第十二篇第一节电磁感应现象楞次定律

合集下载

第十二章第一节 电磁感应现象 楞次定律

第十二章第一节 电磁感应现象 楞次定律

(2)磁通量的变化及计算应注意的问题
①磁通量有正负.
可以规定磁感线从某个方向穿入线圈 为正,穿出为负(如图12-1-5).当
线圈在磁场中转过
180°时,B、S不
变,若开始时磁通
量 Φ =BS,则磁 图12-1-5 通量变化量ΔΦ=-2BS;
围绕磁铁的两个线圈S1、S2面积S2> S1,但通过线圈的合磁通量Φ2<Φ1. ②线圈面积发生变化,磁通量不一定 变化. 如图12- 1-6甲, S1是磁场区,S2为 闭合线圈, S2 面积增大时,其磁通量 Φ=BS1不变.
【答案】
BC
变式训练 (2011· 高考上海卷)如图12-1-9,均 匀带正电的绝缘圆环 a 与金属圆环 b同 心共面放置,
图12-1-9
当 a 绕 O 点在其所在平面内旋转时, b 中产生顺时针方向的感应电流,且具
有收缩趋势,由此可知,圆环a(
A.顺时针加速旋转
)
B.顺时针减速旋转
C.逆时针加速旋转
2.楞次定律 内容:感应电流具有这样的方向,即 感应电流的磁场总要________引起感 应电流的__________的变化.
名师点拨:右手定则一般用于判断部 分导体切割磁感线产生的感应电流方 向,而楞次定律一般用于由于B变化 或θ角变化而引起的感应电流的方向 判断.
要点透析直击高考
一、楞次定律的理解及应用
(2)产生感应电流的条件 ①电路闭合. ②磁通量的变换. 三、感应电流方向判断 1.右手定则:伸开右手,是拇指与其 余四个手指_________,
并且都与手掌在同一个平面内;让磁 感线从掌心垂直进入,并使拇指指向 __________的方向,这 时四指所指的方向就 是__________的方向. 如图12-1-1所示. 图12-1-1

一电磁感应现象楞次定律精选全文

一电磁感应现象楞次定律精选全文

2.对楞次定律的理解 (1)从磁通量变化的角度来看:感应电流的磁场 总要阻碍磁通量的变化. (2)从导体和磁体的相对运动的角度来看:感应 电流所受的安培力总要阻碍相对运动.
3.由楞次定律可以得到感应电动势的方向.
(1)产生感应电动势的那部分导体相当于电源,在 电源内部的电流方向与电动势方向相同. (2)由楞次定律判断出的感应电流方向就是感应电 动势的方向.
右手定则反映了磁场方向、 导体运动方向和电流方向 三者的相互垂直关系.
例.如图所示,矩形线圈沿a →b →c在条形磁铁附近移 动,试判断穿过线圈的磁通量如何变化?如果线圈M沿 条形磁铁从N极附近向右移动到S极附近,穿过该线圈的 磁通量如何变化?
a
b
c
a
N
S
b
M
c
由方向向下减小到零,再变为方向向上增大 磁通量先增大再减小 ,方向一直是向左 由方向向上减小到零,再变为方向向下增大
【反馈练习】
1.a、b两个金属圆环静止套在一根水平放置的 绝缘光滑杆上,如图所示.一根条形磁铁自右向左 向b环中心靠近时,a、b两环将
A.两环都向左运动,且两环互相靠近 B.两环都向左运动,且两环互相远离 C.两环都向右运动,且两环靠拢 D.a环向左运动,b环向右运动
答案:A
2.如图所示,MN是一根固定的通电长直导线,电 流方向向上,今将一金属线框abcd放在导线上,让 线框的位置偏向导线的左边,两者彼此绝缘.当导 线中的电流突然增大时,线框整体受力情况为
搞清两个磁场
甲S
乙S
N
N
N
S
丙N
S
丁N
S
S
N
S
N
N
S
4.用楞次定律判定感应电流方向的一般步骤

课件2:9.1电磁感应现象 楞次定律

课件2:9.1电磁感应现象 楞次定律

图9-1-10
A.金属环B的面积有扩大的趋势,丝线受到的拉力增大 B.金属环B的面积有缩小的趋势,丝线受到的拉力减小 C.金属环B的面积有扩大的趋势,丝线受到的拉力减小 D.金属环B的面积有缩小的趋势,丝线受到的拉力增大
解析 使胶木盘A由静止开始绕其轴线OO′按箭头所示 方向加速转动,金属环B内磁通量增大,根据楞次定 律,金属环B的面积有缩小的趋势,丝线受到的拉力减 小,选项B正确. 答案 B
图9-1-5
解析 设金属框在位置Ⅰ的磁通量为ΦⅠ,金属框在位
置 Ⅱ 的 磁 通 量 为 ΦⅡ , 由 题 可 知 : ΔΦ1 = |ΦⅡ - ΦⅠ| , ΔΦ2=|-ΦⅡ-ΦⅠ|,所以金属框的磁通量变化量大小 ΔΦ1<ΔΦ2,由安培定则知两次磁通量均向里减小,所以 由楞次定律知两次运动中线框中均出现沿adcba方向的
【跟踪短训】
2.如图9-1-7所示,金属棒ab、金属导轨和螺线
管组成闭合回路,金属棒ab在匀强磁场B中沿导
轨向右运动,则 ( ).
A.ab棒不受安培力作用
B.ab棒所受安培力的方向向右
C.ab棒向右运动速度v越大, 所受安培力越大
图9-1-7
D.螺线管产生的磁场,A端为N极
解析 金属棒 ab 沿导轨向右运动时,安培力方向向左, 以“阻碍”其运动,选项 A、B 错误;金属棒 ab 沿导轨 向右运动时,感应电动势 E=Blv,感应电流 I=E/R,安 培力 F=BIl=B2Rl2v,可见,选项 C 正确;根据右手定则 可知,流过金属棒 ab 的感应电流的方向是从 b 流向 a, 所以流过螺线管的电流方向是从 A 端到达 B 端,根据右 手螺旋定则可知,螺线管的 A 端为 S 极,选项 D 错误.
答案 C

第一讲 电磁感应现象 楞次定律

第一讲 电磁感应现象 楞次定律

第一讲 电磁感应现象 楞次定律知识要点:1.感应电流的产生条件① ②2.楞次定律:感应电流具有这样的方向,即感应电流的磁场总要阻碍 。

这里的阻碍可以理解为“反抗增大、补偿减小”。

3.从磁通量变化的角度来看,感应电流“阻碍磁通量变化”。

由磁通量的计算式 Φ=BS cos α(α是指B 、S 之间的夹角),可知,磁通量变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S 、α不变,B 改变,这时ΔΦ=②B 、α不变,S 改变,这时ΔΦ=③B 、S 不变,α改变,这时ΔΦ=BS (cos α2-cos α1)④另外还有B 、S 、α中有两个或三个一起变化的情况。

此时只能使用公式ΔΦ=Φ2-Φ1。

从阻碍相对机械运动的角度来看,感应电流总是阻碍 。

从阻碍自身电流变化的角度来看,感应电流“阻碍自身电流变化”。

这就是 。

4.楞次定律的应用,可以分为五步:①确定研究对象②确定原磁场方向;③ ;④ (增反减同);⑤根据 判定感应电流的方向。

6.右手定则的内容:让磁感线垂直穿过手心,大拇指指向 方向,四指的指向就是导体内部所产生的 的方向.四指的指向还可以代表等效电源的 极。

典型例题例1. 如图所示,有两个同心导体圆环。

内环中通有顺时针方向的电流,外环中原来无电流。

当内环中电流逐渐增大时,外环中有无感应电流?方向如何?例2. 如图所示,闭合导体环固定。

条形磁铁S 极向下以初速度v 0沿过导体环圆心的竖直线下落过程,导体环中的感应电流方向如何?例3. 如图所示,O 1O 2是矩形导线框abcd 的对称轴,其左方有垂直于纸面向外的匀强磁场。

以下哪些情况下abcd 中有感应电流产生?方向如何?A.将abcd 向纸外平移B.将abcd 向右平移C.将abcd 以ab 为轴转动60°D.将abcd 以cd 为轴转动60°例4. 如图所示装置中,两对水平轨道上有金属杆ab 、cd ,cd 杆原来静止。

