电工电子技术教学课件第五章 逆变电路

合集下载

逆变工作原理逆变教学课件PPT

逆变工作原理逆变教学课件PPT

Vd
Vd 0 2
(cosa
cos )
若逆变器电压公式用γ角来表示,则:
Vd
Vd 0
cosa
Vd
Vd 0(c osa
2
cos)
Ud0(cos(p b ) cos(p ))
2
1( 2
U
d
0
cosb
Ud0
cos)
1 2
(U d
Rc Id
Ud0
cos
)
2024/8/4
Ud Ud0 cos RcId (Ud0 cos RcId )
2024/8/4
9
a = 30°
逆 变
ud
uab uac u bc uba uca ucb uab uac
器 的
O
wt


a = 150°
过 程
ud
uab uac u bc uba uca ucb uab uac
O
wt
2024/8/4
10
不同逆变角时的输出电压波形及晶闸管两端电压波形
u
u
u
u
2
a
2
90 2
17
三、逆变整器流交器直与流逆数变量器关的系转表折达点式
1.若不考虑换相重叠现象,则
Ud Ud 0 cosa a转折点为90
2.若考虑换相重叠现象,则
Ud Ud 0 cosa Ud
Ud
0
cosa
Ud 2
0
(cosa
cos
)
Ud 0 (cosa cos )
2
可见,从整流器转向逆变的转折点所对应的触发角有下式确定
一、无源逆 变
1. 工作原理

电力电子技术5 逆变电路

电力电子技术5 逆变电路
通过分析,实现有源逆变的条件有两个,应同时满足。 (1)外部条件:要有一个能提供逆变能量的直流电源,且极性必须与
晶闸管的导通电流方向一致,其电压只要稍大于变流器直流侧的平均电 压Ud。 (的2极)性内与部整条流件状:态变时流相电反路,必才须能工把作直在流β功小率于逆9变00区为域交,流使功直率流反端送电电压网U。d 这两个条件缺一不可。 (3)串接大电感
电力电子技术
第五章 逆变电路
第五章 逆变电路
5.1 5.2 5.3 5.4 5.5 5.6 5.7
电力器件的换流方式 有源逆变电路 无源逆变电路 电压型逆变电路 电流型逆变电路 负载换流式逆变电路 脉冲宽度调制型逆变电路
第五章 逆变电路
在实际应用中,有些场合需要将交流电转变为大小 可调的直流电——即前面讲过的整流。有时还需要 将直流电转变为交流电——即为逆变。它是整流电 路的逆过程。在一定条件下,一套晶闸管电路既可 用于整流又可用于逆变,这种装置称为变流器。
亦增大,导致
5.2 有源逆变电路
2、重物下放,变流器工作于逆变状 反送电网,这就是有源逆变的工

作原理。
在整流状态,电流Id由直流电压Ud产 生,整流电压Ud的波形必须使正面积 大于负面积。当重物下放时,电动
机转速方向相反,产生的电动势E亦
反向,为了防止两电源顺向串接形
成短路,此时Ud方向也要反向,即控 制角大于900,Ud波形出现负面积大 于正面积变成负值,但由于E的作用,
如果将逆变电路的交流侧接到交流电网上,把直流 电逆变成同频率的交流电反送到电网去,称为有源 逆变。它用于直流电机的可逆调速、绕线型异步电 动机的串级调速、高压直流输电和太阳能发电等方 面。如果逆变器的交流侧不与电网连接,而是直接 接到负载,即将直流电逆变成为某一频率或可变频 率的交流电供给负载,称为无源逆变。它用于交流 电机变频调速、感应加热、不间断电源等方面。

