北师大版 数学八上6.4 数据的离散程度
北师大版八年级数学上册6.4 数据的离散程度课件
下列语句中,哪些语句对事情作出了判断,哪些没有? 1. 任何一个三角形一定有一个角是直角; 2. 对顶角相等; 3. 无论n为怎样的自然数,式子n²-n+11的值都是质数; 4. 如果两条直线都和第三条直线平行,那么这两条直线也相互平行; 5. 你喜欢数学吗? 6. 做线段AB=CD.
第六章 数据的分析 6.4 数据的离散程度
导入新课
观察与思考 我们知道,接受检阅的仪仗队必须精挑细选,整齐划一,所以特注重队
员的身高.下面有两组仪仗队,准备抽取其中一组参与检阅.已知这两组仪 仗队队员的身高(单位:cm)如下:
甲队
乙队
甲队 乙队
178 177 179 178 177 179
178 178 177 178 178 177 179 176 178 180 180 178 176 178
s甲 2 24 , s乙 2 18 ,x甲 x乙 80 ,则成绩较为稳定的班级是( B )
A.甲班
B.乙班
C.两班成绩一样稳定 D.无法确定
2.在样本方差的计算公式
s2
1 10
(
x1
2 0) 2
(
x2
2
0) 2 . . .
(
xn
2 0) 2
中, 数字10 表示__样_本__容__量_ ,数字20表示 _平__均__数_.
方差是各个数据与平均数之差的平方的平均数,
即
s2
1 n
x1 x
2
2
x2 x
xn x
2
其中,x 是x1,,x2,……,xn的平均数,s2是方差,而标准差就是方差
6.4 数据的离散程度(课件)北师大版数学八年级上册
感悟新知
知2-讲
特别提醒 方差、标准差是描述一组数据离散程度的量,方差、
标准差越小,这组数据的离散程度越小,这组数据越稳 定;方差、标准差越大,这组数据的离散程度越大,这 组数据波动越大.
感悟新知
方差与平均数的变化规律:
样本数据
x1,x2,…,xn x1+a, x2+a,…, xn+a kx1,kx2,…,kxn kx1+a, kx2+a,…, kxn+a
感悟新知
特别提醒
知3-讲
◆用计算器求一组数据的标准差时,由于计算器型
号的不同,按键顺序也会有所不同,注意参考说
明书.
◆计算器一般不具有求方差的功能,可以先求出标
准差,再平方即可求出方差.
感悟新知
知3-练
例5 用计算器求数据7,7,7,8,5,9,7,7,6,7的
标准差、方差.
解题秘方:按照计算器求标准差的步骤先求出标
解:因为6,4,a,3,2 的平均数是5, 所以(6+4+a+ 3+2)÷5=5,解得a=10. 所以s2=15 [(6-5)2+(4-5)2+(10-5)2+(3-5)2+ (2-5)2]=8.
2-1.若样本 x1,x2,…,xn的 方 差 为 2,则样本 2x1+5,2x2+5, …,2xn+5 的方差是( D )
位: cm)的 平 均数与方差为 ͞x甲 = ͞x丙 =13 cm, ͞x
乙 = ͞x丁 =15 cm,s2甲= s 2丁 = 3.6 , s 2乙 =s2丙=6.3.
则麦苗又 高又整齐的是D(
)
A. 甲
B. 乙
C. 丙
D. 丁
感悟新知
北师大版八年级数学上册6.4数据的离散程度
x是这一组数据x1,x2,…,xn 的平均数,s2是方差
标准差就是方差的算术平方根. 一般说来,一组数据的极差、方差、标准 差越小,这组数据就越稳定.
计算下列两组数据的方差与标准差: (1) 1,2,3,4,5; (2) 2,4,6,8,10
例 两支仪仗队队员的身高 (单位:cm)如下: 甲队:178 177 179 179 178 178 177 178
甲,乙两名射击手的测试成绩统计如下:
第一次 第二次 第三次 第四次 第五次
甲命中环数 7
8
8
8
9
乙命中环数 10
6 10 6
8
数据的离散程度还可以用方差或标准差来刻画.
方差是各个数据与平均数之差的平方的平均数,
即:
s2
Байду номын сангаас
1 n
x1
x
2
x2
x
2
...
xn
x
2
177 179 乙队:178 177 179 176 178 180 180 178
176 178 哪支仪仗队更为整齐?你是怎么判断的?
第六章 数 据 的 分 析
第 四 节 数据的离散程度
平均数、中位数和众数 反映了数据整体的平均水平和集中程度
对于一组数据,仅仅了解数据的集中趋势 是不够的,还需要了解这些数据的波动范围和 偏离平均数的差异程度——离散程度.
