2020年郑州大学655数学分析考研专业课考试大纲(含参考书目)

合集下载

桂林电子科技大学811数学分析2020年考研专业课初试大纲

桂林电子科技大学811数学分析2020年考研专业课初试大纲
华东师大数学系. 数学分析(上、下册)(第四版)[M]. 北京: 高等教育出版试自命题科目考试大纲
科目代码:811
考试科目:数学分析
本考试大纲由数学与计算科学学院(单位)于 2019 年 8 月 25 日通
过。
一、考试性质
数学分析是为高等院校和科研院所招收数学与应用数学硕士生 设置的具有选拔性质的考试科目,其目的是科学、公平、有效地测 试考生是否具备攻读数学与应用数学硕士所必须的基本素质和专业 能力,选拔有潜力的优秀人才入学,以利于培养职业道德良好、具 有较强专业能力的高层次数学人才。
二、考查目标
测试考生对数学分析基本概念和知识的理解、基本计算和论证 技巧的掌握、以及是否具有综合运用所学知识分析和解决问题的能 力。
三、适用范围
本考试大纲适用于报考我校 007 数学与计算科学学院的 070100 数学专业的硕士研究生招生考试。
四、考试形式和试卷结构
(一)试卷满分及考试时间
试卷满分为 150 分,考试时间 180 分钟。 (二)试卷内容结构
无穷积分的性质与收敛判别、瑕积分的性质与收敛判别。 9.数项级数 级数收敛与和的定义性质、柯西准则、正项级数及其审敛法、 一般级数的绝对收敛与条件收敛、交错级数、莱布尼兹定理、阿贝 尔定理、狄利克雷定理 、绝对收敛与条件收敛级数的性质、无穷乘 积。 10.函数项级数、幂级数 函数项级数与函数列的收敛和一致收敛的概念,一致收敛审敛 法,一致收敛函数列与级数的性质,幂级数的收敛半径、收敛域、 和函数,幂级数的运算,函数展开成幂级数。 11.傅立叶级数 三角级数和三角函数系的正交性,傅立叶级数,函数的傅立叶 级数的展开,收敛性定理及证明。 12.多元函数的极限与连续 平面点集的概念,平面点集的基本定理、二元函数的概念,二 重极限二次极限,二元函数的连续性,有界闭区域上连续函数的性 质。 13.多元函数微分 偏导数与全微分的概念,高阶偏导数和高阶全微分,复合函数 的链式规则,由方程所确定的函数的求导法则,空间曲线的切线和 法平面,曲面的切平面和法线, 方向导数、梯度、泰勒公式。 14.多元函数极值、条件极值 多元函数极值、条件极值。 15.隐函数的存在定理、函数相关 一个方程的情形,方程组的情形,函数行列式的性质,函数相 关。 16.重积分与含参变量非正常积分 二重积分和三重积分的定义和性质,二重积分的计算,三重积 分的计算,重积分的应用,n 重积分,含参量正常积分、欧拉积分。

《数学分析》考试大纲

《数学分析》考试大纲

《数学分析》考试大纲一、课程名称:数学分析二、适用专业: 数学与应用数学三、考试方法:闭卷考试四、考试时间:100分钟五、试卷结构:总分:100分,选择题15分,填空题15分,计算题40分,证明题30分。

六、参考书目:1、华东师范大学数学系编著,《数学分析》(上、下册),高等教育出版社,2010年第4版。

2、中国科学技术大学常庚哲史济怀编著,《数学分析教程》(上、下册),高等教育出版社,2003年第1版。

七、考试的基本要求:数学分析是数学与应用数学专业专升本入学考试中专业课考试内容,考生应理解和掌握《数学分析》中函数、极限、连续、微分学、积分学和级数的基本概念、基本理论、基本方法。

应具有抽象思维能力、逻辑推理能力、运算能力和空间想象能力,能运用所学知识正确拙推理证明,准确、简捷地计算。

能综合运用数学分析中的基本理论、基本方法分析和解决实际问题。

八、考试范围第一章实数集与函数(一)考核内容实数及其性质,绝对值与不等式。

区间与邻域,有界集与确界原理。

函数概念,函数的表示法。

函数的四则运算,复合函数,反函数,初等函数。

具有某些特性的函数:有界函数、单调函数、奇函数与偶函数、周期函数。

(二)考核知识点1、实数:实数的概念,实数的性质,绝对值与不等式;2、数集、确界原理:区间与邻域,有界集与无界集,上确界与下确界,确界原理;3、函数概念:函数的定义,函数的表示法(解析法、列表法、和图象法),分段函数;4、具有某些特征的函数:有界函数,单调函数,奇函数与偶函数,周期函数。

(三)考核要求1、了解实数域及性质;2、掌握几种不等式及应用;3、熟练掌握数域,上确界,下确界,确界原理;4、牢固掌握函数复合、基本初等函数、初等函数及某些特性(单调性、周期性、奇偶性、有界性等)。

第二章数列极限(一)考核内容数列。

数列极限的定义,无穷小数列。

收敛数列性质:唯一性、有界性、保号性、不等式性质、迫敛性、四则运算法则。

子列及子列定理。

郑州大学数学院考研

郑州大学数学院考研
②201英语一
③655数学分析
④915高等代数
普通统招
硕士研究生
1.复试综合科目:解析几何,常微分方程,复变函数,概率论,实变函数与泛函分析。
2.同等学历(含跨专业)加试:微分几何,数学物理方程,近世代数,任选二。
郑州大学/数学系
专业名称:070101基础数学
研究方向
年份
招生
人数
导师姓名
考试科目
招生类别
郑州大学/数学系
专业名称:070102计算数学
研究方向
年份
招生
人数
导师姓名
考试科目
招生类别
学历层次
备注
01有限元方法
2010
石东洋,陈绍春
①101思想政治理论
②201英语一
③655数学分析
④915高等代数
普通统招
硕士研究生
1.复试综合科目:解析几何,常微分方程,复变函数,概率论,实变函数与泛函分析。
2.同等学历(含跨专业)加试:微分几何,数学物理方程,近世代数,任选二。
郑州大学/数学系
专业名称:070104应用数学
研究方向
年份
招生
人数
导师姓名
考试科目
招生类别
学历层次
备注
05非线性动力学
2010
裴利军
①101思想政治理论
②201英语一
③655数学分析
④915高等代数
普通统招
硕士研究生
1.复试综合科目:解析几何,常微分方程,复变函数,概率论,实变函数与泛函分析。
2.同等学历(含跨专业)加试:微分几何,数学物理方程,近世代数,任选二。
郑州大学/数学系
专业名称:070103概率论与数理统计

数学类的研究生共有5个专业

数学类的研究生共有5个专业

数学类的研究生共有5个专业第一篇:数学类的研究生共有5个专业数学类的研究生共有5个专业,分别是基础数学,应用数学,概率论与数理统计,计算数学,运筹学与控制论。

基础数学以后的发展方向基本是从事理论研究,如果想留在高校得继续读博;应用数学可以到企业从事应用类的工作;概率论与数理统计可以去金融机构,从事经济方面的工作;计算数学偏向计算机;运筹学与控制论偏向自动化。

外语政治必考,各100分,其余两门专业课各150分。

数学类专业的两门专业课一般是数学分析(有的学校和常微分方程一张卷)和高等代数,均为高校自主命题。

不知道你要报考哪所高校的数学研究生,不过有一点是可以肯定的,不必把《吉米多维奇》全做完,一是太耗精力,二是做那上面的大多数题都是无用功,就算是名校数学专业教师也很难把那些题做透。

