2021版高中物理第2章楞次定律和自感现象2.2自感学案鲁科版选修
高中物理第2章楞次定律和自感现象章末整合提升学案鲁科版选修3_20112224.docx
第2章楞次定律和自感现象楞次定律和自感现象一、对楞次定律的理解和应用1.感应电流的磁场总要阻碍引起感应电流的磁通量的变化.感应电流的磁场方向不一定与原磁场方向相反,只在磁通量增加时两者才相反,而在磁通量减少时两者同向,即“增反减同”.2.“阻碍”并不是“阻止”,而是“延缓”,回路中的磁通量变化的趋势不变,只不过变化得慢了.3.“阻碍”的表现:增反减同、来拒去留、增缩减扩、增离减靠.例1圆形导体线圈a平放在水平桌面上,在a的正上方固定一竖直螺线管b,二者轴线重合,螺线管与电源和滑动变阻器连接成如图1所示的电路.若将滑动变阻器的滑片P向下滑动,下列表述正确的是( )图1A.线圈a中将产生俯视顺时针方向的感应电流B.穿过线圈a的磁通量变小C.线圈a有扩张的趋势D.线圈a对水平桌面的压力将增大答案 D解析通过螺线管b的电流如图所示,根据右手螺旋定则判断出螺线管b所产生的磁场方向竖直向下,滑片P向下滑动,接入电路的电阻减小,电流增大,所产生的磁场的磁感应强度增强,根据楞次定律可知,a线圈中感应电流产生的磁场方向竖直向上,再由右手螺旋定则可得线圈a中的电流方向为俯视逆时针方向,A错误;由于螺线管b中的电流增大,所产生的磁感应强度增强,线圈a中的磁通量应变大,B错误;根据楞次定律可知,线圈a将阻碍磁通量的增大,因此,线圈a有缩小的趋势,线圈a对水平桌面的压力增大,C错误,D正确.二、电磁感应中的图象问题1.电磁感应中的图象问题有两种:一是给出电磁感应过程,选出或画出正确图象;二是由给定的有关图象分析电磁感应过程,求解相应物理量.2.基本思路:(1)利用法拉第电磁感应定律或切割公式计算感应电动势大小;(2)利用楞次定律或右手定则判定感应电流的方向;(3)写出相关的函数关系式分析或画出图象.例2(2016·云南第一次检测)如图2甲所示,线圈ABCD固定于匀强磁场中,磁场方向垂直纸面向外,当磁场变化时,线圈AB边所受安培力向右且变化规律如图乙所示,则磁场的变化情况可能是选项中的( )图2答案 D解析 由安培力向右知电流方向为顺时针,由楞次定律知磁场增强,C 错;由乙图知安培力不变,根据F =BIL 知,B 增大,I 必减小,即电动势减小,故B 的变化率减小,因此A 、B 错,D 正确.三、电磁感应中的电路问题1.首先要明确电源,分清内、外电路.磁场中磁通量变化的线圈或切割磁感线的导体相当于电源,该部分导体的电阻相当于内电阻;而其余部分的电路则是外电路.2.路端电压、感应电动势和某段导体两端的电压三者的区别:(1)某段导体不作为电源时,它两端的电压等于电流与其电阻的乘积;(2)某段导体作为电源时,它两端的电压就是路端电压,U 外=IR 外或U 外=E -Ir ;(3)某段导体作为电源,电路断路时导体两端的电压等于感应电动势.例3 如图3甲所示,在水平面上固定有长为L =2 m 、宽为d =1 m 的金属U 形导轨,在U 形导轨右侧l =0.5 m 范围内存在垂直于纸面向里的匀强磁场,且磁感应强度随时间的变化规律如图乙所示.在t =0时刻,质量为m =0.1 kg 的导体棒以v 0=1 m/s 的初速度从导轨的左端开始向右运动,导体棒与导轨之间的动摩擦因数为μ=0.1,导轨与导体棒单位长度的电阻均为λ=0.1 Ω/m ,不计导体棒与导轨之间的接触电阻及地球磁场的影响(取g =10 m/s 2).图3(1)通过计算分析4 s 内导体棒的运动情况;(2)计算4 s 内回路中电流的大小,并判断电流方向;(3)计算4 s 内回路产生的焦耳热.答案 (1)导体棒在第1 s 内做匀减速运动,在1 s 后一直保持静止(2)0~2 s 内I =0,2~4 s 内I =0.2 A ,电流方向是顺时针方向(3)0.04 J解析 (1)导体棒先在无磁场区域做匀减速运动,有-μmg =ma ,v t =v 0+at ,x =v 0t +12at 2,导体棒速度减为零时,v t =0,代入数据解得:t =1 s ,x =0.5 m ,导体棒没有进入磁场区域.