当ab 杆做如下那些运动时,cd 杆将向右移动?A.向右匀速运动B.向右加速运动C.向左加速运动D.向左减速运动例5. 如图所示,光滑水平面上有两根平行导轨,上面放两根金属棒a 、b 。

第1讲电磁感应现象楞次定律

第1讲电磁感应现象楞次定律

第1讲电磁感应现象楞次定律
知识梳理
一、电磁感应现象
1.磁通量
(1)概念:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S与B 的乘积。

(2)公式:Φ=①BS。

(3)单位:1 Wb=② 1 T·m2。

(4)公式的适用条件:a.匀强磁场;b.磁感线的方向与平面垂直,即B⊥S。

(5)物理意义:穿过面积S的③磁感线条数。

2.产生感应电流的条件
(1)条件:穿过闭合电路的磁通量④发生变化。

(2)产生电磁感应现象的实质
电磁感应现象的实质是产生⑤感应电动势,如果回路闭合则产生⑥感应电流;如果回路不闭合,则只有⑦感应电动势,而无⑧
感应电流。

二、楞次定律和右手定则。

10.1 电磁感应现象 楞次定律

10.1 电磁感应现象 楞次定律

10.1 电磁感应现象楞次定律概念梳理:一、磁通量1.定义:在磁感应强度为B的匀强磁场中,与磁场方向垂直的面积S和B的乘积.2.公式:Φ=BS.适用条件:(1)匀强磁场;(2)S为垂直磁场的有效面积.3.磁通量是标量.4.磁通量的意义:(1)磁通量可以理解为穿过某一面积的磁感线的条数.(2)同一平面,当它跟磁场方向垂直时,磁通量最大;当它跟磁场方向平行时,磁通量为零;当正向穿过线圈平面的磁感线条数和反向穿过的一样多时,磁通量为零.二、电磁感应现象1.电磁感应现象:当穿过闭合导体回路的磁通量发生变化时,闭合导体回路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.2.产生感应电流的条件:表述1:闭合回路的一部分导体在磁场内做切割磁感线的运动.表述2:穿过闭合回路的磁通量发生变化.3.能量转化发生电磁感应现象时,机械能或其他形式的能转化为电能.【注意】当回路不闭合时,没有感应电流,但有感应电动势,只产生感应电动势的现象也可以称为电磁感应现象,且产生感应电动势的那部分导体或线圈相当于电源.三、感应电流方向的判断1.楞次定律(1)内容:感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化.(2)适用情况:所有的电磁感应现象.2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一个平面内,让磁感线从掌心进入,并使拇指指向导体运动的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:导体棒切割磁感线产生感应电流.考点一磁通量的计算【例1】写出下图中磁通量的表达式Φ=ΦABCD=Φabcd=Φ圆=Φ线圈=【练习】如图所示,ab是水平面上一个圆的直径,在过ab的竖直面内有一根通电直导线ef,且ef平行于ab,当ef竖直向上平移时,穿过圆面积的磁通量将 ()A.逐渐变大B.逐渐减小C.始终为零D.不为零,但始终保持不变考点二电磁感应现象能否发生的判断1.磁通量发生变化的四种常见情况(1)磁场强弱不变,回路面积改变;(2)回路面积不变,磁场强弱改变;(3)磁场强弱和回路面积同时改变;(4)回路面积和磁场强弱均不变,但二者的相对位置发生改变.2.判断流程:(1)确定研究的闭合回路.(2)弄清楚回路内的磁场分布,并确定该回路的磁通量Φ.(3)⎩⎨⎧ Φ不变→无感应电流Φ变化→⎩⎪⎨⎪⎧ 回路闭合,有感应电流不闭合,无感应电流,但有感应电动势【例1】试分析下列各种情形中,金属线框或线圈里能否产生感应电流?【练习】如图所示,一个U 形金属导轨水平放置,其上放有一个金属导体棒ab ,有一个磁感应强度为B 的匀强磁场斜向上穿过轨道平面,且与竖直方向的夹角为θ.在下列各过程中,一定能在轨道回路里产生感应电流的是 ( )A .ab 向右运动,同时使θ减小B .使磁感应强度B 减小,θ角同时也减小C .ab 向左运动,同时增大磁感应强度BD .ab 向右运动,同时增大磁感应强度B 和θ角(0°<θ<90°)【例2】如图所示,在直线电流附近有一根金属棒ab ,当金属棒以b 端为圆心,以ab 为半径,在过导线的平面内匀速旋转到达图中的位置时( )A .a 端聚积电子B .b 端聚积电子C .金属棒内电场强度等于零D .U a >U b【练习】某架飞机在我国上空匀速巡航时,机翼保持水平,飞机高度不变.由于地磁场的作用,金属机翼上有电势差,设飞行员左方机翼末端处的电势为U 1,右方机翼末端处的电势为U 2 ( )A .若飞机从西往东飞,U 1比U 2高B .若飞机从东往西飞,U 2比U 1高C .若飞机从南往北飞,U 1比U 2高D .若飞机从北往南飞,U 2比U 1高【练习】如图所示,线框abcd 在匀强磁场中匀速向右平动时,关于线框中有无感应电流、线框的ad 两端有无感应电动势、电压表中有无示数的说法正确的是( )A .线框中无感应电流,ad 两端无感应电动势,电压表无示数B.线框中无感应电流,ad两端有感应电动势,电压表无示数C.线框中有感应电流,ad两端无感应电动势,电压表无示数D.线框中无感应电流,ad两端有感应电动势,电压表有示数考点三感应电流方向的判断一.利用楞次定律判断感应电流的方向1.楞次定律中“阻碍”的含义:①谁阻碍谁:感应电流的磁场阻碍引起感应电流的磁通量的变化;②阻碍什么:阻碍的是磁通量的变化,而不是阻碍磁通量本身;③如何阻碍:当磁通量增加时,感应电流的磁场方向与原磁场的方向相反;当磁通量减少时,感应电流的磁场方向与原磁场的方向相同;④阻碍效果:阻碍并不是阻止,只是延缓了磁通量的变化,这种变化将继续进行。

