数值分析第一章
数值分析第一章PPT
1.1.2 计算数学与科学计算 现代科学的三个组成部分: 科学理论, 科学实验, 科学计算 科学计算 的核心内容是以现代化的计算机及数学软件 (Matlab, Mathematica, Maple, MathCAD etc. )为工具,以数学 模型为基础进行模拟研究。
一些边缘学科的相继出现:
计算数学,计算物理学,计算力学,计算化学,计算生物学, 计算地质学,计算经济学,等等
取 0 e
1
x2
dx S4 ,
S4
R4
/* Remainder */
1 1 1 1 由留下部分 称为截断误差 /* Truncation Error */ 4! 9 5! 11 /* included terms */ 1 1 这里 R4 引起.005 0 由截去部分 4! 9 /* excluded terms */ 1 1 1 S4 1 1 0 .333 0 .1 0 .024 0 .743 引起 3 10 42 | 舍入误差 /* Roundoff Error */ | 0.0005 2 0.001
数值分析
第1章
数值分析与科学计算引论
§1.1 数值分析的对象、作用与特点
1.1.1 什么是数值分析 数值分析是计算数学的主要部分,计算数学是数学 科学的一个分支,它研究用计算机求解各种数学问题的 数值计算方法及其理论与软件实现.这门课程又称为(数 值)计算方法、科学与工程计算等。
•
在电子计算机成为数值计算的主要工具的今天, 需要研究适合计算机使用的数值计算方法。使用计 算机解决科学计算问题时大致要经历如下几个过程:
造成这种情况的是不稳定的算法 /* unstable algorithm */ 我们有责任改变。
数值分析-第一章ppt课件
数及其图形作出判断. 整理版课件
6
由分部积分法可得:
Ine101xndex
n=1,2,4,6, 8,10,15
e 1 x n ex|1 0 e 1 0 1 nn 1 x ex dx
1 nn 1 I (n 1 ,2 , ).
如果取 I0 = 1–e–1 = 0.63212056 (八位有效数字).
x1,2b
b24ac 2a
直接进行计算则得: x1=109, x2=0. 其中的x2=0明பைடு நூலகம்失真, 这也是由于舍入误差造成的.
整理版课件
8
§1 误差的来源
实际 问题
建立数 学模型
确定计 算方法
编程 上机
由抽象简 化产生的 模型误差 及参数的 观测误差
由计算方 法本身产 生的截断 误差或称 方法误差
er(x* )e(x x* )x xx*
同样, 由于精确值 x 经常是未知的, 所以, 需要另
外的近似表达形式. 我们注意如下公式的推导,
当
|
e ( x*) x*
|
较小时,
有
e(x* )e(x* )e(x*x )* (x)
x x*
xx*
[x*[ee((xx**))2]x] *1[e(exx(**x*)]2)
整理版课件
18
乘法相关的误差公式: 设 f (x1, x2)= x1 x2 . e ( x 1 x 2 ) x 2 e ( x 1 ) x 1 e ( x 2 ) e r ( x 1 x 2 ) e r ( x 1 ) e r ( x 2 ) |e ( x 1 x 2 ) | |e ( x 1 ) | |e ( x 2 ) | |e r ( x 1 x 2 ) | |e r ( x 1 ) | |e r ( x 2 ) |
《数值分析》杨大地-答案(第一章)精选全文完整版
可编辑修改精选全文完整版数值分析-第1章1.填空题(1)为便于算法在计算机上实现,必须将一个数学问题分解为有限次的四则运算;(2)在数值计算中为避免损失有效数字,尽量避免两个相近数作减法运算;为避免误差的扩大,也尽量避免分母的绝对值远小于分子的绝对值;(3)误差有四大来源,数值分析主要处理其中的截断误差和舍入误差;(4)有效数字越多,相对误差越小;2. 用例1.4的算法计算10,迭代3次,计算结果保留4位有效数字。
//见P4解题思路:假定x0是√a的一个近似值,x0>0,则ax0也是√a的一个近似值,且x0和ax0两个近似值必有一个大于√a,另一个小于√a,设想它们的平均值应为√a的更好的近似值,于是x k+1=1 2(x k+ax k),k=0,1,2,……解:取x0=3,按算法x k+1=12(x k+ax k),k=0,1,2,……迭代3次有:x1=12(x0+10x0)=(3+103)≈3.167x2=12(x1+10x1)=(3.167+103.167)≈3.162x3=12(x2+10x2)=(3.162+103.162)≈3.1623. 推导开平方运算的误差限公式,并说明什么情况下结果误差不大于自变量误差。
//见P8解:已知f(x)=√x,设x∗是准确值,令x是x∗的一个近似值,则相对误差e(f(x))=f(x)−f(x∗),由Taylor公式f(x∗)=f(x)0! +f′(x)1!(x∗−x)+f"(x)2!(x∗−x)2+⋯+f n(x)n!(x∗−x)n+R n(x)其中,R n(x)=f n+1(ξ)(n+1)!(x∗−x)n+1将f(x∗)展开分析有:f(x∗)=√x2√x x∗−x)+⋯+f n(ξ)n!(x∗−x)n+R n(x)∴e(f(x))=f(x)−f(x∗)=− (2√x x∗−x)+⋯+f n(ξ)n!(x∗−x)n+R n(x))∴|e(f(x))|≤ ε(f(x))≤|2√x |ε(x)+⋯+|f n(ξ)n!εn(x)|+|R n(x)|忽略二阶以上无穷小,可得f(x)的误差限公式为ε(f(x))≈2√x(x)。
数值分析讲义
由于除数很小,将导致商很大,有可能出现“溢出”现 象另外. ,设x* ,y* 的近似值分别为x,y,则z=x÷y是z*=x*÷y*
的近似值.此时,z的绝对误差满足估计式
e(z) z* z (x* x) y x( y y* ) y e(x) x e( y)
yy*
y2
可见,若除数太小,则可能导致商的绝对误差很大。
n k, k 1,...2,1
类似地可得
Ik
I
* k
(1) nk
k!( n!
I
n
I
* n
)
,
k n, n 1,...,1,0
可见,近似误差Ik-I*k是可控制的,算法是数值稳定的。
例如,由于
e 1 10
01 x9e1dx
I9
01 x9dx
1 10
取近似值 I9
1 (e1 1 ) 0.0684 2 10 10
§3 绝对误差、相对误差和有效数字
设x是精确值x*的一个近似值,记 e=x*-x
称e为近似值x的绝对误差,简称误差。如果满足 |e|≤
则称为近似值x的绝对误差限,简称误差限。 精确值x* 、近似值x和误差限之间满足: x-≤x*≤x+
通常记为 x*=x±
绝对误差有时并不能很好地反映近似程度的好坏,如
随着计算机的飞速发展,数值分析方法已深入到计算 物理、计算力学、计算化学、计算生物学、计算经济学等 各个领域。本课仅限介绍最常用的数学模型的最基本的数 值分析方法。
§2 误差的来源和分类
误 1.差模是型描误述差数值数计学算模之型中通近常似是值由的实精际确问程题度抽,象在得数到值的, 计一般算带中有十误分差重,要这,种误误差差按称来为源模可型分误为差模。型误差、观测误差、 截断误2.差观和测舍误入差误差数四学种模。型中包含的一些物理参数通常是 通过观测和实验得到的,难免带有误差,这种误差称为观 测误差。
数值分析
* * 1 2 * 1 * * 1 * * * * * * * * * * *
到x *的第一位非零数字共有 n位,就说x * 有n位有效数字.