例题分析
甲 10 9 7 8 7 8 10 6 6 9 乙 8 7 9 10 7 7 8 8 9 7 丙10 10 10 8 7 7 9 3 8 8
(1)一组新数据 a1 1, a2 1,, an 1的极差为 : (2)一组新数据 3a1, 3a2 ,,3an的极差为 :
第六章数据的分析6.4数据的离散程度(教案)2023-2024学年八年级上册数学北师大版(安徽)
(三)实践活动(用时10分钟)
1.分组讨论:学生们将分成若干小组,每组讨论一个与数据离散程度相关的实际问题。
2.实验操作:为了加深理解,我们将进行一个简单的实验操作,如计算一组数据的极差、方差和标准差。
(2)针对离散程度的应用,教师可以设置不同场景,如气温变化、产品质量等,让学生讨论在不同情况下应选择哪种离散程度度量方法,以及如何根据分析结果提出合理建议。
四、教学流程
(一)导入新课(用时5分钟)
同学们,今天我们将要学习的是《数据的离散程度》这一章节。在开始之前,我想先问大家一个问题:“你们在日常生活中是否遇到过数据波动大小不同的情况?”(如:一周内气温变化、某商品不同时间段的销售量等)。这个问题与我们将要学习的内容密切相关。通过这个问题,我希望能够引起大家的兴趣和好奇心,让我们一同探索数据的离散程度的奥秘。
-极差、方差和标准差的计算:详细讲解这三种度量方法的计算公式,并通过实例让学生掌握其应用。
-离散程度在实际问题中的应用:以具体案例为例,指导学生如何运用离散程度分析数据,解决实际问题。
举例解释:
(1)在讲解离散程度定义时,可以举一个班级学生身高的例子,让学生理解离散程度反映的是数据波动情况。
(2)在讲解计算方法时,以一组具体数据为例,分步骤演示极差、方差和标准差的计算过程。
2.数学建模能力:让学生在实际问题中,运用所学知识建立数学模型,通过计算极差、方差和标准差等,提高解决实际问题的能力。
3.数学抽象思维:引导学生从具体数据中抽象出离散程度的计算方法,培养他们的数学抽象思维。
4.数学推理与论证:在教学过程中,让学生通过举例、计算等方式,学会推理和论证,提高逻辑思维能力。
北师大版数学八年级上册6.4数据的离散程度教学设计
4.结合网络资源,了解其他衡量数据离散程度的统计量,如变异系数等,并尝试比较它们之间的异同。
要求:撰写一份简短的学习报告,介绍所了解的统计量及其计算方法,并分析其在实际问题中的应用。
5.针对本节课的学习内容,进行自我反思,从知识掌握、学习方法、合作交流等方面进行评价,总结自己的学习收获和不足之处,为下一节课的学习做好准备。
6.教学评价方面,采用多元化评价方式,关注学生的过程性表现,如课堂参与、小组合作、课后作业等,全面评估学生的学习效果。
7.结合课后实践活动,让学生在实际操作中运用所学知识,提高学生的应用意识和实践能力。
四、教学内容与过程
(一)导入新课
1.教师出示一张某班级学生身高的数据表,引导学生观察数据分布的特点,提问:“从这张表中,你能发现什么?这些数据有什么规律?”
2.通过具体的实例,演示方差、标准差的计算过程,让学生理解这些统计量在实际问题中的应用。
3.教师强调方差、标准差在描述数据波动程度方面的重要性,并指出它们在数据分析中的价值。
4.学生动手练习计算方差、标准差,教师巡回指导,解答学生的疑问。
(三)学生小组讨论
1.教师将学生分成若干小组,每组发放一张含有数据表格的练习纸,要求学生计算数据离散程度。
2.学生通过观察,可能会发现身高数据分布较广,ຫໍສະໝຸດ 的学生身高较高,有的学生身高较低。
3.教师继续提问:“如何描述这些数据的波动情况?是否存在一个指标来衡量数据的离散程度?”
