2021届湖南四大名校新高考原创预测试卷(二十五)数学

合集下载

2021届湖南四大名校新高考原创预测试卷(二十六)数学

2021届湖南四大名校新高考原创预测试卷(二十六)数学

2021届湖南四大名校新高考原创预测试卷(二十六)数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题(本大题共12小题,每小题5分,共60分.在每小题所给的四个选项中,只有一项是符合题目要求的)1.已知集合{}2(1)1A x N x =∈-≤,{}210B x x =-≥,则( ) A .{12}A B x x ⋂=≤≤ B .{1,2}A B ⋂= C .A B ⊆ D .()R A B ⊆2.已知(1)()1i x yi -+=,其中x ,y 是实数,i 为虚数单位,则||x yi -=( )A .22 B .32 C .52D 53.直线20x y a ++=与圆22240x y x ++-=有两个不同交点的一个充分不必要条件是( ) A .56a -<< B .46a -<< C .36a -<< D .4a >-4.2020年6月17日15时19分,星期三,酒泉卫星发射中心,我国成功发射长征二号丁运载火箭,并成功将高分九号03星、皮星三号A 星和德五号卫星送入预定轨道,携三星入轨,全程发射获得圆满成功,祖国威武.已知火箭的最大速度v (单位:km /s )和燃料质量M (单位:kg ),火箭质量m (单位:kg )的函数关系是:2000ln 1M v m ⎛⎫=+ ⎪⎝⎭,若已知火箭的质量为3100公斤,燃料质量为310吨,则此时v 的值为多少(参考数值为ln20.69≈;ln101 4.62≈)( ) A .13.8 B .9240 C .9.24 D .13805.执行如图所示的程序框图,运行相应程序,则输出的s 的值为( )A .20192020 B .20202021 C .20212022 D .202220236.在622x x ⎛⎫- ⎪⎝⎭的展开式中,常数项为( )A .15-B .15C .60-D .60 7.若a ,b 为正实数,且1123a b+=,则3a b +的最小值为( ) A .2 B .32C .3D .4 8.对于奇函数()f x ,若对任意的12,(1,1)x x ∈-,12x x ≠,且()()()12120x x f x f x -->⎡⎤⎣⎦,则当()21(22)0f a f a -+-<时,实数a 的取值范围为( )A .(B .12⎛⎝ C . D .1,12⎛⎫⎪⎝⎭9.已知ABC 的内角,,A B C 的对边分别为a ,b ,c ,若222sin()cos ,4A B C a b c +=+-=,则ABC 的面积为( )A .1B .2C .4D .610.已知111222a b⎛⎫⎛⎫<< ⎪ ⎪⎝⎭⎝⎭,则( )A .a b b a a b >>B .a b b a b a >>C .b a b b a a >>D .b b a a b a >> 11.已知函数()cos2sin f x x x =+,则下列说法错误的是( ) A .()f x 的一条对称轴为2x π=B .16f π⎛⎫=⎪⎝⎭C .()f x 的对称中心为,02π⎛⎫⎪⎝⎭D .()f x 的最大值为9812.已知双曲线2221(0)x y a a-=>上关于原点对称的两个点P ,Q ,右顶点为A ,线段AP 的中点为E ,直线QE 交x 轴于(1,0)M ,则双曲线的离心率为( )ABCD第Ⅱ卷(非选择题,共90分)注意事项:本卷包括必考题和选考题两部分.第13~21题为必考题,每个试题考生都必须作答.第22、23题为选考题,考生根据要求作答.把答案填写在答题卡上相应的位置,在试题卷上作答无效. 二、填空题(本大题共4小题,每小题5分,共20分)13.已知x ,y 满足约束条件220,220,20,x y x y x y -+≥⎧⎪--≤⎨⎪+-≥⎩则目标函数2z x y =+的最小值为_____.14.已知(1,)a t =,(2,2)b =-且a b ⊥,则||a b +=_____. 15.在正三棱锥P ABC -中,AB =PB =,则三棱锥P ABC -外接球的表面积为_____.16.已知函数,2,()ln(4),2x x e a x f x x x ⎧⋅+≥-⎪=⎨+<-⎪⎩(e 为自然对数的底数),若()f x 有三个零点,则实数a 的取值范围为_____.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)已知数列{}n a 成等差数列,各项均为正数的数列{}n b 成等比数列,132,8b b ==,且2323a a b -=,3433a a b -=.(1)求数列{}n a 和{}n b 的通项公式; (2)设2211log n n n c a b +=⋅,求数列{}n c 的前n 项和n S .18.(本小题满分12分)某中学高三年级组织了西南四省第一次联考,为了了解学生立体几何得分情况,现在在高三年级中随机抽取100名同学进行调查,其中男生和女生的人数之比为11:9,满分为12分,得分大于等于8分为优秀,否则为知识点存在欠缺,已知男生优秀的人数为35人,女生得分在8分以下的有15人. (1)完成22⨯列联表,并回答能否有85%的把握认为“得分是否优秀与性别有关”?(2)从被调查的女生中,利用分层抽样抽取13名学生,再从这13名学生中随机抽取2名学生介绍答题经验,求被抽取的两名学生均为优秀学生的概率.参考公式:22()()()()()n ad bc K a b c d a c b d -=++++.附:19.(本小题满分12分)如图,在四棱锥P ABCD -中,底面ABCD 为菱形,PA ⊥平面ABCD ,E 为PD 上的动点.(1)确定E 的位置,使//PB 平面AEC ;(2)设1PA AB ==,PC =,且在第(1)问的结论下,求二面角D AE C --的余弦值.20.(本小题满分12分)已知抛物线21:2(0)C y px p =>的焦点为F ,过点F 且斜率为1的直线l 与曲线1C 交于A ,B 两点,设()11,A x y ,()22,B x y ,则126x x +=.(1)求曲线1C 的方程;(2)设离心率为2且长轴为4的椭圆2C 的方程为22221(0)x y a b a b+=>>.又曲线2C 与过点(1,0)Q -且斜率存在的直线l '相交于M ,N 两点,已知45MONS =,O 为坐标原点,求直线l '的方程. 21.(本小题满分12分) 已知函数24()ln f x x x ax e=--,a ∈R . (1)当()y f x =在点(1,(1))f 处的切线与直线:10l x y -+=平行时,求实数a 的值;(2)若()2e xxf x >--恒成立,求实数a 的取值范围. 请考生在第22、23两题中任选一题作答,并用2B 铅笔在答题卡上把所选题目的题号涂黑.注意所做题目的题号必须与所涂题目的题号一致,在答题卡选答区堿指定位置答题.如果多做,则按所做的第一题计分.22.(本小题满分10分)【选修4-4:坐标系与参数方程】已知在平面直角坐标系xOy 中,直线l 的参数方程为122112x t y t⎧=+⎪⎪⎨⎪=-⎪⎩(t 为参数),以原点为极点,x 轴正半轴为极轴建立极坐标系,曲线C 的极坐标方程为4cos 4πρθ⎛⎫=- ⎪⎝⎭. (1)求直线l 的普通方程及曲线C 的直角坐标方程; (2)已知(2,1)P ,直线l 与曲线C 相交于A ,B 两点,求11||||PA PB -的值. 23.(本小题满分10分)【选修4-5:不等式选讲】 已知函数()132f x x x =---.(1)求不等式1()(1)2f x x ≥-的解集; (2)若函数的最大值为n ,且2(0,0)a b n a b +=>>,求21a b+最小值.数学参考答案第Ⅰ卷(选择题,共60分)一、选择题(本大题共12小题,每小题5分,共60分)【解析】1.由已知得{0,1,2}A =,{1B x x =或1}x -,∴{1,2}A B ⋂=,故选B .2.∵1122x yi i +=+,∴||||2x yi x yi +=-==,故选A .3.已知22(1)5x y ++=,即圆心(1,0)-,半径r =20x y a ++=的距离为d =<,即46a -<<,故选C .4.3100002000ln 12000(ln101)2000 4.629240km/s 3100v ⎛⎫=⨯+=⨯=⨯= ⎪⎝⎭,故选B .5.11112021112232021202220222022S =+++=-=⨯⨯⨯,故选C .6.631216C (1)2rr r r r T x --+=-,令3120r -=,即4r =,∴常数项为60,故选D .7.1111313(3)11(22)223232a b a b a b a b b a ⎛⎫⎛⎫+=++=+++≥+=⎪ ⎪⎝⎭⎝⎭,当且仅当3,31123a bb a a b ⎧=⎪⎪⎨⎪+=⎪⎩时,即1,31a b ⎧=⎪⎨⎪=⎩时,“=”成立,故选A .8.由已知得()f x 在(1,1)-上为单调递增函数,∴()()221(22)01f a f a f a -+-<⇔-<(22)f a -+,∴22122,1111,121221a a a a a ⎧-<-+⎪⎪-<-<⇒<<⎨⎪-<-+<⎪⎩,故选D .9.sin cos tan 1C C C =⇒=,由已知得:∵(0,)C π∈,∴4C π=,又222cos 2a b c C ab ab +-=⇒=,∴1sin 12ABCSab C ==,故选A . 10.由已知得1a b >>,故a b b a a b >>,故选A .11.由已知得:对于选项A ,()cos(22)sin()()f x x x f x πππ-=-+-=,正确;对于选项B ,16f π⎛⎫= ⎪⎝⎭,正确;对于选项C ,()()cos2sin cos(22)sin()f x f x x x x x πππ+-=++-+-2(cos2sin )0x x =+≠,错误;对于选项D ,令sin ([1,1])t x t =∈-,∴2()2sin sin 1f x x x =-++=221921248t t t ⎛⎫-++=--+ ⎪⎝⎭,∴当14t =时,max 98y =,正确,故选C .12.由已知得M 为APQ 的重心,∴3||3a OM ==,又1b =,∴c ==,即c e a ==,故选D . 第Ⅱ卷(非选择题,共90分)二、填空题(本大题共4小题,每小题5分,共20分)【解析】13.在点(2,0)处取得最小值2.14.∵a b ⊥,∴0220a b t ⋅=⇔-+=,即1t =,∴||10a b +=. 15.由题意得外接球的半径为54,即22544S R ππ==. 16.设()xg x x e =⋅,则求导后得()g x 在(1,)-+∞上为增函数,在(2,1)--上为减函数.令,2,()ln(4),2,x x e x h x x x ⎧⋅-=⎨+<-⎩由图象可知,()f x 有三个零点,则a 的取值范围为221a e e ≤<.三、解答题(共70分.解答应写出文字说明,证明过程或演算步骤) 17.(本小题满分12分)解:(1)由23122b b q q =⋅=⇒=,∴2n n b =,又232134331,23,a ab a d a a b -=⎧⇒==⎨-=⎩,∴21n a n =-. (6分) (2)1111(21)(21)22121n c n n n n ⎛⎫==- ⎪-+-+⎝⎭,11122121n n S n n ⎛⎫=-= ⎪++⎝⎭. (12分) 18.(本小题满分12分) 解:(1)列联表如下:22100(35152030)0.0999 2.07255456535K ⨯⨯-⨯=≈<⨯⨯⨯,∴不能有85%的把握认为“得分是否优秀与性别有关”. (6分)(2)抽取的13人中,男生、女生人数分别为7人、6人,记“两名学生中恰有一名男生与一名女生”为事件A ,则11762137()13C C P A C ==, ∴两名学生中恰有一名男生与一名女生的概率为713. (12分) 19.(本小题满分12分) 解:(1)E 为PD 的中点.证明:连接BD ,使AC 交BD 于点O ,取PD 的中点为E ,连接EO , ∵O ,E 分别为BD ,PD 的中点, ∴//OE PB .又OE ⊂平面AEC ,PB ⊄平面AEC , ∴//PB 平面AEC . (6分)(2)分别以AB ,AD ,AP 为x 轴,y 轴,z 轴建立空间直角坐标系,(0,0,0)A ,(0,1,0)D ,110,,22E ⎛⎫⎪⎝⎭,(1,0,0)B ,(1,1,0)C ,∴110,,22AE ⎛⎫= ⎪⎝⎭,(1,1,0)AC =, ∴平面DAE 的法向量为(1,0,0)AB =. 设平面AEC 的法向量为(,,)n x y z =,由11,0,220,n AE y z n AC x y ⎧⎧⊥+=⎪⎪⇒⎨⎨⊥⎪⎪+=⎩⎩令1x =,则1y =-,1z =,∴(1,1,1)n =-,∴二面角D AE C --的平面角的余弦值为3cos 3||||AB n AB n α⋅==⋅. (12分) 20.(本小题满分12分) 解:(1)由已知得,02p F ⎛⎫⎪⎝⎭,设直线l 的方程为2p y x =-,∴222,23042p y x p x px y px⎧=-⎪⇒-+=⎨⎪=⎩,∴1232x x p p +=⇒=,∴曲线1C 的方程为24y x =.(5分) (2)由已知得2a =,c =1b =,∴曲线2C 的方程为2214x y +=, 设直线l '的方程为1x my =-,则()22221,423041x y m y my x my ⎧+=⎪⇒+--=⎨⎪=-⎩. 设()()3344,,,M x y N x y ,34342223,44m y yy y m m +=⋅=-++, ∴34112OMNSy y =⨯⨯-=4247110m m ⇒+-=1m ⇒=±,∴直线l '的方程为10x y ±+=. (12分) 21.(本小题满分12分)解:(1)()ln 1f x x a '=+-,∴斜率(1)110k f a a '==-=⇒=. (4分)(2)由已知得24ln 2x x x x ax e e-->--对任意的(0,)x ∈+∞恒成立 2141ln 2x a x xe e ⎛⎫⇔<++- ⎪⎝⎭恒成立. 令2141()ln 2,(0,)x h x x x x e e ⎛⎫=++-∈+∞ ⎪⎝⎭, 则22222421141()2x x x x e e h x x e e x x'-+-⎛⎫=---= ⎪⎝⎭, 令224()2,(0,)x x x x x e eϕ=-+-∈+∞, 则(2)()1xx x x e ϕ'-=+. ∵2(2)(1)11x x x -=--≥-, ∴(2)1x x x x e e-≥-. 又0x >,∴11x e <,即()0x ϕ'>恒成立, ∴()x ϕ在(0,)+∞上单调递增,又(2)0ϕ=,∴当02x <<时,()0h x '<,即()h x 为减函数,当2x >时,()0h x '>,即()h x 为增函数, ∴min 21()(2)ln 21h x h e==+-, ∴21ln 21a e <+-. (12分) 22.(本小题满分10分)【选修4-4:坐标系与参数方程】解:(1)直线l 的普通方程为30x y +-=,由4cos 4πρθρθθ⎛⎫=-⇒=+ ⎪⎝⎭, ∴曲线C的直角坐标方程为220x y +--=. (5分)(2)将直线l 的参数方程代入曲线C的直角坐标方程得222(50t t ++-=,∴12122,2(5t t t t +=-⋅=-,∴121211||5||||||47t t PB PA PA PB PA PB t t +--===⋅⋅‖‖‖‖.(10分) 23.(本小题满分10分)【选修4-5:不等式选讲】解:(1)由已知得2,1,3()34,1,232,,2x x f x x x x x ⎧-<⎪⎪⎪=-≤≤⎨⎪⎪-+>⎪⎩ ∴当11,2(1)2x x x <-≥-⇒无解; 当31731,34(1)2252x x x x ≤≤-≥-⇒≤≤; 当3135,2(1)2223x x x x >-+≥-⇒<≤, 综上所述,不等式的解集为75,53⎡⎤⎢⎥⎣⎦. (5分)(2)由(1)可知max 1()2f x n ==,∵2(0,0)a b n a b +=>>, ∴2121222(2)24118a b a b a b a b b a ⎛⎫⎛⎫+=++=+++≥ ⎪ ⎪⎝⎭⎝⎭,当且仅当22a b b a =,即16a b ==时,“=”成立. (10分)。

