最新集合与简易逻辑知识点总结
集合与简易逻辑知识点整理
![集合与简易逻辑知识点整理](https://img.taocdn.com/s3/m/0660cc0b4a7302768e993998.png)
集合与简易逻辑 知识点整理班级: 姓名:1.集合中元素的性质(三要素): ; ; 。
2.常见数集:自然数集 ;自然数集 ;正整数集 ;整数集 ;有理数集 ;实数集 。
3.子集:A B ⊆⇔ ; 真子集:A B ≠⊂⇔ ; 补(余)集:A C B ⇔ ;【注意】空集是任意集合的子集,是任意非空集合的真子集。
4.交集:A B ⋂⇔ ; 并集:A B ⋃⇔ 。
笛摩根定律:()U C A B ⋂= ;()U C A B ⋃= 。
性质:A B A ⋂=⇔ ;A B A ⋃=⇔ 。
5.用下列符号填空: "","","","","",""≠∈∉⊂⊂=≠0 N ;{}0 R ;φ {}0;{}1,2 {}(1,2);{}0x x ≥ {}0y y ≥ 6.含绝对值的不等式的解法:【注意】含等号时端点要取到。
x a < (0)a >的解集是 ;x a > (0)a >的解集是 。
(0)ax b c c +<>⇔ a x b <+<;(0)ax b c c +<<⇔ 或 。
7.【注意】的情况可根据不等式的性质化归为的情况进行讨论。
8.一元二次不等式恒成立问题:【注意】二次项系数为0时的讨论。
一元二次不等式20ax bx c ++<(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++≤(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++>(0)a ≠恒成立⇔ 。
一元二次不等式20ax bx c ++≥(0)a ≠恒成立⇔ 。
9.简单分式不等式的解法:()0()f x g x > ⇔()()0f x g x ⋅>⇔()0()0f x g x >⎧⎨>⎩或()0()0f x g x <⎧⎨<⎩()0()f xg x ≥⇔ ⇔ 。
1集合与简易逻辑知识点梳理.
![1集合与简易逻辑知识点梳理.](https://img.taocdn.com/s3/m/a8af6328a6c30c2259019ed9.png)
§1集合与简易逻辑一、理解集合中的有关概念(1)集合中元素的特征:确定性,互异性,无序性。
集合元素的互异性:如:A={x,xy,lg(xy)},B={0,|x|,y},求A;(2)集合与元素的关系用符号∈,∉表示。
(3)常用数集的符号表示:自然数集;正整数集、;整数集;有理数集、实数集。
(4)集合的表示法:列举法,描述法,韦恩图。
说说下列集合的区别:A={x|y;B={y|y=;C={(x,y)|y;D={x|x=;E={(x,y)|y=x∈Z,y∈Z}.(5)空集是指不含任何元素的集合{0}、φ和{φ}的区别;0与三者间的关系;空集是任何集合的子集,是任何非空集合的真子集;注意:条件为A⊆B,在讨论的时候不要遗忘了A=φ的情况,如:A={x|ax2-2x-1=0},如果A R+=φ,求a的取值。
二、集合间的关系及其运算(1)符号“∈,∉”是表示元素与集合之间关系的,如立体几何中的体现点与直线(面)的关系;符号“⊂,⊄”或“⊆,”或“”等是表示集合与集合之间关系的,立体几何中的体现面与直线(面)的关系。
(2)切记:A⊆B⇔A⋂B=A;A⊆B⇔A⋃B=B.(3)集合中元素的个数的计算:若集合A中有n个元素,则集合A的所有不同的子集个数为_ __ ,所有真子集的个数是__ _,所有非空真子集的个数是。
基础训练一、选择题1.下列表示方法正确的是A.1⊆{0,1,2}D.φ{0}2.已知A={1,2,a2-3a-1},B={1,3},A⋂B={3,1}则a等于B.{1}∈{1,2}C.{0,1,2}⊆{0,1,3}A.-4或1B.-1或4C.-1D.43.设集合M={3,a},N={x|x2-3x﹤0,x∈Z},M⋂N={1},则M⋃N为A.{1,2,a}B.{1,2,3,a}C.{1,2,3}D.{1,3}4.集合P={(x,y)|x-y=2,x∈R},Q={(x,y)|x+y=2,x∈R},则P⋂QA.(2,0)B.{(2,0)}C.{0,2}D.{y|y≤2}n18.设集合A={x|x=,n∈Z},B={x|x=n+,n∈Z},则下列能较准确表示A、B关22 系的是图是11.已知集合M={x|x≤1},P={x|x﹥t},若M⋂P=φ,则实数t满足条件是A.t﹥1B.t≥1C.t<1D.t≤112.当a﹤0时,关于x的不等式x2-4ax-5a2>0的解集是A.{x|x﹥5a或x﹤-a}B.{x|x﹤5a或x﹥-a}C.{x|-a﹤x﹤5a}D.{x|5a﹤x﹤-a}二、填空题:13.集合M中含有8个元素,N中含有13个元素,(1)若M⋂N有6个元素,则M⋃N含有______个元素;(2)当M⋃N含_______个元素时, M⋂N=φ。
新高考高中数学知识点全总结
![新高考高中数学知识点全总结](https://img.taocdn.com/s3/m/0fd1868a6037ee06eff9aef8941ea76e59fa4a7a.png)
新高考高中数学知识点全总结一、集合与简易逻辑1. 集合定义:集合是由确定的对象所组成,这些对象称为集合的元素。
表示方法:列举法、描述法。
集合之间的关系:子集、真子集、相等。
集合的运算:并集、交集、补集。
2. 简易逻辑充分条件与必要条件。
四种命题及其关系:原命题、逆命题、否命题、逆否命题。
逻辑联结词:且、或、非。
二、函数1. 函数的概念定义:设A、B是两个非空数集,如果按照某种确定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有唯一确定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数。
记作y=f(x),x∈A。
其中,x称为自变量,x的取值范围A称为函数的定义域;与x的值对应的y值称为因变量,因变量的取值范围称为函数的值域。
2. 函数的性质单调性:函数在某一区间内,函数值随自变量增大而增大(或减少)的性质。
奇偶性:若对于定义域内的任意x,都有f(-x)=-f(x),则称f(x)为奇函数;若f(-x)=f(x),则称f(x)为偶函数。
3. 常见函数一次函数:f(x)=kx+b (k≠0)。
二次函数:f(x)=ax²+bx+c (a≠0)。
指数函数:f(x)=a^x (a>0, a≠1)。
对数函数:f(x)=logₐx (a>0, a≠1)。
幂函数:f(x)=x^α (α为实数)。
三、数列1. 数列的概念定义:按一定顺序排列的一列数称为数列。
通项公式:表示数列中每一项与项数之间关系的公式。
2. 等差数列定义:从第二项起,每一项与它的前一项的差等于同一个常数的一种数列。
通项公式:aₙ=a₁+(n-1)d。
前n项和公式:Sₙ=n/2[2a₁+(n-1)d]。
3. 等比数列定义:从第二项起,每一项与它的前一项的比等于同一个常数的一种数列。
通项公式:aₙ=a₁q^(n-1)。
前n项和公式:Sₙ=a₁(1-q^n)/(1-q)(q≠1)。
四、三角函数1. 角度与弧度角度制:用度(°)、分(')、秒('')来表示角的大小的制度。
集合与简易逻辑知识点总结- 高三数学一轮复习
![集合与简易逻辑知识点总结- 高三数学一轮复习](https://img.taocdn.com/s3/m/82e3b3717275a417866fb84ae45c3b3566ecdd60.png)
知识点总结1 集合与简易逻辑一、集合(一)元素与集合1.集合的含义某些指定对象的部分或全体构成一个集合.构成集合的元素除了常见的数、点等数学对象外,还可以是其他对象.2.集合元素的特征(1)确定性:集合中的元素必须是确定的,任何一个对象都能明确判断出它是否为该集合中的元素.(2)互异性:集合中任何两个元素都是互不相同的,即相同元素在同一个集合中不能重复出现.(3)无序性:集合与其组成元素的顺序无关.3.元素与集合的关系元素与集合之间的关系包括属于(记作a A ∈)和不属于(记作a A ∉)两种.4.集合的常用表示法集合的常用表示法有列举法、描述法、图示法(韦恩图).5.常用数集的表示 数集 自然数集 正整数集 整数集 有理数集 实数集符号 NN ∗或N + Z Q R (二)集合间的基本关系1.集合A 为集合B 的子集 ,记作A B ⊆(或B A ⊇),读作“A 包含于B ”(或“B 包含A ”).(2)真子集:若A B ⊆,且存在b B ∈,但b A ∉,则集合A 是集合B 的真子集,记作AB (或B A ⊃≠). 读作“A 真包含于B ”或“B 真包含A ”.(3)相等:对于两个集合A 与B ,如果A B ⊆,同时B A ⊆,那么集合A 与B 相等,记作A =B .(4)空集:把不含任何元素的集合叫做空集,记作∅;(三)集合的基本运算(1)交集:由所有属于集合A 且属于集合B 的元素组成的集合,叫做A 与B 的交集,记作A B ⋂, 即{}|A B x x A x B ⋂=∈∈且.(2) 并集:由所有属于集合A 或属于集合B 的元素组成的集合,叫做A 与B 的并集,记作A B ⋃,(3) 即{}|A B x x A x B ⋃=∈∈或.(3)补集:对于一个集合A ,由全集U 中不属于集合A 的所有元素组成的集合称为集合A 相对于全集U 的补集,简称为集合A 的补集,记作U C A ,即{|,}U C A x x U x A =∈∉且.(四)集合的运算性质(1)集合的运算性质:①交换律:A ∪B =B ∪A ;A ∩B =B ∩A ;②结合律:(A ∪B )∪C =A ∪(B ∪C );(A ∩B )∩C =A ∩(B ∩C );③分配律:(A ∩B )∪C =(A ∪C )∩(B ∪C );(A ∪B )∩C =(A ∩C )∪(B ∩C );【集合常用结论】1.子集个数:含有n个元素的有限集合M,其子集个数为2n;其真子集个数为2n-1;其非空子集个数为2n-1;其非空真子集个数为2n-2.2. 是任何集合的子集,是任何非空集合的真子集.3.∁U(A∪B)=(∁U A)∩(∁U B);∁U(A∩B)=(∁U A)∪(∁U B);4.A∪B=A⇔B⊆A;A∩B=B⇔B⊆A.5.集合运算中的常用方法若已知的集合是不等式的解集,用数轴求解;若已知的集合是点集,用数形结合法求解;若已知的集合是抽象集合,用Venn图求解.二、简易逻辑(一).全称命题、特称(存在性)命题及其否定(1)全称命题p:∀x∈M,p(x),其否定为特称(存在性)命题:¬p:∃x0∈M,¬p(x0).(2)特称(存在性)命题p:∃x0∈M,p(x0),其否定为全称命题:¬p:∀x∈M,¬p(x).(二).充分条件与必要条件的判定方法(1)定义法:若p⇒q,则p是q的充分条件(或q是p的必要条件);若p⇒q,且q⇏p,则p是q的充分不必要条件(或q是p的必要不充分条件).(2)集合法:利用集合间的包含关系。
集合与简易逻辑小结
![集合与简易逻辑小结](https://img.taocdn.com/s3/m/40475c4433687e21af45a909.png)