4.学生思考、讨论,教师引导过渡到本节课的内容:数据的离散程度。
(二)讲授新知
1.教师讲解数据离散程度的定义,解释方差、标准差的含义和计算方法。
3.教师选取部分学生的作业进行展示,分析解题思路,强调注意事项。
北师大版数学八年级上册6.4数据的离散程度(第一课时)说课稿
3.小游戏:设计一个简单的统计小游戏,让学生在游戏中体验数据离散程度的概念,为新课的学习做好铺垫。
(二)新知讲授
在新知讲授阶段,我将逐步呈现知识点,引导学生深入理解:
1.创设生活情境:以学生熟悉的生活实例为背景,提出问题,引导学生运用所学知识解决问题,让他们体会数学在现实生活中的应用价值。
2.合作探究:组织学生进行小组讨论,鼓励他们相互交流、共同探究,培养合作精神和解决问题的能力。
3.激励评价:及时对学生的表现给予肯定和鼓励,提高他们的自信心,激发学习积极性。
4.游戏化教学:设计富有挑战性的数学游戏,让学生在游戏中运用所学知识,提高学习兴趣和动机。
北师大版数学八年级上册6.4数据的离散程度(第一课时)说课稿
一、教材分析
(一)内容概述
本节课选自北师大版数学八年级上册第6章“数据的收集与整理”中的6.4节“数据的离散程度”,是学生在学习了如何收集和整理数据的基础上,对数据特征进行进一步研究的课程。这部分内容在整个课程体系中起到了承上启下的作用,既是对前面所学统计知识的深化,也为后续学习概率统计打下基础。
(二)学习障碍
在学习本节课之前,学生已经掌握了数据的收集、整理和描述的基本方法,具备了一定的统计学基础。然而,他们在面对极差、方差和标准差等抽象概念时,可能会感到难以理解。此外,方差和标准差的计算过程较为繁琐,学生在运算过程中可能会出现错误,导致学习障碍。
(三)学习动机
为了激发学生的学习兴趣和动机,我将采取以下策略或活动:
这些资源和技术工具能够丰富教学内容,提高学生的学习兴趣,同时也便于学生更好地理解和掌握知识。
八年级数学上册6.4数据的离散程度教案 新版北师大版
八年级数学上册6.4数据的离散程度教案新版北师大版一. 教材分析《新版北师大版八年级数学上册》第六章第四节主要介绍了数据的离散程度。
这一节的内容是在学生已经掌握了数据的收集、整理、描述和分析的基础上进行的,是进一步研究数据的重要内容。
通过本节课的学习,学生能够理解离散程度的含义,掌握离散程度的计算方法,并能运用离散程度分析实际问题。
二. 学情分析八年级的学生已经具备了一定的数学基础,对数据的收集、整理和分析有一定的了解。
但是,对于数据的离散程度这一概念,学生可能比较陌生,需要通过具体的例子和实际操作来理解和掌握。
同时,学生可能对于如何运用离散程度分析实际问题还不够清楚,需要在教学中进行引导和培养。
三. 教学目标1.知识与技能:学生能够理解离散程度的含义,掌握离散程度的计算方法,并能运用离散程度分析实际问题。
2.过程与方法:学生通过观察、操作、思考、交流等过程,培养数据分析的能力和解决问题的能力。
3.情感态度与价值观:学生能够认识到数据分析在生活中的重要性,培养对数学的兴趣和自信心。
四. 教学重难点1.重点:学生能够理解离散程度的含义,掌握离散程度的计算方法。
2.难点:学生能够运用离散程度分析实际问题。
五. 教学方法1.情境教学法:通过具体的例子和实际操作,让学生理解和掌握离散程度的含义和计算方法。
2.互动教学法:引导学生进行观察、思考、交流,培养学生的数据分析能力和解决问题的能力。
3.案例教学法:通过分析实际问题,让学生学会运用离散程度进行问题分析和解决。
六. 教学准备1.教具准备:多媒体教学设备、黑板、粉笔。
2.学具准备:学生自带的学习用品,如笔记本、笔等。
3.教学资源:教学课件、案例资料、练习题等。
七. 教学过程1.导入(5分钟)通过一个具体的问题引出离散程度的概念,如“为什么运动员的身高数据更接近于正态分布,而体重数据更接近于偏态分布?”让学生思考和讨论,引出离散程度的概念。
2.呈现(10分钟)利用多媒体教学设备,展示离散程度的定义和计算方法,让学生理解和掌握。
6.4++数据的离散程度+++课件+++-2024-2025学年北师大版八年级数学上册+
x
甲
=75g
x可以用中位数
=75g
与众数估测平
(3)观察散点图,你认为外贸公司应购买哪个厂家的鸡腿?
乙
均数。
(1)你能从图中估计出甲、乙两厂被抽取的鸡腿的平均质量吗?
估计平均质量均为75g
(2)求甲、乙两厂被抽取鸡腿的平均质量.
极差=最大数 据 - 最小数据
甲,乙两名射击手的测试成绩统计如下:
第一次
甲命中环数
乙命中环数
第二次
7
10
8
6
⑴计算甲射手的平均成绩与方差;
x=
甲
7+8+8+8+9 = 8
5
S2甲= 1
5 ×2 =0.4
8
6
9
8
1、有甲,乙两名射击手现要挑选一名射击手参加比赛.
