最新人教版八年级数学上册《全等三角形》教学设计

合集下载

《12.2三角形全等的判定》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《12.2三角形全等的判定》教学设计教学反思-2023-2024学年初中数学人教版12八年级上册

《三角形全等的判定》教学设计方案(第一课时)一、教学目标本课旨在使学生掌握三角形全等的基本概念和判定方法。

通过学习,学生应能理解三角形全等的基本原理,并能够运用不同的判定定理(如SSS、SAS等)来判定两个三角形是否全等。

此外,培养学生观察、分析和解决问题的能力,并增强其空间想象能力。

二、教学重难点重点:掌握三角形全等的判定定理(如SSS、SAS等),并能正确运用这些定理进行判断。

难点:理解三角形全等的条件及其推理过程,以及在不同情境下灵活运用这些判定定理。

特别是对于复杂的图形分析,需要学生具备较高的空间想象能力和逻辑推理能力。

三、教学准备1. 教材与教具:准备初中数学教材、三角形模型、投影仪等教学工具。

2. 课件与视频:制作包含三角形全等概念、判定定理及实例分析的PPT课件,并准备相关教学视频,以辅助学生理解。

3. 练习题:准备一系列练习题,包括基础题和进阶题,帮助学生巩固所学知识。

通过通过练习题,学生可以更好地理解和掌握所学知识,并加深对知识点的记忆。

在练习题的设计中,基础题能够让学生对知识点有基本的认识和掌握,而进阶题则能够引导学生进一步深化理解和运用所学知识。

这样的设计不仅能够检验学生的掌握情况,还可以在发现学生的薄弱环节时及时进行调整,更好地进行个性化教学。

另外,除了让学生通过练习题来巩固所学知识,还可以采取其他教学方法,如讲解案例、讨论互动等方式来提高学生的理解能力。

这样能够使学生更好地掌握知识点,同时也能够激发学生的学习兴趣和积极性。

总之,通过准备一系列练习题并配合其他教学方法,学生可以更好地理解和掌握所学知识,提高学习效果。

同时,教师也能够更好地了解学生的学习情况,及时调整教学策略,为学生提供更加有效的学习支持。

这样的教学方法对于学生的学习成长具有重要的意义。

四、教学过程:一、课前导入本节课我们将继续探讨数学世界中神秘的几何关系——三角形全等的判定。

首先,我们要对上一节课的内容进行简短的回顾,然后通过一个有趣的几何问题来激发学生的好奇心和求知欲。

人教版八年级数学上册第十二章全等三角形单元教材分析教学设计

人教版八年级数学上册第十二章全等三角形单元教材分析教学设计
提示:可以从剪纸、建筑图案等方面寻找灵感,将生活与数学紧密结合。
3.小组合作,互相讨论以下问题:全等三角形在实际生活中的应用还有哪些?请举例说明。
提示:可以与组员一起探讨,将所学知识拓展到更多领域。
4.总结全等三角形判定方法的异同点,用自己的话简要概括,并尝试用这些方法解决一些综合性的几何问题。
提示:通过对比分析,找出各种判定方法之间的联系与区别,提高解决问题的能力。
4.掌握全等三角形的判定定理,并能运用这些定理证明几何问题。
(二)过程与方法
1.通过实际操作,让学生感受全等三角形在实际生活中的应用,培养学生学以致用的能力。
2.通过观察、猜想、验证等过程,培养学生发现问题、分析问题、解决问题的能力。
3.引导学生运用合作交流的学习方式,培养学生的团队协作能力和表达能力。
4.通过全等三角形的学习,让学生认识到几何图形的对称美、秩序美,培养学生的审美情趣。
本章节的教学设计将从以下几个方面展开:
1.引入:通过生活中的实例,如剪纸、建筑等,让学生感受全等三角形的应用,激发学生学习兴趣。
2.新课导入:以问题驱动的方式,引导学生观察、猜想、验证全等三角形的性质和判定方法。
3.知识讲解:详细讲解全等三角形的定义、性质、判定定理,并通过实例进行分析。
2.学生在规定时间内完成练习题,老师巡回指导,解答学生疑问。
3.学生互相批改练习,共同讨论解题方法,提高解题能力。
(五)总结归纳
1.老师引导学生回顾本节课所学内容,总结全等三角形的性质和判定方法。
师:“今天我们学习了全等三角形的定义、性质以及判定方法。请同学们说一说,全等三角形有哪些性质和判定方法?”
5.根据课堂学习,撰写一篇关于全等三角形的学习心得,内容可以包括:学习全等三角形的感受、遇到的困难与解决办法、对今后学习的期待等。

人教版八年级上册12.2直角三角形全等的判定教案

人教版八年级上册12.2直角三角形全等的判定教案
4.通过实际操作,加深对直角三角形全等判定的理解,提高动手操作能力。
二、核心素养目标
1.掌握直角三角形全等的判定方法,培养几何直观与逻辑推理能力;
2.通过实际问题的解决,提高数学抽象与模型构建的能力;
3.在探究直角三角形全等判定过程中,培养数据分析与数学运算的能力;
4.合作交流、探讨全等判定方法,提升学生沟通与合作的核心素养;
(二)新课讲授(用时10分钟)
1.理论介绍:首先,我们要了解直角三角形全等判定的基本概念。直角三角形全等是指两个直角三角形的对应边和角完全相同。这种判定是几何学中的重要内容,它在解决实际问题中有着广泛的应用。
2.案例分析:接下来,我们来看一个具体的案例。这个案例将展示如何使用SAS、ASA、AAS判定法来确定两个直角三角形是否全等,以及这些方法如何帮助我们解决实际问题。
3.成果分享:每个小组将选择一名代表来分享他们的讨论成果。这些成果将被记录在黑板上或投影仪上,以便全班都能看到。
(五)总结回顾(用时5分钟)
今天的学习,我们了解了直角三角形全等判定的基本概念、重要性和应用。同时,我们也通过实践活动和小组讨论加深了对直角三角形全等的理解。我希望大家能够掌握这些知识点,并在日常生活中灵活运用。最后,如果有任何疑问或不明白的地方,请随时向我提问。
五、教学反思
今天我们在课堂上学习了直角三角形全等的判定,回顾整个教学过程,我觉得有几个方面值得思考。
首先,关于教学导入,我发现通过提问的方式引导学生思考日常生活中的例子,能有效激发他们的学习兴趣。然而,部分学生对这个问题似乎不太感冒,可能是因为例子不够贴近他们的生活实际。在今后的教学中,我需要更加关注学生的生活经验,寻找更合适的导入方式。
其次,在新课讲授环节,我发现学生们对SAS、ASA、AAS判定方法的理解程度不一。有些学生能迅速掌握,但也有一些学生对此感到困惑。针对这一点,我采取了举例和对比的方式进行讲解,但效果似乎并不理想。我考虑在接下来的课程中,加入更多的互动环节,让学生自己动手操作,以加深他们对这些判定方法的理解。