导体棒在1 s 末已经停止运动,以后一直保持静止.(2)前2 s 磁通量不变,回路电动势和电流分别为E =0,I =0,后2 s 回路产生的电动势为E =ΔΦΔt =ld ΔB Δt=0.1 V , 回路的总长度为5 m ,因此回路的总电阻为R =5λ=0.5 Ω,电流为I =E R=0.2 A ,根据楞次定律,在回路中的电流方向是顺时针方向.(3)前2 s 电流为零,后2 s 有恒定电流,电热Q =I 2Rt ′=0.04 J.四、电磁感应中的动力学问题解决此类问题的一般思路是:先由法拉第电磁感应定律求感应电动势,然后根据闭合电路欧姆定律求感应电流,再求出安培力,再后依照力学问题的处理方法进行,如进行受力情况分析、运动情况分析.流程为:导体切割磁感线产生感应电动势→感应电流→电流受到安培力→合外力变化→加速度变化→速度变化→感应电动势变化.周而复始循环,最终加速度等于零,导体达到稳定运动状态.例4 U 形金属导轨abcd 原来静止放在光滑绝缘的水平桌面上,范围足够大、方向竖直向上的匀强磁场穿过导轨平面,一根与bc 等长的金属棒PQ 平行bc 放在导轨上,棒左边靠着绝缘的固定竖直立柱e 、f .已知磁感应强度B =0.8T ,导轨质量M =2kg.其中bc 段长0.5m ,bc 段电阻R =0.4Ω,其余部分电阻不计;金属棒PQ 质量m =0.6kg 、电阻r =0.2Ω、与导轨间的动摩擦因数μ=0.2.若向导轨施加方向向左、大小为F =2N 的水平拉力,如图4所示.求导轨的最大加速度、最大电流和最大速度(设导轨足够长,g 取10m/s 2).图4答案 0.4m/s 22 A3 m/s解析 导轨受到PQ 棒水平向右的摩擦力f =μmg ,根据牛顿第二定律并整理得F -μmg -F 安=Ma ,刚拉动导轨时,I 感=0,安培力为零,导轨有最大加速度a m =F -μmg M =2-0.2×0.6×102m/s 2=0.4 m/s 2. 随着导轨速度的增大,感应电流增大,加速度减小,当a =0时,速度最大.设速度最大值为v m ,电流最大值为I m ,此时导轨受到向右的安培力F 安=BI m LF -μmg -BI m L =0I m =F -μmg BL代入数据得I m =2-0.2×0.6×100.8×0.5A =2A I =E R +rI m =BLv m R +r解得v m =I m (R +r )BL =2×(0.2+0.4)0.8×0.5m/s =3 m/s. 五、电磁感应中的能量问题1.过程分析(1)电磁感应现象中产生感应电流的过程,实质上是能量的转化过程.(2)电磁感应过程中产生的感应电流在磁场中必定受到安培力的作用,因此,要维持感应电流的存在,必须有“外力”克服安培力做功.此过程中,其他形式的能转化为电能.“外力”克服安培力做了多少功,就有多少其他形式的能转化为电能.2.求解思路(1)若回路中电流恒定,可以利用电路结构及W =UIt 或Q =I 2Rt 直接进行计算.(2)若电流变化,则:①利用克服安培力做的功求解:电磁感应中产生的电能等于克服安培力所做的功;②利用能量守恒求解:若只有电能与机械能的转化,则机械能的减少量等于产生的电能.例5 如图5所示,两根足够长的平行金属导轨固定在倾角θ=30°的斜面上,导轨电阻不计,间距L =0.4 m .导轨所在空间被分成区域Ⅰ和Ⅱ,两区域的边界与斜面的交线为MN ,Ⅰ中的匀强磁场方向垂直斜面向下,Ⅱ中的匀强磁场方向垂直斜面向上,两磁场的磁感应强度大小均为B =0.5 T .在区域Ⅰ中,将质量m 1=0.1 kg ,电阻R 1=0.1 Ω 的金属条ab 放在导轨上,ab 刚好不下滑.然后,在区域Ⅱ中将质量m 2=0.4 kg ,电阻R 2=0.1 Ω的光滑导体棒cd 置于导轨上,由静止开始下滑.cd 在滑动过程中始终处于区域Ⅱ的磁场中,ab 、cd 始终与导轨垂直且两端与导轨保持良好接触,取g =10 m/s 2,问:图5(1)cd 下滑的过程中,ab 中的电流方向;(2)ab 刚要向上滑动时,cd 的速度v 多大;(3)从cd 开始下滑到ab 刚要向上滑动的过程中,cd 滑动的距离x =3.8 m ,此过程中ab 上产生的热量Q 是多少.