集合与简易逻辑小结重点知识归纳:1、集合部分解决集合问题时,首先要明确集合元素的意义,弄清集合由哪些元素组成,需要对集合的文字语言、符号语言、图形语言进行相互转化.其次,由于集合知识概念多、符号多,所以要注意集合的特性,空集的特殊性,符号的表示的特殊性.三是注意知识间的内在联系,注意集合思想与函数思想的联系,集合与不等式、解析几何、三角函数等知识的联系.(1)集合中元素的三大特征(2)集合的分类(3)集合的三种表示方法(4)集合的运算①n元集合共有2n个子集,其中有2n-1个真子集,2n-1个非空子集;②A∩B={x|x∈A且x∈B}③A∪B={x|x∈A或x∈B}④A={x|x∈S且xA},其中AS.2、不等式的解法(1)含有绝对值的不等式的解法①|x|<a(a>0)-a<x<a;|x|>a(a>0) x>a,或x<-a.②|f(x)|<g(x) -g(x)<f(x)<g(x);|f(x)|>g(x) f(x)>g(x)或f(x)<-g(x).③|f(x)|<|g(x)| [f(x)]2<[g(x)]2[f(x)+g(x)]·[f(x)-g(x)]<0.④对于含有两个或两个以上的绝对值符号的绝对值不等式,利用“零点分段讨论法”去绝对值.如解不等式:|x+3|-|2x-1|<3x+2.(2)一元二次不等式的解法任何一个一元二次不等式,经过不等式的同解变形,都能化为ax2+bx+c>0(a>0),或ax2+bx+c<0(a>0)的形式,再根据“大于取两边,小于夹中间”得解集(若判别式△≤0,则利用配方法求解较方便).(3)分式不等式的解法①分类讨论去分母法:②转整式不等式法:运用时,必须使不等式一边为0,转化为≤0形式,则:(4)高次不等式的解法3、简易逻辑知识逻辑联结词“或”、“且”、“非”是判断简单合题与复合命题的依据;真值表是由简单命题和真假判断复合命题真假的依据,理解好四种命题的关系,对判断命题的真假有很大帮助;掌握好反证法证明问题的步骤.(1)命题①简单命题:不含逻辑联结词的命题②复合命题:由简单命题与逻辑联结词构成的命题(2)复合命题的真值表(3)四种命题及其相互之间的关系一个命题与它的逆否命题是等价的.(4)充分、必要条件的判定①若pq且qp,则p是q的充分不必要条件;②若pq且qp,则p是q的必要不充分条件;③若pq且qp,则p是q的充要条件;④若pq且qp,则p是q的既不充分也不必要条件.(5)反证法反证法是“命题与其逆否命题等价”这一理论的具体体现,用反证法证明命题的一般步骤是:①假设命题的结论不成立.②经过推理论证,得出矛盾.③由矛盾判定假设不正确,从而肯定命题的结论正确.4、运用知识、运用方法过程中应注意的主要问题(1)正确理解集合的概念必须掌握构成集合的两个必要条件:研究对象是具体的,其属性是确定的.(2)在判断给定对象能否构成集合时,特别要注意它的“确定性”,在表示一个集合时,要特别注意它的“互异性”、“无序性”.(3)在集合运算中必须注意组成集合的元素应具备的性质.(4)对由条件给出的集合要明白它所表示的意义,即元素指什么,是什么范围.用集合表示不等式(组)的解集时,要注意分辨是交集还是并集,结合数轴或文氏图的直观性帮助思维判断.空集是任何集合的子集,但因为不好用文氏图形表示,容易被忽视,如在关系式中,易漏掉的情况.(5)若集合中的元素是用坐标形式表示的,要注意满足条件的点构成的图形是什么,用数形结合法解之.(6)若集合中含有参数,须对参数进行分类讨论,讨论时既不重复又不遗漏.(7)解不等式的基本思想是化归、转化,解含有参数的不等式常需要分类讨论,同解变形是解不等式的理论依据.(8)学习四种命题,关键是理解命题结构及逻辑联结词“或”、“且”、“非”的含义,掌握四种命题间的关系是学习充要条件的基础.(9)基本的逻辑知识是认识问题和研究问题不可缺少的工具,是我们进行学习、掌握和使用语言的基础,数学又是逻辑性很强的学科,因此,学习一些逻辑知识是非常必要的,通过学习和训练可以规范和提高推理的技能,发展思维能力.重点是正确使用逻辑联结词“或”、“且”、“非”,是否使用得当的依据是真值表,利用真值表再结合四种命题的充要条件可判定复合命题的真假性.注意区别一些易错的逻辑关系,如“都是”、“都不是”、“不都是”.5、在学习和运用集合知识的过程中,须注意的几个问题目前在中学数学教学中,集合知识主要有两方面的应用.(1)把集合作为一种数学语言,以表达一定范围或具有某些特性的元素.例如,方程(或方程组)的解集,不等式(或不等式组)的解集,具有某种性质或满足某些条件的数集、点集、向量集(以后会学)等,因集合元素的任意性,使得集合语言有着广泛的应用性.(2)使用集合间的运算法则或运算思想,解决某些逻辑关系较复杂的问题.例如,运用集合法判断真假复合命题和充要条件,运用集合的交集思想、并集思想、补集思想解题等.。
第一章 集 合与简易逻辑小结
![第一章 集 合与简易逻辑小结](https://img.taocdn.com/s3/m/05273f79c4da50e2524de518964bcf84b9d52d89.png)
第一章集合与简易逻辑小结在数学的广阔领域中,集合与简易逻辑如同两座基石,为后续更深入的学习打下了坚实的基础。
让我们一同来梳理和回顾这部分重要的知识。
首先,来谈谈集合。
集合是什么呢?简单来说,集合就是把一些具有特定性质的对象放在一起组成的一个整体。
比如说,咱们班所有同学就可以组成一个集合,所有正整数也能组成一个集合。
集合有几个关键的概念得弄清楚。
像元素,这是构成集合的基本单位。
如果一个元素属于某个集合,我们就说这个元素在这个集合里面。
集合的表示方法有列举法,就是把集合里的元素一个一个列出来;还有描述法,通过描述元素的特征来确定集合。
集合之间的关系也很重要。
包含关系,比如集合 A 的所有元素都在集合 B 里面,那 A 就是 B 的子集;如果 A 是 B 的子集,但 B 中还有A 没有的元素,那 A 就是B 的真子集。
还有相等关系,两个集合的元素完全一样,那它们就相等。
集合的运算也不能马虎。
交集,就是两个集合共有的元素组成的集合;并集,则是把两个集合的所有元素放在一起组成的新集合;补集,是在一个给定的全集里,去掉某个集合的元素后剩下的元素组成的集合。
再来看看简易逻辑。
逻辑连接词像是“且”“或”“非”,在判断命题的真假时特别有用。
比如说,命题“p 且q”只有当 p 和 q 都为真时才是真命题;“p 或q”只要 p 和 q 中有一个为真就是真命题;“非p”则是和 p 的真假相反。
充分条件、必要条件和充要条件是简易逻辑中的重点。
如果有“若 p 则q”,p 能推出 q,那 p 就是 q 的充分条件;反过来,q 能推出 p,p 就是 q 的必要条件;要是 p 能推出 q,q 也能推出 p,那 p 就是 q 的充要条件。
在实际应用中,集合和简易逻辑的知识经常会结合在一起。
比如在解决一些不等式的问题时,我们可以先求出不等式的解集,也就是一个集合,然后通过逻辑推理来判断不同解集之间的关系,找到满足条件的解。
举个例子,假设集合 A ={x | 1 < x < 3},集合 B ={x | 2 < x < 4},那么 A 和 B 的交集就是{x | 2 < x < 3},并集就是{x | 1 < x < 4}。
高考数学专题1 集合与简易逻辑
![高考数学专题1 集合与简易逻辑](https://img.taocdn.com/s3/m/04365f25dd36a32d7375818b.png)
专题1 集合与简易逻辑一.知识网络以“集合”为基础,由“运算”分枝杈.二.高考考点1.对于集合概念的认识与理解,重点是对集合的识别与表达.2.对集合知识的综合应用,重点考查准确使用数学语言的能力以及运用数形结合思想解决问题的能力.3.理解逻辑联结词“或”“且”“非”的含义;命题的四种形式;相关命题的等价转换,重点考查逻辑推理和分析问题的能力.4.充分条件与必要条件的判定与应用.三.知识要点(一)集合1.集合的基本概念(1)集合的描述性定义:某些指定的对象集在一起就成为一个集合.认知:集合由一组指定的(或确定的)对象的全体组成,整体性是其重要特征之一.集合的元素须具备以下三个特性:(I)确定性:对于一个给定的集合,任何一个对象是否为这个集合的元素是明确的,只有“是”与“否”两种情况.(II)互异性:集合中的任何两个元素都不相同.(III)无序性:集合中的元素无前后顺序之分.(2)集合的表示方法集合的一般表示方法主要有(I)列举法:把集合中的元素一一列举出来的方法.提醒:用列举法表示集合时,须注意集合中元素的“互异性”与“无序性”,以防自己表示有误或被他人迷惑.(II)描述法:用确定的条件表示某些对象是否属于这个集合的方法.①描述法的规范格式:{x|p(x),x∈A}其中,大括号内的竖线之前的文字是“集合的代表元素”,竖线后面是借助代表元素描述的集合中元素的属性及范围(即判断对象是否属于集合的确定的条件).②认知集合的过程:认清竖线前的代表元素;考察竖线后面代表元素的属性及范围结合前面的考察与集合的意义认知集合本来面目.例:认知以下集合:; ;; ,其中M={0,1}.分析:对于A,其代表元素是有序数对(x,y),即点(x,y)点(x,y)坐标满足函数式y=x2-1(x∈R)点(x,y)在抛物线y=x2-1上集合A是抛物线y=x2-1(x∈R)上的点所组成的集合.对于B,其代表元素为y y是x的二次函数:y=x2-1(x∈R),再注意到集合的意义是范围集合B 是二次函数y=x2-1(x∈R)的取值范围集合B是二次函数y=x2-1(x∈R)的值域,故B={y|y≥-1}.对于C,其代表元素是x x是二次函数y=x2-1的自变量集合C是二次函数y=x2-1的自变量的取值范围集合C是二次函数y=x2-1(x∈R)的定义域,即C=R.对于D,其代表元素是x x是集合M的子集集合D由M的(全部)子集组成,故D={φ,{0},{1},{0,1}}.(III)数轴法和文氏图法:文氏图法是指用一条封闭曲线围成的区域(内部)表示集合的方法.此为运用数形结合方法解决集合问题的原始依据.评注:集合的符号语言与文字语言的相互转化,是师生研究集合的基本功.为了今后的继续性发展,这一软性作业必须高质量完成.2.集合间的关系(1)子集(I)子集的定义(符号语言):若x∈A x∈B,则A B(注意:符号的方向性)规定:空集是任何集合的子集,即:对任何一个集合A,都有φ A显然:任何一个集合都是自身的子集, 即A A.(II)集合的相等:若A B且B A,则A=B.(III)真子集定义:若A B且A≠B;则A B(即A是B的真子集).特例:空集是任何非空集合的真子集.(2)全集,补集(I)定义设I是一个集合,A I,由I中所有不属于A的元素组成的集合,叫做I中子集A的补集(或余集),记作A,即A={x|x∈I,且x A}.在这里,如果集合I含有我们所要研究的各个集合的全部元素,则将I称为全集,全集通常用U表示.(II)性质:φ=U;U=φ;(A)=A(III)认知:补集思想为我们运用“间接法”解题提供理论支持.对于代数中的探求范围等问题,当正面入手头绪繁多或较为困难时,要想到运用“间接法”进行转化求解.(3)交集,并集(I)定义:①由所有属于集合A且属于B的元素所组成的集合,叫做A与B的交集,记作A∩B,即A∩B={x|x ∈A,且x∈B};②由所有属于集合A或属于集合B的元素所组成的集合,叫做A与B的并集,记作A∪B,即A∪B={x|x ∈A,或x∈B}.