即
x* 10m (a1 a2 101 an 10( n1) ) 1 x x * 10mn1 2
(2.1)
其中a1 0 . 并且 (2.2)
例1
• 按四舍五入写出下述各数具有5位有效数字的近似 数: 187.9325 0.037 855 51 8.000 033 2.718 281 8
加法和减法结果的误差
(x
* 1
x2 ) ( x1 x2 )
* 1
*
(x
x1 ) ( x2 x2 )
*
*
e( x ) e( x2 )
* 1
误差限: (x x ) (x ) (x )
* 1 * 2 * 1 * 2
乘法的结果误差
x x x1 x2 x x ( x x1 x )(x2 x2 x2 ) x1 x2 ( x1 e( x1 ))(x2 e( x2 )) x x x x x e( x2 ) x2 e( x ) e( x )e( x2 ) x e ( x2 ) x2 e ( x ) e ( x ) e ( x 2 )
例2 重力加速度
若以m/s2为单位, g≈9.80m/s2, 1 m n 1 1 * 10 g 9.80 102 , 2 2 * 1 按(2.1), m 0, n 3. 绝对误差限 1 102. 2 若以km/s2为单位, g≈0.00980m/s2, 1 g 0.00980 105 , 2 * 1 按(2.1), m 3, n 3. 绝对误差限 2 105. 2 而相对误差限相同:
数值分析第一章课件
E( x ) x x 为近似值 x *的绝对误差 , 简称误差 , 可简记为 E .
20
*
*
因为准确值 x 往往是未知甚至是无法 知道的
因此 E ( x ) x x 往往也无法求出 而只能知道 E ( x * ) x * x 绝对值的某个上界 , 即 | E ( x )| | x x| ( x ) 数值 ( x * )称为 x *的 绝对误差限或误差限, 简记为
26
* * 考察 y *的误差与 x1 , x2 的误差的关系
* * 函数 f ( x1 , x 2 ) 在点 ( x1 , x2 )处的 Taylor 展开式为
** * * ff ff ** ** ** * * ff ((x x11,,x x22)) ((x ( ff ((x x11 x x11 ) ) (x22 x2 x11,,x x22)) 2 ) x x11 x x22
能否正确制定算法是科学计算成败的关键
12
C、什么是算法
例1:证明二次方程
x 2 2bx c
0
至多有两个不同的实根。 书中提出了三种解法(p2) 所谓算法:不仅仅是指单纯的数学公式, 而是指解题方案的准确和完整的描述 例如: 多项式求值的秦九韶算法(P3) 方程求根的二分法(P5)
13
研究数值算法的主要任务: 1.将计算机上不能执行的运算化为在计算机上可 执行的运算 2.针对所求解的数值问题研究在计算机上可执行 的且有效的计算公式 3.因为可能采用了近似等价运算,故要进行误差 分析, 即数值问题的性态及数值方法的稳定性 本课程的重点就是对线性方程组、微积分、微 分方程、数据拟合等问题寻找行之有效的数值 算法。
数值分析课件第1章
解:
(s ) l (d ) d (l )
110 (0.1) 80 (0.2) 27( m 2 )
r
(
s
)
(s)
s
(s)
ld
27 0.31% 8800
2、函数误差 当自变量有误差时计算函数值也产生误差,可以利用
函数的泰勒展开式进行估计。
工科研究生公共课程数学系列
(f (x)) f (x)(x).
例1-4 设x0,x的相对误差为,求lnx的误差。
解:
lnx*
-lnx
1 x*
(x*
-
x), 即有
e(lnx) er(x)
进而有(ln(x)) 。
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
1.3 误差定性分析与避免误差危害
一、几种定性分析误差的方法 1、概率分析法:考虑到误差分布的随机性,用概率统计的
二、数值分析的特点
• 面向计算机,要根据计算机的特点提供切实可行的有效算 法。
• 有可靠的理论分析,能任意逼近并达到精度要求,对近似 算法要保证收敛性和数值稳定性,还要对误差进行分析。 这些都是建立在数学理论的基础上,因此不应片面的将数 值分析理解为各种数值方法的简单罗列和堆积。
• 要有好的计算复杂性,时间复杂性好是指节省时间,空间 复杂性好是指节省存上实现。
• 要有数值实验,即任何一个算法除了从理论上要满足上述 三点外,还要通过数值实验证明是行之有效的。
工科研究生公共课程数学系列
机动 上页 下页 首页 结束
三、数值分析的学习方法 初学可能仍会觉得公式多,理论分析复杂。给出如下的 几点学习方法。
• 认识建立算法和对每个算法进行理论分析是基本任务,主 动适应公式多和讲究理论分析的特点。
数值分析原理课件第一章
第一章 绪 论本章以误差为主线,介绍了计算方法课程的特点,并概略描述了与算法相关的基本概念,如收敛性、稳定性,其次给出了误差的度量方法以及误差的传播规律,最后,结合数值实验指出了算法设计时应注意的问题.§1.1 引 言计算方法以科学与工程等领域所建立的数学模型为求解对象,目的是在有限的时间段内利用有限的计算工具计算出模型的有效解答。
由于科学与工程问题的多样性和复杂性,所建立的数学模型也是各种各样的、复杂的. 复杂性表现在如下几个方面:求解系统的规模很大,多种因素之间的非线性耦合,海量的数据处理等等,这样就使得在其它课程中学到的分析求解方法因计算量庞大而不能得到计算结果,且更多的复杂数学模型没有分析求解方法. 这门课程则是针对从各种各样的数学模型中抽象出或转化出的典型问题,介绍有效的串行求解算法,它们包括(1)非线性方程的近似求解方法;(2)线性代数方程组的求解方法;(3)函数的插值近似和数据的拟合近似;(4)积分和微分的近似计算方法;(5)常微分方程初值问题的数值解法;(6)优化问题的近似解法;等等从如上内容可以看出,计算方法的显著特点之一是“近似”. 之所以要进行近似计算,这与我们使用的工具、追求的目标、以及参与计算的数据来源等因素有关.计算机只能处理有限数据,只能区分、存储有限信息,而实数包含有无穷多个数据,这样,当把原始数据、中间数据、以及最终计算结果用机器数表示时就不可避免的引入了误差,称之为舍入误差.我们需要在有限的时间段内得到运算结果,就需要将无穷的计算过程截断,从而产生截断误差. 如的计算是无穷过程,当用作为的 +++=!21!111e !1!21!111n e n ++++= e 近似时,则需要进行有限过程的计算,但产生了截断误差.e e n - 当用计算机计算时,因为舍入误差的存在,我们也只能得到的近似值,也就是n e n e *e 说最终用近似,该近似值既包含有舍入误差,也包含有截断误差.*e e 当参与计算的原始数据是从仪器中观测得来时,也不可避免得有观测误差.由于这些误差的大量存在,我们得到的只能是近似结果,进而对这些结果的“可靠性”进行分析就是必须的,它成为计算方法的第二个显著特点. 可靠性分析包括原问题的适定性和算法的收敛性、稳定性.