我建议你用钱吉林的那两本《题解精萃》,虽然有些纰漏,但应对一般高校的数学专业课还是绰绰有余的。

《数学分析题解精萃》中的错误我已找出并加以更正,共39页,在我的共享资料里。

请问你报考哪个学校?不同学校的数学专业考研科目以及指定的参考书略有不同。

一般是外语(英语最多),政治加上两门数学专业课:一般都是数学分析,高等代数。

个别学校略有不同。

反正你去查查所要报考学校的招生简章和招生目录就是了。

给你一个郑州大学数学专业的考试科目参照:101政治理论201英语655数学分析915高等代数第二篇:全国研究生数学专业排名基础数学:北京大学浙江大学复旦大学 A++ A++ A++ 中国科学技术大学 A+ 清华大学 A+计算数学北京师范大学 A+ 南京大学 A 南开大学 A 哈尔滨工业大学 A 山东大学 A 中山大学 A 武汉大学 A 四川大学 A 厦门大学 B+ 南京师范大学 B+ 华南师范大学 B+ 北京航空航天大学 B+ 湖南师范大学B+ 同济大学 B+ 吉林大学 B+ 华东师范大学 B+浙江大学 A++ 北京大学 A++ 吉林大学 A++ 大连理工大学 A++ 清华大学 A+ 西安交通大学 A+ 中国科学技术大学 A+ 上海师范大学 A 湘潭大学 A山东大学上海大学中山大学南京大学武汉大学复旦大学 A A B+ B+ B+ B+ 上海交通大学 A概率论与数理统计应用数学华东师范大学 B+厦门大学B+北京大学A++中国科学技术2 大学 A++ 3 中南大学 A++ 4 南开大学 A+ 5 清华大学A+华中科技大学 A 7 北京师范大学 A 8 武汉大学 A 9 上海交通大学 A 10 浙江大学 A 11 北京工业大学 A山东大学 B+南京大学 B+中山大学 B+云南大学B+华东师范大学 B+东北师范大学B+北京大学A++ 2 浙江大学A++ 3 清华大学A++ 4 南开大学 A++中国科学技术A+大学 6 7 8 9 10 11 12 13 14 15 16 17复旦大学湖南大学东南大学南京大学四川大学A+ A+ A A A华东理工大学 A+东北师范大学 A 西安电子科技大学 A 苏州大学中山大学兰州大学新疆大学A A A B+西北工业大学 A 曲阜师范大学 B+ 北京理工大学 B+ 山东大学B+华中师范大学B+ 上海交通大学B+ 北京师范大学B+ 同济大学武汉大学B+ B+西安交通大学 B+第三篇:考研究生什么专业不用考数学考研究生什么专业不用考数学?法律硕士工商管理硕士汉语言文学(文学语言学文字学)历史哲学新闻学法学传播学播音主持采访编辑管理类方面(企业管理金融管理工商管理要考数学;行政管理看情况而定)图书管理学劳动与社会保障工业设计服装设计装潢设计(看学校而定)园林设计(主要看农业学校而定)艺术类(声乐、美术、体育)医学类(看学校而定)心理学(由学校而定在应用心理学中需要考统计学)社会学法律生物科学(由学校而定)英语(科技英语有的学校要考)第四篇:数学专业研究生自我介绍我认为人生就是一个不断提升自己思想、道德、专业技术和生活品位的过程。

2020考研数一考纲(可编辑修改word版)

2020考研数一考纲(可编辑修改word版)

2020 年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150 分,考试时间为180 分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题8 小题,每小题4 分,共32 分填空题 6 小题,每小题4 分,共24 分解答题(包括证明题)9 小题,共94 分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两个重要极限:1x→∞lim x→0sin x= 1xlim⎛1+⎝1 ⎫x⎪=e⎭函数连续的概念函数间断点的类型初等函数的连续性闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念导数的几何意义和物理意义函数的可导性与连续性之间的关系平面曲线的切线和法线导数和微分的四则运算基本初等函数的导数复合函数、反函数、隐函数以及参数方程所确定的函数的微分法高阶导数一阶微分形式的不变性微分中值定理洛必达(L’Hospital)法则函数单调性的判别函数的极值函数图形的凹凸性、拐点及渐近线函数图形的描绘函数的最大值与最小值弧微分曲率的概念曲率圆与曲率半径x2考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange)中值定理和泰勒(Taylor)定理,了解并会用柯西(Cauchy)中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(a, b) 内,设函数f (x) 具有二阶导数.当f'(x)>0时,f(x)的图形是凹的;当f'(x)<0时,f(x)的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念不定积分的基本性质基本积分公式定积分的概念和基本性质定积分中值定理积分上限的函数及其导数牛顿-莱布尼茨(Newton-Leibniz)公式不定积分和定积分的换元积分法与分部积分法有理函数、三角函数的有理式和简单无理函数的积分反常(广义)积分定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.32.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握4换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿-莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.59.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算6两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).3.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念收敛级数的和的概念级数的基本性质与收敛的必要条件几何级数与p 级数及其收敛性正项级数收敛性的判别法交错级数与莱布尼茨定理任意项级数的绝对收敛与条件收敛函数项级数的收敛域与和函数的概念幂级数及其收敛半径、收敛区间(指开区间)和收敛域幂级数的和函数幂级数在其收敛区间内的基本性质简单幂级数的和函数的求法初等函数的幂级数展开式函数的傅里叶(Fourier)系数与傅里叶级数狄利克雷(Dirichlet)定理函数在[ l, l] 上的傅里叶级数函数在[0, l] 上的正弦级数和余弦级数考试要求71.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.8.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握e x,sin x ,cos x ,ln(1+x) 及(1+x )的麦克劳林(Maclaurin)展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[-l, l] 上的函数展开为傅里叶级数,会将定义在[0, l] 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念变量可分离的微分方程齐次微分方程一阶线性微分方程伯努利(Bernoulli)方程全微分方程可用简单的变量代换求解的某些微分方程可降阶的高阶微分方程线性微分方程解的性质及解的结构定理二阶常系数齐次线性微分方程高于二阶的某些常系数齐次线性微分方程简单的二阶常系数非齐次线性微分方程欧拉(Euler)方程微分方程的简单应用考试要求81.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:y(n) = f (x), y '= f (x, y') 和y '= f ( y, y') .5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数9一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空10间及其相关概念n 维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n 维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n 维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.114.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.12概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求1.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes)公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量随机变量分布函数的概念及其性质离散型随机变量的概率分布连续型随机变量的概率密度常见随机变量的分布随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数F (x) =P{X ≤x}(-∞<x <+∞) 的概念及性质,13141 2 1 2 会计算与随机变量相联系的事件的概率.2. 理解离散型随机变量及其概率分布的概念,掌握 0-1 分布、二项分布 B (n , p ) 、几何分布、超几何分布、泊松(Poisson )分布 P () 及其应用.3. 了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4. 理解连续型随机变量及其概率密度的概念,掌握均匀分布U (a , b ) 、正态分布 N (, 2 ) 、指数分布及其应用,其中参数为(> 0) 的指数分布 E () 的概率密度为⎧⎪e -x , f (x ) = ⎨若x > 0, ⎩⎪ 0, 若x ≤ 0.5. 会求随机变量函数的分布.三、多维随机变量及其分布考试内容多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1. 理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2. 理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3. 掌握二维均匀分布,了解二维正态分布 N (,; 2 ,2; ) 的概率密度,理解其中参数的概率意义.4. 会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质随机变量函数的数学期望矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev)不等式切比雪夫大数定律伯努利(Bernoulli)大数定律辛钦(Khinchine)大数定律棣莫弗-拉普拉斯(De Moivre-Laplace)定理列维-林德伯格(Levy-Lindberg)定理考试要求1.了解切比雪夫不等式.2.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容2分布t 分总体个体简单随机样本统计量样本均值样本方差和样本矩布 F 分布分位数正态总体的常用抽样分布考试要求1516 ∑ 1. 理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为S 2 = 1 n n -1 i =1 ( X i - X )22. 了解2 分布、t 分布和 F 分布的概念及性质,了解上侧分位数的概念并会查表计算.3. 了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1. 理解参数的点估计、估计量与估计值的概念.2. 掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3. 了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验 假设检验的两类错误 单个及两个正态总体的均值和方差的假设检验考试要求1. 理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.17。