(2024年)电工电子技术PPT课件

(2024年)电工电子技术PPT课件

2024/3/26
10
03
电磁感应与变压器原理
2024/3/26
11
电磁感应现象及法拉第电磁感应定律
电磁感应现象
当导体回路在变化的磁场中或导体回 路在恒定磁场中作切割磁力线运动时 ,导体回路中就会产生感应电动势, 从而在回路中产生电流的现象。
法拉第电磁感应定律
感应电动势的大小与穿过回路的磁通 量的变化率成正比。即 e = -nΔΦ/Δt ,其中e为感应电动势,n为线圈匝数 ,ΔΦ/Δt为磁通量的变化率。
01
操作前必须检查电器及 线路是否完好
2024/3/26
02
电器设备必须有可靠的 接地保护
03
04
电器设备运行时,禁止 进行任何维修和保养
34
发现电器设备故障时, 应立即切断电源,并请 专业人员进行维修
接地保护原理和接地系统类型
接地保护原理
将电器设备的金属外壳或构架通过接地装置与大地连接
当电器设备发生漏电或绝缘损坏时,漏电电流通过接地装置流入大地
电工电子技术PPT课件
2024/3/26
1
目 录
2024/3/26
• 电工电子技术概述 • 电路基础知识 • 电磁感应与变压器原理 • 电机与拖动系统 • 电子技术基础 • 数字电路基础 • 电力电子技术基础 • 安全用电与接地保护
2
01
电工电子技术概述
2024/3/26
3
电工电子技术定义与发展
4
电工电子技术应用领域
能源与电力系统
信息与通信系统
制造业与自动化
其他领域
电工技术在能源与电力系统 中的应用包括发电、输电、 配电和用电等各个环节。例 如,水力发电、火力发电、 风力发电等不同类型的发电 技术,以及高压输电、智能 电网等输电和配电技术。

电力电子技术逆变PPT课件

电力电子技术逆变PPT课件
4.1 概述
器的基本原理 器的分类 器的性能指标
变器(VSI) 型方波逆变器 型阶梯波逆变器 型正弦波逆变器
PWM控制 SR空间电压矢量分布 电压矢量的合成 变器 型方波逆变器 型阶梯波逆变器
• DC-AC变换器是指能将一定幅值的直流输入电压(或 电流)变换成一定幅值、一定频率的交流输出电压(或 电流),并向无源负载(如电机、电炉、或其它用电器 等)供电的电力电子装置。
器的性能指标
逆变器(VSI)
型方波逆变器
型阶梯波逆变器
型正弦波逆变器
量PWM控制
VSR空间电压矢量分
电压矢量的合成 逆变器 型方波逆变器 型阶梯波逆变器
阶梯波 正弦波
π
a)
ud
DC-AC 1
T1
N1
N1' u1
DC-AC 2
T2
N2
N2' u 2
2. 阶梯波变换方式
2π t

由于这种多电平输出的交流波形 形似阶梯波形,因此采用方波叠 加的DC-AC变换方式即为交流阶 梯波变换,如图4-4a所示。
第4页/共73页
4.1.1 逆变器的基本原理
器的基本原理 器的分类 器的性能指标 逆变器(VSI) 型方波逆变器 型阶梯波逆变器 型正弦波逆变器 量PWM控制 VSR空间电压矢量分 电压矢量的合成 逆变器 型方波逆变器 型阶梯波逆变器
ud
Cd
+ -
Sa
Sb
负载
逆变器的原理拓扑
• 如何完成直流-交流这一变 换呢?
• 除了工业应用之外,逆变器在空调、冰箱等家用电器中也 有广泛应用。
第2页/共73页
4.1 概述
器的基本原理 器的分类 器的性能指标

