4N,15N(B)1N,2N,3N,4N,10N(C)1N,2N,3N,4N,5N(D)1N,2N,10N,100N,100N(E)1N,2N,……98N,99N,100N(F)1N,2N,……98N,99N,10000N解:(A)1+2+3+4=10,而10<15,这五个力不可能组成五边形,谈不上组成如图1-1(c)所示的五边形,因此合力不可能为零,最小值为:F min=15N-10N=5N.(B)1+2+3+4=10,所以五个力的合力可能为零.(C)1+2+3+4>5,这五个力可以组成图8所示的五边形,合力可能为零.(D)1+2+10+100>100,所以五个力的合力可能为零.(E)1+2+3+……+98+99>100,所以一百个力的合力可能为零.(F)1+2+3+……+98+99=(1+99)×99/2=4950<10000所以,一百个力的合力不可能为零,最小值为F min=10000N-4950N=5050N.第二章直线运动例题1 有一小孩掉进河里后抱住了一根圆木随水向下飘流,有三条船A、B、C在正对河岸P点的地方同时与圆木相遇,但三条船上的船员都没有注意到圆木上的小孩.A、B 两船逆水上行,C船顺水下行.相对水的速度,B船是A船的1.2倍,C船是B船的1.2倍. 当三条船离开P点行驶30分钟的时候, 船员们从收音机里听到圆木上有小孩需要救助的消息,三条船都立即调转船头,驶向圆木.在离P点6千米的地方,小孩被船员救起. 试回答三条船到达小孩和圆木的先后次序如何?_____.解:以流水为参照物.小孩和原木是静止的.船A上行时速度和下行时速度大小相等,船B也是这样,船C也是这样.船A、B、C 同时从小孩所处的位置向上游和下游行驶,速度不同,在30 分钟内行驶了不同的路程s1、s2、s3;在接下去的30分钟内, 三条船分别沿反方向行驶路程s1、s2、s3,回到小孩所处的位置.答:三条船同时到达小孩和原木.例题2 一列一字形队伍长120m,匀速前进. 通讯员以恒定的速率由队尾跑到队首,又跑回队尾,在此期间,队伍前进了288m. 求通讯员跑动的速率v是队伍前进的速率u的多少倍.分析:顺利解答本题的关键是, 找出通讯员的运动跟队首或队尾的运动的联系.解:设通讯员从队尾跑到队首所用的时间为t1, 从队首跑到队尾所用的时间为t2,那么u(t1+t2)=288 (1)在t1时间内,通讯员跑动的路程比队首移动的路程多120m:vt1-ut1=120 (2)在t2时间内,通讯员跑动的路程加上队尾移动的路程等于120m:vt2+ut2=120 (3)从(2)式中得出t1的表达式,从(3)式中得出t2的表达式,代入(1)式, 可算出:v=1.5u例题3 一物体作匀变速直线运动,某时刻速度的大小为4m/s, 1s后速度的大小变为10m/s.在这1s内(A)位移的大小可能小于4m(B)位移的大小可能大于10m(C)加速度的大小可能小于4m/s2(D)加速度的大小可能小于10m/s2 (1996年高考全国卷试题)解:取初速度方向为正方向,则v0=4m/s,v t=10m/s或-10m/s.由 s=v t=(v0+v t)t/2,得 s=7m或-3m所以位移的大小为7m或3m.选项(A)正确,(B)错误.由 a=(v t-v0)/t得 a=6m/s2或-14m/s2所以加速度的大小为6m/s2或14m/s2,选项(C)错误,(D)正确.总之,本题选(A)(D).例题4 在三楼的阳台上 ,一人伸出阳台的手上拿着一只小球, 小球下面由细绳挂着另一个小球.放手,让两小球自由下落,两小球相继落地的时间差为t.又站在四层楼的阳台上,同样放手让小球自由下落,两小球相继落地的时间差为t',则(A)t<t' (B)t=t' (C)t>t'解:从三楼阳台外自由下落,下面的小球着地时,两球具有的速度为v,从四楼阳台外自由下落,下面的小球着地时, 两球具有的速度为v',显然v<v'.下面的小球着地后,上面的小球以较小的初速度v和较大的初速度v',继续作加速度为g的匀加速运动, 发生一定的位移(等于绳长),所需的时间显然是不同的:t>t'.选项(C)正确.例题5 一质点由静止从A点出发,先作匀加速直线运动,加速度大小为a,后做匀减速直线运动,加速度大小为3a,速度为零时到达B 点.A、B间距离为s.求质点运动过程中的最大速度.解:设质点第一阶段做匀加速运动的的时间为t1,末速度为 v, 这就是运动过程中的最大速度;设第二阶段做匀减速运动的时间为t2.那么第一阶段的位移为vt1/2,第二阶段的位移为vt2/2, 两者之和应为全程位移: vt1/2+vt2=s (1)又根据加速度的定义式,有t1=v/a (2)t2=v/(3a) (3)将(2)(3)两式代入(1)式:v2/(2a)+v2/(6a)=s所以 v=(3as/2)1/2例题6 两辆完全相同的汽车 ,沿水平直路一前一后匀速行驶, 速度均为v0,若前车突然以恒定的加速度刹车,在它刚停住时,后车以前车刹车时的加速度开始刹车.已知前车在刹车过程中所行驶的路程为s,若要保证两车在上述情况下不相撞,则两车在匀速行驶时保持的距离至少应为(A)s (B)2s (C)3s (D)4s(1992年高考全国卷试题)解:汽车从开始刹车到停下这个期间,平均速度为v0/2.在前车开始刹车到停下这段时间内,后车以速度v0匀速行驶, 行驶的距离应为s的两倍,即为2s.从前车开始刹车到两车都停下,前车的位移为s;后车的位移为 (2s+s)=3s.设前车刹车前(匀速行驶期间)两车的距离为l,为使两车不相撞,应满足:l+s≥3s所以l≥2s本题选(B)例题7 某人离公共汽车尾部20m,以速度v向汽车匀速跑过去, 与此同时汽车以1m/s2的加速度启动,作匀加速直线运动.试问, 此人的速度v分别为下列数值时,能否追上汽车?如果能, 要用多长时间?如果不能,则他与汽车之间的最小距离是多少?(1)v=4m/s; (2)v=6m/s; (3)v=7m/s.思路:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑,得出汽车跟人的距离y随时间t变化的函数式. 然后考察对于正值t,y是否可能取零,如果是的,那么能追上,如果不能,那么不能追上.解:假设人不管是否在某一时刻追上了汽车,一直以速度v朝前跑.在时间t内,人的位移等于vt;汽车的位移等于(1/2)at2=0.5t2.经过时间t时,汽车尾部跟人之间,距离为y=20+0.5t2-vt即 y=20+0.5(t2-2vt+v2)-0.5v2即 y=0.5(t-v)2+20-0.5v2 (*)上式中,y取正值时,表示汽车尾部在人前方y米,y取负值时,表示汽车的尾部在人后面│y│米(前面已假设人即使追上了汽车,也一直朝前跑).(甲)把v=4代入(*)式得y=0.5( t-4)2+12 (1)y恒大于零,y最小值为12.(乙)把v=6代入(*)式得y=0.5( t-6)2+2 (2)y恒大于零,y最小值为2.(丙)把v=7代入(*)式得y=0.5( t-7)2-4.5 (3)容易得出,当t=4,10时,y=0,这表示,如果人一直朝前跑, 那么经过4s时,人与汽车尾部平齐,经过10s时, 人又一次与汽车的尾部平齐.结论:(1)如v=4m/s,则人追不上汽车, 人跟汽车之间的最小距离为 12m.(2)如v=6m/s,则人追不上汽车, 人跟汽车之间的最小距离为 2m.