【精品】自动控制实验指导书

合集下载

自动控制理论实验指导书

自动控制理论实验指导书

实验1 典型环节的模拟研究一、实验目的1.了解并掌握TD -ACC+设备的使用方法及各典型环节模拟电路的构成方法。

2.熟悉各种典型环节的理想阶跃响应曲线和实际阶跃响应曲线。

3.了解参数变化对典型环节动态特性的影响。

二、实验设备TD -ACC+型实验系统一套;数字示波器、万用表。

三、实验内容及步骤1.实验准备:将信号源单元的“ST ”插针与“S ”端插针用“短路块”短接。

将开关设在“方波”档,分别调节调幅和调频电位器,使得“OUT ”端输出的方波幅值为2V ,周期为10s 左右。

2.观测各典型环节对阶跃信号的实际响应曲线 (1) 比例( P )环节① 按模拟电路图1-1接好线路。

注意:图中运算放大器的正相输入端已经对地接了100K 的电阻,实验中不需要再接。

以后的实验中用到的运放也如此。

② 将模拟电路输入 (U i ) 端与信号源的输出端“OUT ”相连接;用示波器观测模拟电路的输入 (U i ) 端和输出 (U o ) 端,观测实际响应曲线U o (t ),记录实验波形及结果于表1-1中。

表1-1阶跃响应: U O (t )=K (t ≥0) 其中 K =R 1R 0⁄实验参数理论计算示波器观测值输入输出波形0R 1Ro 1i 0U R U R =i U o Uo iU U Ωk 200Ωk 1000.5Ωk 200 1R 0=200kΩ;R 1=100kΩ或200kΩ图1-1U i R 0R 1RR10K10K U o(2) 积分( I )环节①按图1-2接好线路。

② 将模拟电路输入 (U i ) 端与信号源的输出端“OUT ”相连接;用示波器观测模拟电路的输入 (U i ) 端和输出 (U o ) 端,观测实际响应曲线U o (t ),测量积分时间T ,记录实验波形及结果于表1-2中。

表1-2阶跃响应: o 01()U t t R C=(t ≥0) 注意:积分时间T 是指积分初始时间到输出值等于输入值时的时间。

自动控制原理实验指导书

自动控制原理实验指导书

⾃动控制原理实验指导书⽬录第⼀章⾃动控制原理实验 (1)实验⼀典型环节模拟⽅法及动态特性 (1)实验⼆典型⼆阶系统的动态特性 (4)实验三典型调节规律的模拟电路设计及动态特性测试 (6)实验四调节系统的稳态误差分析 (8)实验五三阶系统模拟电路设计及动态特性和稳定性分析 (11)实验六单回路系统中的PI调节器参数改变对系统稳定性影响 (13)实验七典型⾮线性环节的模拟⽅法 (15)实验⼋线性系统的相平⾯分析 (17)第⼆章控制理论实验箱及DS3042M(40M)⽰波器简介 (19)第⼀节⾃动控制理论实验箱的简介 (19)第⼆节数字存储⽰波器简介 (20)第⼀章⾃动控制原理实验实验⼀典型环节模拟⽅法及动态特性⼀、实验⽬的1、掌握⽐例、积分、实际微分及惯性环节的模拟⽅法。

2、通过实验熟悉各种典型环节的传递函数和动态特性。

⼆、实验设备及器材配置1、⾃动控制理论实验系统。

2、数字存储⽰波器。

3、数字万⽤表。

4、各种长度联接导线。

三、实验内容分别模拟⽐例环节、积分环节、实际微分环节、惯性环节,输⼊阶跃信号,观察变化情况。

1、⽐例环节实验模拟电路见图1-1所⽰传递函数:K R R V V I -=-=120阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K(2) R 1=100K R 2=200K2、积分环节实验模拟电路见图1-2所⽰传递函数:ST V V I I O 1-= ,其中T I阶跃输⼊信号:2V 实验参数:(1) R=100K C=1µf(2) R=100K C=2µf 3、实际微分环节实验模拟电路见图1-3所⽰传递函数:K ST S T V V D D I O +-=1 其中 T D =R 1C K=12R R 阶跃输⼊信号:2V实验参数:(1) R 1=100K R 2=100K (2)R 1=100K R 2=200K C=1µf4、惯性环节实验模拟电路见图1-4所⽰传递函数:1+-=TS K V V I O 其中 T=R 2C K=12R R 阶跃输⼊:2V 实验参数:(1) R 1=100K R 2=100K C=1µf(2) R=100K R 2=100K C=2µfR四、实验步骤1、熟悉实验设备并在实验设备上分别联接各种典型环节。

自动控制原理实验实验指导书

自动控制原理实验实验指导书

自动控制原理实验目录实验一二阶系统阶跃响应(验证性实验) (1)实验三控制系统的稳定性分析(验证性实验) (9)实验三系统稳态误差分析(综合性实验) (15)预备实验典型环节及其阶跃响应一、实验目的1.学习构成典型环节的模拟电路,了解电路参数对环节特性的影响。