逆变电路工作原理ppt课件

逆变电路工作原理ppt课件

04
设计与实现过程剖析
主电路设计思路
拓扑结构选择
根据应用需求和性能指标,选择合适 的逆变电路拓扑结构,如全桥、半桥 、推挽等。
元器件参数设计
磁性元件设计
针对逆变电路中的磁性元件,如变压 器、电感等,进行详细设计,包括磁 芯材料选择、匝数计算、气隙设置等 。
依据拓扑结构和性能指标,设计合适 的元器件参数,包括功率开关管、二 极管、电感、电容等。
控制策略优化
通过改进控制策略,如采用多电平技术、PWM 控制技术等,可进一步提高输出电压波形的质量 。
系统稳定性增强手段
稳定性分析方法
01
利用状态空间法、频域分析法等方法对逆变电路进行稳定性分
析,找出潜在的不稳定因素。
控制环路设计
02
通过合理设计控制环路,包括电流环、电压环等,确保系统在
不同负载和输入电压条件下均能保持稳定运行。
逆变电路工作原理ppt课件
演讲人: 日期:
目录
• 逆变电路基本概念与分类 • 逆变电路工作原理详解 • 关键器件与参数选择 • 设计与实现过程剖析 • 性能评估与优化措施 • 实验验证与结果分析 • 总结与展望
01逆变电路定义
将直流电能转换为交流电能的电 路。
作用
方波逆变电路将直流电转换为方 波交流电。它采用开关管(如晶 体管或MOSFET)进行高速切换 ,将直流电压逆变为方波电压输
出。
输出波形
方波逆变电路的输出波形为方波 ,具有陡峭的上升沿和下降沿。 方波电压的幅值和频率可以通过 控制开关管的切换速度和直流输
入电压来调节。
应用领域
方波逆变电路常用于一些对波形 要求不高的场合,如低功率照明
控制系统设计思路

《逆变电路教学》课件

《逆变电路教学》课件

通过控制半导体开关器件的通断,将直流输入转换为交流输出,实现 电能的逆向变换。
逆变电路的分类与特点
分类
按照输出交流的相数,可分为单 相逆变器和三相逆变器;按照逆 变电路的脉宽调制方式,可分为 方波逆变器和正弦波逆变器。
特点
高效节能、绿色环保、灵活方便 、可靠性高、维护成本低等。
逆变电路的应用场景
分布式电源
逆变电路在分布式电源系统中扮演着重 要的角色,将直流电源转换为交流电源 ,供给负载使用。
不间断电源
在计算机、通信、医疗等领域,不间断 电源需要提供稳定的交流电源,逆变电 路是不间断电源的核心组成部分。
电动汽车与充电桩
电动汽车在充电过程中,需要将直流电 能转换为交流电能供给充电桩,逆变电 路在此过程中发挥着关键作用。
实验平台的搭建与调试
实验平台的搭建
根据逆变电路的原理和要求,选择合 适的器件搭建实验平台,确保电路的 正确连接和稳定性。
实验平台的调试
对实验平台进行测试和调整,确保各 部分工作正常,为后续的实验和仿真 分析做好准备。
实验数据的采集与分析
使用合适的测量仪器和设备, 采集逆变电路的输入、输出电
压、电流等关键参数。
控制电路结构
脉冲宽度调制(PWM)
PWM是一种常见的逆变电路控制方法,通过调节半导体开关器件的开关时间来 控制输出电压和电流的大小。PWM控制方法具有简单、易于实现和调节精度高 等优点。
空间矢量调制(SVPWM)
SVPWM是一种基于PWM的控制方法,通过调节半导体开关器件的开关状态来 控制输出电压和电流的方向和大小。SVPWM控制方法具有更高的调节精度和更 好的输出波形质量。
03
人工智能与机器学习算法

电力电子技术课件_第5章逆变

电力电子技术课件_第5章逆变


负载中点和电源中点间电压
1 uNN' (uUN' uVN' uWN' ) 3 1 (uUN uVN uWN ) 3
u NN'
1 (u UN' u VN' u WN' ) 3
图5.7 逆变电路的工作波形
⑷ 根据电压和频率控制方法不同可分为