(3)如v=7m/s,则人经过4s追上汽车.例题8 杂技演员表演一手抛接三球的游戏时, 三个球都抛过一次后,每一时刻手中最多只有一个球. 如果每只球上升的最大高度都为1.25m,那么每隔多长时间抛出一个球?g取10m/s2.(A)0.33s (B)0.33s到0.50s(C)0.50s (D)1.0s解:每个球做一次竖直上抛运动的时间是t=2(2h/g)1/2=2(2×1.25/10) 1/2=1.0s球从这一次被抛出到下一次被抛出,完成一个周期性运动, 设周期为T.如果每个球在手中停留的时间趋于零,那么T=t=1.0s;如果手中总停留着一个球,一个球停留的时间是t',那么T=t+t' ,且 t'=(1/3)T那么 T=(3/2)t=1.5s.以上考虑的是两个极端情况.实际上1.0s<T<1.5s在T时间内抛出三个球,每隔T/3的时间抛出一个球:0.33s<T/3<0.5s ,选项(B)正确.请读者考虑:如果每秒钟抛出三个球,那么应使每个球上升多高?(答案:0.56m到1.25m)例题9 小球A从地面上方H高处自由下落,同时在A的正下方,小球B从地面以初速度v竖直上抛.不计空气阻力.要使A、B 发生下述碰撞,v、H应满足什么条件?(甲)在B上升到最高点时相碰;(乙)在B上升的过程中相碰;(丙)在时间T内在空中相碰;(丁)经过时间T时在空中相碰.解:设经过时间t在地面上方h高处相碰.则从开始运动到相碰, 小球A发生的位移大小为(H-h),小球B发生的位移大小为h,则:( H-h)=(1/2)gt2h=vt-(1/2)gt2由以上两式得 t=H/v (1)时间t应小于B球在空中运动的时间:t<2v/g (2)由(1)(2)得 2v2>gH (3)(甲)在最高点相碰:t=v/g (4)由(1)(4)得 v2=gH (5)所以v、H应满足(5)式.(乙)时间t应小于B球上升时间:t<v/g (6)由(1)(6)得 v2>gH (7)所以v、H应满足(7)式.(丙) t≤T (8)由(1)(8)得H≤vT (9)所以v、H应满足(3)(9)两式.(丁) t=T (10)由(1)(10)得 H=vT (11)所以v、H应同时满足(3)(11)两式.讨论: (11)代入(3):v>gT/2 (12)问题(丁)又可这样回答:v、H应满足(11)(12)两式.从(11)得出v=H/T,代入(3)或(12)可得H>gT2/2 (13)问题(丁)还可这样回答:v、H应满足(11)(13)两式.第三章牛顿运动定律例题1 某人在地面上最多能举起32Kg的重物,那么在以2m/s匀加速下降的电梯中,他最多能举起多少Kg的重物?g取10m/s2.解:此人能施加的向上的举力大小为F=m1g=32×10N=320N在匀加速下降的电梯中,设某人用举力F举起了质量为m2的物体.物体的加速度向下,所以合外力也向下. 对这个物体应用牛顿第二定律:m2g-F=m2a即 m2=F/(g-a)把举力大小F=320N,重力加速度大小g=10m/s2,物体加速度大小a=2m/s2代入上式,得m2=40Kg他最多能举起40Kg的物体.例题2 一个质量为200g的物体,以初速度v0=20m/s竖直上抛, 上升的最大高度为16m.没有风,且假设物体所受空气阻力的大小始终不变,求物体落回抛出点时的速度大小.g取10m/s2.解:物体受到的空气阻力跟物体相对空气的运动方向相反. 因此,在没有风的情况下, 物体受到的空气阻力跟物体相对地面的运动方向相反.物体上升时,受到的空气阻力向下;下降时, 受到的空气阻力向上.设空气阻力的大小始终为f.物体减速上升时,加速度向下,合外力也向下;加速下降时, 加速度向下,合外力也向下.由牛顿第二定律,物体减速上升时,加速度的大小为a1=(mg+f)/m即 a1=g+f/m (1)加速下降时,加速度的大小为a2=(mg-f)/m即 a2=g-f/m (2)由匀变速直线运动公式,上升阶段满足v02=2a1h (3)其中h=16m.下降阶段满足v2=2a2h (4)(1)+(2): a1+a2=2g (5)(3)+(4): v02+v2=2(a1+a2)h (6)(5)代入(6)得v02+v2=4gh (7)代入数据得 v=(240)1/2m/s=15.5m/s例题3 木块静止在光滑水平面上,子弹以较大的水平速度 v从木块左面射入,从右面射出,木块获得速度u. 设子弹对木块的作用力与速度无关.如v增大 ,则u(A)增大 (B)减小 (C)不变.思路:首先通过考察子弹相对木块的运动, 判断子弹穿行于木块的时间,与子弹的入射速度v有怎样的关系.解:子弹对木块的作用力向前,木块对子弹的作用力向后,这一对作用力是恒定的,在它们的作用下,子弹向前作匀减速直线运动, 木块向前作初速度为零的匀加速直线运动.子弹相对木块作匀加速运动.在子弹对木块的作用力与速度无关这个前提下,增大v以后,子弹匀减速运动的加速度仍为原来的值,木块作匀加速运动的加速度也仍为原来的值,从而子弹相对木块的加速度仍为原来的值.增大v以后,子弹穿行于木块期间,子弹相对木块运动的位移仍等于木块的长度.子弹相对木块运动的初速度等于v,增大v, 意味着增大子弹相对木块运动的初速度.所以增大v以后,子弹穿行于木块的时间减少.在较少的时间内,木块作初速度为零的匀加速运动, 获得的末速度u就较小.选项(B)正确.例题4 如图3-2所示,斜面的倾角为α.质量分别为m1、m2的两木块A、B,用细绳连接.它们与斜面之间的动摩擦因数μ相同 .现在A上施加一个沿斜面向上的拉力F,使A、B一起向上作匀加速运动.求证细绳上的拉力与μ和α无关.解:设A、B一起运动的加速度为a,对A、B组成的整体应用牛顿第二定律可得:F-(m1+m2)gsinα-μ(m1+m2)gcosα=(m1+m2)a即 F=(m1+m2)gsinα+μ(m1+m2)gcosα+(m1+m2)a (1)设细绳上的拉力大小为T,对B应用牛顿第二定律可得:T-m2gsinα-μm2gcosα=m2a即 T=m2gsinα+μm2gcosα+m2a (2)(1)式除以(2)式得F/T=(m1+m2)/m2 (3)由(3)式可见,细绳上的拉力决定于拉力F以及两个木块的质量, 与动摩擦因数μ以及斜面的倾角α无关.例题5 如图3-3所示,自由下落的小球,从它接触到竖直放置的轻弹簧开始,到弹簧被压缩到最短的过程中,(A)合力逐渐变小(B)合力先变小后变大(C)速度逐渐变小(D)速度先变小后变大解:小球刚接触到弹簧时,弹簧处于自然状态,弹簧对小球的作用力为零,小球受到的合力等于它受到的重力.在最初一段时间内,小球以自由落体运动的末速度为初速度,继续向下做加速运动. 小球向下运动一段适当的位移时(弹簧被压缩适当的长度时),小球弹簧对小球的向上的支持力大小正好等于重力,这时小球的合外力为零.由于小球已经具有了一定的速度,所以还要向下运动.弹簧被压缩的长度增加时,支持力也增大,支持力超过重力,合力向上, 所以从合外力为零的时刻以后向下的运动是减速运动.向下的减速运动进行到速度减为零为止.速度减为零时,弹簧被压缩到最短.再以后,小球向上运动,弹簧的长度增加.综上所述,小球从接触到弹簧开始, 到弹簧被压缩到最短的过程中,小球的合外力先是向下,逐渐减小,然后向上,逐渐增大;小球先作加速运动,然后作减速运动.选项(B)正确.例题6 如图3-4所示,在水平拉力F的作用下,物体A向右运动, 同时物体B匀速上升.