答案 (1)由a 流向b (2)5 m/s (3)1.3 J解析 (1)根据右手定则判知cd 中电流方向由d 流向c ,故ab 中电流方向由a 流向b .(2)开始放置ab 刚好不下滑时,ab 所受摩擦力为最大摩擦力,设其为F max ,有F max =m 1g sin θ①设ab 刚好要上滑时,cd 棒的感应电动势为E ,由法拉第电磁感应定律有E =BLv ②设电路中的感应电流为I ,由闭合电路欧姆定律有I =E R 1+R 2③ 设ab 所受安培力为F 安,有F 安=BIL ④此时ab 受到的最大摩擦力方向沿斜面向下,由平衡条件有F 安=m 1g sin θ+F max ⑤联立①②③④⑤式,代入数据解得:v =5 m/s ⑥(3)设cd 棒的运动过程中电路中产生的总热量为Q 总,由能量守恒定律有m 2gx sin θ=Q 总+12m 2v 2⑦由串联电路规律有 Q =R 1R 1+R 2Q 总⑧ 联立解得:Q =1.3 J ⑨精美句子1、善思则能“从无字句处读书”。
2020_2021学年高中物理第二章楞次定律和自感现象第2节自感课件鲁科版选修3_2
小灯泡在熄灭之前是否都要闪亮一下?
A L
S
1. 不能认为任何断电现象灯都会闪一下 当 IL > IA 时,会闪一下,再逐渐熄灭 当 IL < IA 或 IL = IA 时,不会闪,逐渐熄灭
2. 断电实验中,线圈的电流方向不变,而灯电流方向与原 来方向相反
3. 原来的 IL 和 IA 哪一个大,要由 L 的直流电阻 RL 与 A 的 电阻 RA 的大小来决定。如果 RL ≥ RA,则 IL ≤ IA;如果 RL < RA,则 IL > IA。
“阻碍”不是“阻止”,电流还是变化的
实验一: 如图,A1、A2 是规格完全一样的灯泡。闭合开
关 S,调节变阻器 R,使 A1、A2 亮度相同,再调节 R1,使 两灯正常发光,然后断开开关 S。重新闭合 S,观察到什么 现象?
灯泡 A2 立刻正常发光, 跟线圈 L 串联的灯泡 A1 逐渐亮起来。
与线圈相连的灯泡为什么要过一会才亮?
集 成 电 路
磁 性 天 线
收 音 机
线圈 L1
线圈 L2
P G
滑动变阻器 P 滑动时,线圈 2 中是否有感 应电流?
有感应电流。这就是线圈与电源并未连接,而小灯泡能 发光的原因。
请同学用手拿着夹子点亮灯泡
1、接通时的感觉? 2、拿开时又有什么感觉?
?
啊!
为什么会有电击的感觉?
二、自感
1. 知道什么是自感。 2. 能从理论上分析通电自感和断电自感 现象实验现象。 3. 知道自感电动势与哪些因素有关, 知道自感线圈的自感系数
2. 在实验中,若线圈 L 的电阻 RL与灯泡 A 的
电阻 RA相等,则开关断开前后通过线圈的电流
A
随时间的变化若 RL 远小于RA ,
2.2《自感》教案(鲁科版选修3-2)
2.2《自感》学案【学习目标】<1)了解互感和自感现象。
<2)了解自感现象产生的原因。
<3)知道自感现象中的一个重要概念——自感系数,了解它的单位及影响其大小的因素。
【学习重点】1、自感现象的产生、原因。
2、通、断电自感演示实验现象的解释。
【知识要点】1、自感现象演示实验1:由于线圈L自身的磁通量增加,而产生了感应电动势,这个感应电动势总是阻碍磁通量的变化,既阻碍线圈中电流的变化,故通过A1的电流不能立即增大,灯A1的亮度只能慢慢增加,最终与A2相同。
b5E2RGbCAP演示实验2:线圈中电流发生变化时,自身产生感应电动势,这个感应电动势阻碍原电流的变化。
自感现象的理解:线圈中电流的变化不能在瞬间完成,即不能“突变”。
也可以说线圈能体现电的惯性。
自感现象:由于导体本身的电流发生变化而产生的电磁感应现象叫自感现象。
2.自感电动势:自感现象中产生的感应电动势叫自感电动势。
