转炉溅渣护炉技术的发展及现状

转炉溅渣护炉技术的发展及现状
转炉溅渣护炉技术的发展及现状

收稿日期:2006212207; 修订日期:2007205230

作者简介:李小明(19742 

),陕西洛川人,讲师.研究方向:冶金相关技术.

?今日铸造 Today ’s Foundry ?

转炉溅渣护炉技术的发展及现状

李小明,王冠甫,杨 军

(西安建筑科技大学冶金工程学院,陕西西安710055)

摘要:溅渣护炉充分利用了转炉终渣并采用氮气作为喷吹动力,是转炉技术一个大的进步。采用溅渣护炉不仅可减少炉衬蚀损、提高炉龄,而且可减轻工人劳动强度和操作费用,提高生产率。合理控制终渣成分、留渣量、出钢温度和枪位是取得良好的溅渣护炉效果的关键技术和必备条件。我国转炉因具有容量小、数量多、生产负荷大、半钢冶炼转炉原料条件差、热源不足、复吹转炉底吹元件寿命低等特点,使得我国溅渣护炉技术朝多元化方向发展,适宜于各种炉型和原料条件以及工艺特点的溅渣护炉技术蓬勃发展,尤其在复吹溅渣护炉技术方面,已达到先进水平。但转炉经济炉龄还不确定,氮气源还不足,调渣剂的成分还不能动态调整,溅渣时间和枪位还不能自动控制,今后应积极探索终渣动态调整以及溅渣自动控制等技术。关键词:转炉;炉龄;溅渣护炉;应用

中图分类号:TF713 文献标识码:A 文章编号:100028365(2007)0821140204

Pr o gr e s s a n d S t a t us of BO F Pr ot e c ti o n Te c h n ol o g y b y Sla g Sp la s hi n g

L I Xiao 2ming ,WANG G uan 2f u ,YANG Jun

(School of Metallurgical E ngineering ,Xi ’an U niversity of Architecture and T echnology ,Xi ’an 710055,China)

Abs t rac t :I t is a big progre ss for the converter using the finishing slag to prevent the furnace and the

nitrogen as the splashing power.Slag splashing technology can not only reduce the furnace lining ero sion ,prolong the furnace life ,but also decrease the manual intensity and the operating co st ,thus enhance s the productivity.The key technology and e ssential conditions to obtain good splashe s effect are to control the ingredients and quantitie s of finishing slag ,the tapping temperature and the gun po sition reasonably.As the dome stic converter has low capacity ,big production load ,the bad raw materials for the semi 2steel converter ,the insu fficient heat source and low life of bottom blowing component of combined blown converter ,the slag splashing technology is developing towards the multiple direction ,so that the slag splashing technology can be suitable for various converter ,raw materials and operational characteristics.The combined blown converter has reached the advance standards.H owever the economical furnace life of converter is indefinite ,the nitrogen source for slag splashing is also insu fficient ,the ingredient of slag modifier cannot be adjusted dynamically ,the splashing time and the gun po sition cannot be controlled automatically ,so the finishing slag dynamic adjusting and automatic control technologie s should be developed in the future.

Ke y w ords :BOF ;Company life ;Slag splashing ;Application

炉龄是转炉炼钢的一项综合技术经济指标。高温、高氧化性的炉渣对炉衬的机械冲刷和化学侵蚀是造成炉衬蚀损的主要原因。为了提高炉龄,炼钢工作者相继对炉衬砖材质、砌筑方法、补炉技术、溅渣技术等进行了研究和开发。1983年普莱克斯公司获得了溅渣专利[1,2],但直到20世纪90年代以后,溅渣护炉技术才随着耐火材料质量的改进而蓬勃发展起来。

本文从溅渣护炉的基本原理出发,讨论影响溅渣

护炉效果的几个主要因素,并结合我国转炉的特点,分析我国在小型转炉、半钢冶炼转炉以及复吹转炉溅渣护炉方面取得的技术进步,同时分析我国溅渣护炉存在的问题及今后的发展方向。1 溅渣护炉原理及优势

溅渣护炉的基本原理,是在转炉出完钢后加入调渣剂,使其中的MgO 与炉渣产生化学反应,生成一系列高熔点物质,被通过氧枪系统喷出的高压氮气喷溅到炉衬的大部分区域或指定区域,粘附于炉衬内壁逐渐冷凝成固态的坚固保护渣层,并成为可消耗的耐材

《铸造技术》08/2007李小明等:转炉溅渣护炉技术的发展及现状

层。转炉冶炼时,保护层可减轻高温气流及炉渣对炉衬的化学侵蚀和机械冲刷,以维护炉衬、提高炉龄并降低耐材包括喷补料等消耗。

氧气顶吹转炉溅渣护炉是在转炉出钢后将炉体保持直立位置,利用顶吹氧枪向炉内喷射高压氮气(1.0M Pa),将炉渣喷溅在炉衬上。渣粒是以很大冲击力粘附到炉衬上,与炉壁结合的相当牢固,可以有效地阻止炉渣对炉衬的侵蚀。复吹转炉溅渣护炉是将顶吹和底吹均切换成氮气,从上、下不同方向吹向转炉内炉渣,将炉渣溅起粘结在炉衬上以实现保护炉衬的目的。

溅渣护炉充分利用了转炉终渣并采用氮气作为喷吹动力,在转炉技术上是一个大的进步,它比干法喷补、火焰喷补、人工砌砖等方法更合理,其既能抑制炉衬砖表面的氧化脱碳,又能减轻高温渣对炉砖的侵蚀冲刷,从而保护炉衬砖,降低耐火材料蚀损速度,减少喷补材料消耗,减轻工人劳动强度,提高炉衬使用寿命,提高转炉作业率,减少操作费用,而且不需大量投资,较好地解决了炼钢生产中生产率与生产成本的矛盾。因此,转炉溅渣护炉技术与复吹炼钢技术被并列为转炉炼钢的2项重大新技术[3]。

目前国外采用溅渣护炉技术的转炉炉龄已平均达到20000炉以上[4],美国伊斯帕特内陆钢公司转炉的炉龄最高已达36000炉。国外某些钢厂的管理人员甚至认为30000炉将成为转炉的标准炉龄[5]。国内冶金工作者在积极摸索适合自身特点的溅渣护炉工艺上取得了巨大进步,开发出了适合不同炉型和工艺条件的溅渣护炉工艺方案。目前我国复吹转炉的炉龄已超过30000炉[6]。

2 溅渣护炉主要工艺因素

2.1 合理选择炉渣并进行终渣控制

炉渣选择着重是选择合理的渣相熔点。影响炉渣熔点的物质主要有FeO、MgO和炉渣碱度[7]。渣相熔点高可提高溅渣层在炉衬的停留时间,提高溅渣效果,减少溅渣频率,实现多炉一溅目标。由于FeO易与CaO和MnO等形成低熔点物质,并由MgO和FeO 的二元系相图可以看出,提高MgO的含量可减少FeO相应产生的低熔点物质数量,有利于炉渣熔点的提高。

从溅渣护炉的角度分析,希望碱度高一点,这样转炉终渣C2S及C3S之和可以达到70%~75%。这种化合物都是高熔点物质,对于提高溅渣层的耐火度有利。但是,碱度过高,冶炼过程不易控制,反而影响脱磷和脱硫效果,且造成原材料浪费,还容易造成炉底上涨。实践证明,终渣碱度控制在2.8~3.2为好[8]。

由于溅渣层对转炉初渣具有很强的抗侵蚀能力,而对转炉终渣的高温侵蚀的抵抗能力很差,转炉终渣对溅渣层的侵蚀机理主要表现为高温熔化,因此合理控制转炉终渣,尽可能提高终渣的熔化温度是溅渣护炉的关键环节。合理控制终渣应着重从终渣的MgO 含量和FeO含量着手。

2.1.1 终渣MgO含量的控制

在一定条件下提高终渣MgO含量,可进一步提高炉渣的熔化温度,这种高熔点炉渣在冶炼初期产生的溅渣层减轻了渣对炉衬的机械冲刷,并与渣中SiO2、FeO反应,避免了渣对炉衬的化学侵蚀;在冶炼中期,溅渣层中的MgO与炉渣中的FeO生成高熔点物质,在下一次溅渣操作中成为溅渣层的主要组成部分;同时由于溅渣层被反复利用,减少了炼钢中造渣剂的使用,降低了生产和操作成本。因此,终渣MgO含量应在保证出钢温度前提下超过饱和值,但含量也不宜过高,以免增加溅渣护炉成本,一般控制在9%~10%[8]。

调渣剂国外一般在出钢后加入,国内由于转炉操作水平较低,炉况不稳定,终渣成分变化大,且出钢后加入调渣剂化渣不彻底,因此大多数钢厂在冶炼初期便加入化渣剂,以轻烧白云石为主,亦有采用镁质冶金石灰或菱镁矿作为化渣剂的。

2.1.2 终渣FeO控制

在溅渣护炉技术中,渣中FeO含量的多少起着截然相反的作用:渣中FeO含量高,炉渣的熔点低、流动性好,容易沿衬砖内细小气孔和裂纹渗透和扩散,有利于溅渣层与炉衬砖的结合,保护炉衬不受侵蚀。但是随着渣中FeO含量增高,由于溅渣层内FeO会与MgO反应使溅渣层中MgO相减少,导致溅渣层熔点降低,不利于溅渣层寿命提高。国内操作一般控制在20%以下,国外由于调渣剂在出钢后加入,所以FeO 含量很高。

一般认为只要在溅渣前把渣中MgO含量调整在合适的范围内,对终渣氧化铁含量并不须特殊处理,即终渣氧化铁无论高低都可取得较好的溅渣护炉效果。但如果终渣氧化铁含量很低,渣中铁酸钙少,故应在保证足够的耐火度的情况下,降低渣中MgO含量,这样溅渣护炉的成本较低,容易取得高炉龄。从操作上讲,在同样温度、碱度和MgO条件下,氧化铁含量低,渣的粘度大,起渣快,可以减少溅渣时间,而不影响溅渣效果。

2.2 合理控制留渣量

在溅渣护炉中,转炉留渣量的多少不仅是溅渣护炉本身重要的工艺参数,而且决定了溅渣层的厚度。合理的留渣量一方面要保证炉渣在炉衬表面形成10

?