所谓适定性问题是指解存在、惟一,且解对原始数据具有连续依赖性的问题. 对于非适定问题的求解,通常需要作特殊的预处理,然后才能做数值计算. 在这里,如无特殊说明,都是对适定的问题进行求解.对于给定的算法,若有限步内得不到精确解,则需研究其收敛性. 收敛性是研究当允许计算时间越来越长时,是否能够得到越来越可靠的结果,也就是研究截断误差是否能够趋于零.对于给定的算法,稳定性分析是指随着计算过程的逐步向前推进,研究观测误差、舍入对于同一类模型问题的求解算法可能不止一种,常希望从中选出高效可靠的求解算法. 如我国南宋时期著名的数学家秦九韶就提出求n 次多项式值0111a x a x a x a n n nn ++++-- 的如下快速算法;n a s =; k n a t -=t sx s +=),,2,1(n k =它通过n 次乘法和n 次加法就计算出了任意n 次多项式的值. 再如幂函数可以通过如下64x 快速算法计算出其值;x s =;循环6次s s s ⋅=如上算法仅用了6次乘法运算,就得到运算结果.算法最终需要在计算机上运行相应程序,才能得到结果,这样就要关注算法的时间复杂度(计算机运行程序所需时间的度量)、空间复杂度(程序、数据对存储空间需求的度量)和逻辑复杂度(关联程序的开发周期、可维护性以及可扩展性). 事实上,每一种算法都有自己的局限性和优点,仅仅理论分析是很不够的,大量的实际计算也非常重要,结合理论分析以及相当的数值算例结果才有可能选择出适合自己关心问题的有效求解算法. 也正因如此,只有理论分析结合实际计算才能真正把握准算法.§1.2 误差的度量与传播一、误差的度量误差的度量方式有绝对误差、相对误差和有效数字.定义1.1 用作为量的近似,则称为近似值的绝对误差.*x x )(:**x e x x =-*x 由于量x 的真值通常未知,所以绝对误差不能依据定义求得,但根据测量工具或计算情况,可以估计出绝对误差绝对值的一个较小上界,即有ε (1.1)ε≤-=x x x e **)(称正数为近似值的绝对误差限,简称误差. 这样得到不等式ε*x εε+≤≤-**x x x 工程中常用ε±=*x x 表示近似值的精度或真值x 所在的范围.*x 误差是有量纲的,所以仅误差数值的大小不足以刻划近似的准确程度. 如量 (1.2)m m cm s μ50001230000005.023.15.0123±=±=±=为此,我们需要引入相对误差定义1.2 用作为量的近似,称为近似值的相对误差. 当0*≠x x )(:**x e xxx r =-*x 是x 的较好近似时,也可以用如下公式计算相对误差*x (1.3)***)(xx x x e r -= 显然,相对误差是一个无量纲量,它不随使用单位变化. 如式(1.2)中的量s 的近似,无论使用何种单位,它的相对误差都是同一个值.同样地,因为量x 的真值未知,我们需要引入近似值的相对误差限,它是相*x )(*x r ε对误差绝对值的较小上界. 结合式(1.1)和(1.3),相对误差限可通过绝对误差限除以近似*x 值的绝对值得到,即(1.4)***)()(xx x r εε=为给出近似数的一种表示法,使之既能表示其大小,又能体现其精确程度,需引入有效数字以及有效数的概念.定义1.3 设量的近似值有如下标准形式x *x p n ma a a a x 21*.010⨯±= (1.5)()pm p n m n m m a a a a ----⨯++⨯++⨯+⨯±101010102211 =其中且,m 为近似值的量级. 如果使不等式}9,,1,0{}{1 ⊂=pi i a 01≠a (1.6)n m x x -⨯≤-1021*成立的最大整数为n ,则称近似值具有n 位有效数字,它们分别是、、… 和 . *x 1a 2a n a 特别地,如果有,即最后一位数字也是有效数字,则称是有效数.p n =*x 从定义可以看出,近似数是有效数的充分必要条件是末位数字所在位置的单位一半是绝对误差限. 利用该定义也可以证明,对真值进行“四舍五入”得到的是有效数. 对于有效数,有效数字的位数等于从第一位非零数字开始算起,该近似数具有的位数. 注意,不能给有效数的末位之后随意添加零,否则就改变了它的精度.例1.1 设量,其近似值,,. 试回答这三个近π=x 141.3*1=x 142.3*2=x 722*3=x 似值分别有几位有效数字,它们是有效数吗?解 这三个近似值的量级,因为有1=m 312*110211021005.000059.0--⨯=⨯=≤=- x x 413*2102110210005.00004.0--⨯=⨯=≤=- x x571428571428.3*3=x 312*310211021005.0001.0--⨯=⨯=≤=- x x 所以和都有3位有效数字,但不是有效数. 具有4位有效数字,是有效数.*1x *3x *2x 二、误差的传播这里仅介绍初值误差传播,即假设自变量带有误差,函数值的计算不引入新的误差. 对于函数有近似值,利用在点处),,,(21n x x x f y =),,,(**2*1*n x x x f y =),,,(**2*1n x x x 的泰勒公式(Taylor Formula),可以得到 )(),,,()(*1**2*1**i i ni n i x x x x xf y y y e -≈-=∑=(1.7))(),,,(*1**2*1i ni n i x e x x xf ∑== 其中,是的近似值,是的绝对误差. 式(1.7)表明函ii x f f ∂∂=:*i x i x )(*i x e *i x ),,2,1(n i =数值的绝对误差近似等于自变量绝对误差的线性组合,组合系数为相应的偏导数值. 从式(1.7)也可以推得如下函数值的相对误差传播近似计算公式 (1.8))(),,,()(***1**2*1*i r i ni ni r x e yx x x x f y e ∑=≈对于一元函数,从式(1.7)和(1.8)可得到如下初值误差传播近似计算公式)(x f y = (1.9))()()(***x e x f y e '≈ (1.10))()()(*****x e yx x f y e r r '≈式(1.9)表明,当导数值的绝对值很大时,即使自变量的绝对误差比较小,函数值的绝对误差也可能很大.例1.2 试建立函数的绝对误差(限)、相对误差n n x x x x x x f y +++== 2121),,,(的近似传播公式,以及时的相对误差限传播公式.