初中数学人教八年级上册(2023年更新)第十二章 全等三角形全等三角形 教案

初中数学人教八年级上册(2023年更新)第十二章 全等三角形全等三角形  教案

全等三角形的判定复题课教学目标:熟练运用适当的方法判定两三角形全等通过探究与交流培养学生几何逻辑思维能力让学生感受和发现数学中的几何图形直观美教学重点:能够判定两个三角形的全等教学难点:能够利用条件熟练的应用适当的方法迅速的解题教学过程:教学环节、内容、步骤师生互动策划备注(活动目的)教师活动学生活动引入展导知识梳理:引导学生复习全等三角形的判定方法1、通常用于判定两三角形全等的一般方法有方法有种,分别简记为____,______,____ ,____2、对于直角三角形(即Rt△),除了一般方法外:当两直角三角形有一组斜边和直角边分别相等时,两三角形______,简记______。

3、全等三角形的______相等,______相等。

回顾旧知,为后面的学习埋下伏笔主题展导1.合作探究2.学生展评证明全等三角形全等的基本思路:一、挖掘“隐含条件”判全等引导学生总结:公共边,公共角,对顶角这些都是隐含的边,角相等的条件思考:(1)已知两边:SSS, SAS, HL(2)已知两角:ASA, AAS(3)已知一边一角:SAS, ASA,AAS, HL1.如图(1),AB=CD,AC=BD,则△ABC≌△DCB吗?说说理由2.如图(2),点D在AB上,点E在AC上,CD与BE相交于点O,且AD=AE,AB若∠B=20°,CD=5cm,则∠C= __,BE=__,说说理由.3.如图(3),AC与BD相交于O,若OB=OD,∠A=∠C,若AB=3cm,则CD= __. 说说理由.学生通过自己探讨获得新知,使学生成为学习的主体,使学生学会学习,交流与合作。

3. 教师指导4. 反馈练习5.拓展延伸二、熟练转化“间接条件”判全等引导学生总结:等量加等量和相等,等量减等量差相等,都是用来间接找边和角相等的方法!5,AB=AC,DB=DC,F是AD的延长线上的一点,试说明:BF=CF.能力提升:如图,在△ABC中, AC=BC,∠ACB=90°, ∠CAB的角平分线AE交边CB于E点,过E点作EF⊥AB于F,已知AB等于10㎝,求△EFB的周长?课后闯关: 略4.如图在△ABC、△ADE中∠B=∠D,AC=AE, 且∠CAE=∠BAD,1.独立思考2.小组讨论3.展示成果1.独立思考2.小组讨论3.展示成果略在教师的指导下主动构建知识的过程。

2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案

2024年人教版八年级数学上册教案及教学反思全册第12章 全等三角形12.1 全等三角形教案

第十二章全等三角形12.1 全等三角形一、教学目标【知识与技能】1.掌握全等形、全等三角形的概念,能应用符号语言表示两个三角形全等;2.能熟练地找出两个全等三角形的对应元素,理解全等三角形的性质,并解决相关简单的问题.【过程与方法】掌握全等三角形对应边相等,对应角相等的性质,并能进行简单的推理和计算,解决一些实际问题.【情感、态度与价值观】联系学生的生活环境,创设情景,使学生通过观察、操作、交流和反思,获得必需的数学知识,激发学生的学习兴趣.二、课型新授课三、课时第1课时四、教学重难点【教学重点】全等三角形的概念、性质及对应元素的确定.【教学难点】全等三角形对应元素的识别.五、课前准备教师:课件、三角尺、全等图形等。