2020-2021年中国科学院大学(数学科学学院)基础数学考研招生情况、分数线、参考书目、录取名单

2020-2021年中国科学院大学(数学科学学院)基础数学考研招生情况、分数线、参考书目、录取名单

一、数学科学学院简介中国科学院大学(简称国科大)数学科学学院前身为1978年成立的中国科技大学研究生院(北京)数学教学部,2002年9月更名为中国科学院研究生院数学系,2006年6月与中国科学院数学与系统科学研究院联合组建成立中国科学院研究生院数学科学学院,院长和副院长分别由数学与系统科学研究院的院长和分管教育的副院长担任。

2014年由数学与系统科学研究院承办科教融合数学科学学院,现任院长为席南华院士。

数学科学学院下设6个教研室,分别为分析数学教研室、几何与拓扑教研室、代数与数论教研室、计算数学与计算机数学教研室、概率论与数理统计教研室、运筹学与控制论教研室。

国科大数学科学学院的专任教师每年招收硕士研究生20名左右(含推免生),培养方向有分析、代数、几何、概率论、数理统计、应用数学、运筹学与控制论、应用统计专业学位硕士以及一些交叉学科的若干个研究方向。

2019年数学科学学院为中国科学院虚拟经济与数据科学研究中心代招运筹学与控制论专业学术型硕士研究生。

二、中国科学院大学基础数学专业招生情况、考试科目三、中国科学院大学基础数学专业分数线2018年硕士研究生招生复试分数线2017年硕士研究生招生复试分数线四、中国科学院大学基础数学专业考研参考书目616数学分析现行(公开发行)综合性大学(师范大学)数学系用数学分析教程。

801高等代数[1] 北京大学编《高等代数》,高等教育出版社,1978年3月第1版,2003年7月第3版,2003年9月第2次印刷.[2] 复旦大学蒋尔雄等编《线性代数》,人民教育出版社,1988.[3] 张禾瑞,郝鈵新,《高等代数》,高等教育出版社,1997.五、中国科学院大学基础数学专业复试原则最后的复试成绩综合考虑以上“业务能力、英语听力和口语、综合素质和思想品德”四个方面的成绩,复试成绩满分100分,其中业务能力占50%,英语听力和口语占30%,综合素质和思想品德占20%。

(一)业务能力面试1. 考核形式:问答2. 考核目的:主要考核考生掌握专业知识的广度、深度与扎实程度,运用专业知识的能力,思维能力,应变能力,表达能力,研究兴趣,科研能力与发展潜力。

考研数学大纲(数二)--2020版

考研数学大纲(数二)--2020版
形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形. 9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.
三、一元函数积分学
考试内容 原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和 基本性质 定积分中值定理 积分上限函数及其导数 牛顿—莱布尼兹公式 不定积 分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的 积分 反常(广义)积分 定积分的应用
考试要求 1.理解原函数的概念,理解不定积分和定积分的概念. 2.理解不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换 元积分法与分部积分法. 3.会求有理函数、三角函数有理式和简单无理函数的积分. 4.理解积分上限的函数,会求它的导数,掌握牛顿—莱布尼兹公式. 5.了解反常积分的概念,会计算反常积分. 6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、 旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等) 及函数的平均值.
一、函数、极限、连续
数学(二)
考试内容
函数的概念及表示法 函数的有界性、单调性、周期性和奇偶性 复合函数、反函数、
分段函数和隐函数 基本初等函数的性质及其图形 初等函数 函数关系的建立
数列极限与函数极限的定义及其性质 函数的左极限和右极限 无穷小量和无穷大
量的概念及其关系 无穷小量的性质及无穷小量的比较 极限的四则运算 极限存在的
六、二次型
考试内容 二次型及其矩阵表示 合同变换与合同矩阵 二次型的秩 惯性定理 二次型的 标准形和规范形 用正交变换和配方法化二次型为标准形 二次型及其矩阵的正定性
考试要求 1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念, 了解二次型的标准形、规范形的概念以及惯性定理. 2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形. 3.理解正定二次型、正定矩阵的概念,并掌握其判别法.