2021届湖南四大名校联考新高三原创预测试卷(二十三)数学

2021届湖南四大名校联考新高三原创预测试卷(二十三)数学

2021届湖南四大名校联考新高三原创预测试卷(二十三)数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、单项选择题(本大题共8小题,每小题5分,共40分)1.已知集合M ={x |-4<x <2},N ={x |x 2-x -6<0},则M ∩N 等于( ) A.{x |-4<x <3} B.{x |-4<x <-2} C.{x |-2<x <2}D.{x |2<x <3}2.设复数z 满足|z -i|=1,z 在复平面内对应的点为(x ,y ),则( ) A.(x +1)2+y 2=1 B.(x -1)2+y 2=1 C.x 2+(y -1)2=1 D.x 2+(y +1)2=13.若a >b ,则( )A.ln(a -b )>0B.3a <3bC.a 3-b 3>0D.|a |>|b |4.已知a =(cos α,sin α),b =(cos(-α),sin(-α)),那么“a ·b =0”是“α=k π+π4(k ∈Z )”的( ) A.充分不必要条件 B.必要不充分条件C.充要条件D.既不充分也不必要条件5.双曲线C :x 24-y 22=1的右焦点为F ,点P 在C 的一条渐近线上,O 为坐标原点.若|PO |=|PF |,则△PFO 的面积为( ) A.324 B.322 C.2 2 D.3 26.已知正项等比数列{a n }满足:a 2a 8=16a 5,a 3+a 5=20,若存在两项a m ,a n 使得a m a n =32,则1m +4n 的最小值为( ) A.34 B.910 C.32 D.957.已知四棱锥M -ABCD ,MA ⊥平面ABCD ,AB ⊥BC ,∠BCD +∠BAD =180°,MA =2,BC =26,∠ABM =30°.若四面体MACD 的四个顶点都在同一个球面上,则该球的表面积为( ) A.20π B.22π C.40π D.44π8.如图,在△ABC 中,∠BAC =π3,AD →=2DB →,P 为CD 上一点,且满足AP →=mAC →+12AB →,若△ABC 的面积为23,则|AP |的最小值为( )A. 2B. 3C.3D.43二、多项选择题(本大题共4小题,每小题5分,共20分.全部选对的得5分,部分选对的得3分,有选错的得0分)9.如图,在以下四个正方体中,直线AB 与平面CDE 垂直的是( )10.“科技引领,布局未来”科技研发是企业发展的驱动力量.2007~2018年,某企业连续12年累计研发投入达4 100亿元,我们将研发投入与经营投入的比值记为研发投入占营收比,这12年间的研发投入(单位:十亿元)用图中的条形图表示,研发投入占营收比用图中的折线图表示.根据折线图和条形图,下列结论正确的有( )A.2012年至2013年研发投入占营收比增量相比2017年至2018年研发投入占营收比增量大B.2013年至2014年研发投入增量相比2015年至2016年研发投入增量小C.该企业连续12年来研发投入逐年增加D.该企业连续12年来研发投入占营收比逐年增加11.将函数f (x )=3cos ⎝⎛⎭⎫2x +π3-1的图象向左平移π3个单位长度,再向上平移1个单位长度,得到函数g (x )的图象,则下列关于函数g (x )的说法正确的是( ) A.最大值为3,图象关于直线x =π12对称 B.图象关于y 轴对称 C.最小正周期为πD.图象关于点⎝⎛⎭⎫π4,0对称12.已知函数y =f (x )的导函数f ′(x )的图象如图所示,则下列判断正确的是( )A.函数y =f (x )在区间⎝⎛⎭⎫-3,-12内单调递增 B.当x =-2时,函数y =f (x )取得极小值 C.函数y =f (x )在区间(-2,2)内单调递增 D.当x =3时,函数y =f (x )有极小值三、填空题(本大题共4小题,每小题5分,共20分)13.为了解某高中学生的身高情况,现采用分层抽样的方法从三个年级中抽取一个容量为100的样本,其中高一年级抽取24人,高二年级抽取26人.若高三年级共有学生600人,则该校学生总人数为________.14.已知(2-x 2)(1+ax )3的展开式的所有项系数之和为27,则实数a =________,展开式中含x 2的项的系数是________.15. “中国梦”的英文翻译为“ChinaDream ”,其中China 又可以简写为CN ,从“CN Dream ”中取6个不同的字母排成一排,含有“ea ”字母组合(顺序不变)的不同排列共有________种. 16.若函数f (x )=a ln x (a ∈R )与函数g (x )=x 在公共点处有共同的切线,则实数a 的值为________.四、解答题(本题共6小题,共70分)17.(10分)已知数列{a n }满足:a 1=1,a n +1=2a n +n -1. (1)设b n =a n +n ,证明:数列{b n }是等比数列; (2)设数列{a n }的前n 项和为S n ,求S n .18.(12分)在△ABC 中,内角A ,B ,C 的对边分别为a ,b ,c ,且3b 2+3c 2-42bc =3a 2. (1)求sin A ;(2)若3c sin A =2a sin B ,△ABC 的面积为2,求△ABC 的周长.19.(12分)已知如图1直角梯形ABCD ,AB ∥CD ,∠DAB =90°,AB =4,AD =CD =2,E 为AB 的中点,沿EC 将梯形ABCD 折起(如图2),使平面BED ⊥平面AECD .(1)证明:BE ⊥平面AECD ;(2)在线段CD 上是否存在点F ,使得平面FAB 与平面EBC 所成的锐二面角的余弦值为23,若存在,求出点F 的位置;若不存在,请说明理由.20.(12分)已知椭圆C :x 2a 2+y 2b 2=1(a >b >0)的离心率为33,且椭圆C 过点⎝⎛⎭⎫32,22. (1)求椭圆C 的标准方程;(2)过椭圆C 的右焦点的直线l 与椭圆C 交于A ,B 两点,且与圆:x 2+y 2=2交于E ,F 两点,求|AB |·|EF |2的取值范围. 21.(12分)某社区消费者协会为了解本社区居民网购消费情况,随机抽取了100位居民作为样本,就最近一年来网购消费金额(单位:千元),网购次数和支付方式等进行了问卷调査.经统计这100位居民的网购消费金额均在区间[0,30]内,按[0,5],(5,10],(10,15],(15,20],(20,25],(25,30]分成6组,其频率分布直方图如图所示.(1)估计该社区居民最近一年来网购消费金额的中位数;(2)将网购消费金额在20千元以上者称为“网购迷”,补全下面的2×2列联表,并判断有多大把握认为“网购迷与性别有关系”;男 女 总计 网购迷 20 非网购迷 45 总计100(3)调査显示,甲、乙两人每次网购采用的支付方式相互独立,两人网购时间与次数也互不影响.统计最近一年来两人网购的总次数与支付方式,所得数据如下表所示:网购总次数支付宝支付次数银行卡支付次数微信支付次数甲 80 40 16 24 乙90601812将频率视为概率,若甲、乙两人在下周内各自网购2次,记两人采用支付宝支付的次数之和为ξ,求ξ的期望.附:K 2=n (ad -bc )2(a +b )(c +d )(a +c )(b +d ),n =a +b +c +d . 临界值表:P (K 2≥k 0)0.01 0.05 0.025 0.010 0.005 0.001 k 02.7063.8415.0246.6357.87910.82822.(12分)已知函数f (x )=x -1+a e x . (1)讨论f (x )的单调性;(2)当a =-1时,设-1<x 1<0,x 2>0且f (x 1)+f (x 2)=-5,证明:x 1-2x 2>-4+1e .参考答案一、单选 1.答案 C解析 ∵N ={x |-2<x <3},M ={x |-4<x <2}, ∴M ∩N ={x |-2<x <2},故选C. 2.答案 C解析 ∵z 在复平面内对应的点为(x ,y ), ∴z =x +y i(x ,y ∈R ). 3.答案 C解析 由函数y =ln x 的图象(图略)知,当0<a -b <1时,ln(a -b )<0,故A 不正确;因为函数y =3x 在R 上单调递增,所以当a >b 时,3a >3b ,故B 不正确;因为函数y =x 3在R 上单调递增,所以当a >b 时,a 3>b 3,即a 3-b 3>0,故C 正确;当b <a <0时,|a |<|b |,故D 不正确.故选C. ∵|z -i|=1,∴|x +(y -1)i|=1,∴x 2+(y -1)2=1.故选C. 4.答案 B解析 ∵a ·b =0=cos α·cos(-α)+sin α·sin(-α)=cos 2a -sin 2α=cos 2α, ∴2α=2k π±π2(k ∈Z ), 解得α=k π±π4(k ∈Z ),∴a ·b =0是α=k π+π4(k ∈Z )的必要不充分条件,故选B. 5.答案 A解析 不妨设点P 在第一象限,根据题意可知c 2=6, 所以|OF |= 6. 6.答案 A解析 因为数列{a n }是正项等比数列, a 2a 8=a 25=16a 5, 所以a 5=16, 又a 3+a 5=20, 所以a 3=4, 所以q =2,a 1=1, 所以a n =a 1q n -1=2n -1, 因为a m a n =32,所以2m -12n -1=210,即m +n =12,所以1m +4n =112(m +n )⎝⎛⎭⎫1m +4n =112⎝⎛⎭⎫5+n m +4m n ≥112⎝⎛⎭⎫5+2n m ·4m n =34(m >0,n >0),当且仅当n =2m ,即m =4,n =8时“=”成立, 所以1m +4n 的最小值为34.又tan ∠POF =b a =22,所以等腰△POF 的高h =62×22=32,所以S △PFO =12×6×32=324. 7.答案 C解析 因为∠BCD +∠BAD =180°,所以A ,B ,C ,D 四点共圆,∠ADC =∠ABC =90°.由tan 30°=2AB ,得AB =23,所以AC =(23)2+(26)2=6. 设AC 的中点为E ,MC 的中点为O ,则OE ∥MA , 因为MA ⊥平面ABCD ,所以OE ⊥平面ABCD . 点O 到M ,A ,C ,D 四点距离相等, 易知点O 为四面体MACD 外接球的球心, 所以OC =⎝⎛⎭⎫622+⎝⎛⎭⎫222=10,所以该球的表面积S =4π·OC 2=40π. 8.答案 B解析 设|AB →|=3a ,|AC →|=b ,则△ABC 的面积为12×3ab sin π3=23, 解得ab =83,由AP →=mAC →+12AB →=mAC →+34AD →,且C ,P ,D 三点共线,可知m +34=1,即m =14, 故AP →=14AC →+34AD →.以AB 所在直线为x 轴,以A 为坐标原点,过A 作AB 的垂线为y 轴,建立如图所示的平面直角坐标系,则A (0,0),D (2a ,0),B (3a ,0),C ⎝⎛⎭⎫12b ,32b , 则AC →=⎝⎛⎭⎫12b ,32b ,AD →=(2a ,0),AP →=⎝⎛⎭⎫18b +32a ,38b ,则|AP →|2=⎝⎛⎭⎫18b +32a 2+⎝⎛⎭⎫38b 2=164b 2+94a 2+38ab +364b 2=116b 2+94a 2+1 ≥2116b 2×94a 2+1=34ab +1=3.⎝⎛⎭⎫当且仅当116b 2=94a 2即b =6a 时取“=” 故||AP 的最小值为 3. 二、多选 9.答案 BD解析 在A 中,AB 与CE 的夹角为45°,所以直线AB 与平面CDE 不垂直,故A 不符合; 在B 中,AB ⊥CE ,AB ⊥DE ,CE ∩DE =E ,所以AB ⊥平面CDE ,故B 符合; 在C 中,AB 与EC 的夹角为60°,所以直线AB 与平面CDE 不垂直,故C 不符合; 在D 中,AB ⊥DE ,AB ⊥CE ,DE ∩CE =E ,所以AB ⊥平面CDE ,故D 符合. 10.答案 ABC解析 对于选项A,2012年至2013年研发投入占营收比增量为2%,2017年至2018年研发投入占营收比增量为0.3%,所以该选项正确;对于选项B,2013年至2014年研发投入增量为2,2015年至2016年研发投入增量为19,所以该选项正确;对于选项C ,该企业连续12年来研发投入逐年增加,所以该选项是正确的;对于选项D ,该企业连续12年来研发投入占营收比不是逐年增加,如2009年就比2008年的研发投入占营收比下降了.所以该选项是错误的. 11.答案 BCD解析 将函数f (x )=3cos ⎝⎛⎭⎫2x +π3-1的图象向左平移π3个单位长度,得到y =3cos ⎣⎡⎦⎤2⎝⎛⎭⎫x +π3+π3-1=3cos(2x +π)-1=-3cos 2x -1的图象;再向上平移1个单位长度,得到函数g (x )=-3cos 2x 的图象,对于函数g (x ),它的最大值为3,由于当x =π12时,g (x )=-32,不是最值,故g (x )的图象不关于直线x =π12对称,故A 错误; 由于该函数为偶函数,故它的图象关于y 轴对称,故B 正确; 它的最小正周期为2π2=π,故C 正确;当x =π4时,g (x )=0,故函数g (x )的图象关于点⎝⎛⎭⎫π4,0对称,故D 正确. 12.答案 BC解析 对于A ,函数y =f (x )在区间⎝⎛⎭⎫-3,-12内有增有减,故A 不正确; 对于B ,当x =-2时,函数y =f (x )取得极小值,故B 正确;对于C ,当x ∈(-2,2)时,恒有f ′(x )>0,则函数y =f (x )在区间(-2,2)上单调递增,故C 正确; 对于D ,当x =3时,f ′(x )≠0,故D 不正确. 三、填空 13.答案 1 200解析 由题意知高三年级抽取了100-24-26=50(人), 所以该校学生总人数为600÷50100=1 200. 14.答案 2 23解析 由已知可得,(2-12)(1+a )3=27,则a =2.所以(2-x 2)(1+ax )3=(2-x 2)(1+2x )3=(2-x 2)(1+6x +12x 2+8x 3), 所以展开式中含x 2的项的系数是2×12-1=23. 15.答案 600解析 根据题意,分2步进行分析:先从其他5个字母中任取4个,有C 45=5(种)选法,再将“ea ”看成一个整体,与选出的4个字母全排列,有A 55=120(种)情况,则不同的排列有5×120=600(种). 16.答案 e 2解析 函数f (x )=a ln x 的定义域为(0,+∞),f ′(x )=a x ,g ′(x )=12x , 设曲线f (x )=a ln x 与曲线g (x )=x 的公共点为(x 0,y 0), 由于在公共点处有共同的切线, ∴a x 0=12x 0,解得x 0=4a 2,a >0. 由f (x 0)=g (x 0),可得a ln x 0=x 0.联立⎩⎨⎧x 0=4a 2,a ln x 0=x 0,解得a =e 2.四、解答题17.(1)证明 数列{a n }满足:a 1=1,a n +1=2a n +n -1. 由b n =a n +n ,那么b n +1=a n +1+n +1, ∴b n +1b n =a n +1+n +1a n +n =2a n +n -1+n +1a n +n =2; 即公比q =2,b 1=a 1+1=2,∴数列{b n }是首项为2,公比为2的等比数列. (2)解 由(1)可得b n =2n , ∴a n +n =2n ,∴数列{a n }的通项公式为a n =2n -n , ∴数列{a n }的前n 项和为S n =2-1+22-2+23-3+…+2n -n =(21+22+…+2n )-(1+2+3+…+n ) =2n +1-2-n 22-n2.18.解 (1)因为3b 2+3c 2-42bc =3a 2, 所以b 2+c 2-a 2=423bc ,在△ABC 中,由余弦定理得, cos A =b 2+c 2-a 22bc =223, 所以sin A =1-cos 2A =1-89=13.(2)因为3c sin A =2a sin B , 所以3ac =2ab ,即b =3c2.因为△ABC 的面积为2,所以12bc sin A =2, 即12×3c 22×13=2,解得c =2. 所以b =32,在△ABC 中,由余弦定理得, a 2=b 2+c 2-2bc cos A =6, 所以a =6,所以△ABC 的周长为2+32+ 6. 19.(1)证明 连接AC ,则AC ⊥DE ,又平面BDE ⊥平面AECD ,平面BDE ∩平面AECD =DE ,AC ⊂平面AECD , 所以AC ⊥平面BDE , 所以AC ⊥BE .又BE ⊥CE ,AC ∩CE =C ,AC ,CE ⊂平面AECD , 所以BE ⊥平面AECD .(2)解 如图,由(1)得BE ⊥平面AECD ,所以BE ⊥AE .所以EA ,EB ,EC 两两垂直,分别以EA →,EB →,EC →方向为x ,y ,z 轴正方向,建立空间直角坐标系E -xyz 如图所示,则E (0,0,0),A (2,0,0),B (0,2,0), 设F (a ,0,2),0≤a ≤2,所以AF →=(a -2,0,2),BF →=(a ,-2,2), 设平面FAB 的法向量为n =(x ,y ,z ), 则⎩⎪⎨⎪⎧AF →·n =(a -2)x +2z =0,BF →·n =ax -2y +2z =0, 取x =2,得n =(2,2,2-a ). 取平面EBC 的法向量为m =(1,0,0). 所以cos 〈m ,n 〉=m ·n|m ||n |=2a 2-4a +12=23, 所以a =1.所以线段CD 上存在点F ,且F 为CD 中点时,使得平面FAB 与平面EBC 所成的锐二面角的余弦值为23.20.解 (1)由已知可得c a =33, 所以a 2=32b 2,所以椭圆C 的方程为x 232b2+y 2b 2=1,将点⎝⎛⎭⎫32,22代入方程得b 2=2,即a 2=3,所以椭圆C 的标准方程为x 23+y 22=1. (2)由(1)知椭圆的右焦点为(1,0).①若直线l 的斜率不存在,则直线l 的方程为x =1, 不妨设A ⎝⎛⎭⎫1,233,B ⎝⎛⎭⎫1,-233,E (1,1),F (1,-1), 所以|AB |=433,|EF |2=4,|AB |·|EF |2=1633; ②若直线l 的斜率存在,设直线l 的方程为y =k (x -1), 设A (x 1,y 1),B (x 2,y 2),联立直线l 与椭圆方程得⎩⎪⎨⎪⎧x 23+y 22=1,y =k (x -1), 可得(2+3k 2)x 2-6k 2x +3k 2-6=0, 则x 1+x 2=6k 22+3k 2,x 1x 2=3k 2-62+3k 2, 所以|AB |=(1+k 2)(x 1-x 2)2=(1+k 2)⎣⎢⎡⎦⎥⎤⎝⎛⎭⎫6k 22+3k 22-4×3k 2-62+3k 2=43(k 2+1)2+3k 2,因为圆心(0,0)到直线l 的距离d =|k |k 2+1, 所以|EF |2=4⎝⎛⎭⎫2-k 2k 2+1=4(k 2+2)k 2+1, 所以|AB |·|EF |2=43(k 2+1)2+3k 2·4(k 2+2)k 2+1 =163(k 2+2)2+3k 2=1633·k 2+2k 2+23=1633⎝⎛⎭⎪⎫1+43k 2+23,因为k 2∈[0,+∞),所以|AB |·|EF |2∈⎝⎛⎦⎤1633,163, 综上,|AB |·|EF |2的取值范围是⎣⎡⎦⎤1633,163. 21.解 (1)在直方图中,从左至右前3个小矩形的面积之和为(0.01+0.02+0.04)×5=0.35, 后2个小矩形的面积之和为(0.04+0.03)×5=0.35,所以中位数位于区间(15,20]内.设直方图的面积平分线为15+x ,则0.06x =0.5-0.35=0.15,得x =2.5,所以该社区居民网购消费金额的中位数估计为17.5千元.(2)由直方图知,网购消费金额在20千元以上的频数为0.35×100=35, 所以“网购迷”共有35人,由列联表知,其中女性有20人,则男性有15人. 所以补全的列联表如下:因为K 2=100(45×20-15×20)260×40×35×65=60091≈6.593>5.024,查表得P (K 2≥5.024)=0.025, 所以有97.5%的把握认为“网购迷与性别有关系”.(3)由表知,甲,乙两人每次网购采用支付宝支付的概率分别为12,23. 设甲、乙两人采用支付宝支付的次数分别为X ,Y ,由题意知,X ~B ⎝⎛⎭⎫2,12,Y ~B ⎝⎛⎭⎫2,23.所以E (X )=2×12=1,E (Y )=2×23=43. 因为ξ=X +Y ,则E (ξ)=E (X )+E (Y )=73, 所以ξ的期望为73. 22.(1)解 f ′(x )=1+a e x , 当a ≥0时,f ′(x )>0, 则f (x )在R 上单调递增.当a <0时,令f ′(x )>0,得x <ln ⎝⎛⎭⎫-1a , 则f (x )的单调递增区间为⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-1a , 令f ′(x )<0,得x >ln ⎝⎛⎭⎫-1a ,则f (x )的单调递减区间为⎝⎛⎭⎫ln ⎝⎛⎭⎫-1a ,+∞.综上所述,当a ≥0时,f (x )在R 上单调递增;当a <0时,f (x )在⎝⎛⎭⎫-∞,ln ⎝⎛⎭⎫-1a 上单调递增,在⎝⎛⎭⎫ln ⎝⎛⎭⎫-1a ,+∞上单调递减.(2)证明 方法一 设g (x )=f (x )+2x =-e x +3x -1,则g ′(x )=-e x +3, 由g ′(x )<0得x >ln 3; 由g ′(x )>0得x <ln 3,故g (x )max =g (ln 3)=3ln 3-4<0, 从而得g (x )=f (x )+2x <0, ∵f (x 1)+f (x 2)=-5,∴f (x 2)+2x 2=-5-f (x 1)+2x 2<0, 即x 1-2x 2>-4+1e .方法二 ∵f (x 1)+f (x 2)=-5, ∴x 1=1e x +2e x -x 2-3, ∴x 1-2x 2=1e x +2e x -3x 2-3, 设g (x )=e x -3x ,则g ′(x )=e x -3, 由g ′(x )<0得x <ln 3, 由g ′(x )>0得x >ln 3, 故g (x )min =g (ln 3)=3-3ln 3. ∵-1<x 1<0,x 2>0,∴x 1-2x 2>e -1+3-3ln 3-3=1e -3ln 3,∵3ln 3=ln 27<4, ∴x 1-2x 2>-4+1e .。

2021年湖南省长沙市四大名校高考数学猜题试卷(A卷)(解析版)

2021年湖南省长沙市四大名校高考数学猜题试卷(A卷)(解析版)

2021年湖南省长沙市四大名校高考数学猜题试卷(A卷)一.单项选择题(共8小题).1.已知集合A={﹣3,﹣2,﹣1,0,1,2},B={x||x|<2,x∈Z},则A∩B=()A.{﹣3}B.{﹣1,1}C.{﹣1,0,1}D.{﹣3,﹣2,﹣1,0,1}2.若z=,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i3.一百零八塔是中国现存的大型古塔群之一,位于银川市南60公里的青铜峡水库西岸崖壁下.佛塔依山势自上而下,按1、3、3、5、5、7、9、11、13、15、17、19的奇数排列成十二行,塔体分为4种类型:第1层塔身覆钵式,2~4层为八角鼓腹锥顶状,5~6层呈葫芦状,7~12层呈宝瓶状,现将一百零八塔按从上到下,从左到右的顺序依次编号1,2,3,4,…,108.则编号为26的佛塔所在层数和塔体形状分别为()A.第5行,呈葫芦状B.第6行,呈葫芦状C.第7行,呈宝瓶状D.第8行,呈宝瓶状4.一次表彰大会上,计划安排这5名优秀学生代表上台发言.这5名优秀学生分别来自高一、高二和高三三个年级,其中高一、高二年级各2名,高三年级1名.发言时若要求来自同一年级的学生不相邻,则不同的排法共有()种.A.36B.48C.72D.1205.将函数y=sin x﹣cos x的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的图象关于直线x=π对称C.y=f(x)的周期是πD.y=f(x)在区间上单调递减6.镜片的厚度是由镜片的折射率决定,镜片的折射率越高,镜片越薄,同时镜片越轻,也就会带来更为舒适的佩戴体验.某次社会实践活动中,甲、乙、丙三位同学分别制作了三种不同的树脂镜片,折射率分别为,,.则这三种镜片中,制作出最薄镜片和最厚镜片的同学分别为()A.甲同学和乙同学B.丙同学和乙同学C.乙同学和甲同学D.丙同学和甲同学7.有两条互相垂直的直线XX'和YY',有一条定长的线段AB,它的两个端点分别被限制于这两条直线上.点P是AB上的一个确定点,即点P到点A和点B的距离的比值是一个定值.那么,随着线段AB的运动,点P的运动轨迹及焦距长为()A.椭圆,焦距长为|AB|B.椭圆,焦距长为C.双曲线,焦距长为|2||PA|﹣|PB|||D.双曲线,焦距长为8.设函数f:R→R满足f(0)=﹣1,且对∀x,y∈R,都有2f(xy)+f(y)(f(x)+1)=2(x﹣1).令集合A=,则集合A中的元素个数为()A.2020B.2021C.4040D.4042二.多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某工厂生产甲、乙、丙三种不同型号的产品,产量分别为360、240、120,为检验产品的质量,现需从以上所有产品中抽取一个容量为60的样本进行检验,则下列说法正确的是()A.如果采用系统抽样的方法抽取,不需要先剔除个体B.如果采用分层抽样的方法抽取,需要先剔除个体C.如果采用系统抽样的方法抽取,抽取过程不需要运用简单随机抽样的方法D.如果采用分层抽样的方法抽取时,所有产品被抽中的概率相等10.设实数a、b、c满足b+c=6﹣4a+3a2,c﹣b=4﹣4a+a2,则下列不等式成立的是()A.c<b B.b≥1C.b≤a D.a<c11.设正方体ABCD﹣A1B1C1D1的棱长为1,点F在线段A1C1上运动,则下列说法正确的是()A.若点F为线段A1C1的中点时,AC1⊥CFB.若点F与点A重合时,异面直线CF与B1D1所成角的大小为C.若A1F=时,二面角F﹣AB﹣A1的正切值为D.若F与点C1重合时,三棱锥C﹣BDF外接球的表面积为3π12.已知函数f(x)=e x﹣ex,g(x)=x2﹣x,若关于x的方程f(x)=ag(x)的解x0∈(0,1),则实数a的可能取值为()A.﹣e B.﹣1C.0D.1三.填空题:本题共4小题,每小题5分,共20分.13.已知平面向量,,设,||=.14.已知的展开式中有且仅有两项的系数为有理数,试写出符合题意的一个n的值.15.已知等比数列{a n}中,a2=2,a5=,则满足a1a2+a2a3+⋅⋅⋅+a n a n+1≤成立的最大正整数n的值为.16.双曲线的渐近线为正方形OABC的边OA、OC所在的直线,点为该双曲线的右焦点,若过点F的直线与直线OA、OC的分别相交于M、N两点,则△OMN内切圆半径的最大值为.四.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等比数列{a n}的各项均为正数,a6,,a7成等差数列,且a5=.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和S n的最值.18.某市一湿地公园建设项目中,拟在如图所示一片水域打造一个浅水滩,并在A、B、C、D四个位置建四座观景台,在凸四边形ABCD中,AB=千米.AD=BC=CD=1千米.(1)用cos A表示cos C;(2)现要在A、C两处连接一根水下直管道,已知cos A=,问最少应准备多少千米管道(结果可用根式表示).19.如图,在四棱锥P﹣ABCD中,AB∥CD,∠ABC=90°,AB=1,BC=,△PDC是边长为2的等边三角形,平面PDC⊥平面ABCD,E为PC中点.(1)设平面PAD∩平面PBC=l,证明:DE⊥l;(2)求平面PAD与平面PBC所成锐二面角的余弦值.20.核酸检测是诊断新冠病毒(nCoV)的重要标准之一,通过被检者核酸检测可以尽早发现感染者,感染者新冠病毒核酸检测呈阳性.2020年抗疫期间,某社区拟对其中850户4口之家以家庭为单位进行核酸检测,假定每个人核酸检测呈阳性还是阴性相互独立,且每个人核酸检测呈阳性的概率都是p(0<p<1).在进行核酸检测时,可以逐个检测,也可以将几个样本混合在一起检测.检测方式有三种选择:方式一:逐个检测;方式二:将每个4口之家检测样本平均分成两组后,分组混合检测;方式三:将每个4口之家4个检测样本混合在一起检测;其中,若混合样本1次检测结果呈阴性,则认为该组样本核酸检测全部呈阴性,不再检测,若混合样本1次检测结果呈阳性,则对该组样本中的各个样本再逐个检测.(1)假设某4口之家中有2个样本呈阳性,逐个检测,求恰好经过3次检测能把这个家庭阳性样本全部检测出来的概率;(2)若p=0.01,分别求该社区选择上述三种检测方式,对其中850户4口之家进行核酸检测次数的数学期望,你建议选择哪种检测方式较好,请简述其实际意义(不要求证明).(附:0.992≈0.98,0.993≈0.97,0.994≈0.96.)21.已知抛物线C:x2=2py(p>0)的焦点为F,点(m,1)在抛物线C上,该点到原点的距离与到C的准线的距离相等.(1)求抛物线C的方程;(2)过焦点F的直线l与抛物线C交于A,B两点,且与以焦点F为圆心2为半径的圆交于M,N两点,点B,N在y轴右侧.①证明:当直线l与x轴不平行时,|AM|≠|BN|;②过点A,B分别作抛物线C的切线l1,l2,l1与l2相交于点D,求△DAM与△DBN的面积之积的取值范围.22.已知函数f(x)=ae x﹣ln(x+1)+lna.(1)当a=1时,求函数y=f(x)的单调区间;(2)当a∈[1,+∞)时,求证:f(x)总存在唯一的极小值点x0,且f(x0)≥1.参考答案一.单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项符合题目要求.1.已知集合A={﹣3,﹣2,﹣1,0,1,2},B={x||x|<2,x∈Z},则A∩B=()A.{﹣3}B.{﹣1,1}C.{﹣1,0,1}D.{﹣3,﹣2,﹣1,0,1}解:∵B={x||x|<2,x∈Z}={x|﹣2<x<2,x∈Z}={﹣1,0,1},∴A∩B={﹣1,0,1}.故选:C.2.若z=,则z=()A.2+i B.2﹣i C.﹣2+i D.﹣2﹣i解:.故选:D.3.一百零八塔是中国现存的大型古塔群之一,位于银川市南60公里的青铜峡水库西岸崖壁下.佛塔依山势自上而下,按1、3、3、5、5、7、9、11、13、15、17、19的奇数排列成十二行,塔体分为4种类型:第1层塔身覆钵式,2~4层为八角鼓腹锥顶状,5~6层呈葫芦状,7~12层呈宝瓶状,现将一百零八塔按从上到下,从左到右的顺序依次编号1,2,3,4,…,108.则编号为26的佛塔所在层数和塔体形状分别为()A.第5行,呈葫芦状B.第6行,呈葫芦状C.第7行,呈宝瓶状D.第8行,呈宝瓶状解:∵1+3+3+5+5+7=24,∴编号为26的佛塔在第7行,呈室瓶状.故选:C.4.一次表彰大会上,计划安排这5名优秀学生代表上台发言.这5名优秀学生分别来自高一、高二和高三三个年级,其中高一、高二年级各2名,高三年级1名.发言时若要求来自同一年级的学生不相邻,则不同的排法共有()种.A.36B.48C.72D.120解:先排高一年级学生,有种排法,①若高一年级学生中间有高三学生,有种排法,②若高一学生中间无高三学生,有种排法,所以共有种排法.故选:B.5.将函数y=sin x﹣cos x的图象向左平移个单位,得到函数y=f(x)的函数图象,则下列说法正确的是()A.y=f(x)是奇函数B.y=f(x)的图象关于直线x=π对称C.y=f(x)的周期是πD.y=f(x)在区间上单调递减解:函数的图象向左平移个单位,得到函数的图象,由于为奇函数,故A正确;显然,y=f(x)的图象关于原点对称,不关于直线x=π对称,故B错误;f(x)的最小值个周期为2π,故C错误;显然,y=f(x)在区间上单调递增,故D错误,故选:A.6.镜片的厚度是由镜片的折射率决定,镜片的折射率越高,镜片越薄,同时镜片越轻,也就会带来更为舒适的佩戴体验.某次社会实践活动中,甲、乙、丙三位同学分别制作了三种不同的树脂镜片,折射率分别为,,.则这三种镜片中,制作出最薄镜片和最厚镜片的同学分别为()A.甲同学和乙同学B.丙同学和乙同学C.乙同学和甲同学D.丙同学和甲同学解:因为,,又25<32,所以,又,,所以,故,又因为镜片折射率越高,镜片越薄,故甲同学创作的镜片最厚,乙同学创作的镜片最薄.故选:C.7.有两条互相垂直的直线XX'和YY',有一条定长的线段AB,它的两个端点分别被限制于这两条直线上.点P是AB上的一个确定点,即点P到点A和点B的距离的比值是一个定值.那么,随着线段AB的运动,点P的运动轨迹及焦距长为()A.椭圆,焦距长为|AB|B.椭圆,焦距长为C.双曲线,焦距长为|2||PA|﹣|PB|||D.双曲线,焦距长为解:此题为椭圆规画椭圆的原理.在两条互相垂直的直线XX'和YY'上建立平面直角坐标系,当点P在第一象限时,设AB与X轴的夹角为θ,则P的坐标为(|PB|cosθ,|PA|sinθ),从而可知,点P在椭圆上,点P的轨迹是四分之一个椭圆,当点P在其它几个象限或坐标轴上时,点P的坐标满足方程,所以点P的轨迹是一个椭圆,焦距长为.故选:B.8.设函数f:R→R满足f(0)=﹣1,且对∀x,y∈R,都有2f(xy)+f(y)(f(x)+1)=2(x﹣1).令集合A=,则集合A中的元素个数为()A.2020B.2021C.4040D.4042解:令y=0,则有2f(0)+f(0)(f(x)+1)=2(x﹣1),又f(0)=﹣1,∴f(x)=﹣2x﹣1.从而集合A中,可化为.即t(t+2x+1)=2×62020=22021×32020.∵t∈N*,x∈N*,∴t,t+2x+1必定为一奇一偶.若t为偶数时,t的取值可以为22021,22021×3,22021×32,…,22021×32020,共有2021个(t,x).若t+2x+1为偶数时,同理也有2021个(t,x).∴集合A中的元素个数共有2021×2=4042(个).故选:D.二.多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合要求.全部选对的得5分,部分选对的得2分,有选错的得0分.9.某工厂生产甲、乙、丙三种不同型号的产品,产量分别为360、240、120,为检验产品的质量,现需从以上所有产品中抽取一个容量为60的样本进行检验,则下列说法正确的是()A.如果采用系统抽样的方法抽取,不需要先剔除个体B.如果采用分层抽样的方法抽取,需要先剔除个体C.如果采用系统抽样的方法抽取,抽取过程不需要运用简单随机抽样的方法D.如果采用分层抽样的方法抽取时,所有产品被抽中的概率相等解:由题中数据可知,(360+240+120)÷60=360÷60+240÷60+120÷60=6+4+2=8,所以用系统抽样和分层抽样,都不需要先剔除个体,A正确,B错误.系统抽样确定起始号时需要用到简单随机抽样,所以C错误.无论利用哪种抽样方法,每个个体被抽到的机会均等,所以D正确.故选:AD.10.设实数a、b、c满足b+c=6﹣4a+3a2,c﹣b=4﹣4a+a2,则下列不等式成立的是()A.c<b B.b≥1C.b≤a D.a<c解:∵,由①﹣②得2b=2a2+2,即b=a2+1,∴b≥1,又,∴b>a,而c﹣b=4﹣4a+a2=(a﹣2)2≥0,∴c≥b,从而c≥b>a.故选:BD.11.设正方体ABCD﹣A1B1C1D1的棱长为1,点F在线段A1C1上运动,则下列说法正确的是()A.若点F为线段A1C1的中点时,AC1⊥CFB.若点F与点A重合时,异面直线CF与B1D1所成角的大小为C.若A1F=时,二面角F﹣AB﹣A1的正切值为D.若F与点C1重合时,三棱锥C﹣BDF外接球的表面积为3π解:正方体ABCD﹣A1B1C1D1中,易证AC1⊥B1C,AC1⊥B1D1,又B1C∩B1D1=B,所以有AC1⊥面B1D1C,当F为A1C1中点时,CF⊂面B1D1C,∴AC1⊥CF,A正确;对于B,∵B1D1⊥A1C1,B1D1⊥AA1,∴B1D1⊥面AA1C1C,CA1⊂面AA1C1C,∴B1D1⊥CA1.若F与A1重合时,异面直线CF 与B1D1所成角为,B错误;对于C,当时,过F作FH⊥A1D1,垂足为H,则FH∥AB,.易证BA⊥面AA1D1D,从而由BA⊥AA1,BA⊥AH可得二面角F﹣AB﹣A1的平面角为∠A1AH.∴,C正确.对于D,点F与C1重合时,三棱锥C﹣BDF的外接球即正方体ABCD﹣A1B1C1D1的外接球,其直径.∴其表面积S=4πR2=3π,D正确.故选:ACD.12.已知函数f(x)=e x﹣ex,g(x)=x2﹣x,若关于x的方程f(x)=ag(x)的解x0∈(0,1),则实数a的可能取值为()A.﹣e B.﹣1C.0D.1解:易证e x≥ex,∴f(x)=e x﹣ex≥0恒成立,所以C错误;令h(x)=f(x)﹣ag(x)=e x﹣ex﹣ax2+ax,若a=1,则h(x)=e x﹣ex﹣(x2﹣x),则x∈(0,1)时,﹣(x2﹣x)>0,此时h(x)>0恒成立,显然D错误,对于A、B,h(1)=0,h'(x)=e x﹣e﹣a(2x﹣1),h''(x)=e x﹣2a,当a<0时,h''(x)在(0,1)上恒为正,故h'(x)在(0,1)上单调递增,又因为h'(0)=1﹣e+a<0,h'(1)=﹣a>0,∴h'(x)在(0,1)上存在唯一零点x0,x∈(0,x0),h'(x)<0;x∈(x0,1),h'(x)>0,∴h(x)在(0,x0)上单调递减,在(x0,1)上单调递增,∴h(x0)<h(1)=0,而h(0)=1>0,故h(x)在(0,x0)上存在唯一零点,故A、B正确;故选:AB.三.填空题:本题共4小题,每小题5分,共20分.13.已知平面向量,,设,||=.解:∵平面向量,,∴=(1,5),∴||==,故答案为:.14.已知的展开式中有且仅有两项的系数为有理数,试写出符合题意的一个n的值n可取6,8,9,10,11中任意一个值.解:的展开式的通项为,r≤n,r∈N.若系数为有理数,则,且.当n=3时,r=0;n=4时,r=4;n=5时,r=2;n=6时r=0,6;n=7时,r无解;n=8时,r=2,8;n=9时,r=0,6;n=10时r=4,10;n=11时,r=2,8,n=12时,r=0,6,12.所以,n可取6,8,9,10,11中的任意一个值,故答案为:n可取6,8,9,10,11中的任意一个值.15.已知等比数列{a n}中,a2=2,a5=,则满足a1a2+a2a3+⋅⋅⋅+a n a n+1≤成立的最大正整数n的值为3.解:设等比数列{a n}的公比为q,由得,,,解得,又a2=2.∴a1=4.易得数列{a n a n+1}也是等比数列,其首项为a1a2=8,公比为.∴,从而有.∴n≤3.故n max=3.故答案为:3.16.双曲线的渐近线为正方形OABC的边OA、OC所在的直线,点为该双曲线的右焦点,若过点F的直线与直线OA、OC的分别相交于M、N两点,则△OMN内切圆半径的最大值为2﹣.解:由题意得∠AOF=45°=∠COF,过M、N向x轴作垂线,垂足分别为M1,N1.设|OM|=m,|ON|=n,则,.,所以有mn=m+n.又,有mn≥4.(当且仅当m=n时等号成立).Rt△OMN的内切圆半径,令t=mn,t≥4,则,在[4,+∞)上单调递减.∴当t=4时,r有最大值为.故答案为:.四.解答题:共70分.解答应写出文字说明、证明过程或演算步骤.17.已知等比数列{a n}的各项均为正数,a6,,a7成等差数列,且a5=.(1)求数列{a n}的通项公式;(2)设b n=log a a n(a>0且a≠1),求数列{b n}的前n项和S n的最值.解:(1)设等比数列的首项为a1,公比为q>0,由得,q=2.所以.(2)b n=log a a n=(n﹣6)log a2.数列{b n}是首项为﹣5log a2,公差为log a2的等差数列.方法一:①当0<a<1时,log a2<0,数列{b n}是首项为正的递减等差数列.由b n≥0,得n≤6,(S n)max=S5=S6=﹣15log a2,S n没有最小值.②当a>1时,log a2>0,数列{b n}是首项为负的递增等差数列.由b n≤0,得n≤6,所以(S n)min=S5=S6=﹣15log a2,S n没有最大值.方法二:利用等差数列求和公式得.①当a>1时,log a2>0,此时(S n)min=S5=S6=﹣15log a2,S n没有最大值.②当0<a<1时,log a2<0,此时(S n)max=S5=S6=﹣15log a2,S n没有最小值.18.某市一湿地公园建设项目中,拟在如图所示一片水域打造一个浅水滩,并在A、B、C、D四个位置建四座观景台,在凸四边形ABCD中,AB=千米.AD=BC=CD=1千米.(1)用cos A表示cos C;(2)现要在A、C两处连接一根水下直管道,已知cos A=,问最少应准备多少千米管道(结果可用根式表示).解:(1)连结BD,如图所示:在△ABD中,由余弦定理得.在△BCD中,由余弦定理得BD2=BC2+CD2﹣2BC×CD×cos C=2﹣2cos C,所以,解得,所以用cos A表示cos C为cos C=cos A﹣1.(2)因为,所以由(1)可得,C∈(0,π),所以,由CD=BC,所以.△ABD中,由余弦定理得.由AB=BD,所以△ABD为等腰三角形.所以,,计算.△ACD中,由余弦定理得AC2=AD2+CD2﹣2AD×CD×cos∠ADC=.解得;所以应准备千米的管道.19.如图,在四棱锥P﹣ABCD中,AB∥CD,∠ABC=90°,AB=1,BC=,△PDC是边长为2的等边三角形,平面PDC⊥平面ABCD,E为PC中点.(1)设平面PAD∩平面PBC=l,证明:DE⊥l;(2)求平面PAD与平面PBC所成锐二面角的余弦值.【解答】(1)证明:因为平面PDC⊥平面ABCD,且平面PDC∩平面ABCD=DC.BC ⊥CD,所以BC⊥平面PDC.又BC⊂平面PBC.从而平面PDC⊥平面PBC.已知△PDC为等边三角形,E为PC中点,所以DE⊥PC,故平面PDC∩平面PBC=PC,故DE⊥平面PBC.由已知l⊂平面PBC,所以DE⊥l.(2)方法一:设DC中点为O,则PO⊥DC,因为平面PDC⊥平面ABCD,所以PO⊥平面ABCD,如图,以O为原点,OA为x轴,OC为y轴,OP为z轴,建立空间坐标系,由已知有,,D(0,﹣1,0),,C(0,1,0).设平面PAD的法向量,因为,,,,所以,令,则,设平面PBC的法向量,∵,,,,,令z2=1,则,因为,,所以.所以平面PAD和平面PBC所成二面角的余弦值为.方法二:设CB与DA相交于点F,PF即平面PAD与平面PBC的交线.过E设EH⊥PF,垂足为H.连结DH.由(1)知DE⊥平面PBC,所以PF⊥DE,从而PF⊥平面DEH.所以PH⊥DH,故∠DHE是平面PAD与平面PBC所成锐二面角的平面角.由已知易得,且,由(1)知△PCF为直角三角形,∠C为直角,从而,所以,故,所以.20.核酸检测是诊断新冠病毒(nCoV)的重要标准之一,通过被检者核酸检测可以尽早发现感染者,感染者新冠病毒核酸检测呈阳性.2020年抗疫期间,某社区拟对其中850户4口之家以家庭为单位进行核酸检测,假定每个人核酸检测呈阳性还是阴性相互独立,且每个人核酸检测呈阳性的概率都是p(0<p<1).在进行核酸检测时,可以逐个检测,也可以将几个样本混合在一起检测.检测方式有三种选择:方式一:逐个检测;方式二:将每个4口之家检测样本平均分成两组后,分组混合检测;方式三:将每个4口之家4个检测样本混合在一起检测;其中,若混合样本1次检测结果呈阴性,则认为该组样本核酸检测全部呈阴性,不再检测,若混合样本1次检测结果呈阳性,则对该组样本中的各个样本再逐个检测.(1)假设某4口之家中有2个样本呈阳性,逐个检测,求恰好经过3次检测能把这个家庭阳性样本全部检测出来的概率;(2)若p=0.01,分别求该社区选择上述三种检测方式,对其中850户4口之家进行核酸检测次数的数学期望,你建议选择哪种检测方式较好,请简述其实际意义(不要求证明).(附:0.992≈0.98,0.993≈0.97,0.994≈0.96.)解:(1)记恰好经过3次检测能把这个家庭阳性样本全部检测出来为事件A,则P(A)==.(2)当P=0.01时,每个人核酸检测呈阴性的概率为0.99.若选择方式一,该社区对其中850户4口之家需进行X1=3400次核酸检测.若选择方式二,记每个4口之家检测次数为ξ2,则ξ2可能取值为2,4,6,其分布列为ξ2246P0.994(1﹣0.992)2.故该社区对其中1000户4口之家进行核酸检测总次数期望EX2=850Eξ2=1768次.若选择方式三进行核酸检测,记每个4口之家检测次数为ξ3,则ξ3可能取值为1,5.其分布列为ξ312P0.9941﹣0.994故选择方式三每个4口之家检测次数的期望为故该社区对其中1000户4口之家进行核酸检测总次数期望为EX3=850×1.16≈986次.显然EX3<EX2<EX1由上可知,当每个人核酸检测呈阳性概率很小时,采取每个家庭检测样本混合在一起检测时,检测总次数期望相较其他方式少,对人数众多的群体采用方式三进行核酸检测显著提高了检测效率,大大节约了检测成本.21.已知抛物线C:x2=2py(p>0)的焦点为F,点(m,1)在抛物线C上,该点到原点的距离与到C的准线的距离相等.(1)求抛物线C的方程;(2)过焦点F的直线l与抛物线C交于A,B两点,且与以焦点F为圆心2为半径的圆交于M,N两点,点B,N在y轴右侧.①证明:当直线l与x轴不平行时,|AM|≠|BN|;②过点A,B分别作抛物线C的切线l1,l2,l1与l2相交于点D,求△DAM与△DBN的面积之积的取值范围.解:(1)由题意可得,解得p=4,所以抛物线C的方程为x2=8y.(2)由(1)知,圆F方程为:x2+(y﹣2)2=1,由已知可设l:y=kx+2,且A(x1,y1),B(x2,y2),由得x2﹣8kx﹣16=0,设Q(x0,y0)是抛物线C上任一点,则,故抛物线与圆相离.①证明:当直线l与x轴不平行时,有k≠0,方法一:由抛物线定义知,|AF|=y1+2,|BF|=y2+2.所以||AM|﹣|BN||=|(|AF|﹣2)﹣(|BF|﹣2)|=||AF|﹣|BF||=|y1﹣y2|=|(kx1+2)﹣(kx2+2)|==,所以|AM|≠|BN|方法二:因为A、M、N、B四点共线,M、N中点为F(0,2),若|AM|=|BN|,则必有AB中点与M、N中点重合,即x1+x2=0,因为x1+x2=8k≠0,所以|AM|≠|BN|.②由(1)知抛物线方程为.所以.所以过点A的切线,即.同理可得,过点B的切线l2为.由l1,l2方程联立,得,解之,得,又得,所以.D(4k,﹣2)到l:y=kx+2的距离,|AM|⋅|BN|=(|AF|﹣2)(|BF|﹣2)=[(y1+2)﹣2][(y2+2)﹣2]=,从而=.22.已知函数f(x)=ae x﹣ln(x+1)+lna.(1)当a=1时,求函数y=f(x)的单调区间;(2)当a∈[1,+∞)时,求证:f(x)总存在唯一的极小值点x0,且f(x0)≥1.【解答】(1)解:函数y=f(x)的定义域为(﹣1,+∞).当a=1时,f(x)=e x﹣ln(x+1),所以,易知f'(x)在(﹣1,+∞)上单调递增,且f'(0)=0.则在(﹣1,0)上f'(x)<0,在(0,+∞)上f'(x)>0,从而f(x)在(﹣1,0)上单调递减,在(0,+∞)上单调递增.(2)证明:f(x)=ae x﹣ln(x+1)+lna,所以,且a≥1.设g(x)=f'(x),则,所以g(x)在(﹣1,+∞)上单调递增,即f'(x)在(﹣1,+∞)上单调递增,由,得,设h(x)=(x+1)e x h'(x)=(x+2)e x>0,则h(x)在[﹣1,+∞)上单调递增且h(﹣1)=0.则当a∈[1,+∞)时,都恰有一个x0>﹣1,使得,且当x∈(﹣1,x0)时f'(x)<0,当x∈(x0,+∞)时f'(x)>0,因此f(x)总有唯一的极小值点x0.所以,从而lna=﹣ln(x0+1)﹣x0,极小值由lna=﹣ln(x0+1)﹣x0,可得当a∈[1,+∞)时,﹣ln(x0+1)﹣x0≥0,即ln(x0+1)+x0≤0,ln(x0+1)+x0随x0增大而增大,易得x0∈(﹣1,0].令t=x0+1,则t∈(0,1],设,φ(1)=1,所以φ(t)在(0,1]上单调递减,且φ(1)=1,从而φ(t)≥1.即f(x0)≥1.。