2.学习典型环节阶跃响应测量方法,并学会由阶跃响应曲线计算典型环节传递函数。

二、实验内容搭建下述典型环节的模拟电路,并测量其阶跃响应。

1.比例(P)环节的模拟电路及其传递函数示于图1-1。

2.惯性(T)环节的模拟电路及其传递函数示于图1-2。

3.积分(I)环节的模拟电路及其传递函数示于图1-3。

4. 比例积分(PI)环节的模拟电路及其传递函数示于图1-4。

5.比例微分(PD)环节的模拟电路及其传递函数示于图1-5。

6.比例积分微分(PID)环节的模拟电路及其传递函数示于图1-6。

三、实验报告1.画出惯性环节、积分环节、比例积分环节、比例微分环节、比例积分微分环节的模拟电路图,用坐标纸画出所记录的各环节的阶跃响应曲线。

2.由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与由模拟电路计算的结果相比较。

附1:预备实验典型环节及其阶跃响应效果参考图比例环节阶跃响应惯性环节阶跃响应积分环节阶跃响应比例积分环节阶跃响应比例微分环节阶跃响应比例积分微分环节阶跃响应附2:由模拟电路推导传递函数的参考方法1. 惯性环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:整理得进一步简化可以得到如果令R 2/R 1=K ,R 2C=T ,则系统的传递函数可写成下面的形式:()1KG s TS =-+当输入r(t)为单位脉冲函数时 则有输入U 1(s)=1输出U 2(s)=G(s)U 1(s)= 1KTS-+由拉氏反变换可得到单位脉冲响应如下:/(),0t TK k t e t T-=-≥ 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)= 11K TS s-+由拉氏反变换可得到单位阶跃响应如下:/()(1),0t T h t K e t -=--≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2323R R C T R R =+2Cs12Cs-(s)U R10-(s)U 21R R +-=12212)Cs (Cs 1(s)U (s)U )(G R R R s +-==12212)Cs 1((s)U (s)U )(G R R R s +-==由拉氏反变换可得到单位斜坡响应如下:/()(1),0t T c t Kt KT e t -=--≥2. 比例微分环节令输入信号为U 1(s) 输出信号为U 2(s) 根据模电中虚短和虚断的概念列出公式:(s)(s)(s)(s)(s)U100-U U 0U 2=1R1R23(4)CSU R R '''---=++由前一个等式得到 ()1()2/1U s U s R R '=- 带入方程组中消去()U s '可得1()1()2/11()2/12()1134U s U s R R U s R R U s R R R CS+=--+由于14R C〈〈,则可将R4忽略,则可将两边化简得到传递函数如下: 2()23232323()(1)1()11123U s R R R R R R R R G s CS CS U s R R R R R ++==--=-++如果令K=231R R R +, T=2323R R C R R +,则系统的传递函数可写成下面的形式:()(1)G s K TS =-+当输入r(t)为单位脉冲函数时,单位脉冲响应不稳定,讨论起来无意义 当输入r(t)为单位阶跃函数时 则有输入U 1(s)=1/s输出U 2(s)=G(s)U 1(s)=(1)K TS S-+由拉氏反变换可得到单位阶跃响应如下:()(),0h t KT t K t δ=+≥当输入r(t)为单位斜坡函数时 则有输入U 1(s)=21s输出U 2(s)=G(s)U 1(s)=2(1)K TS S -+由拉氏反变换可得到单位斜坡响应如下:(),0c t Kt KT t =+≥实验一 二阶系统阶跃响应(验证性实验)一、实验目的研究二阶系统的两个重要参数阻尼比ξ和无阻尼自然频率n ω对系统动态性能的影响。

自动控制原理(实验指导书)

自动控制原理(实验指导书)

⾃动控制原理(实验指导书)⽬录实验⼀典型环节的模拟研究(验证型)(2)实验⼆典型系统的瞬态响应和稳定性(设计型)(9)实验三动态系统的数值模拟(验证型)(15)实验三动态系统的频率特性研究(综合型)(16)实验四动态系统的校正研究(设计型)(18)附录XMN—2学习机使⽤⽅法简介(20)实验⼀典型环节的模拟研究⼀、实验⽬的:1、了解并掌握XMN-2型《⾃动控制原理》学习机的使⽤⽅法,掌握典型环节模拟电路的构成⽅法,培养学⽣实验技能。

2、熟悉各种典型线性环节的阶跃响应曲线。

3、了解参数变化对典型环节动态特性的影响。

⼆、实验设备Uo(S)=(K+TS 1)S1?)1()()(21210210CS R R RR R R R S U S U i +++≈(1-19)⽐较式(1-17)和(1-19)得K=21R R R +T=C R R R R ?+2121 (1-20)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。

则由式(1-17)得到111)()(23111022100210++?+++=S C R S C R C R C R S C R R R R S U S U i (1-24) 考虑到R 1》R 2》R 3,则式(1-24)可近似为S C R R R S C R R R S U S U i 2021100101)()(++≈(1-25)⽐较式(1-23)和(1-25)得K P =1R R , T 1=R 0C 1T D =2021C R R R ? (1-26)当输⼊为单位阶跃信号,即Ui(t)=1(t)时,Ui(S)=1/S 。

则由式(1-23)得到U o (S)=(K P +ST 11+T D S )S 1?五、实验报告要求:1、实验前计算确定典型环节模拟电路的元件参数各⼀组,并推导环节传递函数参数与模拟电路电阻、电容值的关系以及画出理想阶跃响应曲线。

2、实验观测记录。

自动控制理论实验指导

自动控制理论实验指导

《自动控制理论》实验指导书适用专业:电气、测控、信息课程代码: 8402510总学时:总学分:编写单位:电气信息学院编写人:审核人:审批人:批准时间:年月日目录实验一(实验代码1)典型系统的瞬态响应和稳定性 (2)实验二(实验代码2)线性系统的频率响应分析 (7)实验三(实验代码3)系统校正 (12)实验四(实验代码4)直流电机闭环调速 (16)实验一典型系统的瞬态响应和稳定性一、实验目的和任务1、通过模拟实验,定性和定量地分析二阶系统的两个参数T和ζ对二阶系统动态性能的影响。

2、通过模拟实验,定性和定量地分析系统开环增益K对系统稳定性的影响。

3、观测系统处于稳定、临界稳定和不稳定情况下的输出响应的差别。

二、实验内容1、观察二阶系统的阶跃响应,分析二阶系统的两个参数T和ζ对二阶系统动态性能的影响。

2、观察三阶系统的阶跃响应,分析系统开环增益K对系统稳定性的影响。

三、实验仪器、设备及材料TDN-AC/ACS教学实验系统、导线四、实验原理1.典型的二阶系统稳定性分析(1) 结构框图:如图1-1所示。

图1-1(2) 对应的模拟电路图:如图1-2所示。

(其中R取10 KΩ,50 KΩ,160 KΩ,200 KΩ)图1-2(3) 理论分析系统开环传递函数为:(4) 实验内容先算出临界阻尼、欠阻尼、过阻尼时电阻R的理论值,再将理论值应用于模拟电路中,观察二阶系统的动态性能及稳定性,应与理论分析基本吻合。

在此实验中(图1-2),系统闭环传递函数为:其中自然振荡角频率:;阻尼比:。

2.典型的三阶系统稳定性分析(1) 结构框图:如图1-3所示。

图1-3(2) 模拟电路图:如图1-4所示。

图1-4(3) 理论分析系统的开环传函为:,系统的特征方程为:(4) 实验内容实验前由Routh判断得Routh行列式为:为了保证系统稳定,第一列各值应为正数,所以有得:五、主要技术重点、难点1、用示波器观察系统阶跃响应C(t)时,超调量σp %,峰值时间tp和调节时间ts的测量。