高中物理_难点重点_电磁感应_1_电磁感应现象 楞次定律

高中物理_难点重点_电磁感应_1_电磁感应现象  楞次定律

电磁感应现象楞次定律一、磁通量1.定义:磁感应强度与面积的乘积,叫做穿过这个面的磁通量.2.定义式:Φ=BS.说明:该式只适用于匀强磁场的情况,且式中的S是跟磁场方向垂直的面积;若不垂直,则需取平面在垂直于磁场方向上的投影面积,即Φ=BS⊥=BSsinθ,θ是S与磁场方向的夹角.3.磁通量Φ是标量,但有正负.Φ的正负意义是:从正、反两面哪个面穿入,若从一面穿入为正,则从另一面穿入为负.4.单位:韦伯,符号:Wb.5.磁通量的意义:指穿过某个面的磁感线的条数.6.磁通量的变化:ΔΦ=Φ2-Φ1,即末、初磁通量之差.(1)磁感应强度B不变,有效面积S变化时,则ΔΦ=Φ2-Φ1=B·ΔS.(2)磁感应强度B变化,磁感线穿过的有效面积S不变时,则ΔΦ=Φ2-Φ1=ΔB·S.(3)磁感应强度B和有效面积S同时变化时,则ΔΦ=Φ2-Φ1=B2S2-B1S1.二、电磁感应现象1.电磁感应现象:当穿过闭合电路的磁通量发生变化时,电路中有感应电流产生,这种利用磁场产生电流的现象叫做电磁感应.2.产生感应电流的条件表述1:闭合电路的一部分导体在磁场内做切割磁感线运动.表述2:穿过闭合电路的磁通量发生变化,即ΔΦ≠0,闭合电路中就有感应电流产生.3.产生感应电动势的条件穿过电路的磁通量发生变化.电磁感应的实质是产生感应电动势.如果回路闭合,则有感应电流;如果回路不闭合,则只有感应电动势而无感应电流.说明:产生感应电动势的那部分导体相当于电源.三、感应电流方向的判断1.右手定则:伸开右手,让大拇指跟其余四指垂直,并且都跟手掌在同一平面内,让磁感线从手心垂直进入,大拇指指向导体运动方向,其余四指所指的方向就是感应电流的方向.2.楞次定律内容:感应电流具有这样的方向,就是感应电流产生的磁场,总是要阻碍引起感应电流的磁通量变化.3.判断感应电流方向问题的思路运用楞次定律判定感应电流方向的基本思路可归结为:“一原、二感、三电流”,即为(1)明确原磁场:弄清原磁场方向及磁通量的变化情况;(2)确定感应磁场:根据楞次定律中的“阻碍”原则,结合原磁场磁通量变化情况,确定出感应电流产生的感应磁场的方向;(3)判定感应电流方向:即根据感应磁场的方向,运用安培定则判断出感应电流的方向.即据原磁场(Φ原方向及ΔΦ情况) 确定感应磁场(B感方向) 判断感应电流(I感方向).说明:1.楞次定律是普遍规律,适用于一切电磁感应现象,而右手定则只适用于导体切割磁感线运动的情况,此种情况用右手定则判定比用楞次定律判定更简便.2.右手定则与左手定则的区别:抓住因果关系才能无误.“因动而电”——用右手;“因电而动”——用左手.1 在水平面上有一不规则的多边形导线框,面积为S=20cm2,在竖直方向加以如图所示的磁场,则下列说法中正确的是(方向以竖直向上为正) ( )A.前2s内穿过线框的磁通的变化为ΔΦ=0B.前1s内穿过线框的磁通的变化为ΔΦ=-30WbC.第二个1s内穿过线框的磁通的变化为ΔΦ=-3x10-3W bD.第二个1s内穿过线框的磁通的变化为ΔΦ= -1x10-3W b2 某实验小组用如图所示的实验装置来验证楞次定律.当条形磁铁自上而下穿过固定的线圈时,通过电流计的感应电流方向是( )A.a→G→bB.先a→G→b,后b→G→aC.先b→G→aD.先b→G→a,后a→G→b3 如图所示,用一根长为L质量不计的绝缘细杆与一个上弧长为l0、下弧长为d0的金属线框的中点连结并悬挂于O点,悬点正下方存在一个上弧长为2l0、下弧长为2d0的方向垂直纸面向里的匀强磁场,且d0<<L.先将线框拉开到如图所示位置,松手后让线框进入磁场,忽略空气阻力和摩擦力,下列说法正确的是( )A.金属线框进入磁场时感应电流的方向为a→b→c→d→aB.金属线框离开磁场时感应电流的方向为a→d→c→b→aC.金属线框dc边进入磁场与ab边离开磁场的速度大小总是相等D.金属线框最终将在磁场内做简谐运动4 如图所示,ab是一个可以绕垂直于纸面的轴O转动的闭合矩形导体线圈,当滑动变阻器R滑片自左向右滑的过程中,线圈ab将( )A.静止不动B.顺时针转动C.逆时针转动D.发生转动,但电源的极性不明,无法确定转动方向5 两圆环A、B置于同一水平面上,其中A为均匀带电绝缘环,B为导体环.当A以如所示的方向,绕中心转动的角速度发生变化时,B中产生如图所示的感应电流,则( )A.A可能带正电且转速减小B.A可能带正电且转速增大C.A可能带负电且转速减小D.A可能带负电且转速增大6 电阻R、电容器C与一线圈连成闭合回路,条形磁铁静止于线圈的正上方,N极朝下,如图所示.现使磁铁开始自由下落,在N极接近线圈上端的过程中,流过R的电流方向和电容器极板的带电情况是( )A.从a到b,上极板带正电B.从a到b,下极板带正电C.从b到a,上极板带正电D.从b到a,下极板带正电7 如图所示,a、b、c三个闭合线圈,放在同一平面内,当a线圈中有电流I通过时,它们的磁通量分别为Фa、Фb、Фc下列说法中正确的是( )A.Φa<Φb<ΦcB.Φa>Φb>ΦcC.Φa<Φc<ΦbD.Φa>Φc>Φb8 如图所示,面积为S的线圈放在磁感应强度为B的竖直向上的匀强磁场中,若线圈平面与水平面所成的夹角为θ,那么穿过线圈的磁通量为( )A.Φ=BScosθB.Φ=BSsinθC.Φ=BStanθD.Φ=BScotθ9 在水平面上有一固定的U形金属框架,上置一金属杆ab,如图所示(纸面即水平面),在垂直纸面方向有一匀强磁场,则( )A.若磁感应强度方向垂直纸面向外并增大时,杆ab将向右移动B.若磁感应强度方向垂直纸面向外并减小时,杆ab将向右移动C.若磁感应强度方向垂直纸面向里并增大时,杆ab将向右移动D.若磁感应强度方向垂直纸面向里并减小时,杆ab将向右移动10 如图所示,水平放置的两条光滑轨道上,有可自由移动的金属棒PQ、MN,当PQ在外力作用下运动时,MN在磁场力作用下向右运动,则PQ所做的运动可能是( )A.向右加速运动B.向左加速运动C.向右减速运动D.向左减速运动11 如图所示,线框面积为S,线框平面与磁感应强度为B的匀强磁场方向垂直.则穿过线框平面的磁通量为 ;若使线框绕轴OO´转过600的角,则穿过线框平面的磁通量为 ;若从初始位置转过900角,则穿过线框平面的磁通量为 ;若从初始位置转过1800角,则穿过线框平面的磁通量变化量大小为 .若将单匝线框换成50匝线框,上述各空的结果将 (填“变化”或“不变”).12 用如图所示的电路来研究电磁感应现象.A、B为规格相同的电流表,D是两个套在一起的大小线圈, 绕线方向如图.小线圈与A构成回路,大线圈与B构成闭合电路.闭合电键K,稳定后电流表A 指针位置如图.当电键K突然断开时,电流表B指针将向偏(填“左”或“右”).13 面积为S的矩形线框abcd,处在磁感应强度为B的匀强磁场中(磁场区域足够大),磁场方向与线框平面成θ角,如图所示,当线框以ab为轴顺时针转900过程中,穿过abcd 的磁通量变化量ΔΦ= .14 磁感应强度为B的匀强磁场仅存在于边长为2L的正方形范围内,有一个电阻为R、边长为L的正方形导线框abcd,沿垂直于磁感线方向,以速度v匀速通过磁场,如图所示,从ab进入磁场时开始计时,到线框离开磁场为止.(1)画出穿过线框的磁通量随时间变化的图象;(2)判断线框中有无感应电流.若有,答出感应电流的方向.15 在图中,CDEF为闭合线圈,AB为电阻丝.当滑动变阻器的滑动头向下滑动时,线圈CDEF中的感应电流在G处产生的磁感强度的方向是“·”时,电源的哪一端是正极?。