甲,乙两名射击手的测试成绩统计如
下:
第一次 第二次
甲厂:1,2 ,1,0,2, 0,1,0,4,3
丙厂: 0,2,3,0,4,2, 0,2,3,4
方案二、各个数据与平均数的差的平方:
甲厂:1,4,1,0,4,0,1,0,16,9
丙厂:0,4,9,0,16,4,0,4,9,16
总偏差:
甲厂:0
丙厂:0
总偏
差:
甲厂:14
丙厂:20
总偏差:
甲厂:36
丙厂:62
第三次
第四次 第五次
7
8
8
8
9
甲命中环数
10
6
10
6
8
乙命中环数
⑵计算乙射手的平均成绩与方差
x = 10+6+10+6+8
北师版八上数学6.4.1 数据的离散程度【课件】
角度看,选择甲同学参加知识竞赛比较好.
【点拨】在求解统计中的平均数、中位数、众数、方差的过程
中,要仔细观察统计图,获取数据.
返回目录
数学 八年级上册 BS版
某中学举办“网络安全知识竞赛”,七、八年级根据初赛成绩
各选出5名选手组成代表队参加决赛,两个年级各选出5名选手
演示完毕
谢谢观看
“距离”,用以刻画数据的离散程度,但由于极差易受极端值
的影响,并不能十分准确的反映一组数据的离散程度.
返回目录
数学 八年级上册 BS版
(2)方差:各个数据与平均数差的
1
[
1 −
2
平方
的平均数,即 s2=
+( x2- )2+…+( xn - )2],其中 是 x1,
x2,…, xn 的平均数, s2是方差;只有在两组数据的平均数相
和步骤:(1)先计算出这组数据的平均数;(2)再代入方差
的计算公式计算出结果.
返回目录
数学 八年级上册 BS版
(2)小明用
s2 =
1
10
[ (1 − 6)2 + (2 − 6)2 + … +
(10 − 6)2 ]计算一组数据的方差,则 x1 + x2 + x3 +…+ x10
=
60 .
【思路导航】根据方差的计算公式中每个字母的意义进行解答
数学 八年级上册 BS版
第六章
4
数据的分析
数据的离散程度(第一课时)
数学 八年级上册 BS版
目录
CONTENTS
课前预习
典例讲练
数学 八年级上册 BS版
0 1
北师大版-数学-八年级上册--6.4 数据的离散程度 (共44张PPT)
第1次 第2次 第3次 第4次 第5次
甲成绩
9
4
7
4
6
乙成绩
7
5
7
a
7
图6-4-1
李明的作业:
解: x甲= 1 (9+4+7+4+6)=6(环);
5
s
2 甲
1 5
(9-6)2
(4-6)2
(7-6)2
(4-6)2
(6-6)2
= 1 (9+4+1+4+0) 5
=3.6 .
(1)a= 4 , x乙 = 6
35.02,34.95.
乙:35.04,34.99,34.97,35.00,35.03,35.01,
34.99,35.01.
(1)求 x甲 和 x乙 ;
(2)求
s
2 甲
和
s
2 乙
;
(3)试说明谁加工的零件尺寸更接近35.00 mm.
解:(1)x甲= 1 (35.01+35.03+35.05+34.98+34.96+ 8
为
1 n
(3x1
-2+3x2
-2+
+3xn
-2)
=
1 n
3(x1
x2
+
+
xn)-2n
3
n1(x1
x2
+
+
xn)-
1 n
2n
3x 2.