(II)认知:上面定义①、②中的一字之差(“且”与“或”之差),既凸显交集与并集的个性,又展示二者之间的关系.在这里,要特别注意的是,并集概念中的“或”与生活用语中的“或”含义不同,并集概念中的“或”源于生活,但又高于生活中的“或”:生活用语中的“或”是“或此”.“或彼”.二者只取其一,并不兼有;而并集概念中的“或”是“或此”.“或彼”“或彼此”,可以兼有.因此,“x∈A或x∈B”包括三种情形:x∈A且x B;x∈B且x A;x∈A且x∈B.(III)基本运算性质①“交”的运算性质A∩A=A;A∩φ=φ;A∩B= B∩A;A∩ A =φ;(A∩B)∩C= C∩(A∩B)= A∩B∩C②“并”的运算性质A∪A=A;A∪φ=A;A∪B= B∪A;A∪A=I;(A∪B)∪C=A∪(B∪C)= A∪B∪C③交.并混合运算性质A∪(B∩C)= (A∪B)∩(A∪C);A∩(B∪C)=(A∩B)∪(A∩C);A∩(A∪C)=AA∪(A∩B)=A( IV )重要性质①A∩B=A A B; A∪B=B A B;②A∩B=(A∪B);A∪B=(A∩B)上述两个性质,是今后解题时认知、转化问题的理论依据.(二)简易逻辑1.命题(1)定义(I)“或”.“且”“非”这些词叫做逻辑联结词.(II)可以判断真假的词句叫做命题.其中,不含逻辑联结词的命题叫做简单命题,由简易命题与逻辑联结词构成的命题叫做复合命题.复合命题的构成形式:①p或q;②p且q;③非p(即命题p的否定).(2)复合命题的真假判断(I)当p、q同时为假时“p或q”为假,其它情况时为真;(II)当p、q同时为真时“p且q”为真,其它情况时为假;(III)“非p”与p的真假相反.(3)认知(I)这里的“或”与集合的“并”密切相关(并集又称为或集):集合的并集是用“或”来定义的:A∪B={x| x∈A或x∈B}.“p或q”成立的含义亦有三种情形:p成立但q不成立;q成立但p不成立,p,q同时成立.它们依次对应于A∪B中的A∩ B;B∩ A;A∩B.不过,A∪B强调的是一个整体,而“p或q”是独立的三种情形的松散联盟.(II)“或”、“且”联结的命题的否定形式:“p或q”的否定p且q;“p且q”p或q.它们类似于集合中的(A∪B)=(A)∩(B),(A∩B)=(A)∪(B)(4)四种命题(I)四种命题的形式:用p和q分别表示原命题的条件和结论,用p和q分别表示p和q的否定,则四种命题的形式为原命题:若p则q;逆命题:若q则p;否命题:若p则q逆否命题:若q则p.(II)四种命题的关系①原命题逆否命题.它们具有相同的真假性,是命题转化的依据和途径之一.②逆命题否命题,它们之间互为逆否关系,具有相同的真假性,是命题转化的另一依据和途径.除①、②之外,四种命题中其它两个命题的真伪无必然联系.2.充分条件与必要条件(I)定义:若p q则说p是q的充分条件,q是p的必要条件;若p q则说p 是q的充分必要条件(充要条件).(II)认知:①关注前后顺序:若p q则前者为后者的充分条件;同时后者为前者的必要条件.②辨析条件、结论注意到条件与结论的相对性.若条件结论,则这一条件为结论的充分条件;若结论条件,则这一条件为结论的必要条件.③充要条件即等价条件,也是完成命题转化的理论依据.“当且仅当”.“有且仅有”.“必须且只须”.“等价于”“…反过来也成立”等均为充要条件的同义词语.四.经典例题例1.判断下列命题是否正确.(1)方程组的解集为{(x,y)|x=-1或y=2};(2)设P={x|y=x2},Q={(x,y)|y=x2},则p Q;(3)设,则M N;(4)设,,则集合等于M∪N;分析:(1)不正确.事实上,方程组的解为有序实数对(-1,2),而-1或2不是有序实数对,故命题为假.正确解题:方程组解集应为(初始形式)=={(-1,2)}(2)不正确.在这里,P为数集,Q为点集,二者无公共元素,应为P∩Q=φ.(3)为认知集合中的元素的属性,考察代表元素的特征与联系:对两集合的代表元素表达式实施通分,对于集合M,其代表元素,2k+1为任意奇数;对于集合N,其代表元素,k+2为任意整数.由此便知M N,故命题正确.(4)不正确.反例:注意到这里f(x),g(x)的定义域未定,取,,则f(x)·g(x)=1(x≠-3且x≠1),此时f(x)g(x)=0无解.揭示:一般地,设函数f(x),g(x)的定义域依次为P、Q,且,,则有例2.设集合A={x|x2+4x=0},B={x|x2+2(a+1)x+a2-1=0}(1)若A∩B=B,求a的值;(2)若A∪B=B,求a的值.解:集合A={-4,0}(1)A∩B=B B A即B{-4,0}由有关元素与B的从属关系,引入(第一级)讨论.(I)若0∈B,则有a2-1=0a=1(以下由a的可能取值引入第2级讨论).又当a=-1时,方程x2+2(a+1)x+a2-1=0x2=0x=0此时B={0}符合条件;当a=1时,方程x2+2(a+1)x+a2-1=0x2+4x=0x(x+4)=0此时B=A符合条件.(II)若-4∈B,则有16+2(a+1)(-4)+a2-1=0a2-8a+7=0(a-1)(a-7)=0 a=1或a=7 当a=1时,由(I)知B=A符合条件;当a=7时,方程x2+2(a+1)x+a2-1=0x2+16x+48=0(x+12)(x+4)=0x=-12或x=-4此时B={-12,-4} A.(III)注意到B A,考察B=φ的特殊情形:B=φ=4(a+1)2-4(a2-1)<0 a<-1,此时集合B显然满足条件.于是综合(I)、(II)、(III)得所求a的取值集合为{a|a=1或a≤-1}.(2)集合B中至少有两个元素①而方程x2+2(a+1)x+a2-1=0至多有两个实根集合B中至多有两个元素②∴由①、②得集合B中只含两个元素 B=A此时,由(1)知a=1,即所求a的的数值为a=1.点评:(1)在这里,对有关事物进行“特殊”和“一般”的“一分为二”的讨论尤为重要:对集合A.B的关系,分别考察特殊(相等)和一般(真包含)情形,引出第一级讨论;对集合B的存在方式,又分别考察特殊(B=φ)和一般(B≠φ)的两种情形,引出第二级讨论.“特殊”(特殊关系或特殊取值)是分类讨论的切入点.(2)空集φ作为一个特殊集合,既是解题的切入点,又是设置陷阱的幽灵,注意到“一般”与“特殊”相互依存的辩证关系,解题时应适时考察“特殊”,自觉去构建“特殊”与“一般”的辩证统一.例3.已知A={x|x2-4x+3<0,x∈R},B={x|21-x+a≤0且x2-2(a+7)x+5≤0,x∈R}若A B,试求实数a的取值范围.解:A={x|1<x<3}=(1,3)注意A B,故对任意x∈(1,3),不等式21-x+a≤0与x2-2(a+7)x+5≤0总成立.(1)对任意x∈(1,3),f(x)=x2-2(a+7)x+5≤0总成立,f(x)=0有两实根,且一根不大于1,而另一根不小于3①(2)令g(x)=-21-x, x∈(1,3),则对任意x∈(1,3),21-x+a≤0总成立.a≤g(x)总成立a≤g min(x) a≤-1 ②∴将①.②联立得-4≤a≤-1.∴所求实数a的取值范围为{a|-4≤a≤-1}.点评与揭示:在某个范围内不等式恒成立的问题,要注意向最值问题的等价转化:(1)当f(x)在给定区间上有最值时a≤f(x)恒成立a≤f min(x)a≥f(x)恒成立a≥f max(x)(2)当f(x)在给定区间上没有最值时a≤f(x)恒成立a≤f(x)的下确界a≥f(x)恒成立 a≥f(x)的上确界例4.已知p:-2≤x≤10,q:1-m≤x≤1+m(m>0),若是q的必要而不充分条件,求实数m的取值范围.分析:从认知与q入手,为了化生为熟,将,q分别与集合建立联系.解:由已知得:x<-2或x>10;q:x<1-m或x>1+m(m>0).令A={x|x<-2或x>10},B={x| x<1-m或x>1+m(m>0)},则由是q的必要而不充分条件B A或m9∴所求实数m的取值范围为[9,+∞).点评:从认知已知条件切入,将四种命题或充要条件问题向集合问题转化,是解决这类问题的又一基本策略.例5.设有两个命题,p:函数f(x)=+2ax+4的图像与x轴没有交点;Q:不等式恒成立,若“P或Q”为真,“P且Q”为假,则实数a的取值范围是()A.(-∞,-2]B.[2,+∞)C.[-2,2]D.(-2,2)分析:(ⅰ)化简或认知P、Q:函数f(x)=+2ax+4的图像与x轴没有交点,△=-2<a<2∴P: -2<a<2 ①又不等式恒成立a小于的最小值②+≥=2 ③∴由②、③得 a﹤2即Q: a﹤2(ⅱ)分析、转化已知条件“P或Q”为真P、Q中至少有一个为真a﹤2 ④“P且Q”为假P、Q中至少有一个为假或为真a≤-2或a≥2 ⑤于是由④⑤得,同时满足上述两个条件的a的取值范围是 a≤-2∴实数a的取值范围为(-∞,-2].例6. 若p:-2﹤m﹤0,0﹤n﹤1;q:关于x的方程有两个小于1的正根,试分析p是q的什么条件?分析:在这里,q是关于x的二次方程有两个小于1的正根的条件,为便于表述,设该方程的两个实根为,且.然后根据韦达定理进行推理.解:设,为方程的两个实根,且,则该方程的判别式为:△=又由韦达定理得∴当0﹤﹤1时,由②得-2﹤m﹤0,0﹤n﹤1即 q p ③另一方面,若在p的条件下取m=-1,n=0.75,则这一关于x的二次方程的判别式△===1-3﹤0,从而方程无实根∴p q ④于是由③④得知,p是q的必要但不充分的条件.点评:若令f(x)=,则借助二次函数y=的图像易得关于x的二次方程有两个小于1的正根的充要条件为在这里容易产生错误结论为:方程x2+mx+n=0有两个小于1的正根的充要条件是注意到这里的p由※式中部分条件构造而成,它关于m、n的限制当然更为宽松.五.高考真题1.设I为全集,S1,S2,S3是I的三个非空子集,且S1∪S2∪S3=I,则下面判断正确的是()A.S1∩(S2∪S3)=φ B. S1(S2∩S3)C.S1∩S2∩S3=φ D. S1(S2∪S3)分析:对于比较复杂的集合运算的问题,一要想到利用有关结论化简,二要想到借助特取法或文氏图筛选.解法一(直接法):注意到A∩B=(A∪B),A∪B=(A∩B)及其延伸,∴S1∩S2∩S3=(S1∪S2∪S3)=I=φ,故选C解法二(特取法):令S1={1,2},S2={2,3},S3={1,3}I={1,2,3}则S1={3}S2={1}S3={2}由此否定A、B;又令S1=S2=S3={a},则I={a},S2=S3=φ,由此否定D.故本题应选C2.已知向量集合,则M∩N等于()A.{(1,1)} B. {(1,1),(-2,-2)} C .{(-2,-2)} D.φ分析:首先考虑化生为熟.由向量的坐标运算法则得,又令=(x,y),则有,消去λ得4x-3y+2=0,∴M={(x,y)|4x-3y+2=0,x,y∈R}.同理={(x,y)|5x-4y+2=0,x,y∈R}∴M∩N=={(-2,-2)},∴本题应选C点评:从认知集合切入,适时化生为熟,乃是解决集合问题的基本方略.3.设集合I={(x,y)|x∈R,y∈R},A={(x,y)|2x-y+m>0},B={(x,y)|x+y-n≤0},那么点P(2,3)∈A∩(B)的充要条件是()A. m>-1,n<5 B m<-1,n<5 C m>-1,n>5 D m<-1,n>5分析:由题设知P(2,3) ∈A,且P(2,3)∈ B (※)又B={(x,y)|x+y-n>0},∴由(※)得,故本题应选A4.