5.1.2 DC/AC变换的工作原理
⒈ 基本工作原理 单相桥式无源逆变电路,开关 S1、S2、S3、S4表示电力电 子开关器件的 4个桥臂,均为理想开关。 当开关 S1、S4闭合,S2、S3断开时, uo为正; 当开关 S1、S4断开,S2、S3闭合时, uo为负。 直流电转换为交流电。
+
V1
Ud 2
V3 VD1 U V VD4 V6 图5-9
V5 VD3 W VD6 V2 VD5 N VD2
N'
Ud 2

uG1
O
-
V4

uG2
O




ωt
ωt ωt ωt
uG3
O
uG4
O

uG5
O
ωt
uG6
O


ωt
5.2.2 三相电压型逆变电路
+
V1
Ud 2
V3 VD1 U V VD4 V6 图5-9
N'
Ud 2
uG1
V4
VD4
V6
VD6
V2
VD 2

任一瞬间,3个桥臂同时导通, O uG2 可能是上1下2个臂,也可能是 O uG3 上2个下1个臂同时导通。

电力电子第五章 ACDC变换器(整流和有源逆变电路)

电力电子第五章 ACDC变换器(整流和有源逆变电路)
控整流电路、相控电路、PWM整流电路
5.2 不控整流电路
• 利用电力二极管的单相导电性可以十分简单 地实现交流—直流电力变换。
• 由于二极管整流电路输出的直流电压与交流 输入电压的大小有关,不能通过电路本身控 制其数值,故称为不控整流电路。
5.2.1 单相不控整流电路
u1
u2 O ud
uVDO1 O
VD4
VD2
a)
VD3
R VD4
VD1
-
ud AC + VD2
b)
VD3 R ud
VD4
c)
a)单相桥式整流电路 b)交流输入正半周单相桥式整流电路工作图 c)交流输入负半周单相桥式整流电路工作图
5.2.1 单相不控整流电路
AC +
ud
VD3
VD2
VD2
b)
图5-2 单相全波整流电路
u2
R
c)
d)
u2
共阳极连接 VD4
2 t
5.2.1 单相不控整流电路
VD1
VD1
VD3 VD1
u2 R
AC
+ -
R
-
AC +
R
t
u2
AC + -
ud
VACD1
+
ud
VD2
VD2
u2
VD2
VbD)3
u2
c)
d)
u2
R
VD2
u2 VD4
VD4
带续流二极管的单相 半波整流电路
b)
d)
u2
u2
t1
O
2
t1
t
O
2

《详细逆变电路》课件

《详细逆变电路》课件

04
逆变电路的工作过程
启动过程
输入电压:直流电压 开关元件:MOSFET或IGBT 控制信号:PWM信号
输出电压:交流电压 启动方式:软启动或硬启动 启动时间:根据负载和电源条件确定
运行过程
输入电压:直流电压输入
开关控制:通过开关控制 电路的开关状态
逆变过程:将直流电压转 换为交流电压
输出电压:输出交流电压, 用于驱动负载
可靠性及寿命
逆变电路的可靠性:指其在各 种环境下能够稳定工作的能力
寿命:指逆变电路能够持续工 作的时间影响因素:环境来自度、湿度、 电压波动、负载变化等
提高可靠性和寿命的方法:选 择高质量的元器件、优化电路 设计、加强散热措施等
06
逆变电路的控制策略
电压控制策略
电压控制策略的目的:保持输 出电压的稳定
混合控制策略的分类:包括PID控制、模糊控制、神经网络控制等。
混合控制策略的应用:在逆变电路中,混合控制策略可以提高系统的稳定性和响应速度, 降低系统的能耗和噪声。
混合控制策略的发展趋势:随着科技的发展,混合控制策略在逆变电路中的应用将会越 来越广泛,其性能也将不断提高。
控制算法的实现方式
控制策略: PWM控制、电 压控制、电流
按照电路结构分类:单相逆变电路、三相逆变电路等
按照输出频率分类:固定频率逆变电路、变频逆变电路等
逆变电路的应用场景
太阳能发电系统:将太阳能电池板产生 的直流电转换为交流电,供家庭或商业 使用
电动汽车:将电池存储的直流电转换 为交流电,驱动电动机
工业自动化:将直流电源转换为交流 电源,驱动各种工业设备
低成本等
感谢观看
汇报人:PPT
添加标题
添加标题