2021届湖南四大名校联考新高三原创预测试卷(十七)数学

2021届湖南四大名校联考新高三原创预测试卷(十七)数学

2021届湖南四大名校联考新高三原创预测试卷(十七)数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题(本大题共12小题,共60.0分)1.已知集合,,则A. B.C. D.2.A. B. C. D.3.已知a,b都是实数,那么“”是“”的A. 充分不必要条件B. 必要不充分条件C. 充分必要条件D. 既不充分也不必要条件4.已知,则A. B. C. D.5.已知实数满足约束条件,则的最小值为A. 3B. 1C. 0D.6.已知正方体中,E,F,G分别是,,的中点,则下列说法错误的是.A. 平面B. 平面C. 平面D. 平面7.的最大值为A. 2B. 1C.D.8.已知函数是偶函数,则下列方程一定是函数的图象一条对称轴方程的是A. B. C. D.9.执行如图所示的程序框图,输出S的值为A. 3B. 5C. 9D. 1610.一底面半径为2的圆柱形封闭容器内有一个半径为1的小球,与一个半径为2的大球,则该容器容积最小为A. B. C. D.11.已知点M,N是椭圆上的两点,且线段MN恰为圆的一条直径,A为椭圆C上与M,N不重合的一点,且直线AM,AN斜率之积为,则椭圆C的离心率为A. B. C. D.12.已知函数的图象与的图象在有k个交点,分别记作,,,,则A. 9B. 10C. 19D. 20二、填空题(本大题共4小题,共20.0分)13.已知平面向量,满足,,若,则实数的值为______14.已知双曲线的左右焦点分别为,,过作两条渐近线的垂线,垂足分别为A,B,若,则双曲线C的离心率为______15.在中,内角A,B,C所对的边分别为a,b,c,若,且,则的取值范围是______16.已知,则不等式的解集为______三、解答题(本大题共7小题,共82.0分)17.已知数列,满足,且是等差数列求的通项公式;求数列的前n项和.18.千粒重是以克表示的一千粒种子的重量,它是体现种子大小与饱满程度的一项指标,是检验种子质量,也是田间预测产量时的重要依据.现随机从一堆小麦种子中数出20份一千粒种子,分别称重,得到重量单位:克落在各个小组的频数分布表如表:分组重量频数份13952求这份小麦千粒重的样本平均数同一组中的数据用该组区间的中点值作代表;根据千粒重的频数分布,求出20份小麦千粒重中位数的估计值x;从重量在和的一千粒小麦种子随机抽取2份,求重量在和中各有1份的概率.19.如图所示,在三棱锥中,,,,点E为AD中点.求证:平面平面BCE;若点F在CD上,且,求三棱锥的体积.20.已知焦点为F的抛物线C:与圆O:交于点求抛物线C的方程;在第一象限内,圆O上是否存在点A,过点A作直线l与抛物线C交于点为第四象限的点,与x轴交于点D,且以点D为圆心的圆过点O,A,B?若存在,求出点A的坐标;若不存在,说明理由.21.已知函数.讨论的单调性;判断方程在上的实根个数;22.在直角坐标系xOy中,曲线的参数方程为为参数,点P是曲线上的动点,点Q在OP延长线上,且.求点Q轨迹的参数方程;以O为极点,x轴非负半轴为极轴建立极坐标系,射线与曲线,与原点不重合的交点分别为A,B,求.23.已知.若,求不等式的解集;若存在,对任意恒有,求实数a的取值范围.数学试卷参考答案一、选择题(本大题共12小题,共60.0分)DBADC CDBDC DC二、填空题(本大题共4小题,共20.0分)13.【答案】14.【答案】15.【答案】16.【答案】或.三、解答题(本大题共7小题,共82.0分)17.【答案】解:数列,满足,则:,整理得,且是等差数列,所以公差,解得.故.由于,整理得.由得:,,.18.【答案】解:这20份小麦千粒重的样本平均数为:.根据千粒重的频数分布,得20份小麦千粒重中位数的估计值为:.从重量在和的一千粒小麦种子随机抽取2份,重量在和的一千粒小麦种子分别有5份和2份,基本事件总数,重量在和中各有1份包含的基本个数,重量在和中各有1份的概率.19.【答案】证明:由,,得,又点E为AD中点,,,又,平面BCE,而平面ACD,平面平面BCE;解:若点F在CD上,且,则.由,,得.由,得平面ABD,又,..则.20.【答案】解:将点代入得,解得,则抛物线C的方程为;假设在第一象限内.圆O上存在点A,且以点D为圆心的圆过点O,A,B,则,D为AB的中点,由题意可得直线OA的斜率存在且大于0,设OA的方程为,则OB的方程为,联立,解得,所以,联立,解得,所以,由D为AB的中点,可得,整理得,方程无实数解,则符合条件的k不存在,所以满足条件的A不存在.21.【答案】解:,当时,,是减函数;当时,,是增函数.由知,,由得,当时,由可知,在上没有实根;当时,由可得在上没有实根;当时,由可知,在上有一个实根;当时,由可知,在是减函数,在是增函数,由,,可得在上有一个实数根,又,设,则,在是增函数,,,,在上有一个实数根;综上可得,当时,在上没有实根;当时,在上有1个实数根;当时,在上有2个实数根.22.【答案】解:点Q在OP延长线上,且.解得,.代入曲线的参数方程为为参数,可得:,即为点Q轨迹的参数方程.以O为极点,x轴非负半轴为极轴建立极坐标系,射线与曲线,与原点不重合的交点分别为A,B,曲线的参数方程为为参数,化为:.点Q轨迹的参数方程:,化为:.射线即为:.分别与曲线,,联立可得:,,.23.【答案】解:,不等式即为,可得或或,解得或或,则原不等式的解集为或;,当时,取得最小值,存在,对任意恒有,可得任意恒有,由,当且仅当取得等号,则,解得.。