设函数,区间M=[a,b](a<b),集合N={y|y=f(x),x∈M},则使M=N成立的实数对(a,b)有()A.0个 B 1个 C 2个 D 无数多个分析:从认知集合切入.这里的集合N为函数f(x),(x∈M)的值域.注意到f(x)的表达式中含有|x|,为求f(x)的值域,先将f(x)化为分段函数的形式,以便于化整为零,逐段分析.∴当x>0时,f(x)<0;当x=0时,f(x)=0;当x<0时,f(x)>0.由此可知,当x≠0时,f(x) (x∈M)的值域与定义域M不可能相等;又当x=0时,f(x)的定义域为{0},故不存在a<b使区间[a,b]仅含元素0,因此,本题应选A.点评:解决分段函数问题的基本策略:分段考察,综合结论.在这里,认知集合N仍是解题成败的关键所在.5.函数,其中P,M为实数集R的两个非空子集,又规定f(P)={y|y=f(x),x∈P}f(M)={y|y=f(x),x∈M},给出下列四个判断:①若P∩M=φ,则f(P)∩f(M)= φ;②若P∩M≠φ,则f(P)∩f(M)≠φ;③若P∪M=R,则f(P)∪f(M)= R;④若P∪M≠R,则f(P)∪f(M)≠ R其中正确判断有()A. 1个 B 2个 C 3个 D 4个分析:首先认知f(P),f(M):f(P)为函数y=f(x)(x∈P)的值域;f(M)为函数y=f(x)(x∈M)的值域.进而考虑仿照第1题,从构造反例切入进行筛选.(1)取P={x|x≥0},M={x|x<0},则f(P)={x|x≥0}, f(M)={x|x>0}此时P∩M=φ,P∪M=R,但f(P)∩f(M) ≠φ,f(P) ∪f(M)≠ R由此判断①.③不正确(2)当P∩M≠φ时,则由函数f(x)的定义知P∩M={0}(否则便由f(x)的解析式导出矛盾),所以0∈f(P),0∈f(M),从而f(P)∩f(M)≠φ.由此判断②正确.(3)当P∪M≠R时,若0P∪M,则由函数f(x)的定义知,0f(P) ∪f(M)若存在非零x0P∪M, (※),易知x0f(P)当x0f(M)时,有x0f(P)∪f(M);当x0∈f(M)时,则易知-x0∈M.注意到这里-x0≠0,所以-x0P,从而-x0f(P).又∵x0M,∴-x0f(M),∴-x0f(P)∪f(M) (※※)∴由①.②知当P∪M≠R时,一定有f(P) ∪f(M)≠ R.故判断④正确.点评:认知f(P).f(M)的本质与特殊性,是本题推理和筛选的基础与保障.6.设全集I=R,(1)解关于x的不等式|x-1|+a-1>0(a∈R);(2)设A为(1)中不等式的解集,集合,若(A)∩B恰有3个元素,求a的取值范围.分析:(1)原不等式|x-1|>1-a,运用公式求解须讨论1-a的符号.(2)从确定 A与化简B切入,进而考虑由已知条件导出关于a的不等式(组),归结为不等式(组)的求解问题.解:(1)原不等式|x-1|>1-a当1-a<0,即a>1时,原不等式对任意x∈R成立;当1-a=0,即a=1时,原不等式|x-1|>0x≠1;当1-a>0,即a<1时,原不等式x-1<a-1或x-1>1-ax<a或x>2-a于是综合上述讨论可知,当a>1时,原不等式的解集为R;当a≤1时,原不等式的解集为(-∞,a)∪(2-a,+ ∞)(2)由(1)知,当a>1时,A=φ;当a≤1时, A={x|a≤x≤2-a}注意到==∴∴(A)∩B恰有3个元素A恰含三个整数元素.(A有三个元素的必要条件)(对A=[a,2-a]的右端点的限制)(对A=[a,2-a]的左端点的限制)故得-1<a≤0,∴所求a的取值范围为.点评:不被集合B的表象所迷惑,坚定从化简与认知集合B切入.当问题归结为A恰含三个整数时,寻觅等价的不等式组,既要考虑A含有三个整数的必要条件(宏观的范围控制),又要考虑相关区间的左\右端点的限制条件(微观的左右“卡位”),两方结合导出已知条件的等价不等式组.。
集合与简易逻辑要点
![集合与简易逻辑要点](https://img.taocdn.com/s3/m/b810417df242336c1eb95e43.png)
第一章 集合与简易逻辑知识要点复习一、集合:1、集合:某些 的对象集在一起就形成一个集合,简称集。
2、元素:集合中的每个 叫做这个集合的元素。
3、常用数集的记法:N 表示 、*N 表示 、Z 表示 、Q 表示 、R 表示 。
4、a 是集合A 的元素,记做 、a 不是集合A 的元素,记做 。
5、元素性质:集合的元素具有 、 、 。
6、集合的表示方法:常用的有 与 。
7、方程0652=+-x x 的解集,可用描述法表示为 、用列举法表示为 。
8、集合的分类:按元素的多少,集合可分为 、 、 三类。
二、子集、全集、补集9、子集:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,我们就说集合A 集合B ,或集合B 集合A 。
也说集合A 是集合B 的子集。
即:若“B x A x ∈⇒∈”则B A ⊆。
10、任何一个集合是 的子集。
11、空集是 集合的子集。
12、相等:对于两个集合A 与B ,如果集合A 的 元素都是集合B 的元素,同时集合B 的 元素都是集合A 的元素,我们就说A B 。
即:若A B ,且B A ,那么B A =。
13、真子集:对于两个集合A 与B ,如果A B ,并且A B ,我们就说集合A 是集合B 的真子集。
14、空集是 集合的真子集。
15、全集:如果集合S 含有我们所要研究的各个集合的 ,这个集合就可以看作一个全集,全集通常用U 表示。
16、补集:设S 是一个集合,A 是S 的子集,由S 中所有 A 的元素组成的集合,叫做S 中子集A 的补集。
即:=A C S 。
三、交集、并集17、交集:由所有属于集合A 属于集合B 的元素所组成的集合,叫做A 与B 的交集。
即:=B A 。
18、并集:由所有属于集合A 属于集合B 的元素所组成的集合,叫做A 与B 的并集。
即:=B A 。
19、性质:=A A ,=φ A ,=B A ; =A A ,=φ A ,=B A ; A (A C U )= , A (A C U )= ;(A C U ) (B C U )= ,(A C U ) (B C U )= 。
集合与简单逻辑知识点
![集合与简单逻辑知识点](https://img.taocdn.com/s3/m/6d0aa524aaea998fcc220ed9.png)
一.集合与简单逻辑1.【1.1】集合的含义与表示(1)集合的概念集合中的元素具有确定性、互异性和无序性. (2)常用数集及其记法N 表示自然数集,N *或N +表示正整数集,Z 表示整数集,Q 表示有理数集,R 表示实数集.(3)集合与元素间的关系对象a 与集合M 的关系是a M ∈,或者a M ∉,两者必居其一. (4)集合的表示法①自然语言法:用文字叙述的形式来描述集合.②列举法:把集合中的元素一一列举出来,写在大括号内表示集合. ③描述法:{x |x 具有的性质},其中x 为集合的代表元素. ④图示法:用数轴或韦恩图来表示集合. (5)集合的分类①含有有限个元素的集合叫做有限集.②含有无限个元素的集合叫做无限集.③不含有任何元素的集合叫做空集(∅).【1.2】集合间的基本关系(6)子集、真子集、集合相等 名称记号意义性质 示意图子集B A ⊆(或)A B ⊇A 中的任一元素都属于B(1)A ⊆A(2)A ∅⊆(3)若B A ⊆且B C ⊆,则A C ⊆ (4)若B A ⊆且B A ⊆,则A B =A(B)或BA真子集A ≠⊂B(或B ≠⊃A )B A ⊆,且B 中至少有一元素不属于A(1)A ≠∅⊂(A 为非空子集)(2)若A B ≠⊂且B C ≠⊂,则A C ≠⊂BA集合 相等A B =A 中的任一元素都属于B ,B 中的任一元素都属于A(1)A ⊆B (2)B ⊆AA(B)(7)已知集合A 有(1)n n ≥个元素,则它有2n个子集,它有21n-个真子集,它有21n-个非空子集,它有22n-非空真子集.【1.3】集合的基本运算(8)交集、并集、补集名称记号意义性质示意图交集A B{|,x x A∈且}x B∈(1)A A A=(2)A∅=∅(3)A B A⊆A B B⊆BA并集A B{|,x x A∈或}x B∈(1)A A A=(2)A A∅=(3)A B A⊇A B B⊇BA补集U Að{|,}x x U x A∈∉且1()UA A=∅ð2()UA A U=ð【补充知识】含绝对值的不等式与一元二次不等式的解法(1)含绝对值的不等式的解法不等式解集||(0)x a a<>{|}x a x a-<<||(0)x a a>>|x x a<-或}x a>||,||(0) ax b c ax b c c+<+>>把ax b+看成一个整体,化成||x a<,||(0)x a a>>型不等式来求解(2)一元二次不等式的解法判别式24b ac ∆=-∆>0∆=0∆<二次函数2(0)y ax bx c a=++>的图象O一元二次方程20(0) ax bx c a++=>的根21,242b b acxa-±-=(其中12)x x<122bx xa==-无实根20(0) ax bx c a++>>的解集1{|x x x<或2}x x>{|x}2bxa≠-R ()()()U U UA B A B=痧()()()U U UA B A B=痧20(0)ax bx c a ++<>的解集12{|}x x x x << ∅ ∅2.简单逻辑用语1、命题:用语言、符号或式子表达的,可以判断真假的陈述句. 真命题:判断为真的语句.假命题:判断为假的语句.2、“若p ,则q ”形式的命题中的p 称为命题的条件,q 称为命题的结论.3、原命题:“若p ,则q ” 逆命题: “若q ,则p ” 否命题:“若p ⌝,则q ⌝” 逆否命题:“若q ⌝,则p ⌝”4、四种命题的真假性之间的关系:(1)两个命题互为逆否命题,它们有相同的真假性;(2)两个命题为互逆命题或互否命题,它们的真假性没有关系. 5、若p q ⇒,则p 是q 的充分条件,q 是p 的必要条件. 若p q ⇔,则p 是q 的充要条件(充分必要条件).利用集合间的包含关系: 例如:若B A ⊆,则A 是B 的充分条件或B 是A 的必要条件;若A=B ,则A 是B 的充要条件;6、逻辑联结词:⑴且(and ) :命题形式p q ∧;⑵或(or ):命题形式p q ∨; ⑶非(not ):命题形式p ⌝.pqp q ∧p q ∨p ⌝真 真 真 真 假 真 假 假 真 假 假 真 假 真真 假假假假真7、⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
集合与简易逻辑基础知识点总结
![集合与简易逻辑基础知识点总结](https://img.taocdn.com/s3/m/92da6fcde009581b6bd9ebc1.png)
集合、简易逻辑知识梳理:1、 集合:某些指定的对象集在一起就构成一个集合。
集合中的每一个对象称为该集合的元素。
元素与集合的关系:A a ∈或A a ∉集合的常用表示法: 列举法 、 描述法 。
集合元素的特征: 确定性 、 互异性 、 无序性 。