《电工电子技术》全套课件(完整版)

《电工电子技术》全套课件(完整版)
集成运算放大器的使用注意事项
介绍在使用集成运算放大器时需要注意的事项,如电源的选择、输入信号的幅度限制等。
直流稳压电源设计实例
直流稳压电源的基本原理
阐述直流稳压电源的工作原理及组成,包括整流电路、滤 波电路和稳压电路等。
直流稳压电源的设计步骤
介绍直流稳压电源的设计步骤,如确定电源类型、选择整 流电路和滤波电路、设计稳压电路等。
电工电子技术在现代 社会中的应用
课程目标与要求
01
02
03
04
掌握电工电子技术的基 本概念和基础知识
能够分析和解决简单的 电路问题
了解电子元器件的基本 特性和应用
具备一定的实验技能和 动手能力
基础知识:电路基本概念
01
02
03
04
电路的定义与组成
电流、电压和电阻的基本概念
欧姆定律和基尔霍夫定律的应 用
正弦交流电基本概念及表示方法
正弦交流电的产生和描述
01
阐述正弦交流电的产生原理,包括发电机的工作原理和正弦交
流电的波形、频率、幅值等基本概念。
正弦量的表示方法
02
介绍解析法、曲线法、相量法和复数表示法等多种表示正弦量
的方法,以及它们之间的转换关系。
正弦交流电的相位和相位差
03
阐述相位和相位差的概念,以及它们在正弦交流电分析中的意
、特性及应用
03
电力场效应晶体管( MOSFET)的原理、特性及
应用
04
05
绝缘栅双极型晶体管(IGBT )的原理、特性及应用
整流与逆变技术原理及应用
整流电路的工作原理及分 类
逆变电路的工作原理及分 类
可控整流电路的工作原理 及控制方式

机工社2023电力电子技术 第6版教学课件第5章 直流直流变换电路

机工社2023电力电子技术 第6版教学课件第5章 直流直流变换电路

开关周期开始时刻的电容电压值相等。故式(5-1)中uC(TS) = uC(0),所以电容
电流在一个开关周期内的平均值Ic = 0。
5-7
5.1 直接直流变流电路
5.1.1 降压斩波电路 5.1.2 升压斩波电路 5.1.3 升降压斩波电路 5.1.4 丘克斩波电路 5.1.5 多重斩波电路
5-8
5.1.1 降压斩波电路
5-20
5.1.3 升降压斩波电路
数量关系
电感电压在一个周期的平均值UL可以表示为
UL
U iton
U otoff Ts
由伏秒平衡,UL=0,可得
Uo D Ui 1 D
(5-6)
等式右边的负号表示升降压电路的输出电压与输入电压极性相反,其数 值既可以高于其输入电压,也可以低于输入电压。
S Ui
5-5
5.1 直接直流变流电路
伏秒平衡
电感两端电压在一个开关周期内的平均值:
其中: 可得:
1
UL Ts
TS 0
uL
(t
)
d
t
uL
(t)
L
d
iL (t) dt
U L
1 Ts
TS L d iL (t) d t 0 dt
1
Ts
TS 0
L
d
iL
(t
)
L Ts
[iL (TS
)
iL
(0)]
(5-1)
uL O
t1~t2时段:开关S关断,二极管VD 导通,电感通过VD向电容C放电,电感 电流不断减小。
t2~t3时段:t2时刻电感电流减小到 零,二极管VD关断,电感电流保持零值
,并且电感两端的电压也为零。