{}ni i x 1*0=> 解 由公式(1.7)和(1.8)可分别推得和的绝对误差、相对误差传播公式如下(1.11)∑∑==≈ni i ini nix e x e x x xf y e 1**1**2*1*)()(),,,()(= (1.12)∑∑==≈ni i r i i r i ni ni r x e yx x e y x x x x f y e 1******1**2*1*)()(),,,()(= 进而有∑∑∑===≤≤≈ni i n i ini ix x e xe y e 1*1*1**)()()()(ε于是有和的绝对误差限近似传播公式 ∑=≈ni ixy 1**)()(εε当时,由式(1.3)推得相对误差限的近似传播公式{}ni i x 1*=>)(max )(max )(max )()()(*11***11***11****1**i r ni ni i ir n i ni i i r n i ni i r i ni ir x yx x yx x x y x yxy εεεεεε≤≤=≤≤=≤≤====≤=≈∑∑∑∑ 例1.3使用足够长且最小刻度为1mm 的尺子,量得某桌面长的近似值3.1304*=a mm ,宽的近似值mm (数据的最后一位均为估计值). 试求桌子面积近似值的绝8.704*=b 对误差限和相对误差限.解 长和宽的近似值的最后一位都是估计位,尺子的最小刻度是毫米,故有误差限 mm ,mm 5.0)(*=a ε5.0)(*=b ε面积,由式(1.7)得到近似值的绝对误差近似为ab S =***b a S = )()()(*****b e a a e b S e +≈进而有绝对误差限 mm 255.10045.03.13045.08.704)()()(*****=⨯+⨯=+≈b a a b S εεε相对误差限 %11.00011.08.7043.130455.1004)()(***=≈⨯=≈S S S r εε§1.3 数值实验与算法性能比较本节通过几个简单算例说明解决同一个问题可以有不同的算法,但算法的性能并不完全相同,他们各自有自己的适用范围,并进而指出算法设计时应该注意的事项. 算例1.1 表达式,在计算过程中保留7位有效数字,研究对不同)1(1111+=+-x x x x 的x ,两种计算公式的计算精度的差异.说明1:Matlab 软件采用IEEE 规定的双精度浮点系统,即64位浮点系统,其中尾数占52位,阶码占10位,尾数以及阶码的符号各占1位. 机器数的相对误差限(机器精度)eps=2-52≈2.220446×10-16,能够表示的数的绝对值在区间(2.2250739×10-308,1.797693×10308)内,该区间内的数能够近似表达,但有舍入误差,能够保留至少15位有效数字. 其原理可参阅参考文献[2, 4].分析算法1: 和算法2: 的误差时,精确解用双精111)(1+-=x x x y )1(1)(2+=x x x y 度的计算结果代替. 我们选取点集中的点作为x ,比较两种方法误差的差异.301}{=i i π 从图1.1可以看出,当x 不是很大时,两种算法的精度相当,但当x 很大时算法2的精度明显高于算法1. 这是因为,当x 很大时,和是相近数,用算法1进行计算时出x 111+x 现相近数相减,相同的有效数字相减后变成零,于是有效数字位数急剧减少,自然相对误差增大. 这一事实也可以从误差传播公式(1.12)分析出. 鉴于此,算法设计时,应该避免相近数相减.在图1.2中我们给出了当x 接近时,两种算法的精度比较,其中变量x 依次取为1-. 从图中可以看出两种方法的相对误差基本上都为,因而二者的精度相当.{}3011=--i iπ710-图1.1 算例1.1中两种算法的相对误差图()+∞→x图1.2 算例1.1中两种算法的精度比较)1(-→x 算例1.2 试用不同位数的浮点数系统求解如下线性方程组⎩⎨⎧=+=+2321200001.02121x x x x 说明2:浮点数系统中的加减法在运算时,首先按较大的阶对齐,其次对尾数实施相应的加减法运算,最后规范化存入计算机.算法1 首先用第一个方程乘以适当的系数加至第二个方程,使得第二个方程的的系1x 数为零,这时可解出;其次将带入第一个方程,进而求得(在第三章中称该方法为高2x 2x 1x 斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法1a 和算法1b . 算法 2 首先交换两个方程的位置,其次按算法1计算未知数 (第三章中称其为选主元的高斯消元法). 当用4位和7位尾数的浮点运算实现该算法,分别记之为算法2a 和算法2b .方程组的精确解为, ,用不同的算法计算出的...25000187.01=x ...49999874.02=x 结果见表1.1.表1.1 对算例1.2用不同算法的计算结果比较算例1.2*1x )(*1x r ε*2x )(*2x r ε算法1a 0.00000.10×1010.50000.25×10-7算法2a 0.25000.75×10-70.50000.25×10-7算法1b 0.26000000.40×10-10.49999870.10×10-6算法2b0.25000200.50×10-80.50000000.25×10-7对于算例1.2,表中的数据表明,当用4位尾数计算时,算法1给出错误的结果,算法2则给出解很好的近似. 这是因为在实现算法1时,需要给第一个方程乘以加00001.0/2-至第二个方程,从而削去第二个方程中的系数,但在计算的系数时需做如下运算1x 2x(1.13)661610000003.0104.0103.0104.03200001.02⨯⨯⨯⨯=+⨯+=-+--对上式用4位尾数进行计算,其结果为. 因为舍入误差,给相对较大的数加以6104.0⨯-相对较小的数时,出现大数“吃掉”小数的现象. 计算右端项时,需做如下运算(1.14)661610000002.0102.0102.0102.02100001.02⨯⨯⨯⨯=+⨯+=-+--同样出现了大数吃小数现象,其结果为. 这样,得到的变形方程组6102.0⨯-⎩⎨⎧⨯-=⨯-⨯=⨯+⨯62612114102.0104.0101.0102.0101.0x x x 中没有原方程组中第二个方程的信息,因而其解远偏离于原方程组的解. 该算法中之所以出现较大数的原因是因为运算,因而算法设计中尽可能避免用绝对值较大的数00001.0/2-除以绝对值较小的数. 其实当分子的量级远远大于分母的量级时,除法运算还会导致溢出,计算机终止运行.虽从单纯的一步计算来看,大数吃掉小数,只是精度有所损失,但多次的大数吃小数,累计起来可能带来巨大的误差,甚至导致错误. 例如在算法1a 中出现了两次大数吃小数现象,带来严重的后果. 因而尽可能避免大数吃小数的出现在算法设计中也是非常必要的. 当用较多的尾数位数进行计算,舍入误差减小,算法1和2的结果都有所改善,算法1的改进幅度更大些.算例1.3 计算积分有递推公式,已知⎰+=1055dx x x I n ),2,1(511 =-=-n I nI n n . 采用IEEE 双精度浮点数,分别用如下两种算法计算的近似值.56ln 0=I 30I算法1 取的近似值为,按递推公式计算0I 6793950.18232155*0=I *1*51--=n n I nI *30I 算法2 因为,取的近似值为)139(5156)139(611039103939+⨯=<<=+⨯⎰⎰dx x I dx x 39I ,按递推公式计算3333330.004583332001240121*39≈⎪⎭⎫ ⎝⎛+=I ⎪⎭⎫ ⎝⎛-=-**1151n n I n I *30I 算法1和算法2 的计算结果见表1.2. 