常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊄B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。
注:空集是任何集合的子集。
是非空集合的真子集结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。
5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。
通常全集记作U 。
6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂即:B A ⋂=}{B x A x x ∈∈且,|。
7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃即:B A ⋂=}{B x A x x ∈∈或,|。
记住两个常见的结论:B A A B A ⊆⇔=⋂;A B A B A ⊆⇔=⋃; 9、命题:可以判断真假的语句叫做命题。
(全称命题 特称命题)⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
高考,数学,集合与简单逻辑,知识点
![高考,数学,集合与简单逻辑,知识点](https://img.taocdn.com/s3/m/3f8ea76d48d7c1c708a145f0.png)
§01. 集合与简易逻辑 知识要点一、知识结构:本章知识主要分为集合、简单不等式的解法(集合化简)、简易逻辑三部分:二、知识回顾: (一)集合1. 基本概念:集合、元素;有限集、无限集;空集、全集;符号的使用.2. 集合的表示法:列举法、描述法、图形表示法. 集合元素的特征:确定性、互异性、无序性. 集合的性质:①任何一个集合是它本身的子集,记为A A ⊆; ②空集是任何集合的子集,记为A ⊆φ; ③空集是任何非空集合的真子集; 如果B A ⊆,同时A B ⊆,那么A = B. 如果C A C B B A ⊆⊆⊆,那么,.[注]:①Z = {整数}(√) Z ={全体整数} (×)②已知集合S 中A 的补集是一个有限集,则集合A 也是有限集.(×)(例:S=N ; A=+N ,则C s A= {0}) ③ 空集的补集是全集.④若集合A =集合B ,则C B A = ∅, C A B = ∅ C S (C A B )= D ( 注 :C A B = ∅). 3. ①{(x ,y )|xy =0,x ∈R ,y ∈R }坐标轴上的点集. ②{(x ,y )|xy <0,x ∈R ,y ∈R}二、四象限的点集.③{(x ,y )|xy >0,x ∈R ,y ∈R } 一、三象限的点集. [注]:①对方程组解的集合应是点集. 例: ⎩⎨⎧=-=+1323y x y x 解的集合{(2,1)}.②点集与数集的交集是φ. (例:A ={(x ,y )| y =x +1} B={y |y =x 2+1} 则A ∩B =∅)4. ①n 个元素的子集有2n 个. ②n 个元素的真子集有2n -1个. ③n 个元素的非空真子集有2n -2个.5. ⑴①一个命题的否命题为真,它的逆命题一定为真. 否命题⇔逆命题. ②一个命题为真,则它的逆否命题一定为真. 原命题⇔逆否命题. 例:①若325≠≠≠+b a b a 或,则应是真命题.解:逆否:a = 2且 b = 3,则a+b = 5,成立,所以此命题为真. ②,且21≠≠y x 3≠+y x . 解:逆否:x + y =3x = 1或y = 2.21≠≠∴y x 且3≠+y x ,故3≠+y x 是21≠≠y x 且的既不是充分,又不是必要条件.⑵小范围推出大范围;大范围推不出小范围. 3. 例:若255 x x x 或,⇒. 4. 集合运算:交、并、补.{|,}{|}{,}A B x x A x B A B x x A x B A x U x A ⇔∈∈⇔∈∈⇔∈∉U 交:且并:或补:且C 5. 主要性质和运算律 (1) 包含关系:,,,,,;,;,.U A A A A U A U A B B C A C A B A A B B A B A A B B ⊆Φ⊆⊆⊆⊆⊆⇒⊆⊆⊆⊇⊇C(2) 等价关系:U A B A B A A B B AB U ⊆⇔=⇔=⇔=C (3) 集合的运算律:交换律:.;A B B A A B B A ==结合律:)()();()(C B A C B A C B A C B A == 分配律:.)()()();()()(C A B A C B A C A B A C B A == 0-1律:,,,A A A UA A UA U Φ=ΦΦ===等幂律:.,A A A A A A ==求补律:A ∩C U A =φ A ∪C U A =U C U U =φ C U φ=U反演律:C U (A ∩B)= (C U A )∪(C U B ) C U (A ∪B)= (C U A )∩(C U B ) 1.整式不等式的解法根轴法(零点分段法)①将不等式化为a 0(x-x 1)(x-x 2)…(x-x m )>0(<0)形式,并将各因式x 的系数化“+”;(为了统一方便) ②求根,并在数轴上表示出来;③由右上方穿线,经过数轴上表示各根的点(为什么?);④若不等式(x 的系数化“+”后)是“>0”,则找“线”在x 轴上方的区间;若不等式是“<0”,则找“线”在x 轴下方的区间.x(自右向左正负相间)则不等式)0)(0(0022110><>++++--a a x a x a x a n n n n 的解可以根据各区间的符号确定.特例① 一元一次不等式ax>b 解的讨论;22.分式不等式的解法 (1)标准化:移项通分化为)()(x g x f >0(或)()(x g x f <0);)()(x g x f ≥0(或)()(x g x f ≤0)的形式, (2)转化为整式不等式(组)⎩⎨⎧≠≥⇔≥>⇔>0)(0)()(0)()(;0)()(0)()(x g x g x f x g x f x g x f x g x f原命题若p 则q 否命题若┐p 则┐q 逆命题若q 则p逆否命题若┐q 则┐p 互为逆否互逆否互为逆否互互逆否互3.含绝对值不等式的解法(1)公式法:c b ax <+,与)0(>>+c c b ax 型的不等式的解法.(2)定义法:用“零点分区间法”分类讨论.(3)几何法:根据绝对值的几何意义用数形结合思想方法解题. 4.一元二次方程根的分布一元二次方程ax 2+bx+c=0(a ≠0) (1)根的“零分布”:根据判别式和韦达定理分析列式解之. (2)根的“非零分布”:作二次函数图象,用数形结合思想分析列式解之. (三)简易逻辑1、命题的定义:可以判断真假的语句叫做命题。
高中数学知识点总结(新高考地区)精选全文完整版
![高中数学知识点总结(新高考地区)精选全文完整版](https://img.taocdn.com/s3/m/2827900c76232f60ddccda38376baf1ffc4fe3fa.png)
一:集合与简易逻辑1.元素与集合(1)集合中元素的三个特性:确定性、互异性、无序性.(2)元素与集合的关系是属于或不属于,表示符号分别为∈和∉.(3)集合的三种表示方法:列举法、描述法、图示法.2.集合间的基本关系文字语言符号语言集合间的基本关系相等集合A与集合B中的所有元素都相同A=B 子集集合A中任意一个元素均为集合B中的元素A⊆B 真子集集合A中任意一个元素均为集合B中的元素,且集合B中至少有一个元素不是集合A中的元素BA⊂≠空集空集是任何集合的子集,是任何非空集合的真子集3.集合的基本运算集合的并集集合的交集集合的补集符号表示A∪B A∩B若全集为U,则集合A的补集为∁U A 图形表示集合表示{x|x∈A,或x∈B}{x|x∈A,且x∈B}{x|x∈U,且x∉A} 4.集合的运算性质(1)A∩A=A,A∩∅=∅,A∩B=B∩A.(2)A∪A=A,A∪∅=A,A∪B=B∪A.(3)A∩(∁U A)=∅,A∪(∁U A)=U,∁U(∁U A)=A.[方法技巧](1).若有限集A中有n个元素,则A的子集有2n个,真子集有2n-1个.(2)子集的传递性:A⊆B,B⊆C⇒A⊆C.(3)A⊆B⇔A∩B=A⇔A∪B=B⇔∁U A⊇∁U B.(4)∁U(A∩B)=(∁U A)∪(∁U B),∁U(A∪B)=(∁U A)∩(∁U B).15q pqq6、全称量词与存在量词(1)全称量词:短语“所有”在陈述中表示所述事物的全体,逻辑中通常叫做全称量词,并用符号“∀”表示.(2)存在量词:短语“有一个”或“有些”或“至少有一个”在陈述中表示所述事物的个体或部分,逻辑中通常叫做存在量词,并用符号“∃”表示.7、全称命题和存在性命题(命题p的否定记为⌝p,读作“非p”)[方法技巧]1.区别A是B的充分不必要条件(A⇒B且B⇏A),与A的充分不必要条件是B(B⇒A且A⇏B)两者的不同.2.A是B的充分不必要条件⇔⌝B是⌝A的充分不必要条件.3.含有一个量词的命题的否定规律是“改量词,否结论”.2二:函数基本知识(1)1、函数三要素32、函数性质43、指数和对数运算4、函数图象变换55、一元二次方程根的分布⎧Δ=067三:函数基本知识(2)1、一次函数2、反比例函数o yxyxo4、指数函数和对数函数(0∞)8点,且在第一象限是减函数.,1)点).“指大图低”).910四:三角函数1、任意角的三角函数(1)定义:角可以看成平面内的一条射线绕着端点从一个位置旋转到另一个位置所成的图形.(2)分类⎩⎪⎨⎪⎧按旋转方向不同分为正角、负角、零角.按终边位置不同分为象限角和轴线角.(3)终边相同的角:所有与角α终边相同的角,连同角α在内,可构成一个集合S ={β|β=α+k ·360°,k ∈Z }. 2.弧度制的定义和公式(1)定义:把长度等于半径长的弧所对的圆心角叫做1弧度的角,弧度记作rad. (2)公式角α的弧度数公式 |α|=lr (弧长用l 表示)角度与弧度的换算1°=π180rad ;1 rad =⎝⎛⎭⎫180π° 弧长公式 弧长l =|α|r 扇形面积公式S =12lr =12|α|r 2 3.任意角的三角函数(1)定义:设α是一个任意角,它的终边与单位圆交于点P (x ,y ),那么sin α=y ,cos α=x ,tan α=yx(x ≠0).(2)几何表示:三角函数线可以看作是三角函数的几何表示,正弦线的起点都在x 轴上,余弦线的起点都是原点,正切线的起点都是(1,0).如图中有向线段MP ,OM ,AT 分别叫做角α的正弦线、余弦线和正切线.[提醒](1)若α∈⎝⎛⎭⎫0,π2,则tan α>α>sin α. (2)角度制与弧度制可利用180°=π rad 进行互化,在同一个式子中,采用的度量制度必须一致,不可混用.114.象限角的集合5.轴线角的集合6.同角三角函数的基本关系(1)平方关系:sin 2α+cos 2α=1. (2)商数关系:sin αcos α=tan α.2k πα+ α− πα− πα+ 2πα− 2πα−2πα+2πα−sinsin αsin α−sin αsin α−sin α−cos αcos αcos α−coscos αcos αcos α−cos α−cos αsin α sin α− sin αtan tan α tan α− tan α− tan α tan α− cot α cot α− cot α−8.