一次函数应用题精选(优选.)
一次函数应用题含答案
一次函数应用题含答案一次函数应用题含答案一、方案优化问题我市某乡A、B两村盛产柑桔,A村有柑桔200吨,B村有柑桔300吨.现将这些柑桔运到C、D两个冷藏仓库,已知C仓库可储存240吨,D仓库可储存260吨;从A村运往C、D两处的费用分别为每吨20元和25元,从B村运往C、D两处的费用分别为每吨15元和18元.设从A村运往C仓库的柑桔重量为x吨,A、B两村运往两仓库的柑桔运输费用分别为yA元和yB元.(1)请填写下表,并求出yA,yB与x之间的函数关系式;(2)试讨论A、B两村中,哪个村花的运费较少;(3)考虑到B村的经济承受能力,B村的柑桔运费不得超过4830元.在这种情况下,请问该怎样调运才能使两村运费之和最小?求出这个最小值.解:(1)yA=-5x+5000(0≤x≤200),yB=3x+4680(0≤x≤200).(2)当yA=yB时,-5x+5000=3x+4680,x=40;当yA>yB时,-5x+5000>3x+4680,x<40;当yA<yb时,-5x+5000<3x+4680,x style="padding: 0px; margin: 0px; font-family: Arial, 宋体; font-size: 14px; white-space: normal; background-color: rgb(255, 255, 255);">40.当x=40时,yA=yB即两村运费相等;当0≤x<40时,ya>yB即B村运费较少;当40<x≤200时,ya<yb即a村费用较少.(3)由yB≤4830得3x+4680≤4830∴x≤50设两村的运费之和为y,∴y=yA+yB.即:y=-2x+9680.又∵0≤x≤50时,y随x增大而减小,∴当x=50时,y有最小值,y最小值=9580(元).答:当由A村调往C仓库的柑桔重量为50吨、调往D仓库为150吨,由B村调往C仓库为190吨、调往D仓库110吨的时候,两村的运费之和最小,最小费用为9580元.要点提示:解答方案比较问题,求函数式时,对有图象的,多用待定系数法求;对没有给出图象的,直接依题意列式子;方案比较问题通常与不等式、方程相联系;比较方案,即比较同一自变量所对应的函数值,要将函数问题转化为方程、不等式问题;解答方案比较问题尤其要注意:不同的区间,对应的大小关系也多不同.二、利润最大化问题某个体小服装店主准备在夏季来临前,购进甲、乙两种T恤.两种T恤的相关信息如下表:根据上述信息,该店决定用不少于6195元,但不超过6299元的资金购进这两种T恤共100件.请解答下列问题:(1)该店有哪几种进货方案?(2)该店按哪种方案进货所获利润最大,最大利润是多少?(3)两种T恤在夏季很快销售一空,该店决定再拿出385元全部用于购进这两种T恤,在进价和售价不变的情况下,全部售出.请直接写出该店按哪种方案进货才能使所获利润最大.解:(1)设购进甲种T恤x件,则购进乙种T恤(100-x)件.可得,6195≤35x+70(100-x)≤6299.解得,20■≤x≤23.∵x为解集内的正整数,∴x=21,22,23.∴有三种进货方案:方案一:购进甲种T恤21件,购进乙种T恤79件;方案二:购进甲种T恤22件,购进乙种T恤78件;方案三:购进甲种T恤23件,购进乙种T恤77件.(2)设所获得利润为W元.W=30x+40(100-x)=-10x+4000.∵k=-10<0,∴W随x的增大而减小.∴当x=21时,W=3790.该店购进甲种T恤21件,购进乙种T恤79件时获利最大,最大利润为3790元.(3)购进甲种T恤9件、乙种T恤1件.要点提示:在一次函数y=kx+b中,x、y均可取一切实数.如果缩小x的取值范围,则其函数值就会出现最大值或最小值.求一次函数的最大值、最小值,一般都是采用“极端值法”,即用自变量的端点值,根据函数的增减性,对应求出函数的端点值(最值).三、行程问题从甲地到乙地,先是一段平路,然后是一段上坡路.小明骑车从甲地出发,到达乙地后立即原路返回甲地,途中休息了一段时间.假设小明骑车在平路、上坡、下坡时分别保持匀速前进.已知小明骑车上坡的速度比在平路上的速度每小时少5km,下坡的速度比在平路上的速度每小时多5km.设小明出发x h后,到达离甲地y km的地方,图1中的折线OABCDE表示x与y之间的函数关系.(1)小明骑车在平路上的速度为 km/h;他途中休息了 h;(2)求线段AB、BC所表示的y与x之间的函数关系式;(3)如果小明两次经过途中某一地点的时间间隔为0.15h,那么该地点离甲地多远?解:(1)小明骑车在平路上的速度为:4.5÷0.3=15,∴小明骑车在上坡路的速度为:15-5=10,小明骑车在下坡路的速度为:15+5=20.∴小明返回的时间为:(6.5-4.5)÷20+0.3=0.4小时,∴小明骑车到达乙地的时间为:0.3+2÷10=0.5.∴小明途中休息的时间为:1-0.5-0.4=0.1小时.故答案为:15,0.1(2)小明骑车到达乙地的时间为0.5小时,∴B(0.5,6.5).小明下坡行驶的时间为:2÷20=0.1,∴C(0.6,4.5).设直线AB的解析式为y=k1x+b1,由题意得4.5=0.3k1+b16.5=0.5k1+b1,解得:k1=10b1=1.5,∴y=10x+1.5(0.3≤x≤0.5);设直线BC的解析式为y=k2x+b2,由题意得6.5=0.5k2+b24.5=0.6k2+b2,解得:k2=-20b2=16.5,∴y=-20x+16.5(0.5<x≤0.6)(3)小明两次经过途中某一地点的时间间隔为0.15h,由题意可以得出这个地点只能在坡路上.设小明第一次经过该地点的时间为t,则第二次经过该地点的时间为(t+0.15)h,由题意得10t+1.5=-20(t+0.15)+16.5,解得:t= 0.4,∴y=10×0.4+1.5=5.5,∴该地点离甲地5.5km.要点提示:行程类一次函数试题以图象、点坐标相组合的形式呈现,灵活性强,对学生分析问题、解决问题的能力要求较高,重在考查学生的识图能力和创新意识.解决图象中的行程问题除了要掌握好路程、速度和时间三者之间的基本关系外,最重要的'是要学会从图象中获取信息,理清各变量之间的关系,然后根据题意选择适当的解题方法.四、分段计费问题已知某市2013年企业用水量x(吨)与该月应交的水费y(元)之间的函数关系.(1)当x≥50时,求y关于x的函数关系式;(2)若某企业2013年10月份的水费为620元,求该企业2013年10月份的用水量;(3)为实施省委“五水共治”发展战略,鼓励企业节约用水,该市自2014年1月开始对月用水量超过80吨的企业加收污水处理费,规定若企业的月用水量x超过80吨,则除按2013年收费标准收取水费外,超过80吨部分每吨另加收■元.若某企业2014年3月份的水费和污水处理费共600元,求这个企业该月的用水量.解:(1)设y关于x的函数关系式y=kx+b,∵直线y=kx+b经过点(50,200),(60,260)∴50k+b=20060k+b=260解得k=6b=-100∴y关于x的函数关系式是y=6x-100(x≥50);(2)由可知,当y=620时,x>50∴6x-100=620,解得x=120.答:该企业2013年10月份的用水量为120吨.(3)由题意得6x-100+■(x-80)=600,化简得x2+40x-14000=0解得:x1=100,x2=-140(不合题意,舍去).答:这家企业2014年3月份的用水量是100吨.要点提示:分段函数的特征是不同的自变量区间所对应的函数式不同,其函数图象是一个折线.解决分段计费问题,关键是要与所在的区间相对应.分段函数中“折点”既是两段函数的分界点,同时又分别在两段函数上,在求解析式时要用好“折点”坐标,同时在分析图象时还要注意“折点”所表示的实际意义,“折点”的纵坐标通常是不同区间的最值.2015年第3期《锐角三角函数》参考答案1.D;2.A;3.B;4.■;5.9■;6.2■;7.120;8. 解:(1)■-3tan30°+(π-4)0-(■)-1=2■-3×■+1-2=■-1(2)■(2cos45°-sin60°)+■=■(2×■-■)+■=2-■+■=29. 解:过点A作直线BC的垂线,垂足为D.则∠CDA=90°,∠CAD=60°,∠BAD=30°,CD=240米,在Rt△ACD中,tan∠CAD=■,∴AD=■=■=80■,在Rt△ABD中,tan∠BAD=■,∴BD=ADtan30°=80■×■=80,∴BC=CD-BD=240-80=160. 答:这栋大楼的高为160米. 10.解:在Rt△CDB中,∠C=90°,BC=■=■=4,∴tan∠CBD=■.在Rt△ABC中,∠C=90°,AB=■=4■,∴sinA=■.。
一次函数应用题精选
一次函数应用 姓名 班级1.某地长途汽车客运公司规定旅客可以随身携带一定重量的行李,如果超过规定,则需购买行李票,行李票费用y (元)是行李重量x (公斤)的一次函数,其图像如图所示. 求:(1)y 与x 之间的函数关系式;(2)旅客最多可免费携带行李多少公斤.2.在某地,人们发现某种蟋蟀1分钟所叫次数与当地温度之间近似为一次函数关系。
下面是蟋蟀所叫次数与温度变化情况对照表:蟋蟀叫次数 … 84 98 119 … 温度(℃)…151720…(1)根据表中数据确定该一次函数的关系式;(2)如果蟋蟀1分钟叫了63次,那么该地当时的温度大约为多少摄氏度?3.如图,折线ABC 是在江门市乘出租车所付车费y (元)与行车里程x (km )•之间的函数关系图象. ①求当x≥3时该图象的函数关系式;②某人乘坐2.5km ,应付多少钱? ③某人乘坐13km ,应付多少钱?④若某人付车费30.8元,出租车行驶了多少千米?4.某医药研究所开发了一种新药,•在实验药效时发现,如果成人按规定剂量服用,那么每毫升血液中含药量y(ug )随时间x(h)•的变化情况如图所示.(1) 当成人按规定剂量服药后_______h ,血液中含药量最高,达每毫升______ug ,接着逐步衰减. (2)当成人按规定剂量服药后5h ,血液中含药量为每毫升________ug . (3)求当x ≤ 2时,y 与x 之间的函数关系式. (4)求当x ≥ 2时,y 与x 之间的函数关系式是.5.如图,1l 反映了甲离开A 的时间与离A 地的距离的关系,2l 反映了乙离开A 地的时间与离A 地的距离之间的关系,根据图象填空: (1)当时间 时,甲、乙两人离A 地距离相等。
(2)当时间 时,甲在乙的前面,当时间 时,乙超过了甲。
(3)求1l 对应的函数表达式和2l 对应的函数表达式6/已知一个正比例函数与一个一次函数的图象交于点A (3,4),且OA=OB (1) 求两个函数的解析式;(2)求△AOB 的面积;7.如图,一次函数y =kx +b 的图像 经过A 、B 两点,与x 轴相交于点C 。
一次函数应用题带答案
一次函数应用题带答案一次函数应用题带答案一、填空(每小题3分,共24分)1、已知函数,则当时, ____________、2、若函数是的正比例函数,则 =____________、3、函数的图像与轴的交点坐标为____________、4、一次函数的图像是由函数的图像向上平移2个单位而得到的,则该一次函数的解析式为________________________、5、已知函数中,值随的增加而减小,则的取值范围为___________、6、已知一次函数的图像与坐标轴的交点为、则一次函数的解析式为________________________、7、已知点P既在直线上,又在直线上,则P点的坐标为____________、8、若一次函数的图像经过,且随的增加而减小,请你写一个符合上述条件的函数解析式:__________________________________、二、选择题(每小题3分,共30分)1、一次函数的图像一定经过点()A、(2,—5)B、(1,0)C、(—2,3)D、(0,—1)2、函数中自变量的取值范围()A、 B、 C、 D、3、已知函数,当时,值相等,那么的值是()A、1B、2C、3D、44、一次函数的图像与两坐标轴所围成的三角形面积为()A、6B、3C、9D、4、55、当时,函数的.图像大致是()6、把函数的图像沿着轴向下平移一个单位,得到的函数关系式是()A、 B、 C、 D、7、已知点A 和点B 都在直线上,则与的大小关系为()A、 B、 C、 D、不能确定8、邮购一种图书,每册定价20元,另加书价的5%作邮资,购书册,需付款y(元)与的函数解析式为()A、 B、C、 D、9、如所示,分别表示甲乙两名运动员在自行车比赛中所走的路程S和时间t的函数关系,则他们的速度关系是()A、甲比乙快B、乙比甲快C、甲乙同速D、不能确定10、在中,当时,y=—1,则当时,y=()A、—2B、C、D、2三、解答题(每小题8分,共24分)1、拖拉机开始工作时,油箱中有油40升,如果工作每小时耗油4升,求:(1)油箱中的余油量Q(升)与工作时间t(时)的函数关系式及自变量的取值范围;(2)当工作5小时时油箱的余油量2、已知一次函数,求:(1)m为何值时,函数图像交y轴于正半轴?(2)m为何值时,函数图像与y轴的交点在轴的下方?(3)m为何值时,图像经过原点?3、用图像法求下面一元二次方程组的近似解。
一次函数应用题精选