《自动控制原理》实验指导书

《自动控制原理》实验指导书

《自动控制原理》实验指导书31000字实验一、开关量控制与监测实验目的:掌握开关量控制与监测的基本原理及方法。

实验器材:PC机、PLC编程软件、PLC编程器、PLC实验箱、直流电源、继电器、开关。

实验内容:1. 使用PLC编程软件进行PLC的程序编写。

2. 使用直流电源作为控制电源,将继电器与开关连接,利用PLC实现开关量控制和监测。

实验步骤:1. 利用PLC编程软件进行PLC的程序编写。

2. 将直流电源的正极与继电器的常闭端相连,继电器的常开端与开关相连。

3. 将开关的另一端与PLC的输入端相连,PLC的输出端与继电器的控制端相连。

4. 将直流电源的负极与PLC实验箱的接地端相连。

5. 将PLC编程器连接到PC机上,将编写好的程序下载到PLC实验箱中。

6. 按下开关,观察继电器的输出,检查程序的正确性。

实验结果:1. 开关按下,PLC输出信号,继电器吸合。

2. 开关松开,PLC输出信号,继电器断开。

实验二、模拟量采集和控制实验目的:掌握模拟量采集和控制的基本原理及方法。

实验器材:PC机、PLC编程软件、PLC编程器、PLC实验箱、直流电源、电位器、LED灯。

实验内容:1. 使用PLC编程软件进行PLC的程序编写。

2. 使用电位器作为模拟量输入信号源,利用PLC采集电位器的模拟量信号,并控制LED灯的亮度。

实验步骤:1. 利用PLC编程软件进行PLC的程序编写。

2. 将电位器的信号通过模拟量转换模块输入到PLC的模拟量输入端。

3. 利用PLC的模拟量比较指令,将电位器的模拟量信号转换成数字量信号。

4. 根据数字量输出信号的状态,控制LED灯的亮度。

5. 将直流电源的负极与PLC实验箱的接地端相连。

6. 将PLC编程器连接到PC机上,将编写好的程序下载到PLC实验箱中。

7. 调节电位器,观察LED灯的亮度变化。

实验结果:1. 电位器调整时,模拟量输入信号发生变化。

2. 根据模拟量输入信号的大小,PLC输出数字量信号,控制LED灯的亮度。

自控实验指导书

自控实验指导书

目录硬件资源 (1)软件的使用 (4)实验系统部分 (6)实验一典型环节及其阶跃响应.............. . 6 实验二二阶系统阶跃响应.. (8)实验三连续系统串联校正 (10)第一章 硬件资源EL-AT-III 型实验系统主要由计算机、AD/DA 采集卡、自动控制原理实验箱、打印机(可选)组成如图1,其中计算机根据不同的实验分别起信号产生、测量、显示、系统控制和数据处理的作用,打印机主要记录各种实验数据和结果,实验箱主要构造被控模拟对象。

图1 实验系统构成实验箱面板如图2:图2 实验箱面板下面主要介绍实验箱的构成: 一、 系统电源系统采用高性能开关电源作为系统的工作电源,其主要技术性能指标为: 1. 输入电压:AC 220V2. 输出电压/电流:+12V/0.5A,-12V/0.5A,+5V/2A 3. 输出功率:22W4. 工作环境:-5℃~+40℃。

二、AD/DA采集卡AD/DA采集卡如图3采用CYGNAL的C8051F410/2芯片做为主控芯片,负责数据采集和USB通信,AD采样位数为12位,采样率最大为10MHz。

DA转换位数为12位。

AD/DA采集卡有两路输出(DA1、DA2)和两路输入(AD1、AD2),其输入和输出电压均为-5V~+5V。

图3 AD/DA采集卡三、实验箱面板实验箱面板主要由以下几部分构成:1.实验模块本实验系统有八组由放大器、电阻、电容组成的实验模块。

每个模块中都有一个由UA741构成的放大器和若干个电阻、电容。

这样通过对这八个实验模块的灵活组合便可构造出各种型式和阶次的模拟环节和控制系统。

2.二极管,电阻、电容、二极管区这些区域主要提供实验所需的二极管、电阻和电容。

3.AD/DA卡输入输出模块该区域是引出AD/DA卡的输入输出端,一共引出两路输出端和两路输入端,分别是DA1、DA2,AD1、AD2。

有一个按钮复位,按下一次对AD/DA卡进行一次复位。

《自动控制原理》实验指导书(正文全)

《自动控制原理》实验指导书(正文全)

实验一基于MATLAB实验平台的系统被控对象的建立与转换[说明]一个控制系统主要由被控对象、检测测量装置、控制器和执行器四大部分构成。

用于自控原理实验方面的被控对象可以有①用于实际生产的实际系统的真实被控对象,如进行温度控制的锅炉、进行转速控制的电机等;②用于实验研究的真实被控对象,如进行温度控制的实验用锅炉、进行转速控制的电机等;③用运算放大器等电子器件搭建的电模拟被控对象(电路板形式),它们的数学模型与真实被控对象的数学模型基本一致,而且比真实被控对象更典型,更精准。

它们是实物型原理仿真被控对象。

④计算机仿真的被控对象,它们是非实物型原理仿真被控对象,是以各种形式展现的被控对象的数学模型。

它们通过计算机屏幕展示,或是公式形式的数学算式,或是数字形式的数表、矩阵,或是图形形式的结构框图,或是动画形式的真实被控对象实物的动态图形。

在自控原理实验中,①极少用;②用的不多;③用的较多;④在MATLAB软件广泛使用后,用的较多。

③、④各有其优缺点。

MATLAB软件的应用对提高控制系统的分析、设计和应用水平起着十分重要的作用。

我们的实验采用的是④:采用MATLAB软件平台的计算机仿真的被控对象。

这里“被控对象的建立”,指在MATLAB软件平台上怎样正确表示被控对象的数学模型。

[实验目的]1.了解MATLAB软件的基本特点和功能;2.掌握线性系统被控对象传递函数数学模型在MATLAB环境下的表示方法及转换;3.掌握多环节串联、并联、反馈连接时整体传递函数的求取方法;4.掌握在SIMULINK环境下系统结构图的形成及整体传递函数的求取方法。