2021届湖南四大名校新高考原创预测试卷(二十四)数学

2021届湖南四大名校新高考原创预测试卷(二十四)数学

2021届湖南四大名校新高考原创预测试卷(二十四)数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.复数21i-的共轭复数是 A .1i - B .1i +C .1i --D .1i -+2.已知集合20{|}M x x x =-≤,{}sin |,N y y x x ==∈R ,则M N ⋂= A .[]1,0-B .(0,1)C .[0,1]D .∅3.已知抛物线2:2(0)C x py p =>的准线为l ,圆22:(1)(2)9M x y -+-=与l 相切.则p =A .1B .2C .3D .44.某学校组织学生参加数学测试,某班成绩的频率分布直方图如图,数据的分组依次为[20,40),[40,60),[60,80),[80,100].若不低于60分的人数是35人,则该班的学生人数是A .45B .50C .55D .655.中国古代数学名著《周髀算经》记载的“日月历法”曰:“阴阳之数,日月之法,十九岁为一章,四章为一部,部七十六岁,二十部为一遂,遂千百五二十岁,….生数皆终,万物复苏,天以更元作纪历”.某老年公寓住有20位老人,他们的年龄(都为正整数)之和恰好为一遂,其中最年长者的年龄在(90,100)之间,其余19人的年龄依次相差一岁,则最年长者的年龄为 A .94B .95C .96D .986.已知,()0απ∈,()2sin 2cos21παα-=-,则sin α=A .15B C .D7.已知直三棱柱111ABC A B C -的6个顶点都在球O 的球面上.若1AB =,AC =,AB AC ⊥,14AA =,则球O 的表面积为A .5πB .10πC .20πD 8.对于定义在R 上的函数()f x ,且()f x π+为偶函数.当,()0x π∈时,3()cos f x x x =-,设()2a f =,()4b f =,()6c f =,则a ,b ,c 的大小关系为A .a b c <<B .b c a <<C .b a c <<D .c a b <<二、选择题:本题共4小题,每小题5分,共20分.在每小题给出的选项中,有多项符合题目要求.全部选对的得5分,有选错的得0分,部分选对的得3分. 9.设a ,b ,c 为正实数,且a b >,则 A .11a b a b->-B .11a b b a->-C .()ln 0a b ->D .()()2211c a b c +>+10.已知曲线12:sin C y x =,2:2sin 23C y x π⎛⎫=+⎪⎝⎭,则 A .把1C 上各点的横坐标缩短为原来的12倍,纵坐标不变,再把得到的曲线向左平移6π个单位长度,得到曲线2CB .把1C 上各点的横坐标缩短为原来的12倍,纵坐标不变,再把得到的曲线向右平移56π个单位长度,得到曲线2CC .把1C 向左平移3π个单位长度,再把得到的曲线上各点的横坐标缩短为原来的12倍.纵坐标不变,得到曲线2CD .把1C 向左平移6π个单位长度,再把得到的曲线上各点的横坐标缩短为原来的12倍,纵坐标不变,得到曲线2C11.对a ∀,b ∈R ,若函数()f x 同时满足:(1)当0a b +=时,有()()0f a f b +=;(2)当0a b +>时,有()()0f a f b +>,则称()f x 为Ω函数.下列是Ω函数的有 A .()e e xxf x -=+B .()e exxf x -=-C .()sin f x x x =-D .()0,0,1,0.x f x x x=⎧⎪=⎨-≠⎪⎩12.在长方体1111ABCD A B C D -中,M ,P 是平面11DCC D 内不同的两点,N ,Q 是平面ABCD 内不同的两点,且M ,P ,N ,Q CD ∉,E ,F 分别是线段MN ,PQ 的中点,则下列结论正确的是 A .若MNPQ ,则EF CD B .若E ,F 重合,则MPCDC .若MN 与PQ 相交,且MPCD ,则NQ 可以与CD 相交D .若MN 与PQ 是异面直线,则EF 不可能与CD 平行 三、填空题:本题共4小题,每小题5分,共20分.13.函数32()2f x x x =-的图象在点()()1,1f 处的切线方程为________.14.1021(2)x x x ⎛⎫-+ ⎪⎝⎭的展开式中8x 的系数为________.(用数字填写答案)15.已知向量()1,m a =,()21,3n b =-(0a >,0b >),若m n ⊥,则12a b+的最小值为________. 16.已知1F ,2F 是双曲线()2222:10,0x y C a b a b-=>>的左,右焦点,以12F F 为直径的圆与C 的左支交于点A ,2AF 与C 的右支交于点B ,123cos 5BF F ∠=-,则C 的离心率为________. 四、解答题:本题共6小题,共70分.解答应写出文字说明、证明过程或演算步骤. 17.(10分)在①sin B C =,②4sin b A =,③2B C A +=这三个条件中任选一个,补充在下面问题中,若问题中的三角形存在,求c 的值;若问题中的三角形不存在,说明理由.问题:是否存在ABC △,它的内角A ,B ,C 的对边分别为a ,b ,c ,且sin cos s n 4i B A A a b =+,2a =,________?注:如果选择多个条件分别解答,按第一个解答计分. 18.(12分)设{}n a 是公比大于1的等比数列,12314a a a ++=,且21a +是1a ,3a 的等差中项. (1)求数列{}n a 的通项公式;(2)若21log 2nn b a ⎛⎫= ⎪⎝⎭,数列{}n b 的前n 项和n T .19.(12分)如图,在圆柱12O O 中,AB 为圆1O 的直径,C ,D 是弧AB 上的两个三等分点,CF 是圆柱12O O 的母线.(1)求证:1CO 平面AFD ;(2)设AC =45FBC ∠=︒,求二面角B AF C --的余弦值.20.(12分)某市广电运营商为了解该市广电网络从业人员的业务水平与服务水平.随机调查了140名客户,结果显示:业务水平的满意率为67,服务水平的满意率为57,两者都满意的有90名客户. (1)根据上述结果完成下面22⨯列联表.并判断是否有97.5%的把握认为该市广电网络从业人员的业务水平与服务水平有关;(2)若从对服务水平不满意的客户中,随机抽取2名征求改进意见,用X 表示对业务水平不满意的人数,求X 的分布列与期望;(3)若用频率代替概率,假定在业务服务协议终止时,对业务水平和服务水平两项都满意的客户流失率为5%,只对其中一项不满意的客户流失率为40%,对两项都不满意的客户流失率为75%,从该社区中任选4名客户,估计在业务服务协议终止时至少有2名客户流失的概率为多少? 附:22()()()()()n ad bc K a b c d a c b d ⨯-=++++,n a b c d =+++21.(12分)已知椭圆C 的两个焦点分别是()1,0-,()1,0,并且经过点1,2⎛⎫⎪ ⎪⎝⎭.(1)求椭圆C 的标准方程;(2)已知点()0,2Q ,若C 上总存在两个点A 、B 关于直线y x m =+对称,且4QA QB ⋅<,求实数m 的取值范围. 22.(12分)已知函数()()ln 1f x x a x =-+,a ∈R . (1)讨论()f x 的单调性;(2)设()()1g x f x x =++,若函数()g x 有两个不同的零点1x ,2x ,求a 的取值范围.数学试题参考答案与评分标准评分说明:1.参考答案与评分标准给出了一种或几种解法供参考,如果考生的解法与参考答案不同,可根据试题主要考查的知识点和能力对照评分标准给以相应的分数.2.对解答题中的计算题,当考生的解答在某一步出现错误时,如果后继部分的解答未改变该题的内容和难度,可视影响的程度决定后继部分的得分,但所给分数不得超过该部分正确解答应得分数的一半.如果后继部分的解答有较严重的错误,就不再给分.3.解答右端所注分数,表示考生正确做到这一步应得的累加分数. 4.只给整数分数,选择题和填空题不给中间分.一、选择题:本题共12小题,每小题5分,共60分.1~8小题为单项选择题,在每小题给出的四个选项中,只有一项是符合题目要求的;9~12小题为多项选择题,在每小题给出的选项中,有多项符合题目要求,全部选对的得5分,有选错的得0分,部分选对的得3分.8.解,因为函数()f x π+为偶函数,所以()()f x f x ππ-+=+, 即函数()f x 的图象关于直线xπ=对称,即()2()f x f x π=-.又因为当,()0x π∈时,()3cos f x x x =-,所以函数()f x 在(0,)π上单调递减,因而在(),2ππ上单调递增,因为4226π<-<,所以()()(426)2f f f π<-<,即()()426()f f f <<,即b a c <<.故选C . 12.解:若MNPQ ,则M 、N 、P 、Q 四点共面γ,当MN PQ <时,平面11DCC D 、ABCD 、γ两两相交有三条交线,分别为MP 、NQ 、CD ,则三条交线交于一点O ,则CD 与平面γ交于点O ,则EF 与CD 不平行.故A 错误: 若E ,F 两点重合,则MPNQ ,M 、N 、P ﹑Q 四点共面γ,平面11DCC D 、ABCD 、γ两两相交有三条交线,分别为MP 、NQ 、CD ,由MPNQ ,得MPNQCD ,故B 正确;若MN 与PQ 相交,确定平面γ,平面11DCC D 、ABCD 、γ两两相交有三条交线,分别为MP 、NQ 、CD ,因为MP CD ,所以MP NQ CD ,所以NQ 与CD 不可能相交.故C 错误;当MN 与PQ 是异面直线时,如图,连接NP ,取NP 中点G ,连接EG ,FG .则EG MP ,因为MP ⊂平面11DCC D ,EG ⊄平面11DCC D ,则EG 平面11DCC D .假设EFCD ,因为CD ⊂平面11DCC D ,EF ⊄平面11DCC D ,所以EF 平面11DCC D .又EF EG E ⋂=,∴平面EFG平面11DCC D ,同理可得,平面EFG平面ABCD ,则平面11DCCD 平面ABCD ,与平面11DCC D ⋂平面ABCD CD =矛盾.所以假设错误,EF 不可能与CD 平行,故D 正确,故选BD .二、填空题:本题共4小题,每小题5分,共20分. 13.0x y +=14.2515.7+1616.解:由题意知1290F AF ∠=︒,123cos 5BF F ∠=-, 所以13cos 5ABF ∠=,即1||3||5AB BF =,易得11::3:4:5AB AF BF =. 设||3AB =,1145B AF F ==,2BF x =.由双曲线的定义得:345x x +-=-,解得:3x =,所以12F F c ==⇒=,因为2521a x a =-=⇒=,所以离心率e =.三、解答题;本大题共6小题,满分70分.解答应写出文字说明,证明过程或演算步骤. 17.(10分)解:已知sin cos 4sin B A a b A =+,由正弦定理,得4sin sin sin sin cos B A A A B B =+, ······································································ 2分因为B 为三角形内角,sin 0B ≠, ······················································································· 3分所以sin s i 4s n A A A =+,即3sin os A A = ···························································· 4分所以tan A =, ········································································································· 5分 因为0A π<<,所以6A π= ······························································································ 6分 选择条件①的解析:解法一:由sin B C =及正弦定理,可得b =, ························································ 7分由余弦定理2222cos a b c bc A =+-,则)2242c c =+-⋅⎝⋅⎭, ············································································· 9分解得2c =. ·················································································································· 10分解法二:由sin B C =,又因为6A π=,所以56B C π=-, ············································ 7分则5sin 6C C π⎛⎫-=⎪⎝⎭,展开得,cos C C =, ······················································ 8分所以tan C =,6C π= 所以A C =, ·················································································································· 9分 所以2c =. ·················································································································· 10分 选择条件②的解析:解法一:由4sin b A =,可得4sin26b π==, ······································································· 7分由余弦定理2222cos a b c bc A =+-得,·············································································· 8分2222222cos6c c π=+-⨯⨯⨯,······················································································ 9分解得c = ·············································································································· 0分 解法二:由4sin b A =得4sin26b π==. ············································································· 7分因为2a =,所以,ABC △是以C 为顶角的等边三角形. 所以6A B π==,所以23C π=. ····················································································· 8分 由正弦定理sin sin a cA C=得,22sinsin63cππ=, ··································································· 9分解得c = ·············································································································· 10分 选择条件③的解析:解法一:由2B C A +=,又因为A B C π++=,则3A π=, ·················································· 8分与6A π=矛盾,则问题中的三角形不存在. ········································································· 10分解法二:由2B C A +=,则263B C ππ+=⨯=,则632A B C ππππ++=+=<,························································································ 8分与三角形内角和等于π矛盾,因而三角形不存在. ································································ 10分 18.(12分)解:(1)设等比数列{}n a 的公比为q .依题意,有()21321a a a +=+ ········································································································ 1分 将()13221a a a +=+代入12314a a a ++=得()222114a a ++=,得24a =. (2)分联立1232144a a a a ++==⎧⎨⎩得21111144a a q a q a q ++==⎧⎨⎩两式两边相除消去1a 得22520q q -+=, 解得2q =或12q =(舍去), ····························································································· 3分 所以1422a ==. ··········································································································· 4分 所以111222n n nn a a q --==⨯=. ························································································ 5分(2)解法一:因为21log 22nn n n b a n ⎛⎫==-⋅ ⎪⎝⎭······································································ 6分所以,231222322n n T n -=⨯+⨯+⨯+⨯……① ······························································· 7分()32142122232122n n n T n n +-=⨯+⨯+⨯+-⨯+⨯……② ················································· 8分 ①-②,得21322222n n n T n +=++++-⨯ ······································································ 9分1112(12)222212n n n n n n +++-=-⨯=-⋅--. ········································································· 11分所以,数列{}n b 的前n 项和11222n n n T n ++=-⋅-. ····························································· 12分解法二:因为21log 2(2)22nn n n n b a n n n ⎛⎫==-⋅=-+⋅ ⎪⎝⎭[]{}2(1)4(2)2n n n =-++--+⋅所以()()112222n nn b n n +⋅=-++--⎦+⋅⎡⎤⎣ ········································································· 8分 进而得2132(22)2(12)2(32)2(22)2n T ⎡⎤⎡⎤=-+⋅--+⋅+-+⋅--+⋅+⋯+⎣⎦⎣⎦[]{}1(1)22(2)2n n n n +-++⋅--+⋅[]11(1)22222(1)n n n n ++=-++⋅--⋅-= ········································································· 11分 所以数列{}n b 的前n 项和为()1122n n T n +⋅=-- ································································· 12分 19.(12分)解:(1)连接1O C ,1O D , ····························································································· 1分因为C ,D 是半圆AB 上的两个三等分点, 所以11160AO D DO C CO B ∠=∠=∠=︒, 又1111O A O B O C O D ===,所以1AO D △,1CO D △,1BO C △均为等边三角形.所以11O A AD DC CO ===, ··························································································· 2分 所以四边形1ADCO 是平行四边形. ···················································································· 3分 所以1CO AD , ·········································································································· 4分因为1CO ⊄平面AFD ,AD ⊂平面AFD , 所以1CO 平面AFD . ···································································································· 5分(2)因为FC 是圆柱12O O 的母线,所以FC ⊥平面ABC ,BC ⊂平面ABC ,所以FC BC ⊥ ······················································ 6分 因为AB 为圆1O 的直径,所以90ACB ∠=︒,在Rt ABC △中,60ABC ∠=︒,AC =,所以1tan 60ACBC ==︒,所以在Rt FBC △中,tan451FC BC =︒= ··········································································· 7分 (方法一)因为BC AC ⊥,BC FC ⊥,AC FC C ⋂=, 所以BC ⊥平面FAC , 又FA ⊂平面FAC ,。

湖南省湘西自治州四校2021年高考数学三角函数与解三角形多选题与热点解答题组合练附答案

湖南省湘西自治州四校2021年高考数学三角函数与解三角形多选题与热点解答题组合练附答案

湖南省湘西自治州四校2021年高考数学三角函数与解三角形多选题与热点解答题组合练附答案一、三角函数与解三角形多选题1.已知函数()(|sin |cos )(sin cos )f x x x x x =-+,x ∈R ,则( )A .()f x 在0,3π⎛⎫⎪⎝⎭上单调递减B .()f x 是周期为2π的函数C .()f x 有对称轴D .函数()f x 在(0,2)π上有3个零点【答案】BD 【分析】先判断出()f x 是周期为2π的函数,再在给定的范围上研究()f x 的单调性和零点,从而可判断BCD 的正误,再利用反证法可判断C 不正确. 【详解】因为[][]()(2)|sin(2)|cos(2)(sin(2)cos(2))f x x x x x f x πππππ+=+-+⋅+++=, 故()f x 是周期为2π的函数,故B 正确. 当0,3x π⎛⎫∈ ⎪⎝⎭时,22()sin cos cos 2f x x x x =-=-, 因为220,3x π⎛⎫∈ ⎪⎝⎭,而cos y u =-在20,3π⎛⎫⎪⎝⎭为增函数, 故()cos2f x x =-在0,3π⎛⎫⎪⎝⎭为增函数,故A 错误.由(sin cos )(sin cos )002x x x x x π⎧-+=⎨<<⎩可得4x π=或34x π=或74x π=,故D 正确.若()f x 的图象有对称轴x a =,因为()f x 的周期为2π,故可设[)0,2a π∈, 则()()2f x f a x =-对任意的x ∈R 恒成立,所以()()02f f a =即1(|sin 2|cos 2)(sin 2cos 2)a a a a -=-+①, 也有222f f a ππ⎛⎫⎛⎫=-⎪ ⎪⎝⎭⎝⎭即1(|cos 2|sin 2)(cos 2sin 2)a a a a =--+②,也有222f f a ππ⎛⎫⎛⎫-=+ ⎪ ⎪⎝⎭⎝⎭即1(|cos 2|sin 2)(cos 2sin 2)a a a a -=+-③, 由②③可得cos 2sin 20cos 2sin 2cos 2sin 2a a a a a a -≠⎧⎨+=-⎩, 故sin 20a =,由①②可得cos21a =-,故π2a或32a π=.若π2a,则21313136222f π⎛⎫⎛⎫⎛⎫⎛⎫-=--+=-- ⎪⎪ ⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭, 而2713131362226f f ππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+--=-+≠- ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭, 若32a π=,则21913131362222226f f ππ⎛⎫⎛⎫⎛⎫⎛⎫⎛⎫=+--=-+≠- ⎪⎪ ⎪⎪ ⎪ ⎪⎪ ⎪⎝⎭⎝⎭⎝⎭⎝⎭⎝⎭这与()()2f x f a x =-对任意的x ∈R 恒成立矛盾, 故D 不成立. 故选:BD. 【点睛】方法点睛:与三角函数相关的函数性质的研究,应该依据一定次序,比如先研究函数的奇偶性或周期性,再根据前者把函数的研究限制在一定的范围内进行讨论.2.函数()sin()f x x ωϕ=+的部分图像如图中实线所示,图中的M 、N 是圆C 与()f x 图像的两个交点,其中M 在y 轴上,C 是()f x 图像与x 轴的交点,则下列说法中正确的是( )A .函数()y f x =的一个周期为56B .函数()f x 的图像关于点4,03成中心对称C .函数()f x 在11,26⎛⎫-- ⎪⎝⎭上单调递增 D .圆C 的面积为3136π【答案】BD 【分析】根据图象,结合三角函数的对称性、周期性、值域以及圆的中心对称性,可得,,C M N 的坐标,进而可得()f x 的最小正周期、对称中心、单调减区间,及圆的半径,故可判断选项的正误. 【详解】由图知:1(,0)3C ,3)M ,23()3N ,∴()f x 中111()2362T =--=,即1T =;对称中心为1,0,23k k Z ⎛⎫+∈ ⎪⎝⎭;单调减区间为17,,1212k k k Z ⎡⎤++∈⎢⎥⎣⎦;圆的半径6r ==,则圆的面积为3136π; 综上,知:AC 错误,而BD 正确. 故选:BD. 【点睛】本题考查了三角函数的性质,结合了圆的中心对称性质判断三角函数的周期、对称中心、单调区间及求圆的面积,属于难题.3.函数()cos |cos |f x x x =+,x ∈R 是( ) A .最小正周期是π B .区间[0,1]上的减函数 C .图象关于点(k π,0)()k Z ∈对称 D .周期函数且图象有无数条对称轴 【答案】BD 【分析】根据绝对值的意义先求出分段函数的解析式,作出函数图象,利用函数性质与图象关系分别对函数的周期、单调区间、对称中心和对称轴进行判断求解. 【详解】2cos (22)22()30(22)22x k x k f x k x k ππππππππ⎧-+⎪⎪=⎨⎪+<≤+⎪⎩,则对应的图象如图:A 中由图象知函数的最小正周期为2π,故A 错误,B 中函数在[0,]2π上为减函数,故B 正确,C 中函数关于x k π=对称,故C 错误,D 中函数由无数条对称轴,且周期是2π,故D 正确 故正确的是B D 故选:BD【点睛】本题考查由有解析式的函数图象的性质. 有关函数图象识别问题的思路:①由函数的定义域,判断图象左右的位置,由函数的值域,判断图象的上下位置; ②由函数的单调性,判断图象的变化趋势; ③由函数的奇偶性,判断图象的对称性; ④由函数的周期性,判断图象的循环往复.4.已知函数()f x 的定义域为D ,若对于任意()()()a b c D f a f b f c ∈,,,,,分别为某个三角形的边长,则称()f x 为“三角形函数”,其中为“三角形函数”的函数是( ) A .()4sin f x x =- B .()22sin 10cos 13f x x x =-++C .()tan 2x f x = D .()sin 2230,34f x x x ππ⎛⎫⎡⎤=++∈ ⎪⎢⎥⎝⎭⎣⎦, 【答案】AD 【分析】结合三角形的性质有:两边之差小于第三边,得若()f x 为 “三角形函数”则()()()max min min f x f x f x <-恒成立,即()()max min 2f x f x <恒成立即可,根据条件求出函数的最大值和最小值,进行判断即可. 【详解】解:①()4sin f x x =-,则()max 415f x =+=,()min 413f x =-= 则()()max min 2f x f x <恒成立,则A 满足条件②()22532cos 10cos 112cos 22f x x x x ⎛⎫=++=+= ⎪⎝⎭当0,2x π⎡⎤∈⎢⎥⎣⎦时,0cos 1x ≤≤∴当cos 0x =时,函数()f x 取得最小值()min 11f x =,当cos 1x =时,函数()f x 取得最大值,()max 23f x =则()()max min 2f x f x <不恒成立,则B 不满足条件③()()()tan ,00,2xf x =∈-∞⋃+∞,则不满足条件()()max min 2f x f x <恒成立,故C 不是④()sin 23f x x π⎛⎫=++ ⎪⎝⎭0,4x π⎡⎤∈⎢⎥⎣⎦,52,336x πππ⎡⎤∴+∈⎢⎥⎣⎦,则()max sin12f x π=+=+()min 51sin62f x π=+=+则()min 21f x =+,则()()max min 2f x f x <恒成立,故D 满足条件 故选AD 【点睛】本题考查了三角形的性质及“三角形函数”的概念,根据条件转化为()()max min 2f x f x <恒成立是解决本题的关键,综合性较强,有一定的难度.5.将函数()2πsin 23f x x ⎛⎫=- ⎪⎝⎭的图象向左平移π6个单位长度后得到函数()g x 的图象,则下列说法正确的是( )A .π4g ⎛⎫= ⎪⎝⎭B .π,06⎛⎫⎪⎝⎭是函数()g x 图象的一个对称中心 C .函数()g x 在π0,4⎡⎤⎢⎥⎣⎦上单调递增D .函数()g x 在ππ,63⎡⎤-⎢⎥⎣⎦上的值域是⎡⎢⎣⎦【答案】BC 【分析】首先求得函数()sin 23g x x π=-⎛⎫⎪⎝⎭,再根据选项,整体代入,判断函数的性质. 【详解】()2sin 2sin 2633g x x x πππ⎡⎤⎛⎫⎛⎫=+-=- ⎪ ⎪⎢⎥⎝⎭⎝⎭⎣⎦,1sin 462g ππ⎛⎫⎛⎫== ⎪ ⎪⎝⎭⎝⎭,故A 错误;sin 0633g πππ⎛⎫⎛⎫=-= ⎪ ⎪⎝⎭⎝⎭,故B 正确;0,4x π⎡⎤∈⎢⎥⎣⎦时,2,,33622x πππππ⎡⎤⎡⎤-∈-⊆-⎢⎥⎢⎥⎣⎦⎣⎦,所以函数()g x 在0,4⎡⎤⎢⎥⎣⎦π上单调递增,故C 正确;,63x ππ⎡⎤∈-⎢⎥⎣⎦时,22,333x πππ⎡⎤-∈-⎢⎥⎣⎦,当232x ππ-=-时,函数取得最小值-1,当233x ππ-=时,函数取得最大值3,所以函数的值域是31,⎡⎤-⎢⎥⎣⎦.故选:BC 【点睛】思路点睛:本题考查()sin y A ωx φ=+的解析式和性质的判断,可以整体代入验证的方法判断函数性质:(1)对于函数()sin y A ωx φ=+,其对称轴一定经过图象的最高点或最低点,对称中心的横坐标一定是函数的零点,因此判断直线0x x =或点()0,0x 是否是函数的对称轴和对称中心时,可通过验证()0f x 的值进行判断;(2)判断某区间是否是函数的单调区间时,也可以求x ωϕ+的范围,验证此区间是否是函数sin y x =的增或减区间.6.已知函数()()sin 0,0,2f x A x A πωϕωϕ⎛⎫=+>>< ⎪⎝⎭的部分图象如图所示,下列说法正确的是( )A .函数()y f x =的周期为πB .函数()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦单调递减 C .函数()y f x =的图象关于直线512x π=-对称 D .该图象向右平移6π个单位可得2sin 2y x =的图象 【答案】ACD 【分析】先根据图像求出()y f x =的解析式,再分别验证A 、B 、C 、D 是否正确.对于A :利用周期公式求周期;对于B :利用复合函数“同增异减”求单调区间; 对于C :计算512f π⎛-⎫⎪⎝⎭,看512x π=-是否经过顶点; 对于D :利用“左加右减”判断. 【详解】由图像可知:A =2,周期24,2312T T ππππω⎛⎫=-=∴==⎪⎝⎭;由=2sin 2212122f ππϕπϕ⎧⎛⎫⎛⎫⨯+= ⎪ ⎪⎪⎪⎝⎭⎝⎭⎨⎪<⎪⎩解得:3πϕ=故函数()2sin 23f x x π⎛⎫=+ ⎪⎝⎭对于A :4312T πππ⎛⎫=-= ⎪⎝⎭,故A 正确; 对于B :当236x ππ-≤≤- 时203x ππ-≤+≤,所以()y f x =在2,36ππ⎡⎤--⎢⎥⎣⎦上不单调.故B 错误; 对于C :当512x π=-时255s 2121232in f πππ⎛⎫⎛⎫=-=- ⎪ ⎭⎝-⎪⎭+⎝⨯,即直线512x π=-是()y f x =的一条对称轴.故C 正确;对于D :()y f x =向右平移6π个单位得到2sin 222sin 263y x x ππ⎛⎫=-⨯+= ⎪⎝⎭,故D 正确. 故选:ACD 【点睛】求三角函数解析式的方法: (1)求A 通常用最大值或最小值; (2)求ω通常用周期;()求φ通常利用函数上的点带入即可求解.7.下列结论正确的是( )A .在三角形ABC 中,若AB >,则sin sin A B > B .在锐角三角形ABC 中,不等式2220b c a +->恒成立 C .若sin 2sin 2A B =,则三角形ABC 为等腰三角形D .在锐角三角形ABC 中,sin sin cos cos A B A B +>+ 【答案】ABD【分析】由正弦定理及三角形性质判断A ,由余弦定理判断B ,由正弦函数性质判断C ,利用锐角△ABC 这个条件,可得2A B π+>,结合三角函数的单调性比较sin A 与cos B 大小即可判断D . 【详解】ABC 中,A B a b >⇔>,由sin sin a bA B=,得sin sin A B >,A 正确; 在锐角三角形ABC 中,222222cos 0,02b c a A b c a bc+-=>∴+->,B 正确;ABC 中,若sin 2sin 2A B =,则22A B =或22180A B ︒+=,即A B =或90A B ︒+=,ABC 为等腰三角形或直角三角形,C 错误;在锐角三角形ABC 中,2A B π+>,022A B ππ∴>>->,sin sin 2A B π⎛⎫∴>- ⎪⎝⎭,即sin cos A B >,同理:sin cos B A >sin sin cos cos A B A B ∴+>+,D 正确.故选:ABD. 【点睛】关键点睛:本题考查正弦定理,余弦定理,正弦函数的性质,诱导公式等,学会公式的灵活应用是解答本题的关键.8.已知函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭,则下列结论正确的是( ) A .函数()f x 的初相为6π- B .若函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,则(0,2]ω∈ C .若函数()f x 关于点,02π⎛⎫⎪⎝⎭对称,则ω可以为12D .将函数()f x 的图象向左平移一个单位得到的新函数是偶函数,则ω可以为2023 【答案】AB 【分析】根据选项条件一一判断即可得结果. 【详解】A 选项:函数()2sin (0)6f x x πωω⎛⎫=-> ⎪⎝⎭的初相为6π-,正确; B 选项:若函数()f x 在,63ππ⎡⎤⎢⎥⎣⎦上单调递增,则2266k ππωππ-+≤-,2362k πωπππ-≤+,k Z ∈,所以21226k k ω-+≤≤+,k Z ∈,又因为0ω<,则02ω<≤,正确;C 选项:若函数()f x 关于点,02π⎛⎫⎪⎝⎭对称,则,26k k Z πωππ-=∈,所以12,3k k Z ω=+∈故ω不可以为12,错误; D 选项:将函数()f x 的图象向左平移一个单位得到()12sin 6f x x πωω⎛⎫+=+- ⎪⎝⎭是偶函数,则,62k k Z ππωπ-=+∈,所以2,3k k Z πωπ=+∈故ω不是整数,则ω不可以为2023,错误; 故选:AB 【点睛】掌握三角函数图象与性质是解题的关键.9.将函数cos 2y x =的图象上所有点向左平移6π个单位长度,再向下平移1个单位长度,得到函数()y f x =的图象,则( ) A .()f x 的图象的对称轴方程为()62k x k Z ππ=-+∈ B .()f x 的图象的对称中心坐标为(),0212k k Z ππ⎛⎫+∈ ⎪⎝⎭ C .()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭D .()f x 的单调递减区间为()2,63k k k Z ππππ⎡⎤++∈⎢⎥⎣⎦【答案】AC 【分析】首先根据图象平移求函数()y f x =的解析式,再根据整体代入的方法判断函数的对称性和单调区间. 【详解】cos 2y x =的图象上所有点向左平移π6个单位长度,得到cos 26y x π⎛⎫=+ ⎪⎝⎭,再向下平移1个单位长度后得到()cos 213y f x x π⎛⎫==+- ⎪⎝⎭, 对于A ,令23x k ππ+=,解得,62k x k Z ππ=-+∈,函数的对称轴是,62k x k Z ππ=-+∈,故A 正确; 对于B ,令232x k πππ+=+,解得:,122k x k Z ππ=+∈,所以函数的对称中心,1,122k k Z ππ⎛⎫+-∈ ⎪⎝⎭,故B 不正确; 对于C ,令2223k x k ππππ-+≤+≤,解得:236k x k ππ-+π≤≤-+π,所以函数的单调递增区间是2,,36k k k Z ππππ⎡⎤-+-+∈⎢⎥⎣⎦,由于单点不具有单调性,所以()f x 的单调递增区间为()2,36k k k Z ππππ⎡⎫-+-+∈⎪⎢⎣⎭也正确,故C 正确;对于D ,令2223k x k ππππ≤+≤+,解得:63k x k ππππ-+≤≤+,所以函数单调递减区间是,63k k ππππ⎡⎤-++⎢⎥⎣⎦,k Z ∈,故D 不正确.故选:AC 【点睛】方法点睛:本题考查函数的图象变换,以及()sin y A ωx φ=+的性质,属于中档题型,()sin y A x ϕ=+的横坐标伸长(或缩短)到原来的1ω倍,得到函数的解析式是()sin y A ωx φ=+,若sin y A x ω=向右(或左)平移ϕ(0ϕ>)个单位,得到函数的解析式是()sin y A x ωϕ=-⎡⎤⎣⎦或()sin y A x ωϕ=+⎡⎤⎣⎦.10.在ABC 中,下列说法正确的是( ) A .若A B >,则sin sin A B > B .若2C π>,则222sin sin sin C A B >+C .若sin cos A B <,则ABC 为钝角三角形D .存在ABC 满足cos cos 0A B +≤ 【答案】ABC【分析】根据大角对大边,以及正弦定理,判断选项A ;利用余弦定理和正弦定理边角互化,判断选项B ;结合诱导公式,以及三角函数的单调性判断CD.【详解】A.A B >,a b ∴>,根据正弦定理sin sin a b A B =,可知sin sin A B >,故A 正确; B.2C π>,222cos 02a b c C ab +-∴=<,即222a b c +<,由正弦定理边角互化可知222sin sin sin C A B >+,故B 正确;C.当02A π<<时,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒+<,即2C π>,则ABC 为钝角三角形,若2A π>,sin cos cos cos 2A B A B π⎛⎫<⇔-< ⎪⎝⎭,即22A B A B ππ->⇒>+成立,A 是钝角,当2A π=是,sin cos A B >,所以综上可知:若sin cos A B <,则ABC 为钝角三角形,故C 正确;D.A B A B ππ+<⇒<-,0,0A B πππ<<<-<,()cos cos cos A B B π∴>-=-,即cos cos 0A B +>,故D 不正确.故选:ABC【点睛】关键点点睛:本题考查判断三角形的形状,关键知识点是正弦定理和余弦定理,判断三角形形状,以及诱导公式和三角函数的单调性.。