1

4

1

1

?

~20mm溅渣层[9],另一方面随炉内留渣量的增加,炉渣的可溅性增强,对溅渣操作有利。转炉上部溅渣主要依靠氮气射流对熔池炉渣的溅射而获得。渣量少,渣层过薄,气流易于穿透渣层,削弱气流对于渣层的乳化和破碎作用,不利于转炉上部溅渣。转炉留渣量过大,在溶池内易形成浪涌,同样不利于转炉上部溅渣。即便强化了转炉上部溅渣的效果,也往往造成炉口粘渣变小,影响正常的冶炼操作。

溅渣的厚度:渣量过少,溅渣层过薄,且不均匀,将影响溅渣护炉的效果。根据钢铁研究总院得出的公式,合理的留渣量为[10,11]:

Q s=0.301W n

式中 Q s———转炉单炉留渣量,t;

W———转炉公称吨位,t;

n———系数,取值为0.583~0.650。

2.3 合理控制出钢温度

用溅渣护炉工艺后,转炉出钢温度对炉龄的影响非常明显。随着出钢温度的降低,炉龄与出钢温度的关系为[12]:N=208529~12019t。其中N为炉龄,t 为出钢温度。在同样的溅渣技术条件下,每降低出钢温度一度,将提高炉龄121炉。因此,合理控制转炉出钢温度,对采用溅渣护炉工艺的转炉进一步提高炉龄有重要意义。

2.4 枪位控制

枪位应按照早化渣,化好渣,保证溅渣厚度和溅渣面积的原则确定。高枪位易于炉渣的破碎和乳化,有利于转炉上部的溅渣。当枪位过高时,炉渣溅到炉膛位置较低,还容易冲刷已溅到炉墙上的炉渣,更容易引起炉底上涨。低枪位易于造成渣液面剧烈波动,对渣的冲击面积小,冲击深度增大,供给的能量大部分消耗于熔池内部,有利于转炉的下部溅渣,同时由于渣滴能量大,也可溅到炉口。溅渣时枪位控制要根据炉渣的流动性和所要溅的部位而定。通常情况采取前高后低方法,既保证了炉渣的形成,溅渣效果也好,且可防止炉底上涨

3 我国溅渣护炉技术现状

我国由于转炉容量小(以30~50t为主[12])、铁液条件差(硅含量偏高、硫含量波动较大,某些企业还采用中磷铁液或提钒后的半钢炼钢)、装备水平低(一般无铁液预处理设备、未采用计算机控制等)、生产节奏快(一般冶炼时间少于30min,生产负荷大)等,使得我国转炉的溅渣护炉具有不同于国外的自身特点。我国自1996年开展溅渣护炉技术研究以来,迅速开发了适合于中国国情的各种转炉溅渣护炉技术,已使我国转炉的炉龄发生了质的飞跃,与采用溅渣技术前相比,我国转炉龄提高了5~10倍。目前我国转炉平均炉龄已接近万炉,同时我国在小型转炉、半钢冶炼转炉及复吹转炉领域的溅渣护炉技术,居世界前列,已形成具有中国特色的专利技术。

3.1 小型转炉溅渣护炉的现状及特点

小型转炉在我国已达200座以上,在我国的炼钢生产能力中占较大的比重。这类转炉铁液及副原料一般质量较差,铁液Si波动大;生产率高、冶炼周期短,班产炉数高;铁液普遍不进行预处理,转炉冶炼脱硫、脱磷负荷大;无精炼设施,为适应连铸的节奏要求,出钢温度一般高达1700℃;由于溅渣频率高,N2普遍不足。这些因素使得小型转炉溅渣时间短、炉渣温度高及渣中TFe高。我国炼钢工作者结合上述国情,开发出了适用于小型转炉的转炉溅渣护炉技术。

(1)优化炼钢工艺,控制过程温度及终点温度。优化供氧制度,降低过程枪位,减少渣中TFe。同时加强管理,保证足够的溅渣频率及溅渣时间。

(2)注重对终渣的调整。调渣剂除采用常规轻烧白云石等,普遍采用含碳炉渣改质剂(碳含量一般在15%~40%),保证渣中MgO含量超过饱和值,同时调整炉渣粘度和过热度,使之适于炉膛喷溅挂渣,并降低终渣的氧化铁及温度,减少高FeO对溅渣层的侵蚀。

(3)采用优质材料做转炉绝热层(如采用低绝热系数的多晶纤维板),减少炉壳变形。通过上述转炉溅渣护炉技术及相关技术的开发,我国的小型转炉的炉龄普遍已达10000炉,最高炉龄已超过25000炉。3.2 半钢冶炼转炉溅渣护炉的现状及特点

我国攀钢和承钢是采用半钢(经提钒后的铁液)冶炼工艺的典型厂家,由于此类铁液含碳低(一般小于3.5%)、铁液的含Si量仅为痕迹(一般小于0.03%),造成炼钢热量不足。同时由于在造渣过程中,SiO2、TiO2等酸性氧化物来源少,致使渣系单一,初渣形成困难,终渣碱度高达6.5以上,所以炼钢化渣困难。为了降低炉渣的熔点和粘度,半钢冶炼必须依靠大量生成的FeO溶解石灰,保证脱磷、脱硫效果,故形成了冶金性能不良的铁-钙渣系,严重影响了溅渣护炉作用的充分发挥。针对半钢冶炼的特点,开发了如下的溅渣工艺:

(1)选用合适的调渣剂。由于半钢冶炼碱度很高,对化渣不利,因此有效调整第一批渣料中含SiO2酸性材料的用量,以控制前期炉渣的碱度非常重要。攀钢半钢冶炼在吹炼前期分别加入轻烧白云石和富锰矿,使炉渣中具有一定量的MgO和MnO含量,以加速初渣的快速形成,同时相应降低了渣中的TFe。

(2)根据终点[C]和终渣TFe以及出钢温度,合

《铸造技术》08/2007李小明等:转炉溅渣护炉技术的发展及现状

理控制终渣MgO含量。对于高中碳钢,由于终点[C]较高,TFe较低(8%~14%),出钢温度仅为1610~1640℃,所以将终渣MgO含量控制在7%~9%就能达到终渣调质的目的。对于低碳钢,渣中TFe含量为15%~23%,出钢温度高达1640~1710℃,需将MgO含量控制在9%~12%,才能将渣做粘。

(3)优化冶炼工艺,控制终渣FeO含量。半钢炼钢由于缺少热量,经常采用后吹来提高钢液温度,终点渣过氧化现象十分严重,TFe高达25%~30%[13]。采取如下措施降低终渣TFe:①优化提钒工艺,提高半钢质量,使入转炉的半钢[C]≥3.4%,温度≥1280℃。承钢在提钒过程中通过有效控制冷料的加入量,已可将半钢的入炉温度稳定在1350℃;②采用热补措施。承钢在转炉吹炼前,根据半钢条件,加入类石墨或无烟煤[14],以增加半钢冶炼时的热收入,取得了很好的效果;③控制过程的炉渣碱度,避免长时间高枪位操作,渣中的TFe可降低2%~3%。

通过工艺优化,攀钢和承钢的半钢转炉炉龄均已超过10000炉,据估算,相当于普铁炼钢30000炉,已达到了世界含钒、钛转炉(半钢)冶炼的一流水平。

3.3 复吹转炉溅渣护炉的现状及特点

转炉采用溅渣护炉使得炉龄大幅度提高后,

的一个问题是底吹供气元件寿命不能同步提高,因此,美国采用转炉溅渣护炉技术后,牺牲了复吹工艺。日本和欧洲等国家为保留复吹工艺,只好牺牲了溅渣技术。我国武汉钢铁公司和钢铁研究总院共同开发的复吹转炉溅渣护炉技术,已成功地解决了保持复吹转炉底吹供气元件寿命与转炉炉龄同步这一国际炼钢生产中的重大难题[15]。

(1)注重对炉渣的控制。转炉出钢后针对炉渣中不同的FeO含量,加入适量不同种类的调渣改质剂,控制终渣MgO含量,使炉渣具有合适的粘度、温度及耐火度。冶炼前期用石灰及轻烧白云石溅渣,控制过程渣MgO含量在6%~8%的范围;冶炼后期采用高MgO炉渣操作工艺。