一次函数应用题精选1、某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示:(1)月通话为100 分钟时,应交话费元;(2)当 x≥ 100 时,求 y 与x之间的函数关系式;y(元 )( 3)月通话为280 分钟时,应交话费多少元?604020x(分钟 )1002002、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:(1)分别求出表示甲、乙两同学登山过程中路程s (千米)与时间 t (时)的函数解析式;(不要求写出自变量 t 的取值范围)(2)当甲到达山顶时,乙行进到山路上的某点 A 处,求 A 点距山顶的距离;(3)在(2)的条件下,设乙同学从 A 处继续登山,甲同学到达山顶后休息 1 小时,沿原路下山,在点 B 处与乙相遇,此时点 B 与山顶距离为 1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?s(千米)甲 C D E 乙12B6O123Ft(时)图象与信息3、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧时剩余部分的高度y / cmy (cm x(h)的关系如图所示.请根据图象所提供的信30甲)与燃烧时间25息解答下列问题:20(1)甲、乙两根蜡烛燃烧前的高度分别是,10从点燃到燃尽所用的时间分别是;乙(2)分别求甲、乙两根蜡烛燃烧时 y 与x之间的函数关系式;(3)当 x 为何值时,甲、乙两根蜡烛在燃烧过程中的高度相O122.5 3 x / h 等?4、种植草莓大户张华现有22 吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:销售渠道每日销量每吨所获纯(吨)利润(元)省城批发41200本地零售12000受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10 日内售出.(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22 吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x (吨)之间的函数关系式;(2) 怎样安排这22 吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.5、某房地产开发公司计划建A、 B 两种户型的住房共80 套,该公司所筹资金不少于2 096 万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?(3)根据市场调查,每套 B 型住房的售价不会改变,每套 A 型成本(万元 / 套)住房的售价将会提高 a 万元( a>0),且所建的两种住房可全部售价(万元 / 套)售出,该公司又将如何建房获得利润最大?2 090 万元,但不超过A B252830347、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A, B 两种台湾水果各 10 箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈利情况如下表:A 种水果/箱B 种水果/箱甲店11 元17 元乙店9 元13 元有两种配货方案(整箱配货):方案一:甲、乙两店各配货10 箱,其中A种水果两店各 5 箱,B种水果两店各 5 箱;方案二:按照甲、乙两店盈利相同配货,其中 A 种水果甲店箱,乙店箱; B 种水果甲店箱,乙店箱.(1)如果按照方案一配货,请你计算出经销商能盈利多少元;(2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?(3)在甲、乙两店各配货 10 箱,且保证乙店盈利不小于 100 元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?9、某蔬菜基地加工厂有工人100 人,现对 100 人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg(每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润 1 元,精加工后再出售,每千克可获利润 3 元.设每天安排x 名工人进行蔬菜精加工.(1)求每天蔬菜精加工后再出售所得利润y (元)与x(人)的函数关系式;(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w 元,求 w 与 x 的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?10、小张骑车往返于甲、乙两地,距甲地的路程y (千米)与时间x (小时)的函数图象如图所示.(1)小张在路上停留小时,他从乙地返回时骑车的速度为千米/时.(2)小李与小张同时从甲地出发,按相同路线匀速前往乙地,到乙地停止,途中小李与小张共相遇 3 次.请....y (千米)与时间x y (千米)在图中画出小李距甲地的路程60(小时)的函数的大致图象.50(1)小王与小张同时出发,按相同路线前往乙地,40距甲地的路程y (千米)与时间x(小时)的函数关系式30为 y12x10 .小王与小张在途中共相遇几次?20请你计算第一次相遇的时间.10O1 2 3 4 5 6 x(小时)12、我市某乡A,B两村盛产柑桔,A村有柑桔 200 吨,B村有柑桔 300 吨.现将这些柑桔运到C,D两个冷藏仓库,已知 C 仓库可储存240吨, D 仓库可储存260吨;从 A 村运往 C,D 两处的费用分别为每吨20 元和 25 元,从B村运往C,D两处的费用分别为每吨 15 元和 18 元.设从A村运往C仓库的柑桔重量为 x 吨,A,B两村运往两仓库的柑桔运输费用分别为y A元和 y B元.(1)请填写下表,并求出y A,y B与 x 之间的函数关系式;收C D总计运地A地x 吨200 吨B300 吨总计240 吨260 吨500 吨(2)试讨论A, B 两村中,哪个村的运费较少;(3)考虑到 B 村的经济承受能力, B 村的柑桔运费不得超过4830 元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.13、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图是反映所挖河渠长度y(米 ) 与挖掘时间x(时 ) 之间关系的部分图象.请解答下列问题:(1)乙队开挖到30 米时,用了小时.开挖 6 小时时,甲队比乙队多挖了米;(2)请你求出:y(米 )①甲队在 0 ≤ x ≤ 6的时段内,y 与x之间的函数关系式;60甲50乙②乙队在 2 ≤ x ≤ 6的时段内,y 与x之间的函数关系式;③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队?30(3) 如果甲队施工速度不变,乙队在开挖 6 小时后,施工速度增加到12 米/时,结果两队同时完成了任务.O2 6 x(时)问甲队从开挖到完工所挖河渠的长度为多少米?15、如图,l A, l B分别表示 A 步行与 B 骑车在同一路上行驶的路程S 与时间 t 的关系。
一次函数应用题专项练习(含答案)
一次函数型应用题:1、我市某乡A 、B 两村盛产柑橘,A 村有柑橘200吨,B 村有柑橘300吨。
先将这些柑橘运到C 、D 两个冷藏仓库。
已知C 仓库可储存240吨,D 仓库可储存260吨。
从A 村运往C 、D 两处的费用分别为每吨20元和25元,从B 村运往C 、D 两处的费用分别为每吨15元和18元。
设从A 村运往C 仓库的柑橘重量为x 吨,A 、B 两村运往两仓库的柑橘运输费用分别为y A 元和y B 元. (1(2(3)、考虑到B 村的经济承受能力,B 村的柑橘运费不得超过4830元,在这种情况下,怎样调运,才使两村运费之和最小?求出这个最小值。
A YB =15(240-x )+18(x+60)=3x+4680⑵:当Y A =Y B 时,-5x+5000=3x+4680 ∴x=40当Y A >Y B 时,-5x+5000>3x+4680 ∴x <40 当Y A <Y B 时,-5x+5000)<3x+4680 ∴x >40 ∴当x=40时, 两村运费相同; 当0≤x <40时, B 村运费较少; 当40<x ≤200时, A 村运费较少;⑶:由Y B ≤4830得:3x+4680≤4830 ∴x ≤50设两村运费之和为y , 则y=Y A +Y B =(-5x+5000)+(3x+4680)=-2x+9680 ∵ k=-2<0 ∴ y 随x 增大而减小;∴ 当x =50时,y 最小。
此时,y =-2×50+9680=9580 ∴ 调运方案为:A 村调往C 库50吨、D 库150吨;B 村调往c 库190吨,D 库110吨。
这时,两村运费之和最小,是9580元。
2、甲乙两个仓库要向A 、B 两地运水泥,已知甲库可调出100吨水泥,乙库可调运80吨,而A 地需水泥70吨,B 地需水泥110吨,两库到A 、B 两地的路程和运费如下表: ((2) 当甲乙两库各运往A 、B 两地多少吨水泥时,总运费最省?最省是多少? )+20×8(x+10)=-30x +39200⑵:由题意得:⎪⎪⎩⎪⎪⎨⎧≥+≥-≥-≥01001000700x x x x ∴0≤x ≤70∵y =-30x +39200又∵k=-2<0 ∴y 随x 增大而减小;∴当x =70时,y 最小。
一次函数应用题精编(附答案)
一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y(千米),图中的折线表示从两车出发至快车到达乙地过程中y与x 之间的函数关系.(1)根据图中信息,求线段AB所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t时,求t的值;(3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y关于x的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y(人)与售票时间x(分钟)的关系如图所示,已知售票的前a分钟只开放了两个售票窗口(规定每人只购一张票).(1)求a的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ;(2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W 元与精加工的蔬菜吨数m 之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?小时)5.某物流公司的甲、乙两辆货车分别从A 、B 两地同时相向而行,并以各自的速度匀速行驶,途径配货站C ,甲车先到达C 地,并在C 地用1小时配货,然后按原速度开往B 地,乙车从B 地直达A 地,图16是甲、乙两车间的距离y (千米)与乙车出发x (时)的函数的部分图像(1)A 、B 两地的距离是 千米,甲车出发 小时到达C 地;(2)求乙车出发2小时后直至到达A 地的过程中,y 与x 的函数关系式及x 的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y (升)与行驶时间t (小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶 小时后加油,中途加油 升;(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;(3)已知加油前、后汽车都以70千米/小时匀速行驶,如果加油站距目的地210千米,要到达目的地,问油箱中的油是否够用?请说明理由.7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李.(1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自20XX年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提设购进的电视机和洗衣机数量均为x台,这100台家电政府需要补贴y元,商场所获利润w元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?。
一次函数应用题(含答案)
一次函数应用题初一()班姓名:学号: .一、一次时装演出会预算中票价定位每张100元,容纳观世人数不超过2000人,毛利润y(百元)关于观世人数x(百人)之间的函数图象如下图,当观世人数超过1000人时,演出会组织者需向保险公司交纳定额平安保险费5000元(不列入本钱费用)请解答以下问题:⑴求当观世人数不超过1000人时,毛利润y(百元)关于观世人数x(百人)的函数解析式和本钱费用s(百元)关于观世人数x(百人)的函数解析式;⑵假设要使这次演出会取得36000元的毛利润,那么要售出多少张门票?需支付本钱费用多少元?(注:当观世人数不超过1000人时,演出会的毛利润=门票收入—本钱费用;当观世人数超过1000人时,演出会的毛利润=门票收入—本钱费用—平安保险费)二、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现通过实验取得以下数据:(1) 将实验所得数据在如下图的直角坐标系顶用点表示;(注:该图中坐标轴的交点代表点(1,70))(2) 用线段将题(1)中所画的点从左到右按序连接,假设用此图象来模拟氧化铁回收率y关于通过电流x的函数关系,试写出该函数在1.7≤x≤2.4时的表达式;(3) 利用(2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该操纵的范围(精准到0.1A).3、如图(1),在矩形ABCD中,AB = 10cm,BC = 8cm. 点P从A点动身,沿A→B→C→D 线路运动,到D停止;点Q从D动身,沿D→C→B→A线路运动,到A停止. 假设点P、点Q同时..动身,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时,点P、点Q同时..改变速度,点P的速度变成每秒b cm,点Q的速度变成每秒d cm. 图(2)是点P动身x秒后△APD的面积..1S(cm2)与x(秒)的函数关系图象;图(3)是点Q动身x秒后△AQD的面.积.2S(cm2)与x(秒)的函数关系图象.(1)(1)参照图(2),求a、b及图(2)中c的值;(2)求d的值;(3)设点P离开点A的路程为1y(cm),点Q到点A还需要走的路程为2y(cm),请别离写出改变速度后1y、2y与动身后的运动时刻x(秒)的函数关系式,并求出P、Q相遇时x的值;(4)当点Q动身_________秒时,点P、点Q在运动线路上相距的路程为25cm.4、教室里放有一台饮水机,饮水机上有两个放水管。
(完整版)一次函数应用题及答案