2021届湖南四大名校联考新高三原创预测试卷(二十四)数学

2021届湖南四大名校联考新高三原创预测试卷(二十四)数学
(I)求数列{an}的通项公式;
(II)设bn= (n∈N*),数列{bn}的前n项和为Tn,求使Tn< 成立的最大正整数n的值。
18.随着手机的发展,“微信”逐渐成为人们支付购物的一种形式某机构对“使用微信支付”的态度进行调查,随机抽取了50人。他们年龄的频数分布及对“使用微信支付”赞成人数如下表。
A. B. C. D.
7.已知m,n是两条不同的直线,α,β是两个不同的平面,则下列结论正确的是
A.若m⊥n,n//α,则m⊥αB.若m⊥α,n⊥β,α⊥β,则m⊥n
C.若m//n,n//β,则m//βD.若m α,n α,m//β,n//β,则α//β
8.已知函数f(x)=Asin(ωx+φ)(其中A>0,ω>0,0<φ<π)的图象关于点M( ,0)成中心对称,且与点M相邻的一个最低点为N( ,-3),则对于下列判断:
A.是否倾向选择生育二ຫໍສະໝຸດ 与户籍有关.B.是否倾向选择生育二胎与性别有关
C.倾向选择生育二胎的人群中,男性人数与女性人数相同
D.倾向选择不生育二胎的人群中,农村户籍人数少于城镇户籍人数
5.在梯形ABCD中,已知AB//CD,AB=2DC,点P在线段BC上,且BP=2PC,则
A. B.
C. D.
6.明代朱载堉创造了音乐学上极为重要的“等程律”。在创造律制的过程中,他不仅给出了求解三项等比数列的等比中项的方法,还给出了求解四项等比数列的中间两项的方法。比如,若已知黄钟、大吕、太族、夹钟四个音律值成等比数列,则有 , , 。据此,可得正项等比数列{an}中,ak=
A.在△ABC中,若sinA= ,则A≠30°B.在△ABC中,若sinA≠ ,则A=30°
C.在△ABC中,若sinA≠ ,则A≠30°D.在△ABC中,若A≠30°,则sinA≠

2021届湖南四大名校联考新高三原创预测试卷(二十五)数学

2021届湖南四大名校联考新高三原创预测试卷(二十五)数学

2021届湖南四大名校联考新高三原创预测试卷(二十五)数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本题共12小题,每小题5分,共60分(在每小题给出的四个选项中,只有一项是符合题目要求的). 1.已知集合A={x|x 2-21x>0},B={x|x>31},则A ∩B=( ) A.(31,21) B.(21,+∞) C.(-∞,-31) D.(31,+∞) 2.已知复数z 1=2+i ,z 2=-i ,则||||21z z =( )A.52B.2C.5D.5 3.已知向量)2,3(),1(-==→→b m a ,,且→→→⊥+bb a )(,则m=( )A.-8B.-6C.6D.84.某城市出租汽车统一价格,凡上车起步价为6元,行程不超过2km 者均按此价收费,行程超过2km ,按1.8元/km 收费,另外,遇到塞车或等候时,汽车虽没有行驶,仍按6分钟折算1km 计算,陈先生坐了一趟这种出租车,车费17元,车上仪表显示等候时间为11分30秒,那么陈先生此趟行程介于 ( )A .5~7kmB .9~11kmC .7~9kmD .3~5km5. 数据 7,8,6,8,6,5,8,10,7,4中的众数,中位数分别是 ( ) A.8,7 B.7,8 C.6,8 D.8,66. 已知a>b>1,c<0,给出下列三个结论:①ac<bc ;②a c <b c ;③log a (a-c)>log a (b-c).其中所有正确结论的序号是( )A.①B.①②C.②③D.①②③7. 设b a ,是两条直线,βα,是两个平面,则b a ⊥的一个充分条件是 ( )A.βαβα⊥⊥,//,b aB.βαβα//,,⊥⊥b aC.βαβα//,,⊥⊂b aD.βαβα⊥⊂,//,b a8.一动圆圆心在抛物线x 2=4y 上,过点(0,1)且与定直线l 相切,则l 的方程为( )A .x =1B .x =116C .y =-1D .y =-1169.函数f(x)=2sin x-sin 2x在[0,2π]的零点个数为( )A.2B.3C.4D.5 10.已知tana=3,则cos (2α+π2)=( )A .–35B .45 C .–35 D .-4511.设双曲线x 2a 2-y 2b2=1(b>a>0)的半焦距为c ,且直线l 过(a,0)和(0,b)两点,已知原点到直线l 的距离为3c4,则双曲线的离心率为( ) A .233 B . 2C . 3D .212.函数f x ()=1,01,0x x ≥⎧⎨-<⎩,则不等式()()x x 2f x 25++⋅+≤的解集是( )A .(3]2∞-, B .[32]2,C .(2)∞--,D .()∞∞-+,二、填空题:本小题共4小题,每小题5分,共20分.13.把4件不同的产品摆成一排.若其中的产品A 与产品B 都摆在产品C 的左侧,则不同的摆法有 种.(用数字作答)14. 设()f x 是奇函数,且在(0,)+∞内是增函数,又(3)0f -=,则()0x f x ⋅<的解集是 .15.△ABC 的内角A ,B ,C 的对边分别为a ,b ,c .已知bsinC+csinB =4asinBsinC ,B D 1bc=338,则△ABC 的面积为 . 16.欧拉公式:如果简单多面体的顶点数为V ,面数为F ,棱数为E ,那么V+F-E=2.已知凸多面体每个面都是五边形,每个顶点都有三条棱相交,该凸多面体的面数为30,则该多面体顶点数和棱数分别是 , .三、解答题:共70分.(解答应写出文字说明、证明过程或演算步骤.第17—21题为必考题,每个试题考生都必须作答.第22、23为选考题,考生根据要求作答.) (一)必考题:共60分。

2021届湖南四大名校新高考原创预测试卷(二)数学

2021届湖南四大名校新高考原创预测试卷(二)数学

2021届湖南四大名校新高考原创预测试卷(二)数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若复数z 满足()12z i i +=(i 为虚数单位),则z =( ) A .1B .2C 2D . 32.已知{a n }是公比为q 的等比数列,且a 1,a 3,a 2成等差数列,则q = ( ). A .1或-12 B .1 C .-12D .-2[ 3.已知()()tan ,1,1,2a b θ=-=-,其中θ为锐角,若a b +与a b -夹角为90,则212sin cos cos θθθ=+( )A .1B .1-C .5D .154.已知21()sin()42f x x x π=++,'()f x 为()f x 的导函数,则'()f x 的图象是( ) A .B .C .D .5.抛物线C :22y px =(0)p >的焦点为F ,M 是抛物线C 上的点,若OFM ∆的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p 的值为( ) A .6 B .8 C .10 D .16 6.下列四种说法正确的个数有( )①若,,A B C 为三个集合,满足A B B C ⋃=⋂,则一定有A C ⊆; ②函数的图像与垂直于x 轴的直线的交点有且仅有一个; ③若,A U B U ⊆⊆,则()()U A A B A C B =⋂⋃⋂;④若函数()f x 在[,]a b 和[,]b c 都为增函数,则()f x 在[,]a c 为增函数. A .1个B .2个C .3 个D .4个7.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( ) A .1440种B .960种C .720种D .480种8.已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( ) A .56 B.58 C.62 D .609.(错题再现)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( )种A .120B .260C .340D .42010.设函数()31,1{2,1xx x f x x -<=≥,则满足()()()2f a f f a =的a 的取值范围是( ) A .2,13⎡⎤⎢⎥⎣⎦ B .0,1 C .2,3⎡⎫+∞⎪⎢⎣⎭D .[)1,+∞ 11.(错题再现)已知函数,,若与的图象上分别存在点,使得关于直线对称,则实数的取值范围是( ) A .B .C .D .12.已知点P 是△ABC 的中位线EF 上任意一点,且EF ∥BC ,实数x ,y 满足+x +y=,设△ABC 、 △PBC 、△PCA 、△PAB 的面积分别为S 、S 、S 、S ,记11S S λ=,22SS λ=,33S Sλ=, 则·取最大值时,3x +y 的值为( ) A .B .C .1D .2二、填空题:(本大题共4题,每小题5分,共20分.)13.若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________.14.对于正项数列{}n a ,定义12323n nnH a a a na =++++为{}n a 的“光阴”值,现知某数列的“光阴”值为22n H n =+,则数列{}n a 的通项公式为_____. 15.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示).16.(错题再现)把边长为1的正方形ABCD 如图放置,A 、D 别在x 轴、y 轴的非负半轴上滑动.则OB OC ⋅的最大值是____________.三、解答题:(共70分.解答应写出文字说明,证明过程或演算步骤.) 17.设数列的前n 项和为S n =2n 2,为等比数列,且(1)求数列和的通项公式;(2)设,求数列前n 项和T n .18.已知向量()cos2,m x a =, (),23sin2n a x =+,且函数()().5?f x m n a R =-∈ (1)当函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值为3时,求a 的值; (2)在(Ⅰ)的条件下,若对任意的t R ∈,函数()y f x =,,]t t b +在(上的图像与直线1y =-有且仅有两个不同的交点,试确定b 的值.并求函数()y f x =在(]0,b 上的单调递减区间.19.已知长方形ABCD 中,1AB =,2AD =,现将长方形沿对角线BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD 能否垂直?若能垂直,求出相应的a 的值;若不垂直,请说明理由;(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值.20.已知函数()ln xe f x a x ax x=--+,a R ∈.(1)当0a <时,讨论()f x 的单调性;(2)设()()()'g x f x xf x =+,若关于x 的不等式()()212xx g x e a x ≤-++-在[]1,2上有解,求a 的取值范围.21.给定椭圆()2222:10x y C a b a b+=>>,称圆心在坐标原点O椭圆C 的“伴随圆”,已知椭圆C的两个焦点分别是())12,F F .(1)若椭圆C 上一动点1M 满足11124M F M F +=,求椭圆C 及其“伴随圆”的方程; (2)在(1)的条件下,过点()()0,0P t t <作直线l 与椭圆C 只有一个交点,且截椭圆C 的“伴随圆”所得弦长为P 点的坐标; (3)已知()()cos 3,,0,sin sin m n mn m n θθπθθ+=-=-≠∈,是否存在a ,b ,使椭圆C 的“伴随圆”上的点到过两点()()22,,,m mn n 的直线的最短距离mindb =.若存在,求出a ,b 的值;若不存在,请说明理由.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,直线l的参数方程为x m y ⎧=⎪⎨=⎪⎩(t 为参数).以原点O为极点,以x 轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆C 的方程为,l ρθ=被圆C .(1)求实数m 的值;(2)设圆C 与直线l 交于点A B 、,若点P 的坐标为(m ,且0m >,求PA PB +的值.选修4-5:不等式选讲23.已知实数正数x , y 满足1x y +=.(1)解关于x 的不等式522x y x y ++-≤; (2)证明:2211119x y ⎛⎫⎛⎫--≥ ⎪ ⎪ ⎪⎝⎭⎝⎭一、选择题:(本题共12小题,每小题5分,共60分,在每小题给出的四个选项中,只有一项是符合题目要求的.)1.若复数z 满足()12z i i +=(i 为虚数单位),则z =( C )A .1B .2CD .【答案】C 【解析】试题分析:因为(1)2z i i +=,所以22(1)1,12i i i z i i -===++因此1z i =+= 2.已知{a n }是公比为q 的等比数列,且a 1,a 3,a 2成等差数列,则q = ( A ). A .1或-12 B .1 C .-12D .-2[ 【答案】A.【解析】 根据题意,有21112a q a a q =+,因为10a ≠,所以221q q =+,解得q =1或-12.3.已知()()tan ,1,1,2a b θ=-=-,其中θ为锐角,若a b +与a b -夹角为90,则212sin cos cos θθθ=+( A )A .1B .1-C .5D .15【答案】A 【详解】由()()tan ,1,1,2a b θ=-=-,a b +与a b -夹角为90, 则22()()0a b a b a b +⋅-=-=,所以2tan 150θ+-=,θ为锐角,解得tan 2θ=.222221sin cos tan 14112sin cos cos 2sin cos cos 2tan 141θθθθθθθθθθ+++====++++. 故选A. 4.已知21()sin()42f x x x π=++,'()f x 为()f x 的导函数,则'()f x 的图象是( A )A .B .C .D .【答案】A 【详解】 由f (x )=2211sin cos 424x x x x π⎛⎫++=+ ⎪⎝⎭, ∴1()sin 2f x x x '=-,它是一个奇函数,其图象关于原点对称,故排除B ,D . 又1()cos 2f x x ''=-,当﹣3π<x <3π时,cosx >12,∴()f x ''<0,故函数y ='()f x 在区间,33ππ⎛⎫-⎪⎝⎭ 上单调递减,故排除C . 故选A .5.抛物线C :22y px =(0)p >的焦点为F ,M 是抛物线C 上的点,若OFM ∆的外接圆与抛物线C 的准线相切,且该圆的面积为36π,则p 的值为( B ) A .6 B .8 C .10 D .16【答案】B 【详解】由题意,容易知6r =,,02p F ⎛⎫ ⎪⎝⎭, 故外接圆圆心的横坐标为4p 因为外接圆与准线相切, 故可得642p p+= 解得8p =. 故选:B.6.下列四种说法正确的个数有( C )①若,,A B C 为三个集合,满足A B B C ⋃=⋂,则一定有A C ⊆; ②函数的图像与垂直于x 轴的直线的交点有且仅有一个; ③若,A U B U ⊆⊆,则()()U A A B A C B =⋂⋃⋂;④若函数()f x 在[,]a b 和[,]b c 都为增函数,则()f x 在[,]a c 为增函数. A .1个 B .2个C .3 个D .4个【答案】C 【解析】①若,,A B C 为三个集合,满足A B B C ⋃=⋂,则一定有A B C ⊆⊆,正确;②根据函数的定义知函数的图象与垂直于x 轴的直线的交点至多有一个,正确;③若,A U B U ⊆⊆,则()()U A A B A C B =⋂⋃⋂,正确;④对于函数()1,101,01x x f x x x +-≤≤⎧=⎨-≤≤⎩ ,可知函数()f x 在[]1,0-和[]0,1都为增函数,则()f x 在[]1,1-不是增函数,函数()f x 在[],a b 和[],b c 都为增函数,则()f x 在[],a c 为增函数错误,故选C.7.记者要为5名志愿者和他们帮助的2位老人拍照,要求排成一排,2位老人相邻但不排在两端,不同的排法共有( B ) A .1440种 B .960种 C .720种 D .480种【答案】B【解析】 5名志愿者先排成一排,有55A 种方法,2位老人作一组插入其中,且两位老人有左右顺序,共有5524A ⋅⋅=960种不同的排法,选B .8.已知数列{}n a 的前n 项和为252+-=n n S n ,则数列{}n a 的前10项和为 ( D ) A .56 B.58 C.62 D .60 【答案】D 【解析】试题分析:当2n ≥时,()()22152151226n n n a S S n n n n n -=-=-+--+--=-,当1n =时,112a S ==-,则前10项依次为2,2,0,2,4,6,8,10,12,14,--所以数列{}n a 的前10项和为60.9.(错题再现)如图为我国数学家赵爽(约3世纪初)在为《周髀算经》作注时验证勾股定理的示意图,现在提供5种颜色给其中5个小区域涂色,规定每个区域只涂一种颜色,相邻区域颜色不相同,则不同的涂色方案共有( D )种A .120B .260C .340D .420【答案】D【解析】 由题意可知上下两块区域可以相同,也可以不同, 则共有5431354322180240420⨯⨯⨯⨯+⨯⨯⨯⨯=+= 故选D10.设函数()31,1{2,1xx x f x x -<=≥,则满足()()()2f a f f a =的a 的取值范围是( C ) A .2,13⎡⎤⎢⎥⎣⎦B .0,1C .2,3⎡⎫+∞⎪⎢⎣⎭D .[)1,+∞ 【答案】C【详解】 令()f a t =,则()2tf t =,当1t <时,312t t --,由()312tg t t =--的导数为()32ln 2t g t =-',当1t <时,在(,1)-∞递增,即有()()10g t g <=,则方程无解;当1t ≥时,22t t =成立,由()1f a ≥,即311a -≥,解得23a ≥且1a <;或1,21a a ≥≥解得0a ≥,即为1a ≥,综上所述实数a 的取值范围是2,3⎡⎫+∞⎪⎢⎣⎭,故选C.【方法点晴】本题主要考查了分段函数的综合应用,其中解答中涉及到函数的单调性、利用导数研究函数的单调性、函数的最值等知识点的综合考查,注重考查了分类讨论思想和转化与化归思想,以及学生分析问题和解答问题的能力,试题有一定的难度,属于难题,本题的解答中构造新的函数()312tg t t =--,利用新函数的性质是解答的关键.11.(错题再现)已知函数,,若与的图象上分别存在点,使得关于直线对称,则实数的取值范围是(B ) A . B .C .D .【答案】B 【解析】 设为函数上的一点,则关于直线的对称点为在函数上,所以,,则,所以在上为减函数,在上为增函数,所以当时,当时,故,选B.考点:1.函数图象的对称;2.利用导数研究函数的最值. 【思路点晴】在本题中,先由两函数的图象存在点关于直线对称,则设点为函数上,关于直线的对称点为在函数上,得到,再利用导数求出的范围来.本题注意从对称找突破口.12.已知点P 是△ABC 的中位线EF 上任意一点,且EF ∥BC ,实数x ,y 满足+x +y=,设△ABC 、 △PBC 、△PCA 、△PAB 的面积分别为S 、S 、S 、S ,记11S S λ=,22SS λ=,33S Sλ=, 则·取最大值时,3x +y 的值为( D ) A .B .C .1D .2【答案】D【解析】由条件可知1231λλλ++=,1231122λλλ=+=,,那么223231216λλλλ+⎛⎫≤= ⎪⎝⎭ ,等号成立的条件为2314λλ==,说明点P 在线段EF 的中点处,此时,()1PA PB PC 2=-+ ,所有x=y=12,3x+y=2,故选D.二、填空题:(本大题共4题,每小题5分,共20分.) 13.若将函数()5f x x =表示为()()()()250125111f x a a x a x a x =+++++++其中0a ,1a ,2a ,…,5a 为实数,则3a =______________.【答案】10 【解析】法一:由等式两边对应项系数相等.即:54554331554431{0100a C a a a C a C a a =+=⇒=++=.法二:对等式:()()()()2550125111f x x a a x a x a x ==+++++++两边连续对x 求导三次得:2234560624(1)60(1)x a a x a x =++++,再运用赋值法,令1x =-得:3606a =,即310a =14.对于正项数列{}n a ,定义12323n nnH a a a na =++++为{}n a 的“光阴”值,现知某数列的“光阴”值为22n H n =+,则数列{}n a 的通项公式为_____. 【答案】212n n a n+= 【详解】 ∵12323n nnH a a a na =++++∴122n nn a a na H +++=∵22n H n =+ ∴()12222n n n a a na +++⋯+=①∴()()()12111212n n n a a n a --++++-=②①-②得()()()21121222n n n n n n na +-++=-=∴212n n a n+=故答案为:212n n a n+=15.在平面直角坐标系中,从六个点:A(0,0)、B(2,0)、C(1,1)、D(0,2)、E(2,2)、F(3,3)中任取三个,这三点能构成三角形的概率是 (结果用分数表示). 【答案】34【详解】已知A C E F B C D 、、、共线;、、共线;六个点任取三个不同取法总数为:36C ;可构成三角形的个数为:33364315C C C --=,所以所求概率为:3336433634C C C C --=. 16.(错题再现)把边长为1的正方形ABCD 如图放置,A 、D 别在x 轴、y 轴的非负半轴上滑动.则OB OC ⋅的最大值是____________.【答案】2 【解析】设BAx ODA θ∠=∠=,则(cos sin ,sin )OB θθθ=+,(cos ,sin cos )OC θθθ=+,所以OB OC ⋅=sin 212θ+≤.点睛:处理数量积问题主要手段有:定义法、代数法、几何法、基底法、极化恒等式等等,本题引入角参数,利用坐标法把问题转化为三角函数的最值问题.三、解答题:(共70分.解答应写出文字说明,证明过程或演算步骤.)17.设数列的前n 项和为S n =2n 2,为等比数列,且(1)求数列和的通项公式;(2)设,求数列前n 项和T n .【答案】(1)(2),【解析】:(1)当故{a n }的通项公式为的等差数列.————3分设的公比为则故,即的通项公式为————6分(2)————7分—————8分 两式相减得————12分点评:本题考查了等差、等比数列的概念及通项公式、数列前N 项和的求法,要求学生掌握最常用的求解方法,区别数列求和的类型18.已知向量()cos2,m x a =, (),23sin2n a x =+,且函数()().5?f x m n a R =-∈ (1)当函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值为3时,求a 的值; (2)在(Ⅰ)的条件下,若对任意的t R ∈,函数()y f x =,,]t t b +在(上的图像与直线1y =-有且仅有两个不同的交点,试确定b 的值.并求函数()y f x =在(]0,b 上的单调递减区间.【答案】(1) 2a =;(2) 函数()y f x =在[]0,π上的单调递减区间为2,63ππ⎡⎤⎢⎥⎣⎦. 【解析】 (1)由已知得,()522252225,0,62f x m n acos x x a asin x a x ππ⎛⎫⎡⎤=⋅-=++-=++-∈ ⎪⎢⎥⎝⎭⎣⎦时,712,,2,166662x sin x ππππ⎡⎤⎛⎫⎡⎤+∈+∈- ⎪⎢⎥⎢⎥⎣⎦⎝⎭⎣⎦————3分 当0a >时, ()f x 的最大值为453a -=,所以2a =; 当0a <时, ()f x 的最大值为53a -=,故8a =(舍去) 综上:函数()f x 在0,2π⎡⎤⎢⎥⎣⎦上的最大值为3时, 2a = ————6分 (2)当2a =时, ()4216y f x sin x π⎛⎫==+- ⎪⎝⎭,由()y f x =的最小正周期为π可知, b 的值为π. 又由3222,262k x k k Z πππππ+≤+≤+∈,可得, 2,63k x k k Z ππππ+≤≤+∈,∵[]0,x π∈, ∴函数()y f x =在[]0,π上的单调递减区间为2,63ππ⎡⎤⎢⎥⎣⎦. ————12分19.已知长方形ABCD 中,1AB =,AD =,现将长方形沿对角线BD 折起,使AC a =,得到一个四面体A BCD -,如图所示.(1)试问:在折叠的过程中,异面直线AB 与CD 能否垂直?若能垂直,求出相应的a 的值;若不垂直,请说明理由;(2)当四面体A BCD -体积最大时,求二面角A CD B --的余弦值. 【答案】(1)1;(2)27. 【详解】(1)若AB ⊥CD ,因为AB ⊥AD ,AD ∩CD =D , 所以AB ⊥面ACD ⇒AB ⊥AC . 由于AB=1, AD=BC=2 ,AC=a , 由于AB ⊥AC .,所以AB 2+a 2=BC,所以12+a 2=(2)2⇒a =1,所以在折叠的过程中,异面直线AB 与CD 可以垂直,此时a 的值为1 ————5分 (2)要使四面体A -BCD 体积最大,因为△BCD 面积为定值22, 所以只需三棱锥A -BCD 的高最大即可,此时面ABD ⊥面BCD . ————6分 过A 作AO ⊥BD 于O ,则AO ⊥面BCD ,以O 为原点建立空间直角坐标系o xyz - (如图),则易知,显然,面BCD 的法向量为 , ————8分设面ACD 的法向量为n =(x ,y ,z ), 因为所以,令y =2,得n =(1,2,2), ————10分故二面角A -CD -B 的余弦值即为|cos n OA ,. ——12分【点睛】传统方法求线面角和二面角,一般采用“一作,二证、三求”三个步骤,首先根据二面角的定义结合几何体图形中的线面关系作出线面角或二面角的平面角,进而求出;而角的计算大多采用建立空间直角坐标系,写出向量的坐标,利用线面角和二面角公式,借助法向量求空间角.20.已知函数()ln xe f x a x ax x=--+,a R ∈.(1)当0a <时,讨论()f x 的单调性;(2)设()()()'g x f x xf x =+,若关于x 的不等式()()212x xg x e a x ≤-++-在[]1,2上有解,求a 的取值范围.【答案】(1) 函数()f x 在()0,1上单调递增,在()1,+∞上单调递减;(2) a 的取值范围为(],0-∞.【解析】 (1)由题意知,()()()221x x x ax e x a xe e f x a x x x---=--='+, 令()()()1xF x ax ex =--,当0a <时,0xax e-<恒成立,∴当1x >时,()0F x <;当01x <<时,()0F x >,∴函数()f x 在()0,1上单调递增,在()1,+∞上单调递减. ————4分 (2)∵()()()g x f x xf x =+',∴()ln 2xg x a x e ax a =--+-,由题意知,存在[]01,2x ∈,使得()()0200012x x g x e a x ≤-++-成立.即存在[]01,2x ∈,使得()2000ln 102x a x a x a -++--≤成立, ————5分令()()[]2ln 1,1,22x h x a x a x a x =-++--∈,∴()()()[]11,1,2x a x ah x a x x x x---=++-=-∈'. ————6分 ①1a ≤时,[]1,2x ∈,则()0h x '≤,∴函数()h x 在[]1,2上单调递减, ∴()()min 2ln20h x h a a ==-+≤成立,解得0a ≤,∴0a ≤; ————8分 ②当12a <<时,令()0h x '>,解得1x a <<;令()0h x '<,解得2a x <<, ∴函数()h x 在[]1,a 上单调递增,在[],2a 上单调递减, 又()112h =,∴()2ln20h a a =-+≤,解得0a ≤,∴a 无解; ——10分 ③当2a ≥时,[]1,2x ∈,则()0h x '≥,∴函数()h x 在[]1,2上单调递增, ∴()()min 1102h x h ==>,不符合题意,舍去; 综上所述,a 的取值范围为(],0-∞. ————12分21.给定椭圆()2222:10x y C a b a b+=>>,称圆心在坐标原点O椭圆C 的“伴随圆”,已知椭圆C 的两个焦点分别是())12,F F .(1)若椭圆C 上一动点1M 满足11124M F M F +=,求椭圆C 及其“伴随圆”的方程; (2)在(1)的条件下,过点()()0,0P t t <作直线l 与椭圆C 只有一个交点,且截椭圆C的“伴随圆”所得弦长为23,求P 点的坐标; (3)已知()()cos 3,,0,sin sin m n mn m n θθπθθ+=-=-≠∈,是否存在a ,b ,使椭圆C 的“伴随圆”上的点到过两点()()22,,,m mn n 的直线的最短距离22minda b b =+-.若存在,求出a ,b 的值;若不存在,请说明理由. 【答案】(1)椭圆方程,伴随圆方程;(2);(3)存在,.【解析】 【详解】试题分析:(1)这是基本题,题设实质已知,要求椭圆标准方程,已知圆心及半径求圆的方程;(2)为了求点坐标,我们可设直线方程为,直线与椭圆只有一个公共点,即直线的方程与椭圆的方程联立方程组,这个方程组只有一个解,消元后利用可得的一个方程,又直线截圆所得弦长为,又得一个关于的方程,联立可解得;(3)这是解析几何中的存在性问题,解决方法都是假设存在,然后去求出这个,能求出就说明存在,不能求出就说明不存在.解法如下,写出过点的直线方程,求出圆心到这条直线的距离为,可见当圆半径不小于3时,圆上的点到这条直线的最短距离为0,即当时,,但由于,无解,当圆半径小于3时,圆上的点到这条直线的最短距离为,由此得,又有,可解得,故存在.解析:(1)由题意:,则,所以椭圆的方程为,其“伴随圆”的方程为. ————3分(2)设直线的方程为由得则有得, ① ————5分 由直线截椭圆的“伴随圆”所得弦长为,可得,得②由①②得,又,故,所以点坐标为. ——7分(3)过的直线的方程为:,即,得 ————8分 由于圆心到直线的距离为, ————9分当时,,但,所以,等式不能成立;当时,,由得所以因为,所以,得.所以————12分请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 选修4-4:坐标系与参数方程22.在平面直角坐标系xOy 中,直线l 的参数方程为252x m ty t⎧=⎪⎨=⎪⎩(t 为参数).以原点O为极点,以x 轴为非负半轴为极轴建立极坐标系,两坐标系相同的长度单位.圆C 的方程为25,l ρθ=被圆C 2.(1)求实数m 的值;(2)设圆C 与直线l 交于点A B 、,若点P的坐标为(m ,且0m >,求PA PB +的值. 【答案】(1)33m m ==-或;(2)【详解】(1)由ρθ=得220,x y +-=即(225x y +=.直线的普通方程为0x y m +-=, ————2分 被圆C,,=解得33m m ==-或. ————5分 (2)法1:当3m =时,将l 的参数方程代入圆C 的直角坐标方程得,())2235+=,即2220t -+=,由于(24420∆=-⨯=>,故可设12t t ,是上述方程的两实根,所以12121t t t t ⎧+=⎪⎨⎪=⎩————7分 又直线l过点(P ,故由上式及t 的几何意义得,PA PB += 122(|t |+|t |)= 122(t +t )=——10分法2:当3m =时点(3P ,易知点P 在直线l 上.又2235+>,所以点P 在圆外.联立(22530x y x y ⎧+-=⎪⎨⎪+-=⎩消去y 得,2320x x -+=.不妨设((2A B ,、, 所以PA PB +==————10分23.[选修4-5:不等式选讲]已知实数正数x , y 满足1x y +=.(1)解关于x 的不等式522x y x y ++-≤;(2)证明:2211119x y ⎛⎫⎛⎫--≥ ⎪ ⎪ ⎪⎝⎭⎝⎭【答案】(1)1[,1)6.(2)见解析.【详解】(1)1,0,0x y x y +=>>且 0152522212x x y x y x x <<⎧⎪∴++-≤⇔⎨-+-≤⎪⎩ 010*********22x x x x x x x <<⎧<<⎧⎪⎪⇔⇔⎨⎨⎛⎫-+≤-≤+-≤+ ⎪⎪⎪⎩⎝⎭⎩ ——————3分 解得116x ≤<,所以不等式的解集为1,16⎡⎫⎪⎢⎣⎭——————5分 (2)解法1: 1,x y +=且0,0x y >>,()()222222221111x y x x y y x y x y +-+-⎛⎫⎛⎫∴--=⋅ ⎪ ⎪⎝⎭⎝⎭ 222222xy y xy x x y ++=⋅ 222222y y x x x x y y ⎛⎫⎛⎫=++ ⎪⎪⎝⎭⎝⎭ 225x y y x =++59≥=. 当且仅当12x y ==时,等号成立. ——————10分 解法2: 1,x y +=且0,0x y >>,222222111111x y x y x y ⎛⎫--⎛⎫∴--=⋅ ⎪ ⎪⎝⎭⎝⎭()()()()221111x x y y x y +-+-=⋅ ()()2211x y y x x y ++=⋅ 1x y xy xy +++= 21xy =+ 22192x y ≥+=+⎛⎫ ⎪⎝⎭ 当且仅当12x y ==时,等号成立. ————10分。