学生:三角尺、直尺、全等图形、三角形纸板。

六、教学过程(一)导入新课观察这些图片,你能找出形状、大小完全一样的几何图形吗?(出示课件2-3)(二)探索新知1.观察图形,学习全等图形教师问1:下列各组图形的形状与大小有什么特点?(出示课件5)学生回答:每一组图中的两个图形形状相同,大小相等.教师问2:观察思考:每组中的两个图形有什么特点?(出示课件6)学生回答:前三组图形的形状相同,大小也相等,第4组图形的形状相同,但是大小不相等,第5组图形的形状不相同,但是大小相等.教师问3:它们能够完全重合吗?你能再举出一些类似的例子吗?学生讨论分析,教师引导后学生回答:举例:学生手中含30度角的三角板;含45度角的三角板;学生手中的小量角器;由同一张底片洗出的尺寸相同的照片;两本数学书等.教师讲解:由图①②③中的图形,我们可以看到,它们的形状相同,大小相等,像这样,形状相同、大小相同的图形放在一起能够完全重合,能够完全重合的两个图形叫做全等形.教师问4:同学们讨论一下,全等图形有什么性质呢?学生回答:全等图形的形状相同,大小相等.总结点拨:全等图形定义:能够完全重合的两个图形叫做全等图形.全等形性质:如果两个图形全等,它们的形状和大小一定都相等.2.师生互动,认识全等三角形的概念教师问5:观察下边的两个三角形,它们的形状和大小有何特征?学生回答:它们的形状相同,大小相等.教师问6:这两个三角形能够完全重合吗?学生回答:能够完全重合教师问7:这两个三角形能够完全重合之后,△ABC的顶点A、B、C与△DEF的顶点D、E、F那两个点重合呢?它们的边呢?它们的角呢?学生回答:点A与点D重合,点B与点E重合,点C与点F重合,边AB 与边DE重合,边AC与边DF重合,边CB与边FE重合,∠A与∠D重合,∠B与∠E重合,∠C与∠F重合.教师总结:(出示课件9)像上图一样,把△ABC 叠到△DEF上,能够完全重合的两个三角形,叫做全等三角形. 把两个全等的三角形重叠到一起时,重合的顶点叫做对应顶点,重合的边叫做对应边,重合的角叫做对应角.教师问8:平移、翻折、旋转前后的两个三角形什么变化,什么没有变化呢?学生讨论并回答:三角形的形状和大小没有变化,位置变化了.教师问9:把一个三角形平移、旋转、翻折,变换前后的两个三角形全等吗?(出示课件10)学生回答:平移、翻折、旋转前后的两个三角形全等.总结点拨:(出示课件11)一个图形经过平移、翻折、旋转后,位置变化了,但形状和大小都没有改变,即平移、翻折、旋转前后的两个图形全等.学生小组活动:教师提出下列要求:①请你用事先准备好的三角形纸板通过平移、翻折、旋转等操作得到你认为美丽的图形;②在练习本上画出这些图形,标上字母,并在小组内交流;③指出这些图形中的对应顶点、对应边、对应角.教师问10:请同学们观察分析,指出下列图形的对应边、对应角和对应顶点.学生分组做完后并点名回答教师问11:寻找对应元素有什么方法和规律吗?学生思考交流后,师生共同归纳、板书.(出示课件13)1. 有公共边,则公共边为对应边;2. 有公共角(对顶角),则公共角(对顶角)为对应角;3.最大边与最大边(最小边与最小边)为对应边;最大角与最大角(最小角与最小角)为对应角;4. 对应角的对边为对应边;对应边的对角为对应角.教师问12:全等三角形的对应边、对应角有什么数量关系?学生回答:全等三角形的对应边相等,全等三角形的对应角相等.教师问:全等三角形用什么表示呢?学生阅读教材32页内容回答:全等”用符号“≌”表示,△ABC全等于△DEF,记作△ABC≌△DEF.教师问13:全等三角形有哪些性质呢?学生讨论回答:全等三角形的对应边相等,对应角相等.总结点拨:全等的表示方法:“全等”用符号“≌”表示,读作“全等于”. (出示课件15)警示:记两个三角形全等时,通常把表示对应顶点的字母写在对应的位置上.全等的性质:(出示课件16-17)全等三角形的对应边相等,对应角相等.几何语言:∵△ABC≌△DEF(已知),∴AB=DE,AC=DF,BC=EF(全等三角形对应边相等),∠A=∠D,∠B=∠E,∠C=∠F(全等三角形对应角相等).例1:如图,若△BOD≌△COE,∠B=∠C,指出这两个全等三角形的对应边;若△ADO≌△AEO,指出这两个三角形的对应角.(出示课件18)师生共同解答如下:解:△BOD与△COE的对应边为:BO与CO,OD与OE,BD与CE;△ADO与△AEO的对应角为:∠DAO与∠EAO,∠ADO与∠AEO,∠AOD与∠AOE.例2:如图,△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,求∠DEF的度数和CF的长.(出示课件20)师生共同解答如下:解:∵△ABC≌△DEF,∠A=70°,∠B=50°,BF=4,EF=7,∴∠DEF=∠B=50°,BC=EF=7,∴CF=BC–BF=7–4=3.例3:如图,△EFG≌△NMH,EF=2.1cm,EH=1.1cm,NH=3.3cm.(1)试写出两三角形的对应边、对应角;(2)求线段NM及HG的长度;(3)观察图形中对应线段的数量或位置关系,试提出一个正确的结论并证明.(出示课件22-23)师生共同解答如下:解:(1)对应边有EF和NM,FG和MH,EG和NH;对应角有∠E和∠N,∠F和∠M,∠EGF和∠NHM.(2)解:∵△EFG≌△NMH,∴NM=EF=2.1cm,EG=NH=3.3cm.∴HG=EG –EH=3.3 – 1.1=2.2(cm).(3)解:结论:EF∥NM证明:∵ △EFG≌△NMH,∴ ∠E=∠N. ∴ EF∥NM.总结点拨:全等三角形的性质:能够重合的边是对应边,重合的角是对应角,对应边所对的角是对应角.对应角所对的边是对应边;两个全等三角形最大的边是对应边,最小的边也是对应边; 两个全等三角形最大的角是对应角,最小的角也是对应角.(三)课堂练习(出示课件27-30)1.能够_________的两个图形叫做全等形.两个三角形重合时,互相__________的顶点叫做对应顶点.记两个全等三角形时,通常把表示___________顶点的字母写在_________的位置上.2.如图,△ABC≌ △ADE,若∠D=∠B,∠C= ∠AED,则∠DAE=_______;∠DAB=__________ .3.如图,△ABC≌△BAD,如果AB=5cm,BD=4cm,AD=6cm,那么BC 的长是( )A.6cmB.5cmC.4cmD.无法确定4.在上题中,∠CAB的对应角是( )A.∠DABB.∠DBAC.∠DBCD.∠CAD5. 如图所示,△ABD≌△CDB,下面四个结论中,不正确的是( )A.△ABD 和△CDB 的面积相等B.△ABD 和△CDB 的周长相等C.∠A +∠ABD =∠C +∠CBDD.AD∥BC,且AD = BC6.如图,△ABC ≌△AED,AB是△ABC 的最大边,AE是△AED的最大边,∠BAC 与∠ EAD是对应角,且∠BAC=25°,∠B= 35°,AB =3cm,BC =1cm,求出∠E,∠ ADE 的度数和线段DE,AE 的长度.参考答案:1. 重合重合对应相对应2. ∠BAC ∠EAC3.A4.B5.C6. 解:∵ △ABC ≌△AED,(已知)∴∠E= ∠B = 35°,(全等三角形对应角相等)∠ADE =∠ACB =180°–25°–35°=120 °,(全等三角形对应角相等) DE = BC =1cm,AE = AB =3cm.(全等三角形对应边相等)(四)课堂小结今天我们学了哪些内容:1.全等三角形的有关概念2.全等三角形的性质3.寻找对应元素的方法(五)课前预习预习下节课(11.2)教材35页到教材37页的相关内容。

八年级数学上人教版《 三角形全等的证明》教案

八年级数学上人教版《  三角形全等的证明》教案

《三角形全等的证明》教案一、教学目标1.掌握三角形全等的证明方法,理解全等三角形的判定定理,能运用全等三角形的性质进行证明和计算。

2.通过证明过程,培养学生的逻辑思维能力、推理能力和空间想象能力。

3.渗透数学中的化归思想,培养学生的分析问题和解决问题的能力。

二、教学内容分析本节课主要学习全等三角形的证明方法,包括边角边定理、角边角定理、边边边定理等判定定理和全等三角形的性质定理。

通过证明实例,让学生掌握全等三角形的证明方法和技巧。

三、教学重点与难点1.重点:掌握全等三角形的判定定理和性质定理,能运用全等三角形的性质进行证明和计算。

2.难点:正确理解全等三角形的判定方法和性质,培养逻辑思维能力、推理能力和空间想象能力。

四、教具准备1.黑板、粉笔。

2.教学软件:PPT课件。

3.实验工具:三角板、量角器。

五、教学过程设计1.导入新课:通过复习上节课内容,引出全等三角形的概念和性质,导出本节课要学习的内容——三角形全等的证明方法。

2.新课学习:介绍三角形全等的证明方法,包括边角边定理、角边角定理、边边边定理等判定定理和全等三角形的性质定理。

通过讲解和举例,让学生理解和掌握这些定理。

3.巩固练习:通过一系列的练习题,让学生加深对全等三角形证明方法和技巧的理解和应用。

可以包括基础题、提高题和拓展题,以满足不同层次学生的需求。

4.归纳小结:通过总结本节课学到的知识,让学生明确全等三角形的重要性和应用价值,同时引导学生思考如何运用全等三角形解决实际问题。

强调定理的应用场景和实际意义,培养学生的应用意识和实践能力。

5.布置作业:根据学生的学习情况,布置适量的作业,包括概念题、证明题和应用题等类型,让学生巩固本节课学到的知识。

同时,鼓励学生自主探究和学习,培养他们的数学应用能力。

6.教学反思:通过本节课的教学,反思自己在教学内容的组织和安排、教学方法的选择和实践以及教学效果的反馈等方面是否存在问题和不足之处,以便在今后的教学中加以改进和提高。