(2)保护底部供气元件的技术措施,是在炉役初期通过造粘渣和控制喷嘴出口处的热平衡,来使供气元件尽早在出口处形成透气蘑菇头[16]。生成的蘑菇头既能保证底部供气量,可以在炼钢所需的供气范围内灵活调整,又能达到保护供气元件不被侵蚀的目的。同时开发并采用供气效果更加稳定、更加容易维护的新型底吹供气元件。

(3)严格控制炉膛内型形状和炉底形状及蘑菇头的大小和厚度,确保底部喷嘴畅通,不被堵塞和过分蚀损。同时通过调整冶炼钢种和改变溅渣频率来控制炉底的高度,避免炉底过度上涨。

4 我国溅渣护炉技术存在的问题和发展方向我国开展溅渣护炉技术以来,取得了举世瞩目的成绩。在半钢冶炼、小型转炉炼钢及复吹转炉领域的溅渣护炉技术已走在世界的前列。但也存在不足:如调渣剂的选择还不是很合理,调渣工艺还不能根据炉渣成分动态调整;溅渣氮气源不足,不能保证足够的溅渣频率及时间等。今后,我们应进一步优化炉渣的调质及改质工艺,力争实现动态及时调渣,并积极寻求价格更加便宜的调渣剂及改质剂。同时积极开发溅渣护炉自动化技术,以实现自动根据炉渣状况,自动控制溅渣时间及枪位自动溅渣。

参考文献

[1] 邹冰梅,于学斌,颜克权.国外溅渣护炉技术简介[J].武

汉冶金科技大学学报,1999,22(2):1182120.

[2] Spruell J V,Lewis J B.Method for Increasing Vessel

Lining Life for Basic Oxygen Furnace[P].United States Patent4373949,1983.

[3] 雷正刚,周梦榕.武钢复吹转炉溅渣护炉工艺技术市场前景

广阔[E B/OL].https://www.360docs.net/doc/526585551.html,/newscenter/

2002206/14/content_440437.htm,2002.

[4] 和宁波.溅渣护炉技术在我国的应用[J].河南冶金,

1999,34(5):325.

[5] Bagsarian T.Slag splashing reaches new levels[J].Iron

Age New Steel,1999,15(11):38240.

[6] 潘 勤,薛 伍.武钢转炉炉龄再创世界纪录[EB/OL].

https://www.360docs.net/doc/526585551.html,/200402/ca412520.htm,2004. [7] 徐培江,王冰民,崔庆成,等.溅渣护炉在炼钢生产中的应

用[J].冶金丛刊,2004,152(4):19220,28.

[8] 杜书波,陶传俊,孙 庆,等.溅渣护炉工艺讨论[J].山东

冶金,2003,25(增刊):10212.

[9] 张天柱.关于转炉溅渣护炉技术的几个工艺问题[J].四

川工业学院学报,2004,23(1):426.

[10] 苏天森,刘 浏,王维兴.转炉溅渣护炉技术[M].北京:

冶金工业出版社,1999.

[11] 刘 浏.转炉溅渣护炉系统优化技术基础理论[J].钢

铁,1997,23(2):50255.

[12] 刘 浏,佟溥翘,郑丛杰.转炉溅渣护炉技术在我国的推

广与发展[J].中国冶金,1998,(5):5210.

[13] 文永才,杨素波,张大德,等.攀钢半钢炼钢转炉溅渣护

炉技术研究[J].钢铁,2003,38(2):16218.

[14] 白瑞国,张兴利,乔海林,等.20吨氧气顶吹转炉溅渣护

炉工艺研究[J].河北冶金,2000,116(2):45249.

[15] 武钢第二炼钢厂.复吹转炉溅渣护炉实用技术[M].北

京:冶金工业出版社,2004.

[16] 徐静波,喻承欢,刘 浏.武钢二炼钢复吹转炉溅渣护炉

工艺技术[J].炼钢,2004,20(2):528.

?

3

4

1

1

?

氧气转炉留渣-冶金之家

氧气转炉“留渣+双渣”炼钢工艺技术研究 王新华1,朱国森2,李海波2,吕延春2 (1.北京科技大学冶金与生态工程学院,北京100083;2.首钢技术研究院,北京100043) 摘要:首钢迁钢公司和首秦公司大规模采用了“留渣+双渣”转炉炼钢新工艺,大幅度减少了炼钢渣量和石灰、白云石消耗。文章介绍了其中所开发的3项重要技术:①脱磷阶段采用低碱度(w(CaO)/w(SiO2)∶1.3~1.5)和低MgO质量分数(≤7.5%)渣系,形成流动性良好和适度泡沫化炉渣,解决了脱磷阶段结束难以快速足量倒渣和渣中金属铁质量分数高这两大问题;②针对脱磷阶段底吹搅拌弱问题,采用了低枪位和高供氧强度吹炼方法,利用顶吹氧气流加强金属熔池搅拌,获得了良好脱磷效果;③通过加快生产速度,特别是对“炼钢-精炼-连铸”生产合理组织调配,在转炉冶炼时间增加大约4min情况下,钢产量并没有减少。 关键词:转炉炼钢;少渣;石灰消耗;脱磷;炉渣 中国钢铁工业近20年来发展迅速,对国民经济快速增长发挥了重要作用,但在节省资源、能源和减少炉渣等固体废弃物排放等方面,目前面临着巨大的压力和挑战。以占中国产钢量90%以上氧气转炉炼钢为例,每年生产约6.2亿t粗钢,要产生6000万t以上炉渣,消耗3100万t以上石灰和700万t以上轻烧白云石,而用于生产炼钢石灰和轻烧白云石的石灰石与生白云石矿产均为重要的不可再生资源。 2001年Ogawa等[1]报道了新日铁开发的MURC转炉炼钢新工艺及其在8t转炉的试验情况,该工艺将转炉冶炼分为2个阶段,在第1阶段主要进行脱硅、脱磷,结束后倒出部分炉渣,然后进行第2阶段吹炼,吹炼结束后出钢但将炉渣保持在炉内,下一炉在炉内留渣情况下装入废钢、铁水,然后进行第1和第2阶段吹炼,并以此循环往复。近年来,新日铁陆续报道了MUCR工艺相关情况[2-10],新日铁公司的大分、八幡、室兰、君津等钢厂采用了该工艺,产钢占新日铁总产钢量55%左右,转炉炼钢石灰消耗减少40%以上,但对其中许多关键技术,如液态渣固化、脱磷阶段炉渣碱度、供氧参数、脱磷工艺、倒渣控制等基本没有报道。 20世纪50~70年代,中国一些转炉钢厂在铁水硅、磷质量分数高时,为了降低石灰消耗,减少吹炼过程喷溅,改善脱磷效果,曾采用过出钢后留渣或“留渣+双渣”炼钢工艺。后来,随着高炉生产水平提高(铁水硅质量分数降低),高磷铁矿石用量减少(铁水磷质量分数降低),以及顾忌留渣造成铁水喷溅安全隐患,留渣或“留渣+双渣”炼钢工艺没有在更大规模推广采用。 近年来中国国内钢厂开始试验采用“留渣+双渣”转炉炼钢工艺,其中首钢在其迁钢公司5座210t复吹转炉和首秦公司3座100t复吹转炉大规模采用了该工艺方法,取得了炼钢石灰消耗减少47%以上,轻烧白云石消耗减少55%以上,渣量降低30%以上的效果。 1 首钢采用“留渣+双渣”炼钢工艺情况 首钢迁钢公司第一和第二炼钢分厂共拥有5座210t顶底复吹转炉,氧枪采用5孔喷头,马赫数为2.0,供氧强度在3.3~3.4m3/(min·t)范围,年产钢810万t,主要产品包括汽车、家电用冷轧钢板、电工钢板、管线钢板、容器板、造船板等。首秦公司拥有3座100t顶底复吹转炉,氧枪采用4孔喷头,马赫数为2.0,供氧强度在3.6~3.8m3/(min·t)范围,年产钢260万t,主要生产优质中厚板(管线、造船、桥梁、高层建筑、海洋平台用钢板等)。如图1所示,迁钢公司和首秦公司采用的氧气转炉“留渣+双渣”炼钢工艺主要包括以下环节: ①转炉冶炼结束出钢后将炉渣留在炉内;②采用溅渣护炉将部分炉渣溅至炉衬表面加以固化,再补加一定量石灰、白云石对炉底液态渣进行固化;③对炉渣固化加以确认,然后装入废钢、铁水;④进行第1阶段吹炼(脱磷阶段),结束后倒出炉内60%左右炉渣;⑤进行第2阶段(脱碳阶段)吹炼,结束后出钢,但将炉渣留在炉内,进入下炉次冶炼并以此循环往复。

溅渣护炉技术 冶金

毕业设计(论文) 学校: 专业:冶金技术 班级: 学生: 学号: 指导教师:

摘要 溅渣护炉技术作为一项工艺简单、综合经济效益高的新技术,正别外国许多厂家推广、使用,分析了该技术的优势及存在的问题和解决办法,以及该技术的应用现状和应用前景。 转炉溅渣护炉是在出钢后,将转炉内留渣的粘度和氧化镁含量调整到合适的范围,在车间原有的氧枪或另设专用喷枪,向氧化镁含量、高粘度的炉渣喷一定压力和流量的氮气,将粘渣吹溅到炉衬上全面涂挂、冷却、凝固成一层炉渣质的保护层,避免了在冶炼时炉衬和炉渣的直接接触,从而起到减缓耐火材料的蚀损,延长转炉炉龄的作用。溅渣护炉作为一项实用技术,经过国内外许多钢厂实践后,对提高转炉炉龄和降低耐火材料消耗的效果非常显著。 关键词:溅渣护炉;转炉;应用

目录 1存在问题及解决办法 (1) 2溅渣护炉工艺的冶金因素及其优势 (2) 3国外溅渣炉技术的发展 (3) 4国内转炉炉龄现状及溅渣护炉技术的发展 (5) 5应用现状及应用前景 (6) 致谢信 (7) 参考文献 (8)

1存在问题及解决办法 任何一项技术的应用不可能没有缺陷,在一些早期设备上,氧枪结瘤就是一个问题。溅渣技术使用后,往往使枪结瘤出现次数增加。实践证明,在溅渣过程中,若炉内残留少量钢水,氧枪结瘤将更加严重。解决这个问题,有几种方法证明是有效的。第一,有充足冷却水的炉子不出现结瘤问题;第二,将用于吹炼的热氧枪移走,换上冷枪完成溅渣,氧枪结瘤几乎完全消除。这表明氧枪结瘤与温度和热量的传递有关。渣子和冷枪的表面结合并不紧密,如果在溅渣时冷凝钢不出现在氧枪上,那就不会再氧枪上形成粗糙的外壳以使炉渣粘附其上。溅渣后将氧枪停放在支架上,形成的渣壳将冷却,并与氧枪分离,脱落。使用底吹搅拌技术的BOF转炉对溅渣技术的应用提出了新的要求。在溅渣时炼钢工必须小心,不能使炉底的渣太多;氮气的流速必须足够高,以便将炉渣吹离炉底;另外要调整经过透气砖喷吹气体的压力、流量。最终,随着炉衬寿命的提高,额外的操作需要增加辅助设备的使用寿命,如BoF炉的烟罩、钢包车和轨道等设备。当这被认为是一个迫切需要解决的问题时,就要求计划停炉检修以保持和延长这些设备的寿命。在转炉从新砌筑时,这项工作的实施刻不容缓,因为过去被认为是正常的周期不再出现,而且炉衬不会因为耐材问题而被拆卸。 2溅渣护炉工艺的冶金因素及其优势 溅渣护炉工艺的步骤如下:(1)钢水从转炉浇入大包;(2)炼钢工目测炉渣以确定是否应向炉内加入添加料,同时也观察炉衬已决定那些特殊部位需要特别处理;(3)摇动转炉将装料侧和出钢侧炉衬挂上一层渣;(4)将氧枪下降到预定位置并切换成氮气。氮气射流与以设计好的氧枪射流相似;(5)氧枪的高度由计算机或炼钢工控制,以便炉渣涂满整个炉膛,或者氧枪保持在一固定位置,使炉渣涂挂在特殊部位,处理时间由炼钢工控制决定;(6)关掉氮气,移走氧枪,将炉内残留的炉渣倒入渣罐;(7)氧气顶吹转炉准备装料进行下一炉的冶炼。在倒炉过程中,由操作工取样、测量熔池地温度、检查炉衬状况。 在引进渐渣护炉时曾考虑的冶金因素包括可能引起钢中磷或硫含量的增加,但目前实践中还没有此种现象发生。使用高MgO炉渣护炉对炼钢工作者来说是一个

(完整版)连铸工初级工职业技能鉴定理论试题

填空(共题,将适当的词语填入题中的划线处,每题2分) *ac1. ________被称为连铸机的心脏. ab2.中间包钢流控制装置有____系统、滑板系统、塞棒和滑板组合系统。*ca3.铸坯的表面缺陷主要决定于钢水在_________ 的凝固过程。 *ca4.结晶器材质一般为_______。 *ab5.铸坯切割方式分为________、机械剪切两种。 *ab6.连铸机拉速提高,铸坯液芯长度增加,引起铸坯出结晶器后坯壳厚度变______,二次冷却段的铸坯易产生鼓肚。 *ca7.结晶器振动的主要参数为______________,频率。 *cb8.大包保护套管的作用是防止钢水飞溅,防止_____________. *ac9.铸机机型为R6.5/12-1200型板坯连铸机,其中6.5为________,1200为辊身长度。 *ba10.浇铸温度是指______________内的钢水温度. *a11.浇注温度偏低会使钢水夹杂物不易上浮,水口,浇注中断。 *ba12.第一炼钢厂方坯、3#板坯铸机、4#板坯铸机的冶金长度分别是9m,14.6m, m。 *bc13.目前第一炼钢厂方坯中间包使用的定径水口材质是质复合。 *ab14. 结晶器材质要求是性好,强度高,高温下膨胀差,易于切削加工和表面处理。 *cb15. 连铸二冷水系统装置由总管,支管,喷架和、等组成。*ca16.连铸漏钢常见有裂纹漏钢,漏钢,夹渣漏钢,漏钢,上挂漏钢,开浇漏钢等。 *bc17.我厂3#铸机、4#铸机结晶器振动时,振幅分别是±3.5mm, mm。*cb18.目前我厂3#、4#铸机使用的中间包工作包衬主要材质为质涂抹料。 *cb19. 铸坯的内部缺陷主要是中间裂纹,三角区裂纹,,中心线裂纹,中心和疏松、夹杂。 *ba20.连铸坯的矫直方式有固态全凝固矫直和_______ 矫直。 *cc21.拉矫机的作用是拉坯、矫直和________.

转炉炼钢关键技术

4.3.2 炼钢关键技术 4.3.2.1 转炉炼钢关键技术 ——2006~2010年推广和开发的技术 ●转炉少渣、溅渣相结合的冶炼技术 主要是铁水三脱,脱磷转炉操作后,脱碳转炉渣量将减少到50kg/t以下时,仍进行溅渣护炉的技术。包括新条件下炉渣改质技术、喷枪结构优化技术、与喷补结合技术、全留渣技术等。 ●转炉内熔融还原合金化冶炼技术 脱磷炉加锰矿,脱碳炉加铬矿等矿物直接还原合金化低成本冶炼技术。 ● 转炉长寿复吹技术 改进底吹透气元件结构小材质,优化工艺,100%复吹,高炉龄技术。 ●转炉冶炼特钢技术 在优化炉料质量基础上,实现过程、终点和精炼精确控制的转炉一精炼结合冶炼各类中高合金钢的高效优质生产技术,其中转炉不锈钢冶炼系统技术为开发重点。 ●转炉全方位信息检测与控制技术 包括转炉钢水成分温度连续直接测定(如激光或红外光导测定、直接测定传感器等)与转炉闭环控制技术;转炉冶炼过程与终点智能精确控制技术(含终点静态、副枪和炉气分析动态控制);转炉声纳化渣检测技术;转炉下渣检测与控制技术 ● 转炉高强度供氧技术

供氧强度≥5 m3/min.t,供氧时间≤10min的系统工艺、装备技术。氧枪头结构优化与长寿是技术的关键,也要配合优化炉型。 ● 转炉煤气、蒸气大回收量技术 实现煤气回收≤100m3/t,蒸汽回收≥100kg/t,蒸汽完全满足钢厂各种需求(包括RH、VD的蒸汽)有余,供应其他厂。 ●转炉干法除尘技术 自主开发高效、易控、低成本的干法除尘技术 ● 转炉低排放控制技术 主要是水零排放、烟气全除尘(消灭无组织排放)、无渣与渣尘基本上全利用等系统技术。 其中转炉长寿复吹技术、转炉冶炼特钢技术、全方位信息检测与控制技术、转炉煤气与蒸汽大回收量技术、转炉干法除尘技术、转炉低排放控制技术是该阶段主导技术 ——2011~2020年开发技术 ●转炉高固体料(或全固体料)熔炼技术 适应废钢供应量充裕后,提高废钢比降低生产成本,比电炉更高效的系统技术。 ● 转炉"零排放"清洁生产技术 在低排放控制技术上,进一步做到气、水、固废完全无排放,高固体熔炼时,固废中可利用元素回收利用等系统技术。经济高效的厂房顶三级除尘装备与技术是研发的要点。 ●转炉全自动智能控制技术