[实验指导]一、被控对象模型的建立在线性系统理论中,一般常用的描述系统的数学模型形式有:(1)传递函数模型——有理多项式分式表达式(2)传递函数模型——零极点增益表达式(3)状态空间模型(系统的内部模型)这些模型之间都有着内在的联系,可以相互进行转换。

1、传递函数模型——有理多项式分式表达式设系统的传递函数模型为1110111......)()()(a s a s a s a b s b s b s b s R s C s G n n n n m m m m ++++++++==---- 对线性定常系统,式中s 的系数均为常数,且a n 不等于零。

自动控制实验指导书

自动控制实验指导书

第一章THBCC-1型控制理论实验平台硬件组成及使用一、直流稳压电源“THBCC-1”实验平台有两个直流稳压电源,主要用于给实验平台提供电源。

其中一个直流稳压电源有±5V/0.5A、±15V/0.5A及+24V/1.0A五路,每路均有短路保护自恢复功能。

它们的开关分别由相应的钮子开关控制,并由相应发光二极管指示。

其中+24V主要用于温度控制单元和直流电机单元。

实验前,启动实验平台左侧的空气开关和实验台上的电源总开关。

并根据需要将±5V、±15V钮子开关拔到“开”的位置。

另一个直流稳压电源的功能与前一个相比,是无+24V直流电源。

实验时,也可通过2号连接导线将直流电压接到需要的位置。

二、阶跃信号发生器“THBCC-1”实验平台有两个阶跃信号发生器,主要提供实验时的给定阶跃信号,其输出电压范围约为-10V~+10V,正负档连续可调。

使用时根据需要可选择正输出或负输出,具体通过“阶跃信号发生器”单元的钮子开关来实现。

当按下复位按钮时,单元的输出端输出一个可调(选择正输出时,调节RP1电位器;选择负输出时,调节RP2电位器)的阶跃信号(当输出电压为1V时,即为单位阶跃信号),实验开始;当不按复位按钮时,单元的输出端输出电压为0V。

注:单元的输出电压可通过实验台上左面板的直流数字电压表来进行测量,同时可通过2号连接导线将阶跃信号接到需要的位置三、函数信号发生器“THBCC-1”实验平台有两个函数信号发生器,一个为低频函数信号发生器,主要用于低频信号输出;另一个为函数信号发生器,主要用于高频输出。

低频函数信号发生器由单片集成函数信号发生器专用芯片及外围电路组合而成,主要输出有正弦信号、三角波信号、方波信号、斜坡信号和抛物坡信号(其中斜坡、抛物坡信号在T1档输出)。

输出频率分为T1、T2、T3三档。

其中正弦信号的频率范围分别为0.1Hz~3.3Hz、2Hz~70Hz、64Hz~2.5KHz三档,V p-p值为14V。

自动控制原理实验指导书

自动控制原理实验指导书

实验一典型环节及其阶跃响应一、实验目的1. 掌握控制模拟实验的基本原理和一般方法。

2. 掌握控制系统时域性能指标的测量方法。

二、实验仪器1.EL-AT-II型自动控制系统实验箱一台2.PC计算机一台三、实验原理1.模拟实验的基本原理:控制系统模拟实验采用复合网络法来模拟各种典型环节,即利用运算放大器不同的输入网络和反馈网络模拟各种典型环节,然后按照给定系统的结构图将这些模拟环节连接起来,便得到了相应的模拟系统。

再将输入信号加到模拟系统的输入端,并利用计算机等测量仪器,测量系统的输出,便可得到系统的动态响应曲线及性能指标。

若改变系统的参数,还可进一步分析研究参数对系统性能的影响。

2.时域性能指标的测量方法:超调量Ó%:1)启动计算机,在桌面双击图标 [自动控制实验系统] 运行软件。

2)测试计算机与实验箱的通信是否正常,通信正常继续。

如通信不正常查找原因使通信正常后才可以继续进行实验。

3)连接被测量典型环节的模拟电路。

电路的输入U1接A/D、D/A卡的DA1输出,电路的输出U2接A/D、D/A卡的AD1输入。

检查无误后接通电源。

4)在实验课题下拉菜单中选择实验一[典型环节及其阶跃响应] 。

5)鼠标单击实验课题弹出实验课题参数窗口。

在参数设置窗口中设置相应的实验参数后鼠标单击确认等待屏幕的显示区显示实验结果。

6)利用软件上的游标测量响应曲线上的最大值和稳态值,带入下式算出超调量:YMAX - Y∞Ó%=——————×100% Y∞TP 与TS:利用软件的游标测量水平方向上从零到达最大值与从零到达95%稳态值所需的时间值,便可得到TP 与TS。

四、实验内容构成下述典型一阶系统的模拟电路,并测量其阶跃响应:1.比例环节的模拟电路及其传递函数如图1-1。

1 G(S)= -R2/R12.惯性环节的模拟电路及其传递函数如图1-2。

G(S)= - K/TS+1K=R2/R1,T=R2C3.积分环节的模拟电路及传递函数如图1-3。

自动控制实验指导书

自动控制实验指导书

MCS-51单片机实验指导书(测控及自动化专业)第一章实验设备及仿真环境§1.1 实验设备简介:本实验所用到的主要设备是DVCC-5286JH单片机仿真实验系统,它由仿真技术及模块化实验电路有机结合而成,可以支持MCS-51、MCS-96系列单片机原理与应用及8086/8088十六微机原理和接口技术等课程的教学实验。

通过拨码开关的转换,可以很方便的进行各个仿真实验系统的转换。

§1.2 系统MCS-51仿真系统的工作模式及组成1、工作模式:(仿真工作模式)单片机系统一般由CPU、程序存储区、外部数据存储区、其他外围I/O接口等部分组成,我们应用的实验系统按仿真模式划分为:内程序内数据模式和内程序外数据两种模式。

2、系统组成:工作模式不同,其组成不同:●内程序内数据模式系统组成:CPU及其总线扩展区、程序存储区、外部数据存储区、8155接口(键盘和六位数码管显示器)、8255接口(EPROM 烧录及打印机)、通用外围电路。