(完整版)一次函数应用题及答案一次函数应用题(讲义)一、知识点睛1.理解题意,结合图象依次分析___轴、点、线__________的实际意义,把函数图象与_实际场景____________对应起来;2.利用__函数图象__________解决问题,关注k、b以及特殊点坐标;3.结合实际场景解释所求结果.二、精讲精练1.一辆快车和一辆慢车分别从A,B两站同时出发,相向而行.快车到达B站后,停留1小时,然后原路原速返回A站,慢车到达A站即停运休息.下图表示的是两车之间的距离y(千米)与行驶时间x(小时)的函数图象.请结合图象信息,解答下列问题:(1)直接写出快、慢两车的速度及A,B两站间的距离;(2)求快车从B站返回A站时,y与x之间的函数关系式;(3)出发几小时,两车相距200千米?请直接写出答案.2.某加油站九月份某种油品的销售利润y(万元)与销售量x(万升)之间的函数图象如图中折线所示,该加油站截止至13日调价时的销售利润为4万元,截止至15日进油时的销售利润为5.5万元(销售利润=(售价-成本价)×销售量),九月份的销售记录如下:请你根据图象及加油站九月份该油品的所有销售记录提供的信息,解答下列问题:(1)求销售量x 为多少时,销售利润为4万元;(2)求出线段BC 所对应的函数关系式.3. 如图1是甲、乙两个圆柱形水槽的轴截面示意图,乙槽中有一圆柱形铁块(圆柱形铁块的下底面完全落在水槽底面上).现将甲槽中的水匀速注入乙槽,甲、乙两个水槽中水的深度y (厘米)与注水时间x (分钟)之间的关系如图2所示.根据图象提供的信息,解答下列问题:(1)图2中折线ABC 表示槽中水的深度与注水时间之间的关系,线段DE 表示槽中水的深度与注水时间之间的关系(以上两空选填“甲”或“乙”),点B 的纵坐标表示的实际意义是.(2)注水多长时间时,甲、乙两个水槽中水的深度相同?元/件)(3)若乙槽底面积为36平方厘米(壁厚不计),求乙槽中铁块的体积.(4)若乙槽中铁块的体积为112立方厘米(壁厚不计),求甲槽底面积(直接写结果).甲槽4. 2012年夏,北京发生特大暴雨灾害,受其影响,某药品的需求量急增.如图所示,平常对某种药品的需求量y 1(万件)、供应量y 2(万件)与价格x (元/件)分别近似满足下列函数关系式:y 1=-x +70,y 2=2x -38,需求量为0时,即停止供应.当y 1=y 2量称为稳定需求量.(1)求该药品的稳定价格与稳定需求量.(2)价格在什么范围内,该药品的需求量低于供应量?(3)由于灾情严重,政府部门决定对药品供应方提供价格稳定需求量增加6万件,政府应对每件药品提供多少元补贴,才能使供应量等于需求量.图1图25.教室里放有一台饮水机,饮水机上有两个放水管.课间同学们依次到饮水机前用茶杯接水.假设接水过程中水不发生泼洒,每个同学所接的水量都是相等的.两个放水管同时打开时,他们的流量相同.放水时先打开一个水管,过一会儿,再打开第二个水管,放水过程中阀门一直开着.饮水机的存水量y(升)与放水时间x(分钟)的函数关系如图所示:(1)求饮水机的存水量y(升)与放水时间x(分钟)(x≥2)的函数关系式.(2)如果打开第一个水管后,2分钟时恰好有4个同学接水结束,则前22个同学接水结束共需要几分钟?(3)按(2)的放法,在课间10分钟内班级中最多有多少个同学能及时接完水?三、回顾与思考__________________________________________________________________________________________________________________________________________________________________【参考答案】一、知识点睛1.轴、点、线;实际场景2.函数图象二、精讲精练1.(1)快车速度为120km/h,慢车速度为80km/h ,A,B两站间的距离为1200km;(2)PQ:y=-40x+1320 (11≤x≤15);QH:y=-120x+2520(15<x≤21);(3)x=5,7,583时,两车相距200千米.2.(1)x=4;(2)y=1.1x(5≤x≤10).3.(1)乙,甲,圆柱形铁块的高度为14厘米;(2)AB:y=3x+2DE:y=-2x+12联立32212 y xy x=+=-+?解得:28 xy=?=?∴注水时间为2分钟时,甲、乙两个水槽中的水的深度相同.(3)84立方厘米;(4)60平方厘米.4.(1)该药品的稳定价格为36(元/件),稳定需求量为34(万件);(2)当药品每件价格在大于36小于70时,该药品的需求量低于供应量;(3)政府部门对该药品每件应补贴9元,才能使供给量等于需求量.5.(1)99418821059y x x=-+≤≤();(2)前22个同学接水结束共需要7分钟;(3)最多有32个同学能及时接完水.。
一次函数的应用专项练习30题(有答案)ok
一次函数的应用专项练习30题(有答案)ok一次函数的应用专项练习30题(有答案)1.向一个空水池注水,水池蓄水量y(米3)与注水时间x(小时)之间的函数图象如图所示.(1)第20小时时蓄水量为_________米3;(2)水池最大蓄水量是_________米3;(3)求y与x之间的函数关系式.2.小王的父母经营一家饲料店,拟投入a元购入甲种饲料,现有两种方案:①如果月初出售这批甲种饲料可获利8%,并用本金和利润再购入乙种饲料,到月底售完又获利10%;②如果月底出售这批甲种饲料,可获利20%,但要付仓储费600元.(1)分别写出方案①、②获利金额的表达式;(2)请你根据小王父母投入资金的多少,定出可多获利的方案.3.某工厂现在年产值是15万元,计划以后每年增加2万元,设x年后的年产值为y(万元).(1)写出y与x之间的关系式;(2)用表格表示当x从0变化到5(每次增加1)y的对应值;(3)求10年后的年产值?4.我们知道海拔一定高度的山区气温随着海拔高度的增加而下降.小明暑假到黄山去旅游,沿途他利用随身所带的测量仪器,测得以下数据:1400 1500 1600 1700 …海拔高度x(m)气温y(°C)32.00 31.40 30.80 30.20 …(1)现以海拔高度为x轴,气温为y轴建立平面直角坐标系,根据提供的数据描出各点;(2)已知y与x的关系是一次函数关系,求出这个关系式;(3)若小明到达黄山天都峰时测得当时的气温是29.24°C.求黄山天都峰的海拔高度.5.如图,l1,l2分别表示一种白炽灯和一种节能灯的费用y与照明时间x(h)的函数图象,假设两种灯的使用寿命都是2000h,照明效果一样.(费用=灯的售价+电费,单位:元)(1)根据图象分别求出l1,l2的函数关系式.(2)当照明时间为多少时,两种灯的费用相等?6.某物流公司的快递车和货车每天沿同一公路往返于A、B两地,快递车比货车多往返一趟.图表示快递车与货车距离A地的路程y(单位:千米)与所用时间x(单位:时)的函数图象.已知货车比快递车早1小时出发,到达B地后用2小时装卸货物,然后按原路、原速返回,结果比快递车最后一次返回A地晚1小时.(1)两车在途中相遇的次数为_________次;(直接填入答案)(2)求两车最后一次相遇时,距离A地的路程和货车从A地出发了几小时.7.某农户有一水池,容量为10立方米,中午12时打开进水管向水池注水,注满水后关闭水管同时打开出水管灌溉农作物,当水池中的水量减少到1立方米时,再次打开进水管向水池注水(此时出水管继续放水),直到再次注满水池后停止注水,并继续放水灌溉,直到水池中无水,水池中的水量y(单位:立方米)随时间x(从中午12时开始计时,单位:分钟)变化的图象如图所示,其中线段CD所在直线的表达式为y=﹣0.25x+33,线段OA所在直线的表达式为y=0.5x,假设进水管和出水管每分钟的进水量和出水量都是固定的.(1)求进水管每分钟的进水量;(2)求出水管每分钟的出水量;(3)求线段AB所在直线的表达式.8.为发展电信事业,方便用户,电信公司对移动电话采取不同的收费方式,其中“如意卡”无月租,每通话一分钟收费0.25元,“便民卡”收费信息如图(1)分别求出两种卡在某市范围内每月(30天)的通话时间x(分钟)与通话费y(元)之间的函数关系式.(2)请你帮助用户计算一下,在一个月内使用哪种卡便宜.9.如图是甲、乙两人去某地的路程S(km)与时间t(h)之间的函数图象,请你解答下列问题:(1)甲去某地的平均速度是多少?(2)甲出发多长时间,甲、乙在途中相遇?10.如图,在甲、乙两同学进行400米跑步比赛中,路程s(米)与时间t(秒)之间的函数关系的图象分别为折线OAB和线段OC,请根据图上信息回答下列问题:(1)_________先到达终点;(2)第_________秒时,_________追上_________;(3)比赛全程中,_________的速度始终保持不变;(4)写出优胜者在比赛过程中所跑的路程s(米)与时间t(秒)之间的函数关系式:_________.11.甲、乙两组工人同时加工某种零件,乙组工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.两组各自加工零件的数量y(件)与时间x(时)的函数图象如图所示.(3)加工的零件数达到230件装一箱,零件装箱的时间忽略不计,若甲、乙两组加工出的零件合在一起装箱,当甲组工作多长时间恰好装满第2箱?12.甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度y(m)与挖掘时间x(h)之间的关系如图所示,请根据图象提供的信息解答下列问题:(1)甲队在0≤x≤6的时间段内,挖掘速度为每小时_________米;乙队在2≤x≤6的时间段内,挖掘速度为每小时_________米;请根据乙队在2≤x≤6的时间段内开挖的情况填表:时间(h) 2 3 4 5 630 50乙队开挖河渠(m)(2)①请直接写出甲队在0≤x≤6的时间段内,y甲与x之间的关系式;②根据(1)中的表中规律写出乙队在2≤x≤6的时间段内,y乙与x之间的关系式;(3)在(1)的基础上,如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到每小时12米,结果两队同时完成了任务.问甲队从开挖到完工所挖河渠的长度为多少米?13.百舟竞渡,激悄飞扬,端午节期间,龙舟比赛在九龙江举行.甲、乙两支龙舟队在比赛时的路程y(米)与时间x(分钟)的函数关系的图象如图所示,根据图象解答下列问题:(1)出发后1.5分钟,_________支龙舟队处于领先位置(填“甲”或“乙“);(2)_________支龙舟队先到达终点(填“甲“或“乙”),提前_________分钟到达;(3)求乙队加逨后,路程y(米)与时问分钟)之间的函数关系式,并写出自变x的取值范围.14.在人才招聘会上,某公司承诺:录用后第一年的月工资为2000元,以后每年的月工资比上一年的月工资增加300元,一年按12个月计算.(1)如果某人在该公司连续工作x年,他在第x年后的月工资是y元,写出y与x的关系式.(2)如果这个人期望第五年的工资收入超过4万元,那么他是否应该在该公司应聘?15.陈褚向同学乘车从学校出发回家,他离家的路程y(km)与所用时间x(时)之间的关系如图所示.(1)求y与x之间的关系式;(2)求学校和陈褚向同学家的距离.16.某软件公司开发出一种图书管理软件,前期投入的各种费用总共50000元,之后每售出一套软件,软件公司还需支付安装调试费用200元,设销售套数x(套).(1)试写出总费用y(元)与销售套数x(套)之间的函数关系式.(2)该公司计划以400元每套的价格进行销售,并且公司仍要负责安装调试,试问:软件公司售出多少套软件时,收入超出总费用?17.甲和乙上山游玩,甲乘坐缆车,乙步行,两人相约在山顶的缆车终点会合.已知乙行走到缆车终点的路程是缆车到山顶的线路长的2倍,甲在乙出发后50min才乘上缆车,缆车的平均速度为180m/min.设乙出发xmin后行走的路程为ym.图中的折线表示乙在整个行走过程中y与x的函数关系.(1)乙行走的总路程是_________m,他途中休息了_________min.(2)①当50≤x≤80时,求y与x的函数关系式;②当甲到达缆车终点时,乙离缆车终点的路程是多少?18.李经理到张家果园里一次性采购一种水果,他俩商定:李经理的采购价y(元/吨)与采购量x(吨)之间函数关系的图象如图中的折线段ABC所示(不包含端点A,但包含端点C).(1)如果采购量x满足20≤x≤40,求y与x之间的函数关系式;(2)已知张家种植水果的成本是2 800元/吨,李经理的采购量x满足20≤x≤40,那么当采购量为多少时,张家在这次买卖中所获的利润w最大?最大利润是多少?19.某移动通讯公司开设了“全球通”和“神舟行”两种通讯业务,收费标准见下表:通讯业务月租费(元)通话费(元/分钟)全球通50 0.4神舟行0 0.6某用户一个月内通话x分钟,“全球通”和“神舟行”的收费分别为y1元和y2元.(1)写出y1、y2与x之间的函数关系式;(2)在通话时间相同的情况下,你认为该用户应选择哪种通讯业务更为合算?20.某长途汽车客运站规定,乘客可以免费携带一定质量的行李,但超过该质量则需交纳行李费,已知行李费y(元)是行李质量x(千克)的一次函数.现在黄明带了60千克的行李,交了行李费5元,王华带了78千克的行李,交了8元.(1)写出y与x之间的函数关系式;(2)旅客最多可以免费携带多少千克的行李?21.某长途汽车客运站规定,乘客可免费携带一定质量的行李,但超过该质量则需要购买行李票,且行李费y(元)是行李质量x(千克)的一次函数,如图所示.(1)求y与x之间的函数关系式.(2)最多可免费携带多少质量的行李?22.小明从A地出发向B地行走,同时小聪从B地出发向A地行走.如图所示,线段l1、l2分别表示小明、小聪离B地的距离y(km)与已用时间x(h)之间的关系.观察图象,回答以下问题:(1)出发_________(h)后,小明与小聪相遇,此时两人距离B地_________(km);(2)求小聪走1.2(h)时与B地的距离.23.某公司生产一种新产品,前期投资300万元,每生产1吨新产品还需其他投资0.3万元,如果生产这一产品的产量为x吨,每吨售价为0.5万元.(1)设生产新产品的总投资y1万元,试写出y1与x之间的函数关系式和定义域;(2)如果生产这一产品能盈利,且盈利为y2万元,求y2与x之间的函数关系式,并写出定义域;(3)请问当这一产品的产量为1800吨时,该公司的盈利为几万元?24.根据市场调查,某厂家决定生产一批产品投放市场,安排750名工人计划10天完成a件的生产量.(1)按计划,该厂平均每天应生产产品多少件?(用含a的式子表示)(2)该厂按计划生产几天后,该厂家又抽调了若干名工人支援生产,同时,通过技术革新等手段使每位工人的工作效率比原计划每位工人的工作效率提高25%,结果提前完成任务,图中折线表示实际工作情况.求厂家又抽调了多少名工人支援生产?25.某公司库存挖掘机16台,现在运往甲、乙两地支援建设,每运一台到甲、乙两地的费用分别是500元和300元.设运往甲地x台挖掘机,运这批挖掘机的总费用为y元.(1)写出y与x之间的函数关系式;(2)如果公司决定将这16台挖掘机平均分配给甲、乙两地,求此次运输的总费用;(3)如果公司决定按运输费用平均分配这16台挖掘机,求此时运输的总费用又是多少.26.A市和B市各有机床12台和6台,现运往C市10台,D市8台.若从A市运1台到C市、D市各需要4万元和8万元,从B市运1台到C市、D市各需要3万元和5万元.(1)设B市运往C市x台,求总费用y关于x的函数关系式;(2)若总费用不超过90万元,问共有多少种调运方法?(3)求总费用最低的调运方法,最低费用是多少万元?27.某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2060万元,但不超过2096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:A B成本(万元/套)25 28售价(万元/套)30 34(1)该公司如何建房获得利润最大?(2)根据市场调查,每套B型住房的售价不会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?(注:利润=售价﹣成本)28.某工厂研制一种新产品并投放市场,根据市场调查的信息得出这种新产品的日销售量y(万件)与销售的天数x(天)的关系如图所示.根据图象按下列要求作出分析:(1)求开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式;(2)已知销售一件产品获利0.9元,求在该产品日销售量不变期间的利润有多少万元.29.两种移动电话计费方式如下:全球通神州行月租费15元/月0本地通话费0.10元/分0.20元/分(1)一个月内某用户在本地通话时间是x分钟,请你用含有x的式子分别写出两种计费方式下该用户应该支付的费用.(2)若某用户一个月内本地通话时间是5个小时,你认为采用哪种方式较为合算?(3)小王想了解一下一个月内本地通话时间为多少时,两种计费方式的收费一样多.请你帮助他解决一下.30.