(完整版)2020考研数一考纲

(完整版)2020考研数一考纲

2020年考研数学一考试大纲考试科目:高等数学、线性代数、概率论与数理统计考试形式和试卷结构一、试卷满分及考试时间试卷满分为150分,考试时间为180分钟.二、答题方式答题方式为闭卷、笔试.三、试卷内容结构高等数学约56%线性代数约22%概率论与数理统计约22%四、试卷题型结构单选题 8小题,每小题4分,共32分填空题 6小题,每小题4分,共24分解答题(包括证明题) 9小题,共94分高等数学一、函数、极限、连续考试内容函数的概念及表示法函数的有界性、单调性、周期性和奇偶性复合函数、反函数、分段函数和隐函数基本初等函数的性质及其图形初等函数函数关系的建立数列极限与函数极限的定义及其性质函数的左极限和右极限无穷小量和无穷大量的概念及其关系无穷小量的性质及无穷小量的比较极限的四则运算极限存在的两个准则:单调有界准则和夹逼准则两12个重要极限:0sin lim 1x x x →= 1lim 1xx e x →∞⎛⎫+= ⎪⎝⎭函数连续的概念 函数间断点的类型 初等函数的连续性 闭区间上连续函数的性质考试要求1.理解函数的概念,掌握函数的表示法,会建立应用问题的函数关系.2.了解函数的有界性、单调性、周期性和奇偶性.3.理解复合函数及分段函数的概念,了解反函数及隐函数的概念.4.掌握基本初等函数的性质及其图形,了解初等函数的概念.5.理解极限的概念,理解函数左极限与右极限的概念以及函数极限存在与左极限、右极限之间的关系.6.掌握极限的性质及四则运算法则.7.掌握极限存在的两个准则,并会利用它们求极限,掌握利用两个重要极限求极限的方法.8.理解无穷小量、无穷大量的概念,掌握无穷小量的比较方法,会用等价无穷小量求极限.9.理解函数连续性的概念(含左连续与右连续),会判别函数间断点的类型.10.了解连续函数的性质和初等函数的连续性,理解闭区间上连续函数的性质(有界性、最大值和最小值定理、介值定理),并会应用这些性质.二、一元函数微分学考试内容导数和微分的概念 导数的几何意义和物理意义 函数的可导性与连续性之间的关系 平面曲线的切线和法线 导数和微分的四则运算 基本初等函数的导数 复合函数、反函数、隐函数以及参数方程所确定的函数的微分法 高阶导数 一阶微分形式的不变性 微分中值定理 洛必达(L ’Hospital)法则 函数单调性的判别 函数的极值 函数图形的凹凸性、拐点及渐近线 函数图形的描绘 函数的最大值与最小值 弧微分 曲率的概念 曲率圆与曲率半径考试要求1.理解导数和微分的概念,理解导数与微分的关系,理解导数的几何意义,会求平面曲线的切线方程和3法线方程,了解导数的物理意义,会用导数描述一些物理量,理解函数的可导性与连续性之间的关系.2.掌握导数的四则运算法则和复合函数的求导法则,掌握基本初等函数的导数公式.了解微分的四则运算法则和一阶微分形式的不变性,会求函数的微分.3.了解高阶导数的概念,会求简单函数的高阶导数.4.会求分段函数的导数,会求隐函数和由参数方程所确定的函数以及反函数的导数.5.理解并会用罗尔(Rolle)定理、拉格朗日(Lagrange )中值定理和泰勒(Taylor )定理,了解并会用柯西(Cauchy )中值定理.6.掌握用洛必达法则求未定式极限的方法.7.理解函数的极值概念,掌握用导数判断函数的单调性和求函数极值的方法,掌握函数最大值和最小值的求法及其应用.8.会用导数判断函数图形的凹凸性(注:在区间(,)a b 内,设函数()f x 具有二阶导数.当()0f x ''>时,()f x 的图形是凹的;当()0f x ''<时,()f x 的图形是凸的),会求函数图形的拐点以及水平、铅直和斜渐近线,会描绘函数的图形.9.了解曲率、曲率圆与曲率半径的概念,会计算曲率和曲率半径.三、一元函数积分学考试内容原函数和不定积分的概念 不定积分的基本性质 基本积分公式 定积分的概念和基本性质 定积分中值定理 积分上限的函数及其导数 牛顿-莱布尼茨(Newton —Leibniz )公式 不定积分和定积分的换元积分法与分部积分法 有理函数、三角函数的有理式和简单无理函数的积分 反常(广义)积分 定积分的应用考试要求1.理解原函数的概念,理解不定积分和定积分的概念.2.掌握不定积分的基本公式,掌握不定积分和定积分的性质及定积分中值定理,掌握换元积分法与分部积分法.3.会求有理函数、三角函数有理式和简单无理函数的积分.4.理解积分上限的函数,会求它的导数,掌握牛顿—莱布尼茨公式.5.了解反常积分的概念,会计算反常积分.6.掌握用定积分表达和计算一些几何量与物理量(平面图形的面积、平面曲线的弧长、旋转体的体积及侧面积、平行截面面积为已知的立体体积、功、引力、压力、质心、形心等)及函数的平均值.四、向量代数和空间解析几何考试内容向量的概念向量的线性运算向量的数量积和向量积向量的混合积两向量垂直、平行的条件两向量的夹角向量的坐标表达式及其运算单位向量方向数与方向余弦曲面方程和空间曲线方程的概念平面方程直线方程平面与平面、平面与直线、直线与直线的夹角以及平行、垂直的条件点到平面和点到直线的距离球面柱面旋转曲面常用的二次曲面方程及其图形空间曲线的参数方程和一般方程空间曲线在坐标面上的投影曲线方程考试要求1.理解空间直角坐标系,理解向量的概念及其表示.2.掌握向量的运算(线性运算、数量积、向量积、混合积),了解两个向量垂直、平行的条件.3.理解单位向量、方向数与方向余弦、向量的坐标表达式,掌握用坐标表达式进行向量运算的方法.4.掌握平面方程和直线方程及其求法.5.会求平面与平面、平面与直线、直线与直线之间的夹角,并会利用平面、直线的相互关系(平行、垂直、相交等))解决有关问题.6.会求点到直线以及点到平面的距离.7.了解曲面方程和空间曲线方程的概念.8.了解常用二次曲面的方程及其图形,会求简单的柱面和旋转曲面的方程.9.了解空间曲线的参数方程和一般方程.了解空间曲线在坐标平面上的投影,并会求该投影曲线的方程.五、多元函数微分学考试内容4多元函数的概念二元函数的几何意义二元函数的极限与连续的概念有界闭区域上多元连续函数的性质多元函数的偏导数和全微分全微分存在的必要条件和充分条件多元复合函数、隐函数的求导法二阶偏导数方向导数和梯度空间曲线的切线和法平面曲面的切平面和法线二元函数的二阶泰勒公式多元函数的极值和条件极值多元函数的最大值、最小值及其简单应用考试要求1.理解多元函数的概念,理解二元函数的几何意义.2.了解二元函数的极限与连续的概念以及有界闭区域上连续函数的性质.3.理解多元函数偏导数和全微分的概念,会求全微分,了解全微分存在的必要条件和充分条件,了解全微分形式的不变性.4.理解方向导数与梯度的概念,并掌握其计算方法.5.掌握多元复合函数一阶、二阶偏导数的求法.6.了解隐函数存在定理,会求多元隐函数的偏导数.7.了解空间曲线的切线和法平面及曲面的切平面和法线的概念,会求它们的方程.8.了解二元函数的二阶泰勒公式.9.理解多元函数极值和条件极值的概念,掌握多元函数极值存在的必要条件,了解二元函数极值存在的充分条件,会求二元函数的极值,会用拉格朗日乘数法求条件极值,会求简单多元函数的最大值和最小值,并会解决一些简单的应用问题.六、多元函数积分学考试内容二重积分与三重积分的概念、性质、计算和应用两类曲线积分的概念、性质及计算两类曲线积分的关系格林(Green)公式平面曲线积分与路径无关的条件二元函数全微分的原函数两类曲面积分的概念、性质及计算两类曲面积分的关系高斯(Gauss)公式斯托克斯(Stokes)公式散度、旋度的概念及计算曲线积分和曲面积分的应用考试要求1.理解二重积分、三重积分的概念,了解重积分的性质,了解二重积分的中值定理.2.掌握二重积分的计算方法(直角坐标、极坐标),会计算三重积分(直角坐标、柱面坐标、球面坐标).563.理解两类曲线积分的概念,了解两类曲线积分的性质及两类曲线积分的关系.4.掌握计算两类曲线积分的方法.5.掌握格林公式并会运用平面曲线积分与路径无关的条件,会求二元函数全微分的原函数.6.了解两类曲面积分的概念、性质及两类曲面积分的关系,掌握计算两类曲面积分的方法,掌握用高斯公式计算曲面积分的方法,并会用斯托克斯公式计算曲线积分.7.了解散度与旋度的概念,并会计算.8.会用重积分、曲线积分及曲面积分求一些几何量与物理量(平面图形的面积、体积、曲面面积、弧长、质量、质心、形心、转动惯量、引力、功及流量等).七、无穷级数考试内容常数项级数的收敛与发散的概念 收敛级数的和的概念 级数的基本性质与收敛的必要条件 几何级数与p 级数及其收敛性 正项级数收敛性的判别法 交错级数与莱布尼茨定理 任意项级数的绝对收敛与条件收敛 函数项级数的收敛域与和函数的概念 幂级数及其收敛半径、收敛区间(指开区间)和收敛域 幂级数的和函数 幂级数在其收敛区间内的基本性质 简单幂级数的和函数的求法 初等函数的幂级数展开式 函数的傅里叶(Fourier )系数与傅里叶级数 狄利克雷(Dirichlet )定理 函数在[,]l l 上的傅里叶级数 函数在[0,]l 上的正弦级数和余弦级数考试要求1.理解常数项级数收敛、发散以及收敛级数的和的概念,掌握级数的基本性质及收敛的必要条件.2.掌握几何级数与p 级数的收敛与发散的条件.3.掌握正项级数收敛性的比较判别法和比值判别法,会用根值判别法.4.掌握交错级数的莱布尼茨判别法.5.了解任意项级数绝对收敛与条件收敛的概念以及绝对收敛与收敛的关系.6.了解函数项级数的收敛域及和函数的概念.7.理解幂级数收敛半径的概念,并掌握幂级数的收敛半径、收敛区间及收敛域的求法.78.了解幂级数在其收敛区间内的基本性质(和函数的连续性、逐项求导和逐项积分),会求一些幂级数在收敛区间内的和函数,并会由此求出某些数项级数的和.9.了解函数展开为泰勒级数的充分必要条件.10.