2021届湖南四大名校联考新高三原创预测试卷(十六)数学

2021届湖南四大名校联考新高三原创预测试卷(十六)数学

2021届湖南四大名校联考新高三原创预测试卷(十六)数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知全集U =R ,2{|ln(1)}A x y x ==-,2{|4}x B y y -==,则()U A B =( )A .(1,0)-B .[0,1)C .(0,1)D .(1,0]-2.已知1a >,则“log log a a x y <”是“2x xy <”的( ) A .充分不必要条件 B .必要不充分条件 C .充要条件D .既不充分也不必要条件3.已知函数2()(2)g x f x x =-是减函数,且(1)2f =,则(1)f -=( )2244.已知α是第一象限角,24sin 25α=,则tan 2α=( ) A .43- B .43 C .34- D .345.设向量(2,2)=a ,b 与a 的夹角为3π4,且2⋅=-a b ,则b 的坐标为( )A .(0,1)-B .(1,0)-C .(0,1)-或(1,0)-D .以上都不对6.已知数列{}n a 的前n 项和为n S ,11a =,12n n S a +=,则n S =( ) A .12n -B .13()2n -C .12()3n -D .11()2n -7.已知α为锐角,则32tan tan 2αα+的最小值为( )A .1B .2CD8.已知a ,b 是两条异面直线,直线c 与a ,b 都垂直,则下列说法正确的是( ) A .若c ⊂平面α,则a α⊥ B .若c ⊥平面α,则a α∥,b α∥C .若存在平面α,使得c α⊥,a α⊂,b α∥D .若存在平面α,使得c α∥,a α⊥,b α⊥9.已知两点(,0)A a ,(,0)(0)B a a ->,若圆22((1)1x y +-=上存在点P ,使得90APB ∠=︒,则正实数a 的取值范围为( )A .(0,3]B .[1,3]C .[2,3]D .[1,2]10.在区间[0,2]上随机取一个数x,使πsin 22x ≥的概率为( ) A .13B .12 C .23D .3411.已知1F ,2F 为椭圆2222:1(0)x y C a b a b+=>>的左、右焦点,B 为C 的短轴的一个端点,直线1BF 与C 的另一个交点为A ,若2BAF △为等腰三角形,则12||||AF AF =( )32312.已知函数2()ln(||1)f x x x =++,若对于[1,2]x ∈-,22(22)9ln 4f x ax a +-<+恒成立,则实数a 的取值范围是( ) A .261a --<<B .11a -<<C .26a +>或26a -<D .2626a -+<<第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.已知i 为虚数单位,复数3i2ia +的实部与虚部相等,则实数a = . 14.执行如图所示的程序框图,则输出的n 的值为 .15.某工厂为了解某车间生产的每件产品的净重(单位:克)情况,从中随机抽测了200件产品的净重,所得数据均在[96,106]内,将所得数据按[96,98),[98,100),[100,102),[102,104),[104,106]分成五组,其频率分布直方图如图所示,且五个小矩形的高构成一个等差数列,则在抽测的200件产品中,净重在区间[98,102)内的产品件数是 .16.在平面直角坐标系xOy 中,(1,2)P 是双曲线22221(0,0)x y a b a b-=>>的一条渐近线l 上的一点1F ,2F 分别为双曲线的左右焦点,若1290F PF ∠=︒,则双曲线的左顶点到直线l 的距离为 .三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.(12分)在ABC △中,角A ,B ,C 的对边分别为a ,b ,c ,已知222b c a bc +=+. (1)求角A 的大小;(2)若sin 2sin cos A B C =,是判断ABC △的形状并给出证明.18.(12分)某互联网公司为了确定下一季度的前期广告投入计划,收集了近6个月广告投入量x (单位:万元)和收益y (单位:万元)的数据如下表:他们用两种模型①y bx a =+,②bxy ae =分别进行拟合,得到相应的回归方程并进行残差分析,得到如图所示的残差图及一些统计了的值:残差图(1)根据残差图,比较模型①②的拟合效果,应选则那个模型?并说明理由;(2)残差绝对值大于2的数据被认为是异常数据,需要剔除:(ⅰ)剔除异常数据后,求出(1)中所选模型的回归方程;(ⅱ)广告投入量18x=时,(1)中所选模型收益的预报值是多少?附:对于一组数据11(,)x y,22(,)x y,,(,)n nx y,其回归直线方程ˆˆˆy bx a=+的斜率和截距的最小二乘估计分别为:1122211()()ˆ()n ni i i ii in ni ii ix x y y x y nxybx x x nx====---==--∑∑∑∑,ˆˆa y bx=-.19.(12分)如图,三棱台ABC EFG-的底面是正三角形,平面ABC⊥平面BCGF,2CB GF=,BF CF=.(1)求证:AB CG⊥;(2)若ABC△和梯形BCGF3G ABE-的体积.20.(12分)在平面直角坐标系xOy 中,已知椭圆22:14x C y +=,点11(,)P x y ,22(,)Q x y 是椭圆C 上两个动点,直线OP ,OQ 的斜率分别为1k ,2k ,若11(,)2x y =m ,22(,)2xy =n ,0⋅=m n .(1)求证:1214k k ⋅=-; (2)试探求OPQ △的面积S 是否为定值.21.(12分)已知函数()(ln )xf x xe a x x =-+,a ∈R . (1)当a e =时,判断()f x 的单调性;(2)若()f x 有两个零点,求实数a 的取值范围.请考生在22、23两题中任选一题作答,如果多做,则按所做的第一题记分. 22.(10分)【选修4-4:坐标系与参数方程】已知曲线C的参数方程为2sin x y αα⎧=⎪⎨⎪=⎩(α为参数),以平面直角坐标系的原点O 为极点,x 轴的正半轴为极轴建立极坐标系.(1)求曲线C 的极坐标方程;(2)P ,Q 为曲线C 上两点,若0OP OQ ⋅=,求2222||||||||OP OQ OP OQ ⋅+的值.23.(10分)【选修4-5:不等式选讲】已知函数1()||()3f x x a a =-∈R . (1)当2a =时,解不等式1||()13x f x -+≥;(2)设不等式1||()3x f x x -+≤的解集为M ,若11[,]32M ⊆,求实数a 的取值范围数 学答 案第Ⅰ卷一、选择题:本大题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项是符合题目要求的. 1.【答案】D【解析】2{|10}(1,1)A x x =->=-,{|0}B y y =>,所以{|0}UB y y =≤,所以()(1,0]U AB =-.2.【答案】A【解析】因为1a >,所以由log log a a x y <,得0x y <<,2()x xy x x y -=-, 显然当0x y <<时,2x xy <,所以充分性成立,当1x =-,2y =-时,2x xy <,而log a x ,log a y 无意义,故必要性不成立. 3.【答案】A【解析】令12x =,11()(1)24g f =-, 因为(1)2f =,所以117()2244g =-=,令12x =-,则11()(1)24g f -=--,11(1)()24f g -=-+,因为()g x 是偶函数,所以117()()224g g -=-=-,所以713(1)442f -=-+=-.4.【答案】D【解析】因为α是第一象限角,24sin 25α=,所以7cos 25α===, 所以sin 24tan cos 7ααα==,22tan242tan 71tan 2ααα==-, 整理得212tan 7tan 12022αα+-=,解得3tan 24α=或4tan 23α=-(舍去).5.【答案】C【解析】设(,)x y =b ,则222x y ⋅=+=-a b ,即1x y +=-①,又3πcos4||||⋅=⋅a ba b,即2-=221x y +=②.由①②,得10x y =-⎧⎨=⎩或01x y =⎧⎨=-⎩,故(0,1)=-b 或(1,0)=-b .6.【答案】B【解析】方法一:当1n =时,1122S a a ==,则212a =, 当12n ≥时,12n n S a -=,则1122n n n n n S S a a a -+-==-,所以132n n a a +=,所以数列{}n a 从第二项起是公比为32的等比数列,所以21,113(),222n n n a n -=⎧⎪=⎨⨯≥⎪⎩,所以2113131()22222n n S -=++⨯++⨯=1113[1()]3221()3212n n --⨯-+=-.方法二:当1n =时,1122S a a ==,则212a =,所以213122S =+=, 结合选项可得只有B 满足. 7.【答案】D【解析】方法一:∵α为锐角,∴tan 0α>, ∴233(1tan )1312tan 2tan (tan )tan 22tan 2tan 2ααααααα-+=+=+≥⨯=,当且仅当3tan tan αα=,即tan α=π3α=时等号成立. 方法二:∵α为锐角,∴sin 0α>,cos 0α>,∴22232sin 3cos 24sin 3cos 2sin 3cos 2tan tan 2cos sin 22sin cos 2sin cos aααααααααααααα+++=+==1sin 3cos 1()2cos sin 2αααα=+≥=, 当且仅当sin 3cos cos sin αααα=,即π3α=时,等号成立. 8.【答案】C【解析】对于A ,直线a 可以在平面α内,也可以与平面α相交; 对于B ,直线a 可以在平面α内,或者b 在平面α内;对于D ,如果a α⊥,b α⊥,则有a b ∥,与条件中两直线异面矛盾. 9.【答案】B【解析】以AB 为直径的圆的方程为222x y a +=,则由题意知圆22((1)1x y +-=与圆222x y a +=有公共点,则|1|1a a -≤≤+,解得13a ≤≤. 10.【答案】A【解析】当[0,2]x ∈时,π0π2x ≤≤,所以πsin 2x ≥, 所以ππ2π323x ≤≤,所以2433x ≤≤,故由几何概型的知识可知,所求概率4213323P -==.11.【答案】A【解析】如图不妨设点B 在y 轴的正半轴上,根据椭圆的定义,得12||||2BF BF a +=,12||||2AF AF a +=, 由题意知2||||AB AF =,所以12||||BF BF a ==,1||2a AF =,23||2aAF =,所以12||1||3AF AF =.12.【答案】A【解析】易知函数2()ln(||1)f x x x =++是R 上的偶函数,且在[0,)+∞上单调递增, 又29ln 43ln(|3|1)(3)f +=++=,所以不等式22(22)9ln 4f x ax a +-<+对于[1,2]x ∈-恒成立, 等价于22|22|3x ax a +-<对于[1,2]x ∈-恒成立,即2222223223x ax a x ax a ⎧+-<⎨+->-⎩①②对于[1,2]x ∈-恒成立. 令22()223g x x ax a =+--,则22(1)2220(2)2410g a a g a a ⎧-=---<⎨=-++<⎩, 解得26a +>或26a -<令22()223h x x ax a =+-+,令222230x ax a +-+=, 则当2248120Δa a =+-<时,即11a -<<时,满足②式子; 当2248120Δa a =+-=,即1a =±时,不满足②式; 当2248120Δa a =+->,即1a <-或1a >时,由2(1)12230h a a -=--+>,2(2)44230h a a =+-+>, 且1a -<-或2a ->,知不存在a 使②式成立.综上所述,实数a 的取值范围是1a -<<.第Ⅱ卷二、填空题:本大题共4小题,每小题5分,共20分. 13.【答案】3- 【解析】3i (3i)i 3i 2i 222a a a ++==---,由题意知322a=-,解得3a =-. 14.【答案】2017 【解析】易知数列π{sin1}()2n n *+∈N 的周期为4,各项依次为2,1,0,1,2,1,0,1,,执行程序框图,1n =,2s =;2n =,3s =;3n =,3s =;4n =,4s =;;2016n =,2016s =;2017n =,2018s =,不满足判断框中的条件,退出循环, 此时输出的2017n =. 15.【答案】100【解析】由题意可知0.050,a ,b ,c ,d 构成等差数列,设公差为t ,由小矩形的面积之和为1,可得(0.050)21a b c d ++++⨯=, 即0.0500.5a b c d ++++=,所以5450.0500.52t ⨯⨯+⨯=,解得0.025t =, 所以0.0500.02520.100b =+⨯=,0.0500.02540.150d =+⨯=, 所以净重在[98,102)内的频率为()2(0.1000.150)20.5b d +⨯=+⨯=, 则净重在区间[98,102)内的产品件数为2000.5100⨯=.16.【答案】5【解析】由题意知双曲线的一条渐近线l 的方程为2ba=,所以直线l 的方程为2y x =. 在12PF F Rt △中,原点O 为线段12F F 的中点,所以121||||2OP F F c ==,又||OP ==c =,又222c a b =+,2ba=,所以1a =,2b =, 则双曲线的左顶点的坐标为(1,0)-,该点到直线l 的距离为d ==三、解答题:本大题共6个大题,共70分.解答应写出文字说明、证明过程或演算步骤.17.【答案】(1)π3A =;(2)ABC △为等边三角形,证明见解析. 【解析】(1)由222b c a bc +=+,可知222122b c a bc +-=, 根据余弦定理可知,1cos 2A =, 又A 为ABC △的内角,所以π3A =.(2)方法一:ABC △为等边三角形.由三角形内角和定理得π()A B C =-+,故sin sin()A B C =+,根据已知条件,可得sin()2sin cos B C B C +=,整理得sin cos cos sin 0B C B C -=, 所以sin()0B C -=,又(π,π)B C -∈-,所以B C =, 又由(1)知π3A =,所以ABC △为等边三角形. 方法二:ABC △为等边三角形.由正弦定理和余弦定理及已知条件,得22222a b c a b ab+-=⨯,整理得22b c =,即b c =,又由(1)知π3A =,所以ABC △为等边三角形. 18.【答案】(1)应该选择模型①,详见解析;(2)(ⅰ)ˆ38.04y x =+;(ⅱ)62.04万元.【解析】(1)应该选择模型①,因为模型①的残差点比较均匀地落在水平的带状区域中, 且模型①的带状区域比模型②的带状区域窄, 所以模型①的拟合精度高,回归方程的预报精度高. (2)(ⅰ)剔除异常数据, 即3月份的数据后,得1(766)7.25x =⨯⨯-=,1(30631.8)39.645y =⨯⨯-=, 11464.246 1.81273.44ni ii x y==-⨯=∑,2213646328ni i x ==-=∑,122151273.4457.229.64206.4ˆ332857.27.268.85ni ii nii x y xybxx ==--⨯⨯====-⨯⨯-∑∑,ˆˆ29.643.28.04ay bx =-=-⨯=, 所以y 关于x 的回归方程为ˆ38.04yx =+. (ⅱ)把18x =代入(ⅰ)中所求回归方程得ˆ3188.0462.04y=⨯+=. 19.【答案】(1)证明见解析;(2)13. 【解析】(1)如图,取BC 的中点为D ,连接DF , 由题意得,平面ABC ∥平面EFG ,平面ABC 平面BCGF BC =,平面EFG平面BCGF FG =,∴BC FG ∥,∵2CB GF =,∴CD GF ∥,CD GF =, ∴四边形CDFG 为平行四边形,∴CG DF ∥,∵BF CF =,D 为BC 的中点,∴DF BC ⊥,∴CG BC ⊥. ∵平面ABC ⊥平面BCGF ,且平面ABC 平面BCGF BC =,CG ⊂平面BCGF ,∴CG ⊥平面ABC ,又AB ⊂平面ABC ,∴AB CG ⊥.(2)∵2CB GF =,∴2AC EG =, 又AC EG ∥,∴2ACG AEC S S =△△, ∴1122G ABE B AEG B ACG G ABC V V V V ----===三棱锥三棱锥三棱锥三棱锥, 由(1)知CG ⊥平面ABC ,∴CG BC ⊥. ∵正三角形ABC 3∴2BC =,1CF =,直角梯形BCGF 3∴(12)32CG+⋅=23CG =, 11112233ABC G ABE G ABC V V S CG --==⨯⨯⨯=△三棱锥三棱锥.20.【答案】(1)证明见解析;(2)为定值,详见解析. 【解析】(1)∵1k ,2k 存在,∴120x x ≠, ∵0⋅=m n ,∴121204x x y y +=,∴12121214y y k k x x ⋅==-.(2)①当直线PQ 斜率不存在时,即12x x =,12y y =-时,由121214y y x x =-,得221114x y -=, 又由11(,)P x y 在椭圆上,得221114x y +=, ∴1||2x ,12||2y =,∴1121||||12POQ S x y y =⋅-=△. ②当直线PQ 斜率存在时,设直线PQ 的方程为(0)y kx b b =+≠,由2214y kx b x y =+⎧⎪⎨+=⎪⎩,得222(41)8440k x kbx b +++-=,222222644(41)(44)16(41)0Δk b k b k b =-+-=+->,∴122841kbx x k -+=+,21224441b x x k -=+, ∵121204x x y y +=,∴1212()()04x xkx b kx b +++=,得22241b k -=,满足0Δ>,∴211||||2||12241POQS PQ b b k ====+△, ∴OPQ △的面积S 为定值.21.【答案】(1)()f x 在(0,1)上单调递减,在(1,)+∞上单调递增;(2)(,)e +∞. 【解析】(1)()f x 的定义域为(0,)+∞,当a e =时,(1)()()x x xe e f x x+-'=,令()0f x '=,得1x =,∵当01x <<时,()0f x '<;当1x >时,()0f x '>, ∴()f x 在(0,1)上单调递减,在(1,)+∞上单调递增.(2)记ln t x x =+,则ln t x x =+在(0,)+∞上单调递增,且t ∈R , ∴()(ln )xy f x xe a x x ==-+,即ty e at =-,令()tg t e at =-,∴()f x 在0x >上有两个零点等价于()tg t e at =-在t ∈R 上有两个零点.①当0a =时,()tg t e =,在R 上单调递增,且()0g t >,故()g t 无零点; ②当0a <时,()0t g t e a '=->,()g t 在R 上单调递增,又(0)10g =>,11()10a g e a=-<,故()g t 在R 上只有一个零点;③当0a >时,由()0tg t e a '=-=可知()g t 在ln t a =时有唯一的极小值(ln )(1ln )g a a a =-.若0a e <<,()(1ln )0g t a a =->极小值,()g t 无零点; 若a e =,()0g t =极小值,()g t 只有一个零点;若a e >,()(1ln )0g t a a =-<极小值,而(0)10g =>, 由ln x y x=在x e >时为减函数,可知当a e >时,2a e e a a >>,从而2()0a g a e a =->, ∴()g x 在(0,ln )a 和(ln ,)a +∞上各有一个零点,综上当a e >时,()f x 有两个零点,即实数a 的取值范围是(,)e +∞.22.【答案】(1)2253sin 2ρθ=+;(2)57. 【解析】(1)由cos 2sin x y αα⎧=⎪⎨⎪=⎩,得曲线C 的普通方程是22215x y +=, 将cos x ρθ=,sin y ρθ=代入,得2222sin 2cos 5ρθρθ+=, 即2253sin 2ρθ=+(22255sin 2cos ρθθ=+).(2)因为22255sin 2cos ρθθ=+,所以22212cos sin 5θθρ=+, 由0OP OQ ⋅=,得OP OQ ⊥,设点P 的极坐标为1(,)ρθ,则点Q 的极坐标可设为2π(,)2ρθ±, 所以22222222222212||||11111112cos 2sin ||||sin cos ||||55OP OQ OP OQ OP OQ θθθθρρ⋅===++++++152715==+. 23.【答案】(1){|0x x ≤或1}x ≥;(2)14[,]23-.【解析】(1)当2a =时,1||()13x f x -+≥,即|31||2|3x x -+-≥. ①当13x ≤时,不等式即1323x x -+-≥,解得0x ≤,所以0x ≤; ②当123x <<时,不等式即3123x x -+-≥,解得1x ≥,所以12x ≤<; ③当2x ≥时,不等式即3123x x -+-≥,解得32x ≥,所以2x ≥,综上所述,当2a =时,不等式的解集为{|0x x ≤或1}x ≥.(2)不等式1||()3x f x x -+≤可化为|31|||3x x a x -+-≤, 依题意不等式|31|||3x x a x -+-≤在11[,]32x ∈上恒成立,所以31||3x x a x -+-≤,即||1x a -≤,即11a x a -≤≤+,所以113112a a ⎧-≤⎪⎪⎨⎪+≥⎪⎩,解得1423a -≤≤,故实数a 的取值范围是14[,]23-。