自感电动势也应正比于穿过线圈的磁通量的变化率,即:E∝△Φ/△t,而磁场的强弱又正比于电流的强弱,即磁通量的变化正比于电流的变化。
所以也可以说,自感电动势正比于电流的变化率。
即E∝△I/△t写成等式即:E=L△I/△tp1EanqFDPw3。
、自感系数<1)自感系数,简称自感或电感,用字母L表示。
影响因素:形状、长短、匝数、有无铁芯。
<2)单位:亨利符号:H 常用单位:毫亨<mH)微亨<μH)【典型例题】例题1:用均匀导线弯成正方形闭合金属线框abcd,线框每边长80cm,每边的电阻为0.01Ω。
把线框放在磁感强度B=0.05T的匀强磁场中,并使它绕轴OO′以ω=100rad/s的角速度匀角速度旋转,旋转方向如图所示。
已知OO`在线框平面内,并且垂直于B,Od=3Oa,O`c=3O`DXDiTa9E3db,当线框转至和B平行的瞬间<如图所示)。
求<1)每条边产生的感应电动势大小;<2)线框内感应电流的大小;<3)e,f分别是ab和cd的中点,ef两点间的电势差。
精选高中物理第2章楞次定律和自感现象第2节自感教师用书鲁科版选修3_2
第2节自感[先填空]1.自感现象:由导体自身电流变化,所产生的电磁感应现象.2.自感电动势1.自感现象属于电磁感应现象.(√)2.当线圈中有电流时,线圈中就有自感电动势.(×)3.当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相反.(×) [后思考]大城市的无轨电车在行驶的过程中,由于车身颠簸,有可能使车顶上的电弓瞬间脱离电网线,这时可以看到电火花闪现.试说明产生电火花的原因是什么?【提示】电弓脱离电网线的瞬间电流减小,所产生的自感电动势很大,在电弓与电网线的空隙产生电火花.[合作探讨]如图221所示,A1、A2是规格完全一样的灯泡,①S闭合时,发现A1比A2亮得晚;②S断开时,两灯泡都亮一会再熄灭.图221探讨1:为什么会出现上述①中的现象?【提示】 开关闭合时,电流从0开始增加,线圈L 中的磁通量发生变化形成感应电流,阻碍线圈中电流的增加,推迟了电流达到正常值的时间,故A 1比A 2亮得晚.探讨2:S 断开时为什么出现②中的现象?【提示】S 断开时,电流开始减小,线圈中磁通量也发生变化,同样推迟电流的减小时间,此时L 相当于电源,回路中的A 1、A 2都亮一会再熄灭.探讨3:①②两种现象中,流过A 1、A 2的电流方向一样吗?【提示】A 1中电流方向不变,A 2中电流方向相反.[核心点击]在处理通断电灯泡亮度变化问题时,不能一味套用结论,如通电时逐渐变亮,断电时逐渐变暗,或闪亮一下逐渐变暗,要具体问题具体分析,关键要搞清楚电路连接情况.1.(多选)如图222所示,灯L A 、L B 完全相同,带铁芯的线圈L 的电阻可忽略.则( )图222A.S闭合的瞬间,L A、L B同时发光,接着L A熄灭,L B更亮B.S闭合的瞬间,L A不亮,L B立即亮C.S闭合的瞬间,L A、L B都不立即亮D.稳定后断开S的瞬间,L B立即熄灭,L A先亮一下再熄灭【解析】S接通的瞬间,L支路中电流从无到有发生变化,因此,L中产生的自感电动势阻碍电流增大.所以,S接通的瞬间L中的电流非常小,即干路中的电流几乎全部流过L A,故L A、L B会同时亮.又由于L中电流很快稳定,感应电动势很快消失,对L A起到“短路”作用,因此,L A便熄灭.这时电路的总电阻比刚接通时小,由恒定电流知识可知L B会比以前更亮.故选项A正确.断开S的瞬间,线圈L产生自感电动势,在L、L A回路中产生自感电流,所以L A先亮一下再熄灭;L B在S断开的瞬间处于断路状态,电流立即变为零,所以L B熄灭.【答案】AD2.(多选)如图223所示,电路甲、乙中电阻R和自感线圈L的电阻都很小.接通开关S,使电路达到稳定,灯泡A发光,则( )甲乙图223A.在电路甲中,断开S,A将渐渐变暗B.在电路甲中,断开S,A将先变得更亮,然后渐渐变暗C.在电路乙中,断开S,A将渐渐变暗D.