掌握x e ,sin x ,cos x ,ln(1)x +及(1)x α+的麦克劳林(Maclaurin )展开式,会用它们将一些简单函数间接展开为幂级数.11.了解傅里叶级数的概念和狄利克雷收敛定理,会将定义在[,]l l -上的函数展开为傅里叶级数,会将定义在[0,]l 上的函数展开为正弦级数与余弦级数,会写出傅里叶级数的和函数的表达式.八、常微分方程考试内容常微分方程的基本概念 变量可分离的微分方程 齐次微分方程 一阶线性微分方程 伯努利(Bernoulli )方程 全微分方程 可用简单的变量代换求解的某些微分方程 可降阶的高阶微分方程 线性微分方程解的性质及解的结构定理 二阶常系数齐次线性微分方程 高于二阶的某些常系数齐次线性微分方程 简单的二阶常系数非齐次线性微分方程 欧拉(Euler )方程 微分方程的简单应用考试要求1.了解微分方程及其阶、解、通解、初始条件和特解等概念.2.掌握变量可分离的微分方程及一阶线性微分方程的解法.3.会解齐次微分方程、伯努利方程和全微分方程,会用简单的变量代换解某些微分方程.4.会用降阶法解下列形式的微分方程:()(),(,)n y f x y f x y '''==和(,)y f y y '''=.5.理解线性微分方程解的性质及解的结构.6.掌握二阶常系数齐次线性微分方程的解法,并会解某些高于二阶的常系数齐次线性微分方程.7.会解自由项为多项式、指数函数、正弦函数、余弦函数以及它们的和与积的二阶常系数非齐次线性微分方程.8.会解欧拉方程.9.会用微分方程解决一些简单的应用问题.线性代数一、行列式考试内容行列式的概念和基本性质行列式按行(列)展开定理考试要求1.了解行列式的概念,掌握行列式的性质.2.会应用行列式的性质和行列式按行(列)展开定理计算行列式.二、矩阵考试内容矩阵的概念矩阵的线性运算矩阵的乘法方阵的幂方阵乘积的行列式矩阵的转置逆矩阵的概念和性质矩阵可逆的充分必要条件伴随矩阵矩阵的初等变换初等矩阵矩阵的秩矩阵的等价8分块矩阵及其运算考试要求1.理解矩阵的概念,了解单位矩阵、数量矩阵、对角矩阵、三角矩阵、对称矩阵和反对称矩阵以及它们的性质.2.掌握矩阵的线性运算、乘法、转置以及它们的运算规律,了解方阵的幂与方阵乘积的行列式的性质.3.理解逆矩阵的概念,掌握逆矩阵的性质以及矩阵可逆的充分必要条件,理解伴随矩阵的概念,会用伴随矩阵求逆矩阵.4.理解矩阵初等变换的概念,了解初等矩阵的性质和矩阵等价的概念,理解矩阵的秩的概念,掌握用初等变换求矩阵的秩和逆矩阵的方法.5.了解分块矩阵及其运算.三、向量考试内容向量的概念向量的线性组合与线性表示向量组的线性相关与线性无关向量组的极大线性无关组等价向量组向量组的秩向量组的秩与矩阵的秩之间的关系向量空间及其相关概念n维向量空间的基变换和坐标变换过渡矩阵向量的内积线性无关向量组的正交规范化方法规范正交基正交矩阵及其性质考试要求1.理解n维向量、向量的线性组合与线性表示的概念.2.理解向量组线性相关、线性无关的概念,掌握向量组线性相关、线性无关的有关性质及判别法.3.理解向量组的极大线性无关组和向量组的秩的概念,会求向量组的极大线性无关组及秩.4.理解向量组等价的概念,理解矩阵的秩与其行(列)向量组的秩之间的关系.5.了解n维向量空间、子空间、基底、维数、坐标等概念.6.了解基变换和坐标变换公式,会求过渡矩阵.7.了解内积的概念,掌握线性无关向量组正交规范化的施密特(Schmidt)方法.8.了解规范正交基、正交矩阵的概念以及它们的性质.9四、线性方程组考试内容线性方程组的克拉默(Cramer)法则齐次线性方程组有非零解的充分必要条件非齐次线性方程组有解的充分必要条件线性方程组解的性质和解的结构齐次线性方程组的基础解系和通解解空间非齐次线性方程组的通解考试要求l.会用克拉默法则.2.理解齐次线性方程组有非零解的充分必要条件及非齐次线性方程组有解的充分必要条件.3.理解齐次线性方程组的基础解系、通解及解空间的概念,掌握齐次线性方程组的基础解系和通解的求法.4.理解非齐次线性方程组解的结构及通解的概念.5.掌握用初等行变换求解线性方程组的方法.五、矩阵的特征值和特征向量考试内容矩阵的特征值和特征向量的概念、性质相似变换、相似矩阵的概念及性质矩阵可相似对角化的充分必要条件及相似对角矩阵实对称矩阵的特征值、特征向量及其相似对角矩阵考试要求1.理解矩阵的特征值和特征向量的概念及性质,会求矩阵的特征值和特征向量.2.理解相似矩阵的概念、性质及矩阵可相似对角化的充分必要条件,掌握将矩阵化为相似对角矩阵的方法.3.掌握实对称矩阵的特征值和特征向量的性质.10六、二次型考试内容二次型及其矩阵表示合同变换与合同矩阵二次型的秩惯性定理二次型的标准形和规范形用正交变换和配方法化二次型为标准形二次型及其矩阵的正定性考试要求1.掌握二次型及其矩阵表示,了解二次型秩的概念,了解合同变换与合同矩阵的概念,了解二次型的标准形、规范形的概念以及惯性定理.2.掌握用正交变换化二次型为标准形的方法,会用配方法化二次型为标准形.3.理解正定二次型、正定矩阵的概念,并掌握其判别法.概率论与数理统计一、随机事件和概率考试内容随机事件与样本空间事件的关系与运算完备事件组概率的概念概率的基本性质古典型概率几何型概率条件概率概率的基本公式事件的独立性独立重复试验考试要求11121.了解样本空间(基本事件空间)的概念,理解随机事件的概念,掌握事件的关系及运算.2.理解概率、条件概率的概念,掌握概率的基本性质,会计算古典型概率和几何型概率,掌握概率的加法公式、减法公式、乘法公式、全概率公式以及贝叶斯(Bayes )公式.3.理解事件独立性的概念,掌握用事件独立性进行概率计算;理解独立重复试验的概念,掌握计算有关事件概率的方法.二、随机变量及其分布考试内容随机变量 随机变量分布函数的概念及其性质 离散型随机变量的概率分布 连续型随机变量的概率密度 常见随机变量的分布 随机变量函数的分布考试要求1.理解随机变量的概念,理解分布函数(){}()F x P X x x =≤-∞<<+∞的概念及性质,会计算与随机变量相联系的事件的概率.2.理解离散型随机变量及其概率分布的概念,掌握0-1分布、二项分布(,)B n p 、几何分布、超几何分布、泊松(Poisson )分布()P λ及其应用.3.了解泊松定理的结论和应用条件,会用泊松分布近似表示二项分布.4.理解连续型随机变量及其概率密度的概念,掌握均匀分布(,)U a b 、正态分布2(,)N μσ 、指数分布及其应用,其中参数为(0)λλ>的指数分布()E λ的概率密度为,0,()0,0.x e x f x x λλ-⎧>⎪=⎨≤⎪⎩若若5.会求随机变量函数的分布.三、多维随机变量及其分布考试内容13多维随机变量及其分布 二维离散型随机变量的概率分布、边缘分布和条件分布 二维连续型随机变量的概率密度、边缘概率密度和条件密度 随机变量的独立性和不相关性 常用二维随机变量的分布 两个及两个以上随机变量简单函数的分布考试要求1.理解多维随机变量的概念,理解多维随机变量的分布的概念和性质,理解二维离散型随机变量的概率分布、边缘分布和条件分布,理解二维连续型随机变量的概率密度、边缘密度和条件密度,会求与二维随机变量相关事件的概率.2.理解随机变量的独立性及不相关性的概念,掌握随机变量相互独立的条件.3.掌握二维均匀分布,了解二维正态分布221212(),,N μμσσρ;;的概率密度,理解其中参数的概率意义. 4.会求两个随机变量简单函数的分布,会求多个相互独立随机变量简单函数的分布.四、随机变量的数字特征考试内容随机变量的数学期望(均值)、方差、标准差及其性质 随机变量函数的数学期望 矩、协方差、相关系数及其性质考试要求1.理解随机变量数字特征(数学期望、方差、标准差、矩、协方差、相关系数)的概念,会运用数字特征的基本性质,并掌握常用分布的数字特征.2.会求随机变量函数的数学期望.五、大数定律和中心极限定理考试内容切比雪夫(Chebyshev )不等式 切比雪夫大数定律 伯努利(Bernoulli )大数定律 辛钦(Khinchine )大数定律 棣莫弗—拉普拉斯(De Moivre —Laplace )定理 列维—林德伯格(Levy-Lindberg )定理考试要求1.了解切比雪夫不等式.142.了解切比雪夫大数定律、伯努利大数定律和辛钦大数定律(独立同分布随机变量序列的大数定律).3.了解棣莫弗-拉普拉斯定理(二项分布以正态分布为极限分布)和列维-林德伯格定理(独立同分布随机变量序列的中心极限定理).六、数理统计的基本概念考试内容总体 个体 简单随机样本 统计量 样本均值 样本方差和样本矩 2χ分布 t 分布 F 分布 分位数 正态总体的常用抽样分布考试要求1.理解总体、简单随机样本、统计量、样本均值、样本方差及样本矩的概念,其中样本方差定义为2211()1ni i S X X n ==--∑ 2.了解2χ分布、t 分布和F 分布的概念及性质,了解上侧α分位数的概念并会查表计算.3.了解正态总体的常用抽样分布.七、参数估计考试内容点估计的概念 估计量与估计值 矩估计法 最大似然估计法 估计量的评选标准 区间估计的概念 单个正态总体的均值和方差的区间估计 两个正态总体的均值差和方差比的区间估计考试要求1.理解参数的点估计、估计量与估计值的概念.2.掌握矩估计法(一阶矩、二阶矩)和最大似然估计法.3.了解估计量的无偏性、有效性(最小方差性)和一致性(相合性)的概念,并会验证估计量的无偏性.4、理解区间估计的概念,会求单个正态总体的均值和方差的置信区间,会求两个正态总体的均值差和方差比的置信区间.八、假设检验考试内容显著性检验假设检验的两类错误单个及两个正态总体的均值和方差的假设检验考试要求1.理解显著性检验的基本思想,掌握假设检验的基本步骤,了解假设检验可能产生的两类错误.2.掌握单个及两个正态总体的均值和方差的假设检验.15。