电力电子逆变电路课件

电力电子逆变电路课件
详细描述
DPC控制通过实时监测逆变电路的输出电压和电流,计算输出功率,并调节逆变电路的开关状态以实 现输出功率的快速调节。DPC控制具有快速响应、高精度和高稳定性的优点,适用于对输出功率要求 较高的场合。
预测电流控制
总结词
预测电流控制是一种基于预测模型的电流控 制策略,通过建立逆变电路的预测模型,预 测未来的电流状态并进行控制。
详细描述
预测电流控制通过建立逆变电路的动态模型 ,预测未来的电流状态,并根据预测结果进 行控制。预测电流控制具有快速响应、高精 度和鲁棒性好的优点,适用于对电流控制精 度要求较高的场合。
04
逆变电路的仿真与实验
仿真软件介绍
01
仿真软件种类
介绍多种电力电子仿真软件,如MATLAB/Simulink、PLECS、PSIM等
在电源线和信号线上加入滤波器,抑制电磁干扰 的传播。
06
电力电子逆变电路的发 展趋势与展望
高频化与小型化
高频化
随着电力电子技术的不断发展,逆变电路的工作频率不断提高,能够实现更高的电能转 换效率和更小的体积。
小型化
随着微电子技术和封装技术的发展,逆变电路的体积逐渐减小,有利于实现更加紧凑和 高效的电源系统。
仿真设置
详细说明仿真参数的设置 ,如时间、步长、算法等 。
波形分析
介绍如何使用 MATLAB/Simulink进行 波形分析,包括电压、电 流、功率等。
PLECS仿真
模型导入与设置
介绍如何将电力电子电路模型导入到PLECS中进行仿真。
参数优化
介绍如何使用PLECS进行参数优化,提高逆变电路的性能。

02
软件特点与适用范围
分析各种仿真软件的特点和适用范围,如MATLAB/Simulink适用于系

第五章 单相并网逆变器

第五章  单相并网逆变器

第5章单相并网逆变器后级的DC- AC部分,采用单相全桥逆变电路,将前级DC- DC输出的400V 直流电转换成220V/50Hz 正弦交流电,完成逆变向电网输送功率。

光伏并网逆变器实现并网运行必须满足要求:输出电压与电网电压同频同相同幅值,输出电流与电网电压同频同相(单位功率因数),而且其输出还应满足电网的电能质量要求,这些都依赖于逆变器的有效并网控制策略。

5.1光伏并网逆变器拓扑结构按逆变器主电路的拓扑结构分类,主要有推挽逆变器、半桥逆变器和全桥逆变器。

5.1.1推挽式逆变电路推挽式逆变电路由两只共负极的功率开关元件和一个原边带有中心抽头的升压变压器组成。

它结构简单,两个功率管可共同驱动,两个开关元件的驱动电路具有公共地,这将简化驱动电路的设计。

U图5-1 推挽式逆变器电路拓扑推挽式电路的主要缺点是很难防止输出变压器的直流饱和,另外和单电压极性切换的全桥逆变电路相比,它对开关器件的耐压值也高出一倍。

因此适合应用于直流母线电压较低的场合。

此外,变压器的利用率较低,驱动感性负载困难。

推挽式逆变器拓扑结构如图5-1 所示。

5.1.2半桥式逆变电路半桥式逆变电路使用的功率开关器件较少,电路结构较为简单,但主电路的交流输出电压幅值仅为输入电压的一半,所以在同等容量条件下,其功率开关的额定电流要大于全桥逆变电路中功率元件额定电流,数值为全桥电路的2 倍。

由于分压电容的作用,该电路具有较强的抗电压输出不平衡能力,同时由于半桥式逆变电路控制较为简单,且使用元件少、成本低,因此在小功率等级的逆变电源中常被采用。

其主要缺点是直流侧电压利用率低,在同样的开关频率下电网电流的谐波较大。

图5-2 半桥式逆变器电路拓扑5.1.3全桥式逆变电路全桥逆变电路可以认为是由2 个半桥逆变电路组成的,在单相电压型逆变电路中是应用最多的电路,主要用于大容量场合。