糠醇生产工艺技术分析

糠醇生产工艺技术分析 糠醇的合成是由糠醛在催化剂作用下,在管式反应器内保持一定压力、利用自热维持一定的反应温度,氢气与糠醛液相充分接触后发生反应合成的。影响其生产工艺过程的主要因素由采用的催化剂类型的选择;反应温度、压力、气液比(氢醛比)等的控制;空速;反应器的高径比;精馏工艺的选择;糠醛的纯度及酸性等决定。 目前,糠醇的生产主要是利用糠醛催化加氢制,分为高压液相加氢和常压气相加氢。前者工艺流程短,投资少,见效陕,缺点是劳动强度大;后者工艺流程复杂,投资大,生产成本高,见效慢,尤其对催化剂的技术要求较高。目前,国内生产气相加氢制糠醇的催化剂技术还不够完善,需从国外进口,优点是装置用人少,安全性高。 国内大多数厂家均采用液相加氢法生产糠醇,本文结合共享集团于2005年10月份开始建设并已投产的7000t/a糠醇生产装置项目,作者经过对实际装置生产工艺运行控制和总结,从以下几个方面探讨有关糠醇合成工艺技术及其技术改造。 1 生产工艺过程 将糠醛用泵打入糠醛高位槽,然后放人搅拌槽与定量的催化剂混合均匀,再通过计量泵以约8.0MPa的压力注入夹套管式反应器,进入反应器前与经过氢压机压缩至大于 8.0MPa的氢气共同预热后在反应器人口处混合,一般反应温度控制在210~230℃,得粗糠醇,经减压精馏即可得到产品糠醇。 2 糠醇合成机理 糠醛加氢合成糠醇主反应式如下: C4H3O(CHO)+H2=C4H3O(CH2OH)+Q 液相糠醛加氢反应类型属瞬间反应,反应为非均相反应,具有多相反应的特征。反应历程为,糠醛首先吸附在催化剂活性中心,被吸附分子的C-O羰基键由于活性中心的复杂分子轨道作用而被削弱,接着与溶解在糠醛中的氢发生反应。目前,实践研究表明,该羰基上发生的化学吸附在铜铬催化剂作用下,当温度、压力达到其活性温度才会发生。 3 糠醇合成技术 3.1 常压气相加氢制糠醇 以汽化的糠醛控制一定的空速与过量的氢气流混合后通过装有催化剂的列管式固定床反应器,采用氧化物类催化剂,其反应温度控制在120℃左右,压力在1.1×105Pa左右,粗产物糠醇无色透明,糠醇含量可达到98%,单程转化率可得达到99%以上,产率一般可达到92%以上。气相加氢所采用的催化剂一般有两大类:氧化物催化剂和合金类催化剂。前者活性温度相对高于后者。 3.2 液相加氢制糠醇 一般采用夹套管式反应器,应用氧化物催化剂,反应温度可控制在200-220℃,压力为6.5~11MPa,糠醇含量可达到97%以上,单程转化率在98%以上。液相加氢所采用的催

转炉溅渣护炉技术

转炉溅渣护炉技术的应用方法 1.溅渣护炉的基本原理,是在转炉出完钢后加入调渣剂,使其中的Mg与炉渣产生化学反应,生成一系列高熔点物质,被通过氧枪系统喷出的高压氮气喷溅到炉衬的大部分区域或指定区域,粘附于炉衬内壁逐渐冷凝成固态的坚固保护渣层,并成为可消耗的耐材层。转炉冶炼时,保护层可减轻高温气流及炉渣对炉衬的化学侵蚀和机械冲刷,以维护炉衬、提高炉龄并降低耐材包括喷补料等消耗。氧气顶吹转炉溅渣护炉是在转炉出钢后将炉体保持直立位置,利用顶吹氧枪向炉内喷射高压氮气(1. 0MPa) ,将炉渣喷溅在炉衬上。渣粒是以很大冲击力粘附到炉衬上,与炉壁结合的相当牢固,可以有效地阻止炉渣对炉衬的侵蚀。复吹转炉溅渣护炉是将顶吹和底吹均切换成氮气,从上、下不同方向吹向转炉内炉渣,将炉渣溅起粘结在炉衬上以实现保护炉衬的目的。溅渣护炉充分利用了转炉终渣并采用氮气作为喷吹动力,在转炉技术上是一个大的进步,它比干法喷补、火焰喷补、人工砌砖等方法更合理,其既能抑制炉衬砖表面的氧化脱碳,又能减轻高温渣对炉砖的侵蚀冲刷,从而保护炉衬砖,降低耐火材料蚀损速度,减少喷补材料消耗,减轻工人劳动强度,提高炉衬使用寿命,提高转炉作业率,减少操作费用,而且不需大量投资,较好地解决了炼钢生产中生产率与生产成本的矛盾。因此,转炉溅渣护炉技术与复吹炼钢技术被并列 为转炉炼钢的2项重大新技术。

2 溅渣护炉主要工艺因素2. 1 合理选择炉渣并进行终渣控制炉渣选择着重是选择合理的渣相熔点。影响炉渣熔点的物质主要有FeO、MgO和炉渣碱度。渣相熔点高可提高溅渣层在炉衬的停留时间,提高溅渣效果,减少溅渣频率,实现多炉一溅目标。由于FeO易与CaO和MnO等形成低熔点物质,并由MgO和FeO的二元系相图可以看出,提高MgO的含量可减少FeO相应产生的低熔点物质数量,有利于炉渣熔点的提高。从溅渣护炉的角度分析,希望碱度高一点,这样转炉终渣C2 S 及C 3 S之和可以达到70%~75%。这种化合物都是高熔点物质,对于提高溅渣层的耐火度有利。但是,碱度过高,冶炼过程不易控制,反而影响脱磷和脱硫效果,且造成原材料浪费,还容易造成炉底上涨。实践证明,终渣碱度控制在2. 8~3. 2为好。由于溅渣层对转炉初渣具有很强的抗侵蚀能力,而对转炉终渣的高温侵蚀的抵抗能力很差,转炉终渣对溅渣层的侵蚀机理主要表现为高温熔化,因此合理控制转炉终渣,尽可能提高终渣的熔化温度是溅渣护炉的关键环节。合理控制终渣应着重从终渣的MgO 含量和FeO含量着手。2. 1. 1 终渣MgO含量的控制在一定条件下提高终渣MgO含量,可进一步提高炉渣的熔化温度,这种高熔点炉渣在冶炼初期产生的溅渣层减轻了渣对炉衬的机械冲刷,并与渣中SiO2 、FeO反应,避免了渣对炉衬的化学侵蚀;在冶炼中期,溅渣层中的MgO与炉渣中的FeO生成高熔点物质,在下一次溅渣操作中成为溅渣层的主要组成部分;同时由于溅渣层被反复利用,减少了炼钢中造渣剂的使用,降低了生产和操作成本。因此,终渣MgO 含量应在保证出钢温度前提下超过饱和值,但含量也不宜过高,以免

天津2012年自考“连铸设备与工艺”课程考试大纲

天津市高等教育自学考试课程考试大纲 课程名称:连铸设备与工艺课程代码:3448、4244 第一部分课程性质与目标 -、课程的性质与特点 连铸设备与工艺是高等教育自学考试冶金技术(专)专业所开设的一门专业课。其中包括连铸设备、凝固原理、连铸操作和质量检验几部分内容。 连续铸钢是现代钢铁企业的重要铸钢生产方法,因此课程注重实践性、应用性。 二、课程目标与基本要求 设置本课程的目的是使考生通过学习连铸设备与设备的操作,掌握钢液凝固的基本理论及连铸岗位的操作要求,为考生从事连续铸钢工作打下理论基础。 通过本课程学习要求考生: 1、了解连铸过程中使用设备的基本参数、具体构造、工作的理论依据、工艺性能及简单操作方法; 2、掌握金属结晶的基本条件、结晶的过程及凝固(冷却)过程的力学变化影响,掌握连铸坯凝固的过程及控制; 3、熟悉连铸过程各个岗位的操作规程及注意事项; 4、掌握铸坯质量的各种质量缺陷,形成原因及预防手段; 5、了解合金钢连铸及其它连铸新技术的发展现状。 三、与本专业其他课程的关系 学习本课程的考生必须先掌握物理化学、金属学、工程材料的相关理论。同时由于本课程实践性强的特点,希望考生能利用各种实习实践机会,深入生产一线,最大限度的把理论学习与实践结合起来,提高学习质量。 第二部分考核内容与考核目标 绪论 一、学习目的与要求 通过本章学习,学生应了解铸钢的发展历史,连铸使用的主要设备,掌握连铸与模铸的区别。 二、考核知识点与考核目标 (一)铸钢概论(一般) 识记:铸钢的任务、分类、模铸、连铸的概念;铸机的主要设备、铸机分类及分类方法 理解:连铸与模铸相比的优越性 第一章连铸设备与操作 一、学习目的与要求 通过本章的学习,学生应掌握连铸使用的主要设备,结构、使用前准备、操作规程、注意事项及更换的相关操作。应达到掌握连铸设备使用方法及公用。 二、考核知识点与考核目标

糠醇安全技术说明书1

编码:00003 化学品安全技术 说明书 化学品名:糠醇 企业名称: 地址: 邮编: 传真号码: 联系电话: 电子邮箱: 编制日期:

目录 第一部分:化学品及企业标识 (2) 第一部分:化学品及企业标识 (2) 第二部分:危险性概述 (2) 第三部分:成分/组成信息 (2) 第四部分:急救措施 (3) 第五部分:消防措施 (3) 第六部分:泄漏应急处理 (3) 第七部分:操作处置与储存 (3) 第八部分:接触控制和个体防护 (4) 第九部分:理化特性 (4) 第十部分:稳定性和反应性 (5) 第十一部分:毒理学信息 (5) 第十二部分:生态学信息 (6) 第十三部分:废弃处理 (6) 第十四部分:运输信息 (6) 第十五部分:法规信息 (6) 第十六部分:其他信息 (7)