●内程序外数据模式系统组成:CPU及其总线扩展区、程序存储区、74LS138扩展的外围接口电路地址模块及通用外围电路。

3、各部分地址范围通用外围电路:●程序存储区地址范围:0000h——0FEFFh●外部数据存储区地址范围:0000h——0FEFFh(内程序内数据模式)●74LS138译码地址及连线图:(内程序外数据模式,外部数据区无效)地址:Y0:8000——8FFFhY1:9000——9FFFhY2:A000——AFFFhY3:B000——BFFFhY4:C000——CFFFhY5:D000——DFFFhY6:E000——EFFFhY7:F000——FFFFh图1——1●8155、8255接口地址及连线图:(系统内部给定,占用存储区一页地址,内程序内数据工作模式有效,字形口通过反相驱动器接共阴极数码管)8155控制口FF20h 8255控制口FF2Bh8155A口(字位口)FF21h 8255A口FF28h8155B口(字型口)FF22h 8255B口FF29h8155C口(键扫口)FF23h 8255C口FF2Ah图1——2●逻辑电平开关电路图1——3●单脉冲发生电路图1——4●发光二极管显示电路图1——5 ●时钟电路图1——6 ●继电器及驱动电路图1——7●直流电机及驱动电路图1——8 ●步进电机及驱动电路图1——9 ●串行显示电路图1——10§1.4 系统硬件连线图§1.3 仿真环境DVCC微机实验系统软件是在windows界面上运行的综合调试软件,采用窗口提示直接明了,对于习惯在windows界面上工作的用户运用起来相当方便。

自动控制原理实验指导书(1).docx

自动控制原理实验指导书(1).docx

实验装置简介............................... (3-40实验一控制系统典型环节的模拟......... (5-6)实验二一阶系统的时域响应及参数测定••…(6-7)实验三二阶系统的瞬态响应分析......... (8-9)实验四频率特性的测试................. (9-13)实验五PID控制器的动态特性 ............. (13-15)实验六典型非线性环节................. (15-18)实验七控制系统的动态校正(设计性实验)・・(19)备注:本实验指导书适用于自动化、电子、机设等专业,各专业可以根据实验大纲选做实验。

THZK-1型控制理论电子模拟实验箱自动控制技术广泛应用于工农业生产、交通运输和国防建设,因此一个国家口动控制的水平是衡量该国家的生产技术与科学水平先进与否的一项重要标志。

木模拟实验装置能完成高校《自动控制原理》课程的主要实验内容。

它可以模拟控制工程中的各种典型环节和控制系统,并对控制系统进行仿真研究,使学生通过实验对自动控制理论冇更深一步地理解,并捉高分析与综合系统的能力。

本模拟实验箱可分为信号源与频率计,电源和典型环节实验三大部分:一、信号源与频率计1信号源部分信号源部分包括阶跃信号发生器,函数信号发生器,扫频电源。

(1)阶跃信号发生器当按下按钮时,输出一负的阶跃信号,其幅值约(-0.9V〜-2.45V)之间可调。

(2)函数信号发生器函数信号发生器主要是为本实验装置屮所需的超低频信号而专门设计的能输出三种函数信号,每一种函数信号有三个频段可供选择,三种信号分别为正弦波信号,三角波信号和方波信号。

正弦波信号:正弦波信号电压的有效值在(0〜7.5V)可调,频率在(0. 25Hz〜1. 55KHz)可调,其中低频段(0. 25Hz〜14Hz),中频段(2. 7Hz〜155Hz)可调,高频段(26Hz〜1.55KHZ)可调。

自动控制实验指导

自动控制实验指导

自动控制理论实验指导书自动控制系实验一 典型环节的电路模拟与软件仿真一、实验目的1、熟悉并掌握THBCC-1型 信号与系统·控制理论及计算机控制技术实验平台及上位机软件的使用方法。

2、熟悉各典型环节的电路传递函数及其特性,掌握典型环节的电路模拟与软件仿真研究。

3、测量各典型环节的阶跃响应曲线,了解参数变化对其动态特性的影响。

二、实验设备1、THBCC-1型 信号与系统·控制理论及计算机控制技术实验平台2、PC机1台(含上位机软件) 37针通信线1根3、双踪慢扫描示波器1台(可选)4、万用表1只三、实验内容1、设计并组建各典型环节的模拟电路;2、测量各典型环节的阶跃响应,并研究参数变化对其输出响应的影响;3、在上位机界面上,填入各典型环节数学模型的实际参数,据此完成它们对阶跃响应的软件仿真,并与模拟电路测试的结果相比较。

四、实验原理自控系统是由比例、积分、惯性环节等按一定的关系连接而成。

熟悉这些惯性环节对阶跃输入的响应,对分析线性系统将是十分有益。

在附录中介绍了典型环节的传递函数、理论上的阶跃响应曲线和环节的模拟电路图。

五、实验步骤1、熟悉实验台,利用实验台上的模拟电路单元,构建所设计的(可参考本实验附录)并连接各典型环节(包括比例、积分、比例积分、比例微分、比例积分微分以及惯性环节)的模拟电路。

待检查电路接线无误后,接通实验台的电源总开关,并开启±5V,±15V直流稳压电源。

2、对相关实验单元的运放进行调零(令运放各输入端接地,调节调零电位器,使运放的输出端为“0”V)。

注意:积分、比例积分、比例积分微分实验中所用到的积分环节(U26、U30、U36、U13单元)不需要(令积分电容放电)时,需将锁零端(场效应管的栅极)G 与“阶跃信号发生器”的“锁零”输出端相连。

••零锁3、测试各典型环节的阶跃响应,并研究参数变化对输出响应的影响1) 不用上位机时,将实验平台上 “阶跃信号发生器”单元的输出端与相关电路的输入端相连,然后按下“操作按钮”,产生一个阶跃信号(用万用表测试其输出电压,并调节“幅度调节”电位器,使其输出电压为“1”V),用示波器x-t 显示模式观测该电路的输入与输出曲线。

自动控制原理实验指导书(学生)

自动控制原理实验指导书(学生)

第一章SACT自控原理实验机构成及说明1.1 构成主实验板外形尺寸为36厘米×28厘米,主实验板的布置简图见下图所示。

图1-1-1 主实验板的布置简图根据功能本实验机划分了各种实验区均在主实验板上。

实验区组成见下表。

1.2 说明一.A实验区1.模拟运算单元(A1~A6)模拟运算单元 A1~A6布置图见图1-1-1,图中S1-S13均为跨接座,当用户选中模拟运算单元的某一参数的电阻、电容作输入回路和反馈回路构成一个模拟电路时,在该元件的左边相对应的跨接座上插上白色短路套即可,直观方便。