误差绝对值的对数图见图1.3.表1.2 算例1.3的计算结果算法1算法2n *nI n n I I -*n *nI nn I I -*18.8392e-002 1.9429e-01639 4.5833e-0033.9959e-0042 5.8039e-0029.8532e-016384.2115e-0037.9919e-0053 4.3139e-002 4.9197e-01537 4.4209e-003 1.5984e-0054 3.4306e-002 2.4605e-01436 4.5212e-003 3.1967e-0065 2.8468e-002 1.2304e-01335 4.6513e-003 6.3935e-0076 2.4325e-002 6.1520e-01334 4.7840e-003 1.2787e-007………33 4.9255e-003 2.5574e-00825 1.1740e+001 1.1734e+00132 5.0755e-003 5.1148e-00926-5.8664e+001 5.8670e+00131 5.2349e-003 1.0230e-00927 2.9336e+002 2.9335e+002 305.4046e-003 2.0459e-01028-1.4667e+003 1.4668e+003 297.3338e+0037.3338e+003 30-3.6669e+004 3.6669e+004图1.3 算例1.3用不同算法计算结果的误差绝对值的对数图从表1.2中的计算结果可以看出,算法1随着计算过程的推进,绝对误差几乎不断地以5的倍数增长,即有0*02*221*1*555I I I I I I I I n n n n n n n -≈≈-≈-≈----- 成立. 对于逐步向前推进的算法,若随着过程的进行,相对误差在不断增长,导致产生不可靠的结果,这种算法称之为数值不稳定的算法. 对于算法1绝对误差按5的幂次增长,但真值的绝对值却在不断变小且小于1,相对误差增长的速度快于5的幂次,导致产生错误的结果,因而算法1数值不稳定,不能使用. 而算法2随着计算过程的推进,绝对误差几乎不断地缩小为上一步的1/5,即有m m n m n n n n n n n I I I I I I I I 5/5/5/*22*21*1*++++++-≈≈-≈-≈- 成立. 绝对误差不断变小,真值的绝对值随着过程向前推进却在变大,这样相对误差也越来越小,这样的方法称之为数值稳定的算法. 算法1和算法2的误差对数示意图见图1.3. 这个算例告诉我们应该选用数值稳定的算法.知识结构图⎪⎪⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎪⎪⎨⎧⎪⎩⎪⎨⎧⎪⎪⎪⎪⎪⎩⎪⎪⎪⎪⎪⎨⎧⎩⎨⎧⎪⎩⎪⎨⎧⎩⎨⎧算法设计要点数值方法的稳定性数值方法的收敛性算法多元函数一元函数传播有效数字相对误差(限)绝对误差(限)度量截断误差舍入误差误差的产生误差误差与算法习题一1 已知有效数,,. 试给出各个近似值的绝对误105.3*1-=x 4*210125.0⨯=x 010.0*3=x 差限和相对误差限,并指出它们各有几位有效数字.2 证明当近似值是x 的较好近似时,计算相对误差的计算公式和相差一个*x x x x -***xxx -和同阶的无穷小量.2*⎪⎪⎭⎫⎝⎛-x x x 3 设x 的近似值具有如式(1.5)的表示形式,试证明*x 1)若具有n 位有效数字,则相对误差;*x n r a x e -⨯≤11*1021)(2)若相对误差,则至少具有n 位有效数字.n r a x e -⨯+≤11*10)1(21)(*x 4 试建立二元算术运算的绝对误差限传播近似计算公式.5 试建立如下表达式的相对误差限近似传播公式,并针对第1题中数据,求下列各近似值的相对误差限.1) ; 2) ; 3) *3*2*1*1x x x y +=3*2*2x y =*3*2*3/x x y =6若例题1.3中使用的尺子长度是80mm ,最小刻度为1mm ,量得某桌面长的近似值mm ,宽的近似值mm . 试估计桌子长度、宽度的绝对误差限,并3.1304*=a 8.704*=b 求用该近似数据计算出的桌子面积的绝对误差限和相对误差限.7 改变如下计算公式,使其计算结果更为精确.1) 且0,cos 1≠-x xx1<<x 2)1,1ln )1ln()1(ln 1>>--++=⎰+N N N N N xdx N N3) 1,133>>-+x x x 8 (数值试验)试通过分析和数值试验两种手段,比较如下三种计算近似值算法的可靠性.1-e 算法1 ;∑=--≈mn nn e 01!)1( 算法2 ;101!1-=-⎪⎭⎫ ⎝⎛≈∑m n n e算法3 ;101)!(1-=-⎪⎪⎭⎫ ⎝⎛-≈∑m n n m e9 (数值试验)设某应用问题归结为如下递推计算公式 ,,72.280=y 251-=-n n y y,2,1=n 在计算时取为具有5位有效数字的有效数. 试分析近似计算公式的2*c **1*5c y y n n -=-绝对误差传播以及相对误差传播情况,并通过数值实验验证 (准确值可以用IEEE 双精度浮点运算结果代替),该算法可靠可用吗?。
数值分析课件 第一章 绪论
注:
的每一位都是有效数字, 称是有效数 若 x∗ 的每一位都是有效数字,则 x∗称是有效数
特别, 四舍五入” 特别,经“四舍五入”得到的数均为有效数
Th .1将 x 的近似值 x 表示为x = ±0.a1a2 Lak Lan ×10, 1 1 ×10−(k−1) 是有效数字, 若 ak 是有效数字,则相对误差不超过 ; 21 ∗ ∗ er ,且有 er ≤ ×10−k 反之, 反之,若已知相对误差 , 2 必为有效数字。 则ak 必为有效数字。
收敛性: 收敛性:方法的可行性
§1
误 差
/* Error */
一、 误差的来源与分类 /* Source & Classification */
1、从实际问题中抽象出数学模型 、 —— 模型误差 /* Modeling Error */ 2、通过观测得到模型中某些参数(或物理量)的值 、通过观测得到模型中某些参数(或物理量) —— 观测误差 /* Measurement Error */ 3、数学模型与数值算法之间的误差 、 —— 方法误差 (截断误差 /* Truncation Error */ ) 截断误差 4、由于机器字长有限,原始数据和计算过程会产生新的误差 、由于机器字长有限, —— 舍入误差 /* Roundoff Error */
注:0.2300有4位有效数字,而00023只有2位有效数 0.2300有 位有效数字, 00023只有 位有效数 只有2 12300如果写成0.123× 如果写成0.123 则表示最多只有3 字。12300如果写成0.123×105,则表示最多只有3 位有效数字。数字末尾的0不可随意省去! 位有效数字。数字末尾的0不可随意省去!