第一部分:化学品及企业标识 化学品中文名:糠醇;2-呋喃甲醇 化学品英文名:furfural alcohol 企业名称: 地址: 邮编: 传真号码: 企业电话: 应急电话: 电子邮件地址: 推荐用途:可用于有机合成、合成纤维、橡胶、农药等,也用于制造树脂和溶剂。 第二部分:危险性概述 危险性类别:第6.1类毒害品。 侵入途径:吸入、食入、经皮肤吸收。 健康危害:本品具有刺激性。高浓度持续吸入引起咳嗽、气短和胸部紧束感,极高浓度可引起死亡。蒸气对眼有刺激性,液体可引起眼部炎症和角膜混浊。皮肤接触其液体,可引起皮肤干燥和刺激。口服出现头痛、恶心,口腔和胃刺激。 环境危害:对环境可能有危害。 爆炸危险:本品可燃,有毒,具强刺激性。 第三部分:成分/组成信息 纯品□√混合物□ 化学品名称:糠醇 有害物成分含量CAS号 糠醇99% 98-00-0

溅渣护炉的基础资料

溅渣护炉工艺 一、冶炼过程炉渣的调整 二、终点渣成分控制 三、调渣剂的选择 四、留渣量的确定 五、调渣工艺 六、溅渣工艺参数的确定 七、溅渣操作程序 八、溅渣时间与溅渣频率 九、溅渣效果与炉况监测 十、氧枪(溅渣)的设计与维护 十一、炉底上涨的解决 十二、炉口结渣的清理 十三、溅渣与喷补的配合 十四、溅渣设备 十五、设备隐患与安全维护

一冶炼过程炉渣的调整 目的是在采用溅渣护炉技术后,减少炉渣对炉衬的化学侵蚀,在不影响脱磷、脱硫的前提下,合理控制终渣MgO 含量,使终渣适合于溅渣护炉的要求。 二终点渣成分控制 影响终耐火度的主要因素是MgO、TFe和碱度(CaO/SiO2)。碱度和氧化铁含量由原料和钢种决定,其中氧化铁在10%-30%范围波动,为使溅渣层有足够的耐火度成分,主要措施是调整(MgO)含量。 终渣MgO含量 三调渣剂的选择 带用调渣剂有:轻烧白云石、生白云石、轻烧菱镁球、冶金镁砂、菱镁矿渣和含MgO较高白石灰。 调渣剂的作用主要是提高(MgO)含量,因此,调渣剂中MgO、SiO2含量是重要物性参数。

在具体选择何种调渣剂的时候要综合考虑价格和热耗的问题。 生白云石粒度应为5-15mm,轻烧镁球和轻烧白云石稍大些,但不应大于25mm。 四留渣量的确定 溅渣层厚度取20mm,炉渣密度按305t/m3计,经计算为4.5吨,作为开始溅炉时的参考,经一段时间摸索,应据济钢具体情况,确定合理渣量。 五调整工艺 调整工艺指炼钢结束后,通过观察炉渣状况,判定炉况是否适宜溅渣。如炉渣过稠发干,应加入少量化渣剂稀释;反之加少量稠渣剂,使其适宜溅渣操作。 采用出钢后调渣工艺: 即在出钢后,据炉渣状况适当加入调渣剂,使其适当进行溅渣操作。该工艺适合于中小型转炉,出钢温度偏高,炉渣过热度较高的现状;同时原料条件不稳定,往往造成后吹,多次倒炉使(FeO)升高,渣稀且(MgO)达不到饱和值,故需在出钢后加入调渣剂进行调整。 调整操作程序: 1、吹炼终点,控制炉渣中的MgO含量达8%-10%。

转炉炼钢过程工艺控制的发展与展望要求

转炉炼钢过程工艺控制的发展与展望要求 发表时间:2018-12-31T11:57:53.667Z 来源:《建筑学研究前沿》2018年第28期作者:亓传军[导读] 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力。山东泰山钢铁有限公司不锈钢炼钢厂技术科山东莱芜 271100 摘要:在转炉冶炼控制方面,钢厂关注更多的是终点钢水是否合格,但随着日益增加的市场竞争压力和环境要求,钢厂希望尽可能实现节能降耗,减少气体排放,而过程控制的优化是实现这一目标的有效手段。通过对转炉炼钢过程进行优化控制,使炼钢进程以合理的方式进行,使辅料和能源消耗最小化,才能使企业在市场经济条件下更具竞争力,并且过程控制也是转炉全自动控制发展的重要部分。文章 重点就转炉炼钢过程工艺控制的发展与展望进行研究分析,以供参考。关键字:转炉炼钢;工艺技术;发展对策;未来展望 引言 转炉炼钢工艺的优化大大提高了转炉炼钢的发展,同时增强了炼钢企业的市场竞争力,工艺优化,不但可以降低成本,同时提高炼钢企业的年产量,节省各项资源的消耗,最大限度地提高了企业的经济效益。各项技术指标的提高,进一步优化炼钢工艺,带动炼钢业的经济发展。 1转炉炼钢工艺的目的 转炉冶炼主要是将生铁里的碳及其它杂质(如:硅、锰)等氧化,产出比铁的物理、化学性能与力学性能更好的钢。钢与生铁的区别:首先是碳的含量,理论上一般把碳含量小于2.11%称之钢,它的熔点在1450-1500℃,而生铁的熔点在1100-1200℃。在钢中碳元素和铁元素形成固熔体,随着碳含量的增加,其强度、硬度增加,而塑性和冲击韧性降低。钢具有很好的物理、化学性能与力学性能,可进行拉、压、轧、冲、拔等深加工,其用途十分广泛。按照配料要求,先把废钢等装入炉内,然后倒入铁水,并加入适量的造渣材料(如生石灰等)。加料后把氧气喷枪从炉顶插入炉内,吹入氧气(纯度大于99%的高压氧气流),使它直接跟高温的铁水发生氧化反应,除去杂质。用纯氧代替空气可以克服由于空气里的氮气的影响而使钢质变脆,以及氮气排出时带走热量的缺点。在除去大部分硫、磷后,当钢水的成分和温度都达到要求时,即停止吹炼,提升喷枪,准备出钢。出钢时使炉体倾斜,钢水从出钢口注入钢水包里,同时加入脱氧剂进行脱氧和调节成分。钢水合格后,可以浇成钢的铸件或钢锭,钢锭可以再轧制成各种钢材。氧气顶吹转炉在炼钢过程中会产生大量棕色烟气,它的主要成分是氧化铁尘粒和高浓度的一氧化碳气体等。因此,必须加以净化回收,综合利用,以防止污染环境。从回收设备得到的氧化铁尘粒可以用来炼钢;一氧化碳可以作化工原料或燃料;烟气带出的热量可以副产水蒸气。此外,炼钢时生成的炉渣也可以用来做钢渣水泥,含磷量较高的炉渣,可加工成磷肥等。氧气顶吹转炉炼钢法具有冶炼速度快、炼出的钢种较多、质量较好,以及建厂速度快、投资少等许多优点。但在冶炼过程中都是氧化性气氛,去硫效率差,昂贵的合金元素也易被氧化而损耗,因而所炼钢种和质量就受到一定的限制。 2转炉炼钢过程工艺控制现状 针对当前钢铁行业所面临的处境,提高市场竞争力、降低炼钢生产成本势在必行。而在炼钢生产中,金属炉料成本约占炼钢生产总成本的80%以上,所以抓好金属炉料成本是控制炼钢生产成本的关键。为进一步减少金属炉料消耗,炼钢厂通过探索,优化炉料结构,改进炉前冶炼工艺和优化合金料的使用,采用少渣炼钢工艺、改进吹氧工艺、引用低成本合金等措施,有效地降低金属炉料消耗、氧耗和合金成本,达到降低生产成本的目的,增加了企业经济效益。近年来,炼钢厂通过完善溅渣护炉、低铁水比冶炼、高效转炉、低耐材消耗达到了转炉炼钢厂生产工艺的优化组合。 3转炉炼钢过程工艺控制的发展对策3.1优化入炉料结构,合理使用好铁矿石有数据测得,与原材料成分相近的高炉铁水和铁块的实际金属收得率约为93%和92%,自产废钢和社会废钢的金属收得率约为97%和88%。根据铁钢产能的平衡及铁水废钢价格,通过热平衡和物料平衡计算,优化了入炉料结构。实际炉料结构中采用增大入炉原料中铁水比例,降低废钢配比,增加矿石使用量的工艺措施,可有效地提高炉料金属收得率,降低金属料消耗。为了尽量增加矿石用量,提高矿石还原效果和减少吹炼过程中矿石加入量过多对冶炼的影响,在实际生产中,对矿石加入工艺进行了调整。在转炉溅渣及加废钢后,根据铁水的条件直接将2/3左右的矿石加入炉内后再兑铁,在兑铁过程中与废钢搅拌以促进部分矿石的还原。在保证化渣效果和避免喷溅的原则下,尽量保证剩余矿石早加和均匀加入,以保证矿石化渣还原时间和效果。吹炼中期采用分批少量加入控制,避免吹炼中期加入量集中造成的喷溅,吹炼后期严禁加矿石,避免矿石加入过晚造成熔化还原效果差和炉渣氧化性强对脱氧合金化的影响。 3.2优化冶炼工艺,减少炉渣铁耗和氧耗3.2.1优化吹炼工艺,减少喷溅和氧耗喷溅是造成铁耗损失的主要原因之一,为消除或减轻喷溅采取了以下措施:根据天车限载的要求,进一步降低装入量,使转炉装入量得到合理控制,适当提高了炉容比,有效地保证了炉内有效工作容积,以利于减少喷溅;前期化好渣,在第二批造渣料加入前后,通过提前成渣的方法,将泡沫渣的高峰期前移,以便与脱碳的峰值时刻错开;改进吹炼工艺,吹炼前期采用大氧压适当降低枪位操作,利于熔解废钢,在硅氧化完毕之后、脱碳的高峰期到达之前,暂时降低供氧强度,然后再将其平缓地恢复到正常值,吹炼终期采用大氧压低枪位操作,加强熔池搅拌,保证终点钢水成分和温度的均匀,降低了氧耗,同时降低炉渣氧化性。 3.2.2优化造渣工艺,实施少渣炼钢,减少炉渣铁耗为了减少单炉产渣量,在生产中采取精料方针,在进一步完善转炉留渣溅、渣操作工艺应用基础上努力提高入炉原料质量,使用高品位石灰和矿石,采用轻烧白云石造渣。根据铁水Si、S含量情况合理调整造渣料消耗,在确保满足生产需要的情况下适当减少石灰量消耗。铁水中硅、锰含量低及无需脱硫,这些条件会改变造渣机理及动力特性,因为这时石灰消耗下降,渣量减少,渣碱度及氧化度增高。在这样的条件下,渣的精炼功能只限于铁水脱磷,这样就能在转炉冶炼本身中多次利用渣,使渣具有很高的精炼能力。4转炉冶炼工艺过程控制的未来展望