【步步高】2012高中物理大一轮复习 第十二章 电磁感应 第1课时 电磁感应现象 楞次定律讲义课件 大纲人教版

【步步高】2012高中物理大一轮复习 第十二章 电磁感应 第1课时 电磁感应现象 楞次定律讲义课件 大纲人教版

向纸里、 变小 向纸外、 变大 向纸外、 变小
垂直纸 面向里 垂直纸 面向里 垂直纸 面向外
顺时针 方向 顺时针 方向 逆时针 方向
看上表的最后一列,可知选项D正确.
答案
D
题型二
楞次定律的拓展应用
例2 如图11所示,光滑固定导轨M、 N水平放置,两根导体棒P、Q平行 放置导轨上,形成一个闭合回路, 当一条形磁铁从高处下落接近回路 时 A.P、Q将互相靠拢 B.P、Q将互相远离 C.磁铁的加速度仍为g D.磁铁的加速度小于g ( )
即学即练1
长直导线与矩形线框abcd处在同一平面中静止
不动,如图10甲所示.长直导线中通以大小和方向都随时 间做周期性变化的交流电:i=Imsin ωt,i-t图象如图乙所 示.规定沿长直导线方向上的电流为正方向.关于最初一 个周期内矩形线框中感应电流的方向,下列说法正确的是 ( )
图10
A.由顺时针方向变为逆时针方向 B.由逆时针方向变为顺时针方向 C.由顺时针方向变为逆时针方向,再变为顺时针方向 D.由逆时针方向变为顺时针方向,再变为逆时针方向
思考:请说明楞次定律与右手定则的关系.
答案 ①从研究对象上说,楞次定律研究的是整个闭合电
路,而右手定则研究的是闭合电路的一部分,即一段导线做 切割磁感线运动. ②从适用范围上说,楞次定律可应用于由磁通量变化引起感 应电流的各种情况(当然包括一部分导体做切割磁感线运动 的情况); 右手定则只适用于一段导线在磁场中做切割磁感线 运动的情况,导线不动时不能应用.因此,右手定则可以看 作楞次定律的特殊情况.
磁场方向向下. ②明确回路中磁通量的变化情况:线圈中向下的磁通量增加. ③由楞次定律的“增反减同”可知:线圈中感应电流产生的 磁场方向向上. ④应用右手定则可以判断感应电流的方向为逆时针(俯视)即: b→G→a. 同理可以判断:条形磁铁穿出线圈的过程中,向下的磁通量 减小,由楞次定律可得线圈中将产生顺时针方向的感应电流 (俯视),电流从 a→G→b.

第一节 电磁感应现象 楞次定律优秀课件

第一节 电磁感应现象 楞次定律优秀课件
第一节 电磁感应 现象 楞次定律
1.收集资料,了解电磁感应现象的 发现过程,体会人类探索自然规律的 科学态度和科学精神。 2.通过实验,理解感应电流的产生 条件。举例说明电磁感应在生活和生 产中的应用。
1.电磁感应现象 Ⅰ
2.磁通量

3.法拉第电磁感
应定律

3.通过探究,理解楞次定律。理解法 拉第电磁感应定律。 4.通过实验,了解自感现象和涡流现 象。举例说明自感现象和涡流现象在 生活和生产中的应用。
2. 如右图所示,沿x轴y轴有两根长直导线,互相绝缘。x轴上的 导线中有-x方向的电流,y轴上的导线中有+y方向的电流,两 虚线是坐标轴所夹角的角平分线。a、b、c、d是四个圆心在虚线 上、与坐标原点等距的相同的圆形导线环。当两直导线中的电流 从相同大小,以相同的快慢均匀减小时,各导线环中的感应电流 情况是( ) A.a中有逆时针方向的电流 B.b中有顺时针方向的电流 C.c中有逆时针方向的电流 D.d中有顺时针方向的电流
二、右手定则和楞次定律
1.右手定则 (1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌 在同一个⑨ 平面内;让⑩ 磁感线从掌心进入,并使拇指指向 ⑪ 导线运动的方向,这时四指所指的方向就是⑫ 感应电流的 方向。 (2)适用情况:闭合电路的部分导体⑬ 切割磁感线产生感应电流。 2.楞次定律 (1)内容:感应电流具有这样的方向,即感应电流的磁场总要 ⑭ 阻碍 引起感应电流的⑮ 磁通量 的变化。 (2)适用情况:所有⑯ 电磁感应 现象。
楞次定律的理解和应用
2.楞次定律的使用步骤
3.楞次定律的推广 对楞次定律中”阻碍”的含义可以推广为感应电流的 效果总是阻碍产生感应电流的原因: (1)阻碍原磁通量的变化--”增反减同”; (2)阻碍相对运动--”来拒去留”; (3)使线圈面积有扩大或缩小的趋势--”增缩减扩”; (4)阻碍原电流的变化(自感现象)--”增反减同”。

§1 电磁感应 楞次定律

§1 电磁感应  楞次定律

电磁感应§1 电磁感应楞次定律一、电磁感应现象1.产生感应电流的条件感应电流产生的条件是:穿过闭合电路的磁通量发生变化。

以上表述是充分必要条件。

不论什么情况,只要满足电路闭合和磁通量发生变化这两个条件,就必然产生感应电流;反之,只要产生了感应电流,那么电路一定是闭合的,穿过该电路的磁通量也一定发生了变化。

当闭合电路的一部分导体在磁场中做切割磁感线的运动时,电路中有感应电流产生。

这个表述是充分条件,不是必要的。

在导体做切割磁感线运动时用它判定比较方便。

2.感应电动势产生的条件。

感应电动势产生的条件是:穿过电路的磁通量发生变化。

这里不要求闭合。

无论电路闭合与否,只要磁通量变化了,就一定有感应电动势产生。

这好比一个电源:不论外电路是否闭合,电动势总是存在的。

但只有当外电路闭合时,电路中才会有电流。

二、楞次定律1.楞次定律感应电流总具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

楞次定律解决的是感应电流的方向问题。

它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。

前者和后者的关系不是“同向”或“反向”的简单关系,而是前者“阻碍”后者“变化”的关系。

2.对“阻碍”意义的理解:(1)阻碍原磁场的变化。

“阻碍”不是阻止,而是“延缓”,感应电流的磁场不会阻止原磁场的变化,只能使原磁场的变化被延缓或者说被迟滞了,原磁场的变化趋势不会改变,不会发生逆转.(2)阻碍的是原磁场的变化,而不是原磁场本身,如果原磁场不变化,即使它再强,也不会产生感应电流.(3)阻碍不是相反.当原磁通减小时,感应电流的磁场与原磁场同向,以阻碍其减小;当磁体远离导体运动时,导体运动将和磁体运动同向,以阻碍其相对运动.(4)由于“阻碍”,为了维持原磁场的变化,必须有外力克服这一“阻碍”而做功,从而导致其它形式的能转化为电能.因此楞次定律是能量转化和守恒定律在电磁感应中的体现.3.楞次定律的具体应用(1)从“阻碍磁通量变化”的角度来看,由磁通量计算式Φ=BS sinα可知,磁通量变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S、α不变,B改变,这时ΔΦ=ΔB∙S sinα②B、α不变,S改变,这时ΔΦ=ΔS∙B sinα③B、S不变,α改变,这时ΔΦ=BS(sinα2-sinα1)当B、S、α中有两个或三个一起变化时,就要分别计算Φ1、Φ2,再求Φ2-Φ1了。

第一课时 电磁感应现象 楞次定律

第一课时 电磁感应现象 楞次定律

电磁感应现象楞次定律【知识梳理】1.产生感应电流的条件:穿过闭合电路的磁通量发生变化。

2.电磁感应现象的实质是产生感应电动势,如果电路闭合,则有感应电流,电路不闭合,则只有感应电动势而无感应电流。

产生感应电动势的哪部分导体相当于一个电源。

3..楞次定律感应电流具有这样的方向,即感应电流的磁场总要阻碍引起感应电流的磁通量的变化。

4.楞次定律解决的是感应电流的方向问题。

它关系到两个磁场:感应电流的磁场(新产生的磁场)和引起感应电流的磁场(原来就有的磁场)。

前者和后者的关系不是“同向”或“反向”的简单关系,而是前者“阻碍”后者“变化”的关系。

5.在应用楞次定律时一定要注意:“阻碍”不等于“反向”;“阻碍”不是“阻止”。

⑴从“阻碍磁通量变化”的角度来看,无论什么原因,只要使穿过电路的磁通量发生了变化,就一定有感应电动势产生。

⑵从“阻碍相对运动”的角度来看,楞次定律的这个结论可以用能量守恒来解释:既然有感应电流产生,就有其它能转化为电能。

又由于感应电流是由相对运动引起的,所以只能是机械能转化为电能,因此机械能减少。

磁场力对物体做负功,是阻力,表现出的现象就是“阻碍”相对运动。

⑶从“阻碍自身电流变化”的角度来看,就是自感现象。

【名师点拨】例题1.如图所示,O 1O 2是矩形导线框abcd 的对称轴,其左方有垂直于纸面向外的匀强磁场。

以下哪些情况下abcd 中有感应电流产生?方向如何?A.将abcd 向纸外平移B.将abcd 向右平移C.将abcd 以ab 为轴转动60°D.将abcd 以cd 为轴转动60° “思路分析” A 、C 两种情况下穿过abcd 的磁通量没有发生变化,无感应电流产生。