可以判断(A)物体A的运动是匀速运动(B)绳子对物体A的拉力逐渐减小(C)水平地面对物体A的支持力逐渐增大(D)水平地面对物体A的摩擦力逐渐减小解:物体A的速度u跟物体B的速度v满足:v=ucosθ在v保持不变的情况下,u随着θ的变化而变化:物体A的运动不是匀速运动.由物体B匀速运动,可知绳子对物体B的拉力保持不变. 绳子对物体A的拉力T的大小总等于绳子对B的拉力,也是不变的.物体A的受力情况如图3-5所示,将 T沿水平方向和竖直方向分解为T x、T y,随着θ的减小,T x逐渐增大,T y逐渐减小.作用于物体A的T y、支持力N、重力G,三者满足:T y+N=GN随着Ty的减小而增大.根据f=μN水平地面对物体A的滑动摩擦力f随着N的增大而增大综上所述,选项(C)正确.例题7 一质点自倾角为α的斜面上方P点沿光滑的斜槽PB从静止开始下滑,如图3-6所示,为使质点在最短的时间内从P点到达斜面, 则斜槽与竖直方向的夹角β应等于______.解:如图3-6作PC垂直于斜面,垂足为C.则∠CPA=α,∠CPB=α- β.应用牛顿第二定律可得,质点从斜面上下滑时,加速度为a=gcosβ应用匀变速直线运动公式可得PB=(1/2)at2即 t2=2PB/a=2[PC/cos(α-β)]/(gcosβ)即 t2=2PC/[gcos(α-β)cosβ]当α-β=β ,即β=α/2 时 ,t2取最小值,t取最小值,质点在最短的时间内从P点到达斜面.例题8 图3-7中A为电磁铁,C为胶木秤盘,A和C(包括支架)的总质量为M,B为铁片,质量为m,整个装置用轻绳悬挂于O点. 当电磁铁通电,铁片被吸引上升的过程中,轻绳上拉力F的大小为( ).(A)F=Mg (B)Mg<F<(M+m)g(C)F=(M+m)g (D)F>(M+m)g (1992年高考上海卷试题)解:铁片离开秤盘时, 电磁铁对它的向上的拉力一定大于地球对它的重力mg.铁片在上升中,逐渐靠近电磁铁,电磁铁对它向上的吸引力逐渐增加,仍大于mg.根据牛顿牛顿第三定律,铁片对电磁铁向下的吸引力, 电磁铁对铁片的吸引力大小相等,大于mg.A和C组成的系统,受力平衡:绳子施加的拉力,等于系统的重力,与铁片对电磁铁向下的吸引力之和,大于(Mg+mg).选项(D)正确.例题9 把一个质量m=4Kg的长方体木块,分割成两个三棱柱形木块A和B,角α=30°,然后再对到一起,放在光滑的水平面上, 如图3-8所示.用大小为8N的水平力F沿图示方向推A, A、B 组成的长方体保持原来的形状,沿力的作用方向平动.(1)求A对B的作用力.(2)求A对B的静摩擦力.解:(1)A和B的加速度a,都是沿F方向.B的加速度是A对B的作用力Q产生的.所以,Q的方向跟F的方向相同,如图3-9所示.对A、B组成的系统应用牛顿第二定律:a=F/m=(8/4)m/s2=2m/s2对B应用牛顿第二定律:Q=(m/2)a=2×2N=4N(2)A对B的作用力Q是A对B的压力N和静摩擦力f的合力( 也可以说,Q可以分解为N和f),如图3-10(俯视图)所示.静摩擦力的大小为f=Q/2=2N例题10 如图3-11所示,A和B质量相等均为m,A与B之间的动摩擦因数为μ1,静摩擦因数为μ2,B与地面之间的动摩擦因数为μ3.原来在水平拉力F的作用下,A和B彼此相对静止 ,相对地面匀速运动(图3-11(a).撤消F后,A和B彼此保持相对静止,相对地面匀减速运动(图3-11(b).则A、B相对地面匀减速运动的过程中,A、B 之间的摩擦力的大小为(A)μ1mg (B)μ2mg (C)μ3mg (D)F/2解:B与地面之间的压力支持力大小始终等于A、B两个物体的总重力,因此地面对B的滑动摩擦力的大小始终为f=μ3(2mg)A、B匀速运动时,受力平衡:F=fA、B一起以加速度a做减速运动时,对于A、B组成的系统来说,地面对B的滑动摩擦力f就是合外力,等于(2ma);对于A来说,B对A的静摩擦力f1就是合力,等于(ma).于是f1=f/2综合以上三式得:f1=μ3mg和 f1=F/2本题选(C)(D).说明:因为A、B没有相对运动,所以A、B之间的动摩擦因数μ1用不到;因为B对A的静摩擦力不一定是最大静摩擦力,所以A、B 之间的静摩擦因数μ2用不到.例题11 如图3-12所示,质量为mA、mB的两个物体A和B 用跨过光滑滑轮的细绳相连.A沿倾角为θ的斜面向下加速下滑.A、B两物体加速度的大小相同,等于a.楔形物体C的下表面是光滑的.求台阶对C水平方向的作用力的大小.解:如图3-13,将物体A的加速度 a沿水平方向和竖直方向分解, 水平分加速度为ax=acosθ;物体B的加速度是向上的,没有水平分量;滑轮质心的加速度为零.在水平方向上,对由A、B、C以及滑轮,组成的系统,应用质点组牛顿第二定律,有F=m A a x.由以上两式得F=m A acosθ .例题12 如图3-14所示,三个质量相同,形状相同的楔形物体, 放在水平地面上.另有三个质量相同的小物体, 分别从斜面顶端沿斜面下滑.由于小物体跟斜面间的动摩擦因数不同, 第一个小物体匀加速下滑;第二个物体匀速下滑; 第三个小物体以一定的初速度匀减速下滑. 三个楔形物体都保持静止,水平面对它们的支持力分别为N1、N2、N3,则(A)N1=N2=N3 (B)N1<N2<N3 (C)N1>N2>N3解:楔形物体和小物体组成的系统受到的外力是: 水面地面对楔形物体的支持力,地球对楔形物体和小物体的重力, 以及水平地面施加于楔形物体的沿着接触面的静摩擦力.小物体匀加速下滑时,加速度沿斜面向下, 将加速度向水平方向和竖直方向分解时,竖直方向的分加速度是向下的. 根据质点组牛顿第二定律,竖直方向的作用力的合力向下,所以支持力N 1小于两者的重力之和.小物体匀速下滑时,加速度为零.支持力N 2等于两者的重力之和.小物体减速下滑时,加速度沿斜面向上, 将加速度沿水平方向和竖直方向分解时,竖直方向的分加速度向上. 根据质点组牛顿第二定律,竖直方向作用力的合力向上,支持力N 3大于两者的重力之和.本题选(B).例题13 如图3-15,光滑水平面上有一块木板,质量为M=4Kg, 长为L=1.4m.木板右端放着一个小滑块,小滑块质量为m=1Kg, 尺寸远小于L,与木板之间的动摩擦因数为μ=0.4.原来它们都静止,现在大小为F=28N的水平力向右拉木板,使滑块从木板左端掉下, 此力作用时间至少为多长?解:根据题意,水平力作用一段时间后,滑块会从左端掉下. 这暗示我们,水平力开始作用期间,木板向右的加速度较大,速度较大, 滑块向右的加速度较小,速度较小.在滑块尚未滑到木板左端时,如水平力停止作用,那么在一段时间内,木板向右的速度仍大于滑块,那么此后经一段时间滑块有可能从左端掉下,那时, 木板向右的速度应大于等于木板向右的速度.由此可知,水平力作用适当的一段时间t1后, 木板向右的速度比滑块向右的速度大,大适当的数值,然后撤去水平力,当两者的速度正好相等时,滑块从木板左端掉下.t 1就是水平力作用的最短时间.向右的水平力F开始作用后,木板除受到这个力外,还受到向左的滑块施加的滑动摩擦力f=μmg=4N木板的加速度向右,大小为(F-f)/M=6m/s2滑块受到向右的滑动摩擦力,加速度向右,大小为f/m=4m/s2经时间t1时,撤去水平力F.此后滑块的加速度仍向右,大小仍为f/m=4m/s2.木板在向左的滑动摩擦力作用下,加速度向左,大小为f/M=1m/s2木板相对于滑块始终向右运动,滑块相对于木板始终向左运动.下面以木板为参照物,考察滑块在木板上的运动(图3-16). 滑块第一阶段作初速度为零的匀加速运动,末速度的大小记为v,第二阶段作匀减速运动,末速度为零.第一阶段,加速度的大小为a1=6-4=2m/s第二阶段,加速度的大小为a2=4+1=5m/s2根据匀变速直线运动公式,有v=a1t1即 v=2t1 (1)v=a2t2=5t2即 v=5t2 (2)L=(v/2)(t1+t2) 即 2.8=v(t1+t2) (3)由(1)(2(3)得 t1=1s使滑块从木板左端掉下,水平力F作用时间至少为1s.例题14 如图3-17所示,A、B两个光滑的梯形木块质量均为m, 紧挨着并排放在光滑水平面上.倾角θ=60°.欲使A、B在水平推力F 作用下,一起加速运动(两者无相对滑动),F不能超过多少?。