2021届湖南四大名校新高考原创预测试卷(二十)数学

2021届湖南四大名校新高考原创预测试卷(二十)数学

2021届湖南四大名校新高考原创预测试卷(二十)数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、单项选择题:本题共8小题,每小题5分,共40分.在每小题给出的四个选项中,只有一项是符合题目要求的.1. 设全集{}1,2,3,4,5U =,集合{}1,2,3A =,{}2,3,4B =,则()UA B ⋂=( )A. {}1,4,5B. {}2,3C. {}5D. {}1【答案】A 【解析】 【分析】根据交集和补集的运算即可求出. 【详解】由题意可得,{}2,3A B ⋂=,所以()UA B ⋂={}1,4,5.故选:A .【点睛】本题主要考查交集和补集的运算,属于容易题. 2. 已知()211i i z-=+(其中i 为虚数单位),则复数z =( ) A.12i-+ B.12i-- C.12i+ D.12i- 【答案】B 【解析】 【分析】根据复数代数形式的除法法则计算可得;【详解】解:因为()211i i z -=+,所以()()221111122221i i i i z i i i i ---====--+ 故选:B【点睛】本题考查复数代数形式的乘除运算,属于基础题.3. 已知平面内三点()2,1A ,()6,4B ,()1,16C ,则向量AB 在BC 的方向上的投影为( )A.165B.335C.1613D.3313【答案】C 【解析】 【分析】先求得(4,3)AB =,(5,12)BC =-,得到16AB BC ⋅=,13BC =,再结合投影的概念,即可求解.【详解】由题意,平面内三点()2,1A ,()6,4B ,()1,16C ,可得(4,3)AB =,(5,12)BC =-,则4(5)31216AB BC ⋅=⨯-+⨯=,13BC =,所以向量AB 在BC 的方向上的投影为1613AB BC BC⋅=. 故选:C.【点睛】本题主要考查了向量的数量积的运算,以及向量的投影的定义及应用,其中解答中熟记向量的数量积的运算公式和投影的概念是解答的关键,着重考查推理与运算能力. 4. 正方体1111ABCD A B C D -棱长为2,E 是棱1DD 的中点,则平面1AC E 截该正方体所得的截面面积为( ) A. 25 B. 26C. 46D. 5【答案】B 【解析】 【分析】作出示意图,设F 为1BB 的中点,连接1,,AF FC EF ,易得平面1AC E 截该正方体所得的截面为1AFC E ,再计算其面积.【详解】如图所示,设F 为1BB 的中点,连接1,AF FC ,设G 为1CC 的中点,连接,EG GB ,由//EG AB 且EG AB =,得ABGE 是平行四边形,则//AE BG 且AE BG =, 又1//BG C F 且1BG C F =,得1//AE C F 且1AE C F =,则1,,,A E C F 共面, 故平面1AC E 截该正方体所得的截面为1AFC E .又11AF FC EC EA ===,123AC =22EF =1EF AC ⊥, 故1AFC E 的面积为12223262S =⨯=故选:B.【点睛】本题考查了正方体中线面位置关系,截面问题,属于中档题5. 地铁某换乘站设有编号为1m ,2m ,3m ,4m 的四个安全出口,若同时开放其中的两个安全出口,疏散1000名乘客所需的时间如下: 安全出口编号1m ,2m 2m ,3m3m ,4m1m ,3m疏散乘客时间(s ) 120140190160则疏散乘客最快的一个安全出口的编号是( )A. 1mB. 2mC. 3mD. 4m【答案】B 【解析】 【分析】先求出1m 比3m 快,再求出1m 比4m 快,然后求出2m 比1m 快,即可得2m 是疏散乘客最快的一个安全出口.【详解】同时开放1m ,2m 两个安全出口,疏散1000名乘客需要时间为120(s ),同时开放2m ,3m 两个安全出口,疏散1000名乘客需要时间为140(s ),得1m 比3m 快;同时开放3m ,4m 两个安全出口,疏1000名乘客需要时间为190(s ),同时开放1m ,3m 两个安全出口,疏散1000名乘客需要时间为160(s ),得1m 比4m 快,同时开放2m ,3m 两个安全出口,疏1000名乘客需要时间为140(s ),同时开放1m ,3m 两个安全出口,疏散1000名乘客需要时间为160(s ),得2m 比1m 快, 综上所述:疏散乘客最快的一个安全出口的编号是2m , 故选:B【点睛】本题主要考查了简单的合情推理,考查推理论证能力,属于基础题.6. 已知α为任意角,则“1cos 23α=”是“sin α=”的( ) A. 充分不必要条件 B. 必要不充分条件 C. 充要条件 D. 既不充分也不必要【答案】B 【解析】 【分析】说明命题1cos 23α=⇒sin 3α=和sin 3α=⇒1cos 23α=是否为真即可.【详解】21cos 212sin 3a α=-=,则sin α=,因此“1cos 23α=”是“sin α=”的必要不充分条件.故选:B .【点睛】本题考查充分必要条件的判断,只要命题p q ⇒为真,则p 是q 的充分条件,q 是p 的必要条件.7. 一种药在病人血液中的量保持1500mg 以上才有效,而低于500mg 病人就有危险.现给某病人注射了这种药2500mg ,如果药在血液中以每小时20%的比例衰减,为了充分发挥药物的利用价值,那么从现在起经过( )小时向病人的血液补充这种药,才能保持疗效.(附:1g20.301=,1g30.4771=,答案采取四舍五入精确到0.1h )A. 2.3小时B. 3.5小时C. 5.6小时D. 8.8小时【答案】A 【解析】 【分析】根据指数函数模型列出方程,解之可得.【详解】设从现在起经过x 小时向病人的血液补充这种药,才能保持疗效. 则25000.81500x ⨯=,0.80.6x =,lg 0.8lg 0.6x=,lg 0.8lg 0.6x =,6lglg 0.6lg 2lg310.3010.4771110 2.38lg 0.83lg 2130.3011lg 10x +-+-====≈-⨯-.故选:A .【点睛】本题考查指数函数模型的应用,考查对数的运算,根据已知模型列出方程是解题关键.8. 若()f x 为偶函数,满足()()32020f x f x ⋅+=,()11f -=,则()2020f 的值为( ) A. 0 B. 1C. 1010D. 2020【答案】D 【解析】 【分析】根据已知式变形,得出周期性,然后计算函数值. 【详解】函数为偶函数,∴(1)(1)1f f =-=,又2020(3)()f x f x +=,∴20202020(6)()2020(3)()f x f x f x f x +===+,∴()f x 同周期函数,且周期为6, 又2020(4)2020(1)f f ==, ∴()()()20206336442020f f f =⨯+==. 故选:D .【点睛】本题考查函数的周期性,一般地函数()f x 满足()()0f x f x a m +=≠,0a ≠,m 是常数,则2a 是函数的一个周期.二、多项选择题:本题共4小题,每小题5分,共20分.在每小题给出的四个选项中,有多项符合题目要求.全部选对的得5分,部分选对的得3分,有选错的得0分.9. 设函数()sin 2cos 244f x x x ππ⎛⎫⎛⎫=+++ ⎪ ⎪⎝⎭⎝⎭,则()f x ( ) A. 是偶函数B. 在区间0,2π⎛⎫⎪⎝⎭上单调递增C. 最大值为2D. 其图象关于点,04π⎛⎫⎪⎝⎭对称 【答案】AD 【解析】 【分析】利用辅助角公式、诱导公式化简函数()f x 的解析式,然后根据余弦函数的性质对四个选项逐一判断即可.【详解】()sin 2cos 2224444f x x x x x ππππ⎛⎫⎛⎫⎛⎫=+++=++= ⎪ ⎪⎪⎝⎭⎝⎭⎝⎭. 选项A:()2))()f x x x f x -=-==,它是偶函数,正确;选项B :0,2x π⎛⎫∈ ⎪⎝⎭,所以()20,x π∈,因此()f x 是单调递减,错误; 选项C:()2f x x =,错误;选项D :函数的对称中心为(,0)24k ππ+,k Z ∈,当0k =,图象关于点,04π⎛⎫⎪⎝⎭对称, 错误. 故选:AD【点睛】本题考查了辅助角公式、诱导公式、考查了余弦型函数的性质,属于基础题. 10. 在平面直角坐标系xOy 中,动点P与两个定点()1F和)2F 连线的斜率之积等于13,记点P 的轨迹为曲线E ,直线l :()2y k x =-与E 交于A ,B 两点,则( ) A. E的方程为221(3x y x -=≠B. EC. E 的渐近线与圆()2221x y -+=相切 D.满足AB =l 仅有1条【答案】AC 【解析】 【分析】根据已知求得曲线E 的方程,求得曲线E 的离心率,其渐近线与圆()2221x y -+=的位置关系,以及弦长AB ,逐一判断选项即可.【详解】设点(),P x y13=,整理得2213x y -=,所以点P 的轨迹为曲线E的方程为221(3x y x -=≠,故A 正确;又离心率e ==,故B 不正确; 圆()2221x y -+=的圆心()20,到曲线E的渐近线为y x =的距离为1d ==,又圆()2221x y -+=的半径为1,故C 正确;直线l 与曲线E 的方程联立()2221(3y k x x y x ⎧=-⎪⎨-=≠⎪⎩整理得()222213+121230k x x kk ---=,设()()1122,,A B x y x y ,, ()()()224214441312312+1>0kk kk ∆=----=,且2130k -≠,有2122221212123+,1313x x x k x kk k ---==--,所以)2221+1313k AB k k===--,要满足AB=)221+13kk =-0k=,此时)()AB ,,而曲线E 上x ≠D 不正确, 故选:AC .【点睛】本题考查求点的轨迹方程,双曲线的几何性质,直线与圆的位置关系,以及直线与双曲线相交的弦长,属于中档题.11. 若0,0,2a b a b >>+=,则下列不等式,其中正确的有( ) A. 1ab ≤B.≤ C. 222a b +≥D.112a b+≥ 【答案】ACD 【解析】 【分析】依据基本不等式相关知识分别检验证明或举出反例即可的出选项. 【详解】由题:0,0,2a b a b >>+= 由基本不等式可得:2()12a b ab +≤=,所以A 正确; 当1a b ==2=>B 错误;222a b ab +≥,所以222222()2()4a b a b ab a b +≥++=+=,即222a b +≥,所以C 正确; 因为20()12a b ab +<≤=,所以121,2,2a bab ab ab+≥≥≥ 即112a b+≥,所以D 正确. 故选:ACD【点睛】此题考查基本不等式的应用,注意适用范围,对每个选项依次验证,必须要么证明其成立,要么举出反例,能够熟记常用的基本不等式的变形对提升解题速度大有帮助. 12. 近年来中国进入一个鲜花消费的增长期,某农户利用精准扶贫政策,贷款承包了一个新型温室鲜花大棚,种植销售红玫瑰和白玫瑰.若这个大棚的红玫瑰和白玫瑰的日销量分别服从正态分布2(,30)N μ和2(280,40)N ,则下列选项正确的是( )附:若随机变量X 服从正态分布2(,)N μσ,则()0.6826P X μσμσ-<<+≈.A. 若红玫瑰日销售量范围在(30,280)μ-的概率是0.6826,则红玫瑰日销售量的平均数约为250B. 红玫瑰日销售量比白玫瑰日销售量更集中C. 白玫瑰日销售量比红玫瑰日销售量更集中D. 白玫瑰日销售量范围在(280,320)的概率约为0.3413 【答案】ABD 【解析】 【分析】利用正态分布的知识点,μ代表平均数,图像关于X=μ对称,σ代表标准差,σ越小图像越集中,选出正确答案.【详解】对于选项A :+30=280,=250μμ,正确;对于选项B C :利用σ越小越集中,30小于40,B 正确,C 不正确; 对于选项D :(280320)=<<P X 1()0.68260.34132μμσ<<+≈⨯≈P X ,正确. 故选:ABD.【点睛】本题主要考查利用正态分布曲线解决实际问题.属于较易题.三、填空题:本题共4个小题,每小题5分,共20分.13. 在疫情防控常态化条件下,各地电影院有序开放,某影院一排共有10个座位,选出3个用于观影,防疫要求选出座位的左右两边都是空位,则不同的选法有_______种(用数字回答). 【答案】20【解析】【分析】先将其中的7个空位排成一排,其中有6个空隙,再把三个座位放在其中的3个空隙中,结合组合数的运算公式,即可求解.【详解】由某影院一排共有10个座位,选出3个用于观影,要求选出座位的左右两边都是空位,可先将其中的7个空位排成一排,其中有6个空隙,再把三个座位放在其中的3个空隙中,共有3620C=种不同方法.故答案为:20【点睛】本题主要考查了组合的应用,其中解答中熟记组合的概念,以及组合数的计算公式,合理应用插空法求解是解答的关键,其中本题的解答中注意座位是相同元素,防止出错,着重考查分析问题和解答问题的能力.14. 棱长均为6的直三棱柱的外接球的表面积是_________.【答案】84π【解析】【分析】首先确定外接球半径,然后求解其表面积即可.【详解】由正弦定理可知底面三角形的外接圆半径为1612sin6022r=⨯=⨯=则外接球的半径R===则外接球的表面积为2442184S Rπππ==⨯=.【点睛】本题主要考查三棱柱的空间结构特征,多面体与球的外接问题等知识,意在考查学生的转化能力和计算求解能力.15. 已知直线l:()1y k x=-与抛物线C:()220y px p=>在第一象限的交点为A,l过C的焦点F ,3AF =,则抛物线的准线方程为_______;k =_______. 【答案】 (1). 1x =- (2). 22 【解析】 【分析】由直线方程求得焦点坐标,得准线方程,利用焦半径公式得A 点横坐标,结合图形可得直线斜率,【详解】易知直线l 与x 轴的交点为(1,0),即抛物线的焦点为(1,0)F ,∴准线方程为1x =-, 设11(,)A x y ,则11132pAF x x =+=+=,12x =,作AC x ⊥轴于点C ,如图, 则(2,0)C ,1FC =,∴223122AC =-=, ∴直线l 的斜率为22tan 221k AFC =∠==. 故答案为:1x =-;22.【点睛】本题考查抛物线的准线方程和焦半径公式,掌握抛物线的定义是解题关键.涉及到抛物线 上的点到焦点的距离时利用焦半径公式可以很快的求解.16. 把数列{}21n +中各项依次按第一个括号一个数,第二个括号两个数,第三个括号三个数,第四个括号四个数,第五个括号一个数,…,进行排列,得到如下排列:(3),(5,7),(9,11,13),(15,17,19,21),(23),(25,27),(29,31,33),(35,37,39,41),(43),…,则第100个括号内各数之和为_______. 【答案】1992【解析】 【分析】先由题意得到从括号内的数字个数来说,每四个括号循环一次,得到前99个括号内的数字个数,再由所有括号内的数字构成等差数列{}n a ,首项为3,公差为2;即可求解.【详解】根据题意得到,从括号内的数字个数来说,每四个括号循环一次,因此第100个括号内共4个数;故前99个括号内共有数字个数为25(1234)4246⨯+++-=; 又因为所有括号内的数字构成等差数列{}n a ,首项为3,公差为2; 因此第100个括号内的数字分别为247248249250,,,a a a a ,所以24724824925043(246247248249)21992a a a a +++=⨯++++⨯=. 故答案为:1992.【点睛】本题主要考查数列的应用,熟记等差数列的通项公式即可,属于中档题.四、解答题:本题共6小题,共70分.解答应写出文字说明,证明过程或演算步骤.17. 在①3ANBN=,②43AMN S =△,③AC AM =这三个条件中任选一个,补充在下面问题中,并进行求解.问题:在ABC 中,内角A ,B ,C 所对的边分别为a ,b ,c ,3B π=,8c =,点M ,N 是BC 边上的两个三等分点,3BC BM =,____________,求AM 的长和ABC 外接圆半径.注:如果选择多个条件分别进行解答,按第一个解答进行计分.【答案】答案见解析【解析】 【分析】若选择条件①,BM t =,用余弦定理2222cos AN AB BN AB BN B =+-⋅,求得t ,再用余弦定理求得AM ,AC ,最后由正弦定理可得外接圆半径;若选择条件②,由三角形面积求得BC ,得BM ,然后用余弦定理求得AM ,AC ,利用正弦定理求得外接圆半径;若选择条件③,设BM t =,用余弦定理表示出,AM AC 后解得t ,然后同样由余弦定理求得,AM AC ,用正弦定理求得外接圆半径.【详解】若选择条件①因为ANBN =,所以AN BM= 设BM t =,所以AN =;又60B =︒,8c =, 所以在ABN 中,2222cos AN AB BN AB BN B =+-⋅,即222)84282cos 60t t =+-⨯⨯︒, 即:2280t t +-=, 所以2t =或-4(舍去).在ABM 中,22222cos 84282cos6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM =,同样222222cos 86286cos6052AC AB BC AB BC B =+-⋅=+⨯︒-⨯=,所以AC =由正弦定理可得:2sin sin 603b AC R B ====︒,所以外接圆半径为3R =. 若选择条件②因为点M ,N 是BC边上的三等分点,且AMN S =△,所以ABCS=因为60B =︒,所以11sin 608222ABC S AB BC BC ==⋅︒=⨯⨯⨯△, 所以6BC =,所以2BM =.在ABM 中,22222cos 84282cos6052AM AB BM AB BM B =+-⋅=+⨯︒-⨯=,所以AM =,同样222222cos 86286cos6052AC AB BC AB BC B =+-⋅=+⨯︒-⨯=,所以213AC =,由正弦定理可得:2134392sin sin 6033b AC R B ====︒,所以外接圆半径为2393R =. 若选择条件③设BM t =,则3BC t =, 在ABM 中,2222cos AM AB BM AB BM B =+-⋅2222828cos6088t t t t =+-⨯=+-︒,同样在ABC 中,2222cos AC AB BC AB BC B =+-⋅22289283cos6064924t t t t =+-⨯⨯︒=+-,因为AC AM =,所以2228864924t t t t +-=+-, 所以2t =,在ABM 中,2222cos AM AB BM AB BM B =+-⋅284282cos6052=+⨯︒-⨯=, 所以213AM =,同样2222cos AC AB BC AB BC B =+-⋅2286286cos6052=+-⨯⨯=︒, 所以213AC =由正弦定理可得:2134392sin sin 603b AC R B ====︒, 所以外接圆半径为2393R =. 【点睛】本题考查正弦定理,余弦定理,掌握两个定理的应用是解题关键.属于中档题. 18. 已知数列{}n a 的前n 项和为n S ,11a =,且1a 为2a 与2S 的等差中项,当2n ≥时,总有11230n n n S S S +--+=.(1)求数列{}n a 的通项公式;(2)记m b 为1n a ⎧⎫⎨⎬⎩⎭在区间(()1*0,4m m N -⎤∈⎦内的个数,记数列(){}21m m b -⋅的前m 项和为m W ,求20W .【答案】(1)112n n a -=;(2)20800W = 【解析】 【分析】(1)利用1(2)n n n a S S n -=-≥得出{}n a 的递推关系,同时判断2a 与1a 的关系也与这个相同,从而得数列{}n a 是等比数列,由等比数列通项公式可得结论; (2)由(1)可得m b ,写出20W ,两两配对后易得和.【详解】(1)因为()11220n n n n S S S S +----=,2n ≥,*n N ∈, 所以112n n a a +=,2n ≥, 因为11a =,2a ,1a ,2S 依次成等差数列,所以2212a =+,得212a =, 所以2112a a =, 所以数列{}n a 是以1为首项,公比为12q =的等比数列,所以112n n a -=.(2)由题意知:112n na -=,所以11024n m --<≤, 所以12(1)22n m --≤,即12(1)n m ≤+-, 所以21mb m =-,当m 为偶数时,2219254981121(23)(21)m W m m =-+-+-++--+-22(19)(2549)(81121)(23)(21)m m ⎡⎤=-++-++-+++--+-⎣⎦824408(1)m =++++-,所以20(88208)824408(201)8002022W ⨯+⨯-=++++⨯-==.【点睛】本题考查由n S 求n a ,求等比数列的通项公式,考查分组(并项)求和法.在由1n n n a S S -=-的转化中注意2n ≥,因此后面的关系式、结论需验证1n =时是否成立,否则易出错.在出现正负相间的数列求和时常常相邻项并项后再求和.19. 随着城市规模的扩大和人们生活水平的日益提高,某市近年机动车保有量逐年递增.根据机动车管理部门的统计数据,以5年为一个研究周期,得到机动车每5年纯增数据情况为:其中1,2,3,i =⋅⋅⋅,时间变量i x 对应的机动车纯增数据为i y ,且通过数据分析得到时间变量x 与对应的机动车纯增数量y (单位:万辆)具有线性相关关系.(1)求机动车纯增数量y (单位:万辆)关于时间变量x 的回归方程,并预测2025~2030年间该市机动车纯增数量的值;(2)该市交通管理部门为了了解市民对“单双号限行”的赞同情况,随机采访了220名市民,将他们的意见和是否拥有私家车情况进行了统计,得到如下的22⨯列联表: 根据上面的列联表判断,能否有99%的把握认为“对限行的意见与是否拥有私家车”有关. 附:回归直线方程y bx a =+中斜率和截距的最小二乘估计公式分别为:()()()1122211n ni iiii i nniii i x y nx y x x y y b xnxx x ====-⋅--==--∑∑∑∑;a y bx =-.附:()()()()()22n ad bc K a b c d a c b d -=++++,n a b c d =+++.【答案】(1) 5.77 5.134.8y =⨯-=,34.8万辆;(2)有把握. 【解析】 【分析】(1)根据所给数据计算出回归方程的系数,得回归方程,然后令7x =可得预测值; (2)计算2K 后可得结论. 【详解】(1)由 所以1234535x ++++==,3691527125y ++++==, 51132639415527237i ii x y==⨯+⨯+⨯+⨯+⨯=∑.所以1221ni ii ni i x y nx yb x nx==-=-∑∑()2222222375312575.755451234553-⨯⨯===-++++-⨯. 因为y bx a =+过点(),x y ,所以 5.7y x a =+,5.1a =-,所以 5.7 5.1y x =-.2025~2030年时,7x =,所以 5.77 5.134.8y =⨯-=, 所以2025~2030年间,机动车纯增数量的值约为34.8万辆.(2)根据列联表,计算得()()()()()22n ad bc K a b c d a c b d -=++++观测值为2220(90402070)559.167110110160606k ⨯⨯-⨯==≈⨯⨯⨯,556.6356>, 所以有99%的把握认为“对限行的意见与是否拥有私家车有关”.【点睛】本题考查求线性回归直线方程及回归方程的应用,考查独立性检验,旨在考查学生的数据处理能力,运算求解能力.属于中档题.20. 如图,正方形ABCD 和ABEF 所在平面互相垂直,且边长都是1,M ,N ,G 分别为线段AC ,BF ,AB 上的动点,且CM BN =,//AF 平面MNG ,记()01BG a a =<<.(1)证明:MG ⊥平面ABEF ;(2)当MN 的长最小时,求二面角A MN B --的余弦值. 【答案】(1)证明见解析;(2)13-. 【解析】 【分析】(1)根据面面垂直的性质定理证明线面垂直;(2)求出MN 的长最小时点的位置,然后分别以BA ,BE ,BC 所在的直线为x 轴,y 轴,z 轴,建立如图所示的空间直角坐标系B xyz -,用空间向量法求二面角.【详解】(1)因为//AF 平面MNG , 且AF ⊂平面ABEF ,平面ABEF 平面MNG NG =,所以//AF NG , 所以2CM BN a ==,所以)21AM a =-,所以1AM AG aCM BG a-==,所以//MG BC , 所以MG AB ⊥,又因为平面ABCD⊥平面ABEF,且MG⊂平面ABCD,平面ABCD平面ABEF AB=,所以MG⊥平面ABEF.(2)由(1)知,MG NG⊥,2MN==≥,当且仅当12a=时等号成立,分别以BA,BE,BC所在的直线为x轴,y轴,z轴,建立如图所示的空间直角坐标系B xyz-,则()1,0,0A,()0,0,0B,11,0,22M⎛⎫⎪⎝⎭,11,,022N⎛⎫⎪⎝⎭,设平面AMN的一个法向量为()111,,m x y z=,因为11,0,22AM⎛⎫=-⎪⎝⎭,110,,22MN⎛⎫=-⎪⎝⎭,则11112222x zm AMy zm MN⎧⋅=-+=⎪⎪⎨⎪⋅=-=⎪⎩,取11z=,得()1,1,1m=,设平面BMN的一个法向量为()222,,n x y z=,因为11,0,22BM⎛⎫= ⎪⎝⎭,110,,22MN⎛⎫=-⎪⎝⎭,则22222222x zn BMy zn MN⎧⋅=+=⎪⎪⎨⎪⋅=-=⎪⎩,取21z=,得()1,1,1n =-,所以1cos,3m nm nm n⋅<>==⋅,则二面角A MN B--的余弦值为13-.【点睛】本题考查面面垂直的性质定理,考查用空间向量法求二面角,解题关键是是建立空间直角坐标系,求出平面的法向量,由向量的夹角得二面角,注意观察二面角是锐二面角还是钝二面角.21. 已知函数()()()ln 1cos 1xf x ae x a =-+--,a R ∈.(1)当1a =时,求()f x 的零点; (2)若()0f x ≥,求a 的取值范围. 【答案】(1)0;(2)1a ≥ 【解析】 【分析】(1)求导数,确定函数的单调性,求得最小值,从而得零点;(2)求出导函数,然后分类讨论,1a <时,求得(0)f ,然后令()(0)h a f =,利用导数证得(0)0f <,不合题意;1a ≥时,令()()'m x f x =,再求()m x ',由()m x '确定()m x 的单调性,确定零点0x ,从而得()f x 的最小值为0()f x ,然后根据0x 和a 的关系可证0()0f x ≥,从而得证结论成立.【详解】(1)由题知:当1a =时,()()ln 11xf x e x =-+-,()1'1x f x e x=-+, 令1()'()1xg x f x e x==-+,所以21'()0(1)xg x e x =+>+, 所以()g x 在()1,-+∞上单调递增,且()00g =,所以,当()1,0x ∈-时,()'0f x <,()f x 在()1,0-上单调递减; 当()0,x ∈+∞时,()'0f x >,()f x 在()0,∞+上单调递增.所以()()00f x f ≥=,所以()f x 的零点为0x =.(2)因为1'()1x f x ae x=-+, 当1a <时,()()0cos 1f a a =--,令()()cos 1h a a a =--,因为()()'1sin 10h a a =+-≥;所以()h a 在(),1-∞上单调递增,所以()()10h a h <=,即()00f <,所以1a <不合题意,当1a ≥时,令()()'m x f x =,则()210(1)'x a m x e x =+>+, 所以()m x 在()1,-+∞上单调递增,且()010m a =-≥,11110a m ae a a a a -⎛⎫-=-≤-= ⎪⎝⎭, 所以存在(]01,0x ∈-,使得()00m x =, 即00101x ae x -=+,()00ln 1ln x x a +=--, 所以,当()01,x x ∈-时,设()'0f x <,()f x 在()00,x 上单调递减;当()0,x x ∈+∞时,设()'0f x >,()f x 在()0,x +∞单调递增;所以()()000()ln 1cos(1)x f x f x ae x a ≥=-+--001ln cos(1)1x a a x =++--+ 0011ln cos(1)11ln cos(1)01x a a a a x =+++---≥+--≥+. 综上,所求a 的取值范围为1a ≥.【点睛】本题考查用导数研究函数的零点,研究不等式恒成立问题,解题思路是用导数求得函数的最小值,证明最小值不小于0,为此需要对导函数()'f x 再次求导,确定单调性,确定零点,得原函数的最小值.式子中含有两个字母时,需根据它们的关系消元化为一元函数. 22. 已知O 为坐标原点,椭圆C :()222210x y a b a b+=>>的左右焦点分别为1F ,2F ,左右顶点分别为1A ,2A ,上下顶点分别为2B ,1B ,四边形1122A B A B 的面积为4,四边形1122F B F B的面积为(1)求椭圆C 的标准方程;(2)若点M ,N 为椭圆C 上的两个动点,OMN 的面积为1.证明:存在定点W ,使得22WM WN +为定值. 【答案】(1)2214x y +=;(2)证明见解析. 【解析】【分析】(1)由两个四边形面积得两个关于,,a b c 的等式,再结合222a b c =+可解得,,a b c ,得椭圆方程;(2)设()11,M x y ,()22,N x y ,在直线MN 斜率存在时,设其方程为y kx m =+,代入椭圆方程整理后应用韦达定理得1212,x x x x +,求得弦长MN ,再求出O 到直线MN 的距离d ,求出OMN 面积,利用面积为1,可得,k m 的关系式,计算22OM ON +,并代入1212,x x x x +,化简后再代入,k m 的关系式得定值,直线MN 斜率不存在时可由三角形面积求出,M N 的坐标,同样计算出22OM ON +等于上面的定值.结论得证. 【详解】(1)设椭圆C 的焦距122F F c =,则222a b c =+① 由题意知:112212*********A B A B SA AB B a b =⋅=⨯⨯=,得2ab =②由题意知:11221212112222F B F B S F F B B c b =⋅=⨯⨯=bc =由①②③解得:2a =,1b =,c =所以椭圆C 的标准方程为:2214x y +=. (2)定点W 为原点O 时,22WM WN +为定值5.证明如下:设()11,M x y ,()22,N x y ,当直线MN 斜率不存在时,12x x =,12y y =,所以111212OMN S x y =⋅=△, 所以22221111114x x y x ⎛⎫=-= ⎪⎝⎭,所以22122x x ==,221212y y ==, 所以22222211225x y O O x y M N =+++=+.当直线MN 斜率存在时,设直线MN :y kx m =+,代入2214x y +=可得: ()222148440k x kmx m +++-=, 所以122814km x x k +=-+,21224414m x x k-=+. 设点O 到直线MN 的距离为d,则d =MN ===, 因此112OMN S MN d =⋅==△,所以()()222241441440k m k m +-++=,所以()2221420k m +-=, 所以221420k m +-=,所以2222112222x y O ON x y M =++++()2222221112123112444x x x x x x =+-++-=++, 即:()21222123224OM O x x N x x ⎡⎤=++-⎣+⎦ ()2222222242236488364882241444214k m m k m m k m m k ⎡⎤⎡⎤--⎢⎥=+-=+-⎢⎥⎢⎥+⎣⎦+⎣⎦223164244k m ⎡⎤+=+-⎢⎥⎣⎦ 32(84)54=+⨯-=. 【点睛】本题考查求椭圆方程,考查直线与椭圆相交问题,解题方法是设而不求的思想方法,即设交点坐标,设直线方程,直线方程代入椭圆方程整理后应用韦达定理,求出弦长,求出原点到直线的距离,得三角形面积,韦达定理的结论代入后可得参数的关系.。