二、 误差分析的基本概念 /* Basic Concepts */
数值分析 第1章
3.计算复杂性尽可能小 从实际需要出发,我们还需要考虑计算量的大小, 即所谓计算复杂性问题。它由以下两个因素决定的: 使用中央处理器 CPU)的时间,主要由四则运算 使用中央处理器( 的时间 主要由四则运算 的次数决定; 占用内存储器的空间,主要由使用的数据量来决 定。
4.要有数值化结果 数值计算的许多方法是建立在离散化的基础上进 行的, 其解决问题的最终结果不是解析解而是数值近似 解。对于给定的数学模型,采用不同的离散手段可以导 致不同的数值方法,应该通过计算机进行数值试验,进 行分析、比较来选定算法。 对新提出的算法,有的在理论上虽然还未证明其 收敛性,但可以从具体试验中发现其规律,为理论证明 提供线索。
x2 =
−b − b 2 − 4ac 2c = 2a −b + b 2 − 4ac
9
来严重影响 应尽量避免 来严重影响,应尽量避免。 例3
,
在 4 位浮点十进制数下,用消去法解线性方程
⎧0.00003 x1 − 3 x 2 = 0.6 ⎨ x1 + 2 x 2 = 1 . ⎩
组
2 ×10 =1 . 109 + 109
§1.1
预备知识
一、集合
把一些确定的彼此不相同的事物汇集在一起成为一 个整体,称为集合。 表示方法:描述法;列举法。 分类:有限集;无限集(可列集,不可列集) 。
9
10
可列集(可数集) : 设 A 是无限集,若 A 中的一切元素可以用自然数 编号(即 A 与自然数集 N 一一对应) ,使 A 写成 A={ A { a1 , a2 , a3 ,L an ,L },则称 A 为可列集 (或可数集) 。 否则,称为不可列集。 如:有理数集是可列集,数列构成的集合是可列 集;无理数集、[0,1]中的全体实数构成的集合是不 可列集。
数值分析_第一章_误差
的关系. 解
e( y ) e( x n ) nx n1e( x )
e( y ) nx n1e( x ) e( x ) er ( y ) n ner ( x ) n y x x
所以xn 的相对误差是 x 的相对误差的n倍. x2的相对误差是 x 的相对误差的 2 倍,
x 的相对误差是 x 的相对误差的 1/2 倍.
一位的所有数字均称为有效数字.
例: 3.1415926535 897932 ......;
问: *有几位有效数字? 解: |π * π| 0.5 10 3
* 3.1415
* 有4 位有效数字,精确到小数点后第3 位
3
例
已知下列近似值的绝对误差限都是0.005, 问
问应取几位有效数字? 解 由于 2 1.414, 则近似值x*可写为
x* 0.a1a2 an 101 ,
a1 1 0.
令
1 2 x * 101 n 10 5 2
故取 n=6,即取 6 位有效数字. 此时 x*=1.41421.
5
例
设 y=xn, 求 y 的相对误差与 x 的相对误差之间
例 用毫米刻度的米尺测量一长度 x, 如读出的长度
是 x*=765 mm, 由于误差限是 0.5 mm, 故准确值
x [764.5 mm , 765.5 mm ].
精确值x , 近似值 x* 和误差限 之间满足:
x * x x *
通常记为
x x *
1
例 设 x*=1.24是由精确值 x 经过四舍五入得到的 近似值, 求x*的绝对误差限和相对误差限. 解 由已知可得: 1.235 x 1.245
《数值分析》第一章 数值计算中的误差
值,其绝对误差限等于该近似值末位的半个单位。
14
§2 舍入方法与有效数字
2.2 舍入方法
2.2.2四舍五入法
• 例:设a=-2.18和b=2.1200是分别由准确值x和y 经过四舍五入而得到的近似值,问: a、b的绝 对误差限、相对误差限各是多少?
解: (a) 0.005 0.5 102
(b) 0.00005 0.5104
n位
≤ 0 . 0 … 0 999... < 0 . 0 … 0 1=1×10-n
n位
n-1位
• 截断法产生的绝对误差限不超过近似数a最末位 的1个单位。
11
§2 舍入方法与有效数字
2.2 舍入方法
2.2.2四舍五入法
• 四舍情况,
A=a0 a1 … am . am+1 … am+n
• 当am+n+1 =0,1,2,3,4时,
4
§2 舍入方法与有效数字
5
§2 舍入方法与有效数字
2.1 绝对误差与相对误差
• 近似数a的绝对误差 , 简称误差 设a是精确值A的近似值,
=a-A
• 绝对误差限 ||=|a-A|<(上界)
• 由上式可推知 a- <A<a+,也可表示为A=aAFra biblioteka-a
a+
6
§2 舍入方法与有效数字
2.1 绝对误差与相对误差
• 相对误差 : 绝对误差与精确值之比 =/A。 • 实际计算/a。
代替后误差
a A 1 2
A a Aa
Aa
• 相对误差限 ||=|/a |< /|a|= (上界)
• 绝对误差是有量纲的量,相对误差没有量纲,有时 亦用百分比、千分比表示。
《数值分析》第1章
b
上两式作用得到:
4T ( h) − T ( 2h) = 3 I + O (h4 )
忽略高阶项得, I ≈ T (h) + (T (h) − T (2h)) . 公式的精度为 O (h4 ) .
1 3
此
其中 c1 , c2 ,L与 h 无关,则有,
19
20
§3 误差来源与误差分析的重要性
误差来源(或分类)
(1) 模型误差:建立数学模型时忽略一些次要 因素而引起的与真实情况的误差.
(2) 测量误差:数学模型中的一些已知参数, 由于受到测量工具或其它主观因素的影 响所带来的误差.
21
(3) 截断误差:数学模型常难以求解,往往要 用近似、易于求解的问题代替,这种简化 引起的误差.
P ( x ) = a0 x n + L + an −1 x + an 已知,对输入
的x,要计算P(x)的值,采取方法
u0 = 0 ⎧ t 1 = 1, ⎪ ⎨ t k = xt k − 1 , k = 2 , L , n ⎪u = u k = 1, L , n k −1 + a n− k tk , ⎩ k
29 30
例 15. 为使 20 的相对误差小于 0.1% ,要取几 位有效数字.
例 16. 用 3. 1416 表示π 的近似值,求其相对误 差?
解:因为 a1 = 3, n = 5 ,所以
er ( x ) ≤
1 1 × 10−5 + 1 = × 10−4 2× 3 6
解: 由 er ≤ 只需
1 × 10− n + 1 且 a1 = 4 , 为使 er ≤ 0.1% , 2a1
数值分析第一章 数值计算引论
减少运算误差的若干原则
两个相近的数相减,会严重损失有效数字
设y=x-A
其中A和x均为准确值,假设A运算时不发生误差, 而x有误差,其近似值为x*,由此可估计出当用x* 近似代替x时,y的相对误差
r
*(
y*)
*( y*) y*
(x A) (x * A) x*A
x x* x*A
*(x*)
所以,四舍五入得到近似数的绝对误差限是其 末位的半个单位,即
例1.4.2:圆周率л=3.14159…,用四舍五入取 小数点后4位时,近似值为3.1416,此时m=1, n=5,m-n=1-5=-4,绝对误差限ε*=1/2×10-4。 取小数点后2位时,近似值为3.14,其绝对误差 限ε*=1/2×10-2
11
有效数字
例1.4.6:л=3.141592…,当取3.142和3.141作 为其近似值时,有效数字分别为多少位?