(word完整版)高一物理力学分析习题及答案.docx
受力分析1如图2-1-7所示,甲、乙球通过弹簧连接后用绳悬挂于天花板,丙、丁球通过细绳连接后也用绳悬挂天花板.若都在A 处剪断细绳,在剪 断瞬间,关于球的受力情况,下面说法中正确的是()A. 甲球只受重力作用B. 乙球只受重力作用C. 丙球受重力和绳的拉力作用D. 丁球只受重力作用 分析:当在A 处剪断时两球看作一个整体,整体加速度为g,此时弹簧中的力不变, 对AB 球都会有力的作用故A B 错,绳在松弛状态不能提供力,假设绳中有拉力,则丁的加速度会大于g 而丙的加速度会小于g,则两球会相互靠近,绳则松弛,假 设不成立,故绳中无拉力・如图 所示,物体a 、b 和c 径放在水平•臬血上,水平力Fb、Fc2 2-2-8=5N=10N分别作用于物体b 、c 上,a 、b 和c 仍保持静止.以Fl 、F2、F3分别表示a 与b 、 b 与c 、c 与桌面间的静摩擦力的大小,则( )A Fl . F2 • F3 --------A- =5N =0 =5N一起向右作匀速直线运动,下列判断正确的是(A. B. C. D. 高一物理力学D. =0 =10N =5N 2-2-8分析:(分析方法从简单到复杂)因为a 、b 、c 均保持静止,故加速度,合外力都 为0。
先分析a 只受b 对a 的支持力,以及重力故Fl=0,再分析b, b 受到重力、 a 对b 的压力、c 对b 的支持力、Fb 、以及c 对b 的摩擦力,c 对b 的摩擦力为水 平方向,故需水平方向的力来平衡,故F2=Fb=5,方向向右。
同理在对c 分析3如图2-2-1所示, A 、B 两物体叠放在水平面上, 水平力F 作用在A 上,使两者A 、B 间无摩擦力A 对B 的静摩擦力大小为F,方向向右B 对地面的动摩擦力的大小为F,方向向右B 受到了向右的静摩擦力和向左的滑动摩擦力甲 丙图 2-1-7B. Fi=5N, F2 =5N, F?=0 4 b分析:两者一起向右作匀速直线运动,则加速度都为0,处于平衡状态。
(完整版)高一物理牛顿第二定律典型例题答案及讲解
高一物理牛顿第二定律典型例题讲解与错误分析【例1】在光滑水平面上的木块受到一个方向不变,大小从某一数值逐渐变小的外力作用时,木块将作将作 [ ] [ ]A .匀减速运动.匀减速运动B .匀加速运动.匀加速运动C .速度逐渐减小的变加速运动.速度逐渐减小的变加速运动D .速度逐渐增大的变加速运动.速度逐渐增大的变加速运动【分析】 木块受到外力作用必有加速度,已知外力方向不变,数值变小,根据牛顿第二定律可知,木块加速度的方向不变,大小在逐渐变小,也就是木块每秒增加的速度在减少,由于加速度方向与速度方向一致,木块的速度大小仍在不断增加,即木块作的是加速度逐渐减小速度逐渐增大的变加速运动.的变加速运动. 【答】 D .【例2】 一个质量m=2kg 的木块,放在光滑水平桌面上,受到三个大小均为F=10N F=10N、与桌面平、与桌面平行、互成120120°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多°角的拉力作用,则物体的加速度多大?若把其中一个力反向,物体的加速度又为多少?少?【分析】 物体的加速度由它所受的合外力决定.放在水平桌面上的木块共受到五个力作用:竖直方向的重力和桌面弹力,水平方向的三个拉力.由于木块在竖直方向处于力平衡状态,因此,只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.只需由水平拉力算出合外力即可由牛顿第二定律得到加速度.(1)由于同一平面内、大小相等、互成120120°角的三个力的合力等于零,所以木块的加速度°角的三个力的合力等于零,所以木块的加速度a=0a=0..(2)物体受到三个力作用平衡时,其中任何两个力的合力必与第三个力等值反向.如果把某一个力反向,则木块所受的合力F 合=2F=20N =2F=20N,所以其加速度为:,所以其加速度为:,所以其加速度为:它的方向与反向后的这个力方向相同.它的方向与反向后的这个力方向相同.【例3】 沿光滑斜面下滑的物体受到的力是沿光滑斜面下滑的物体受到的力是 [ ] [ ] A .力和斜面支持力.力和斜面支持力B .重力、下滑力和斜面支持力.重力、下滑力和斜面支持力C .重力、正压力和斜面支持力.重力、正压力和斜面支持力D .重力、正压力、下滑力和斜面支持力.重力、正压力、下滑力和斜面支持力【误解一】选(选(B B )。
高中物理力学专题经典练习题(附答案)
高中物理力学专题经典练习题(附答案)以下是一些经典的高中物理力学专题练题,每个问题都附有详细的答案。
这些练题覆盖了力学中的不同概念和应用,旨在帮助你巩固你的物理研究。
请仔细阅读每个问题,并尝试独立解答。
如果你遇到困难,可以参考答案来帮助你理解解题思路和方法。
1. 力与运动题目:一个小球以4 m/s的速度以水平方向投出,落地的时间为2 s。
求小球的水平位移以及竖直位移。
答案:小球的水平位移为8 m,竖直位移为-19.6 m。
2. 动能与功题目:一辆质量为1000 kg的汽车以10 m/s的速度行驶,求汽车的动能。
如果汽车行驶的过程中受到总共2000 N的摩擦力,求摩擦力所做的功。
答案:汽车的动能为 J,摩擦力所做的功为 J。
3. 万有引力题目:太阳的质量约为2 × 10^30 kg,地球的质量约为6 × 10^24 kg,太阳与地球之间的距离约为1.5 × 10^11 m。
求地球受到的太阳引力大小。
答案:地球受到的太阳引力大小约为3.53 × 10^22 N。
4. 动量守恒题目:一个质量为2 kg的小球以5 m/s的速度水平碰撞到一个静止的质量为3 kg的小球,碰撞后两个小球分别以2 m/s和4 m/s的速度分别向左和向右运动。
求碰撞前后两个小球的总动量是否守恒。
答案:碰撞前后两个小球的总动量守恒。
以上是一部分高中物理力学专题的经典练习题及答案。
希望通过这些练习题的练习,你能更好地理解与掌握物理力学的基本概念和应用。
保持坚持和刻苦学习的态度,相信你能取得优秀的成绩!。
(完整版)高中物理力学经典的题(含答案),推荐文档
(1我)试去推导人由也上述就各量有表人达的!第一为宇U宙R速扼度的腕计入算式站,要内求信写出不推导存依在据.向你偶同意调剖沙
(2)若已知第一宇宙速度的大小为v=7.9km/s,地球半径R=6.4×103km,万有引力
建议收藏下载本文图 1-,77 以便随时学习!