B 、D 两种情况下原磁通向外,减少,感应电流磁场向外,感应电流方向为abcd 。

“解答”:BD“解题回顾”产生感应电流的条件是穿过闭合回路的磁通量发生变化.磁通量变化可能表现为(1)磁感应强度B 发生变化.(2)在垂直于磁场方向上的投影面积发生变化.(3)两者都发生变化 例题2. 如图所示,在匀强磁场中,放着一个平行导轨与大线圈相连接,要使放在D中的A 线圈(A 、D 两线圈共面)各处受到沿半径指向圆心的力,金属棒MN 的运动情况可能是:( )(A)加速向右 (B)加速向左 (C)减速向右 (D)减速向左“思路分析”:解此题的正常思路是一一加以验证。

2023届高考物理一轮复习课件:第1节电磁感应现象 楞次定律(18张PPT)

2023届高考物理一轮复习课件:第1节电磁感应现象 楞次定律(18张PPT)

边有一如图所示的闭合电路。当 PQ 在一外力的作用
下运动时,MN 向右运动,则 PQ 所做的运动可能是( )
A.向右加速运动 C.向右减速运动
B.向左加速运动 D.向左减速运动
方法二 逆向推理法
磁化:是指在受磁场的作用下,由于材料中磁矩(即一个微小的磁场)排列时取向趋 于一致而呈现出一定的磁性的现象。
左手定则
姆指指运动方向 内容 四指感应电流
方向
直线电流 环行电流 通电螺线管
四指指电流方向 姆指指受力方向
条件 因“动”生 “电”
因“电”生 因“电”受
“磁”
“力”
实质 反映了磁场能 够产生电流
反映了电流 方向与磁场 方向的关系
反映了磁场的 基本性质
2. 楞次定律
9
感应电流具有这样的方向,即感应电流的磁场 总要阻碍引起感应电流的磁通量的变化.
1).阻碍原磁通量的变化或原磁场的变化,“增反减同”、“增缩减扩”.
2). 阻碍相对运动, 可理解为“来拒去留”.
3).阻碍原电流的变化(自感现象).
[解题技法] 分析二次感应问题的两种方法
方法一 程序法(正向推理法)
[例 4] (多选)如图所示,水平放置的两条光滑 轨道上有可自由移动的金属棒 PQ 、MN,MN 的左
第十章
DISHIZHANG
电磁感应
第1节 电磁感应现象 楞次定律
2018 2022

2





考 全 国
√ √











考点分来自布3产生感应电流的三种常见情况

电磁感应现象 楞次定律

电磁感应现象 楞次定律

一、电磁感应现象 楞次定律1、 Φ=SB (S ⊥B )2、 感应电流产生的条件:闭合回路,Φ变化;3、 感应电动势产生的条件:Φ变化(与电路是否闭合无关)4、 楞次定律:感应电流产生的磁场总是阻碍原磁通量的变化。

5、 判断感应电流的方向:①右手定则:切割磁感线②用楞次定律判断的步骤:判断有无感应电流→判断原磁场的方向→判断Φ变化(增大或减小)→根据增反减同判断感应磁场的方向→用右手螺旋定则判断感应电流的方向。

二、法拉第电磁感应定律1、t ∆∆Φ=n E (匝数*磁通量变化率) 常用应用:①瞬时值:t∆∆=BS n E (1)给出B-t 图像(2)B=B 0+kt ②平均值:计算一段时间通过某电路的电荷量。

R I E =∆∆Φ=t ,t q I ∆=。

2、切割磁感线:E=BLv(垂直)注意:L 为有效长度;常用应用:E=BLV=IR F=BIL3、内电路电流从低到高电势,外电路电流从高到低。

4、外电压问题:闭合电路欧姆定律:E=U 外+U 内=U 外+Ir ,纯电阻电路:E=I(R+r),U 外=IR 外6、 功能问题:W 安=⊿E 其他= -E 电= -Q (纯电阻电路)7、 求Q 的三种方法:①Q=I 2Rt (恒定电流或非恒定电流的有效值)②纯电阻电路,Q 总= —W 安 ③纯电阻电路,Q 总=—⊿E 其他三、交变电流1、 有效值的计算:Q=I 2RT=Q 交;正弦交流电:最大值=有效值*√22、 表达式以及特殊位置的特点① 中性面:线圈平面垂直于磁场,Φm =SB ,e=0。

从此位置开始计时:表达式:Φ=Φm cos ωt , e=Em sin ωt ② 中性面垂面:线圈平面平行于磁场,φ=0,Em=nBS ω。

从此位置开始计时:表达式:Φ=Φm sin ωt , e=Em cos ωt四、变压器: 1、关系:U1:U2:U3=n1:n2:n3 P1=P2+P3 n1 I1=n2 I2+n3 I32、决定关系:U1决定U2,P2P3决定P1,I2 I3决定I1五、远距离输电2121n n U U = U 3 = U 2 —⊿U ⊿U= I 2R 4343n n U U = P 1=U 1I 1=P 2= U 2I 2 P 3= P 2—P 损 P 损 = I 22R P 3=U 3I 2=P 4= U 4I 4 n 1I 1=n 2I 2六、动量1、 动量:p=mv (矢量) 冲量:I=Ft (矢量)(注意,求哪个力的冲量F 便是那个力,不用分解)2、 动量定理:F 合t=mv2—mv1 (注意规定正方向,冲量为合外力的冲量)3、 动量守恒定律:m1v1+m2v2=m1v1’+m2v2’ (条件:系统不受外力或合外力为零)。