因为原这组数据的方差为
s2
1 n
( x1
x)2
( x2
x)2
6.4数据的离散程度(第一课时)教学设计2024-2025学年北师大版数学八年级上册
- 《统计学基础》:介绍了统计学的基本概念、原理和方法,包括数据的收集、处理和分析,其中涉及方差、标准差等离散程度的度量。
- 《生活中的统计学》:通过生活中的实例,展示了统计学在各个领域的应用,让学生了解统计学的实用性和广泛性。
- 《数据可视化》:介绍了如何利用图表、图像等可视化手段展示数据的特征和规律,包括离散程度的相关图表。
学具准备
多媒体
课型
新授课
教法学法
讲授法
课时
第一课时
步骤
师生互动设计
二次备课
教学资源
1. 硬件资源:多媒体教学设备、投影仪、黑板、计算器。
2. 软件资源:教学课件、统计软件(如Excel)、数学学科软件。
3. 课程平台:学校教学管理系统、课堂互动平台。
4. 信息化资源:电子教材、教学视频、在线统计图表工具。
学情分析
八年级学生在知识层面,已具备基本的数学运算能力和数据收集、整理、描述的能力,掌握了平均数的概念及其应用。在能力方面,他们具有一定的逻辑思维和问题解决能力,但对方差和标准差的深入理解及实际应用尚属初步阶段。素质方面,学生的合作意识和探究精神逐渐增强,但个别学生在自主学习能力和习惯上存在差异。
学生在前期的学习中,对统计图表的绘制和使用有一定的实践经验,但对于数据的离散程度及其意义的理解可能还不够深入。此外,部分学生在数学学习中可能存在畏惧心理,对复杂计算和抽象概念接受度不高,这可能会影响他们对本节课内容的理解和掌握。
在观察环节,我发现学生在小组讨论时积极参与,互相交流,通过讨论加深对方差和标准差的理解。但在课堂测试环节,部分学生在计算方差时出现了一些错误,尤其是在公式的应用上。
针对这些问题,我在课后进行了认真的作业批改和点评,对学生的作业进行了详细的反馈。在作业中,我不仅纠正了学生的错误,还给出了一些改进的建议,鼓励学生继续努力,提高自己的计算能力和数据分析能力。
北师大版-数学-八年级上册-6.4 数据的离散程度(1) 教案
数据的离散程度(1)教学目标经历探索极差、方差的应用过程,体会数据波动中的极差、方差的求法时以及区别,积累统计经验。
教学重难点方差产生的必要性和应用方差公式解决实际问题。
掌握其求法.自学指导学生看课本注意以下问题:什么是极差、方差?如何找一组数据的方差?方差有何意义。
课堂教学1.引例为了提高农副产品的国际竞争力,一些行业协会对农副产品的规格进行了划分,某外贸公司要出口一批规格为75g的鸡腿.现有2个厂家提供货源,它们的价格相同,鸡腿的品质也相近。
质检员分别从甲、乙两厂的产品中抽样调查了20只鸡腿,它们的质量(单位:g)如下:甲厂:75 74 74 76 73 76 75 77 77 7474 75 75 76 73 76 73 78 77 72乙厂:75 78 72 77 74 75 73 79 72 7580 71 76 77 73 78 71 76 73 75把这些数据表示成下图:(1)你能从图中估计出甲、乙两厂被抽取鸡腿的平均质量是多少?(2)求甲、乙两厂被抽取鸡腿的平均质量,并在图中画出表示平均质量的直线。
(3)从甲厂抽取的这20只鸡腿质量的最大值是多少?最小值又是多少?它们相差几克?从乙厂抽取的这20只鸡腿质量的最大值又是多少?最小值呢?它们相差几克?(4)如果只考虑鸡腿的规格,你认为外贸公司应购买哪家公司的鸡腿?说明你的理由。
2.概念:极差是指一组数据中最大数据与最小数据的差. 设有n 个数据nx x x ,,, 21,各数据与它们的平均数的差的平方分别是2221)()(x x x x --,,…,,, 2)(x x n -我们用它们的平均数,即用])()()[(1222212x x x x x x n x n -++-+-=来衡量这组数据的波动大小,并把它叫做这组数据的方差(variance ),记作2s 。
意义:用来衡量一批数据的波动大小在样本容量相同的情况下,方差越大,说明数据的波动越大,越不稳定波动大小指的是与平均数之间差异,那么用每个数据与平均值的差完全平方后便可以反映出每个数据的波动大小,整体的波动大小可以通过对每个数据的波动大小求平均值得到。
北师大版八年级数学上册6.4 数据的离散程度
13. (中考·杭州)称量五筐水果的质量,若每筐以 50 千克为基准,超过基准部分的千克数记为正数,不足基 准部分的千克数记为负数,甲组为实际称量读数,乙组 为记录数据,并把所得数据整理成如下统计表和未完成 的统计图(单位:千克).
实际称量读数和记录数据统计表
(1)补充完成乙组数据的折线统计图. (2)①甲、乙两组数据的平均数分别为 x 甲,x 乙,写 出 x 甲与 x 乙之间的等量关系. ②甲、乙两组数据的方差分别为 s2甲,s2乙,比较 s 2甲与 s 2乙的大小,并说明理由. 解:(1)补全折线统计图如图所示; (2)①x 甲=x 乙+50. ②s2甲=s2乙.理由略.
6. (中考·南京)如图是某市连续 5 天的天气情况.
(1)利用方差判断该市这 5 天的日最高气温波动大还 是日最低气温波动大;
(2)根据如图提供的信息,请再写出两个不同类型的 结论.