在电路乙中,断开S,A将先变得更亮,然后渐渐变暗【解析】甲图中,灯泡A与线圈L在同一支路,通过它们的电流相同,I A=I L;断开开关S时,A、L、R组成回路;由于自感作用,回路中电流由I L逐渐减小,灯泡A不会闪亮,将逐渐变暗,故A正确;乙图中,电路稳定时,通过上支路的电流I L>I A(因L的电阻很小);断开开关S时,由于L的自感作用,回路中的自感电流在I L的基础上减小,电流反向通过灯泡A的瞬间,灯泡A中电流变大,然后逐渐变小,所以灯泡A闪亮一下,然后逐渐变暗,故D正确.【答案】AD自感电动势的作用在通电自感现象中,线圈L相当于阻值逐渐减小的“电阻”;在断电自感现象中,线圈L相当于电动势逐渐减小的“电源”.在断电自感中要判断某一个小灯泡是否会闪亮一下再熄灭,一是看是否能组成临时回路,二是看此时通过小灯泡的电流比断开前大还是小.[先填空]1.线圈的自感系数大,其电阻一定大.(×)2.不管电流如何变化,线圈的自感系数不变.(√)3.产生的自感电动势较大,说明自感系数较大.(×)[后思考]照明用电灯泡内,有螺旋状灯丝,且用的是交流电,开灯、关灯时,你发现自感现象了吗?请给予解释.【提示】 照明用交流电,开、关灯时灯丝内电流会发生变化,会有自感现象发生,只是由于灯丝的自感系数太小,自感现象不明显,使我们并没有发现.[合作探讨]探讨1:线圈中电流变化越快,自感系数如何变化?【提示】 不变探讨2:把线圈中的铁芯抽出一些,自感系数如何变化?【提示】 减小[核心点击]自感系数L线圈的自感系数是由线圈本身决定的,与是否通电及电流的大小无关.具体地说,是由线圈截面的粗细、线圈的长短、匝数的密集程度(即单位长度的匝数)以及线圈内部是否存在铁芯等因素共同决定的.且线圈越长、匝数越多、越密、横截面积越大,以及有铁芯时,则线圈的自感系数就越大.3.(多选)通过一个线圈的电流在均匀增大时,这个线圈的( ).A .自感系数也将均匀增大B .自感电动势也将均匀增大C .磁通量也将均匀增大D .自感系数和自感电动势不变【解析】 线圈的磁通量与电流大小有关,电流增大,磁通量增大,故C 项正确;而自感系数由线圈本身决定,与电流大小无关;自感电动势E L =L ΔI Δt,与自感系数和电流变化率有关,对于给定的线圈,L 一定,已知电流均匀增大,说明电流变化率恒定,故自感电动势不变,D 项正确.【答案】CD4.下列单位关系不正确的是( )A .1亨=1欧·秒B .1亨=1伏·安/秒C .1伏=1韦/秒D .1伏=1亨·安/秒【解析】 由E =L ΔI Δt 知,L =E ·Δt ΔI,故1亨=1伏·秒/安,或1伏=1亨·安/秒,选项B 错误,D 正确;又1伏=1安·欧,故A 正确;由E =n ΔΦΔt知,选项C 也正确.综上知,不正确的为B.【答案】B线圈自感系数由线圈本身的因素及有无铁芯决定.学业分层测评(五)(建议用时:45分钟)[学业达标]1.关于线圈的自感系数、自感电动势的下列说法中正确的是( ).A .线圈中电流变化越大,线圈自感系数越大B .对于某一线圈,自感电动势正比于电流的变化量C .一个线圈的电流均匀增大,这个线圈的自感系数、自感电动势都不变D .自感电动势总与原电流方向相反【解析】 线圈的自感系数L 只由线圈本身的因素决定,选项A 错误.由E 自=L ΔI Δt知,E 自与ΔI Δt成正比,与ΔI 无直接关系,选项B 错误,C 正确.E 自方向在电流增大时与原电流方向相反,在电流减小时与原电流方向相同,选项D 错误.2.(多选)下列说法正确的是( )A.当线圈中电流不变时,线圈中没有自感电动势B.当线圈中电流反向时,线圈中自感电动势的方向与线圈中原电流的方向相反C.当线圈中电流增大时,线圈中自感电动势的方向与线圈中电流的方向相反D.当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相反【解析】由法拉第电磁感应定律可知,当线圈中电流不变时,不产生自感电动势,A 对;当线圈中电流反向时,相当于电流先减小后反向增大,线圈中自感电动势的方向与线圈中原电流的方向相同,B错;当线圈中电流增大时,自感电动势阻碍电流的增大,线圈中自感电动势的方向与线圈中电流的方向相反,C对;当线圈中电流减小时,自感电动势阻碍电流的减小,线圈中自感电动势的方向与线圈中电流的方向相同,D错.