为了学生的健康,学校课桌、课凳的高度都是按一定的关系科学设计的,小明对学校所添置的一批课桌、课凳进行观察研究,发现他们可以根据人的身长调节高度,于是,他测量了一套课桌、课凳上相对的四档高度,得到如下数据:档次/高度第一档第二档第三档第四档凳高x/cm 37.0 40.0 42.0 45.0桌高y/cm 70.0 74.8 78.0 82.8(1)小明经过数据研究发现,桌高y是凳高x的一次函数,请你求出这个一次函数的解析式(不要求写出x的取值范围).(2)小明回家后,量了家里的写字台和凳子,凳子的高度是41厘米,写字台的高度是75厘米,请你判断它们是否配套.参考答案:1.(1)由图形可知,当x=20时,y=1000,∴第20小时时蓄水量为1000米3.(2)由图形可知,当x=230时,y=4000,∴水池最大储水量为4000米3.(3)由图形可知,x=20为图象的拐点,①当0<x<20时:为正比例函数,设y1=kx1,过点(20,1000),∴k=50,∴y1=50x1,(0<x<20).②当20≤x≤30时,设y2=k1x2+b,过点(20,1000)和(30,4000),∴代入方程式中,求解为k1=300,b=﹣5000,∴y2=300x2﹣5000,(20≤x≤30)2.(1)方案①获利a(1+8%)•(1+10%)﹣a=0.188a 方案②a•20%﹣600=0.2a﹣600(2)当0.188a=0.2a﹣600时,解得:a=50000.当a=50000元时,获利一样多;当a高于50000元时,第二种方案获利多一些;当a低于50000元时,第一种方案获利多一些3.(1)依题意,得y=15+2x;(2)列表如下:x 0 1 2 3 4 5y 15 17 19 21 23 25(3)当x=10时,y=15+2×10=35,即10年后的年产值为35万元4.(1)描点:(2)设解析式为y=kx+b,把点(1400,32),(1500,31.4)分别代入可得:,解得:,(3)当y=29.24时,有:x+40.4=29.24,解得:x=,即山巅的海拔为:米5.(1)设l1、l2的解析式分别为y1=k1x+b1,y2=k2x+b2,由图象,得,,解得:,.故l1的解析式为:y1=x+2,l2的解析式为:y2=x+20(2)由题意,得x+2=x+20,解得x=1000.故当照明1000小时时两种灯的费用相等6.(1)由图象得:两车在途中相遇的次数为4次.故答案为:4;(2)由题意得:快递车的速度为:400÷4=100,货车的速度为:400÷8=50,∴200÷50=4,600÷100=6∴E(6,200),C(7,200).如图,设直线EF的解析式为y=k1x+b1,∵图象过(10,0),(6,200),∴,∴k1=﹣50,b1=500,∴y=﹣50x+500①.设直线CD的解析式为y=k2x+b2,∵图象过(7,200),(9,0),∴,∴y=﹣100x+900②.解由①,②组成的方程组得:,解得:,∴最后一次相遇时距离A地的路程为100km,货车从A 地出发了8小时.7.(1)∵线段OA所在直线的表达式为y=0.5x,∴x=1时,y=0.5,则求出进水管每分钟的进水量为0.5立方米.(2)∵线段CD所在直线的表达式为y=﹣0.25x+33,∴10=﹣0.25x+33,解得:x=92,0=﹣0.25x+33,解得:x=132,∵132﹣92=40(分钟),∴10÷40=0.25,则求出出水管每分钟的出水量为0.25立方米.(3)对于C来说,纵坐标为10,代入y=﹣0.25x+33中得:10=﹣0.25x+33,解得:x=92,点A的纵坐标为10,代入y=0.5x中得到x=20,故A(20,10),设从B到C经过了a分钟,则:(0.5﹣0.25)a=10﹣1=9,解得:a=36,∴B的横坐标为92﹣36=56,故B(56,1).设AB解析式为y=kx+b(k≠0),将A,B坐标代入得:,解得:,即直线AB 解析式为8.(1)设便民卡每月的通话时间与费用之间的关系为y2=kx+b,根据图象得:,解得:,故使用如意卡每月的费用与时间之间的关系式为:y1=0.25x;“便民卡”y与x之间的函数关系式为:y2=0.2x+12.(2)当y1>y2时,0.25x>0.2x+12,解得:x>240;当y1=y2时,0.25x=0.2x+12,解得:x=240当y1<y2时,0.25x<0.2x+12,解得x<240.故当x<240时使用如意卡划算些,当x=240时,两种收费一样划算,当x>240时.使用便民卡划算些9.(1)利用图表得出甲所行驶的总路程为:30千米,行驶时间为:3小时,故甲去某地的平均速度是:30÷3=10千米/时;(2)由图象得出:直线CD经过点(3,30),(1,0)代入s=kt+b,得:,解得:,故直线CD解析式为:s=15t﹣15,由图象得出s=15千米时两人相遇,则15=15t﹣15,解得:t=2.故甲出发2小时,甲、乙在途中相遇10.依题意,得(1)乙先到达终点;(2)第40秒时,乙追上甲;(3)比赛全程中,乙的速度始终保持不变;(4)乙的速度为:400÷50=8,∴S=8t(0≤t≤50).故答案为:(1)乙;(2)40,乙,甲;(3)乙;(4)S=8t (0≤t≤50)11.(1)∵图象经过原点及(6,360),∴设解析式为:y=kx,∴6k=360,解得:k=60,∴y=60x(0<x≤6);(2)∵乙2小时加工100件,∴乙的加工速度是:每小时50件,∴2.8小时时两人共加工60×2.8+50×2=268(件),∴乙组在工作中有一次停产更换设备,更换设备后,乙组的工作效率是原来的2倍.11∴更换设备后,乙组的工作速度是:每小时加工50×2=100件,a=100+100×(4.8﹣2.8)=300;(3)乙组加工的零件的个数y与时间x的函数关系式为y=50x(0≤x≤2)y=100(2<x≤2.8)y=100x﹣180(2.8<x≤4.8)∵当2.8<x≤4.8时,60x+100x﹣180=230×2,得x=4,∴再经过4小时恰好装满第2箱12.(1)甲:60÷6=10;乙:(50﹣30)÷(6﹣2)=20÷4=5;30+5(3﹣2)=35,30+5(4﹣2)=40,30+5(5﹣2)=45,∴表格内容依次填35、40、45;(3分)(2)①∵甲图象经过点(0,0)(6,60),∴设y甲与x之间的关系式是y甲=ax,则6a=60,解得a=10,∴y甲与x之间的关系式是:y甲=10x,(5分)②∵图象经过点(2,30)(6,50),∴设y乙与x之间的关系式是y乙=kx+b,则,解得,∴y乙与x之间的关系式是:y乙=30+5(x﹣2)=5x+20;(7分)(3)设甲队从开挖到完工所挖河渠的长度为z米,由题意得=(9分)解得z=110,∴甲队从开挖到完工所挖河渠的长度为110米.13.(1)当x=1.5时,甲对应的函数图象在乙的图象的上方,所以甲支龙舟队处于领先位置.故答案为甲;(2)乙比赛用时4.5分,甲用时5分,所以乙支龙舟队先到达终点,比甲提前0.5分钟到达.故答案为乙,0.5;(3)设乙队加逨后,路程y(米)与时间(分钟)之间的函数关系式为y=kx+b,把(2,300)和(4.5,1050)代入得,2k+b=300,4.5k+b=1050,解得k=300,b=﹣300,∴y=300x﹣300(2≤x≤4.5)14.(1)由题意得y=2000+300(x﹣1)=1700+300x;(2)把x=5代入y=1700+300n=3200(元),3200×12=38400(元).∵38400元<40 000元,∴他不可以到该公司应聘15.(1)设y与x的关系式为y=kx+b,有函数的图象可知点(3,40),(5,0),则,解得:所以y与x的关系式为y=﹣20x+100;(2)当x=0时,y=100,所以学校与陈褚向同学的距离为100千米.16.(1)设总费用y(元)与销售套数x(套),根据题意得到函数关系式:y=50000+200x.(2)设软件公司至少要售出x套软件才能收入超出总费用,则有:400x>50000+200x解得:x>250.答:软件公司至少要售出251套软件才能收入超出总费用17.(1)由图象得:乙行走的总路程是:3600米,他途中休息了20分钟.故答案为:3600,20;(2)①当50≤x≤80时,设y与x的函数关系式为y=kx+b.根据题意得:,解得:,∴y与x的函数关系式为:y=55x﹣800②缆车到山顶的路线长为3600÷2=1800(m),缆车到达终点所需时间为1800÷180=10(min).甲到达缆车终点时,乙行走的时间为10+50=60(min).把x=60代入y=55x﹣800,得y=55×60﹣800=2500.所以,当甲到达缆车终点时,乙离缆车终点的路程是:3600﹣2500=1100(m)18.(1)当20≤x≤40时,设y与x之间的函数关系式:y=kx+b,∵当x=20时,y=8000,当x=40时,y=4000∴,,∴y=﹣200x+12000;(2)当20≤x≤40时,w=(y﹣2800)x=﹣200x2+9200x=﹣200(x﹣23)2+105800,12∴当x=23时,w有最大值,是105800,当采购量为23吨时,张家在这次买卖中所获的利润w 最大,最大利润是105800元19.(1)利用图表直接得出:y1=0.4x+50;y2=0.6x;(2)当y1=y2,即0.4x+50=0.6x时,解得:x=250;当y1<y2,即0.4x+50<0.6x时,解得:x>250;当y1>y2,即0.4x+50>0.6x时,解得:x<250;答:通话时间为250分钟时,两种通讯业务一样,当通话时间为大于250分钟时,全球通业务合算,当通话时间为小于250分钟时,神舟行业务合算20.(1)设行李费y(元)关于行李质量x(千克)的一次函数关系式为y=kx+b,由题意得,解得k=,b=﹣5,∴该一次函数关系式为;(2)∵,解得x≤30,∴旅客最多可免费携带30千克的行李.答:(1)行李费y(元)关于行李质量x(千克)的一次函数关系式为;(2)旅客最多可免费携带30千克的行李21.(1)设一次函数y=kx+b,∵当x=60时,y=6,当x=80时,y=10,∴,解之,得,∴所求函数关系式为y=x﹣6(x≥30);(2)当y=0时,x﹣6=0,所以x=30,故旅客最多可免费携带30kg行李.22.(1)由函数图象可以得出l1、l2的交点坐标是(0.6,2.4),故出发0.6小时后,小明与小聪相遇,此时两人距B地2.4,(2)设l2的解析式为y=kx,由题意,得2.4=0.6k,k=4则l2的解析式为y=4x.当x=1.2时,y=4.8答:小聪走1.2(h)时与B地的距离是4.8(km).故答案为:0.6,2.4.23.(1)由题意,得y1=0.3x+300,定义域为x>0.(2)由题意,得y2=0.5x﹣0.3x﹣300,y2=0.2x﹣300;定义域为x>1500;(3)当x=1800时,y2=0.2×1800﹣300=60.故当这一产品的产量为1800吨时,该公司的盈利为60万元24.(1)由题意,得该厂平均每天应生产产品的件数为:件,故答案为:;(2)设厂家又抽调了x名工人支援生产,由题意及图象得:×2+(1+25%)(750+x)×6=a,解得:x=50.答:厂家又抽调了50名工人支援生产25.(1)设运往甲地x台挖掘机,运这批挖掘机的总费用为y元,则:y=500x+300(16﹣x)=200x+4800;(2)当x=8时,y=200x+4800=1600+4800=6400;(3)依题意有500x=300(16﹣x),解得:x=6,当x=6时,y=200x+4800=1200+4800=6000.26.(1)设B市运往C市x台,则运往D市(6﹣x)台,A市运往C市(10﹣x)台,运往D市(x+2)台,由题意得:y=4(10﹣x)+8(x+2)+3x+5(6﹣x),y=2x+86.(2)由题意得:,解得:0≤x≤2,∵x为整数,∴x=0或1或2,∴有3种调运方案.当x=0时,从B市调往C市0台,调往D市6台.从A市调往C 市10台,调往D市2台,当x=1时,13从B市调往C市1台,调往D市5台.从A市调往C 市9台,调往D市3台,当x=2时,从B市调往C市2台,调往D市4台.从A市调往C 市8台,调往D市4台,(3)∵y=2x+86.∴k=2>0,∴y随x的增大增大,∴当x最小为0时,y最小,∴运费最小的调运方案是:从B市调往C市0台,调往D市6台,从A市调往C市10台,调往D市2台.y 最小=86万元27.(1)设建A型的住房x套,B型的住房(80﹣x)套,利润为y,根据题意得:,解得:48≤x≤50.利润y=(30﹣25)x+(34﹣28)(80﹣x)=480﹣x.∵y随x的增加而减小,∴x=48时利润最大,即建A型住房48套,B型住房32套.(2)利润y=480+(a﹣1)x.当a>1时,x=50时利润y最大,即建A型住房50套,B型住房30套.当a=1时,建A型住房48到50之间即可.当0<a<1时,x=48时利润最大,即建A型48套,建B型32套28.(1)设开始时,不断上升的日销售量y(万件)与销售天数x(天)的函数关系式为y=kx,由图象得:3=60k,k=,故y与x之间的函数关系式为:y=x(0≤x≤60);(2)由图象得日销售量不变期间的销量为:3万件.则利润为:3×0.9=2.7万元29.(1)全球通:15+0.1x,神州行:0.2x;(2)5小时=300分钟,全球通:15+0.1×300=45(元),神州行:0.2×300=60(元),∴应选择全球通;(3)∵两种计费方式的收费一样多,∴0.2x=15+0.1x,解得:x=150,答:一个月内本地通话时间为150分钟时,两种计费方式的收费一样多30.(1)设一次函数的解析式为:y=kx+b,将x=37,y=70;x=42,y=78代入y=kx+b ,得,解得,∴y=1.8x+10.8;(2)当x=41时,y=1.8×41+10.8=84.6,∴家里的写字台和凳子不配套.14。
一次函数的应用题
1.一次函数y=2x-5,当自变量x≥-2时,y
的取值范围( ) .
2.一次函数y=-3x-2,当-1≤x≤4时,y的最
大值为( ),最小值为( ).
3.一次函数y=ax-3(a<0), 当-2≤x≤0时,y
的最大值为( ), 最小值为( )。
典例(2016孝感,22)孝感市在创建国家级园林城市中,绿化档
次不断提升.某校计划购进A,B两种树木共100棵进行校园
绿化升级,经市场调查:购买A种树木2棵,B种树木5棵,
共需600元;购买A种树木3棵,B种树木1棵,共需380元.(1)求A种,B种树木每棵各多少元?
(2)因布局需要,购买A种树木的数量不少于B种树木数量的
3倍.学校与中标公司签订的合同中规定:在市场价格不变的情
况下(不考虑其他因素),实际付款总金额按市场价九折优惠,
请设计一种购买树木的方案,使实际所花费用最省,并求出最省
的费用。
例某食品加工厂生产两种产品:水果饮料和水果罐头,这两种产品都由水果,蔗糖和其他原料制成,已知生产1吨饮料要消耗0.4吨水果,1吨蔗糖;生产1吨罐头要消耗0.9吨水果,0.3吨蔗糖。
工厂仓库库存水果有36吨,蔗糖29吨,若工厂计划生产水果饮料和水果罐头共计50吨,已知每吨水果饮料全部售出可获利0.8万元,每吨水果罐头全部售出可获利1.2万元。
(1)若工厂计划将生产的两种产品全部售出后能获得最大利润,工厂应该怎样设计生产方案?