(1)小球做匀速圆周运动的线速度大小. (2)小球在运动过程中所受到的摩擦阻力的大小. 15.如图 1-78 所示,长为L=0.50m的木板AB静止、g的小木块C(可视为质点),现有一质量为m=20g的子弹以 v0=75m/s的速度射向小木块C并留在小木块中.已知小木块C与木板AB之间的动摩擦因 数为 μ=0.1.(g取 10m/s2)
图 1-76 14.如图 1-77 所示,一条不可伸长的轻绳长为L,一端用手握住,另一端系一质量为m的小球, 今使手握的一端在水平桌面上做半径为R、角速度为 ω 的匀速圆周运动,且使绳始终与半径R的 圆相切,小球也将在同一水平面内做匀速圆周运动,若人手做功的功率为P,求:
我去人也就有人!为UR扼腕入站内信不存在向你偶同意调剖沙
高中物理力学计算题汇总经典 精解(49 题)
1.如图 1-73 所示,质量M=10kg的木楔ABC静止置于粗糙水平地面上,摩擦因素
建议收藏下载本文,以便随时学习! μ=0.02.在木楔的倾角 θ 为 30°的斜面上,有一质量m=1.0kg的物块由静止开始沿斜面
下滑.当滑行路程s=1.4m时,其速度v=1.4m/s.在这过程中木楔没有动.求地面对木 楔的摩擦力的大小和方向.(重力加速度取g=10/m·s2)
数k=400N/m.现给物块A施加一个平行于斜面向上的力F,使物块A沿斜面向上做匀加速 运动,已知力F在前 0.2s内为变力,0.2s后为恒力,求(g取 10m/s2)
高一必修一物理经典力学典型例题(有问题详解,含解析汇报)
高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。
一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。
物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。
(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。
2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。
那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。
观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。
取g=10 m/s2。
试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。
高一必修一物理经典力学典型例题(有答案,含解析)
高一必修一物理经典力学典型例题1.倾角θ=37°的斜面底端与水平传送带平滑接触,传送带BC长L=6 m,始终以v0=6m/s的速度顺时针运动。
一个质量m=1 kg的物块从距斜面底端高度h1=5.4m的A点由静止滑下,物块通过B点时速度的大小不变。
物块与斜面、物块与传送带间动摩擦因数分别为μ1=0.5、μ2=0.2,传送带上表面在距地面一定高度处,g取10m/s2。
(sin37°=0.6,cos37°=0.8)(1)求物块由A点运动到C点的时间;(2)求物块距斜面底端高度满足什么条件时,将物块静止释放均落到地面上的同一点D。
2.如图,倾斜的传送带向下匀加速运转,传送带与其上的物体保持相对静止。
那么关于传送带与物体间静摩擦力的方向,以下判断正确的是A.物体所受摩擦力为零B.物体所受摩擦力方向沿传送带向上C.物体所受摩擦力方向沿传送带向下D.上述三种情况都有可能出现3.(2018·江西师大附中)如图是工厂流水生产线包装线示意图,质量均为m=2.5 kg、长度均为l=0.36 m的产品在光滑水平工作台AB上紧靠在一起排列成直线(不粘连),以v0=0.6 m/s 的速度向水平传送带运动,设当每个产品有一半长度滑上传送带时,该产品即刻受到恒定摩擦力F f=μmg而做匀加速运动,当产品与传送带间没有相对滑动时,相邻产品首尾间距离保持2l(如图)被依次送入自动包装机C进行包装。
观察到前一个产品速度达到传送带速度时,下一个产品刚好有一半滑上传送带而开始做匀加速运动。
取g=10 m/s2。
试求:(1)传送带的运行速度v;(2)产品与传送带间的动摩擦因数μ:(3)满载工作时与空载时相比,传送带驱动电动机增加的功率∆P;(4)为提高工作效率,工作人员把传送带速度调成v'=2.4 m/s,已知产品送入自动包装机前已匀速运动,求第(3)问中的∆P′?第(3)问中在相当长时间内的等效∆P′′?4.如图所示,传送带AB段是水平的,长20 m,传送带上各点相对地面的速度大小是2 m/s,某物块与传送带间的动摩擦因数为0.1。
2023年高一物理力学练习题及答案
2023年高一物理力学练习题及答案第一题:在一个斜面上,有一个质量为3kg的物体A,斜面的倾角为30°,摩擦系数为0.2。
物体A沿斜面向下滑动,加速度大小为2m/s²,方向与斜面相同。
求物体A受到的摩擦力的大小。
解答:物体在斜面上受到的重力可分解为两个分力,分别为物体A 沿斜面方向的分力和垂直于斜面方向的分力。
设物体A受到的摩擦力的大小为F,物体A沿斜面方向的分力为mgsinθ,垂直于斜面方向的分力为mgcosθ,其中m为物体A的质量,g为重力加速度,θ为斜面的倾角。
根据牛顿第二定律得:mgsinθ - μmgcosθ = ma代入已知数据:3 * 9.8 * sin30° - 0.2 * 3 * 9.8 * cos30° = 3 * 2解得摩擦力的大小为10N。
第二题:一个质量为2kg的物体B,以10m/s的速度沿水平方向运动。
物体B受到一个10N的水平恒力和一个3N的竖直向下的恒力。
求物体B的加速度大小及方向。
解答:物体B所受合外力的大小为10N,方向水平向右;另一个合外力的大小为3N,方向竖直向下。
根据牛顿第二定律得:F_net = ma合外力为10N和3N的矢量和,即√(10²+ 3²) ≈ 10.44N,所以物体B 所受的合外力大小为10.44N。
所以,10.44N = 2kg * a解得加速度的大小为5.22m/s²。
由于合外力的方向为水平向右和竖直向下,故加速度的方向与水平向右和竖直向下的夹角为45°。
第三题:一辆质量为800kg的汽车在水平路面上以30m/s的速度行驶,司机踩下刹车,车辆经过15m后停下。
求汽车受到的制动力大小。
解答:汽车受到的制动力大小表示为F,汽车的初速度为30m/s,最终速度为0m/s,所行路程为15m。
根据运动学公式:v² = u² + 2as其中,v为最终速度,u为初速度,a为加速度,s为路程。
高一物理力学分析习题及答案精选文档
高一物理力学分析习题及答案精选文档TTMS system office room 【TTMS16H-TTMS2A-TTMS8Q8-高一物理力学受力分析1如图2-1-7所示,甲、乙球通过弹簧连接后用绳悬挂于天花板,丙、丁球通过细绳连接后也用绳悬挂天花板.若都在A处剪断细绳,在剪断瞬间,关于球的受力情况,下面说法中正确的是()A.甲球只受重力作用B.乙球只受重力作用C.丙球受重力和绳的拉力作用D.丁球只受重力作用分析:当在A处剪断时两球看作一个整体,整体加速度为g,此时弹簧中的力不变,对A B球都会有力的作用故A B错,绳在松弛状态不能提供力,假设绳中有拉力,则丁的加速度会大于g而丙的加速度会小于g,则两球会相互靠近,绳则松弛,假设不成立,故绳中无拉力2.如图2-2-8所示,物体a 、b 和c 叠放在水平桌面上,水平力F b =5N 、F c =10N 分别作用于物体b 、c 上,a 、b 和cF 3分别表示a 与b 、b 与c 、cA .F 1=5N ,F 2=0,F 3=5NB .F 1=5N ,F 2=5N ,F 3=0C .F 1=0,F 2=5N ,F 3=5ND .F 1=0,F 2=10N ,F 3=5N分析:(分析方法从简单到复杂)因为a 、b 、c 均保持静止,故加速度,合外力都为0。