在相同的直流输入电压下,全桥逆变电路的最大输出电压是半桥式逆变电路的2 倍。

《电力电子技术》课件——第5章 逆变电路

《电力电子技术》课件——第5章 逆变电路
io
Ld
t
O
id
VT1
Ed
uo
C
R
io
VT2
VT3
i
L
uo
io
VT4
1
4
O
i
O
uVT
O
a)
iVT iVT
iVT
2
t1
iVT
3
uVT
uVT
t
t
4
1
t
b)
3)


uo
io
Ld
Ed
t
O
id
VT 1

uo
C
R
io
VT 2
VT3
L
uo
io
VT4
i
iVT iVT
1
4
O
i
O
u VT

O
a)
i VT
2
t1
3
uVT
uVT
t
滞后于
t
io
4
1
t
b)
图5-2
负载工作在对基波电流接近并联谐振的状态,对基波阻抗很大,
对谐波uo
io
Ld
Ed
t
O
id
VT 1

uo
C
R
io
VT 2
VT3
L
uo
io
VT4
i
iVT iVT
1
4
O
i
O
u VT

O
a)
i VT
2
t1
iVT
3
uVT
uVT
t
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

主要应用
各种直流电源,如蓄电池、干电池、太阳能电池等。 交流电机调速用变频器、不间断电源、感应加热电源 等电力电子装置的核心部分都是逆变电路。
5-2
第一节 换流方式
一. 逆变电路的基本工作原理
二. 换流方式分类
5-3
一. 逆变电路的基本工作原理
以单相桥式逆变电路为例说明最基本的工作原理
S1~S4是桥式电路的4个臂,由电力电子器件及辅 助电路组成。
3. 负载换流(Load Commutation) 4. 强迫换流(Forced Commutation)
5-8
二. 换流方式分类
由负载提供换流电压的换流方式。 负载电流的相位超前于负载电压 的场合,都可实现负载换流。 如图是基本的负载换流电路,4个 桥臂均由晶闸管组成。 整个负载工作在接近并联谐振状 态而略呈容性。 直流侧串电感,工作过程可认为id 基本没有脉动。 负载对基波的阻抗大而对谐波的 阻抗小。所以uo接近正弦波。 注意触发VT2、VT3的时刻t1必须 在uo过零前并留有足够的裕量, 才能使换流顺利完成。
u
图5-6 单相半桥电压型逆变 电路及其工作波形
5-16
一. 单相电压型逆变电路
优点:电路简单,使用器件少。 缺点: 输出交流电压幅值为 Ud/2,且直流侧需两
电容器串联,要控制两者电压均衡。
应用:
用于几kW以下的小功率逆变电源。 单相全桥、三相桥式都可看成若干个半桥逆变电 路的组合。
5-13
第二节.电压型逆变电路
2.电压型逆变电路的特点
(1)直流侧为电压源或 并联大电容,直流侧电压 基本无脉动。 (2)输出电压为矩形波, 输出电流因负载阻抗不同 而不同。
(3)阻感负载时需提供 无功功率。为了给交流侧 向直流侧反馈的无功能量 提供通道,逆变桥各臂并 联反馈二极管。
图5-5 电压型全桥逆变电路
第五章 逆变电路
引言 第一节 换流方式 第二节 电压型逆变电路 第三节 电流型逆变电路 第四节 多重逆变电路和多电平逆变电路 本章小节
5-1
第五章 逆变电路 • 引言
逆变的概念
逆变——与整流相对应,直流电变成交流电。
交流侧接电网,为有源逆变。
交流侧接负载,为无源逆变。
本章讲述无源逆变
逆变与变频
变频电路:分为交交变频和交直交变频两种。 交直交变频由交直变换(整流)和直交变换两部分组 成,后一部分就是逆变。
1. 器件换流(Device Commutation)
利用全控型器件的自关断能力进行换流。 在采用IGBT 、电力MOSFET 、GTO 、GTR等全控型器 件的电路中的换流方式是器件换流。