(2)若受生产能力限制,水果饮料产量不低于水果罐头产量的37/63,工厂怎样安排生产方案可获最大利润,最大利润是多少?(3)在(2)的条件下,工厂准备将每吨水果饮料的售价上调a万元,那么工厂怎样调整生产方案可使利润最大?。
一次函数的应用练习题
一次函数的应用练习题一、选择题(每题3分,共15分)1. 已知一次函数\( y = 2x + 3 \),当\( x = 1 \)时,\( y \)的值是多少?A. 5B. 4C. 3D. 22. 一次函数\( y = -3x + 5 \)的斜率是:A. 3B. -3C. 5D. -53. 如果直线\( y = -4x + 6 \)与\( x \)轴相交,求交点的\( x \)坐标:A. 0B. 1C. 1.5D. 24. 一次函数\( y = 5x - 1 \)与\( y \)轴的交点坐标是:A. (0, -1)B. (1, -1)C. (0, 5)D. (0, 4)5. 直线\( y = 3x - 2 \)与\( y = -2x + 4 \)的交点坐标是:A. (2, 4)B. (1, 1)C. (2, 2)D. (0, 0)二、填空题(每题3分,共15分)6. 一次函数\( y = kx + b \)的斜率是\( k \),当\( k \)为正时,函数图象从左向右上升,当\( k \)为负时,函数图象从左向右下降。
7. 已知一次函数\( y = 4x - 7 \)与\( x \)轴相交于点A,求点A的坐标为\( ( \frac{7}{4}, 0) \)。
8. 一次函数\( y = -x + 2 \)的\( y \)截距是\( 2 \),\( x \)截距是\( -2 \)。
9. 如果直线\( y = 6x + 5 \)经过点\( (1, 11) \),则该直线的斜率是\( 6 \)。
10. 一次函数\( y = 3x - 8 \)的图象与\( x \)轴相交于点B,求点B的\( x \)坐标为\( \frac{8}{3} \)。
三、解答题(每题20分,共70分)11. 已知一次函数\( y = mx + n \)的图象经过点\( (1, 5) \)和点\( (3, 9) \),求\( m \)和\( n \)的值。
一次函数应用题精选
一次函数精选应用题1.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. (1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?2.某公司有A 型产品40件,B 型产品60件,分配给下属甲、乙两个商店销售,其中70件给甲店,30件给乙店,且都能卖完.两商店销售这两种产品每件的利润(元)如下表:(1)设分配给甲店A 型产品x 件,这家公司卖出这100件产品的总利润为W (元),求W 关于x 的函数关系式,并求出x 的取值范围;(2)若公司要求总利润不低于17560元,有多少种不同分配方案,哪种方案总利润最大,并求出最大值。
3..某商业集团新进了40台空调机,60台电冰箱,计划调配给下属的甲、乙两个连锁店销售,其中70台给甲连锁店,30台给乙连锁店.两个连锁店销售这两种电器每台的利润(元)如下表:设集团调配给甲连锁店x 台空调机,集团卖出这100台电器的总利润为y (元). (1)求y 关于x 的函数关系式,并求出x 的取值范围;(2)为了促销,集团决定仅对甲连锁店的空调机每台让利a 元销售,其他的销售利润不变,并且让利后每台空调机的利润仍然高于甲连锁店销售的每台电冰箱的利润,问该集团应该如何设计调配方案,使总利润达到最大?A 型利润B 型利润 甲店 200 170 乙店 160 150 空调机 电冰箱 甲连锁店 200 170 乙连锁店 160 1504..2010年6月5日是第38个世界环境日,世界环境日的主题为“多个物种、一颗星球、一个未来”。
为了响应节能减排的号召,某品牌汽车4S 店准备购进A 型(电动汽车)和B 型(太阳能汽车)两种不同型号的汽车共16辆,以满足广大支持环保的购车者的需求。
一次函数的应用 练习题(带答案
一次函数的应用 题集一、一次函数与实际应用(1)(2)(3)1.某周六上午小明从家出发,乘车小时到郊外某基地参加社会实践活动.在基地活动小时后,因家里有急事,他立即按原路以千米/时的平均速度步行返回,同时爸爸开车从家出发沿同一路线接他,在离家千米处与小明相遇.接到小明后保持车速不变,立即按原路返回.设小明离开家的时间为小时,小明离家的路程(千米)与(小时)之间的函数图象如图所示.(小时)(千米)小明去基地乘车的平均速度是 千米/时,爸爸开车的平均速度是 千米/时.求线段所表示的函数关系式,不用写出自变量的取值范围.问小明能否在中午前回到家?若能,请说明理由;若不能,请算出中午时他离家的路程.【答案】(1)(2)(3) ;.不能在前回家,此时离家的距离为千米.【解析】(1)观察图象可知:小明去基地乘车小时后离基地的距离为千米,(2)(3)因此小明去基地乘车的平均速度是千米/小时;在返回时小明以千米/时的平均速度步行,行驶千米后遇到爸爸,∵两个人同时走,小明走了小时,即爸爸也走了小时,∴他爸爸在小时内行驶了千米,故爸爸开车的平均速度应是千米/小时.设线段所表示的函数关系式为,易得,,∴,解得,∴.小明从家出发到回家一共需要时间:(小时),从经过小时已经过了,∴不能在前回家,此时离家的距离:(千米).【标注】【知识点】函数图象与实际问题(1)(2)12(3)2.,两地相距千米,甲车从地出发匀速行驶到地,乙车从地出发匀速行驶到地.乙车行驶小时后,甲车出发,两车相向而行.设行驶时间为小时(),甲、乙两车离地的距离分别为,千米,,与之间的函数关系图象如图所示,根据图象解答下列问题:小时千米图小时千米图求,与的函数关系式.乙车出发几小时后,两车相遇?相遇时,两车离地多少千米?设行驶过程中,甲、乙两车之间的距离为千米,在图的直角坐标系中,已经画出了与之间的部分函数图象.图中点的坐标为,则.求与的函数关系式,并在图中补全整个过程中与之间的函数图象.【答案】(1)(2)12(3),.乙车出发小时后两车相遇,两车相遇时,两车相距地千米.当时,,当时,.画图见解析.【解析】(1)(2)12(3)设,,由图象可知,时,,时,,∴,,∴.由图象可知,,,时,,∴,,∴.故与的关系式分别为:,.两车相遇时,甲乙两车距地距离相等,∴,∴,∴.将代入中得.故乙车出发小时后两车相遇,两车相遇时,两车相距地千米.由图可知,乙车速度为(千米/小时).过程中甲车在地,乙车在行驶.时,甲乙两车相距千米.时,甲乙两车相距(千米).∴.由图可知,甲车速度为(千米/小时).由()可知甲乙两车在时相遇.∴当时,,当时,.,故整个过程中与函数图象如下图所示:小时千米【标注】【知识点】一元一次方程的行程问题-相遇问题(1)(2)(3)3.在一条直线上依次有、、三个港口,甲、乙两船同时分别从、港口出发,沿直线匀速驶向港,最终到达港.设甲、乙两船行驶后,与港的距离分别为、,、与的函数关系如图所示.甲乙填空:、两港口间的距离为 , .求图中点的坐标.若两船的距离不超过时能够相互望见,求甲、乙两船可以相互望见时的取值范围.【答案】(1)(2)(3); .或.【解析】(1)、两港口间距离,又由于甲船行驶速度不变,(2)(3)故,则.故答案为:;.由点求得,.当时,由点,求得,.当时,,解得,.此时.所以点的坐标为.根据题意知甲、乙两船的速度分别为小时、小时,①当时,根据题意可知甲船开始出发到达港这段时间,甲乙两船的距离从逐渐缩小,两船行驶时,乙船在甲船的前方:处,所以这段时间内,两船不能相互望见;②当时,乙船在甲船的前方(直至追上).依题意,,解得,即时,甲、乙两船可以相互望见;③当时,甲船在乙船的前方依题意,,解得,即时,甲、乙两船可以相互望见;④当时,甲船已经到达港,而乙船继续行驶向甲船靠近,依题意,,解得,即,甲、乙两船可以相互望见.综上所述,当或时,甲、乙两船可以相互望见.【标注】【知识点】一次函数的依据图象解决实际问题4.某地为了鼓励市民节约用水,采取阶梯分段收费标准,共分三个梯段,吨为基本段,吨为极限段,超过吨为较高收费段,且规定每月用水超过吨时,超过的部分每吨元,居民每月应交水费(元)是用水量(吨)的函数,其图象如图所示:(1)(2)(3)吨元求出基本段每吨水费,若某用户该月用水吨,问应交水费多少元?写出与的函数解析式.若某月一用户交水量元,则该用户用水多少吨?【答案】(1)(2)(3)元..吨.【解析】(1)(2)∵用水吨交水费元,∴基本段每吨水费元,∴若某用户该月用水吨,应交水费元.分三种情况:①当时,易得;②当时,设,∵,在直线上,∴,解得,∴;③当时,设,∵,在直线上,∴,解得,∴.综上所述,与的函数解析式为.(3)若某月一用户交水量元,设该用户用水吨.∵用水吨交水费元,用水吨交水费元,而,∴.由题意,得,解得.答:若某月一用户交水量元,则该用户用水吨.【标注】【能力】运算能力【知识点】一元一次方程的梯度计价问题【知识点】有理数乘除法与实际问题【知识点】一次函数与实际问题【思想】函数思想【思想】方程思想(1)(2)(3)5.某市按阶梯电价进行收费,阶梯电价收费标准为:若每月用电量为度及以下,收费标准为元/度,若每月用电量超过度,收费标准由两部分组成:①度按元/度收费,②超出度的部分按元/度收费.如果月用电量用(度)来表示,实付金额用(元)来表示,请分别写出这两种情况实付金额与月用电量之间的函数关系式.若小芳和小华家一个月的实际用电量分别为度和度,则实付金额分别为多少元?按照阶梯电价方案的规定,一居民家某月电费为元,请你计算这个家庭本月的实际用电量.【答案】(1)(2)(3).实付金额分别为元、元.这个家庭本月的实际用电量是度.【解析】(1)根据度时,按元/度收费,(2)(3)则当时,;根据超出度的部分按元/度收费得:当时,;故函数关系式为:.小芳家用电量是 度,则实付金额是:(元);小华家用电量是 度,则实付金额是:(元).答:实付金额分别为元、元.设这个家庭本月的实际用电量度,根据题意得:解得:,答:这个家庭本月的实际用电量是度.【标注】【知识点】一次函数与实际问题(1)(2)(3)6.在某次抗震救灾中得知,甲、乙两个重灾区急需一种大型挖掘机,甲地需要台,乙地需要台;、两省获知情况后慷慨相助,分别捐赠该型号挖掘机台和台并将其全部调往灾区.如果从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元;从省调运一台挖掘机到甲地要耗资万元,到乙地要耗资万元.设从省调往甲地台挖掘机,、两省将捐赠的挖掘机全部调往灾区共耗资万元.省捐赠台省捐赠台甲灾区需台乙灾区需台请直接写出与之间的函数关系式及自变量的取值范围.若要使总耗资不超过万元,有哪几种调运方案?怎样设计调运方案能使总耗资最少?最少耗资多少万元?【答案】(1)(2)(3)( ).两种.方案二可使总耗资最少为万元.【解析】(1)(2)(3) 省省台数(台)耗资(万元)台数(台)耗资(万元)甲区乙区或由上表可知化简得,又∵,,,∴自变量的取值范围为.,得,∵为整数且,∴,.∴调运方案有两种,如下列:方案一:甲乙方案二:甲乙由可知随的增大而减小,∴当时,,∴()问中的方案二可使总耗资最少为万元.【标注】【知识点】一次函数与实际问题(1)7.育才中学需要购置某种仪器,方案:到商家购买,每件元;方案:学校自己制作,每件元,另外需付制作工具的租用费元.设购置仪器件,方案与方案的费用(单位:元)分别为,.分别写出,的函数表达式.(2)(3)当购置仪器多少件时,两种方案的费用相同?若方案便宜,则仪器件数范围是多少?【答案】(1)(2)(3),.件..【解析】(1)(2)(3)(,且为整数),(,且为整数).依题意,得,即,解得,∴当购置的仪器为件时,两种方案的费用相同.∵,∴,解得.∴当需要的仪器件数为整数且时,选择方案便宜.【标注】【知识点】一次函数与实际问题【知识点】不等式组的方案选择问题二、一次函数与三角形面积(1)(2)8.已知一次函数的图象与轴交于点,且与正比例函数的图象相交于点,求:求点的坐标.求出这两个函数的图象与轴围成的的面积.【答案】(1)(2)..【解析】(1)(2)由题意知,,解得,,∴点的坐标为.令,则,∴,∴.【标注】【知识点】一次函数与面积(1)(2)9.如图,在平面直角坐标系中,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与轴,轴分别交于、两点,且直线上所有点的坐标都是二元一次方程的解,直线与交于点.分别求出点,点的坐标.求四边形的面积.【答案】(1)(2),..【解析】(1)∵直线上所有点的坐标都是二元一次方程的解,∴当时,,(2)∴点的坐标为:,∵直线上所有点的坐标都是二元一次方程的解,∴时,,∴点的坐标为:.作轴于,,解得,∴点的坐标为,则四边形的面积四边形的面积的面积.【标注】【知识点】一次函数与面积10.在平面直角坐标系中,为坐标原点,已知及在第一象限的动点,且.则当时,点的坐标为 .【答案】【解析】∵,∴.∴∵∴.得:.∴,∴时,点坐标为.【标注】【知识点】一次函数与面积(1)(2)(3)(4)11.如图,直线的解析表达式为:,且与轴交于点,直线经过点、,直线,交于点.求点的坐标.求直线的解析表达式.求的面积.在直线上存在异于点的另一点,使得与的面积相等,请直接写出点的坐标.【答案】(1)(2)(3)(4).直线的解析表达式为...【解析】(1)(2)(3)由,令,得,∴,∴.设直线的解析表达式为,,由图象知:、,、,代入表达式,∴,∴,∴直线的解析表达式为.由,(4)∴,∴,∵,∴.与底边都是,面积相等所以高相等,高就是点到直线的距离,即纵坐标的绝对值,则到距离,∴纵坐标的绝对值,点不是点,∴点纵坐标是,∵,,∴,∴,∴.【标注】【知识点】公式法求面积12.如图直线与轴、轴分别交于、两点,以线段为边在第一象限内作等腰直角,且,如果在第二象限内有一点,且的面积与的面积相等,求的值.【答案】【解析】∵直线与轴、轴分别交于、两点,∴,,,∴,又∵,∴,解得.【标注】【知识点】一次函数与面积,,三、一次函数与线段最值(1)(2)13.如图,一次函数的图象与、轴分别交于点、.求该函数的解析式.为坐标原点,设、的中点分别为、,为上一动点,求的最小值,并求取得最小值时点的坐标.【答案】(1)(2),点坐标为.【解析】(1)(2)将、代入得,.∴解析式为:.设点关于点的对称点为,连接、,则.∴,即、、共线时,的最小值是.连接,在中,;易得点坐标为.【标注】【知识点】一次函数与轴对称最值问题14.直角坐标系中,有两个点,,在轴上找一个点,在轴上找一点,使四边形的周长最短,此时点的坐标为.【答案】【解析】如图设所在直线的表达式为.由于、在直线上,有解得∴所在直线表达式为,它与轴交于.【标注】【知识点】四边形周长最小15.在平面直角坐标系中,点,点,在轴上存在一个点,直线上存在点,使得四边形的周长最小,求满足条件的、两点的坐标.xy OABCD【答案】,.【解析】将点、分别关于轴,对称到、,直线与轴,的交点即为、点,求得直线的解析式为,得:,.故答案为:,.【标注】【知识点】一次函数与轴对称最值问题(1)(2)16.如图,在直角坐标系中,,,点是轴正半轴上的一个动点.当点到,两点的距离相等时,求点的坐标.当点到,两点的距离之和最小时,求点的坐标,并求出此时的值.【答案】(1)(2)..【解析】(1)如图作的中垂线与轴交于,过作轴于,∵,∴,,∵,∴,设,则,又∵,,,,(2)∴,即,,得,∴.如图,作关于轴对称点,连接交于,则即为所求,∵,∴且,设所在直线解析式为()代入,得,∴,∴直线,∴当,,∴,.【标注】【知识点】一次函数与轴对称最值问题17.如图,直线的函数表达式为,且与轴交于点,直线经过点且与交于点,已知点的横坐标是.(1)(2)求点和点的坐标.在轴上求点的坐标,使得最小.【答案】(1)(2),..【解析】(1)(2)对于直线,令,得到,∴,∵点的横坐标为,∴.作点关于轴的对称点,连接交轴于,此时的值最小,设最小的解析式为,则有,解得,∴直线的解析式为,∴.A. B.C.D.18.如图,在中,,,点在边上,且,点为的中点,点为边上的动点,当点在上移动时,使四边形周长最小的点的坐标为( ).【答案】C 【解析】∵在中,,,∴,,∵,点为的中点,∴,,∴,,作关于直线的对称点,连接交于,则此时,四边形周长最小,,∵直线的解析式为,设直线的解析式为,∴,解得:,∴直线的解析式为,解得,∴.故选.19.如图,已知点坐标为,点坐标为,在直线上有一点,满足轴,连接,,当线段位于何位置时,线段最短?求出的最小值,并求出点坐标.【答案】最小值是;点坐标为【解析】'坐标为,解析式为:,点坐标为,点坐标为,.【标注】【知识点】一次函数与轴对称最值问题,20.如图,平面直角坐标系中,已知点的坐标为,点的坐标为时,在轴上另取两点,,且.线段在轴上平移,线段平移至何处时,四边形的周长最小?求出此时点的坐标.【答案】.【解析】如图,过点作轴的平行线,并且在这条平行线上截取线段,使,作点关轴的对称点,连接,交轴于点,在轴上截取线段,则此时四边形的周长最小.∵,∴,∵,∴,设直线的解析式为,则,解得.∴直线的解析式为,当时,,解得.故线段平移至如图所示位置时,四边形的周长最小,此时点的坐标为,∴点的坐标为.【标注】【知识点】一次函数与轴对称最值问题(1)(2)(3)21.如图,一次函数的图象与轴和轴分别交于点和,再将沿直线对折,使点与点重合、直线与轴交于点,与交于点.点的坐标为 ,点的坐标为 .在直线上是否存在点使得的面积为?若存在,请求出所有符合条件的点的坐标;若不存在,请说明理由.求的长度.【答案】(1)(2)(3) ;存在,或..【解析】(1)已知函数为,∴令,则,(2)(3)令,则,∴,.∵,,∴以为底,则的高为,即点到的距离为,又∵点在,∴,∴或,∴或.在折叠后,,所以.因为,设,,则.在中,,由勾股定理知,即,去括号得,整理得,解得.故.【标注】【知识点】一次函数与直角三角形结合。
八年级数学:一次函数(应用题)练习(含解析)
C.10000,13200D.13200,15400
二.填空题
7.利民商店中有3种糖果,单价及重量如下表,若商店将以上糖果配成什锦糖,则这种什锦糖果的单价是每千克________元.