两角和与差的三角函数:S αβ+:sin()sin cos cos sin αβαβαβ+=⋅+⋅ S αβ−:sin()sin cos cos sin αβαβαβ−=⋅−⋅ C αβ+:cos()cos cos sin sin αβαβαβ+=⋅−⋅ C αβ−:cos()cos cos sin sin αβαβαβ−=⋅+⋅ T αβ+: βαβαβαtan tan 1tan tan )tan(−+=+T αβ−: βαβαβαtan tan 1tan tan )tan(+−=−129.二倍角公式:2S α:sin 22sin cos ααα= 2T α:22tan tan 21tan ααα=− 2C α2222cos 2cos sin 2cos 112sin ααααα=−=−=−10.降幂公式:1sin cos sin 22ααα= 21cos 2sin 2αα−= 21cos 2cos 2αα+=11.半角公式:12.合一变形 22sin cos )a x b x a b x ϕ+=++, 其中 tan b aϕ=1313.三角函数的图像与性质 sin y x =cos y x = tan y x =图象定义域R R,2x x k k ππ⎧⎫≠+∈Z ⎨⎬⎩⎭值域 []1,1−[]1,1−R最值 当22x k ππ=+()k ∈Z 时,max 1y =;当22x k ππ=− ()k ∈Z 时,min 1y =−.当()2x k k π=∈Z 时,max 1y =;当2x k ππ=+()k ∈Z 时,min 1y =−.既无最大值也无最小值周期性 2π2ππ奇偶性奇函数 偶函数奇函数单调性在2,222k k ππππ⎡⎤−+⎢⎥⎣⎦()k ∈Z 上是增函数;在32,222k k ππππ⎡⎤++⎢⎥⎣⎦()k ∈Z 上是减函数.在[]()2,2k k k πππ−∈Z 上是增函数;在[]2,2k k πππ+()k ∈Z 上是减函数.在,22k k ππππ⎛⎫−+⎪⎝⎭()k ∈Z 上是增函数.对称中心 ()(),0k k π∈Z(),02k k ππ⎛⎫+∈Z⎪⎝⎭ (),02k k π⎛⎫∈Z ⎪⎝⎭对称轴()2x k k ππ=+∈Z()x k k π=∈Z无对称轴函 数性 质四:平面向量“三角形法则”λ(μa)=(λμ)aλ+μ)a=λa+μa14五:解三角形1、正弦定理和余弦定理2、解三角形的四种模型153、解三角形的多解分析已知两边和其中一边的对角解三角形时,应分析解的情况:如已知a,b,A,则当A为锐角时当A为钝角或直角时图示关系式a<b sin A a=b sin A b sin A<a<b a≥b a>b a≤b解的情况无解一解两解一解一解无解16六:数列1、数列基本性质172、求数列通项公式(1).前n项和型(2)递推公式型183、数列求和19七:圆锥曲线1、椭圆a b-a≤x≤a,-b≤y≤b≤x≤b,-a≤y≤对称轴:对称中心:原点F1(-c,0),F2(c,0)(0,-c),F2(0,2、双曲线≤-a或x≥a;y∈∈R;y≤-a或y对称中心:原点203、抛物线x≥0;y∈R x≤0;y∈R x∈R;y≥0x∈R;y≤0对称轴:轴轴214、圆锥曲线的常用性质2223八:直线方程与圆的方程【公式】1.斜率公式(1)若直线l 的倾斜角α≠90°,则斜率k =tan α.(2)P 1(x 1,y 1),P 2(x 2,y 2)在直线l 上,且x 1≠x 2,则l 的斜率k =y 2-y 1x 2-x 1.3.几种距离公式(1)两点P 1(x 1,y 1),P 2(x 2,y 2)之间的距离:|P 1P 2|=(x 2-x 1)2+(y 2-y 1)2.(2)点P 0(x 0,y 0)到直线l :Ax +By +C =0的距离:d =|Ax 0+By 0+C |A 2+B 2.(3)两条平行线Ax +By +C 1=0与Ax +By +C 2=0(其中C 1≠C 2)间的距离:d =|C 1-C 2|A 2+B 2.4.圆的标准方程:(x -a )2+(y -b )2=r 2(r >0),其中(a ,b )为圆心,r 为半径.5.圆的一般方程:x 2+y 2+Dx +Ey +F =0该方程表示圆的充要条件是D 2+E 2-4F >0其中圆心为⎝⎛⎭⎫-D 2,-E 2,半径r =D 2+E 2-4F 2.6.判断直线与圆的位置关系常用的两种方法(1)几何法:利用圆心到直线的距离d 和圆半径r 的大小关系:d <r ⇔相交;d =r ⇔相切;d >r ⇔相离.(2)代数法:利用判别式Δ=b 2-4ac 进行判断:Δ>0⇔相交;Δ=0⇔相切;Δ<0⇔相离.247.圆与圆的位置关系:设圆O 1:(x -a 1)2+(y -b 1)2=r 21(r 1>0),圆O 2:(x -a 2)2+(y -b 2)2=r 22(r 2>0).则:d >r 1+r 2⇔外离; d =r 1+r 2⇔外切; |r 1-r 2|<d <r 1+r 2⇔相交;d =|r 1-r 2|⇔内切; 0≤d <|r 1-r 2|⇔内含【必备结论】1.斜率与倾斜角的关系:由正切图象可以看出:①当α∈⎣⎡⎭⎫0,π2时,斜率k ∈[0,+∞)且随着α增大而增大; ②当α=π2时,斜率不存在,但直线存在;③当α∈⎝⎛⎭⎫π2,π时,斜率k ∈(-∞,0)且随着α增大而增大.2.两条直线的位置关系(1)斜截式判断法:①两条直线平行:对于两条不重合的直线l 1、l 2:(ⅰ)若其斜率分别为k 1、k 2,则有l 1∥l 2⇔k 1=k 2.(ⅱ)当直线l 1、l 2不重合且斜率都不存在时,l 1∥l 2.②两条直线垂直:(ⅰ)如果两条直线l 1、l 2的斜率存在,设为k 1、k 2,则有l 1⊥l 2⇔k 1·k 2=-1.(ⅱ)当其中一条直线的斜率不存在,而另一条的斜率为0时,l 1⊥l 2.(2)一般式判断法:设两直线A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0,则有:①l 1∥l 2⇔A 1 B 2=A 2B 1且A 1 C 2≠A 2 C 1; ②l 1⊥l 2⇔A 1A 2+B 1B 2=0.3.直线系方程:(1)平行线系:与直线Ax +By +C =0平行的直线方程可设为:Ax +By +m =0(m ≠C );(2)垂直线系:与直线Ax +By +C =0垂直的直线方程可设为:Bx -Ay +n =0;(3)交点线系:过A 1x +B 1y +C 1=0与A 2x +B 2y +C 2=0的交点的直线可设:A 1x +B 1y +C 1+λ(A 2x +B 2y +C 2)=0.4.点与圆的位置关系圆方程(x-a)2+(y-b)2=r2,一般方程x2+y2+Dx+Ey+F=0,点M(x0,y0),则有:(1)点在圆上:(x0-a)2+(y0-b)2=r2,x02+y02+Dx0+E y0+F=0;(2)点在圆外:(x0-a)2+(y0-b)2>r2,x02+y02+Dx0+E y0+F>0;(3)点在圆内:(x0-a)2+(y0-b)2<r2,x02+y02+Dx0+E y0+F<0.5.圆的切线方程常用结论(1)过圆x2+y2=r2上一点P(x0,y0)的圆的切线方程为:x0x+y0y=r2.(2)过圆(x-a)2+(y-b)2=r2上一点P(x0,y0)的圆的切线方程为:(x0-a)(x-a)+(y0-b)(y-b)=r2.(3)过圆C:x2+y2+Dx+Ey+F=0外一点M(x0,y0)作圆的两条切线,则两切点所在直线方程的求法:①以M为圆心,切线长为半径求圆M的方程;②用圆M的方程减去圆C的方程即得;6.圆与圆的位置关系的常用结论(1)两圆的位置与公切线的条数:①内含:0条;②内切:1条;③相交:2条;④外切:3条;⑤外离:4条.(2)公共弦直线:当两圆相交时,两圆方程(x2,y2项系数相同)相减便可得公共弦所在直线的方程.7.常用口诀:①直线带参,必过定点;②弦长问题,用勾股.【方法】1.直线的对称问题:(1)点关于线对称:方程组法,设对称后点的坐标为(x,y),根据中点坐标及垂直斜率列方程组;(2)线关于线对称:①求交点;②已知直线上取一个特殊点,并求其关于直线的对称点;③两点定线即可.(3)圆关于线对称:圆心对称,半径不变.25262.直线与圆的相关问题:(1)切线问题:一般设直线点斜式(讨论斜率存在),然后依据d =r 列方程求解;(2)弦长问题:用勾股,即圆的半径为r ,弦心距为d ,弦长为l ,则根据勾股得⎝⎛⎭⎫l 22=r 2-d 2;3.轨迹求法:①直译法:直接根据题目提供的动点条件,直接列出方程,化简可得;②几何法:根据动点满足的几何特征,判断其轨迹类型,然后根据轨迹定义直接写出方程.③代入法:找到要求点与已知点的关系,代入已知点满足的关系式等.27九:立体几何与空间向量【公式】1.空间几何体的表面积与体积公式:(1)基本公式:①圆:面积S 圆=πr 2, 周长C 圆=2πr ;②扇形:弧长l 扇形=αR , 面积S 扇形=12lR =12αR 2,周长C 扇形=l +2R .S 圆柱侧=2πrl S 圆锥侧=πrl 圆台侧=π(r 1+(3)柱、锥、台和球的体积公式①柱体(棱柱和圆柱):S 表面积=S 侧+2S 底,V 柱=Sh ;②锥体(棱锥和圆锥) :S 表面积=S 侧+S 底,V 锥=13Sh ;③台体(棱台和圆台) : S 表面积=S 侧+S 上+S 下,V 台=13(S 上+S 下+S 上S 下)h ;④球:S 球=4πR 2 ,V 球=43πR 3;2.平行关系的判定及性质定理:283.垂直关系的判定及性质定理:图形语言4.空间向量与立体几何的求解公式:(1)异面直线成角:设a ,b 分别是两异面直线l 1,l 2的方向向量,则l 1与l 2所成的角θ满足:cos θ=|a ·b ||a ||b |;(2)线面成角:设直线l 的方向向量为a ,平面α的法向量为n ,a 与n 的夹角为β,则直线l 与平面α所成的角为θ满足:sin θ=|cos β|=|a ·n ||a ||n |.(3)二面角:设n 1,n 2分别是二面角α-l -β的两个半平面α,β的法向量,则两面的成角θ满足:cos θ=cos 〈n 1,n 2〉=n 1·n 2|n 1|·|n 2|;(4)点到平面的距离:如右图所示,已知AB 为平面α的一条斜线段,n 为平面α的法向量,则点B 到平面α的距离为:|BO →|=|AB →·n ||n |,即向量在法向量n 的方向上的投影长.29【结论】1.直观图与原图的关系:(1)作图关系:①位置:平行性、相交性不变;②长度:平行x (z )轴的长度不变,平行y 轴的长度减半.(2)面积关系:S 直观图′=24×S 原图;2.几个与球有关的内切、外接常用结论:(1)正方体的棱长为a ,球的半径为R ,则: ①若球为正方体的外接球,则2R =3a ; ②若球为正方体的内切球,则2R =a ; ③球与正方体的各棱相切,则2R =2a .(2)长方体的长、宽、高分别为a ,b ,c ,则外接球直径=长方体对角线,即:2R =a 2+b 2+c 2.(3)正四面体的外接球与内切球的半径之比为:3∶1.3.几种常见角的取值范围:①异面直线成角∈(0,π2]②二面角∈[0,π]③线面角∈[0,π2]④向量夹角∈[0,π] ⑤直线的倾斜角∈[0,π)【方法】1.