2021届湖南四大名校联考新高考原创预测试卷(二十五)语文试题

2021届湖南四大名校联考新高考原创预测试卷(二十五)语文试题

2021届湖南四大名校联考新高考原创预测试卷(二十五)语文试题★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B铅笔将答题卡上试卷类型A后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、现代文阅读(36分)(一)论述类文本阅读(本题共3小题,9分)阅读下面的文字,完成各题。

从屡屡创下收视率纪录的综艺节目,到各大博物馆开发的文创产品,再到回头率颇高的“汉服控”,近年来,传统文化不断以崭新的姿态出现在公众眼前。

传统文化正在成为一种时尚新潮,对10年前的很多人而言,这大约是一件不可想象的事。

悄然勃兴又猛然袭来的这股“国潮”,不仅让许多曾经对“传统”充满反叛心理的年轻人,心甘情愿成为传统文化的坐下门徒,也让整个社会有些始料未及,惊讶透着欣喜。

2021年湖南省高考数学模拟试卷及答案解析

2021年湖南省高考数学模拟试卷及答案解析

第 1 页 共 18 页 2021年湖南省高考数学模拟试卷本试卷共5页,23小题(含选考题),满分150分,考试用时120分钟. 注意事项:1.答卷前,考生务必将自己的姓名、考生号、考场号和座位号填写在答题卡上用2B 铅笔将试卷类型(B )填在答题卡相应位置上,将条形码横贴在答题卡右上角“条形码粘贴处”.2.作答选择题时,选出每小题答案后,用2B 铅笔在答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案.答案不能答在试卷上.3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液.不按以上要求作答无效.4选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案写在答题卡上对应的答题区域内,写在试卷、草稿纸和答题卡上的非答题区域均无效.5.考试结束后,请将本试卷和答题卡一并上交。

一、选择题:本题共12小题,每小题5分,共60分在每小题给出的四个选项中,只有一项是符合题目要求的.1.已知集合{}2|2150,{|24}A x x x B x x =+-≤=-<<,则AB =( ) A .{|23}x x -<≤B .{|54}x x -≤<C .{|52}x x -≤≤-D .{|34}x x ≤< 【答案】A【解析】先求出集合A ,再与集合B 取交集即可.【详解】因为{}2|2150{|53},{|24}A x x x x x B x x =+-≤=-≤≤=-<<,所以{|23}A B x x =-<≤.故选:A.【点睛】本题考查集合的交集,考查不等式的解法,考查了学生的运算求解能力,属于基础题. 2.若复数z 满足(23i)13i z +=,则z =( )A .32i -+B .32i +C .32i --D .32i - 【答案】B。

2021届湖南四大名校联考新高考原创预测试卷(二十)物理

2021届湖南四大名校联考新高考原创预测试卷(二十)物理

2021届湖南四大名校联考新高考原创预测试卷(二十)物理★祝考试顺利★ 注意事项:1、考试范围:高考范围。

2、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

3、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

4、主观题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

5、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

6、保持卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

7、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:(本题共8小题,每小题6分。

在每小题给出的四个选项中,第1~5题只有一项符合题目要求;第6~8题有多项符合要求。

全部选对得6分,选对但不全得3分,有选错或不选的得0分)。

1.有关量子理论及相关现象,下列说法中正确的是( ) A. 能量量子化的观点是爱因斯坦首先提出的B. 在光电效应现象中,入射光的频率越大遏止电压越大C. 一群处于5n =激发态的氢原子向基态跃迁时,最多能辐射出4种频率的光子D. α射线、β线、γ射线都是波长极短的电磁波 【答案】B 【解析】【详解】A .能量量子化的观点最早是普朗克提出的,A 错误; B .根据光电效应方程0km h W E ν=+遏止电压c U 满足c km eU E =两式联立得0c W hU e eν=-所以入射光的频率越大遏止电压越大,B 正确;C .一群处于5n =激发态的氢原子向基态跃迁时,最多能辐射出5(51)102⨯-=种频率的光子,C 错误;D .α射线是氦核流,β线是电子流,γ射线高频电磁波,D 错误。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2021届湖南四大名校新高考原创预测试卷(二十五)数学★祝考试顺利★注意事项:1、考试范围:高考范围。

2、试题卷启封下发后,如果试题卷有缺页、漏印、重印、损坏或者个别字句印刷模糊不清等情况,应当立马报告监考老师,否则一切后果自负。

3、答题卡启封下发后,如果发现答题卡上出现字迹模糊、行列歪斜或缺印等现象,应当马上报告监考老师,否则一切后果自负。

4、答题前,请先将自己的姓名、准考证号用0.5毫米黑色签字笔填写在试题卷和答题卡上的相应位置,并将准考证号条形码粘贴在答题卡上的指定位置。

用2B 铅笔将答题卡上试卷类型A 后的方框涂黑。

5、选择题的作答:每个小题选出答案后,用2B 铅笔把答题卡上对应题目的答案标号涂黑。

写在试题卷、草稿纸和答题卡上的非选择题答题区域的答案一律无效。

6、填空题和解答题的作答:用签字笔直接答在答题卡上对应的答题区域内。

写在试题卷、草稿纸和答题卡上的非答题区域的答案一律无效。

如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。

不按以上要求作答无效。

7、选考题的作答:先把所选题目的题号在答题卡上指定的位置用2B 铅笔涂黑。

答案用0.5毫米黑色签字笔写在答题卡上对应的答题区域内,写在试题卷、草稿纸和答题卡上的非选修题答题区域的答案一律无效。

8、保持答题卡卡面清洁,不折叠,不破损,不得使用涂改液、胶带纸、修正带等。

9、考试结束后,请将本试题卷、答题卡、草稿纸一并依序排列上交。

一、选择题:本题共12小题,每小题5分,共60分.在每小题给出的四个选项中,只有一项符合题目要求.l .若1z i =-+,则1z z+=( ) A .0B 2C .1D 22.已知集合{}4A x x a =-≤∣,(){}30B x x x =-≤,且{}02A B x x =≤≤,则a =( )A .2-B .0C .2D .43.攒尖是古代中国建筑中屋顶的一种结构形式.宋代称为撮尖,清代称攒尖.依其平面有圆形攒尖.三角攒尖,四角攒尖.八角攒尖.也有单檐和重檐之分.多见于亭阁式建筑,园林建筑.以八角攒尖为例.它的主要部分的轮廓可近似看作一个正八棱锥,若此正八棱锥的侧面等腰三角形的底角为α,则侧棱与底面外接圆半径的比为( )A .cos 3cos8απ B .sin 3sin8απ C .3cos 8cos παD .3sin8sin πα4.在以正五边形ABCDE 的顶点为顶点的三角形中,任取一个,是钝角三角形的概率为( )A .12B .13C .14D .235.已知变量x ,y ,z 都是正数,y 与x 的回归方程:ˆ3ybx =+,且x 每增加1个单位,y 减少2个单位,y 与z 的回归方程:2ˆ2yz =,则( ) A .y 与x 正相关,z 与x 正相关 B .y 与x 正相关,z 与x 负相关 C .y 与x 负相关,z 与x 正相关D .y 与x 负相关,z 与x 负相关6.P 是圆22:(3)4M x y +-=上的动点,则P到直线:30l y --=的最短距离为( )A .5B .3C .2D .17.设函数()2cos(2)||2f x x a πϕϕ⎛⎫=++<⎪⎝⎭在57,1212ππ⎡⎤-⎢⎥⎣⎦上的图像大致如图,则a 与ϕ分别为( )A .1-和6π-B .1和3π-C .1和3π D .1和6π 8.若1()53a=,则5log 3a =( )A .1-B .1C .l 25log 3D .23log 59.执行如图所示的程序框图,则输出的S =( )A .14B .310C .34D .4510.已知,22ππα⎛⎫∈-⎪⎝⎭,cos23sin 10αα++=,则tan α=( ) A.B.3-CD.311.过双曲线2222:(0,0)x y C a b a b->>的右焦点2F ,且与x 轴垂直的直线与双曲线C 交于第一象限的一点A ,1F 为左焦点,直线1F A 的倾斜角为π4,则离心率为( ) A.1)B1C.D12.边长为4的正方形ABCD 的四个顶点都在球O 上,OA 与平面ABCD 所成角为4π,则球O 的表面积为( ) A .64πB .32πC .16πD .128π二、填空题:本大题共4小题,每题5分,共20分.13.x 、y 满足约束条件220200x y x y x +-≤⎧⎪--≤⎨⎪≥⎩,则2z y x =-的最大值为____________.14.设向量(1,2), (2,5)a b m m =-=-,若//a b ,则m =____________.15.曲线2xy e x =-的一条切线方程为0x y a ++=,则a =____________.16.长方体1111ABCD A B C D -的展开图如图所示,侧面展开图是正方形1AMNA ,下底面为矩形ABFE ,且22AB AE ==,对角线1A M 上一动点Q ,当AQ FQ +最小时,AQF ∠的余弦值为____________.三、解答题:共70分,解答应写出文字说明,证明过程和解题步骤.第17-21题为必考题.第22、23题为选考题.(一)必考题:共60分. 17.(12分)公差0d ≠的等差数列{}n a 中,数列{}n a 的前n 项和为n S 且520S =,3a 是1a 与7a 的等比中项. (1)求{}n a 的通项公式;(2)设2n aa nb a =⋅,求{}n b 的前n 项和n T .18.(12分)如图,圆柱1OO 的轴截面11ABB A 是正方形,1O 、O 分别是上、下底面的圆心,C 是弧AB 的中点,D 、E 分别是1AA 与BC 中点. (1)求证://DE 平面11A CB ;(2)求DE 与平面1B BC 所成角的正弦值.19.(12分)我国西北某地区很适合优质苹果生长,种植了大量苹果.为了防止虫害,在苹果刚结果时,就给每个果子套上袋子,在成熟采摘时,一经销商来收购苹果,一次只能收购一个果园的苹果.苹果分为一、二、三、四,四个等级,“一等”苹果经销商售价为8元/千克,“二等”苹果售价为6元/千克,“三等”苹果售价为5元/千克,“四等”苹果售价为1元/千克,现有甲、乙两个果农,甲果农的苹果3元/千克,乙果农的苹果3.2元/千克,收购商还要付其它费用0.5元/千克,收购商要在甲、乙两个果农中选择一人的苹果收购,由于果园的苹果量很大,不可能每个都检查,由于套着袋子,收购商看不见苹果,所以在甲、乙两个果农的果园中各采摘40千克样本,制成如下表(单位:千克):(1)分别估计甲、乙两果农的苹果“一等品”的概率;(2)分别估计40千克样本中,收购甲、乙两果农的苹果平均每千克获利,若以平均每千克获利的多少为依据来决定收购,你建议收购商应该收购谁的.20.(12分)椭圆2222:1(0)3x y C b b b+=>的左、右顶点分别为1A 、2A ,上顶点为B ,点()1,0D ,直线BD 的倾斜角为135︒.(1)求椭圆C 的方程;(2)过D 且斜率存在的动直线与椭圆C 交于M 、N 两点,直线1A M 与2A N 交于P ,求证:P 在定直线上.21.(12分)已知函数()ln f x ax x =-. (1)当1a =时,讨论()f x 的单调性; (2)若()f x 有两个零点,求a 的取值范围.(二)选考题:共10分.请考生从22、23题中任选一题作答,如果多做,则按所做的第一题计分. 22.【选修4-4:坐标系与参数方程】(10分)在平面直角坐标系xoy 中,已知直线l的参数方程为42x t y ⎧=⎪⎪⎨⎪=+⎪⎩(t 为参数),以直角坐标原点O 为极点,x 轴的正半轴为极轴建立极坐标系,曲线C 的极坐标方程为413cos 4kk k k ρπθ=⎛⎫-++ ⎪⎝⎭.(1)当1k =时,求直线l 和C 的普通方程;(2)当2k =时,试判断直线l 和C 有无交点,若有,求出交点的坐标;若无,说明理由. 23.【选修4-5:不等式选讲】(10分)已知函数1()|1||1|2f x x x =--+. (1)在如图所示的网格纸中作出函数()f x 的图象; (2)求()4f x x ≤-的解集.数学参考答案1.【答案】B【解析】1i z =--,1(1)111222z i i i i z i +--===+--,则1z z +=. 2.【答案】A【解析】由题意,{}4A x x a =≤+∣,{}03B x x =≤≤,又{}02AB x x =≤≤,故42a +=,得2a =-,故选A .3.【答案】C【解析】如图,O 为正八棱锥S ABCDEFCH -底面外接圆心,连接OA ,OB ,OE ,由题意,38OAB π∠=,SAB α∠=, 则3cos138cos cos 28cos SA AB SA OA OA ππαα=⋅=⋅⇒=.4.【答案】A【解析】如图,以正五边形ABCDE 的顶点为顶点的三角形有ABE 、ADC 、BAC 、BDE 、CBD 、CAE 、DCE 、DAB 、EAD 、EBC ,10个,钝角三角形有ABE 、BAC 、CBD ,DCE 、EAD,5个, 是钝角三角形的概率为12.5.【答案】D【解析】由题意,得:2b =-,故y 与z 正相关,y 与x 负相关,可得:z 与x 负相关. 6.【答案】C【解析】如图,过M 作MA l ⊥于A ,当P 在线段MA 上时,PA 为最短距离,||3MA ==,|21PA MA =-=.7.【答案】C【解析】由图知()f x 得最大值为3,即231a a +=⇒=,又2cos 123πϕϕ+=⇒=±,由图可看出()f x 得图像是由()cos 2g x x =得图像首先向左平移,再向上平移后得来的, 则3πϕ=.8.【答案】D【解析】由函数31()5log 53aa =⇒=-,则353533log 3log 3log 5log 3log 51log 5a =-⋅=-⋅=-. 9.【答案】D 【解析】由11111111122311S n n n =-+-++-=-++, 当4n =时,程序终止,输出15145S =-=. 10.【答案】B 【解析】2212sin3sin 102sin 3sin 20αααα-++=⇒--=,1sin 2α=-或sin2α=,由sin 1α≤,所以1sin 2α=-,cos tan 23αα=⇒=-. 11.【答案】D【解析】如图,由题意,212|||2AF F F c==,1|AF=∣,可得:12221cAF AF c a e a -=-=⇒===.12.【答案】A【解析】如图,设正方形ABCD 外接圆的圆心为1O ,由题意,14OAO π∠=,则1cossin44AO AO AD ππ=⋅=⋅4AO AD ⇒==,表面积24464S ππ=⋅=.13.【答案】1【解析】22y x z y x z -=⇒=+,z 的几何意义是在y 轴上截距,画出可行域的图,如图,阴影部分,当直线2y x z =+过220x y +-=与y 轴交点时,z 最大为1z =.14.【答案】1 【解析】25//45112m m a b m m m -⇒=⇒-=-⇒=-. 15.【答案】1-【解析】e 210xy x '=-=-⇒=,切点为(0,1),得:0101a a ++=⇒=-.16.【答案】5665【解析】A 关于对角线1A M 的对称点是N ,连FN 与1A M 交于Q ,此时AQ FQ FN +=最小,由题意得:16A A AM ==,AN =FN==AF=由余弦定理得:cos ANF∠==256cos22165cos AQF ANF∠=∠=-=.17.【答案】(1)1na n=+;(2)22nn+⋅.【解析】(1)由题意,()()()22111131715262524120202a d a a d aa a aa d dS⎧⎧+=+==⎧⎪⎪⇒⇒⎨⎨⎨+==⎩=⎪⎪⎩⎩,得1na n=+.(2)12(1)2nnn nab a n+=⋅=+⋅,23122322(1)2n nnT n n+=⋅+⋅++⋅++⋅①,3412222322(1)2n nnT n n++=⋅+⋅++⋅++⋅②,①-②得:2341222222(1)2n nnT n++-=⋅++++-+⋅()3122221222(1)2212nn nn n-++-=+⋅-+⋅=-⋅-,得:22nnT n+=⋅.18.【答案】(1)见解析; (2)7【解析】(1)取1CB 的中点为M ,连接DE ,ME ,1A M则11////EM BB AA ,且1112EM AA A D ==, ∴四边形1A DEM 是平行四边形,与1A M ⊂平面11ACB , ∴//DE 平面11ACB .(2)设AB a =,点D 到平面1B BC 的距离为h ,则由1////DA B B DA ⇒平面1B BC 故h 等于点A 到平面1B BC 的距离,AC CB ⊥,1AC B B AC ⊥⇒⊥平面1B BC ,故2h AC ==,而222214164DE AE AD a DE ⇒=+==.故所求线面角的正弦为h DE =. 19.【答案】(1)81405P ==甲一等,740P =乙一等; (2)见解析【解析】(1)由表得:概率的估计值分别为81405P ==甲一等,740P =乙一等 (2)由上表知:甲果农的40千克苹果样本中,收购商每千克获利频数分布为:乙果农的40千克苹果样本中,收购商每千克获利频数分布为:甲果农的40千克苹果样本中,收购商平均每千克获利为:4.58 2.510 1.514 2.581.5540⨯+⨯+⨯-⨯=(元)乙果农的40千克苹果样本中,收购商平均每千克获利为:4.37 2.316 1.38 2.791.32540⨯+⨯+⨯-⨯=(元),比较甲,乙两果农的苹果样本中,收购商平均每千克获利,应该选甲果农的苹果.20.【答案】(1)2213x y +=;(2)3x =. 【解析】(1)()0,B b ,由题意,tan135111BD bk b ==︒=-⇒=-, 椭圆C 的方程2213x y +=. (2)设(,)P x y ,()11,M x y ,()22,N x y ,过D 的动直线:(1)y k x =-,代入椭圆C 的方程得:()2222316330k x k x k +-+-=,得:2122631k x x k+=+,21223331k x x k -⋅=+, )222222222221333x y yx x x+=⇒=-=⇒= 分别由P ,1A,M 及P ,2A ,N 三点共线,==,2==222222223363131131313131k k k k x x k k k k ⎡⎤--+⎢⎥--++==++22223336312k k k k ⎡⎤--++===-23x ==,即P 在直线3x =上.21.【答案】(1)见解析; (2)10,e ⎛⎫⎪⎝⎭.【解析】(1)当1a =时,由11()1x f x x x-'=-=, 当(0,1)x ∈时,()0f x '<,()f x 单调递减; 当(1,)x ∈+∞时,()0f x '>,()f x 单调递增; (2)由1()f x a x'=-, 若0a ≤,1()0f x a x'=-<, ()f x 单调减,()f x 最多有一个零点,不合题意; 若0a >,1()1()a x a f x a x x-'=-= 当1(0,)x a∈时,()0f x '<,()f x 单调减;当1(,)x a∈+∞时,()0f x '>,()f x 单调增,则1x a=是()f x 的极小点, (i)若111110ln 1 lne 0ae f a e a a a a ⎛⎫⇒<≤⇒=⋅-≥-= ⎪⎝⎭,此时,()f x 最多有一个零点,不合题意;… (ii)111110e ln 1ln 0a f a e e a a a a ⎛⎫<<⇒>⇒=⋅-<-= ⎪⎝⎭, 又11()10f a e e =⋅+>,故在11(,)e a内,()f x 有一个零点, 又∵1(0,)x a∈时,()f x 单调递减,在1(0,)a内()f x 有且只有一个零点.由(1)知,ln 1ln11x x -≥-=,等号仅当1x =时成立,2244222()2ln 2(ln )2f a a a a a a =⋅-=->, 故在214(,)a a 内,()f x 有一个零点, 又∵1(,)x a∈+∞时,()f x 单调增,在1(,)a+∞内,()f x 有且只有一个零点所以a 的取值范围为1(0,)e.22.【答案】(1)0x +-=,330x y --=;(2)见解析.【解析】(1)当1k =时,4cos 4223cos 4ρρθθπθ⎛⎫=⇒-= ⎪ ⎪⎛⎫⎝⎭+ ⎪⎝⎭,即433022x y x y -=⇒--=,由242x t t y ⎧=-⎪⎪⎨⎪=+⎪⎩(t 为参数)消去t并整理得:0x +-=. (2)当2k =时,222222443sin 413sin 13cos 2ρρρθπθθ==⇒+=+⎛⎫++ ⎪⎝⎭, 得:22224414x x y y +=⇒+=,:04l x y x +-=⇒=+, 代入2244x y +=,得:271800x -+=,2471800-⋅⋅<,所以,直线l 和C 无交点.23.【答案】(1)见解析; (2)53x ≥. 【解析】(1)依题意,13,122131()|1||1|,1122213,122x x f x x x x x x x ⎧+≤-⎪⎪⎪=--+=---<<⎨⎪⎪--≥⎪⎩,做出函数()f x 的图象如图所示:(2)由(1)可知,解法1:()4()40f x x f x x ≤-⇔-+≤,111,122111057()4,112222135,122x x x f x x x x x x x ⎧-+≤-⎪⎪⎧⎪-+≤⎪⎪-+=-+-<<⇒⎨⎨⎪⎪≤-⎩⎪⎪-+≥⎪⎩, 或5702211x x ⎧-+≤⎪⎨⎪-<<⎩, 或35052231x x x ⎧-+≤⎪⇔≥⎨⎪≥⎩. 解法2:图像法,直线4y x =-只与()f x 中的射线AB 相交于B ,由5130322743x y x y x y ⎧⎧=⎪⎪=--≤⎪⎪⇒⎨⎨⎪⎪=-=-⎪⎪⎩⎩, 得:57,33B ⎛⎫-⎪⎝⎭,故当53x ≥,直线4y x =-不在()f x 图像的下方, 即()4f x x ≤-,故解集为5,3⎡⎫+∞⎪⎢⎣⎭.。

相关文档
最新文档