品种
水果糖
花生糖
软 糖
单价(元/千克)
10
12
16
重量(千克)
3
3
4
8.某公园门票价格如下表,有27名中学生游公园,则最少应付费______元.(游客只能在公园售票处购票)
购票张数
1~29张
30~60张
60张以上
每张票的价格
10元
8元
6元
9.有一个附有进水管和出水管的容器,在单位时间内的进水量和出水量分别一定.设从某时刻开始的5分钟内只进水不出水,在随后的15分钟内既进水又出水,得到容器内水量y(升)与时间 (分)之间的函数图象如图.若20分钟后只放水不进水,这时( ≥20时) 与 之间的函数关系式是_________.
八年级数学:一次函数(应用题)练习(含解析)
一.选择题
1.明君社区有一块空地需要绿化,某绿化组承担了此项任务,绿化组工作一段时间后,提高了工作效率.该绿化组完成的绿化面积S(单位:m2)与工作时间t(单位:h)之间的函数关系如图所示,则该绿化组提高工作效率前每小时完成的绿化面积是( )
A.300m2B.150m2C.330m2D.450m2
12.【答案】2050;
【解析】解:设小明、小刚新的速得,y=x+1.5③,
由②得,4y﹣3=6x④,
③代入④得,4x+6﹣3=6x,
解得x=1.5,
故这次越野赛的赛跑全程=1600+300×1.5=1600+450=2050m.
一次函数的应用练习题
一次函数的应用练习题一、选择题1. 下列哪个选项表示的是一次函数?A. y = 2x^2 + 1B. y = 3x + 5C. y = √x + 2D. y = 4/x2. 一次函数y = 3x 2的图象经过哪个象限?A. 第一、二象限B. 第一、三象限C. 第一、二、三象限D. 第一、二、四象限3. 一次函数y = kx + b的图象与y轴的交点为(0,3),则b 的值为:A. 3B. 3C. 0D. 14. 下列哪个一次函数的图象是一条过原点的直线?A. y = 2x + 1B. y = 3xC. y = x 2D. y = x^2二、填空题1. 一次函数的一般形式是______。
2. 一次函数y = 5x 3的斜率为______,y轴截距为______。
3. 若一次函数y = kx + b的图象经过点(1,3)和(2,5),则k的值为______,b的值为______。
4. 当x > 0时,一次函数y = 2x + 7的值随着x的增大而______。
三、解答题1. 已知一次函数y = 4x 1的图象与x轴、y轴分别相交于点A、B,求线段AB的长度。
2. 一次函数y = kx + b的图象经过点(1,2)和(3,4),求该一次函数的表达式。
3. 在平面直角坐标系中,一次函数y = 3x + 6与y轴相交于点C,与x轴相交于点D,求三角形OCD的面积(O为坐标原点)。
4. 小明从家出发,沿直线道路去图书馆,距离图书馆的距离y(单位:千米)与时间x(单位:小时)的关系为y = 5 4x。
求小明家到图书馆的距离,以及小明走到图书馆所需的时间。
5. 某商品的原价为1000元,商场进行打折促销,折后价格为y 元,打折系数为x(0 < x < 1)。
求折后价格y与打折系数x之间的函数关系式。
四、应用题1. 甲、乙两地相距120公里,甲地有一辆汽车以每小时60公里的速度前往乙地,同时乙地有一辆摩托车以每小时40公里的速度前往甲地。
(完整版)一次函数应用题专题训练
一次函数应用题专题训练1.一辆快车从甲地驶往乙地,一辆慢车从乙地驶往甲地,两车同时出发,匀速行驶.设行驶的时间为x(时),两车之间的距离为y (千米),图中的折线表示从两车出发至快车到达乙地过程中y 与x 之间的函数关系. (1)根据图中信息,求线段AB 所在直线的函数解析式和甲乙两地之间的距离;(2)已知两车相遇时快车比慢车多行驶40千米,若快车从甲地到达乙地所需时间为t 时,求t 的值; (3)若快车到达乙地后立刻返回甲地,慢车到达甲地后停止行驶,请你在图中画出快车从乙地返回到甲地过程中y 关于x 的函数的大致图像. (温馨提示:请画在答题卷相对应的图上)2.春节期间,某客运站旅客流量不断增大,旅客往往需要长时间排队等候购票.经调查发现,每天开始售票时,约有400人排队购票,同时又有新的旅客不断进入售票厅排队等候购票.售票时售票厅每分钟新增购票人数4人,每分钟每个售票窗口出售的票数3张.某一天售票厅排队等候购票的人数y (人)与售票时间x (分钟)的关系如图所示,已知售票的前a 分钟只开放了两个售票窗口(规定每人只购一张票). (1)求a 的值.(2)求售票到第60分钟时,售票听排队等候购票的旅客人数.(3)若要在开始售票后半小时内让所有的排队的旅客都能购到票,以便后来到站的旅客随到随购,至少需要同时开放几个售票窗口?3.在一条直线上依次有A 、B 、C 三个港口,甲、乙两船同时分别从A 、B 港口出发,沿直线匀速驶向C 港,最终达到C 港.设甲、乙两船行驶x (h )后,与.B .港的距离....分别为1y 、2y (km ),1y 、2y 与x 的函数关系如图所示.(1)填空:A 、C 两港口间的距离为 km , a ; (2)求图中点P 的坐标,并解释该点坐标所表示的实际意义;(3)若两船的距离不超过10 km 时能够相互望见,求甲、乙两船可以相互望见时x 的取值范围.O y/km 9030 a3P甲 乙x/h4.一家蔬菜公司收购到某种绿色蔬菜140吨,准备加工后进行销售,销售后获利的情况如下表所示:已知该公司的加工能力是:每天能精加工5吨或粗加工15吨,但两种加工不能同时进行.受季节等条件的限制,公司必须在一定时间内将这批蔬菜全部加工后销售完.⑴如果要求12天刚好加工完140吨蔬菜,则公司应安排几天精加工,几天粗加工?⑵如果先进行精加工,然后进行粗加工.①试求出销售利润W元与精加工的蔬菜吨数m之间的函数关系式;②若要求在不超过10天的时间内,将140吨蔬菜全部加工完后进行销售,则加工这批蔬菜最多可获得多少利润?此时如何分配加工时间?5.某物流公司的甲、乙两辆货车分别从A、B两地同时相向而行,并以各自的速度匀速行驶,途径配货站C,甲车先到达C地,并在C地用1小时配货,然后按原速度开往B地,乙车从B地直达A地,图16是甲、乙两车间的距离y(千米)与乙车出发x(时)的函数的部分图像(1)A、B两地的距离是千米,甲车出发小时到达C地;(2)求乙车出发2小时后直至到达A地的过程中,y与x的函数关系式及x的取值范围,并在图16中补全函数图像;(3)乙车出发多长时间,两车相距150千米6.张师傅驾车运送荔枝到某地出售,汽车出发前油箱有油50升,行驶若干小时后,途中在加油站加油若干升,油箱中剩余油量y(升)与行驶时间t(小时)之间的关系如图所示.请根据图象回答下列问题:(1)汽车行驶小时后加油,中途加油升;小时)(2)求加油前油箱剩余油量y 与行驶时间t 的函数关系式;210千米,要到达目的地,7.某学校组织340名师生进行长途考察活动,带有行李170件,计划租用甲、乙两种型号的汽车10辆.经了解,甲车每辆最多能载40人和16件行李,乙车每辆最多能载30人和20件行李. (1)请你帮助学校设计所有可行的租车方案;(2)如果甲车的租金为每辆2000元,乙车的租金为每辆1800元,问哪种可行方案使租车费用最省?8.自2010年6月1日起我省开始实施家电以旧换新政策,消费者在购买政策限定的新家电时,每台新家电用一台同类的旧家电换取一定数额的补贴.为确保商家利润不受损失,补贴部分由政府提供,其中三种家电的补贴方式如下表:为此,某商场家电部准备购进电视、洗衣机、冰箱共100台,这批家电的进价和售价如下表:设购进的电视机和洗衣机数量均为x 台,这100台家电政府需要补贴y 元,商场所获利润w 元(利润=售价-进价)(1)请分别求出y与x和w与x的函数表达式;(2)若商场决定购进每种家电不少于30台,则有几种进货方案?若商场想获得最大利润,应该怎样安排进货?若这100台家电全部售出,政府需要补贴多少元钱?9、(2005年包头)小明、小颖两名同学在学校冬季越野赛中的路程y(千米)与时间x(分)的函数关系如图所示。
一次函数应用题(习题及答案)
一次函数应用题(习题及答案)一次函数应用题(习题及答案)题一:某手机品牌每月销售量与售价之间存在一次函数关系,已知售价为3000元时销售量为4000台,售价为5000元时销售量为3000台,请问每增加一台售价,销售量减少多少台?解析:这是一个典型的一次函数应用题。
首先,我们可以设定售价为x元,销售量为y台。
根据题目已知条件,可以列出两个点的坐标:(3000, 4000)和(5000, 3000)。
根据一次函数的一般式y = kx + b,可以得到方程组:4000 = 3000k + b -------(1)3000 = 5000k + b -------(2)通过解方程组,可以求解出k和b的值,从而确定函数关系。
首先,我们用(1)式减去(2)式,消去b的项,得到:1000 = -2000k解得k = -1/2。
将k的值代入(1)式或(2)式,可解得b = 7000/2 = 3500。
因此,该函数的函数关系为:y = -1/2x + 3500。
根据函数关系,我们可以计算每增加一台售价,销售量减少的台数。
由于每增加一台售价,x的变化量为1,代入函数关系,得到y的变化量为-1/2。
因此,每增加一台售价,销售量减少的台数为1/2台。
答案:每增加一台售价,销售量减少0.5台。
题二:一家电商公司将某商品的售价从每件100元提高到120元后,销售量下降了25%。
求原来的每件商品的销售量。
解析:这同样是一个一次函数的应用题。
我们可以设定原售价为x 元,销售量为y件。
根据题目已知条件,可以得到两个点的坐标:(100, y)和(120, 0.75y)(销售量下降25%相当于销售量的0.75倍)。
根据一次函数的一般式y = kx + b,可以得到方程组:y = 100k + b -------(1)0.75y = 120k + b -------(2)通过解方程组,我们可以求解出k和b的值,从而确定函数关系。
将(1)式代入(2)式,得到:0.75(100k + b) = 120k + b化简可得:75k + 0.75b = 120k + b整理得:0.25b = 45k解得:k = 0.25b/45将k的值代入(1)式,解得b = 11y/12因此,该函数的函数关系为:y = (0.25b/45)x + (11y/12)由于题目求解的是原来的每件商品的销售量,即求解y的值。
一次函数应用题
一次函数应用题1.已知XXX现有A种布料70米,B种布料52米,现计划用这两种布料生产M、N两种型号的时装共80套。
已知做一套M型号的时装需要A种布料6米,B种布料0.9米,可获利润45元;做一套N型号的时装需要A种布料1.1米,B种布料0.4米,可获利润50元。
设生产N种型号的时装套数为$x$,用这批布料生产这两种型号的时装所获总利润为$y$元。
1) $y$与$x$的函数关系式为:$$y=45(80-x)\cdot\frac{70-6x}{6}+50x\cdot\frac{52-0.4x}{0.4}$$其中,第一项是生产M型号时装所获利润,第二项是生产N型号时装所获利润。
自变量$x$的取值范围为$0\leq x\leq 52/0.4=130$,因为B种布料的数量有限制。
2) 当生产N型号的时装为$20$套时,所获利润最大,最大利润为$y_{\max}=3850$元。
2.某市电话的月租费是$20$元,可打$60$次免费电话(每次$3$分钟),超过$60$次后,超过部分每次$0.13$元。
1) $y$与$x$的函数关系式为:$$y=\begin{cases}20.& x\leq 60 \\20+0.13(x-60)。
& x>60end{cases}$$2) 月通话$50$次的电话费为$20$元,月通话$100$次的电话费为$23$元。
3) 设该月通话次数为$t$,则$$y=\begin{cases}20.& t\leq 60 \\20+0.13(t-60)。
& t>60end{cases}$$解得$t=60+5(y-20)$,代入$y=27.8$得$t=98$次。
3.荆门火车货运站现有甲种货物$1530$吨,乙种货物$1150$吨,安排用一列货车将这批货物运往广州,这列货车可挂A、B两种不同规格的货厢$50$节,已知用一节A型货厢的运费是$0.5$万元,用一节B型货厢的运费是$0.8$万元。
(完整版)一次函数图像应用题(带解析版答案).doc