解:(1)计算这 5 天的日最高气温和日最低气温的平 均数分别是 x 高=24, x 低=18,
方差分别是 s2高=0.8,s2低=8.8, 由 s2高<s 2低可知,这 5 天的日最低气温波动大;
知识点 方差、标准差的应用
4. (中考·湘西州)从甲、乙、丙、丁四人中选一人参
Hale Waihona Puke 加射击比赛,经过三轮初赛,他们的平均成绩都是 9 环,
方差分别是 s2甲=0.25,s2乙=0.3,s2丙=0.4,s2丁=0.35,你 认为派谁去参赛更合适( A )
A.甲
B.乙
C.丙
D.丁
5. (中考·盐城)甲、乙两人在 100 米短跑训练中,某 5 次的平均成绩相等,甲的方差是 0.14,乙的方差是 0.06, 这 5 次短跑训练成绩较稳定的是 乙 .(填“甲”或 “乙”)
北师大数学八上课件6.4数据的离散程度教学课件
是多少吗?
79
82
78
80
77
76
78
75
76
74
74
73
72
72
71
70
0
5
10
15
20
25
0
甲厂
5
10
15
20
25
乙厂
灿若寒星
问题5:现在你认为外贸公司应该购买哪个厂的鸡腿? 为什么呢?
79
82
78
80
77
78
76
75
76
74
74
73
72
72
71
70
0
5
10
15
20
25 0
甲厂
5
10
15
20
25
甲厂
请你写出甲、乙两厂被抽查鸡腿的平均质量,并在
图中画出表示平均质量的直线.
灿若寒星
想一想
问题3:观察两幅图表,看看被抽查的鸡腿质量的分布情 况你有什么发现?
79
82
78
80
77
76
78
75
76
74
74
73
72
72
71
70
0
5
10
15
20
25
0
甲厂
灿若寒星
5
10
15
20
25
乙厂
问题4:你能求出甲厂抽查的这20只鸡腿质量的最大值
厂的鸡腿?
79
80
78
79
77
78
76
77 76
75
75
北师大版八年级数学上册《6.4 数据的离散程度》公开课课件
4. 数据的离散程度(第1课时)
教学目标:
了解刻画数据离散程度的三个量度极差、标准差 和方差,能借助计算器求出相应的数值。
教学重点:
能对数据进行相应的处理和分类的基础上,又安 排学生怎样对数据进行分析,力图使学生在统计意识 和方法上再上一个台阶。
教学难点:
通过对现实生活中的某外贸公司对几个不同的厂 家鸡腿的质量进行分析,引出极差、方差、标准差等 相关概念,从而培养学生的统计应用能力。
标准差就是方差的算术平方根. 一般说来,一组数据的极差、方差、标准 差越小,这组数据就越稳定.
做一做 计算器的使用
探索用计算器求下列一组数据的标准差: 98 99 101 102 100 96 104 99 101 100
请你使用计算器探索求一组数据的标准 差的具体操作步骤。
用计算器求下列一组数据的标准差的 步骤(以CZ1206为例): 1.进入统计计算状态,按 2ndf STAT; 2.输入数据 然后按 DATA,显示的结果 是输入数据的累计个数。 3.按σ即可直接得出结果.
74 75 75 76 73 76 73 78 77 72 乙厂:75 78 72 77 74 75 73 79 72 75
80 71 76 77 73 78 71 76 73 75 把这些数据表示成下图:
问题
质量/g 80
78
质量/g 80
78
76
76
74
74
72
72
7甲、乙两厂被抽取鸡腿的
问题
解:(1)丙厂这20只鸡腿质量的平均数是 75.1g,极差是7g; (2)可分别用这20只鸡腿的质量与其平均数差
的绝对值刻画: 甲厂的差距依次是:0, 1, 1, 1, 2, 1, 0, 2, 2, 1, 1, 0, 0, 1, 2, 1, 2, 3, 2, 3. 丙厂的差距依次:0.1, 1.1, 2.1, 2.9, 3.1, 0.9, 1.1, 0.9, 1.1, 0.1,1.1, 3.1, 2.1, 3.1, 2.9, 0.9, 1.9, 1.9, 1.9, 3.9,
北师大版数学八年级上册6.4数据的离散程度(第二课时)优秀教学案例
(二)讲授新知
1.离散程度的定义:教师讲解离散程度的定义,让学生理解离散程度是衡量数据波动程度的一个统计量。
2.方差和标准差:教师介绍方差和标准差的概念,讲解它们的计算方法及其在描述数据波动程度方面的作用。
3.计算器的使用:教师演示如何使用计算器求解数据的离散程度,让学生掌握计算器的操作方法。
二、教学目标
(一)知识与技能
1.让学生掌握离散程度的定义,了解方差、标准差等统计量,并理解它们在描述数据波动程度方面的作用。
2.培养学生运用离散程度分析实际问题的能力,能够从生活中发现并提取相关数据,通过计算和分析,对数据的波动程度做出合理的判断。
3.让学生熟练运用计算器求解数据的离散程度,提高他们的数据处理能力。
(五)作业小结
1.作业布置:教师布置相关的作业,让学生巩固所学知识,提高实际应用能力。
2.课堂小结:教师引导学生对本节课的学习内容进行小结,帮助学生梳理知识体系。
3.课后反思:教师鼓励学生在课后反思自己的学习过程,找出不足之处,为下一节课的学习做好准备。
五、案例亮点
1.生活实例引入:通过展示某地区近年来的气温变化图表,让学生直观地感受气温的波动情况,激发了学生的探究欲望,增强了学生对知识的兴趣。
5.作业小结:教师引导学生对本节课的学习内容进行小结,帮助学生梳理知识体系,巩固所学知识,提高实际应用能力。
本节课以生活实例为导入,通过问题导向、小组合作、反思与评价等教学策略,充分发挥了学生的主动性,培养了学生的思考能力、团队合作精神以及反思能力,使学生在实践中掌握离散程度的概念和计算方法,提高了学生的数学应用能力。
-数据波动程度有哪些衡量方法?