人教版数学八年级上册11.2 《直角三角形全等的判定》教学设计

人教版数学八年级上册11.2 《直角三角形全等的判定》教学设计

人教版数学八年级上册11.2 《直角三角形全等的判定》教学设计一. 教材分析《直角三角形全等的判定》是人教版数学八年级上册第11.2节的内容,本节课主要让学生掌握直角三角形全等的判定方法,并能够运用这些方法解决实际问题。

教材通过引入“HL”、“SAS”、“ASA”三种判定方法,引导学生探索并证明直角三角形全等的条件。

同时,教材还提供了丰富的练习题,帮助学生巩固所学知识。

二. 学情分析学生在七年级已经学习了三角形全等的判定方法,对全等三角形的概念有了初步的认识。

但针对直角三角形全等的特殊性,学生还需要进一步理解并掌握。

此外,学生对于证明过程的书写和逻辑推理能力还需加强。

三. 教学目标1.知识与技能:使学生掌握直角三角形全等的判定方法(HL、SAS、ASA),能够运用这些方法判断直角三角形是否全等。

2.过程与方法:通过观察、操作、猜想、证明等过程,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观:激发学生对数学的兴趣,培养学生的团队合作精神,使学生感受到数学在生活中的应用。

四. 教学重难点1.重点:直角三角形全等的判定方法(HL、SAS、ASA)。

2.难点:判定方法的灵活运用和证明过程的书写。

五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形全等的条件。

2.运用分组讨论法,培养学生的团队合作能力和交流能力。

3.利用多媒体辅助教学,增强学生对知识的理解和记忆。

4.采用案例分析法,让学生学会将所学知识应用于解决实际问题。

六. 教学准备1.准备相关的教学课件和教学素材。

2.准备直角三角形的模型或挂图。

3.准备练习题和拓展题。

七. 教学过程1.导入(5分钟)利用直角三角形的模型或挂图,引导学生回顾三角形全等的判定方法。

提出问题:“如何判断两个直角三角形是否全等?”2.呈现(10分钟)呈现教材中的三种直角三角形全等的判定方法(HL、SAS、ASA),引导学生观察并分析判定方法的条件。

3.操练(10分钟)学生分组讨论,每组选择一种判定方法,运用判定方法判断给出的直角三角形是否全等。

人教版数学八年级上册11.2《三角形全等的判定》教学设计

人教版数学八年级上册11.2《三角形全等的判定》教学设计

人教版数学八年级上册11.2《三角形全等的判定》教学设计一. 教材分析《三角形全等的判定》是人教版数学八年级上册第11.2节的内容,本节课主要学习了SSS、SAS、ASA、AAS四种三角形全等的判定方法,以及全等三角形的性质。

学生在学习本节课之前,已经掌握了三角形的基本概念、性质以及边的相关运算,为本节课的学习奠定了基础。

二. 学情分析八年级的学生已经具备了一定的逻辑思维能力和空间想象能力,对数学概念和定理的学习逐渐从直观形象向抽象逻辑转变。

但学生在学习过程中,对理论知识的理解和应用能力仍有待提高,因此,在教学过程中,需要注重引导学生通过实际操作、合作交流等方式,深化对知识的理解和运用。

三. 教学目标1.知识与技能目标:使学生掌握SSS、SAS、ASA、AAS四种三角形全等的判定方法,能够运用这些方法判断两个三角形是否全等。

2.过程与方法目标:通过观察、操作、交流等活动,培养学生的逻辑思维能力和空间想象能力。

3.情感态度与价值观目标:激发学生对数学学科的兴趣,培养学生的团队合作意识,使学生在解决问题的过程中,体验到数学的乐趣。

四. 教学重难点1.重点:SSS、SAS、ASA、AAS四种三角形全等的判定方法。

2.难点:如何灵活运用这些判定方法判断两个三角形是否全等。

五. 教学方法1.情境教学法:通过生活实例引入三角形全等的概念,激发学生的学习兴趣。

2.启发式教学法:在教学过程中,引导学生主动思考、探索,培养学生的逻辑思维能力。

3.合作学习法:学生进行小组讨论和实践操作,提高学生的团队合作意识和交流能力。

4.反馈评价法:及时给予学生反馈,帮助学生发现问题、解决问题,提高学生的学习效果。

六. 教学准备1.教学课件:制作课件,展示三角形全等的判定方法及实例。

2.教学素材:准备一些三角形图形,用于引导学生进行观察和操作。

3.教学设备:投影仪、计算机、黑板、粉笔等。

七. 教学过程1.导入(5分钟)利用生活实例,如:拼图、制作风筝等,引导学生思考三角形全等的概念,激发学生的学习兴趣。

全等三角形教案6篇

全等三角形教案6篇

全等三角形教案6篇(实用版)编制人:__________________审核人:__________________审批人:__________________编制单位:__________________编制时间:____年____月____日序言下载提示:该文档是本店铺精心编制而成的,希望大家下载后,能够帮助大家解决实际问题。

文档下载后可定制修改,请根据实际需要进行调整和使用,谢谢!并且,本店铺为大家提供各种类型的实用资料,如工作总结、工作报告、工作计划、心得体会、讲话致辞、教育教学、书信文档、述职报告、作文大全、其他资料等等,想了解不同资料格式和写法,敬请关注!Download tips: This document is carefully compiled by this editor.I hope that after you download it, it can help you solve practical problems. The document can be customized and modified after downloading, please adjust and use it according to actual needs, thank you!Moreover, our store provides various types of practical materials for everyone, such as work summaries, work reports, work plans, reflections, speeches, education and teaching, letter documents, job reports, essay summaries, and other materials. If you want to learn about different data formats and writing methods, please stay tuned!全等三角形教案6篇我们的教案需要定期更新以反映新的教育趋势,教师编写教案不仅促进了自我管理,还增强了他们的教育专业素养,以下是本店铺精心为您推荐的全等三角形教案6篇,供大家参考。