一次函数中考专题一.选择题1.如图,是某复印店复印收费y(元)与复印面数( 8 开纸) x(面)的函数图象,那么从图象中可看出,复印超过100 面的部分,每面收费()A. 0.4 元 B.0.45 元 C.约 0.47 元D.0.5 元2.如图,函数 y=kx( k≠ 0)和 y=ax+4(a≠ 0)的图象相交于点A( 2,3),则不等式 kx>ax+4 的解集为()A.x>3B.x< 3 C. x> 2 D.x<2 3.如图,已知:函数 y=3x+b 和 y=ax﹣3 的图象交于点 P(﹣ 2,﹣ 5),则根据图象可得不等式 3x+b> ax﹣3 的解集是()A. x>﹣ 5B.x>﹣ 2 C.x>﹣ 3D.x<﹣ 24.甲、乙两汽车沿同一路线从 A 地前往 B 地,甲车以 a 千米 / 时的速度匀速行驶,途中出现故障后停车维修,修好后以 2a 千米 / 时的速度继续行驶;乙车在甲车出发 2 小时后匀速前往 B 地,比甲车早 30 分钟到达.到达 B 地后,乙车按原速度返回A 地,甲车以2a 千米/ 时的速度返回A 地.设甲、乙两车与A 地相距(s千米),甲车离开 A 地的时间为(t 小时),s 与 t 之间的函数图象如图所示.下列说法:①a=40;②甲车维修所用时间为 1 小时;③两车在途中第二次相遇时t 的值为 5.25;④当 t=3 时,两车相距 40 千米,其中不正确的个数为()A. 0 个B.1 个 C. 2 个 D.3 个【解答】 ①由函数图象,得 a=120÷3=40 故①正确,②由题意,得 5.5﹣ 3﹣ 120÷( 40×2), =2.5﹣1.5,=1.∴甲车维修的时间为 1 小时;故②正确,③如图:∵甲车维修的时间是 1 小时,∴ B (4,120). ∵乙在甲出发 2 小时后匀速前往 B 地,比甲早 30 分钟到达. ∴E (5,240).∴乙行驶的速度为: 240÷3=80,∴乙返回的时间为: 240÷80=3,∴ F (8,0). 设 BC 的解析式为 y 1 1 1, EF 的解析式为 2 2 2,由图象,得=k t+b y =k t+b,解得 , ,∴ y 1=80t ﹣200,y 2=﹣80t+640,当 y 1=y 2 时, 80t ﹣200=﹣80t+640,t=5.25.∴两车在途中第二次相遇时 t 的值为 5.25 小时,故弄③正确,④当 t=3 时,甲车行的路程为 120km ,乙车行的路程为 80×( 3﹣ 2)=80km ,∴两车相距的路程为: 120﹣80=40 千米,故④正确,故选: A .5.甲、乙两车从 A 地驶向 B 地,并以各自的速度匀速行驶, 甲车比乙车早行驶2h ,并且甲车途中休息了 0.5h ,如图是甲乙两车行驶的距离 y (km )与时间 x(h )的函数图象.则下列结论: (1)a=40,m=1;(2)乙的速度是 80km/h ;( 3)甲比乙迟 h 到达 B 地;(4)乙车行驶 小时或小时,两车恰好相距 50km .正确的个数是() A .1 B . 2 C .3 D .4第 2页(共 15页)【解答】(1)由意,得 m=1.5 0.5=1.120÷( 3.5 0.5) =40(km/h ), a=40,故( 1)正确;( 2) 120÷( 3.5 2)=80km/h(千米 / 小),故( 2)正确;(3)甲休息之后行路程(y km)与(xh)的函数关系式y=kx+b,由意,得解得:∴y=40x20,根据形得知:甲、乙两中先到达 B 地的是乙,把y=260 代入 y=40x 20 得, x=7,∵乙的行速度80km/h ,∴乙行 260km 需要 260÷80=3.25h,∴7( 2+3.25)= h,∴甲比乙h 到达 B 地,故( 3)正确;(4)当 1.5<x≤7 , y=40x 20.乙行的路程y 与 x 之的解析式y=k'x+b',由意得解得:∴ y=80x 160.当40x 20 50=80x 160 ,解得: x= .当 40x 20+50=80x 160 ,解得: x=.∴2=,2=.所以乙行或小,两恰好相距50km,故(4).故( C)二.填空(共 3 小)6.如,已知 A1,A2,A3,⋯,A n是 x 上的点,且 OA1=A1A2=A2A3=⋯ =A n A n+1=1,分点 A1, 2 ,3,⋯, n+1 作x 的垂交一次函数的象于点 1 ,A A AB B2,B3,⋯,B n+1,接 A1B2,B1A2,A2B3,B2A3,⋯,A n B n+1,B n A n+1依次生交点 P1,2,3,⋯,n,P n的坐是(n+,).P P P【解答】由已知得 A1, A2,A3,⋯的坐:( 1, 0),(2,0),(3,0),⋯,又得作 x 的垂交一次函数y= x 的象于点 B1,B2,B3,⋯的坐分( 1,),(2,1),(3,),⋯.由此可推出 A n,B n,A n+1, B n+1四点的坐( n,0),(n,),(n+1,0),(n+1,).所以得直 A n B n+1和 A n+1B n的直方程分解得故答案:( n+,).7. 下是士一病人的体温化,位病人中午12的体温℃ .8.某高速路即将在2019 年底通,通后,重到阳、广州等地的将大大短. 5 月初,路局甲、乙两种列在路上行运行,两种列同从重出,以各自速度匀速向 A 地行,乙列到达 A 地后停止,甲列到达 A 地停留 20 分后,再按原路以另一速度匀速返回重,已知两种列分距 A 地的路程 y( km)与 x(h)之的函数象如所示.当乙列到达 A 地,甲列距离重km.【解答】设乙列车的速度为xkm/h ,甲列车以 ykm/h 的速度向 A 地行驶,到达 A 地停留 20 分钟后,以 zkm/h 的速度返回重庆,则根据 3 小时后,乙列车距离 A 地的路程为 240,而甲列车到达 A 地,可得 3x+240=3y,①根据甲列车到达 A 地停留 20 分钟后,再返回重庆并与乙列车相遇的时刻为 4 小时,可得 x+(1﹣)z=240,②根据甲列车往返两地的路程相等,可得(﹣3﹣)z=3y,③由①②③,可得 x=120, y=200,z=180,∴重庆到 A 地的路程为 3×200=600(km),∴乙列车到达 A 地的时间为 600÷120=5( h),∴当乙列车到达 A 地时,甲列车距离重庆的路程为600﹣( 5﹣3﹣)× 180=300(km),故答案为: 300.三.解答题(共10 小题)9.为倡导绿色出行,某共享单车近期登陆徐州,根据连续骑行时长分段计费:骑行时长在 2h 以内(含 2h)的部分,每 0.5h 计费 1 元(不足 0.5h 按 0.5h 计算);骑行时长超出 2h 的部分,每小时计费 4 元(不足 1h 按 1h 计算).根据此收费标准,解决下列问题:(1)连续骑行 5h,应付费多少元?(2)若连续骑行xh(x>2且x为整数)需付费y元,则y与x的函数表达式为;(3)若某人连续骑行后付费 24 元,求其连续骑行时长的范围.【解答】(1)当 x=5 时, y=2×2+4×( 5﹣2)=16,∴应付 16 元;(2) y=4( x﹣ 2) +2×2=4x﹣4;故答案为: y=4x﹣4;(3)当 y=24,24=4x﹣ 4, x=7,∴连续骑行时长的范围是: 6<x≤7.10.如图, “十一 ”期间,小明一家乘坐高铁前往某市旅游,计划第二天租用新能源汽车自驾出游.根据以上信息,解答下列问题:(1)设租车时间为 x 小时,租用甲公司的车所需费用为y 1 元,租用乙公司的车所需费用为 y 2 元,分别求出 y 1,y 2 关于 x 的函数表达式;(2)当租车时间为多少小时时,两种方案所需费用相同;(3)根据( 2)的计算结果,结合图象,请你帮助小明选择怎样的出游方案更合算.【解答】(1)设 y 1=k 1x+80,把点( 1,95)代入,可得: 95=k 1 +80,解得 k 1=15,∴ y 1=15x+80(x ≥0);设 y 2=k 2 x ,把( 1,30)代入,可得 30=k 2,即k 2=30, ∴ y 2=30x (x ≥0);( 2)当 y 1 2 时, ,解得x=;=y 15x+80=30x答:当租车时间为小时时,两种方案所需费用相同;( 3)由( 2)知:当 y 1 2 时,x=;当 1> 2 时, > ,=yy y 15x+80 30x解得 x <;当 y 1< 2 时, < ,解得 x > ;y 15x+80 30x∴当租车时间为小时,任意选择其中的一个方案;当租车时间小于小时,选择方案二合算;当租车时间大于小时,选择方案一合算.11.如表给出 A、 B、 C 三种上网的收费方式:收费方式月使用费 / 元包时上网时间 / 小时超时费 / (元 / 分钟)A 30 25 0.05B 50 50 0.05C 120 不限时( 1)假设月上网时间为 x 小时,分别直接写出方式 A、B、C 三种上网方式的收费金额分别为 y1、y2、y3与 x 的函数关系式,并写出自变量的范围(注意结果要化简);(2)给出的坐标系中画出这三个函数的图象简图;(3)结合函数图象,直接写出选择哪种上网方式更合算.【分析】从题意可知,本题中的一次函数又是分段函数,关键是理清楚自变量的取值范围,由取值来确定函数值,从而作出函数图象.【解答】(1)收费方式 A:y=30(0≤x≤25),y=30+3x(x>25);收费方式 B:y=50(0≤x≤50),y=50+3x(x>50);收费方式 C:y=120(0≤x);(2)函数图象如图:(3)由图象可知,上网方式 C 更合算。
一次函数实际应用题选题(含答案)
一次函数实际应用问题练习1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x (百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y (百元)关于观众人数x (百人)的函数解析式和成本费用s (百元)关于观众人数x (百人)的函数解析式; ⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费) 2、甲乙两名同学进行登山比赛,图中表示甲乙沿相同的路线同时从山脚出发到达山顶过程中,个自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题: ⑴分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量的取值范围) ⑵当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离;⑶在⑵的条件下,设乙同学从A 点继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙同学相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自沿原路下山和上山,求乙到大山顶时,甲离山脚的距离是多少千米? 3、教室里放有一台饮水机,饮水机上有两个放水管。
课间同学们到饮水机前用茶杯接水。
假设接水过程中水不发生泼洒,每个学声所接的水量是相等的。
两个放水管同时打开时,它们的流量相同。
放水时先打开一个水管,过一会再打开第二个水管,放水过程中阀门一直开着。
饮水机的存水量y (升)与放水时间x(分钟)的函数关系如下图所示:⑴求出饮水机的存水量y (升)与放水时间x(分钟)(x ≥2)的函数关系式;⑵如果打开第一个水管后,2分钟时恰好有4个同学接水接束,则前22个同学接水结束共需要几分钟? ⑶按⑵的放法,求出在课间10分钟内最多有多少个同学能及时接完水? 4、 甲、乙两个工程队分别同时开挖两段河渠,所挖河渠的长度()m y 与挖掘时间()h x 之间的关系如图1所示,请根据图象所提供的信息解答下列问题:⑴乙队开挖到30m 时,用了 h .开挖6h 时甲队比乙队多挖了 m ;⑵请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式;②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式;⑶当x 为何值时,甲、乙两队在施工过程中所挖河渠的长度相等?12623S(千米)t(小时)C D E F B 甲乙O 21281718y(升)x(分钟)5、小明受《乌鸦喝水》故事的启发,利用量桶和体积相同的小球进行了如下操作:请根据图2中给出的信息,解答下列问题:(1)放入一个小球量桶中水面升高___________cm ;(2)求放入小球后量桶中水面的高度y (cm )与小球个数x (个)之间的一次函数关系式(不要求写出自变量的取值范围);(3)量桶中至少放入几个小球时有水溢出?6、日照市是中国北方最大的对虾养殖产区,被国家农业部列为对虾养殖重点区域;贝类产品西施舌是日照特产.沿海某养殖场计划今年养殖无公害标准化对虾和西施舌,由于受养殖水面的制约,这两个品种的苗种的总投放量只有50吨.根据经验测算,这两个品种的种苗每投放一吨的先期投资、养殖期间的投资以及产值如下表: (单位:千元/吨)品种先期投资 养殖期间投资 产值 西施舌9 3 30 对虾4 10 20养殖场受经济条件的影响,先期投资不超过360千元,养殖期间的投资不超过290千元.设西施舌种苗的投放量为x 吨 (1)求x 的取值范围;(2)设这两个品种产出后的总产值为y (千元),试写出y 与x 之间的函数关系式,并求出当x 等于多少时,y 有最大值?最大值是多少? 7、 元旦联欢会前某班布置教室,同学们利用彩纸条粘成一环套一环的彩纸链,小颖测量了部分彩纸链的长度,她得到的数据如下表:纸环数x (个) 1 2 3 4 …… 彩纸链长度y (cm ) 19 36 53 70 ……(1)把上表中x y ,的各组对应值作为点的坐标,在如图3的平面直角坐标系中描出相应的点,猜想y 与x 的函数关系,并求出函数关系式;(2)教室天花板对角线长10m ,现需沿天花板对角线各拉一根彩纸链,则每根彩纸链至少要用多少个纸环?8、某软件公司开发出一种图书管理软件,前期投入的开发广告宣传费用共50000元,且每售出一套软件,软件公司还需支付安装调试费用200元。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
最新文件---------------- 仅供参考--------------------已改成-----------word 文本 --------------------- 方便更改 赠人玫瑰,手留余香。