三视图还原方法:提点连线法,具体步骤:①根据三视图轮廓画长方体或正方体; ②在底面画俯视图;③综合正视图和左视图进行提点连线; ④验证与完善.2.平行构造的常用方法:①三角形中位线法; ②平行四边形线法; ③比例线段法.3.垂直构造的常用方法:①等腰三角形三线合一法; ②勾股定理法; ③投影法.4.用向量证明空间中的平行关系(1)线线平行:设直线l1和l2的方向向量分别为v1和v2,则l1∥l2(或l1与l2重合)⇔v1∥v2.(2)线面平行:设直线l的方向向量为v,平面α的法向量为u,则l∥α或l⊂α⇔v⊥u.(3)面面平行:设平面α和β的法向量分别为u1,u2,则α∥β⇔u1∥u2.5.用向量证明空间中的垂直关系(1)线线垂直:设直线l1和l2的方向向量分别为v1和v2,则l1⊥l2⇔v1⊥v2⇔v1·v2=0.(2)线面垂直:设直线l的方向向量为v,平面α的法向量为u,则l⊥α⇔v∥u.(3)面面垂直:设平面α和β的法向量分别为u1和u2,则α⊥β⇔u1⊥u2⇔u1·u2=0.6.点面距常用方法:①作点到面的垂线,点到垂足的距离即为点到平面的距离;②等体积法;③向量法7.外接球常用方法:①将几何体补成长方体或正方体,则球直径=体对角线;②过两个三角形的外接圆圆心作圆面垂线,则垂线交点即为外接球球心,找到球心即可求半径.3031十:排列组合与二项式定理1、分类加法计数原理:做一件事,完成它有类办法,在第一类办法中有种不同的方法,在第二类办法中有种不同的方法……在第类办法中,有种不同的方法.那么完成这件事共有种不同的方法.2、分步乘法计数原理:做一件事,完成它需要分成个步骤,做第一个步骤有种不同的方法,做第一个步骤有种不同的方法……做第个步骤有种不同的方法.那么完成这件事共有种不同的方法.3、排列:(1)、排列:从个不同元素中任取个元素,按照一定的顺序排成一列,叫做从个不同元素中取出个元素的一个排列(2)、排列数从个不同元素中取出个元素的所有排列的个数,叫做从个不同元素中取出个元素的排列数,用符号表示:当时,为全排列.的阶乘:排列数公式可写成(规定)n 1m 2m n n m 12n N m m m =+++n 1m 2m n 12n N m m m =⨯⨯⨯n ()m m n ≤n m n ()m m n ≤n m mn A ()()()121mn A n n n n m =−−−+m n =()()12321nn A n n n =−−⨯⨯n ()()12321!nn A n n n n =−−⨯⨯=()!!mn n A n m =−0!1=324、组合 (1)组合:从n 个元素中取出m 个元素合成一组,叫做从n 个元素中取出m 个元素的一个组合。
集合与简易逻辑(高考知识点复习总结)
![集合与简易逻辑(高考知识点复习总结)](https://img.taocdn.com/s3/m/48e5e928ccbff121dd36834a.png)
专题一:集合与常用逻辑用语一、知识梳理:1、集合:一般地,一定范围内某些确定的、不同的对象的全体构成一个集合。
集合中的每一个对象称为该集合的元素。
集合的常用表示法:______ 、 ____ 。
集合元素的特征: _____ 、 ____ 、 _______。
2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B ,或B ⊃A ,读作“集合A 包含于集合B ”或“集合B 包含集合A ”。
即:若A a ∈则B a ∈,那么称集合A 称为集合B 的子集注:空集是任何集合的子集。
3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊆B 或B ⊇A ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。
集合的子集个数:设含有n 个元素的集合A ,则A 的子集个数为________;A的真子集个数为 ;A 的非空子集个数为 ;A 的非空真子集个数为 。
4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。
5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。
通常全集记作U 。
6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂(读作“A 交B ”),即:B A ⋂=}{B x A x x ∈∈且,|。
B A ⋂=A B ⋂,B A ⋂B B A A ⊆⋂⊆,。
7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃(读作“A 并B ”),即:B A ⋂=}{B x A x x ∈∈或,|。
B A ⋃=A B ⋃,⊆A B A ⋃,⊆B B A ⋃。
8、元素与集合的关系:有 、 两种,集合与集合间的关系,用 。
集合与数理逻辑知识点总结
![集合与数理逻辑知识点总结](https://img.taocdn.com/s3/m/cac6a71a0622192e453610661ed9ad51f11d545f.png)
集合与数理逻辑知识点总结
1. 集合基础知识
- 集合是由一组元素组成的整体。
- 集合中的元素是无序的,并且每个元素只能在集合中出现一次。
- 可以用大写字母来表示集合,例如:A,B,C。
- 可以使用集合的描述法来定义集合,例如:A = {1, 2, 3}。
- 两个集合相等当且仅当它们具有相同的元素。
2. 集合运算
- 并集:两个集合A和B的并集,表示为A ∪ B,包括A和B 中的所有元素。
- 交集:两个集合A和B的交集,表示为A ∩ B,包括同时属于A和B的元素。
- 差集:集合A相对于集合B的差集,表示为A - B,包括在A中但不在B中的元素。
- 补集:集合A相对于全集U的补集,表示为A',包括在U 中但不在A中的所有元素。
3. 数理逻辑基础知识
- 数理逻辑是研究逻辑关系和推理过程的数学分支。
- 命题是陈述句,可以为真或假。
- 逻辑运算包括合取(与)、析取(或)和否定(非)运算。
- 命题逻辑是研究命题之间的逻辑关系的数理逻辑分支。
4. 数理逻辑运算
- 合取:命题p和q的合取,记作p ∧ q,表示当且仅当p和q 都为真时的命题。
- 析取:命题p和q的析取,记作p ∨ q,表示当p和q中至少有一个为真时的命题。
- 否定:命题p的否定,记作¬p,表示p的反命题,即当p为真时,¬p为假;当p为假时,¬p为真。
以上是集合与数理逻辑的一些基础知识点总结,希望对您有所帮助。
第一章 集合与简易逻辑
![第一章 集合与简易逻辑](https://img.taocdn.com/s3/m/c3b8e630376baf1ffc4fad79.png)
第一章 集合与简易逻辑1.集合的初步知识:⑴集合的基本概念①集合的元素:某些指定的对象集在一起就成为一个集合,集合中的 叫做这个集合的元素.若a 是集合A 的元素,就说a 集合A ,记作 .若a 不是集合A 的元素,称a 集合A ,记作 .不含任何元素的集合叫做 ,记作 .②集合元素的特性: .③集合的分类: .④集合的表示法: .⑤常见数集的记号: (自然数集)、 (正整数集)、 (整数集)、 (有理数集)、 (实数集).⑵集合与集合的关系①子集与真子集:对于集合A ,B ,若A 的任何一个元素都是B 的元素,就说集合B 包含集合A ,记作 ,此时也说集合A 是集合B 的 .对于集合A 与B ,若 且 则A=B.若A ⊆B 且A=B ,就说A 是B 的 ,记作 .传递性:对于集合C B A ,,,如果C B B A ⊆⊆,,则 .如果A B ,B C ,则 .空集是 的子集, 即 .空集是 的真子集,即 .含n 个元素的集合的子集的个数为 .含n 个元素的集合的真子集的个数为 .②补集与全集:若A ⊆S ,则A 在S 中的补集C s A= .若一个集合含有要研究的各个集合的全部元素,则这个集合就可以看做一个全集,全集通常用U 表示.③交集与并集:A ∩B= ;A ∪B= .④摩根律:(C U A)∩(C U B)= .(C U A)∪(C U B)= .⑶不等式的解法①含绝对值的不等式:|x|<a(a>0) ⇔ .|x|>a(a>0) ⇔ .)0(><+c c b ax ⇔ . )0(>>+c c b ax ⇔ . ②一元二次不等式:ax 2+bx+c>0或ax 2+bx+c <0 (a>0)的解集如下表:△=ac b 42- 0>∆0=∆ 0<∆二次函数 c bx ax y ++=2(0>a )的图象c bx ax y ++=2 c bx ax y ++=2 c bx ax y ++=2 一元二次方程 ()的根002>=++a c bx ax 有两相异实根)(,2121x x x x < 有两相等实根 a b x x221-== 无实根 的解集)a (c bx ax 002>>++的解集)a (c bx ax 002><++⒊简易逻辑⑴逻辑联结词: 这些词叫做逻辑联结词;简单命题: 的命题叫做简单命题;复合命题:由简单命题与 .构成的命题叫做复合命题.⑵四种命题及其关系:如右图所示.一个命题与 是等价的.⑶反证法:通过否定 而导出矛盾来达到肯定命题的结论,完成命题的论证的一种数学证明方法。
高中数学知识点总结大全
![高中数学知识点总结大全](https://img.taocdn.com/s3/m/aa0ab138591b6bd97f192279168884868662b843.png)
高中数学知识点总结大全高中数学知识点总结一、集合与简易逻辑1.集合的元素具有确定性、无序性和互异性.对集合,时,必须注意到“极端”情况:或;求集合的子集时是否注意到是任何集合的子集、是任何非空集合的真子集.判断命题的真假关键是“抓住关联字词”;注意:“不‘或’即‘且’,不‘且’即‘或’”.“或命题”的真假特点是“一真即真,要假全假”;“且命题”的真假特点是“一假即假,要真全真”;“非命题”的真假特点是“一真一假”.四种命题中“‘逆’者‘交换’也”、“‘否’者‘否定’也”.原命题等价于逆否命题,但原命题与逆命题、否命题都不等价.反证法分为三步:假设、推矛、得果.8.充要条件二、函数1.指数式、对数式,2.(1)映射是“‘全部射出’加‘一箭一雕’”;映射中第一个集合中的元素必有像,但第二个集合中的元素不一定有原像(中元素的像有且仅有下一个,但中元素的原像可能没有,也可任意个);函数是“非空数集上的映射”,其中“值域是映射中像集的子集”.(2)函数图像与轴垂线至多一个公共点,但与轴垂线的公共点可能没有,也可任意个.(3)函数图像一定是坐标系中的曲线,但坐标系中的曲线不一定能成为函数图像.3.单调性和奇偶性(1)奇函数在关于原点对称的区间上若有单调性,则其单调性完全相同.偶函数在关于原点对称的区间上若有单调性,则其单调性恰恰相反.(2)复合函数的单调性特点是:“同性得增,增必同性;异性得减,减必异性”.复合函数的奇偶性特点是:“内偶则偶,内奇同外”.复合函数要考虑定义域的变化。