人教版八年级数学上册12.2三角形全等的判定(边角边判定三角形全等)优秀教学案例

人教版八年级数学上册12.2三角形全等的判定(边角边判定三角形全等)优秀教学案例
4.结合具体案例,让学生学会如何运用SAS判定三角形全等解决实际问题,培养学生的应用能力。
(三)情感态度与价值观
1.培养学生对数学学科的兴趣,激发学生学习数学的积极性。
2.通过小组合作、讨论交流,培养学生的团队协作精神,提高学生的沟通能力。
3.使学生认识到数学在生活中的重要性,培养学生的数学应用意识。
(二)过程与方法
1.通过观察、操作、思考、交流等活动,让学生经历三角形全等判定方法的形成过程,培养学生自主探索、合作交流的能力。
2.运用多媒体教学手段,为学生提供丰富的学习资源,帮助学生直观地理解全等三角形的概念和SAS判定方法。
3.设计具有梯度的练习题,让学生在实践中掌握SAS判定方法,提高解题能力。
4.总结本节课的学习内容,鼓励学生在下一节课前做好准备,提高课堂学习效果。
五、案例亮点
1.情境创设:本节课通过多媒体展示三角形模型和生活实例,有效地引导学生思考三角形全等的问题,使学生能够将抽象的数学知识与实际生活相结合,提高学生的学习兴趣和积极性。
2.问题导向:教师设计了一系列递进式的问题,引导学生自主探索三角形全等的判定方法。这种问题导向的教学策略,有助于培养学生的分析问题和解决问题的能力,使学生在思考中不断深化对知识的理解。
在课前,我通过问卷调查了解到学生对于三角形全等的概念及判定方法掌握程度不一,部分学生对于全等三角形的概念模糊,对于SAS判定方法的理解不够深入。因此,在教学过程中,我需要关注学生的个体差异,针对不同学生进行有针对性的引导和讲解。
在教学过程中,我采用了多媒体教学手段,通过展示实物模型、动画演示等多种形式,帮助学生直观地理解全等三角形的概念和SAS判定方法。同时,我设计了一系列具有梯度的练习题,让学生在实践中掌握知识点,提高解题能力。

人教版八年级上册12.1全等三角形教学设计

人教版八年级上册12.1全等三角形教学设计
1.强调全等三角形判定条件的逻辑关系,帮助学生建立清晰的几何思维。
2.指出学生在课堂练习中的常见错误,提醒他们在以后的学习中注意避免。
3.鼓励学生提出对本节课知识的疑问,及时解答,确保他们对全等三角形知识的掌握。
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定条件(SSS、SAS、ASA),能够准确识别和绘制全等三角形。
人教版八年级上册12.1全等三角形教学设计
一、教学目标
(一)知识与技能
1.理解全等三角形的定义,掌握全等三角形的判定方法,能够准确地识别和绘制全等三角形。
-学生能够回忆起之前学过的等腰三角形、等边三角形等特殊三角形的性质,为新学习的全等三角形判定打下基础。
-通过直观演示和实际操作,让学生掌握SSS(边-边-边)、SAS(边-角-边)、ASA(角-边-角)全等三角形的判定定理,并能够运用这些定理解决具体问题。
1.采用生动的语言和形象的比喻,帮助学生理解抽象的几何概念。
2.使用教具、多媒体等教学资源,增强学生的直观感受。
3.通过与学生互动,及时解答学生的疑问,确保学生对新知识的掌握。
(三)学生小组讨论
在讲授新知后,我会组织学生进行小组讨论,让学生在合作中深入探讨全等三角形的性质和判定方法。我会给出几个具有代表性的问题,引导学生思考:
2.学会运用全等三角形的性质和判定方法解决实际问题,如计算三角形面积、证明线段或角相等。
3.掌握全等变换(平移、旋转、翻转)的基本操作,能够运用这些变换创造全等图形。
(二)过程与方法
1.通过观察、分析和归纳,培养学生逻辑思维能力。
2.设计探究活动,让学生在实践过程中掌握全等三角形的判定方法。
3.通过小组合作,培养学生的团队协作能力和沟通能力。

全等三角形教案【7篇】

全等三角形教案【7篇】

全等三角形教案【优秀7篇】在教学工开展教学活动前,时常会需要准备好教案,教案是教学活动的总的组织纲领和行动方案。

那么优秀的教案是什么样的呢?这次帅气的我为您整理了7篇《全等三角形教案》,希望朋友们参阅后能够文思泉涌。

数学《全等三角形》教案篇一教学目标一、知识与技能1、了解全等形和全等三角形的概念,掌握全等三角形的性质。

2、能正确表示两个全等三角形,能找出全等三角形的对应元素。

二、过程与方法通过观察、拼图以及三角形的平移、旋转和翻折等活动,来感知两个三角形全等,以及全等三角形的性质。

三、情感态度与价值观通过全等形和全等三角形的学习,认识和熟悉生活中的全等图形,认识生活和数学的关系,激发学生学习数学的兴趣。

教学重点1、全等三角形的性质。

2、在通过观察、实际操作来感知全等形和全等三角形的基础上,形成理性认识,理解并掌握全等三角形的对应边相等,对应角相等。

教学难点正确寻找全等三角形的对应元素。

教学关键通过拼图、对三角形进行平移、旋转、翻折等活动,让学生在动手操作的过程中,感知全等三角形图形变换中的对应元素的变化规律,以寻找全等三角形的对应点、对应边、对应角。

课前准备:教师——————课件、三角板、一对全等三角形硬纸版学生——————白纸一张、硬纸三角形一个教学过程设计一、全等形和全等三角形的概念(一)导课:教师————(演示课件)庐山风景,以诗“横看成岭侧成峰,远近高低各不同,不识庐山真面目,只缘身在此山中”指出大自然中庐山的唯一性,但是我们可以通过摄影把庐山的美景拍下来,可以洗出千万张一模一样的庐山相片。

(二)全等形的定义象这样的图片,形状和大小都相同。

你还能说一说自己身边还有哪些形状和大小都相同的图形吗?[学生举例,集体评析]动手操作1———在白纸上任意撕一个图形,观察这个图形和纸上的空心部分的图形有什么关系?你怎么知道的?[板书:能够完全重合]命名:给这样的图形起个名称————全等形。