【答案】AC3.如图224所示的是自感现象的实验装置,A是灯泡,L是带铁芯的线圈,E为电源,S是开关.下述判断正确的是( )【导学号:78870029】图224A.S接通的瞬间,L产生自感电动势,S接通后和断开瞬间L不产生自感电动势B.S断开的瞬间L产生自感电动势,S接通瞬间和接通后L不产生自感电动势C.S在接通或断开的瞬间L都产生自感电动势,S接通后L不再产生自感电动势D.S在接通或断开瞬间以及S接通后,L一直产生自感电动势【解析】S断开和接通瞬间,通过线圈的电流都发生变化,都产生感应电动势,S接通后通过线圈的电流不再变化,没有感应电动势产生,故A、B、D错误,C正确.【答案】C4.(多选)某线圈通有如图225所示的电流,则线圈中自感电动势改变方向的时刻有( )图225A.第1 s末C.第3 s末D.第4 s末【解析】在自感现象中,当原电流减小时,自感电动势与原电流的方向相同;当原电流增大时,自感电动势与原电流方向相反.在0~1s内原电流沿正方向减小,所以自感电动势的方向是正方向;在1~2s内原电流沿负方向增加,所以自感电动势与其方向相反,即沿正方向;同理分析2~3 s、3~4 s、4~5 s内自感电动势的方向分别是沿负方向、负方向、正方向,可得正确答案为选项B、 D.【答案】BD5. (多选)如图226所示,E为电池组,L是自感线圈(直流电阻不计),D1、D2是规格相同的小灯泡.下列判断正确的是( )图226A.开关S闭合时,D1先亮,D2后亮B.闭合S达稳定时,D1熄灭,D2比起初更亮C.断开S时,D1闪亮一下D.断开S时,D1、D2均不立即熄灭【解析】开关S闭合时D1,D2同时亮,电流从无到有,线圈阻碍电流的增加,A错.闭合S达稳定时D1被短路,电路中电阻减小,D2比起初更亮,B对.断开S时,线圈阻碍电流减小,故D1会闪亮一下,而D2在S断开后无法形成通路,会立即熄灭,所以C对,D错.【答案】BC6.如图227所示的电路中,两个相同的电流表G1和G2,零点均在刻度盘的中央,当电流从“+”接线柱流入时,指针向右摆;当电流从“-”接线柱流入时,指针向左摆,在电路接通后再断开开关S的瞬间,下述说法中正确的是( )【导学号:78870030】图227A.G1指针向右摆,G2指针向左摆B.G1指针向左摆,G2指针向右摆C.G1、G2的指针都向右摆D.G1、G2的指针都向左摆【解析】在电路接通后再断开开关S的瞬间,由于线圈L中的原电流突然减小,线圈L中产生自感现象,线圈中的电流逐渐减小,电流流经L、G2、R、G1,方向顺时针,由于从表G1的“+”接线柱流入,表G2的“-”接线柱流入,因此G1指针右偏,表G2的指针左偏,答案选A.【答案】A7.如图228所示,L是电阻不计的自感线圈,C是电容器,E为电源,在开关S闭合和断开时,关于电容器的带电情况,下列说法正确的是( )【导学号:78870031】图228A.S闭合瞬间,A板带正电,B板带负电B.S保持闭合,A板带正电,B板带负电C.S断开瞬间,A板带正电,B板带负电D.由于线圈L的电阻不计,电容器被短路,上述三种情况下电容器均不带电【解析】S闭合瞬间,通过L的电流增大,L产生的自感电动势的方向是由下指向上,使电容器充电,A板带正电,B板带负电,A项正确;S保持闭合时,L的电阻为零,电容器两极板被短路,不带电,B项错误;S断开瞬间,通过L的电流减小,自感电动势的方向由上指向下,在L、C组成的回路中给电容器充电,使B板带正电,A板带负电,C项错误.综上D项错误.【答案】A8.如图229所示,R1、R2的阻值均为R,电感线圈L的电阻及电池内阻均可忽略不计,S原来断开,电路中电流I0=E2R.现将S闭合,于是电路中产生自感电动势,自感电动势的作用是( )图229A.使电路的电流减小,最后由I0减小到零B.有阻碍电流增大的作用,最后电流小于I0C.