电磁感应现象 楞次定律

电磁感应现象 楞次定律

电磁感应现象楞次定律知识点一磁通量1.概念:在磁感应强度为B的匀强磁场中,与磁场方向的面积S与B的乘积.2.公式:Φ=.3.单位:1 Wb=.4.公式的适用条件(1)匀强磁场.(2)磁感线的方向与平面垂直,即B⊥S.5.磁通量的意义磁通量可以理解为穿过某一面积的磁感线的条数.答案:1.垂直 2.BS 3.1 T·m2知识点二电磁感应现象1.电磁感应现象当穿过闭合电路的磁通量时,电路中有产生的现象.2.产生感应电流的条件(1)条件:穿过闭合电路的磁通量.(2)特例:闭合电路的一部分导体在磁场内做运动.3.产生电磁感应现象的实质电磁感应现象的实质是产生,如果回路闭合,则产生;如果回路不闭合,那么只有,而无.答案:1.发生变化感应电流 2.(1)发生变化(2)切割磁感线 3.感应电动势感应电流感应电动势感应电流知识点三感应电流方向的判断1.楞次定律(1)内容:感应电流的磁场总要引起感应电流的的变化.(2)适用情况:所有的电磁感应现象.2.右手定则(1)内容:伸开右手,使拇指与其余四个手指垂直,并且都与手掌在同一平面内,让磁感应线从进入,并使拇指指向的方向,这时四指所指的方向就是感应电流的方向.(2)适用情况:产生感应电流答案:1.(1)阻碍磁通量 2.(1)掌心导体运动(2)导体切割磁感线考点 电磁感应现象的判断1.磁通量发生变化的三种常见情况(1)磁场强弱不变,回路面积改变.(2)回路面积不变,磁场强弱改变.(3)线圈在磁场中转动.2.判断电磁感应现象是否发生的流程(1)确定研究的回路.(2)弄清楚回路内的磁场分布,并确定该回路的磁通量Φ.(3)⎩⎨⎧ Φ不变→无感应电流.Φ变化→⎩⎪⎨⎪⎧ 回路闭合,有感应电流;回路不闭合,无感应电流,但有感应电动势.考向1 磁场变化引起的感应电流 [典例1] 现将电池组、滑动变阻器、带铁芯的线圈A 、线圈B 、电流计及开关按如图所示连接.下列说法中正确的是( )A.开关闭合后,线圈A 插入或拔出都会引起电流计指针偏转B.线圈A 插入线圈B 中后,开关闭合和断开的瞬间,电流计指针均不会偏转C.开关闭合后,滑动变阻器的滑片P 匀速滑动,会使电流计指针静止在中央零刻度D.开关闭合后,只有滑动变阻器的滑片P 加速滑动,电流计指针才能偏转[解析] 线圈A 插入或拔出,都将造成线圈B 处磁场的变化,因此线圈B 处的磁通量变化,产生感应电流,故A 正确;开关闭合和断开均能引起线圈B 中磁通量的变化而产生感应电流,故B 错误;开关闭合后,只要移动滑片P ,线圈B 中磁通变化而产生感应电流,故C 、D 错误.[答案] A考向2 “有效”面积变化引起的感应电流[典例2] (多选)如图所示,矩形线框abcd 由静止开始运动,若要使线框中产生感应电流,则线框的运动情况应该是( )A.向右平动(ad边还没有进入磁场)B.向上平动(ab边还没有离开磁场)C.以bc边为轴转动(ad边还没有转入磁场)D.以ab边为轴转动(转角不超过90°)[解题指导] 解答本题时应把握以下两点:(1)产生感应电流的条件是穿过闭合回路的磁通量发生变化.(2)判断线框做各种运动时穿过线框的磁通量是否发生变化.[解析] 选项A和D所描述的情况中,线框在磁场中的有效面积S均发生变化(A情况下S增大,D情况下S减小),穿过线框的磁通量均改变,由产生感应电流的条件知线框中会产生感应电流.而选项B、C所描述的情况中,线框中的磁通量均不改变,不会产生感应电流.[答案] AD考点楞次定律的理解及应用1.楞次定律中“阻碍”的含义2.应用楞次定律判断感应电流方向的步骤考向1 楞次定律的基本应用[典例3] 如图所示,通有恒定电流的导线MN与闭合金属框共面,第一次将金属框由Ⅰ平移到Ⅱ,第二次将金属框绕cd边翻转到Ⅱ,设先后两次通过金属框的磁通量变化量大小分别为ΔΦ1和ΔΦ2,则( )A.ΔΦ1>ΔΦ2,两次运动中线框中均有沿adcba方向电流出现B.ΔΦ1=ΔΦ2,两次运动中线框中均有沿abcda方向电流出现C.ΔΦ1<ΔΦ2,两次运动中线框中均有沿adcba方向电流出现D.ΔΦ1<ΔΦ2,两次运动中线框中均有沿abcda方向电流出现[解析] 设金属框在位置Ⅰ的磁通量为ΦⅠ,金属框在位置Ⅱ的磁通量为ΦⅡ,由题可知:ΔΦ1=|ΦⅡ-ΦⅠ|,ΔΦ2=|-ΦⅡ-ΦⅠ|,所以金属框的磁通量变化量大小ΔΦ1<ΔΦ2,由安培定则知两次磁通量均向里减小,所以由楞次定律知两次运动中线框中均有沿adcba方向的电流,C对.[答案] C考向2 楞次定律的拓展应用——“增反减同”[典例4] 如图所示,线圈两端与电阻相连构成闭合回路,在线圈上方有一竖直放置的条形磁铁,磁铁的S极朝下.在将磁铁的S极插入线圈的过程中( )A.通过电阻的感应电流的方向由a到b,线圈与磁铁相互排斥B.通过电阻的感应电流的方向由b到a,线圈与磁铁相互排斥C.通过电阻的感应电流的方向由a到b,线圈与磁铁相互吸引D.通过电阻的感应电流的方向由b到a,线圈与磁铁相互吸引[解析] 将磁铁的S极插入线圈的过程中,由楞次定律知,通过电阻的感应电流的方向由b到a,线圈与磁铁相互排斥.[答案] B考向3 楞次定律的拓展应用——“来拒去留”[典例5]如图所示,两个相同的轻质铝环套在一根水平光滑绝缘杆上,当一条形磁铁向左运动靠近两环时,两环的运动情况是( )A.同时向左运动,间距增大B.同时向左运动,间距减小C.同时向右运动,间距减小D.同时向右运动,间距增大[解析] 当条形磁铁向左靠近两环时,两环中的磁通量均增加.根据楞次定律,两环的运动都要阻碍磁铁相对环的运动,即阻碍“靠近”,那么两环都向左运动.又由于两环中的感应电流方向相同,两环相互吸引,且磁铁对右环的斥力较大,故右环向左运动的加速度较大,所以两环间距离要减小,故只有选项B正确.[答案] B考向4 楞次定律的拓展应用——“增缩减扩”[典例6](多选)如图所示,光滑固定的金属导轨M、N水平放置,两根导体棒P、Q平行放置在导轨上,形成一个闭合回路,一条形磁铁从高处下落接近回路时( )A.P、Q相互靠拢B.P、Q将相互远离C.磁铁的加速度仍为gD.磁铁的加速度小于g[解析] 根据楞次定律的另一种表述——感应电流的效果,总要反抗产生感应电流的原因.本题中“原因”是回路中磁通量的增加,归根结底是磁铁靠近回路,“效果”便是阻碍磁通量的增加和磁铁的靠近.所以,P 、Q 将互相靠近且磁铁的加速度小于g ,应选A 、D.[答案] AD 考点 “三定则”、“一定律”的综合应用1.三定则、一定律的比较三个定则容易混淆,特别是左、右手易错用,抓住因果关系是关键.(1)因电而生磁(I →B )→安培定则.(2)因动而生电(v 、B →I )→右手定则.(3)因电而受力(I 、B →F 安)→左手定则.3.相互联系(1)应用楞次定律,一般要用到安培定则.(2)研究感应电流受到的安培力,一般先用右手定则确定电流方向,再用左手定则确定安培力的方向,有时也可以直接应用楞次定律的推论(“来拒去留”或“增缩减扩”)确定.[典例7] (多选)如图所示,一端接有定值电阻的平行金属轨道固定在水平面内,通有恒定电流的长直绝缘导线垂直并紧靠轨道固定,导体棒与轨道垂直且接触良好.在向右匀速通过M 、N 两区的过程中,导体棒所受安培力分别用F M 、F N 表示.不计轨道电阻.以下叙述正确的是( )A.F M向右B.F N向左C.F M逐渐增大D.F N逐渐减小[解题指导] (1)利用安培定则判断直线电流产生磁场的方向及强弱分布.(2)利用阻碍相对运动可判断安培力的方向.[解析] 根据安培定则,在轨道内的M区、N区通电长直导线产生的磁场分别垂直轨道平面向外和向里,由此可知,当导体棒运动到M区时,根据右手定则可以判定,在导体棒内产生的感应电流与长直绝缘导线中的电流方向相反,再根据左手定则可知,金属棒在M区时受到的安培力方向向左,A错误;同理可以判定B正确;再根据导体棒在M区匀速靠近长直绝缘导线时对应的磁场越来越大,因此产生的感应电动势越来越大,根据闭合电路的欧姆定律和安培力的公式可知,导体棒所受的安培力F M也逐渐增大,C正确;同理D正确.[答案] BCD[变式](多选)如图所示,金属导轨上的导体棒ab在匀强磁场中沿导轨做下列哪种运动时,铜制线圈c中将有感应电流产生且被螺线管吸引( )A.向右做匀速运动B.向左做减速运动C.向右做减速运动D.向右做加速运动答案:BC 解析:当导体棒向右匀速运动时产生恒定的电流,线圈中的磁通量恒定不变,无感应电流出现,A错;当导体棒向左做减速运动时,由右手定则可判定回路中出现从b→a 的感应电流且减小,由安培定则知螺线管中感应电流的磁场向左在减弱,由楞次定律知c中出现顺时针方向的感应电流(从右向左看)且被螺线管吸引,B对;同理可判定C对,D错.专项精练1.[产生感应电流的条件]在法拉第时代,下列验证“由磁产生电”设想的实验中,能观察到感应电流的是( )A.将绕在磁铁上的线圈与电流表组成一闭合回路,然后观察电流表的变化B.在一通电线圈旁放置一连有电流表的闭合线圈,然后观察电流表的变化C.将一房间内的线圈两端与相邻房间的电流表连接,往线圈中插入条形磁铁后,再到相邻房间去观察电流表的变化D.绕在同一铁环上的两个线圈,分别接电源和电流表,在给线圈通电或断电的瞬间,观察电流表的变化答案:答案:D 解析:只形成闭合回路,回路中的磁通量不变化,不会产生感应电流,选项A、B、C错误;给线圈通电或断电瞬间,通过闭合回路的磁通量变化,会产生感应电流,能观察到电流表的变化,选项D正确.2.[楞次定律的应用]如图所示,在一水平、固定的闭合导体圆环上方,有一条形磁铁(N极朝上,S极朝下)由静止开始下落,磁铁从圆环中穿过且不与圆环接触,关于圆环中感应电流的方向(从上向下看),下列说法正确的是( )A.总是顺时针B.总是逆时针C.先顺时针后逆时针D.先逆时针后顺时针答案:答案:C 解析:由条形磁铁的磁场分布可知,磁铁下落的过程,闭合圆环中的磁通量始终向上,并且先增加后减少,由楞次定律可判断出,从上向下看时,闭合圆环中的感应电流方向先顺时针后逆时针,C正确.3.[右手定则、安培力]如图所示,一个有界匀强磁场区域,磁场方向垂直纸面向外,一个矩形闭合导线框abcd沿纸面由位置1匀速运动到位置2,则( )A.导线框进入磁场时,感应电流方向为a→b→c→d→aB.导线框离开磁场时,感应电流方向为a→d→c→b→aC.导线框离开磁场时,受到的安培力方向水平向右D.导线框进入磁场时,受到的安培力方向水平向左答案:答案:D 解析:导线框进入磁场时,cd边切割磁感线,由右手定可知,电流方向为a→d→c→b→a,这时由左手定则可判断cd边受到的安培力方向水平向左,A错,D对;在导线框离开磁场时,ab边处于磁场中且在做切割磁感线运动,同样用右手定则和左手定则可以判断电流方向为a→b→c→d→a,这时安培力的方向仍然水平向左,B、C错.4.[楞次定律的应用]如图所示,插有铁芯的螺线管固定在水平面上,管右端的铁芯上套着一个可以自由移动的表面绝缘的闭合铜环,螺线管与电源、电键组成电路,不计铜环与铁芯之间的摩擦阻力,下列说法正确的是( )A.闭合电键,螺线管右端为N极B.闭合电键瞬间,铜环会向右运动C.闭合电键瞬间,铜环会向左运动D.闭合电键瞬间,铜环仍保持不动答案:B5.[楞次定律、安培力](多选)AOC是光滑的直角金属导轨,AO沿竖直方向,OC沿水平方向,ab是一根靠立在导轨上的金属直棒(开始时b离O点很近),如图所示.它从静止开始在重力作用下运动,运动过程中a端始终在AO上,b端始终在OC上,直到ab完全落在OC上,整个装置放在一匀强磁场中,磁场方向垂直纸面向里,则ab棒在运动过程中( )A.感应电流方向始终是b→aB.感应电流方向先是b→a,后变为a→bC.所受安培力方向垂直于ab向上D.所受安培力方向先垂直于ab向下,后垂直于ab向上答案:BD 解析:ab棒下滑过程中,穿过闭合回路的磁通量先增大后减小,由楞次定律可知,感应电流方向先由b→a,后变为a→b,B正确;由左手定则可知,ab棒所受安培力方向先垂直于ab向下,后垂直于ab向上,D正确.。