六个模拟运算单元实现原理基本相同,只是运放各输入回路及各反馈回路引入的电阻、电容的参数和连接方式各不相同。

六个模拟运算单元的各参数已经合理设计,组合使用可以满足本实验指导书中提供的全部实验要求,而无需外接电阻或电容,有效的简化了实验操作。

各信号接入点及输出点均引出标准插孔供接线用。

H1、H2为模拟运算单元的输入插孔,IN为运算放大器负端输入(反馈与输入相加点)插孔, OUT为模拟运算单元的输出插孔。

2.模拟运算扩充库(A7~A12)模拟运算扩充库 A7~A11布置图见图1-1-1。

模拟运算扩充库包括校正网络库(A7)、反相模拟运算单元(A8~A10),放大器(A12)和1个0~999.9KΩ的直读式可变电阻、1个电位器及多个电容(A11),可以灵活搭建多种不同参数的系统。

校正网络库(A7)在不同的跨接座上插上白色短路套即可构成比例环节、惯性环节、积分环节、比例积分环节、比例微分环节、比例微分积分环节,用户可按不同的需求构成各种校正环节。

二. B实验区1.函数发生器(B4)矩形波由“矩形波输出”测孔输出矩形波,由“幅度调节”电位器调节矩形波输出幅度,由“正脉宽调节”电位器调节相应的正脉冲输出宽度,其幅度和宽度值在虚拟示波器界面右侧显示。

有矩形波输出,就有锁零功能,即在零输出时A1~A7模拟运算单元的反馈网络呈短路状态。

自控原理实验指导书

自控原理实验指导书

实验一典型环节及其阶跃响应一、实验目的1、学习构成典型环节的模拟电路。

2、熟悉各种典型环节的阶跃响应曲线。

3、了解参数变化对典型环节动态特性的影响,并学会由阶跃响应曲线计算典型环节的传递函数。

二、实验内容各典型环节的模拟电路及结构图如下:图1-1-1 比例环节电路图图1-2-1 惯性环节电路图图1-1-2 比例环节结构图2-2 惯性环节结构图图1-3-1 积分环节电路图图1-4-1 微分环节电路图图1-3-2 积分环节结构图图1-4-2 微分环节结构图三、实验步聚1、 将输入端ui 与数据通道接口板上的DAO 连接、输出端uo 与实验平台信号引出区的INO 孔连接。

(若无特别声明,其它实验中涉及运放电路板及ui 及uo 均按此连线,不再赘述)。

2、 启动计算机,运行“系统设置”菜单,选择串口。

(若无特别声明,其它实验中均同此,不再赘述。

如不选择,则设为默认值,选择COM1通讯端口)3、 打开“自动控制原理实验系统”,打开“实验选择”菜单,选择“典型环节及其阶跃响应”实验。

4、 选择“参数设置”命令,设置采样周期,采样点数和设定电压。

5、 选择“运行观测”命令,观察阶跃响应曲线,改变模拟电路参数后,再重新观察阶跃响应曲线的变化。

6、 为了更好的观察曲线,再“参数设置”命令中,设置“曲线放大”倍数,“运行观测”。

7、 记录波形及数据(保存结果、打印图象)。

8、 连接其它模拟电路,重复步骤3、4、5、6注:打印图像只有在曲线放大为“1”时打印(其它实验相同)四、实验报告1、 画出惯性环节、积分环节、比例微分环节的电路图和所记录的响应曲线。

2、 由阶跃响应曲线计算出惯性环节、积分环节的传递函数,并与值比较。

图1-5-1 比例微分环节电路图传递函数为:G(s) = (R3/R2) ((R1+R2)CS+1)图1-5-2 比例微分环节结构图实验二二阶系统阶跃响应一、实验目的1、研究二阶系统的阻尼比ξ和无阻尼自然频率ω对系统动态性能的影响。

自动控制实验指导书

自动控制实验指导书
四、实验内容 (一) 稳定性
1.系统传函为 G s
3s 4 2s 3 5s 2 4s 6 s 5 3s 4 4s 3 2s 2 7 s 2
,试判断其稳定性
2.用 Matlab 求出 G ( s)
s 2 2s 2 的极点。 s 4 7 s 3 3s 2 5s 2
四、实验步骤及内容
(一)MATLAB 的软件资源及命令窗口
1.启动 MATLAB (1)观察 MATLAB 的窗口组成 MATLAB 主窗口中,层叠平铺了 Command windtory(命令历史记录) ,Current directory(当前目录) 等子窗口。 (2)观察 MATLAB 窗口的各个组成部分 了解菜单栏各菜单功能,用鼠标打开 MATLAB 各个菜单,在状态栏里显示当 前鼠标所指的菜单项的含义。 用鼠标指向常用工具栏的每个工具按钮,了解其含义。 2.命令窗口的打开和关闭
9
Step Response of G2(s)=0.01/(s 2+10.002s+0.01)
System: G2 Peak amplitude: 1.97 Overshoot (%): 96.9 At time (sec): 31.4
Amplitude
System: G2 Rise Time (sec): 10.5
4.5 n ts 3.5 n 2% (0 0.9) 5%
实际值 峰值 Cmax 峰值时间 tp 过渡时间 ts 1.35 1.09
5% 2%
4)修改参数,分别实现 1 和 2 的响应曲线,并记录 5)修改参数,分别写出程序实现 wn1 1 w0 和 wn 2 2 w0 的响应曲线,并记录 2 %单位阶跃响应曲线 num=[10];den=[1 2 10];step(num,den); title('Step Response of G(s)=10/(s^2+2s+10)');

自动控制实验指导书

自动控制实验指导书

自动控制原理实验指导书、邢阳阳马冬梅王勇等重庆邮电大学移通学院前言XMN-2型自动控制原理学习机是在XMN-1型模拟计算机(自动控制学习机)的基础上的改型机。

原XMN-1型机能完成的实验内容XMN-2型机均可以完成。

改进的内容如下:(1)将电容 C 的容量缩小十倍,挑选精度提高。

将电阻R 的阻值增大十倍,挑选的精度提高。

这样在RC 常数不变的情况下精度有所提高。

(2)将运算放大器由通用型LM741 改为OP07(低失调电压型),使得其电性能得到进一步的提高。

例如:Vos 减少100 倍,Ios 减少200 倍。

(详见本书中OP07 电性能参数)(3)增加了与CAE-98 型计算机辅助实验系统的接口。

(4)将运放的调零电位器改为带有锁紧装置电位器。

(5)面板上的标记使操作更为方便。

目录实验一典型线性环节的模拟 (1)实验二二阶系统的阶跃响应 (4)实验三线性系统稳定性的研究 (7)实验四二阶系统的频率响应 (9)附录一 (12)附录二 (13)实验一 典型线性环节的模拟一、实验目的1.学习典型线性环节的模拟方法。