2020年郑州大学849刑法学、民法学考研专业课考试大纲(含参考书目)

2020年郑州大学849刑法学、民法学考研专业课考试大纲(含参考书目)

考试科目849,刑法学、民法学 ; 专业代码:0301
一、 考试基本要求及适用范围概述
考试科目4包含两门课程:刑法学与民法学。

《刑法学》是研究有关犯罪与刑事责任的一切问题的学科。

《刑法学》分总论和分论,前者研究刑法总则的规定,后者研究刑法分则的规定。

主要内容是:刑法概说、刑法的基本原则、刑法的效力、犯罪概说、犯罪构成、故意犯罪形态、共同犯罪、罪数与定罪、刑事责任概说、刑罚的观念与刑罚体系、刑罚的裁量与执行、刑罚的免除与消灭、危害国家安全罪、危害公共安全罪、破坏社会主义市场经济秩序罪、侵犯公民人身权利民主权利罪、侵犯财产罪、妨害社会管理秩序罪、危害国防利益罪、贪污贿赂犯罪、渎职罪、军人违反职责罪等。

考生通过对《刑法学》上述基本理论的掌握,了解《刑法学》的最新进展,能综合运用所学知识分析问题和解决司法实践的问题。

《民法学》是法学专业一门重要的专业基础必修课。

主要内容:民法总论、物权、债权、继承权、人身权和侵权责任。

要求学生系统地掌握民法学的基本理论和基本制度,了解民法学的最新进展,能够运用所学的知识分析和解决民法问题
二、考试形式
硕士研究生入学法学科学学位考试科目3为闭卷,笔试,考试时间为180分钟,本试卷满分为150分。

试卷结构(题型):名词解释、简答题、论述题(含案例解析)
三、考试内容
(一)刑法学
郑州大学硕士研究生入学考试自命题考试大纲 (含参考书目清单)
第 1 页。

2020年郑州大学353卫生综合考研专业课考试大纲(含参考书目)

2020年郑州大学353卫生综合考研专业课考试大纲(含参考书目)

第1页
郑州大学硕士研究生入学考试自命题考试大纲 (含参考书目清单)
握不同环境介质对健康影响的调查、监测和监督的基本方法,了解环境卫生学的 最新进展,能综合运用所学的知识分析问题和解决问题。《职业卫生与职业医学》 主要内容包括职业卫生和职业医学,要求考生系统掌握职业卫生与职业医学基本 理论、基本知识和基本技能;初步树立职业卫生与职业医学防治工作的正确观点; 掌握劳动条件及其对职业人群身体健康的影响规律和改善劳动条件的方法,掌握 职业性疾病在个体上的发生、发展规律和防治措施;了解职业卫生与职业医学领 域国内外新成就和发展趋势;能综合运用所学的知识分析问题和解决问题。
二、考试形式
硕士研究生入学卫生综合考试为闭卷,笔试,考试时间为 180 分钟,本试卷 满分为 300 分。
试卷结构(题型):名词解释、简答题、论述题(综合分析题)、计算题
三、考试内容
1. 流行病学
坚持不懈 考试内容 流行病学绪论 疾病分布 描述性研究 队列研究、病例对照研究 流行病学实验 筛检 病因及其发现和推断 预防策略 公共卫生监测 传染病流行病学 慢性病流行病学 突发公共卫生事件流行病学 分子流行病学 循证医学与系统综述 常见传染病流行病学 考试要求
坚持不懈 率、构成比、比值比的概念,率和构成比的区别;掌握相对数的注意事项;掌握
常用统计图表的适用范围和制作方法,从而根据资料的类型选择合适的统计图对 资料进行描述。
常用概率分布 ①了解二项分布的应用;Poisson分布的应用;正态分布的密度函数。 ②掌握二项分布的概念与特征;Poisson分布的概念与特征;正态分布曲线 的特征及正态分布的应用。 参数估计基础 解均数的抽样分布规律;t分布的概念及其与Z分布的区别和联系。 ②熟悉标准误和标准差的区别;总体均数可信区间估计与医学参考值范围估 计的区别和联系。 ③掌握抽样误差的概念以及标准误的计算;t分布的图形特征;参数估计的 概念和参数估计的基本方法。 假设检验基础 ①熟悉假设检验基本步骤;t检验的基本类型、基本公式;熟悉二项分布与 Poisson分布资料的Z检验的基本过程。 ②掌握假设检验的基本思想;Ⅰ型错误和Ⅱ型错误的概念,假设检验的功效; 单样本t检验、两独立样本t检验以及配对t检验的适用条件;二项分布与Poisson