电磁感应现象 楞次定律

电磁感应现象 楞次定律

第一单元 电磁感应现象 楞次定律一、电磁感应现象1、磁通量:磁感应强度B 与垂直磁场方向的面积S 的乘积叫穿过这个面积的磁通量,Φ=B ·S ,若面积S 与B 不垂直,应以B 乘以S 在垂直磁场方向上的投影面积S ′,即Φ=B ·S ′=B ·S sin α,θ为B 与S 的夹角单位为韦伯,符号为W b 。

1W b =1T ❿m 2=1V ❿s=1kg ❿m 2/(A ❿s 2)。

(1)磁通量的物理意义就是穿过某一面积的磁感线条数.(2)S 是指闭合回路中包含磁场的那部分有效面积如图所示,若闭合电路abcd 和ABCD 所在平面均与匀强磁场B 垂直,面积分别为S 1和S 2,且S 1>S 2,但磁场区域恰好只有ABCD 那么大,穿过S 1和S 2的磁通量是相同的,因此Φ=BS 中的S 应是指闭合回路中包含磁场的那部分有效面积。

(3)磁通量虽然是标量,却有正负之分磁通量如同力做功一样,虽然功是标量,却有正负之分,如果穿过某个面的磁通量为Ф,将该面转过180°,那么穿过该面的磁通量就是-Ф.如图甲所示两个环a 和b ,其面积S a <S b ,它们套在同一磁铁的中央,试比较穿过环a 、b 的磁通量的大小?我们若从上往下看,则穿过环a 、b 的磁感线如图乙所示,磁感线有进 有出相互抵消后,即Φa =Φ出-Φ进,’进‘出ΦΦ=Φb ,得Φa >Φb 由此可知,若有像图乙所示的磁场,在求磁通量时要按代数和的方法求总的磁通量。