[板书:全等形]刚才大家所举的各种各样的形状大小都相同的图形,放在一起也能够完全重合,这样的图形也都是全等形。

初中数学人教版八年级上册 12.2 三角形全等的判定(边角边) 教学设计

初中数学人教版八年级上册 12.2 三角形全等的判定(边角边) 教学设计

三角形全等的判定《“边角边”判定定理》教学设计一、教学目标1.知识与技能目标理解并掌握三角形全等的“边角边”判定定理。

能够运用“边角边”判定定理进行三角形全等的证明和相关计算。

2.过程与方法目标通过观察、操作、猜想、推理等活动,培养学生的空间观念和逻辑推理能力。

经历探索“边角边”判定定理的过程,体会分类讨论和转化的数学思想。

3.情感态度与价值观目标在合作探究中,培养学生的团队协作精神和勇于探索的品质。

感受数学的严谨性,激发学生对数学的兴趣。

二、教学重难点1.教学重点“边角边”判定定理的内容及应用,探索“边角边”判定定理的过程。

2.教学难点“边角边”判定定理的证明,灵活运用“边角边”判定定理解决复杂问题。

三、教学方法讲授法、探究法、讨论法、练习法四、教学过程(一)导入新课教师活动:展示两个形状相同但大小不同的三角形,提问:这两个三角形全等吗?为什么?回顾已学的三角形全等判定方法(如:边边边),引出本节课的主题:探索新的三角形全等判定方法。

学生活动:观察三角形,思考老师的问题,回答:不全等,因为大小不同。

回忆已学知识,准备学习新知识。

活动预设:学生可能对三角形全等的概念理解不够清晰,教师需要进一步引导和解释。

设计意图:通过直观的展示,引发学生对三角形全等条件的思考,培养直观想象素养。

复习旧知,为引入新知做好铺垫,建立知识的连贯性。

(二)新课讲授1.实验探究教师活动:提出问题1:如果已知两个三角形的两条边和一个角对应相等,这两个三角形一定全等吗?给出两组三角形的边和角的条件,一组是两边及其夹角相等,另一组是两边及其非夹角相等。

提出问题2:先试着画出两边及其夹角相等的三角形,然后剪下来与同桌的对比,能重合吗?提出问题3:再画出两边及其非夹角相等的三角形,剪下来对比,能重合吗?巡视各小组,指导作图方法。

学生活动:思考老师提出的问题1。

小组合作,按照给定条件作图。

对比所作三角形,回答问题2 和3。

活动预设:部分学生可能在作图过程中出现误差,教师及时给予纠正和指导。

人教版数学八年级上册12.2三角形全等的判定(角边角判定三角形全等)教学设计

人教版数学八年级上册12.2三角形全等的判定(角边角判定三角形全等)教学设计
难点:在合作交流过程中,引导学生发挥各自优势,提高团队协作效果。
(二)教学设想
1.创设情境,导入新课
通过呈现生活中全等三角形的实例,如拼图游戏、建筑图案等,激发学生的学习兴趣,引导学生关注全等三角形的特点和判定方法。
2.自主探究,合作交流
将学生分成小组,让他们观察、讨论全等三角形的性质,自主发现“角边角”判定法则。在此过程中,教师巡回指导,解答学生的疑问,引导学生深入探讨。
3.案例分析,突破难点
设计具有挑战性的问题,如:如何在一个复杂图形中找出全等三角形?如何运用“角边角”判定法则解决实际问题?通过案例分析和讨论,帮助学生突破学习难点。
4.课堂练习,巩固知识
设计不同难度的练习题,让学生在课堂上进行练习,巩固所学知识。同时,教师及时反馈,针对学生的错误进行指导,提高学生的解题能力。
7.要求学生家长参与作业的检查和评价,了解学生的学习情况,关注学生在几何学习中的进步和困惑,共同促进学生的全面发展。
针对以上学情,教师应采取适当的教学策略,如设计生动有趣的导入环节,激发学生的学习兴趣;注重启发式教学,引导学生主动探究和发现几何规律;加强课堂练习,巩固学生对全等判定方法的掌握;鼓励学生积极参与合作交流,提高他们的表达能力和团队协作能力。通过有针对性的教学,帮助学生克服学习难点,提升几何学科素养。
三、教学重难点和教学设想
3.教师结合具体实例,讲解“角边角”判定法则的应用,让学生理解并掌握这个判定方法。
4.强调在运用“角边角”判定法则时,需要注意的要点,如角度的对应关系、边的对应关系等。
(三)学生小组讨论,500字
1.教师将学生分成小组,让他们观察和分析一些含有全等三角形的图形,讨论如何运用“角边角”判定法则。
2.学生在小组内分享自己的观点和发现,通过合作交流,共同解决问题。

人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计

人教版初中八年级数学上册《第十二章 全等三角形》大单元整体教学设计

人教版八年级数学上册《第十二章全等三角形》——大单元整体教学设计一、内容分析与整合(一)教学内容分析《全等三角形》作为人教版初中八年级数学上册第十二章的核心内容,不仅是几何学知识体系中的一个重要里程碑,也是学生深化几何思维、培养逻辑推理能力的关键章节。

本章内容设计逻辑严密,层次分明,旨在通过系统的学习,使学生全面掌握全等三角形的基本概念、判定方法及其在实际问题中的应用,为后续深入探索相似三角形、三角函数等更高级的数学概念打下坚实的基础。

本章首先从全等三角形的定义切入,明确了两个三角形在完全重合时被称为全等三角形,这一基本概念为后续的学习奠定了理论基础。

教材详细展开了三角形全等的几种主要判定方法,即SSS(三边相等)、SAS(两边及夹角相等)、ASA(两角及夹边相等)和AAS(两角及非夹边相等),每一种判定方法都配以清晰的图形说明和严密的逻辑推理,帮助学生理解并掌握如何根据给定的条件判断两个三角形是否全等。

为了增强学生的实践能力和探索精神,本章还特别融入了“信息技术应用:探究三角形全等的条件”这一环节,鼓励学生利用计算机软件或数学工具进行动态演示和实验操作,通过直观的视觉体验加深对三角形全等判定方法的理解。

这种信息技术与数学教学的深度融合,不仅丰富了教学手段,也极大地提升了学生的学习兴趣和参与度。

本章末尾引入了“角的平分线的性质”这一内容,进一步拓展了全等三角形的应用范畴。

通过学习角的平分线如何影响三角形的形状和大小,学生能够从更广阔的视角理解全等三角形的本质,同时也为后续学习其他几何概念提供了有力的支撑。

《全等三角形》这一章节不仅是对几何学基础知识的深入探索,更是培养学生逻辑思维、空间想象能力和实践操作能力的重要载体。

通过本章的学习,学生不仅能够建立起全等三角形的完整知识体系,还能够在解决实际问题的过程中,体验到数学的严谨之美,为后续的数学学习和个人发展奠定坚实的基础。

教师应充分利用教材资源,结合多样化的教学方法,激发学生的学习兴趣,引导他们主动探索,从而在掌握知识的同时,培养良好的数学素养和创新能力。

人教版数学八年级上册《直角三角形全等的判定》教学设计

人教版数学八年级上册《直角三角形全等的判定》教学设计

人教版数学八年级上册《直角三角形全等的判定》教学设计一. 教材分析人教版数学八年级上册《直角三角形全等的判定》是初中数学的重要内容,主要让学生掌握直角三角形全等的判定方法。