一次函数应用题精选1、某移动公司采用分段计费的方法来计算话费,月通话时间x (分钟)与相应话费y (元)之间的函数图象如图所示:(1)月通话为100分钟时,应交话费 元; (2)当100x ≥时,求y 与x 之间的函数关系式; (3)月通话为280分钟时,应交话费多少元?2、甲、乙两名同学进行登山比赛,图中表示甲同学和乙同学沿相同的路线同时从山脚出发到达山顶过程中,各自行进的路程随时间变化的图象,根据图象中的有关数据回答下列问题:(1) 分别求出表示甲、乙两同学登山过程中路程s (千米)与时间t (时)的函数解析式;(不要求写出自变量t 的取值范围)(2) 当甲到达山顶时,乙行进到山路上的某点A 处,求A 点距山顶的距离; (3) 在(2)的条件下,设乙同学从A 处继续登山,甲同学到达山顶后休息1小时,沿原路下山,在点B 处与乙相遇,此时点B 与山顶距离为1.5千米,相遇后甲、乙各自按原来的路线下山和上山,求乙到达山顶时,甲离山脚的距离是多少千米?(分钟)3、在一次蜡烛燃烧实验中,甲、乙两根蜡烛燃烧x h的关时剩余部分的高度y(cm)与燃烧时间()系如图所示.请根据图象所提供的信息解答下列问题:(1)甲、乙两根蜡烛燃烧前的高度分别是,从点燃到燃尽所用的时间分别是;(2)分别求甲、乙两根蜡烛燃烧时y与x之间的函数关系式;(3)当x为何值时,甲、乙两根蜡烛在燃烧过程中的高度相等?4、种植草莓大户张华现有22吨草莓等售,有两种销售渠道,一是运往省城直接批发给零售商,二是在本地市场零售,经过调查分析,这两种销售渠道每天销量及每吨所获纯利润见下表:受客观因素影响,张华每天只能采用一种销售渠道,草莓必须在10日内售出.(1)若一部分草莓运往省城批发给零售商,其余在本地市场零售,请写出销售22吨草莓所获纯利润y(元)与运往省城直接批发零售商的草莓量x(吨)之间的函数关系式;(2)怎样安排这22吨草莓的销售渠道,才使张华所获纯利润最大?并求出最大纯利润.5、某房地产开发公司计划建A、B两种户型的住房共80套,该公司所筹资金不少于2 090万元,但不超过2 096万元,且所筹资金全部用于建房,两种户型的建房成本和售价如下表:(1)该公司对这两种户型住房有哪几种建房方案?(2)该公司如何建房获得利润最大?会改变,每套A型住房的售价将会提高a万元(a>0),且所建的两种住房可全部售出,该公司又将如何建房获得利润最大?7、随着大陆惠及台胞政策措施的落实,台湾水果进入了大陆市场.一水果经销商购进了A B,两种台湾水果各10箱,分配给他的甲、乙两个零售店(分别简称甲店、乙店)销售.预计每箱水果的盈利情况如下表:方案一:甲、乙两店各配货10箱,其中A种水果两店各5箱,B种水果两店各5箱;方案二:按照甲、乙两店盈利相同配货,其中A种水果甲店箱,乙店箱;B种水果甲店箱,乙店箱.(1)如果按照方案一配货,请你计算出经销商能盈利多少元;(2)请你将方案二填写完整(只填写一种情况即可),并根据你填写的方案二与方案一作比较,哪种方案盈利较多?(3)在甲、乙两店各配货10箱,且保证乙店盈利不小于100元的条件下,请你设计出使水果经销商盈利最大的配货方案,并求出最大盈利为多少?9、某蔬菜基地加工厂有工人100人,现对100人进行工作分工,或采摘蔬菜,或对当日采摘的蔬菜进行精加工.每人每天只能做一项工作.若采摘蔬菜,每人每天平均采摘48kg;若对采摘后的蔬菜进行精加工,每人每天可精加工32kg(每天精加工的蔬菜和没来得及精加工的蔬菜全部售出).已知每千克蔬菜直接出售可获利润1元,精加工后再出售,每千克可获利润3元.设每天安排x名工人进行蔬菜精加工.(1)求每天蔬菜精加工后再出售所得利润y(元)与x(人)的函数关系式;(2)如果每天精加工的蔬菜和没来得及精加工的蔬菜全部售出的利润为w元,求w与x的函数关系式,并说明如何安排精加工人数才能使一天所获的利润最大?最大利润是多少?10、小张骑车往返于甲、乙两地,距甲地的路程y(千米)与时间x(小时)的函数图象如图所示.(1)小张在路上停留 小时,他从乙地返回时骑车的速度为 千米/时. (2张共相遇3次.请在图中..画出小李距甲地的路程y (千米)与时间x (小时)的函数的大致图象.(1) 小王与小张同时出发,按相同路线前往乙地, 距甲地的路程y (千米)与时间x (小时)的函数关系式 为1210y x =+.小王与小张在途中共相遇几次?请你计算第一次相遇的时间.12、我市某乡A B ,两村盛产柑桔,A 村有柑桔200吨,B 村有柑桔300吨.现将这些柑桔运到C D ,两个冷藏仓库,已知C 仓库可储存240吨,D 仓库可储存260吨;从A 村运往C D ,两处的费用分别为每吨20元和25元,从B 村运往C D ,两处的费用分别为每吨15元和18元.设从A 村运往C 仓库的柑桔重量为x 吨,AB ,两村运往两仓库的柑桔运输费用分别为A y 元和B y 元.(1)请填写下表,并求出A B y y ,与x 之间的函数关系式;(小y ((3)考虑到B 村的经济承受能力,B 村的柑桔运费不得超过4830元.在这种情况下,请问怎样调运,才能使两村运费之和最小?求出这个最小值.13、有两段长度相等的河渠挖掘任务,分别交给甲、乙两个工程队同时进行挖掘.图是反映所挖河渠长度()y 米与挖掘时间()x 时之间关系的部分图象.请解答下列问题:(1)乙队开挖到30米时,用了 小时.开挖6小时时,甲队比乙队多挖了 米;(2)请你求出:①甲队在06x ≤≤的时段内,y 与x 之间的函数关系式; ②乙队在26x ≤≤的时段内,y 与x 之间的函数关系式; ③开挖几小时后,甲队所挖掘河渠的长度开始超过乙队? (3)如果甲队施工速度不变,乙队在开挖6小时后,施工速度增加到12米/时,结果两队同时完成了任务. 问甲队从开挖到完工所挖河渠的长度为多少米?15、如图,,A B l l 分别表示A 步行与B 骑车在同一路上行驶的路程S 与时间t 的关系。
(1)B 出发时与A 相距 千米。
(2)走了一段路后,自行车发生故障,进行修理,所用的时间是 小时。
(1分)(3)B 出发后 小时与A 相遇。
(4)若B 的自行车不发生故障,保持出发时的速度前进,小时与A 相遇,相遇点离B 的出发点 千米。
在图中表示出这个相遇点C 。
(5)求出A 行走的路程S 与时间t 的函数关系式。
16、2007年5月,第五届中国宜昌长江三峡国际龙舟拉力赛在黄陵庙揭开比赛帷幕.20日上午9时,参赛龙舟从黄陵庙同时出发.其中甲、乙两队在比赛时,路程y (千米)与时间x (小时)的函数关系如图所示.甲队在上午11时30分到达终点黄柏河港. (1)哪个队先到达终点?乙队何时追上甲队? (2)在比赛过程中,甲、乙两队何时相距最远?17、刚回营地的两个抢险分队又接到救灾命令:一分队立即出发往30千米的A 镇;二分队因疲劳可在营地休息a (0≤a ≤3)小时再往A 镇参加救灾。
一分队出发后得知,唯一通往A时间/时164020镇的道路在离营地10千米处发生塌方,塌方地形复杂,必须由一分队用1小时打通道路,已知一分队的行进速度为5千米/时,二分队的行进速度为(4+a)千米/时。
⑴若二分队在营地不休息,问二分队几小时能赶到A镇?⑵若二分队和一分队同时赶到A镇,二分队应在营地休息几小时?⑶下列图象中,①②分别描述一分队和二分队离A镇的距离y(千米)和时间x(小时)的函数关系,请写出你认为所有可能合理的代号,并说明它们的实际意义。
18、2008年5月12日14时28分四川汶川发生里氏8.0级强力地震.某市接到上级通知,立即派出甲、乙两个抗震救灾小组乘车沿同一路线赶赴距出发点480千米的灾区.乙组由于要携带一些救灾物资,比甲组迟出发1.25小时(从甲组出发时开始计时).图中的折线、线段分别表示甲、乙两组的所走路程y甲(千米)、y乙(千米)与时间x(小时)之间的函数关系对应的图像.请根据图像所提供的信息,解决下列问题:(1)由于汽车发生故障,甲组在途中停留了小时;(2)甲组的汽车排除故障后,立即提速赶往灾区.请问甲组的汽车在排除故障时,距出发点的路程是多少千米?(3)为了保证及时联络,甲、乙两组在第一次相遇时约定此后两车之间的路程不超过25千米,请通过计算说明,按图像所表示的走法是否符合约定.19、一列快车从甲地驶往乙地,一列慢车从乙地驶往甲地,两车同时出发,设慢车行驶的时间为(h)x ,两车之间的距离.......为(km)y ,图中的折线表示y 与x根据图象进行以下探究: 信息读取(1)甲、乙两地之间的距离为 km ; (2)请解释图中点B 的实际意义; 图象理解(3)求慢车和快车的速度;(4)求线段BC 所表示的y 与x 之间的函数关系式,并写出自变量x 的取值范围; 问题解决(5)若第二列快车也从甲地出发驶往乙地,速度与第一列快车相同.在第一列快车与慢车相遇30分钟后,第二列快车与慢车相遇.求第二列快车比第一列快车晚出发多少小时?21、抗震救灾中,某县粮食局为了保证库存粮食的安全,决定将甲、乙两个仓库的粮食,全部转移到具有较强抗震功能的A 、B 两仓库。
已知甲库有粮食100吨,乙库有粮食80吨,而A 库的容量为70吨,B 库的容量为110吨。
从甲、乙两库到A 、B 两库的路程和运(第19题) y费如下表(表中“元/吨·千米”表示每吨粮食运送1千米所需人民币)(1)若甲库运往A库粮食x吨,请写出将粮食运往A、B两库的总运费y(元)与x(吨)的函数关系式总运费最省,最省的总运费是多少?x(台)24、某住宅小区计划购买并种植500株树苗,某树苗公司提供如下信息:信息一:可供选择的树苗有杨树、丁香树、柳树三种,并且要求购买杨树、丁香树的数量相等. 信息二:如下表:(1) 用含x的代数式表示y;(2)若购买这三种树苗的总费用为w元,要使这500株树苗两年后对该住宅小区的空气净化指数之和不低于...120,试求w的取值范围.25、通过市场调查,一段时间内某地区某一种农副产品的需求数量y (千克)与市场价格x (元/千克)(030x <<)存在下列关系:成正比例关系:400z x =(030x <<).现不计其它因素影响,如果需求数量y 等于生产数量z ,那么此时市场处于平衡状态.(1)请通过描点画图探究y 与x 之间的函数关系,并求出函数关系式;(2)根据以上市场调查,请你分析:当市场处于平衡状态时,该地区这种农副产品的市场价格与这段时间内农民的总销售收入各是多少?(3)如果该地区农民对这种农副产品进行精加工,此时生产数量z 与市场价格x 的函数关系发生改变,而需求数量y 与市场价格x 的函数关系未发生变化,那么当市场处于平衡状态时,该地区农民的总销售收入比未精加工市场平衡时增加了17600元.请问这时该农副产品的市场价格为多少元?26.某电脑公司经销甲种型号电脑,受经济危机影响,电脑价格不断下降.今年三月份的电脑售价比去年同期每台降价1000元,如果卖出相同数量的电脑,去年销售额为10万元,今年销售额只有8万元.(1)今年三月份甲种电脑每台售价多少元?(2)为了增加收入,电脑公司决定再经销乙种型号电脑.已知甲种电脑每台进价为3500元,乙种电脑每台进价为3000元,公司预计用不多于5万元且不少于4.8万元的资金购进这两种电脑共15台,有几种进货方案?(3)如果乙种电脑每台售价为3800元,为打开乙种电脑的销路,公司决定每售出一台乙种电脑,返还顾客现金a元,要使(2)中所有方案获利相同,a值应是多少?此时,哪种方案对公司更有利?25.(2009年咸宁市)某车站客流量大,旅客往往需长时间排队等候购票.经调查统计发现,每天开始售票时,约有300名旅客排队等候购票,同时有新的旅客不断进入售票厅排队等候购票,新增购票人数y(人)与售票时间x(分)的函数关系如图①所示;每个售票窗口票数y(人)与售票时间x(分)的函数关系如图②所示.某天售票厅排队等候购票的人数y(人)与售票时间x(分)的函数关系如图③所示,已知售票的前a分钟开放了两个售票窗口.(1)求a的值;(2)求售票到第60分钟时,售票厅排队等候购票的旅客人数;(3)该车站在学习实践科学发展观的活动中,本着“以人为本,方便旅客”的宗旨,决定增设售票窗口.若要在开始售票后半小时内让所有排队购票的旅客都能购到票,以便后来到站的旅客能随到随购,请你帮助计算,至少需同时开放几个售票窗口?1、一次时装表演会预算中票价定位每张100元,容纳观众人数不超过2000人,毛利润y (百元)关于观众人数x(百人)之间的函数图象如图所示,当观众人数超过1000人时,表演会组织者需向保险公司交纳定额平安保险费5000元(不列入成本费用)请解答下列问题:⑴求当观众人数不超过1000人时,毛利润y(百元)关于观众人数x(百人)的函数解析式和成本费用s(百元)关于观众人数x(百人)的函数解析式;⑵若要使这次表演会获得36000元的毛利润,那么要售出多少张门票?需支付成本费用多少元?(注:当观众人数不超过1000人时,表演会的毛利润=门票收入—成本费用;当观众人数超过1000人时,表演会的毛利润=门票收入—成本费用—平安保险费)2、转炉炼钢产生的棕红色烟尘会污染大气,某装置可通过回收棕红色烟尘中的氧化铁从而降低污染,该装置的氧化铁回收率与其通过的电流有关,现经过试验得到下列数据:通过电流强度(单位:A)1 1.7 1.9 2.1 2.4氧化铁回收率(%)75 79 88 87 78如图建立直角坐标系,用横坐标表示通过的电流强度,纵坐标表示氧化铁的回收率.(1) 将试验所得数据在如图所示的直角坐标系中用点表示;(注:该图中坐标轴的交点代表点(1,70))(2) 用线段将题(1)中所画的点从左到右顺次连接,若用此图象来模拟氧化铁回收率y关于通过电流x的函数关系,试写出该函数在1.7≤x≤2.4时的表达式;(3) 利用(2)所得函数关系,求氧化铁回收率大于85%时,该装置通过的电流应该控制的范围(精确到0.1A).3、如图(1),在矩形ABCD中,AB = 10cm,BC = 8cm. 点P从A点出发,沿A→B →C→D路线运动,到D停止;点Q从D出发,沿D→C→B→A路线运动,到A停止. 若点P、点Q同时出发,点P的速度为每秒1cm,点Q的速度为每秒2cm,a秒时,点P、点Q同时改变速度,点P的速度变为每秒b cm,点Q的速度变为每秒d cm. 图(2)是点P出发x 秒后△APD的面积(cm2)与x(秒)的函数关系图象;图(3)是点Q出发x秒后△AQD的面积(cm2)与x(秒)的函数关系图象.(1)参照图(2),求a、b及图(2)中c的值;(2)求d的值;(3)设点P离开点A的路程为(cm),点Q到点A还需要走的路程为(cm),请分别写出改变速度后、与出发后的运动时间x(秒)的函数关系式,并求出P、Q相遇时x的值;(4)当点Q出发_________秒时,点P、点Q在运动路线上相距的路程为25cm.4、教室里放有一台饮水机,饮水机上有两个放水管。