2.研究阻、容参数对典型线性环节阶跃响应的影响。

二、实验设备1.XMN-2 型机.2.示波器或CAE98(见前言)。

3.万用表。

三、实验内容1.比例环节:方块图 模拟电路图图中: f P iR K R分别求取R i =1M ,R f =510K(K P =0.5);R i =1M ,R f =1M(K P =1);R i =510K ,R f =1M(K P =2)时的阶跃响应。

2.积分环节:方块图模拟电路图图中:分别求取R i=1M,C f=1μ(T i=1 秒);R i=1M,C f=4.7μ(T i=4.7 秒);R i=1M,C f=10μ(T i=10.0秒)时的阶跃响应曲线。

3.比例积分环节:方框图模拟电路图图中:分别求取R i=R f=1M,C f=4.7μ(K P=1,T i=4.7 秒);R i=R f=1M,C f=10μ(K P=1,T i=10 秒);R i=2M,R f=1M,C f=4.7μ(K P=0.5,T i=4.7 秒)时的阶跃响应曲线。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

第一章THBCC-1型控制理论实验平台硬件组成及使用一、直流稳压电源“THBCC-1"实验平台有两个直流稳压电源,主要用于给实验平台提供电源。

其中一个直流稳压电源有±5V/0。

5A、±15V/0。

5A及+24V/1.0A五路,每路均有短路保护自恢复功能。

它们的开关分别由相应的钮子开关控制,并由相应发光二极管指示.其中+24V主要用于温度控制单元和直流电机单元.实验前,启动实验平台左侧的空气开关和实验台上的电源总开关.并根据需要将±5V、±15V钮子开关拔到“开"的位置。

另一个直流稳压电源的功能与前一个相比,是无+24V直流电源。

实验时,也可通过2号连接导线将直流电压接到需要的位置。

二、阶跃信号发生器“THBCC-1”实验平台有两个阶跃信号发生器,主要提供实验时的给定阶跃信号,其输出电压范围约为—10V~+10V,正负档连续可调。

使用时根据需要可选择正输出或负输出,具体通过“阶跃信号发生器”单元的钮子开关来实现.当按下复位按钮时,单元的输出端输出一个可调(选择正输出时,调节RP1电位器;选择负输出时,调节RP2电位器)的阶跃信号(当输出电压为1V时,即为单位阶跃信号),实验开始;当不按复位按钮时,单元的输出端输出电压为0V。

注:单元的输出电压可通过实验台上左面板的直流数字电压表来进行测量,同时可通过2号连接导线将阶跃信号接到需要的位置三、函数信号发生器“THBCC—1"实验平台有两个函数信号发生器,一个为低频函数信号发生器,主要用于低频信号输出;另一个为函数信号发生器,主要用于高频输出。

低频函数信号发生器由单片集成函数信号发生器专用芯片及外围电路组合而成,主要输出有正弦信号、三角波信号、方波信号、斜坡信号和抛物坡信号(其中斜坡、抛物坡信号在T1档输出)。

输出频率分为T1、T2、T3三档.其中正弦信号的频率范围分别为0。

1Hz~3.3Hz、2Hz~70Hz、64Hz~2.5KHz三档,Vp-p值为14V.使用时先将信号发生器单元的钮子开关拔到“开"的位置,并根据需要选择合适的波形及频率的档位,然后调节“频率调节”和“幅度调节"微调电位器,以得到所需要的频率和幅值,并通过2号连接导线将其接到需要的位置。

而用于高频输出的函数信号发生器主要输出有正弦信号、三角波信号、方波信号,输出频率分为T1、T2、T3三档,其中正弦波频率可达90k左右,Vp-p值为14V.四、锁零按钮锁零按钮用于实验前运放单元中电容器的放电。

当按下按钮时,通用单元中的场效应管处于短路状态,电容器放电,让电容器两端的初始电压为0V;当按钮复位时,单元中的场效应管处于开路状态,此时可以开始实验.注:在实验时,必须用2号导线将通用单元(U3~U14)的G输出端与U输出端相连时,锁零按钮才有效。

五、频率计“THBCC—1”实验平台有两个频率计,一个为低频频率计,主要用于测量低频函数信号发生器的输出频率,另个为数字频率计,主要用于测量函数信号发生器的高频信号频率,低频频率计是由单片机89C2051和六位共阴极LED数码管设计而成的,具有输入阻抗大和灵敏度高的优点.其测频范围为:0。

1Hz~9999。

99Hz.低频频率计主要用来测量函数信号发生器或外来周期信号的频率。

使用时先将低频频率计的电源钮子开关拔到“开”的位置,然后根据需要将测量钮子开关拔到“外测”(此时通过“输入"和“地”输入端输入外来周期信号)或“内测”(此时测量低频函数信号发生器输出信号的频率)。

另外本单元还有一个复位按钮,以对低频频率计进行复位操作。

数字频率计的使用与低频频率计的使用方法类似,但其测频范围为:1Hz~300KHz。

注:将“内测/外测”开关置于“外测"时,而输入接口没接被测信号时,频率计有时会显示一定数据的频率,这是由于频率计的输入阻抗大,灵敏度高,从而感应到一定数值的频率。

此现象并不影响内外测频。

六、交/直流数字电压表交/直流数字电压表有三个量程,分别为200mV、2V、20V.当自锁开关不按下时,它作直流电压表使用,这时可用于测量直流电压源,测量范围为:0~20V;当自锁开关按下时,作交流毫伏表使用,这时可用于测量交流电压源,测量范围为:0~20V,它具有频带宽(10Hz~400kHz)、精度高(±5‰)和真有效值测量的特点,即使测量窄脉冲信号,也能测得其精确的有效值,其适用的波峰因数范围可达到10.七、通用单元电路通用单元电路具体见实验平台所示U2~U19单元、和“无源元件单元”.这些单元主要由运放、电容、电阻、电位器和一些自由布线区等组成。