2. 电网换流(Line Commutation)
电网提供换流电压的换流方式。 将负的电网电压施加在欲关断的晶闸管上即可使其关断。 不需要器件具有门极可关断能力,但不适用于没有交流 电网的无源逆变电路。
逆变电路最基本的工作 原理 ——改变两组开关 切换频率,可改变输出 交流电频率。
电阻负载时,负载电流 io 和uo的波形相同,相位也 相同。
阻感负载时,io相位滞后 于uo,波形也不同。
图5-1 逆变电路及其波形举例
5-6
二. 换流方式分类
换流——电流从一个支路向另一个支路转移的过程, 也称为换相。
电感耦合式强迫换流
先使晶闸管电流减为零, 然后通过反并联二极管使其 加上反向电压。 也叫电流换流。
图5-4 电感耦合式 强迫换流原理图
5-11
二. 换流方式分类
换流方式总结:
器件换流——适用于全控型器件。 其余三种方式——针对晶闸管。
器件换流和强迫换流——属于自换流。
电网换流和负载换流——属于外部换流。 当电流不是从一个支路向另一个支路转移,而是在支路 内部终止流通而变为零,则称为熄灭。
5-12
第二节. 电压型逆变电路
1.逆变电路的分类 —— 根据直流侧电源性质的不同
直流侧是电压源
电压型逆变电路——又称为电压源
型逆变电路 Voltage Source Type Inverter-VSTI
直流侧是电流源
电流型逆变电路——又称为电流源
型逆变电路 Current Source Type Inverter-VSTI
uo
S1 Ud io 负载 S3 uo S 4 io t1 t2 t
S2 a)
b)
图5-1 逆变电路及其波形举例
5-4
一. 逆变电路的基本工作原理
S1、S4闭合,S2、S3断开时,负载电压uo为正。 S1、S4断开,S2、S3闭合时,负载电压uo为负。
直流电
交流电
5-5
一. 逆变电路的基本工作原理
uo io O
uo a)
io i O i O uVT O
?t
iVT iVT
1
4
iVT
2
iVT
3
?t ?t ?t
t1
uVT
1
uVT b)
4
图5-2 负载换流 电路及其工作波形
5-9
二. 换流方式分类
4.强迫换流(Forced Commutation)
设置附加的换流电路,给欲关断的晶闸管强迫 施加反压或反电流的换流方式称为强迫换流。 通常利用附加电容上所储存的能量来实现,因 此也称为电容换流。 分类
5-14
第二节 电压型逆变电路
一. 单相电压型逆变电路 二. 三相电压型逆变电路
5-15
一. 单相电压型逆变电2栅极信号在一周期内 各半周正偏、半周反偏,两 者互补,输出电压uo为矩形 波,幅值为Um=Ud/2。
V1或V2通时,io和uo同方向, 直流侧向负载提供能量; VD1或VD2通时,io和uo反向, 电感中贮能向直流侧反馈。 VD1、VD2称为反馈二极管, 它又起着使负载电流连续的 作用,又称续流二极管。
开通:适当的门极驱动信号就可使器件开通。 关断: 全控型器件可通过门极关断。 半控型器件晶闸管,必须利用外部条件才能关断。 一般在晶闸管电流过零后施加一定时间反压,才能 关断。 研究换流方式主要是研究如何使器件关断。
本章换流及换流方式问题最为全面集中,因此安排在 本章集中讲述。
5-7
二. 换流方式分类
由换流电路内电容 直接提供换流电压 通过换流电路内的 电容和电感的耦合 来提供换流电压或 换流电流 直接耦合式 强迫换流 电感耦合式 强迫换流
5-10
二. 换流方式分类
直接耦合式强迫换流
当晶闸管VT处于通态时, 预先给电容充电。当S合上, 就可使VT被施加反压而关断。 也叫电压换流。
图5-3直接耦合式 强迫换流原理图
相关文档
最新文档