解: |л-3.142|=0.000407<0.0005=1/2×10-3 即m-n=-3,m=1, n=4, 所以3.142作为л的近似值具有 4位有效数字 当取3.141作为л的近似值时 |л-3.141|=0.00059<0.005=1/2×10-2 即m-n=-2, m=1, n=3, 所以3.141作为л的近似值时有3 位有效数字
0.1000
106
x2
0.2000105
解得 x1=0, x2=-0.2
准确解为x1=1.399972…, x2=-0.199986…
x*
0.x1 0.x1
x2 x2
...xn 10m ,当xn1 (4 四舍) ...xn1(xn 1) 10m ,当xn1 (5 五入)
5
数值分析第一章
* 可微, x * n ) 设 f 在点 ( x *1 , x可微,,当数据误差较小 2 ,⋯ 解的绝对误差 绝对误差为 时,解的绝对误差为
e ( y * ) = y − y * = f ( x1 , x2 , ⋯ , x n ) − f ( x *1 , x * 2 , ⋯ , x * n )
观测误差 在数学模型中往往有一些观测或实验得来 的物理量,由于测量工具和测量手段的限制, 的物理量,由于测量工具和测量手段的限制,它 们与实际量大小之间必然存在误差, 们与实际量大小之间必然存在误差,这种误差 称为观测误差 称为观测误差. 3 截断误差 由实际问题建立起来的数学模型, 由实际问题建立起来的数学模型,在很多情 况下 要得到准确解是困难内的, 要得到准确解是困难内的,通常要用数值方法求 出它的近似解. 出它的近似解.这种数学模型的精确解与由数值 截断误差,由 方法求出的近似解之间的误差称为截断误差 方法求出的近似解之间的误差称为截断误差 由 于截断误差是数值计算方法固有的,故又称为方 于截断误差是数值计算方法固有的,故又称为方 法误差. 法误差.
目
录
数值分析
第一章 数值计算中的误差分析 第二章 线性方程组的直接解法 第三章 线性方程组的迭代解法 第四章 矩阵特征值特征向量的计算 第五章 函数插值 第六章 曲线拟合 第七章 数值积分与数值微分 第八章 非线性方程的数值解法 第九章 常微分方程的数值解法
数值分析
第一章
数值计算中的误差分析
本章的主要内容有:
1、基本运算的误差估计 、
基本运算:指四则运算和常用函数的计算。设数值 基本运算:指四则运算和常用函数的计算。 计算中求解与参量 x
数值分析课件第一章
x x*
1 10 m n 1. 2
(2.2)
21
定理1 设近似数 x *表示为
x* 10m (a1 a2 101 al 10(l 1) ), (2.1)
其中 ai (i 1,, l ) 是0到9中的一个数字,a1 0, m为整数. 1)若 x * 具有 n位有效数字, 则其相对误差限为 1 10( n 1) 2a1
1 6 5 I n1 , I 0 ln 0.1820 I n n 5 1 1 公式2 I n1 I n , I 8 0.019 In 5 n In I 公式1 I n
n
0.1820 0.0900 0.0500 0.0830 -0.165 1.0250 -4.958 24.933 -124.540
* * A* f ( x1 , xn ),
于是由泰勒展开, 函数值 A* 的误差 e( A*) 为
* * e( A*) A * A f ( x1 ,, xn ) f ( x1 ,, xn )
* * f ( x1 , , xn ) * ( xk xk ) xk k 1 n
x x* 1 10 m n 1. 2
(2.2)
19
例如 取3位
x π 3.14159265
x3 * 3.14,
1 π 3.14 =0.00159265 102 , 2
故x3 * 3.14有3为有效数字。
取5位
x5 * 3.1416 ,
1 104 . 2
16
把近似值的误差 e * 与准确值 x 的比值
e* x * x x x
* 称为近似值 x *的相对误差,记作 e r .
数值分析第一章PPT课件
= f ’( )(x* x)
x* 与 x 非常接近时,可认为 f ’( ) f ’(x*) ,则有:
|e*(y)| | f ’(x*)|·|e*(x)|
即:x*产生的误差经过 f 作用后被放大/缩小了| f ’(x*)| 倍。故称| f ’(x*)|为放大因子 /* amplification factor */ 或 绝对条件数 /* absolute condition number */.
r* (x ) ln x * r* (y )
11 0n1lnx*0.1% 2a1
n4
.
10
1.3 避免误差危害的若干原则
算法的数值稳定性
用一个算法进行计算,如果初始数据误差在计算中 传播使计算结果的误差增长很快,这个算法就是数值不 稳定的.
.
11
1.3 避免误差危害的若干原则
病态问题与条件数
Cp
x f (x) f (x)
x nxn1 xn
n,
它表示相对误差可能放大 n倍.
如 n10,有 f(1 ) 1 ,f(1 .0)2 1 .2,4 若取 x 1, x*1.02, 自变量相对误差为 2% ,函数值相对误差为 24%, 这时问题可以认为是病态的.
一般情况下,条件数
Cp
10就认为是病态,
εr*21 a11 0n10.0 0% 1
已知 a1 = 3,则从以上不等式可解得 n > 6 log6,即
n 6,应取 * = 3.14159。
.
8
1.2 数值计算的误差
问题:对于y = f (x),若用x* 取代x,将对y 产生什么影响?
分析:e*(y) = f (x*) f (x)
e*(x) = x* x
数值分析--第1章绪论
第一章绪论上世纪中叶诞生的计算机给科学、工程技术和人类的社会生活带来一场新的革命。
它使科学计算平行于理论分析和实验研究,成为人类探索未知科学领域和进行大型工程设计的第三种方法和手段。
在独创性工作的先行性研究中,科学计算更有突出的作用。
在今天,熟练地运用电子计算机进行科学计算,已成为科学工作者的一项基本技能。
然而,科学计算并不是计算机本身的自然产物,而是数学与计算机结合的结果,它的核心内容是以现代化的计算机及数学软件为工具,以数学模型为基础进行模拟研究。
近年来,它同时也成为数学科学本身发展的源泉和途径之一。
1 数值分析的研究对象与特点数值分析是计算数学的一个主要部分,计算数学是数学科学的一个分支,它研究用计算机求解各种数学问题的数值计算方法及其理论与软件实现。
一般地说,用计算机解决科学计算问题,首先需要针对实际问题提炼出相应的数学模型,然后为解决数学模型设计出数值计算方法,经过程序设计之后上机计算,求出数值结果,再由实验来检验。
概括为由实际问题的提出到上机求得问题的解答的整个过程都可看作是应用数学的任务。
如果细分的话,由实际问题应用有关科学知识和数学理论建立数学模型这一过程,通常作为应用数学的任务,而根据数学模型提出求解的数值计算方法直到编出程序上机计算出结果,这一过程则是计算数学的任务,即数值分析研究的对象。
因此,数值分析是寻求数学问题近似解的方法、过程及其理论的一个数学分支。
它以纯数学作为基础,但却不完全像纯数学那样只研究数学本身的理论,而是着重研究数学问题求解的数值方法及与此有关的理论,包括方法的收敛性,稳定性及误差分析;还要根据计算机的特点研究计算时间最省(或计算费用最省)的计算方法。
有的方法在理论上虽然还不够完善与严密,但通过对比分析,实际计算和实践检验等手段,被证明是行之有效的方法也可采用。
因此数值分析既有纯数学高度抽象性与严密科学性的特点,又有应用的广泛性与实际试验的高度技术性的特点,是一门与使用计算机密切结合的实用性很强的数学课程。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第一章 绪论
数值计算方法(分析) 能够做什么?