郑州大学2000-2009年硕士研究生入学考试数学分析与高等代数部分试题

郑州大学2000-2009年硕士研究生入学考试数学分析与高等代数部分试题

郑州大学2003-2009年硕士研究生入学考试数学分析1. 试用极限的δε-定义证明:xx f 1sin )(=在),0(∞上连续2. 确定常数13sin 1lim 0220=+-⎰→dt t a t x bx xx 3. 设),(v u f 有二阶连续偏导数且满足Laplace 方程:02222=∂∂+∂∂vfu f ,试证:)2,(22xy y x f Z -=也满足Laplace 方程:02222=∂∂+∂∂yzx z4.dx x f xx x f )(13)(122⎰--=,求)(x f5.设)(0x f ''存在,试证:)()(2)()(lim020000x f hx f h x f h x f h ''=--++→ 6.求nn n x n n)cos )1(1(02+-+∑∞=的收敛域 7.计算积分:))2()(2322dxdy z y xy dzdx z y x dydz xz S++-+⎰⎰,其中)0(:2222≥=++z a z y x S 的上侧以下五题任选四题:8.试用两种不同的方法计算积分:dt e xdx I xt⎰⎰-=1129.设)(x f 在]1,0[有n 阶连续导数,0)2()0(==f f ,记)()1()(1x f x x F n --=,试证:0)(..),2,0()(=∈∃ξξn F t s 10.设)(x f 在),[b a 上连续,试证:(1))(x f 在),[b a 上一致连续当且仅当)(lim x f b x -→存在且有限 (2)当+∞=b 时,若)(lim x f x +∞→存在且有限,则)(x f 在),[+∞a 上一致连续,反之如何?11.dx yx yI ⎰+∞+=0221,试证:该广义积分在),[0+∞a 上一致收敛)0(0>a ,而在),0(+∞上非一致收敛12.设)(x f 在),0(+∞上可微,且0)(lim='+∞→x f x 试证:0)(lim =+∞→xx f x 2007郑大高代1. 填空题(1)设四阶行列式0532421043211021=D ,ij M 为元素ij a 的余下子式。

南方科技大学610数学分析2020年考研专业课初试大纲

南方科技大学610数学分析2020年考研专业课初试大纲

南方科技大学
2020年硕士研究生入学考试大纲
考试科目名称:数学分析考试科目代码:610
一、考试要求
1)要求考生熟练掌握数学分析的基本概念、基本理论和基本方法。

2)要求考生具有严格的数学论证能力、举反例能力和基本计算能力。

3)要求考生了解数学分析中的基本概念、理论、方法的实际来源和历史背景,清楚它们的几何意义和物理意义,初步具备应用数学分析解决实际问题能力。

二、考试内容
1) 极限和连续性
a.数列极限与函数极限的概念,包括数列的上、下极限和函数的左、右极限。

b.极限的性质及四则运算性质,两面夹原理。

c.区间套定理,确界存在定理,单调有界原理,Bolzano-Weierstrass定理,Heine-Borel有限覆盖定理,Cauchy收敛准则。

d.函数连续性的概念及相关的不连续点类型。

函数连续的四则运算与复合运算性质,以及无穷小量比较。

e.闭区间上连续函数的性质:有界性定理、最值定理、介值定理和一致连续性定理。

2) 一元函数微分学
a.导数和微分的概念及其相互关系,导数的几何意义和物理意义,函数可导性与连续性之间的关系。

b.函数导数与微分的运算法则,包括高阶导数的运算法则,分段函数的导数。

c.Rolle中值定理,Lagrange中值定理和Cauchy中值定理以及Taylor公式。

d.函数的导数与单调性,极值,最值和凸凹性。

e.L’Hopital(洛必达)法则,不定式极限。

3) 一元函数积分学
a.不定积分的概念,不定积分的基本公式,换元积分法和分部积分法,有理函数、三角函数和简单无理函数的积分。

2020年郑州大学992化工原理(二)考研专业课考试大纲(含参考书目)

2020年郑州大学992化工原理(二)考研专业课考试大纲(含参考书目)

以梦为马
郑州大学硕士生入学考试初试自命题科目考试大纲
明栏里加备注。

郑州大学硕士研究生入学考试
《化工原理》考试大纲
一、考试基本要求及适用范围概述
本《化工原理》考试大纲适用于郑州大学化学工程、化学工艺及其他相近专业的硕士研究生入学考试。

化工原理是化工制药类及其他相关专业最重要的专业基础课,在基础课和专业课之间起着承前启后、由理及工的桥梁作用,是化工类及相近专业的主干课程。

主要内容是以化工生产中的物理加工过程为背景,按其操作原理的共性归纳成的若干 “单元操作”。

通过化工原理课程的学习,要求学生掌握各单元操作的基本概念和基本内容,掌握各单元操作设备的特点和工艺计算方法,提高分析和解决工程问题的能力。

二、考试形式
硕士研究生入学生物化学考试为闭卷,笔试,考试时间为180分钟,本试卷满分为150分。

试卷结构(题型):单项选择题、填空题、绘图题、计算题
三、考试内容
命题学院(盖章): 化工与能源学院 考试科目代码及名称: 化工原理 郑州大学硕士研究生入学考试自命题考试大纲 (含参考书目清单)
第 1 页。

数学分析610研究生入学考试大纲

数学分析610研究生入学考试大纲

《数学分析》(610)研究生入学考试大纲一、参考书目:1.《数学分析》第四版(上、下册)华东师范大学数学系编(高等教育出版社)。

2.《数学分析》(上、下册)盛炎平等编(机械工业出版社)。

二、考试大纲:(第一章~第二十二章,所有带*号的部分不用看)第一章实数集与函数数集的确界,确界原理.第二章数列极限极限定义,收敛数列性质,单调有界原理,重要极限.第三章函数极限函数极限定义,函数极限性质,两个重要极限,无穷大量与无穷小量,渐近线.第四章函数连续性函数连续概念,间断点分类,连续函数的性质,一致连续的概念.第五章导数与微分导数概念,导数几何意义,求导法则,基本求导公式,参变量函数求导,高阶导数,微分的概念,几何意义.第六章微分中值定理及其应用罗尔定理,拉格朗日定理,函数单调性的判定,柯西中值定理,不定式极限的罗必达法则,泰勒公式,,函数极值的判定,最值问题,函数凹凸性的判定.第七章实数的完备性了解刻画实数完备性定理的内容.第八章不定积分原函数与不定积分概念,基本积分公式,换元法与分部积分法.第九章定积分定积分概念,定积分性质,牛顿-莱布尼兹公式,变限积分和原函数存在定理,积分中值定理,计算积分的换元法与分部积分法.第十章定积分应用计算平面图形面积,立体体积,曲线弧长,旋转曲面面积.第十一章反常积分无穷积分和瑕积分的概念和性质,非负无穷积分和瑕积分的比较判别法,一般无穷积分和瑕积分的狄立克莱判别法和阿贝尔判别法.第十二章数项级数级数收敛的定义,级数的性质,正项级数的比较、根值、比值判别法,一般项级数的阿贝尔判别法和狄立克雷判别法.第十三章函数列与函数项级数函数列的一致收敛性,一致收敛的柯西准则及充要条件,一致收敛函数列的极限函数的性质,函数项级数一致收敛概念,判别法,一致收敛函数项级数的性质.第十四章幂级数幂级数的收敛半径、收敛区间、收敛域,收敛半径的计算,幂级数的性质,泰勒级数,初等函数的幂级数展开.第十五章傅立叶级数三角级数,正交系,收敛定理,周期函数的傅里叶展开,偶函数与奇函数的傅里叶级数与展开.第十六章多元函数的极限与连续二元函数的极限与连续.第十七章多元函数微分学偏导数的概念,全微分的概念,偏导数的几何意义,复合函数的求导法则,方向导数与梯度的概念,多元函数的极值问题.第十八章隐函数定理及其应用了解隐函数定理,会隐函数求导,曲线的切线,曲面的切平面与法线,条件极值问题.第十九章含参积分该章不考察.第二十章曲线积分第一型曲线积分定义与计算,第二型曲线积分的定义与计算,两类积分的联系.第二十一章重积分二重积分的概念、性质,直角坐标计算,极坐标计算,格林公式,曲线积分与路径的无关性,三重积分的定义,性质,利用直角坐标计算,柱坐标计算,球坐标计算.第二十二章曲面积分第一型曲面积分定义与计算,第二型曲面积分的定义与计算,高斯公式与斯托克斯公式三、试卷结构:1.概念简答题;2.计算题;3.证明题.。