先分析a 只受b 对a 的支持力,以及重力故F1=0,再分析b ,b 受到重力、a 对b 的压力、c 对b 的支持力、Fb 、以及c 对b 的摩擦力,c 对b 的摩擦力为水平方向,故需水平方向的力来平衡,故F2=Fb=5,方向向右。
同理在对c 分析3如图2-2-1所示,A 、B 两物体叠放在水平面上,水平力F 作用在A 上,使两者一起向右作匀速直线运动,下列判断正确的是( )A .A 、B 间无摩擦力B .A 对B 的静摩擦力大小为F ,方向向右C .B 对地面的动摩擦力的大小为F ,方向向右图2-2-1甲 乙D .B 受到了向右的静摩擦力和向左的滑动摩擦力分析:两者一起向右作匀速直线运动,则加速度都为0,处于平衡状态。
高中物理 必修一【重力 弹力 摩擦力】典型题(带解析)
高中物理【重力 弹力 摩擦力】典型题1.如图所示,小车内一根轻质弹簧沿竖直方向和一条与竖直方向成α角的细绳拴接一小球.当小车和小球相对静止,一起在水平面上运动时,下列说法正确的是( )A .细绳一定对小球有拉力的作用B .轻弹簧一定对小球有弹力的作用C .细绳不一定对小球有拉力的作用,但是轻弹簧对小球一定有弹力D .细绳不一定对小球有拉力的作用,轻弹簧对小球也不一定有弹力解析:选D .若小球与小车一起做匀速运动,则细绳对小球无拉力;若小球与小车有向右的加速度a =g tan α,则轻弹簧对小球无弹力,D 正确.2.一轻质弹簧原长为8 cm ,在4 N 的拉力作用下伸长了2 cm ,弹簧未超出弹性限度.则该弹簧的劲度系数为( )A .40 m/NB .40 N/mC .200 m/ND .200 N/m解析:选D .由F =kx 知,弹簧的劲度系数k =F x =40.02N/m =200 N/m ,选项D 正确. 3.在日常生活及各项体育运动中,有弹力出现的情况比较普遍,如图所示的情况就是一个实例.当运动员踩压跳板使跳板弯曲到最低点时,下列说法正确的是( )A .跳板发生形变,运动员的脚没有发生形变B .运动员受到的支持力,是运动员的脚发生形变而产生的C .此时跳板对运动员的支持力和运动员的重力等大D .此时跳板对运动员的支持力大于运动员的重力解析:选D .发生相互作用的物体均要发生形变,故A 错误;发生形变的物体,为了恢复原状,会对与它接触的物体产生弹力的作用,B 错误;在最低点,运动员虽然处于瞬间静止状态,但接着运动员要加速上升,故此时跳板对运动员的支持力大于运动员的重力,C错误,D 正确.4.如图所示为武警战士用头将四块砖顶在墙上苦练头功的照片.假设每块砖的质量均为m ,砖与墙面、砖与头间的动摩擦因数均为μ,最大静摩擦力等于滑动摩擦力.要使砖恰好静止不动,则武警战士的头对砖施加的水平力为( )A .mg μB .2mg μC .3mg μD .4mg μ 解析:选B .以四块砖为研究对象,进行受力分析.砖恰好静止不动,则砖所受到的摩擦力刚好与其重力相等,即f 1+f 2=4mg ,又f 1=f 2=μF ,联立两式可得F =2mg μ,即武警战士施加的水平力为F =2mg μ,选项B 正确. 5.如图,一物块在水平拉力F 的作用下沿水平桌面做匀速直线运动.若保持F 的大小不变,而方向与水平面成60°角,物块也恰好做匀速直线运动.物块与桌面间的动摩擦因数为( )A .2- 3B .36C .33D .32解析:选C .当拉力水平时,物块做匀速运动,则F =μmg ,当拉力方向与水平方向的夹角为60°时,物块也刚好做匀速运动,则F cos 60°=μ(mg -F sin 60°),联立解得μ=33,A 、B 、D 项错误,C 项正确.6.如图所示,两木块的质量分别为m 1和m 2,两轻质弹簧的劲度系数分别为k 1和k 2,上面木块压在上面的弹簧上(但不拴接),整个系统处于平衡状态.现缓慢向上提上面的木块,直到它刚离开上面弹簧,在此过程中下面木块移动的距离为( )A .m 1g k 1B .m 2g k 1C .m 1g k 2D .m 2g k 2 解析:选C .在此过程中,压在下面弹簧上的压力由(m 1+m 2)g 减小到m 2g ,即减少了m 1g ,根据胡克定律可断定下面弹簧的长度增长了Δl =m 1g k 2,即下面木块移动的距离为m 1g k 2,选项C 正确.7.如图所示,有8个完全相同的长方体木板叠放在一起,每个木板的质量为100 g ,某人用手在这叠木板的两侧加一水平压力F ,使木板水平静止.若手与木板之间的动摩擦因数为μ1=0.5,木板与木板之间的动摩擦因数为μ2=0.2,最大静摩擦力等于滑动摩擦力,g 取10 m/s 2.则水平压力F 至少为( )A .8 NB .15 NC .16 ND .30 N解析:选B .先将所有的木板当成整体,受力分析,竖直方向受重力和静摩擦力,则二力平衡有2μ1F ≥8mg ;再对除两外侧木板剩余木板受力分析,竖直方向受重力和静摩擦力,由二力平衡有2μ2F ≥6mg ;联立解得F ≥15 N ;故B 正确,A 、C 、D 错误.8.(多选)轻杆的一端安装有一个小滑轮P ,用手握住杆的另一端支撑着悬挂重物的轻绳,如图所示.现使杆和竖直方向的夹角缓慢减小,则杆对滑轮P 的作用力( )A .大小变大B .大小不变C .方向发生变化,但始终沿杆方向D .方向始终在P 两侧轻绳的夹角的角平分线上,不一定沿杆解析:选BD .滑轮P 受到两侧轻绳的拉力和杆的作用力,其中两侧轻绳的拉力大小相等,且等于重物的重力,使杆和竖直方向的夹角缓慢减小时,两拉力的方向不变,则其合力也不变,方向始终在P 两侧轻绳夹角的角平分线上,因滑轮P 受力平衡,故杆对滑轮P 的作用力大小不变,方向始终在P 两侧轻绳夹角的角平分线上,不一定沿杆,选项B 、D 正确.9.如图所示,质量为m 的木块P 在质量为M 的长木板ab 上滑行,长木板ab 在地面上一直处于静止状态.若长木板ab 与地面间的动摩擦因数为μ1,木块P 与长木板ab 间的动摩擦因数为μ2,则长木板ab 受到地面的摩擦力大小为( )A .μ1MgB .μ1(m +M )gC .μ2mgD .μ1Mg +μ2mg解析:选C .木块P 对长木板ab 的滑动摩擦力大小为F =μ2mg ,长木板ab 始终静止,则地面对长木板ab 的静摩擦力大小为F ′=F =μ2mg ,故选项C 正确.10.如图所示,在竖直平面内固定一直杆,将轻环套在杆上.不计质量的滑轮用轻质绳OP 悬挂在天花板上,另一轻绳通过滑轮系在轻环上,不计所有摩擦.现向左缓慢拉绳,当环静止时,与手相连的绳子水平,若杆与地面间夹角为θ,则绳OP 与天花板之间的夹角为( )A .π2B .θC .π4+θ2D .π4-θ2解析:选C .当轻环静止不动时,PQ 绳对轻环的拉力与杆对轻环的弹力等大、反向、共线,所以PQ 绳垂直于杆,由几何关系可知,绳PQ 与竖直方向之间的夹角是θ;对滑轮进行受力分析如图,由于滑轮的质量不计,则OP 绳对滑轮的拉力与两个绳子上拉力的合力大小相等、方向相反,所以OP 绳的方向一定在两根绳子之间的夹角的角平分线上,由几何关系得OP 绳与天花板之间的夹角α=12β=12⎝⎛⎭⎫π2+θ=π4+θ2,C 正确.11.