(即复合有意义)4.对称性与周期性(以下结论要消化吸收,不可强记)(1)函数与函数的图像关于直线(轴)对称.推广一:如果函数对于一切,都有成立,那么的图像关于直线(由“和的一半确定”)对称.推广二:函数,的图像关于直线对称.(2)函数与函数的图像关于直线(轴)对称.(3)函数与函数的图像关于坐标原点中心对称.三、数列1.数列的通项、数列项的项数,递推公式与递推数列,数列的通项与数列的前项和公式的关系2.等差数列中(1)等差数列公差的取值与等差数列的单调性.(2)也成等差数列.(3)两等差数列对应项和(差)组成的新数列仍成等差数列.仍成等差数列.“首正”的递等差数列中,前项和的最大值是所有非负项之和;“首负”的递增等差数列中,前项和的最小值是所有非正项之和;有限等差数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和“奇数项和=总项数的一半与其公差的积;若总项数为奇数,则“奇数项和-偶数项和”=此数列的中项.两数的等差中项惟一存在.在遇到三数或四数成等差数列时,常考虑选用“中项关系”转化求判定数列是否是等差数列的主要有:定义法、中项法、通项法、和式法、图像法(也就是说数列是等差数列的充要条件主要有这五种形式).3.等比数列中:(1)等比数列的符号特征(全正或全负或一正一负),等比数列的首项、公比与等比数列的单调性.(2)两等比数列对应项积(商)组成的新数列仍成等比数列.“首大于1”的正值递减等比数列中,前项积的最大值是所有大于或等于1的项的积;“首小于1”的正值递增等比数列中,前项积的最小值是所有小于或等于1的项的积;有限等比数列中,奇数项和与偶数项和的存在必然联系,由数列的总项数是偶数还是奇数决定.若总项数为偶数,则“偶数项和”=“奇数项和”与“公比”的积;若总项数为奇数,则“奇数项和“首项”加上“公比”与“偶数项和”积的和.并非任何两数总有等比中项.仅当实数同号时,实数存在等比中项.对同号两实数的等比中项不仅存在,而且有一对.也就是说,两实数要么没有等比中项(非同号时),如果有,必有一对(同号时).在遇到三数或四数成等差数列时,常优先考虑选用“中项关系”转化求解.判定数列是否是等比数列的方法主要有:定义法、中项法、通项法、和式法(也就是说数列是等比数列的充要条件主要有这四种形式).4.等差数列与等比数列的联系(1)如果数列成等差数列,那么数列(总有意义)必成等比数列.(2)如果数列成等比数列,那么数列必成等差数列.如果数列既成等差数列又成等比数列,那么数列是非零常数数列;但数列是常数数列仅是数列既成等差数列又成等比数列的必要非充分条件.如果两等差数列有公共项,那么由他们的公共项顺次组成的新数列也是等差数列,且新等差数列的公差是原两等差数列公差的最小公倍数.如果一个等差数列与一个等比数列有公共项顺次组成新数列,那么常选用“由特殊到一般的方法”进行研讨,且以其等比数列的项为主,探求等比数列中那些项是他们的公共项,并构成新的数列.5.数列求和的常用方法:(1)公式法:①等差数列求和公式(三种形式),②等比数列求和公式(三种形式),分组求和法:在直接运用公式法求和有困难时,常将“和式”中“同类项”先合并在一起,再运用公式法求和.倒序相加法:在数列求和中,若和式中到首尾距离相等的两项和有其共性或数列的通项与组合数相关联,则常可考虑选用倒序相加法,发挥其共性的作用求和(这也是等差数列前和公式的推导方法).错位相减法:如果数列的通项是由一个等差数列的通项与一个等比数列的通项相乘构成,那么常选用错位相减法,将其和转化为“一个新的的等比数列的和”求解(注意:一般错位相减后,其中“新等比数列的项数是原数列的项数减一的差”!)(这也是等比数列前和公式的推导方法之一).裂项相消法:如果数列的通项可“分裂成两项差”的形式,且相邻项分裂后相关联,那么常选用裂项相消法求和(6)通项转换法。
(完整版)高中数学知识点宝典汇总
![(完整版)高中数学知识点宝典汇总](https://img.taocdn.com/s3/m/f22d818b915f804d2a16c196.png)
①定义法 步骤: a.设 x1, x2 A且 x1 x2 ; b.作差 f (x1 ) f ( x2 ) ; c.判断正负号。
②掌握函数 y ax b a b ac(b ac 0);y x a(a 0) 的图象和性质;
xc
xc
x
函
ax b
b ac
y
a
数
xc
xc
a y x (a 0 )
x
(b –ac≠ 0)
y
图
Y=a
X=-c
象
o X
y
o
x
当 b-ac>0 时 : 单
在 ( , a]和[ a , )
在 ( , c)和 (c, ) 上单调递减;
上单调递增;
调
当 b-ac<0 时 :
在 [ a, 0)和(0, a ] 上单
性
在 ( , c)和 (c, ) 上单调递增。
调递增。
2
③一些有用的结论: .在公共定义域内
五、求函数的值域的常用解题方法: ① 配方法。如函数 y x 4 x 2 1的值域,特点是可化为二次函数的形式;
②换元法:如 y= 1 2 x x ③单调性:如函数 y 2 x log 2 x x ∈ [1,2]
④判别式法(△法)如函数
x 2 2x 3
y=
x2 2x 3
3
⑤利用函数的图像:如函数 ⑦利用基本不等式:如函数
4.等差数列的前 n 项和: ① Sn
n(a1 a n ) 2
② Sn na1 n(n 1) d 2
对于公式②整理后是关于 n 的没有常数项的二次函数(充要条件 )。
5.等差中项 :如果 a , A , b 成等差数列,则有
集合与简易逻辑知识点
![集合与简易逻辑知识点](https://img.taocdn.com/s3/m/46d08fb9760bf78a6529647d27284b73f3423666.png)
集合与简易逻辑知识点在日常生活中,我们经常会用到集合和逻辑。
无论是进行分类、归纳还是推理,我们都需要运用集合和逻辑知识。
本文将为您介绍一些与集合和简易逻辑相关的知识点。
一、集合的定义与运算集合是由一些特定对象组成的整体。
常见的表示集合的方法是用大括号{}将元素列举出来。
例如,集合A={1,2,3,4,5}包含了数字1到5。
集合可以进行交集、并集和补集等运算。
1. 交集:两个集合的交集是包含两个集合共有元素的新集合。
例如,集合A={1,2,3},集合B={2,3,4},它们的交集是集合C={2,3}。
2. 并集:两个集合的并集是包含两个集合所有元素的新集合。
例如,集合A={1,2,3},集合B={2,3,4},它们的并集是集合C={1,2,3,4}。
3. 补集:对于给定的集合A和全集U,集合A的补集是指在全集U 中,不属于A的元素所构成的集合。
例如,全集U={1,2,3,4,5},集合A={1,2,3},它们的补集是集合C={4,5}。
二、逻辑运算与真值表逻辑是用来进行推理和判断的一种方法。
在逻辑中,常见的运算符有与(AND)、或(OR)和非(NOT)。
1. 与运算(AND):当多个条件同时满足时,结果为真(True),否则结果为假(False)。
例如,条件A为真,条件B为假,则A AND B的结果为假。
2. 或运算(OR):当多个条件中至少有一个满足时,结果为真(True),否则结果为假(False)。
例如,条件A为真,条件B为假,则A OR B的结果为真。
3. 非运算(NOT):对给定的条件取反。
例如,条件A为真,则NOT A的结果为假。
逻辑运算可以用真值表来表示,真值表列举了所有可能的条件组合及其结果。
三、包含与推理在集合与逻辑中,我们经常需要进行包含关系的判断和推理。
1. 包含关系:一个集合是否包含于另一个集合,可以通过判断集合中的元素是否满足某个条件来确定。
例如,集合A={1,2,3}是否包含于集合B={1,2,3,4},可以通过判断集合A中的元素是否都属于集合B来确定。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
集合、简易逻辑
知识梳理:
1、 集合:某些指定的对象集在一起就构成一个集合。
集合中的每一个对象称为该集合的元素。
元素与集合的关系:A a ∈或A a ∉
集合的常用表示法: 列举法 、 描述法 。
集合元素的特征: 确定性 、 互异性 、 无序性 。
常用一些数集及其代号:非负整数集或自然数集N ;正整数集*N ,整数集Z ;有理数集Q ;实数集R
2、子集:如果集合A 的任意一个元素都是集合B 的元素,那么集合A 称为集合B 的子集,记为A ⊆B
3、真子集:如果A ⊆B ,并且B A ≠,那么集合A 成为集合B 的真子集,记为A ⊄B ,读作“A 真包含于B 或B 真包含A ”,如:}{}{b a a ,⊆。
注:空集是任何集合的子集。
是非空集合的真子集
结论:设集合A 中有n 个元素,则A 的子集个数为n 2个,真子集个数为12-n 个
4、补集:设A ⊆S ,由S 中不属于A 的所有元素组成的集合称为S 的子集A 的补集,记为A C s ,读作“A 在S 中的补集”,即A C s =}{A x S x x ∉∈且,|。
5、全集:如果集合S 包含我们所要研究的各个集合,这时S 可以看作一个全集。
通常全集记作U 。
6、交集:一般地,由所有属于集合A 且属于B 的元素构成的集合,称为A 与B 的交集,记作B A ⋂即:B A ⋂=}{B x A x x ∈∈且,|。
7、并集:一般地,由所有属于集合A 或属于B 的元素构成的集合,称为A 与B 的并集,记作B A ⋃即:B A ⋂=}{B x A x x ∈∈或,|。
记住两个常见的结论:B A A B A ⊆⇔=⋂;A B A B A ⊆⇔=⋃; 9、命题:可以判断真假的语句叫做命题。
(全称命题 特称命题)
⑴全称量词——“所有的”、“任意一个”等,用“∀”表示;
全称命题p :)(,x p M x ∈∀; 全称命题p 的否定⌝p :)(,x p M x ⌝∈∃。
⑵存在量词——“存在一个”、“至少有一个”等,用“∃”表示;
特称命题p :)(,x p M x ∈∃; 特称命题p 的否定⌝p :)(,x p M x ⌝∈∀;
10、“或”、“且”、“非”这些词叫做逻辑联结词;不含有逻辑联结词的命题是简单命题;由简单命题和逻辑联结词“或”、“且”、“非”构成的命题是复合命题。
构成复合命题的形式:p 或q ;p 且q ;非p(记作┑q) 。
11、“或”、“且”、“非”的真值判断:
非p与p真假相反;“p且q”:同真才真,
一假即假;“p或q”:同假才假,一真即真
12、命题的四种形式与相互关系:
•原命题:若P则q;
•否命题:若┑P则┑q;
•
•逆否命题:若┑q则┑p
•原命题与逆否命题互为逆否命题,同真假;
•
•逆命题与否命题互为逆否命题,同真假;
13、从逻辑推理关系上看:
若q
p⇒,则p是q 的充分条件,q是p的必要条件,即“前者为后者的充分,后者为前者的必要”。
若q
p⇔,则p 是q的充分必要条件,简称p是q的充要条件。
若q
p⇒,且q p,那么称p是q的充分不必要条件。
若p ,且q⇒p,那么称p是q的必要不充分条件。
若p,且q p,那么称p是q的既不充分又不必要条件。
从集合与集合之间的关系上看:
条件p、q对应集合分别为A、B,则
若B
A⊆,则p是q的充分条件,若B
A⊂,则p是q的充分非必要条件
若B
A⊇,则p是q的必要条件,若B
A⊃,则p是q的必要非充分条件
若A=B,则p是q的充要条件
若A
⊄且,则p是q的非充分必要条件A⊄
B
B。