2020年郑州大学640政治学概论考研专业课考试大纲(含参考书目)

2020年郑州大学640政治学概论考研专业课考试大纲(含参考书目)

以梦为马
郑州大学2020年硕士生入学考试初试自命题科目考试大纲
明栏里加备注。

示例:郑州大学硕士研究生入学考试
《政治学概论》考试大纲
一、考试基本要求及适用范围概述
《政治学概论》考试大纲适用于郑州大学马克思主义学院相关专业的硕士研究生入学考试。

政治学概论是政治学一级学科的基础理论课程,主要内容:从政治权力、国家政权、国家政体等政治学的最基本范畴人手,探讨政府职能、政党等其他一些政治学重要范畴的产生、演变及其发展规律;阐述政治参与、政治发展、政治文化、国际政治等政治现象的表现特征与一般规律,等。

要求考生系统地理解和掌握国家、阶级、国家形式、国家机构、政党、政治团体等基本概念和基本理论,掌握国家的历史类型及其更替、资本主义、社会主义国家的本质、宗教的本质及其与国家的关系、社会主义国家的政党及其政党制度、政治文化的含义及其功能等,理解社会主义国家包括中国在内的政党制度、政治团体、政治文明发展的历史逻辑、理论内涵和制度建设,并对当前国际政治的行为主体、基本准则、政治格局以及经济全球化对国际政治的影响有一总体的把握与认识。

二、考试形式
硕士研究生入学政治学概论考试为闭卷,笔试,考试时间为180分钟,本试
命题学院(盖章): 考试科目代码及名称: 640 郑州大学硕士研究生入学考试自命题考试大纲 (含参考书目清单)
第 1 页。

郑州大学生命科学学院考研考试大纲

郑州大学生命科学学院考研考试大纲

四、考试要求
硕士研究生入学考试科目《生物化学》为闭卷,笔试,考试时间为180分钟, 本试卷满分为150分,其中《植物生理学》75分。试卷务必书写清楚、符号和西 文字母运用得当。答案必须写在答题纸上,写在试题纸上无效。
郑州大学硕士研究生入学考试 《普通生物学》考试大纲
命题学院(盖章):生命科学学院 考试科目代码及名称:909/普通生物学
郑州大学硕士研究生入学考试 《生物化学》考试大纲
命题学院(盖章): 生命科学学院 考试科目代码及名称: 338 生物化学
一、考试基本要求及适用范围概述
本《生物化学》考试大纲适用于郑州大学生命科学学院相关专业的硕士研究 生入学考试。生物化学是生物学的重要组成部分,是动物学、植物学、遗传学、 生理学、医学、农学、药学及食品等学科的基础理论课程,主要内容:探讨生物 体的物质组成以及分子结构、性质与功能,物质代谢的规律、能量转化及其调节 控制等。要求考生系统地理解和掌握生物化学的基本概念和基本理论,掌握各类 生化物质的结构、性质和功能及其合成代谢和分解代谢的基本途径及调控方法, 理解基因表达调控和基因工程的基本理论,了解生物化学的最新进展,能综合运 用所学的知识分析问题和解决问题。
四、考试要求
硕士研究生入学考试科目《普通生物学》为闭卷,笔试,考试时间为180分钟, 本试卷满分为150分。试卷务必书写清楚、符号和西文字母运用得当。答案必须 写在答题纸上,写在试题纸上无效。
五、主要参考教材(参考书目)
《陈阅增普通生物学》(2014年8月第四版),吴相钰,陈守良,葛明德编著,高 等教育出版社 《动物生物学》(2013年3月第四版),陈小麟,方文珍编著,高等教育出版社 《植物生物学》(2016年7月第四版),周云龙编著,高等教育出版社
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
实数的基本理论,极限理论,一元函数的微分与积分,多元函数的微分与积 分,级数理论等。
坚持不懈 要求考生理解并掌握相关内容的基本概念,定义及其性质,基本定理以及在
数学和其他领域的基本应用。具有一定分析与解决问题的逻辑推理能力。
二、考试形式
硕士研究生入学数学分析考试为闭卷,笔试,考试时间为 180 分钟,ห้องสมุดไป่ตู้试卷 满分为 150 分。
试卷结构(题型):判断题,计算题,证明题。
三、考试内容
考试内容 实数的基本理论 极限理论 一元函数的微分与积分 多元函数的微分与积分 级数理论
考试要求
第1页
郑州大学硕士研究生入学考试自命题考试大纲 (含参考书目清单)
能使用关于实数的相关定理 极限的定义,判断收敛性,计算数列和函数的极限 计算各种形式的函数的导数,并使用微分理论研究函数 掌握定积分的定义,函数的可积性和积分计算方法 使用定积分计算面积,曲线的长度,旋转面面积,旋转体体积 广义积分的概念及收敛性 多元函数的连续性,求导法则以及偏导求法,会求多元函数极值 重积分计算方法,曲线积分,曲面积分的计算以及相关定理 级数的收敛性的判断 函数列,函数项级数,含参变量广义积分的一致收敛性 幂级数及函数的泰勒展开式,级数求和法 傅里叶级数的概念,黎曼引理的使用,函数的傅里叶展开式的求法 掌握微分中值定理内容以及应用 多元函数求极值以及条件极值 函数的凸性以及詹森不等式 各种积分间的联系以及格林公式,高斯公式,斯托克斯公式。
编制单位:郑州大学 编制日期:2019年9月
第2页
坚持不懈 .......
四、考试要求
硕士研究生入学考试科目《数学分析》为闭卷,笔试,考试时间为180分钟, 本试卷满分为150分。试卷务必书写清楚、符号和西文字母运用得当。答案必须 写在答题纸上,写在试题纸上无效。
五、主要参考教材(参考书目)
《数学分析》(第三版)2007,上、下册 欧阳光中等编,高等教育出版社 《数学分析》,上、下册 马建国编著,科学出版社, 2011
郑州大学硕士研究生入学考试自命题考试大纲 (含参考书目清单)
郑州大学 2020 年硕士生入学考试初试自命题科目考试大纲
郑州大学硕士研究生入学考试 《数学分析》考试大纲
命题学院(盖章): 考试科目代码及名称:655 数学分析
一、考试基本要求及适用范围概述
本《数学分析》考试大纲适用于郑州大学数学与统计学院相关专业的硕士研 究生入学考试。数学分析是数学各专业的基础课程。主要内容有:
相关文档
最新文档