本节内容是在学生已经掌握了三角形全等的判定方法的基础上进行学习的,通过本节内容的学习,使学生能够灵活运用直角三角形全等的判定方法解决实际问题。

二. 学情分析八年级的学生已经具备了一定的数学基础,对三角形全等的概念和判定方法有一定的了解。

但学生在解决实际问题时,还不能灵活运用所学知识。

因此,在教学过程中,教师要注重引导学生将理论知识与实际问题相结合,提高学生的解决问题的能力。

三. 教学目标1.理解直角三角形全等的判定方法。

2.能够运用直角三角形全等的判定方法解决实际问题。

3.提高学生的空间想象能力和解决问题的能力。

四. 教学重难点1.重点:直角三角形全等的判定方法。

2.难点:如何运用直角三角形全等的判定方法解决实际问题。

五. 教学方法1.采用问题驱动法,引导学生主动探究直角三角形全等的判定方法。

2.利用多媒体展示实例,帮助学生直观理解直角三角形全等的概念。

3.采用小组合作交流的方式,让学生在讨论中加深对直角三角形全等判定方法的理解。

4.运用巩固练习法,提高学生运用直角三角形全等判定方法解决实际问题的能力。

六. 教学准备1.多媒体教学设备。

2.直角三角形的相关模型和图片。

3.练习题。

七. 教学过程1.导入(5分钟)教师通过展示一些实际问题,引导学生思考如何判断直角三角形是否全等。

例如,一个直角三角形的一个锐角和另一个直角三角形的对应锐角相等,这两个三角形是否全等?2.呈现(10分钟)教师通过讲解和展示实例,向学生介绍直角三角形全等的判定方法。

直角三角形全等的判定方法有:(1)HL判定法:如果两个直角三角形的斜边和一个锐角分别相等,那么这两个三角形全等。

(2)ASA判定法:如果两个直角三角形的两个锐角和它们之间的边分别相等,那么这两个三角形全等。

三角形全等的判定(四)(HL)教学设计2024-2025学年人教版数学八年级上册

三角形全等的判定(四)(HL)教学设计2024-2025学年人教版数学八年级上册

第4课时三角形全等的判定(四)(HL)1.探索并理解直角三角形全等的判定方法“HL”.(重点)2.选择合适的判定方法判定两个直角三角形全等.(难点)一、新课导入【复习导入】教师带领学生复习全等三角形的四个判定定理SSS,SAS,ASA和AAS的相关知识,为本节课做准备.二、新知探究知识点“HL”证全等【提出问题】对于两个直角三角形,除了直角相等的条件,还要满足几个条件,这两个直角三角形就全等了?【学生思考】给学生思考的时间,可同桌之间讨论.提醒学生可以结合刚才复习的判定三角形全等的方法想一想!教师利用多媒体展示如下四种情况,学生对照自己的思考结果,对不同的结果举手发言,教师给予纠正.1.在两个直角三角形中,满足一直角边及其相对的锐角对应相等,这两个直角三角形全等吗?你的判定依据是什么?全等,依据“AAS”.2.在两个直角三角形中,满足一直角边及其相邻的锐角对应相等,这两个直角三角形全等吗?你的判定依据是什么?全等,依据“ASA”.3.在两个直角三角形中,满足两直角边对应相等,这两个直角三角形全等吗?你的判定依据是什么?全等,依据“SAS”.4.在两个直角三角形中,满足斜边和一锐角对应相等,这两个直角三角形全等吗?你的判定依据是什么?全等,依据“AAS”.【提出问题】在两个直角三角形中,满足斜边和一条直角边对应相等,这两个直角三角形全等吗?【学生回答】学生根据图示,大部分学生可能会回答“不全等”,因为没有“SSA”,教师接着追问,以求探索.【提出问题】任意画出一个Rt△ABC,使∠C=90°.再画一个Rt△A'B'C',使得∠C'=90°,B'C'=BC,A'B'=AB.把画好的Rt△A'B'C'剪下来,放在Rt△ABC上,它们全等吗?【动手操作】学生根据老师的要求,在准备好的卡纸上作图,试一试作出来的两个三角形是否全等.教师可提醒学生:如果两个三角形能够重合,那么两者就是全等三角形.【学生回答】教师点名学生回答是如何制作△A'B'C'的,对于回答不完整的,请另一名学生补充.教师利用多媒体展示画△A'B'C'的作法,学生检查自己的作法是否正确:作法:(1)画∠MC'N=90°;(2)在射线C'M上截取B'C'=BC;(3)以点B'为圆心,AB长为半径画弧,交射线C'N于点A';(4)连接A'B'.【提出问题】△A'B'C' 与△ABC 全等吗?教师利用多媒体展示画△A'B'C'与△ABC 的重合过程.很明显两者是全等的.【提出问题】这两个三角形全等满足的是哪三个条件?教师利用多媒体展示满足的三个条件,从而得到答案:直角、斜边和一条直角边.【归纳总结】斜边和一条直角边分别相等的两个直角三角形全等(可以简写成“斜边、直角边”或“HL”).该判定定理的几何语言:在Rt △ABC 和Rt △A'B'C'中,{AC =A 'C ',BC =B 'C ',∴Rt △ABC ≌Rt △A'B'C'(HL ).用“HL”证明两个直角三角形全等的注意事项:①应用“HL” 的前提条件是在直角三角形中;②书写时两个三角形符号前面要加上“Rt”;③书写条件时,先写斜边(H ) ,再写直角边(L ).教师利用多媒体展示以下例题:例 如图,AC ⊥BC ,BD ⊥AD ,垂足分别为C ,D ,AC =BD .求证:BC =AD .证明:∵AC ⊥BC ,BD ⊥AD ,∴∠C 与∠D 都是直角. 在Rt △ABC 和Rt △BAD 中,{AB =BA ,AC =BD ,∴Rt △ABC ≌Rt △BAD (HL ).∴BC =AD .【跟踪训练】如图,∠ACB=∠BDA=90°,要证明△ABC≌△BAD,还需一个什么条件?把这些条件都写出来,并在相应的括号内填写出判定它们全等的理由.(1)BC=AD (HL);(2)AC=BD(HL);(3)∠CBA=∠DAB(AAS);(4)∠CAB=∠DBA(AAS).三、课堂小结三角形全等的判定{斜边、直角边(HL){内容➡斜边和一条直角边分别相等的两个直角三角形全等注意事项➡{前提条件是在直角三角形中书写时两个三角形符号前面要加上“Rt”书写条件时,先写斜边(H),再写直角边(L)根据已知条件选择适合证明两个直角三角形全等的方法➡隐含条件:两直角相等四、课堂训练1.已知在△ABC和△A'B'C'中,AB=A'B',AC=A'C',下列条件中,不一定能得到△ABC≌△A'B'C'的是(C)A. BC=B'C'B.∠A=∠A'C.∠C=∠C'D.∠B=∠B'=90°2.如图,在四边形ABCD中,点E,F分别在AB,CD上,且AE=CF,分别过点A,C向EF 作垂线,垂足分别为G,H,且AG=CH.求证:AB∥CD.证明:∵AG⊥GH,CH⊥GH,∴∠G=∠H=90°.在Rt△AGE和Rt△CHF中,{AE=CF,AG=CH,∴Rt△AGE≌Rt△CHF(HL).∴∠AEG=∠CFH.又∠AEG=∠BEF,∴∠BEF=∠CFH.∴AB∥CD.提醒学生:“HL”是直角三角形独有的判定方法,但直角三角形的判定方法很多,判定时,应抓住“直角”这个隐含条件,选择合适的方法求证.。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