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
做一做
(1)两人一组,在安静的环境中,一人估计1 分钟的时间,另一人记下实际时间,将结果 记录下来。 (2)在吵闹的环境中,再做一次这样的试验。 (3)将全班的结果汇总起来并分别计算安静 状态和吵闹环境中估计结果的平均值和方差。 (4)两种情况下的结果是否一致?说明理由。
练一练 1.甲、乙、丙三人的射击成绩如下图:
环数 10 8 6 4 2 0 1 2 3 4 5 6 7 8 9 10 次数 甲 乙 丙
三人中,谁射击成绩更好,谁更稳定? 你是怎么判断的?
练一练
2.某校从甲乙两名优秀选手中选一名选手参加全 市中学生田径百米比赛 (100米记录为12.2秒,通 常情况下成绩为12.5秒可获冠军)。该校预先对这 两名选手测试了8次,测试成绩如下表:
做一做
丙厂
分别计算从甲、丙两厂抽取的20只鸡腿质量 的方差。根据计算结果,你认为哪家的产品更 符合规格要?
解: 甲厂产品更符合规定。
两支仪仗队队员的身高 练一练 (单位:cm)如下: 甲队:178 177 179 179 178 178 177 178 177 179 乙队:178 177 179 176 178 180 180 178 176 178 哪支仪仗队更为整齐?你是怎么判断的? 解:甲、乙两队队员的身高的平均数都是 178cm;极差分别是2cm和4cm;方差分别 是0.6和1.8;因此,甲仪仗队更为整齐。
问 题
如果丙厂也参与了竞争,从该厂抽样调 查了20只鸡腿,它们的质量数据如图: (1)丙厂这20只鸡腿质量的平 均数和极差分别是多少? (2)如何刻画丙厂这20只鸡腿 的质量与其平均数的差距?分 别求出甲、丙两厂的20只鸡腿 质量与其相应平均数的差距. (3)在甲、丙两厂中,你认为 哪个厂的鸡腿质量更符合要求? 为什么?
问 题
解:(1)丙厂这20只鸡腿质量的平均数是75.1g, 极差是7g; (2)可分别用这20只鸡腿的质量与其平均数差的 绝对值刻画: 甲厂的差距依次是:0, 1, 1, 1, 2, 1, 0, 2, 2, 1, 1, 0, 0, 1, 2, 1, 2, 3, 2, 3. 丙厂的差距依次:0.1, 1.1, 2.1, 2.9, 3.1, 0.9, 1.1, 0.9, 1.1, 0.1,1.1, 3.1, 2.1, 3.1, 2.9, 0.9, 1.9, 1.9, 1.9, 3.9, (3)甲厂的鸡腿更符合要求。从第(2)问中的差 距和可以看出。
(4)历届比赛表明,成绩达到596cm就很可能 夺冠,你认为为了夺冠应选谁参加这项比赛? (5)如果历届比赛表明,成绩达到610cm就能 打破记录,你认为为了打破记录应选谁参加 这项比赛?
议一议
解:(1)甲的平均成绩是:601.6cm, 乙的平均成绩是599.3cm; (2)甲的方差是65.84, 乙的方差是284.21; (3)答案可多样化; (4)选甲去; (5)选乙去。
不是方差越小就表示这组数据越好?