有阻碍电流增大的作用,因而电流总保持不变D.有阻碍电流增大的作用,但电流最后还是变为2I0【解析】当S闭合时,电路中电阻减小,电流增大,线圈的作用是阻碍电流的增大,选项A错误;阻碍电流增大,不是不让电流增大,而是让电流增大的速度减缓,选项B、C错误;最后达到稳定时,I=ER=2I0,故选项D正确.【答案】D[能力提升]9.(多选)如图2210所示是研究自感通电实验的电路图,A1、A2是两个规格相同的小灯泡,闭合开关调节电阻R,使两个灯泡的亮度相同,调节可变电阻R1,使它们都正常发光,然后断开开关S.重新闭合开关S,则( )图2210A.闭合瞬间,A1立刻变亮,A2逐渐变亮B.闭合瞬间,A2立刻变亮,A1逐渐变亮C.稳定后,L和R两端电势差一定相同D.稳定后,A1和A2两端电势差不相同【解析】闭合瞬间,A2立刻变亮,A1逐渐变亮,稳定后,两个灯泡的亮度相同,说明它们的电压相同,L和R两端电势差一定相同,选项B、C正确,A、D错误.【答案】BC10.如图2211所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值.在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开S.下列表示A、B两点间电压U AB随时间t变化的图象中,正确的是( )图2211【解析】S 闭合时,由于自感L 的作用,经过一段时间电流稳定时L 电阻不计.可见电路的外阻是从大变小的过程.由U 外=R 外R 外+r E 可知U 外也是从大变小的过程.t 1时刻断开S ,由于自感在L 、R 、D 构成的回路中电流从B 向A 且中间流过D ,所以t 1时刻U AB 反向,B 正确.【答案】B11.如图2212所示,电源的电动势E =15 V ,内阻忽略不计.R 1=5 Ω,R 2=15 Ω,电感线圈的电阻不计,求当开关S 接通的瞬间,S 接通达到稳定时及S 切断的瞬间流过R 1的电流.图2212【解析】 开关S 接通瞬间,流过线圈L 的电流不能突变,所以流过R 1的电流仍为0.达到稳定时,线圈相当于导线,所以流过R 1的电流为I 1=E R 1=155A =3 A. 开关S 断开瞬间,流过线圈L 的电流不能突变,所以流过R 1的电流仍为3 A.【答案】 0 3 A 3 A12.如图2213所示为研究自感实验电路图,并用电流传感器显示出在t =1×10-3s 时断开开关前后一段时间内各时刻通过线圈L 的电流(如图2214).已知电源电动势E =6 V ,内阻不计,灯泡R 1的阻值为6 Ω,电阻R 的阻值为2 Ω.求:图2213图2214(1)线圈的直流电阻R L 是多少?(2)开关断开时,该同学观察到什么现象?(3)计算开关断开瞬间线圈产生的自感电动势.【解析】由图象可知S闭合稳定时I L=1.5 AR L=EI L -R=61.5Ω-2 Ω=2 Ω此时小灯泡电流I1=ER1=66A=1 AS断开后,L、R、R1组成临时回路电流由1.5 A逐渐减小,所以灯会闪亮一下再熄灭,自感电动势E=I L(R+R L+R1)=15 V. 【答案】(1)2 (2)灯泡闪亮一下后逐渐变暗,最后熄灭(3)15。
高二物理2.2《自感》教案 鲁科版选修3-2
2.2 自感[课时安排]1课时[教学目标]:(一)知识与技能①.了解自感现象及自感现象产生的原因②.知道自感现象中的一个重要概念——自感系数,了解影响其大小的因素。
③.了解在日常生活和生产技术中有关自感现象的应用情况(二)过程与方法①.通过分析实验电路,培养学生运用已学的物理知识,对实验结果进行预测的能力,同时提高学生分析物理问题的能力②.利用直观地演示实验,培养学生敏锐的观察能力和推理能力。
(三)情感、态度与价值观简单介绍美国物理学家亨利由学徒到美国科学院第一任院长的有关事迹,教育学生学习他善于自学,勇于钻研的精神,合理安排课外时间,形成良好的学习习惯,以便提高自身的自学能力。