一根轻质弹性绳的两端分别固定在水平天花板上相距80 cm 的两点上,弹性绳的原长也为80 cm.将一钩码挂在弹性绳的中点,平衡时弹性绳的总长度为100 cm ;再将弹性绳的两端缓慢移至天花板上的同一点,则弹性绳的总长度变为(弹性绳的伸长始终处于弹性限度内)( )A .86 cmB .92 cmC .98 cmD .104 cm解析:选B .将钩码挂在弹性绳的中点时,由数学知识可知钩码两侧的弹性绳(劲度系数设为k )与竖直方向夹角θ均满足sin θ=45,对钩码(设其重力为G )静止时受力分析,得G =2k ⎝⎛⎭⎫1 m 2-0.8 m 2cos θ;弹性绳的两端移至天花板上的同一点时,对钩码受力分析,得G =2k ⎝⎛⎭⎫L 2-0.8 m 2,联立解得L =92 cm ,可知A 、C 、D 项错误,B 项正确.12.(多选)如图所示,将两相同的木块a 、b 置于粗糙的水平地面上,中间用一轻弹簧连接,两侧用细绳系于墙壁.开始时a 、b 均静止,弹簧处于伸长状态,两细绳均有拉力,a 所受摩擦力F f a ≠0,b 所受摩擦力F f b =0.现将右侧细绳剪断,则剪断瞬间( )A .F f a 大小不变B .F f a 方向改变C .F f b 仍然为零D .F f b 方向向右解析:选AD .剪断右侧绳的瞬间,右侧绳上拉力突变为零,而弹簧对两木块的拉力没有发生突变,与原来一样,所以b 相对地面有向左的运动趋势,受到静摩擦力F f b 方向向右,C 错误、D 正确;剪断右侧绳的瞬间,木块a 受到的各力都没有发生变化,A 正确,B 错误.13.(多选)在探究静摩擦力变化规律及滑动摩擦力变化规律的实验中,设计了如图甲所示的演示装置,力传感器A 与计算机连接,可获得力随时间变化的规律,将力传感器固定在光滑水平桌面上,测力端通过细绳与一滑块相连(调节力传感器高度可使细绳水平),滑块放在较长的小车上,小车一端连接一根轻绳并跨过光滑的轻质定滑轮系一只空沙桶(调节滑轮可使桌面上部轻绳水平),整个装置处于静止状态.实验开始时打开力传感器同时缓慢向沙桶里倒入沙子,小车一旦运动起来,立即停止倒沙子,若力传感器采集的图象如图乙,则结合该图象,下列说法正确的是( )A.可求出空沙桶的重力B.可求出滑块与小车之间的滑动摩擦力的大小C.可求出滑块与小车之间的最大静摩擦力的大小D.可判断第50 s后小车做匀速直线运动(滑块仍在车上)解析:选ABC.t=0时刻,力传感器显示拉力为2 N,则滑块受到的摩擦力为静摩擦力,大小为2 N,由小车与空沙桶受力平衡可知空沙桶的重力也等于2 N,A选项正确;t =50 s时刻摩擦力达到最大值,即最大静摩擦力为3.5 N,同时小车启动,说明带有沙子的沙桶重力等于3.5 N,此时摩擦力立即变为滑动摩擦力,故摩擦力突变为3 N的滑动摩擦力,B、C选项正确;此后由于沙子和沙桶重力3.5 N大于滑动摩擦力3 N,故50 s后小车将做匀加速运动,D选项错误.14.(多选)如图所示,水平地面粗糙,A、B两同学站在地上水平推墙.甲图中A向前推B,B向前推墙;乙图中A、B同时向前推墙.每人用力的大小都为F,方向水平.则下列说法中正确的是()A.甲图方式中墙受到的推力为2FB.乙图方式中墙受到的推力为2FC.甲图方式中两位同学受到地面的摩擦力大小都为FD.乙图方式中两位同学受到地面的摩擦力大小都为F解析:选BD.对于乙图,墙壁在水平方向所受到人的作用力如图(a)所示(俯视图),此时墙壁所受到的推力为F合=2F.根据力的平衡可知A、B两人受到的静摩擦力均为F f=F.故B、D正确.对于甲图,先以墙壁为研究对象,此时墙壁所受到的推力只有B对它的推力F,如图(b)所示.然后再以B为研究对象,B同学的受力情况如图(c)所示,B受到A的推力F和墙壁的反作用力F1′,由于F=F1′,所以此时B在水平方向不受摩擦力的作用.再以A为研究对象,A同学的受力情况如图(d)所示,根据牛顿第三定律可知由于A对B的作用力为F,所以B对A的反作用力F2′=F,根据力的平衡可知A所受地面的摩擦力F f=F,故A、C错误.。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
高中物理力学典型例题1、如图1—1所示,长为5米的细绳的两端分别系于竖立在地面上相距为4米的两杆顶端A、B。
绳上挂一个光滑的轻质挂钩。
它钩着一个重为12牛的物体.平衡时,绳中张力T=____分析与解:本题为三力平衡问题。
其基本思路为:选对象、分析力、画力图、列方程。
对平衡问题,根据题目所给条件,往往可采用不同的方法,如正交分解法、相似三角形等。
所以,本题有多种解法。
解法一:选挂钩为研究对象,其受力如图1-2所示,设细绳与水平夹角为α,由平衡条件可知:2TSinα=F,其中F=12牛,将绳延长,由图中几何条件得:Sinα=3/5,则代入上式可得T=10牛。
解法二:挂钩受三个力,由平衡条件可知:两个拉力(大小相等均为T)的合力F’与F大小相等方向相反。
以两个拉力为邻边所作的平行四边形为菱形.如图1-2所示,其中力的三角形△OEG与△ADC相似,则:得:牛.想一想:若将右端绳A 沿杆适当下移些,细绳上张力是否变化?(提示:挂钩在细绳上移到一个新位置,挂钩两边细绳与水平方向夹角仍相等,细绳的张力仍不变。
)2、如图2—1所示,轻质长绳水平地跨在相距为2L的两个小定滑轮A、B 上,质量为m的物块悬挂在绳上O点,O与A、B两滑轮的距离相等.在轻绳两端C、D分别施加竖直向下的恒力F=mg。
先托住物块,使绳处于水平拉直状态,由静止释放物块,在物块下落过程中,保持C、D两端的拉力F不变.(1)当物块下落距离h为多大时,物块的加速度为零?(2)在物块下落上述距离的过程中,克服C端恒力F做功W为多少?(3)求物块下落过程中的最大速度Vm和最大距离H?分析与解:物块向下先作加速运动,随着物块的下落,两绳间的夹角逐渐减小。
因为绳子对物块的拉力大小不变,恒等于F,所以随着两绳间的夹角减小,两绳对物块拉力的合力将逐渐增大,物块所受合力逐渐减小,向下加速度逐渐减小.当物块的合外力为零时,速度达到最大值。
之后,因为两绳间夹角继续减小,物块所受合外力竖直向上,且逐渐增大,物块将作加速度逐渐增大的减速运动。
当物块下降速度减为零时,物块竖直下落的距离达到最大值H.当物块的加速度为零时,由共点力平衡条件可求出相应的θ角,再由θ角求出相应的距离h,进而求出克服C端恒力F所做的功。
对物块运用动能定理可求出物块下落过程中的最大速度Vm和最大距离H.(1)当物块所受的合外力为零时,加速度为零,此时物块下降距离为h。
因为F恒等于mg,所以绳对物块拉力大小恒为mg,由平衡条件知:2θ=120°,所以θ=60°,由图2-2知:h=L*tg30°=L [1](2)当物块下落h时,绳的C、D端均上升h’,由几何关系可得:h’=—L [2]克服C端恒力F做的功为:W=F*h’[3]由[1]、[2]、[3]式联立解得:W=(—1)mgL(3)出物块下落过程中,共有三个力对物块做功。
重力做正功,两端绳子对物块的拉力做负功。
两端绳子拉力做的功就等于作用在C、D端的恒力F所做的功。
因为物块下降距离h时动能最大.由动能定理得:mgh-2W=[4]将[1]、[2]、[3]式代入[4]式解得:Vm=当物块速度减小为零时,物块下落距离达到最大值H,绳C、D上升的距离为H'。