通过不同的连线,可以模拟各种受控对象的数学模型,主要用于比例、积分、微分、惯性等电路环节的构造。

一般为反向端输入,其中电阻多为常用阻值51k、100k、200k、510k;电容多在反馈端,容值为0.1uF、1uF、10Uf。

以组建积分环节为例,积分环节的时间常数为1s.首先确定带运放的单元,且其前后的元器件分别为100K、10uF(T=100K×10uF=1s),通过观察通用单元电路二可满足要求,然后将100K和10uF两引脚对应的插针使用2号线连接起来.实验前先按下“锁零按钮”对电容放电,,然后用二号导线把正单位阶跃信号输入到积分单元的输入端,积分电路的输出端接入反向器单元,保证输入、输出方向的一致性。

然后按下“锁零按钮”和阶跃信号输出按钮,用示波器观察输出曲线,其具体电路如下图所示。

八、非线性单元由两个含有非线性元件的电路组成,一个含有双向稳压管,另一个含有两个单向二极管并且需要外加正负15伏直流电源,可研究非线性环节的静态特性和非线性系统。

其中10K、47K电位器由电位器组单元提供。

电位器的使用可由2号导线将电位器引出端点接入至相应电路中。

但在实验前先断开电位器与电路的连线,用万用表测量好所需R的阻值,然后再接入电路中。

九、数据采集接口单元数据采集卡采用THBXD,它可直接插在IBM-PC/AT或与之兼容的计算机USB接口上,其采样频率为350K;有16路单端A/D模拟量输入,转换精度为14位;4路D/A模拟量输出,转换精度为12位;16路开关量输入,16路开关量输出。

接口单元则放于实验平台上,用于实验平台与PC上位机的连接与通讯。

数据采集卡接口部分包含模拟量输入输出(AI/AO)与开关量输入输出(DI/DO)两部分。

其中列出AI有4路,AO有2路,DI/DO各8路。

使用虚拟示波器观察一个模拟信号,可以用导线直接连接到接口中AD端(其中AD3和AD4两输入端有跟随器输入,而AD1和AD2通道没有,用户实验时可根据情况选择使用,但在选择AD3和AD4通道时,两个通道必须同时有电信号输入,不能有悬空)。

另外,上位机软件编写的信号发生器,由数据采集卡的DA1输出。

十、实物实验单元包括温度控制单元、直流电机单元和步进电机单元,主要用于计算机控制技术实验中,使用方法详见实验指导书。

十一、扫频电源1.开启电源开关,显示器显示“P”2。

扫频速度选择与输出1、按“扫速”键,显示器显示“SPEEDO”,表明选定了第0档扫速,功能指示中的“扫频速度"指示灯亮。

2、连续按动“扫速”键10次,显示器末位分别显示1~F,并周而复始从0到F切换,一共有11档扫频速度可选择。

3、按“全程扫”键,显示器显示“SCRn。

AP.O”;功能指示中的“全域扫频”指示灯亮,表明“扫频电源输出”端口已有幅度基本稳定的按选定的某档扫速在全程范围内进行扫频的正弦波信号,扫频(即输出频率递增)过程则由“频标指示器”(由15只绿色发光二极管LED等组成)指示出相应的频段。

注:在扫频过程中,除按“复位”键外,按其它任何键都不会改变当前的状态。

3。

点频输出及频率显示操作步序1、按“复位”键后,并按“换档”键,功能指示中的红色“点频换档”指示灯亮,选定点频步进区段(共有7个区段),此时显示器显示“F*”,其中*为0~7中的某一个数。

2、按“点频"键,功能指示中的红色“点频"指示灯亮,信号输出口便有相应的某一频率的正弦波信号输出。

3、连续按动“点频”键,显示器的2、3位将交替显示“一__"和“__-”表明输出信号频率在该区段内循环递增变化。

例如:按“复位”键后,再按“换档"键,在选定了第0档步进区段后,按一下“点频”键,显示器显示“一__F0”,再按一下“内测频”键,显示器将显示“F….”,约经2秒后,显示器显示“F000015”,表明输出正弦信号频率为15Hz,再按动两次“点频"键,输出频率改变为16Hz,随后每按两次“点频"键,输出信号频率将增加1Hz,在按下“内测频”键后,功能指示中的亮灯也相应地切换为“内测频率"指示灯处。

在上例中,如选定了第1区段后按一下“点频”键,输出频率为510Hz,随后每按一下“点频”键,输出频率随之递增约6Hz。

其它各档操作与上类似,只是步幅随区段不同而随之改变。

实验一一阶系统的时域分析一、实验目的1。

熟悉THBCC —1型信号与系统•控制理论及计算机控制技术实验平台;2、熟悉“THBCC-1”软件的使用;3。

熟悉一阶系统的阶跃响应特性及其电路模拟;4。

测量一阶系统的阶跃响应曲线,并了解参数变化对其动态特性的影响。

二、实验设备1.THBCC —1型信号与系统•控制理论及计算机控制技术实验平台;2.PC 机一台(含“THBCC-1”软件)、USB 数据采集卡、37针通信线1根、16芯数据排线、USB 接口线;三、实验内容1。

设计并组建一典型的一阶系统模拟电路;2。

测量该系统的阶跃响应,并研究参数变化对其输出响应的影响;四、实验原理典型的一阶系统的传递函数与方框图分别为:当U i (S )输入端输入一个单位阶跃信号,且放大系数(K)为1、时间常数为T 时响应曲 线如图1-1所示。

图1-1一阶系统阶跃响应曲线五、实验步骤1、根据一阶系统的方框图,选择实验台上的通用电路单元(U 3、反相器单元)设计并组建其相应的模拟电路,如下图所示.图1-2一阶系统模拟电路 图中后一个单元为反相器,其中R 0=200K 。

2、将实验台上“阶跃信号发生器”的输出接至一节系统的输入端3、若比例系数K=1、时间常数T=1S 时,确定模拟电路中的参数。

即取:R 1=100K,R 2=100K ,C=10uF(K=R 2/R 1=1,T=R 2C=100K ×10uF=1)。

4、上电,用“THBCC-1”软件观测并记录此时系统的响应输出,并与理论值进行比较。

1)()()(+==TS K S U S U s G i O5、若比例系数K=1、时间常数T=0。

相关文档
最新文档