议一议
某校从甲、乙两名优秀选手中选一名选手参加 全市中学生运动会跳远比赛。该校预先对这两名 选手测试了10次,测试成绩如下表:
1 2 3 4 5 6 7 8 9 10 选手甲的成绩(cm) 585 596 610 598 612 597 604 600 613 601 选手乙的成绩(cm) 613 618 580 574 618 593 585 590 598 624
温故知新
计算下列两组数据的方差与标准差: (1) 1,2,3,4,5; (2)103,102,98,101,99。 解:(1)S2 = 2; (2)S2 = 3.8;
试一试
如图是某一天A、B两地的气温变化 图,请回答下列问题:
(1)这一天A、B两地的平均气温分别是多少? (2)A地这一天气温的极差、方差分别是多少? B地呢? (3)A、B两地的气候各有什么特点?
概念
数据的离散程度还可以用方差或标准差 来刻画. 方差是各个数据与平均数之差的平方的平 均数,即:
x是这一组数据x1,x2,…,xn 的平均数, s2是方差 。 标准差就是方差的算术平方根. 一般说来,一组数据的极差、方差、标准 差越小,这组数据就越稳定.
做一做
计算器的使用
探索用计算器求下列一组数据的标准差: 98 99 101 102 100 96 104 99 101 100 请你使用计算器探索求一组数据的标准 差的具体操作步骤。 用计算器求下列一组数据的标准差的 步骤(以CZ1206为例): 1.进入统计计算状态,按 2ndf STAT; 2.输入数据 然后按 DATA,显示的结果 是输入数据的累计个数。 3.按σ即可直接得出结果.
问 题
解: (1)甲、乙两厂被抽取鸡腿的平均质量大约 是75g; (2)甲、乙两厂被抽取鸡腿的平均质量都是 75g; (3)甲厂:最大值78g,最小值72g,相差6g; 乙厂:最大值80g,最小值71g,相差9g; (4)应购大数 据与最小数据的差。 它是刻画数据离散程度的一 个统计量。
第六章 数据的分析
4. 数据的离散程度
问 题
为了提高农副产品的国际竞争力,一些行业协会 对农副产品的规格进行了划分,某外贸公司要出口 一批规格为75g的鸡腿.现有2个厂家提供货源,它 们的价格相同,鸡腿的品质也相近.质检员分别从 甲、乙两厂的产品中抽样调查了20只鸡腿,它们的 质量(单位:g)如下: 甲厂:75 74 74 76 73 76 75 77 77 74 74 75 75 76 73 76 73 78 77 72 乙厂:75 78 72 77 74 75 73 79 72 75 80 71 76 77 73 78 71 76 73 75 把这些数据表示成下图:
小结
在本节课的学习中,你对方差的大 小有什么新的认识? 新认识:方差越小表示这组数据越 稳定,但不是方差越小就表示这组数据 越好,而是对具体的情况进行具体分析 才能得出正确的结论。
试一试
解:(1)A地的平均气温是20.42℃, B地的平均气温是21.35℃; (2)A地的极差是9.5℃,方差是7.76, B地的极差是6℃,方差是2.78; (3)A、B两地的平均气温相近,但A地 的日温差较大,B地的日温差较小。
议一议
我们知道,一组数据的方差越小,
这组数据就越稳定,那么,是
(1)他们的平均成绩分别是多少? (2)甲、乙这10次比赛成绩的方差分别是多少? (3)这两名运动员的运动成绩各有什么特点?
议一议
1 2 3 4 5 6 7 8 9 10
选手甲的成绩(cm) 585 596 610 598 612 597 604 600 613 601
选手乙的成绩(cm) 613 618 580 574 618 593 585 590 598 624
1 选手乙的成绩(秒) 12 2 3 4 13 5 13 6 7 8 选手甲的成绩(秒) 12.1 12.4 12.8 12.5 11.9 12.8 12.6 12.4 12.2
13.2 12.8 11.8 12.5
根据测试成绩,请你运用所学过的统计知识做 出判断,派哪一位选手参加比赛更好?为什么?
温故知新 什么是极差、方差、标准差? 方差的计算公式是什么? 一组数据的方差与这组数据的 波动有怎样的关系?
温故知新
极差是指一组数据中最大数据与最 小数据的差。方差是各个数据与平均数 之差的平方的平均数。标准差就是方差 的算术平方根。 方差的计算公式为:
一组数据的方差、标准差越小,这 组数据就越稳定。
问 题
(1)你能从图中估计出甲、乙两厂被抽取鸡腿的 平均质量是多少? (2)求甲、乙两厂被抽取鸡腿的平均质量,并在 图中画出表示平均质量的直线。
问 题
(3)从甲厂抽取的这20只鸡腿质量的最大值是多 少?最小值又是多少?它们相差几克?从乙厂抽 取的这20只鸡腿质量的最大值又是多少?最小值 呢?它们相差几克? (4)如果只考虑鸡腿的规格,你认为外贸公司应 购买哪家公司的鸡腿?说明理由。