由动能定理得:mgH-2mgH’=0,又H'=—L,联立解得:H=。
3、如图3—1所示的传送皮带,其水平部分 ab=2米,bc=4米,bc与水平面的夹角α=37°,一小物体A与传送皮带的滑动摩擦系数μ=0。
25,皮带沿图示方向运动,速率为2米/秒.若把物体A轻轻放到a点处,它将被皮带送到c点,且物体A一直没有脱离皮带。
求物体A从a点被传送到c点所用的时间。
分析与解:物体A轻放到a点处,它对传送带的相对运动向后,传送带对A的滑动摩擦力向前,则 A 作初速为零的匀加速运动直到与传送带速度相同。
设此段时间为t1,则:a1=μg=0。
25x10=2.5米/秒2 t=v/a1=2/2.5=0.8秒设A匀加速运动时间内位移为S1,则:设物体A在水平传送带上作匀速运动时间为t2,则设物体A在bc段运动时间为t3,加速度为α2,则:α2=g*Sin37°-μgCos37°=10x0.6-0.25x10x0。
8=4米/秒2解得:t3=1秒(t3=-2秒舍去)所以物体A从a点被传送到c点所用的时间t=t1+t2+t3=0.8+0.6+1=2.4秒。
4、如图4—1所示,传送带与地面倾角θ=37°,AB长为16米,传送带以10米/秒的速度匀速运动。
在传送带上端A无初速地释放一个质量为0。
5千克的物体,它与传送带之间的动摩擦系数为μ=0。
5,求:(1)物体从A运动到B所需时间,(2)物体从A 运动到B 的过程中,摩擦力对物体所做的功(g=10米/秒2)分析与解:(1)当物体下滑速度小于传送带时,物体的加速度为α1,(此时滑动摩擦力沿斜面向下)则:t1=v/α1=10/10=1米当物体下滑速度大于传送带V=10米/秒时,物体的加速度为α2(此时f沿斜面向上)则:即:10t2+t22=11 解得:t2=1秒(t2=-11秒舍去)所以,t=t1+t2=1+1=2秒(2)W1=fs1=μmgcosθS1=0。
5X0。
5X10X0.8X5=10焦W2=-fs2=—μmgcosθS2=-0.5X0.5X10X0。
8X11=-22焦所以,W=W1+W2=10-22=-12焦。
想一想:如图4-1所示,传送带不动时,物体由皮带顶端A从静止开始下滑到皮带底端B用的时间为t,则:(请选择)A。
当皮带向上运动时,物块由A滑到B的时间一定大于t。
B。
当皮带向上运动时,物块由A滑到B的时间一定等于t。
C。
当皮带向下运动时,物块由A滑到B的时间可能等于t。
D。
当皮带向下运动时,物块由A滑到B的时间可能小于t。
(B、C、D)5、如图5—1所示,长L=75cm的静止直筒中有一不计大小的小球,筒与球的总质量为4千克,现对筒施加一竖直向下、大小为21牛的恒力,使筒竖直向下运动,经t=0.5秒时间,小球恰好跃出筒口。
求:小球的质量。
(取g=10m/s2)分析与解:筒受到竖直向下的力作用后做竖直向下的匀加速运动,且加速度大于重力加速度。
而小球则是在筒内做自由落体运动。
小球跃出筒口时,筒的位移比小球的位移多一个筒的长度。
设筒与小球的总质量为M,小球的质量为m,筒在重力及恒力的共同作用下竖直向下做初速为零的匀加速运动,设加速度为a;小球做自由落体运动。
设在时间t内,筒与小球的位移分别为h1、h2(球可视为质点)如图5—2所示。
由运动学公式得:又有:L=h1-h2代入数据解得:a=16米/秒2又因为筒受到重力(M—m)g和向下作用力F,据牛顿第二定律:F+(M-m)g=(M-m)a 得:6、如图6—1所示,A、B两物体的质量分别是m1和m2,其接触面光滑,与水平面的夹角为θ,若A、B与水平地面的动摩擦系数都是μ,用水平力F推A,使A、B一起加速运动,求:(1)A、B间的相互作用力 (2)为维持A、B间不发生相对滑动,力F的取值范围。
分析与解:A在F的作用下,有沿A、B间斜面向上运动的趋势,据题意,为维持A、B间不发生相对滑动时,A处刚脱离水平面,即A不受到水平面的支持力,此时A与水平面间的摩擦力为零。
本题在求A、B间相互作用力N和B受到的摩擦力f2时,运用隔离法;而求A、B组成的系统的加速度时,运用整体法。
(1)对A受力分析如图6—2(a)所示,据题意有:N1=0,f1=0 因此有:Ncosθ=m1g [1] , F—Nsinθ=m1a [2]由[1]式得A、B间相互作用力为:N=m1g/cosθ(2)对B受力分析如图6-2(b)所示,则:N2=m2g+Nco sθ[3], f2=μN2[4]将[1]、[3]代入[4]式得: f2=μ(m1+ m2)g取A、B组成的系统,有:F—f2=(m1+ m2)a [5]由[1]、[2]、[5]式解得:F=m1g(m1+ m2)(tgθ—μ)/m2故A、B不发生相对滑动时F的取值范围为:0<F≤m1g(m1+ m2)(tgθ-μ)/m2想一想:当A、B与水平地面间光滑时,且又m1=m2=m时,则F的取值范围是多少?( 0<F≤2mgtgθ=。
7、某人造地球卫星的高度是地球半径的15倍。
试估算此卫星的线速度。
已知地球半径R=6400km,g=10m/s2.分析与解:人造地球卫星绕地球做圆周运动的向心力由地球对卫星的引力提供,设地球与卫星的质量分别为M、m,则:= [1]又根据近地卫星受到的引力可近似地认为等于其重力,即:mg=[2][1]、[2]两式消去GM解得:V===2。
0X103 m/s说明:n越大(即卫星越高),卫星的线速度越小。
若n=0,即近地卫星,则卫星的线速度为V0==7.9X103m/s,这就是第一宇宙速度,即环绕速度。
8、一内壁光滑的环形细圆管,位于竖直平面内,环的半径为R(比细管的内径大得多。
在圆管中有两个直径与细管内径相同的小球(可视为质点).A球的质量为m1,B球的质量为m2。
它们沿环形圆管顺时针运动,经过最低点时的速度都为V0.设A球运动到最低点时,B球恰好运动到最高点,若要此时两球作用于圆管的合力为零,那么m1、m2、R与V0应满足的关系式是。
分析与解:如图7—1所示,A球运动到最低点时速度为V0,A球受到向下重力mg和细管向上弹力N1的作用,其合力提供向心力。
那么,N1-m1g=m1[1]这时B球位于最高点,速度为V1,B球受向下重力m2g和细管弹力N2作用.球作用于细管的力是N1、N2的反作用力,要求两球作用于细管的合力为零,即要求N2与N1等值反向,N1=N2 [2],且N2方向一定向下,对B球:N2+m2g=m2[3]B球由最高点运动到最低点时速度为V0,此过程中机械能守恒:即m2V12+m2g2R=m2V02[4]由[1][2][3][4]式消去N1、N2和V1后得到m1、m2、R与V0满足的关系式是:(m1—m2)+(m1+5m2)g=0 [5]说明:(1)本题不要求出某一物理量,而是要求根据对两球运动的分析和受力的分析,在建立[1]-[4]式的基础上得到m1、m2、R与V0所满足的关系式[5]。
(2)由题意要求两球对圆管的合力为零知,N2一定与N1方向相反,这一点是列出[3]式的关键。
且由[5]式知两球质量关系m1<m2。
9、如图8-1所示,质量为m=0.4kg的滑块,在水平外力F作用下,在光滑水平面上从A点由静止开始向B 点运动,到达B点时外力F突然撤去,滑块随即冲上半径为 R=0。
4米的1/4光滑圆弧面小车,小车立即沿光滑水平面PQ运动。
设:开始时平面AB与圆弧CD相切,A、B、C三点在同一水平线上,令AB连线为X轴,且AB=d=0.64m,滑块在AB面上运动时,其动量随位移的变化关系为P=1。