现代科学研究的三大支柱
理 论 研 究
科 学 实 验
科 学 计 算
计算数学
21世纪信息社会的两个主要特征: “计算机无处不在”
“数学无处不在” 21世纪信息社会对科技人才的要求:
--会用数学解决实际问题 --会用计算机进行科学计算
本课程上机环境--matlab
计算方法
程序设计
上机计算
结果
实际问题——〉数学模型:由实际问题应用 科学知识和数学理论建立数学模型的过程, 是应用数学的任务。 数值计算方法——〉程序设计——〉计算结 果:根据数学模型提出求解的数值计算方法, 直到编出程序上机算出解,是计算数学的任 务。
数值计算方法重点研究:
求解的数值方法及与此有关的理论 包括:方法的收敛性,稳定性,误差分析 ,计算时间的最小(也就是计算费用),占 用内存空间最少。
这个问题就是要求由函数f(x)=sin x 给定的曲 线从x=0到x=48英寸间的弧长L. 由微积分学我们知道,所求的弧长可表示为:
L
48
0
1 ( f ( x)) dx
' 2
48
0
1 (cos x) 2 dx
上述积分称为第二பைடு நூலகம்椭圆积分,它不能用普 通方法来计算.
采用数值积分求解
应用问题举例
1、一个两千年前的例子
今有上禾三秉,中禾二秉,下禾一秉,实 三十九斗; 上禾二秉,中禾三秉,下禾一秉,实 三十四斗; 上禾一秉,中禾二秉,下禾三秉,实 二十六斗。 问上、中、下禾实一秉各几何? 答曰:上禾一秉九斗四分斗之一。中禾一 秉四斗四分斗之一。下禾一秉二斗四分斗 之三。-------《九章算术》
R 6 8
4 2 N-S positions 0 0 图 7.8
( x x1 )2 ( y y1 )2 ( z z1 )2 (t1 -t) c 0 ( x x2 )2 ( y y2 )2 ( z z2 )2 (t 2 -t) c 0 ( x x3 )2 ( y y3 )2 ( z z3 )2 (t 3 -t) c 0 ( x x4 )2 ( y y4 )2 ( z z4 )2 (t 4 -t) c 0 ( x x5 )2 ( y y5 )2 ( z z5 )2 (t 5 -t) c 0 ( x x6 )2 ( y y6 )2 ( z z6 )2 (t 6 -t) c 0
研究使用计算机求解各种科学与工程计算 问题的数值方法(近似方法),对求得的 解的精度进行评估,以及如何在计算机上 实现求解等。
数值分析课程中所讲述的各种数值方法在 科学与工程计算、信息科学、管理科学、 生命科学等交叉学科中有着广泛的应用
计算机解决科学计算问题时经历的 几个过程
反馈调整
实际问题
数学模型
下面给出的是中国1950 年到2000年的人口数, 我们的目标是预测未来 的人口数(数据量较大 时)
y 1t 3 2t 2 3t 4
s (t 1979 / 30 )
1950 55196
1960
1970 1980 1990 2000
66207
82992 98705 114333 126743
y 1s 2 s 3s 4
3 2
采用数据拟合求解
6、铝制波纹瓦的长度问题
建筑上用的一种铝制波纹瓦是用一种机 器将一块平整的铝板压制而成的.
假若要求波纹瓦长4英尺,每个波纹的高度(从 中心线)为1英寸,且每个波纹以近似2π英寸 为一个周期. 求制做一块波纹瓦所需铝板的 长度L.
全球定位系统: 在地球的任何一 个位置,至少可 以同时收到4颗 以上卫星发射的 信号
8 S6 6
Height
S5
( x, y, z, t ) 表示地球上
一个接收点R的当前位 置,卫星Si的位置为 ( xi , yi , zi , ti ) ,则得 到下列非线性方程组
4
S3
2
S4 S1
0 10 S2 5
3 x 2 y z 39 2 x 3 y z 34 x 2 y 3 z 26
a11 a21 a n1
a12 a1n x1 b1 a22 a2 n x2 b2 an 2 ann x b n n
学不仅仅是计算,但推动数学产生和发展的最直接
原因还是计算问题。
二、二十世纪计算数学的发展
数值代数 最优化计算 数值逼近 计算几何 概率统计计算 蒙特卡罗方法 微分方程的数值解法 微分方程的反演问题
三、数值计算方法的主要内容
数值代数:方程求根、线性方程组求解、 特征值和特征向量的计算、 非线性方程组的求解; 数值逼近:插值与函数逼近、数值微分 和积分、 最小二乘法; 微分方程数值解:常微分方程数值解;?本课程 偏微分方程数值解: 差分法 有限元法 有限体积法
Axb
解线性方程组问题
2、天体力学中的Kepler方程
x sin x t 0,0 1
x是行星运动的轨道,它是时间t 的 函数.
超越方程,很难得出严格的分析解,但是,已经证明这 个方程存在唯一解。采用图解法、数值法或近似迭代法 求解
3、全球定位系统(Global Positioning System, GPS)
f1 ( x1 , x2 , xn ) 0 f ( x , x , x ) 0 2 1 2 n f n ( x1 , x2 , xn ) 0
F ( x) 0
记为: D R n R n , x ( x , x ,, x )T 其中, F 1 2 n
7、常微分方程初值问题
求解初值问题 2x dy y y dx y ( 0) 1 解 该方程是Bernoulli 方程,令u y 解得
2
解析解y 2 x 1。本题数值方法很多, 如 我们选择经典的四阶 K方法 : R
一、计算数学的产生和早期发展
综上,计算数学是数学的一个古老的分支,虽然数
非线性方程与方程组的数值解法
4、已经测得在某处海洋不同深度处 的水温如下:
深度(M) 466 水温(oC)7.04 741 4.28 950 1422 3.40 2.54 1634 2.13
根据这些数据,希望合理地估计出其它深度(如500米, 600米,1000米…)处的水温
插值法、最小二乘法
5、人口预测
数值计算方法
任课教师: 徐昱 xuyu@ 工程学院海洋工程系 1201
教材
海洋工程数值计算方法
参考书目(习题集)
数值方法(MATLAB版)(美国)Mathews 应用数值方法 使用MATLAB和C语言
Robert J.Schilling & Sandra L.Harris (机械工业出版社)
数值分析(美国)David.Dincaid [C.数值算法].(美国)William.H.Press 数值分析与科学计算 Jeffery J.Leader 著,张威,刘志 军,李艳红等译,(清华大学出版社)
课程要求
高等院校数学、物理和计算机应用专业等理工科本科生的 专业基础课,工科硕士研究生的学位必修课--(掌握概念 ,方法。) 课程讲解将简化公式推导过程,重点放在讲解例题和编制 matlab程序将方法实现 每次课分两部分,第一个课时讲解概念,第二个课时讲解 例题和上机练习 本课程布置少量作业,学校若无要求则不安排期 中考试 期末考试范围不会超出课程范围,重点考察概念 的理解 原则上不安排答疑,有问题平时上机时问
Why Matlab?
第四代计算机语言的MATLAB,利用其丰富的函 数资源,使编程人员从繁琐的程序代码中解放出 来。MATLAB 最突出的特点就是简洁。MATLAB 的基本数据单位是矩阵,它的指令表达式与数学 、工程中常用的形式十分相似,MATLAB 用更直 观的,符合人们思维习惯的代码,代替了C 和 FORTRAN 语言的冗长代码。MATLAB 给用户带 来的是最直观,最简洁的程序开发环境。