湖南呋喃树脂深加工项目可行性研究报告

湖南呋喃树脂深加工项目可行性研究报告 规划设计/投资分析/产业运营

报告摘要说明 呋喃又称糠醇,本身进行均聚或与其它单体进行共缩聚而得到的缩聚 产物,糠醇与脲醛、酚醛、酮醛合成多种产物,习惯上称为呋喃树脂。其 中以糠醇酚醛树脂、糠醇尿醛树脂应用较多。 糠醇树脂是由糠醇为主体与甲醛缩聚而成的(改性产品又添加了尿素),外观为深褐色至黑色的液体或固体,耐热性和耐水性都很好,耐化学腐蚀 性极强,对酸、碱、盐和有机溶液都有优良的抵抗力,是优良的防腐剂。 糠醇树脂强度高,是木材、橡胶、金属和陶瓷等优良的粘结剂,也可用于 生产涂料。 该呋喃树脂项目计划总投资17137.59万元,其中:固定资产投资11837.35万元,占项目总投资的69.07%;流动资金5300.24万元,占 项目总投资的30.93%。 本期项目达产年营业收入37851.00万元,总成本费用28539.30 万元,税金及附加320.69万元,利润总额9311.70万元,利税总额10916.76万元,税后净利润6983.78万元,达产年纳税总额3932.99 万元;达产年投资利润率54.33%,投资利税率63.70%,投资回报率40.75%,全部投资回收期3.95年,提供就业职位586个。 呋喃树脂是指以具有呋喃环的糠醇和糠醛作原料生产的树脂类的总称,其在强酸作用下固化为不溶的固形物,在机械工业的铸造工艺中作砂芯粘

结剂,广泛应用于汽车、机床、船舶、飞机,风电、通用机械、精密仪器等产品的铸件生产和高档精密出口铸件的生产。 呋喃树脂属热固性树脂,受热时能彼此交联固化而无需添加固化剂。酸在固化反应中起催化作用,还可降低热固化时所需的温度。根据施工工艺的特殊需要,可引入催化型固化剂,无需加热就能在室温下迅速交联固化。固化交联时要放出低分子物质,故固化时体积收缩率较大,其延伸率很低,呈现脆性。

转炉留渣操作技术

转炉留渣操作技术 1 前言 氧气顶吹转炉留渣操作在20世纪80年代初期就已经提出,由于没有掌握留渣后操作安全规律,在兑铁时时常出现大喷,因此,留渣操作一直没有得到推广应用,但氧气顶吹转炉留渣操作可以大大降低钢铁料消耗、节约石灰,在转炉吹炼初期可以快速成渣,而且是高碱度氧化渣,有利于提高生产率,我们知道,钢铁料消耗占转炉生产成本80%左右的水平,因此,留渣操作具有显著的经济效益,特别是对于我们某厂公司,铁水资源不足的钢厂效益更是立竿见影,所以,只要从理论上找出留渣后兑铁发生大喷的根本原因,从操作上找出切实可行的规避措施,留渣操作从可持续发展和循环经济的层面上是大有可为的。2转炉留渣操作的可行性 某厂二炼钢铁水成分如下: 铁水平均温度1250~1300℃冶炼终渣成分为:CaO:52%、MgO:8%、Si02:10%、FeO:18%。 兑铁时发生喷溅的主要原因是在兑铁瞬间,铁水中的碳和钢渣中的FeO发生激烈的C-O反应,生成的CO气体急剧膨胀,把铁水和钢渣带出炉口,因此,只有解决兑铁时的C-O激烈反应,才能避免大的喷溅。 3留渣操作的特点 由于炼钢生产节奏快,一炉钢在冶炼过程中,其吹炼时间只有十几分钟,也就是说要在十几分钟的吹氧时间内形成具有一定碱度、良好流动性、合适且

TFe和MgO含量正常泡沫化的炉渣,以保证冶炼成分和温度同时双命中的钢水,并减少对炉衬的侵蚀,留渣操作贯穿于炼钢整个冶炼周期,主要是靠所留炉渣的物理热和炉渣化学性能,使其具有迅速参与反应、并促进前期炉渣的快速形成、提高去除P、S的效率、节省石灰用量。 3.1有利于去磷 在氧气顶吹转炉中,磷的氧化是在炉渣-金属界面中进行的,其反应式为: 生成的磷酸铁在高温下极其不稳定,它可以重新分解生成P2O5,而P2O5是不稳定的化合物,因此,仅靠生成P2O5。不能去除磷,但P2O5是酸性化合物,若用碱性化合物与其结合生成稳定的化合物可以去除。研究认为,在碱性渣中P2O5与CaO形成稳定的(CaO)x P2O5型的化合物,其中x为3或4,因此,操作中需加入石灰,使其生成稳定的化合物3CaO· P2O5。或4CaO·P2O5存在于渣中,才能有效去磷,其反应为: 从式中可以看出脱磷的条件,(1)提高CaO含量即提高炉渣碱度,(2)提高炉渣氧化性,即FeO含量,(3)降低熔池温度。 以上分析可以说明,留渣操作对脱磷是有利的,因为(1)冶炼初期熔池温度比较低,碱度一般在1.8~2.2之间,且渣中含有一定的FeO,满足脱磷的热力学条件,(2)留渣操作可以使初期成渣速度更快、流动性好,满足脱磷的动力学条件。 3.2提高钢水收得率 一般转炉终渣FeO含量在15%左右,渣中游离的铁渣按8%计算,每炉留渣