12.1 全等三角形
教学目标
1.知道什么是全等形、全等三角形及全等三角形的对应元素; 2.知道全等三角形的性质,能用符号正确地表示两个三角形全等; 3.能熟练找出两个全等三角形的对应角、对应边. 教学重点
全等三角形的性质. 教学难点
找全等三角形的对应边、对应角. 教学过程
Ⅰ.提出问题,创设情境
1、问题:你能发现这两个三角形有什么美妙的关系吗?
C 1
B 1C
A
B
A 1
这两个三角形是完全重合的.
2.学生自己动手(同桌两名同学配合)
取一张纸,将自己事先准备好的三角板按在纸上,画下图形,照图形裁下来,纸样与三角板形状、大小完全一样. 3.获取概念
让学生用自己的语言叙述:全等形、全等三角形、对应顶点、对应角、对应边,以及有关的数学符号.
形状与大小都完全相同的两个图形就是全等形.
要是把两个图形放在一起,能够完全重合,•就可以说明这两个图形的形状、大小相同. 概括全等形的准确定义:能够完全重合的两个图形叫做全等形.请同学们类推得出全等三角形的概念,并理解对应顶点、对应角、对应边的含义.仔细阅读课本中“全等”符号表示的要求.
Ⅱ.导入新课
将△ABC 沿直线BC 平移得△DEF ;将△ABC 沿BC 翻折180°得到△DBC ;将△ABC 旋转180°得△AED .

D
C
A
B
F
E 乙
D
C
A
B

D
C
A
B
E
议一议:各图中的两个三角形全等吗?
不难得出:△ABC ≌△DEF ,△ABC ≌△DBC ,△ABC ≌△AED . (注意强调书写时对应顶点字母写在对应的位置上)
启示:一个图形经过平移、翻折、旋转后,位置变化了,•但形状、大小都没有改变,所以平移、翻折、旋转前后的图形全等,这也是我们通过运动的方法寻求全等的一种策略. 观察与思考:
寻找甲图中两三角形的对应元素,它们的对应边有什么关系?对应角呢? (引导学生从全等三角形可以完全重合出发找等量关系)
得到全等三角形的性质:全等三角形的对应边相等. 全等三角形的对应角相等. [例1]如图,△OCA ≌△OBD ,C 和B ,A 和D 是对应顶点,•说出这两个三角形中相等的边和角.
D
C
A
B
O
问题:△OCA ≌△OBD ,说明这两个三角形可以重合,•思考通过怎样变换可以使两三角形重合?
将△OCA 翻折可以使△OCA 与△OBD 重合.因为C 和B 、A 和D 是对应顶点,•所以C 和B 重合,A 和D 重合.
∠C=∠B ;∠A=∠D ;∠AOC=∠DOB .AC=DB ;OA=OD ;OC=OB .
总结:两个全等的三角形经过一定的转换可以重合.一般是平移、翻转、旋转的方法. [例2]如图,已知△ABE ≌△ACD ,∠ADE=∠AED ,∠B=∠C ,•指出其他的对应边和对应角.
D
C
A
B
E
分析:对应边和对应角只能从两个三角形中找,所以需将△ABE 和△ACD 从复杂的图形中分离出来.
根据位置元素来找:有相等元素,它们就是对应元素,•然后再依据已知的对应元素找出其余的对应元素.常用方法有:
(1)全等三角形对应角所对的边是对应边;两个对应角所夹的边也是对应边. (2)全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角. 解:对应角为∠BAE 和∠CAD .
对应边为AB 与AC 、AE 与AD 、BE 与CD .
[例3]已知如图△ABC ≌△ADE ,试找出对应边、对应角.(由学生讨论完成)
D
C A
B
E
O
借鉴例2的方法,可以发现∠A=∠A ,•在两个三角形中∠A 的对边分别是BC 和DE ,所以BC 和DE 是一组对应边.而AB 与AE 显然不重合,所以AB •与AD 是一组对应边,剩下的AC 与AE 自然是一组对应边了.再根据对应边所对的角是对应角可得∠B 与∠D 是对应角,∠ACB 与∠AED 是对应角.所以说对应边为AB 与AD 、AC 与AE 、BC 与DE .对应角为∠A 与∠A 、∠B 与∠D 、∠ACB 与∠AED .
做法二:沿A 与BC 、DE 交点O 的连线将△ABC •翻折180°后,它正好和△ADE 重合.这时就可找到对应边为:AB 与AD 、AC 与AE 、BC 与DE .对应角为∠A 与∠A 、∠B 与∠D 、∠ACB 与∠AED . Ⅲ.课堂练习
课本练习.
Ⅳ.课时小结
通过本节课学习,我们了解了全等的概念,发现了全等三角形的性质,•并且利用性质可以找到两个全等三角形的对应元素.这也是大家要重点掌握的.
找对应元素的常用方法有两种:
(一)从运动角度看
1.翻转法:找到中心线,沿中心线翻折后能相互重合,从而发现对应元素.
2.旋转法:三角形绕某一点旋转一定角度能与另一三角形重合,从而发现对应元素.3.平移法:沿某一方向推移使两三角形重合来找对应元素.
(二)根据位置元素来推理
1.全等三角形对应角所对的边是对应边;两个对应角所夹的边是对应边.
2.全等三角形对应边所对的角是对应角;两条对应边所夹的角是对应角.
Ⅴ.作业
课本习题
板书设计
§11.1 全等三角形
一、概念
二、全等三角形的性质
三、性质应用
例1:(运动角度看问题)
例2:(根据位置来推理)
例3:(根据位置和运动角度两种办法来推理)
四、小结:找对应元素的方法
运动法:翻折、旋转、平移.位置法:对应角→对应边,对应边→对应角.。

相关文档
最新文档