(4)磁通量与线圈的匝数无关磁通量与线圈的匝数无关,也就是磁通量大小不受线圈匝数影响。

同理,磁通量的变化量也不受匝数的影响。

2、磁通量的变化磁通量Φ=B ∙S ∙sin α(α是B 与S 的夹角),磁通量的变化ΔΦ=Φ2-Φ1有多种形式,主要有:①S 、α不变,B 改变,这时ΔΦ=ΔB ❿S sin α②B 、α不变,S 改变,这时ΔΦ=ΔS ❿B sin α③B 、S 不变,α改变,这时ΔΦ=BS (sin α2-sin α1)④B 、S 、α中有两个或三个一起变化时,就要分别计算Φ1、Φ2,再求Φ2-Φ1了。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
图12-1-6
楞次定律及其推广应用
例2 (2011·在竖直方向均匀 分布,水平方 向非均匀分布.
图12-1-7
一铜制圆环用丝线悬挂于O点,将圆 环拉至位置a后无初速释放,在圆环从 a摆向b的过程中( ) A.感应电流方向先逆时针后顺时针 再逆时针 B.感应电流方向一直是逆时针
例1 北 半 球 地 磁 场 的 竖 直 分 量 向 下.如图12-1-4所示,在北京某中 学实验室的水平桌面上,
图12-1-4
放置边长为L的正方形闭合导体线圈 abcd,线圈的ab边沿南北方向,ad边 沿东西方向.下列说法中正确的是 () A.若使线圈向东平动,则a点的电势 比b点的电势低 B.若使线圈向北平动,则a点的电势 比b点的电势低
楞次定律和左、右手定 则的综合应用
例3 如图12-1-8所示,水平放置 的两条光滑轨道
上有可自由移动
的金属棒PQ、MN,
图12-1-8
当PQ在外力的作用下运动时,MN在 磁场力的作用下向右运动,则PQ所做 的运动可能是( ) A.向右加速运动 B.向左加速运动 C.向右减速运动 D.向左减速运动
(3)磁通量增加,线圈面积“缩小”,磁通 量减小,线圈面积“扩张”——“增缩减 扩”. (4)阻碍线圈自身电流的变化(自感现象).
4.应用楞次定律判断感应电流的方法 楞次定律没有直接告诉感应电流的方 向,它说明的是感应电流的磁场与原 磁场方向之间的关系,即穿过闭合回 路的磁通量增大时,两磁场方向相反; 磁通量减小时,两磁场方向相同.
【解析】 分析该类问题,首先要明 确PQ运动是引起MN运动的原因,然 后根据楞次定律和左手定则判断.由 右手定则PQ向右加速运动,穿过L1的 磁通量向上且增加,由楞次定律和左 手定则可判断MN向左运动,故A错.
若PQ向左加速运动,情况正好和A相 反,故B对.若PQ向右减速运动,由 右手定则,穿过L1的磁通量向上且减 小,由楞次定律和左手定则可判断MN 向右运动,故C对.若PQ向左减速运 动,情况恰好和C相反,故D错.
线框上下两边受到安培力方向虽相反, 但上边所处位置的磁感应强度始终大 于下边所处位置的磁感应强度,故上 边所受的安培力大于下边所受的安培 力,其合力不为零,故C错;由能量 守恒可知下落时一部分机械能会转化 为线框通电发热产生的内能,故线框 的机械能减少,D错.
题型探究讲练互动
电磁感应现象及其产生条件
C.若以ab为轴将线圈向上翻转,则 线圈中感应电流方向为 a→b→c→d→a
D.若以ab为轴将线圈向上翻转,则 线圈中感应电流方向为 a→d→c→b→a
【思路点拨】 本题考查涉及地磁场 的电磁感应问题,核心工作是进行感 应电流方向的判定,并注意电磁感应 现象产生条件的把握.
【解析】 根据地磁场分布可知:线 圈向东平动时,ba和cd两边切割磁感线, 且两边切割磁感线产生的感应电动势 大小相同,a点电势比b点电势低,A对; 同理,线圈向北平动,则a、b电势相 等,高于c、d两点电势,B错;
解析:选B.由楞次定律,欲使b中产生 顺时针电流,则a环内磁场应向里减弱 或向外增强,ra环的旋转情况应该是 顺时针减速或逆时针加速.由于b环又 有收缩趋势,说明a环外部磁场向外, 内部向里,故选B.
知能演练强化闯关
本部分内容讲解结束
按ESC键退出全屏播放
因此,根据楞次定律判断感应电流的 方向时,应按以下步骤进行: (1)明确闭合电路范围内的原磁场的方 向; (2)分析穿过闭合电路的磁通量的变化 情况;
(3)根据楞次定律,判定感应电流磁场的 方向; (4)利用安培定则,判断感应电流的方向. 特别提醒:运用楞次定律判定感应电流 的方向可归结为“一原、二感、三电 流”,即①明确原磁场,②确定感应电 流磁场,③判定感应电流方向.
线框由静止释放, 在下落过程中( ) 图12-1-3
A.穿过线框的磁通量保持不变 B.线框中感应电流方向保持不变 C.线框所受安培力的合力为零 D.线框的机械能不断增大
解析:选B.由通电直导线周围磁感线 的分布规律可知,线框下落过程中穿 过其中的磁感线越来越少,故磁通量 在不断变小,故A错;下落时穿过线 框的磁通量始终减小,由楞次定律可 知感应电流的方向保持不变,故B正 确;
以ab为轴将线圈翻转,向下的磁通量 减少了,感应电流的磁场方向应该向 下,再由安培定则知,感应电流的方 向为a→b→c→d→a,则C对,同理得 D项错误. 【答案】 AC
【规律总结】 (1)引起磁通量变化有 三种方式
①面积变化:在磁通量计算公式Φ= BS中,S为闭合线圈在匀强磁场中垂 直磁场方向的有效面积,引起有效面 积变化有两种情况:导体切割磁感线 运动;闭合线圈在磁场中转动.
第十二章 电磁感应
第一节 电磁感应现象 楞次定律
基础梳理自学导引
一、磁通量 1.概念:磁感应强度B与面积S的 ________. 2.计算
(1) 公式: =___________.
(2)适用条件:①均强感应;②S是 __________磁场中的有效面积. (3)单位:韦伯(Wb),1 Wb=_______. 3.意义:穿过某一面积的磁感线的 _________. 4.标矢性:磁通量是_______,但有 负、正.
【答案】 BC
变式训练 (2011·高考上海卷)如图12-1-9,均 匀带正电的绝缘圆环a与金属圆环b同 心共面放置,
图12-1-9
当a绕O点在其所在平面内旋转时,b 中产生顺时针方向的感应电流,且具 有收缩趋势,由此可知,圆环a( ) A.顺时针加速旋转 B.顺时针减速旋转 C.逆时针加速旋转 D.逆时针减速旋转
通量变化量ΔΦ=-2BS;
围绕磁铁的两个线圈S1、S2面积S2> S1,但通过线圈的合磁通量Φ2<Φ1. ②线圈面积发生变化,磁通量不一定 变化.
如图12-1-6甲,S1是磁场区,S2为 闭合线圈,S2面积增大时,其磁通量 Φ=BS1不变.
如图乙,线圈面积由S1变为S2时,若 垂直于B方向的有效面积不变,则磁 通量不变.
3.相互联系 (1)应用楞次定律,必然要用到安培定 则; (2)感应电流受到的安培力,有时可以 先用右手定则确定电流方向,再用左 手定则确定安培力的方向,有时可以 直接应用楞次定律的推论确定.
即时应用
2.(2011·高考江苏卷)如图12-1-3 所示,固定的水平长直导线中通有电流I, 矩形线框与导线在同一竖直平面内,且 一边与导线平行.
二、楞次定律、右手定则、左手定
则、安培定则的综合应用
1.规律比较 基本现象
应用的定则或 定律
运动电荷、电流产生磁场 安培定则
磁场对运动电荷、电流有 作用力
左手定则
基本现象
应用的定则或 定律
电磁 感应
部分导体做切割磁感 线运动
闭合回路磁通量变化
右手定则 楞次定律
2.应用区别 关键是抓住因果关系: (1)因电而生磁(I→B)→安培定则; (2)因动而生电(v、B→I安)→右手定则; (3)因电而受力(I、B→F安)→左手定则.
(2)产生感应电流的条件 ①电路闭合. ②磁通量的变换. 三、感应电流方向判断 1.右手定则:伸开右手,是拇指与其 余四个手指_________,
并且都与手掌在同一个平面内;让磁 感线从掌心垂直进入,并使拇指指向 __________的方向,这
时四指所指的方向就
是__________的方向.
如图12-1-1所示.
一、楞次定律的理解及应用 1.因果关系 应用楞次定律实际上就是寻求电磁感 应中的因果关系.磁通量发生变化是 原因,产生感应电流是结果.原因产 生结果,结果又反过来影响原因.
2.楞次定律中“阻碍”的含义
3.楞次定律的应用 (1)阻碍原磁通量的变化——“增反减 同”. (2)阻碍(导体的)相对运动——“来拒 去留”.
C.安培力方向始终与速度方向相反 D.安培力方向始终沿水平方向 【解析】 圆环从位置a运动到磁场分 界线前,磁通量向里增大,感应电流 为逆时针;跨越分界线过程中,磁通 量由向里最大变为向外最大,感应电 流为顺时针;
再摆到b的过程中,磁通量向外减小, 感应电流为逆时针,所以选A;由于 圆环所在处的磁场,上下对称,所受 安培力竖直方向平衡,因此总的安培 力沿水平方向,故D正确. 【答案】 AD
二、电磁感应 1.电磁感应现象 当穿过闭合电路的_________发生变 化时,电路中有电流产生,这种现象 称之为电磁感应现象.
2.产生感应电动势的条件 (1)产生感应电动势的条件 无论回路是否闭合,只要穿过线圈平 面的磁通量发生_________,回路中 就有感应电动势,产生感应电动势的 那部分导体相当于__________.
即时应用 1.(2010·高考上海卷)如图12-1-2, 金属环A用轻绳悬挂, 与长直螺线管共轴, 并位于其左侧.
图12-1-2
若变阻器滑片P向左移动,则金属环A 将向__________(填“左”或“右”) 运动,并有________(填“收缩”或 “扩张”)趋势.
解析:滑片P向左移动时,电阻减小, 电流增大,穿过金属环A的磁通量增 加,根据楞次定律,金属环将向左运 动,并有收缩趋势. 答案:左 收缩
图12-1-1
2.楞次定律 内容:感应电流具有这样的方向,即 感应电流的磁场总要________引起感 应电流的__________的变化.
名师点拨:右手定则一般用于判断部 分导体切割磁感线产生的感应电流方 向,而楞次定律一般用于由于B变化 或θ角变化而引起的感应电流的方向 判断.
要点透析直击高考
②磁场变化:由于磁场的磁感应强度 发生变化,引起回路磁通量变化. ③面积和磁场同时变化. (2)磁通量的变化及计算应注意的问题 ①磁通量有正负.
可以规定磁感线从某个方向穿入线圈 为正,穿出为负(如图12-1-5).当 线圈在磁场中转过
180°时,B、S不
变,若开始时磁通
量 Φ=BS,则磁
图12-1-5
相关文档
最新文档