转炉溅渣护炉技术的发展及现状

收稿日期:2006212207; 修订日期:2007205230 作者简介:李小明(19742  ),陕西洛川人,讲师.研究方向:冶金相关技术. ?今日铸造 Today ’s Foundry ? 转炉溅渣护炉技术的发展及现状 李小明,王冠甫,杨 军 (西安建筑科技大学冶金工程学院,陕西西安710055) 摘要:溅渣护炉充分利用了转炉终渣并采用氮气作为喷吹动力,是转炉技术一个大的进步。采用溅渣护炉不仅可减少炉衬蚀损、提高炉龄,而且可减轻工人劳动强度和操作费用,提高生产率。合理控制终渣成分、留渣量、出钢温度和枪位是取得良好的溅渣护炉效果的关键技术和必备条件。我国转炉因具有容量小、数量多、生产负荷大、半钢冶炼转炉原料条件差、热源不足、复吹转炉底吹元件寿命低等特点,使得我国溅渣护炉技术朝多元化方向发展,适宜于各种炉型和原料条件以及工艺特点的溅渣护炉技术蓬勃发展,尤其在复吹溅渣护炉技术方面,已达到先进水平。但转炉经济炉龄还不确定,氮气源还不足,调渣剂的成分还不能动态调整,溅渣时间和枪位还不能自动控制,今后应积极探索终渣动态调整以及溅渣自动控制等技术。关键词:转炉;炉龄;溅渣护炉;应用 中图分类号:TF713 文献标识码:A 文章编号:100028365(2007)0821140204 Pr o gr e s s a n d S t a t us of BO F Pr ot e c ti o n Te c h n ol o g y b y Sla g Sp la s hi n g L I Xiao 2ming ,WANG G uan 2f u ,YANG Jun (School of Metallurgical E ngineering ,Xi ’an U niversity of Architecture and T echnology ,Xi ’an 710055,China) Abs t rac t :I t is a big progre ss for the converter using the finishing slag to prevent the furnace and the nitrogen as the splashing power.Slag splashing technology can not only reduce the furnace lining ero sion ,prolong the furnace life ,but also decrease the manual intensity and the operating co st ,thus enhance s the productivity.The key technology and e ssential conditions to obtain good splashe s effect are to control the ingredients and quantitie s of finishing slag ,the tapping temperature and the gun po sition reasonably.As the dome stic converter has low capacity ,big production load ,the bad raw materials for the semi 2steel converter ,the insu fficient heat source and low life of bottom blowing component of combined blown converter ,the slag splashing technology is developing towards the multiple direction ,so that the slag splashing technology can be suitable for various converter ,raw materials and operational characteristics.The combined blown converter has reached the advance standards.H owever the economical furnace life of converter is indefinite ,the nitrogen source for slag splashing is also insu fficient ,the ingredient of slag modifier cannot be adjusted dynamically ,the splashing time and the gun po sition cannot be controlled automatically ,so the finishing slag dynamic adjusting and automatic control technologie s should be developed in the future. Ke y w ords :BOF ;Company life ;Slag splashing ;Application 炉龄是转炉炼钢的一项综合技术经济指标。高温、高氧化性的炉渣对炉衬的机械冲刷和化学侵蚀是造成炉衬蚀损的主要原因。为了提高炉龄,炼钢工作者相继对炉衬砖材质、砌筑方法、补炉技术、溅渣技术等进行了研究和开发。1983年普莱克斯公司获得了溅渣专利[1,2],但直到20世纪90年代以后,溅渣护炉技术才随着耐火材料质量的改进而蓬勃发展起来。 本文从溅渣护炉的基本原理出发,讨论影响溅渣 护炉效果的几个主要因素,并结合我国转炉的特点,分析我国在小型转炉、半钢冶炼转炉以及复吹转炉溅渣护炉方面取得的技术进步,同时分析我国溅渣护炉存在的问题及今后的发展方向。1 溅渣护炉原理及优势 溅渣护炉的基本原理,是在转炉出完钢后加入调渣剂,使其中的MgO 与炉渣产生化学反应,生成一系列高熔点物质,被通过氧枪系统喷出的高压氮气喷溅到炉衬的大部分区域或指定区域,粘附于炉衬内壁逐渐冷凝成固态的坚固保护渣层,并成为可消耗的耐材

基础知识:钢厂连铸工技能800问

基础知识:钢厂连铸工技能800问 1、( )次冷却是指坯壳出结晶器后受到的冷却。 A.一 B.二 C.三 D.四答案:(B) 2、( )对提高铸坯质量的作用有:细化结晶组织,消除中心偏析,防止皮下气泡、皮下夹杂以达到改善铸坯内部和表面质量的目的。 A.电磁搅拌 B.电磁制动 C.电磁冶金 D.以上都不是答案:(A) 3、( )会影响出苗时间的长短。 A.冶金长度 B.钢水温度 C.液相深度 D.拉坯速度答案:(B) 4、( )年我国粗钢产量突破亿吨,跃居世界第一位。 A.1993 B.1996 C.2000 D.2002 答案:(B) 5、( )是炼钢生产工艺水平和效益的重要标志,反应了企业连铸生产状况。 A.金属收得率 B.连铸比 C.连铸坯成材率 D.铸坯产量答案:(B) 6、( )是我国西北地区最大的碳钢和不锈钢生产基地。 A.包钢 B.新疆八一钢铁厂 C.酒钢 D.陕钢答案:(C) 7、( )是指坯壳出结晶器后受到的冷却。 A.二次冷却 B.一次冷却 C.三次冷却答案:(A) 8、( )主要在结晶器内形成和产生。 A.铸坯内部缺陷 B.铸坯表面缺陷 C.鼓肚和菱变 D.偏析和裂纹答案:(B) 9、《安全生产法》规定,生产经营单位必须为从业人员提供符合标准的( ),并监督、教育从业人员按照规则佩带、使用。 A.劳动防护用品 B.口罩 C.手套 D.劳保鞋答案:(A) 10、《安全生产法》规定,生产经营单位应当在具有较大危险因素的生产经营场所和有关设施、设备上,设置明显的( )。 A.安全宣传标语 B.安全宣教挂图 C.安全警示标志 D.安全宣教模型答案:(C) 11、《安全生产法》规定的安全生产管理方针是( )。 A.安全第一,预防为主 B.安全为了生产,生产必须安全 C.安全生产人人有责 D.安全生产,常抓不懈答案:(A) 12、《突发事件应对法》规定,按照突发事件发生的紧急程度、发展势态和可能造成的危害程度,事故预警分为四级预警,其中最高级别为( )预警。 A.红色 B.黄色 C.蓝色 D.白色答案:(A) 13、《中华人民共和国安全生产法》自( )起施行。 A.37500 B.37530 C.37438 D.37561 答案:(D) 14、12065L喷嘴表示( )型喷嘴。 A.圆锥型 B.扁平型 C.康卡斯答案:(A) 15、1600℃下,下列氧化物最稳定的是( )。 A.SiO2 B.P2O5 C.MnO D.FeO 答案:(A) 16、1856年,( )人发明了酸性空气底吹转炉炼钢法。 A.法国 B.德国 C.英国 D.瑞典答案:(C) 17、CaC2与镁粉着火时,应采用( )等灭火。 A.泡沫灭火器 B.水 C.石棉毡 D.棉布答案:(C) 18、CaF2在保护渣中的作用主要是( )。 A.调节碱度 B.降低熔点 C.调节熔化速度 D.都不是答案:(B) 19、IF钢中[C]=( )。

年产10000吨糠醛项目

年产10000吨糠醛项目建议书 1、糠醛市场情况 1.1、糠醛性质:糠醛又称呋喃甲醛(α—呋喃甲醛), 分子式:C5H4O2; 英文:furfural。结构式: HC——CH ‖‖ HC C ╲╱╲ O CHO 糠醛纯品是无色液体,具有杏仁样的特殊香味。工业品是褐色液体,在光、热、空气和无机酸的作用下颜色很快变为褐黑色。熔点-38.7℃,沸点161.7℃,相对密度1.1594(20/4℃)。微溶于冷水,溶于热水、乙醇、乙醚、苯、丙酮等有机溶剂。易挥发,其蒸汽与空气形成爆炸性混和物。1.2、糠醛用途:糠醛能溶解很多有机溶剂,由于它有一个呋喃环和一个醛基,其化学性质比较活泼,可以通过氧化、氢化、缩合等反应制得大量衍生物,是一种重要的有机化工原料,为此糠醛的用途及使用领域非常广泛。 糠醛主要用于生产糠醇,即糠醛催化加氢制得糠醇,并进一步合成糠醇树脂(又称呋喃树脂);由糠醛制得的1,6-己二胺,是制取尼龙66的原料;由糠醛制得的呋喃经电解还原,还可制成丁二醛,后者为生产药物阿托品的原料;由糠醛制得的乙基麦芽酚,是一种安全无毒食品添加剂;糠醛用作溶剂,它可有选择性地从石油、植物油中萃取其中的不饱和组分,也可从润滑油和柴油中萃取其中的芳香组分;糠醛可代替甲醛与苯酚缩合,制造酚醛树脂;糠醛经氧化生成2-呋喃甲酸,呋喃甲酸用来合成抗生素;等用途。

1.3、糠醛市场分析:我国糠醛生产企业有300多家,主要分布在东北地区和华北地区,年总生产能力达60万多吨,总产量的75%国内销售、25%出口到欧美地区和亚洲地区。 经过多年的发展和研究,糠醛下游产品多达1600多种。并以能再生的农林作物为原料,取之不尽、用之不竭。在石油、煤等化石能源日趋紧张的今天,作为非化石原料,糠醛产业大力发展意义重大。所以糠醛市场发展前景十分广阔。 2、项目建设的重要性 2.1、充分利用本地区及周边地区玉米副产品玉米芯生产出高附加值产品——糠醛,将为本地区的经济发展起较大的推动作用。 2.2、本项目符合国家产业政策:循环经济(生物质再生)、低碳经济(非化石原料)、节能减排,符合“十三五”规划发展的项目,只要本地区有丰富的原料就可建设。 2.3、本项目建成后可安排社会富余人员和残疾人,能为政府解决一定困难。 3、生产设计方案 3.1、设计生产规模:近几年糠醛工艺技术多方面进行了改进创新,单套装置生产规模不断提高;结合玉米芯的收购成本范围,经综合核算单套装置年产10000吨糠醛是最佳的经济规模,具有成熟的工艺流程和工艺技术。 3.2、生产工艺流程:糠醛是呋喃环系最重要的衍生物,糠醛是由玉米芯中的半纤维素(即多缩戊糖)在酸催化作用下首先水解生成戊糖,然后戊糖再经酸催化脱水环化生成糠醛,再经冷凝、蒸馏而制得。反应式为:(C5H8O4)n + n H2O → nC5H10O5 → nC5H4O2 + 3nH2O 半纤维素戊糖糠醛

相关文档
最新文档