[教学重点]自感现象及自感系数[教学难点]:(1)自感现象产生的原因分析(2)断电自感的演示实验中灯光的闪亮现象解释[教学器材]:通电自感演示装置、断电自感演示装置、幻灯片、日光灯的线路板[教学方法]:实验演示法,多媒体辅助教学[教学过程](一)引入新课产生电磁感应现象的条件是什么?在前面的学习中,电磁感应现象中的磁通量变化是怎样发生的?(二)进行新课由电流的磁效应可知,线圈通电后周围就有磁场产生,电流变化,则磁场也变化,那么对于这个线圈自身来说,穿过它的磁通量在此过程中也发生了变化,是否此时也会出现电磁感应现象呢?我们通过实验来解决这个问题。
如图所示电路图说明:当S闭合瞬间,线圈L中的电流从无到有发生变化,线圈自身的磁场也从无到有发生变化,结果,线圈L自身的磁通量发生变化,如果灯1和灯2规格相同,且都能正常发光,那么,闭合S瞬间,会有什么现象呢?引导学生先作预测,然后进行演示实验。
首先,闭合开关S,调节变阻器R和R1使两灯正常发光,然后,断开开关S。
最后,又重新闭合开关S(重复上述操作)。
请学生观察现象:在闭合天关S的瞬间,灯2立刻正常发光。
而灯1却是逐渐从暗到明,要比灯2迟一段时间才正常发光。
引导学生分析,产生上述现象的原因,就是由于线圈L自身的磁通量增加,而产生了感应电动势,这个感应电动势总是阻碍磁通量的变化,即阻碍线圈中电流的变化,故通过灯1的电流不能立即增大到最大值,灯1的亮度只能慢慢增加。
高中物理 第2章 楞次定律和自感现象 第2节 自感课件 鲁科版选修3-2
高中物理 第2章 楞次定律和自感现象 第2节 自感课件 鲁科版选修3-2
第2章 楞次定律和自感现象
第2节 自 感
第2章 楞次定律和自感现象
1.了解自感现象. 2.知道自感现象产生的原因. 3. 了解影响自感电动势大小的因素,认识自感电动势的作用. 4. 知道自感系数的决定因素是自感线圈的自身结构.
A.电源的内阻较大 C.线圈电阻偏大
B.小灯泡电阻偏大 D.线圈的自感系数较大
解析:选 C.在断电自感现象中,断电时线圈与小灯泡构成回路, 线圈中储存的磁场能转化为电能,线圈相当于电源,自感电动 势 E 自=LΔΔIt,与原电源无关,选项 A 错误;如果小灯泡电阻 偏大,则闭合开关 S 时通过线圈的电流较大,断开开关 S 时可 看到显著的延时熄灭现象和小灯泡闪亮现象,选项 B 错误;如 果线圈电阻偏大,则通过线圈的电流较小,断电时只看到小灯 泡不显著的延时熄灭现象,而不会出现闪亮现象,选项 C 正确; 如果线圈的自感系数较大,则自感电动势较大,能看到显著的 延时熄灭现象和小灯泡闪亮现象,选项 D 错误.
命题视角 2 断电自感分析 (多选)如图所示,电路甲、乙中电阻 R 和自感线圈 L 的
电阻都很小,小于灯泡 A 的电阻.闭合开关 S,使电路达到稳 定,灯泡 A 发光,则( )
A.在电路甲中,断开 S,A 将渐渐变暗 B.在电路甲中,断开 S,A 将先变得更亮,然后渐渐变暗 C.在电路乙中,断开 S,A 将渐渐变暗 D.在电路乙中,断开 S,A 将先变得更亮,然后渐渐变暗
命题视角 1 自感现象的理解 下列关于自感现象的论述中,正确的是( )
A.线圈的自感系数跟线圈内电流的变化率成正比 B.当线圈中电流减弱时,自感电流的方向与原电流方向相反 C.当线圈中电流增大时,自感电流的方向与原电流方向相反 D.穿过线圈的磁通量的变化和线圈中电流的变化无关
2021鲁科版选修第二节《自感》word教案
2021鲁科版选修第二节《自感》word教案一.自感现象:
1.定义:由于导体本身的电流发生变化而产生的电磁感应现象。
2.它是一种专门的电磁感应现象,同样遵循楞次定律。
3.实质:能量的转化和守恒。
电流增大过程,电能转化为磁场能;电流减小的过程,磁场能转化为电能。
二.自感电动势:
1.定义:由导体自身电流变
化所产生的感应电动势。
2.自感电动势的作用:总是阻碍导体中原电流的变化。
3.自感电动势的方向:当电流增大时,自感电动势(自感电流)与原先电流方向相反,当电流减小时,自感电动势(自感电流)与原先电流方向相同。
4.公式:E=L△I/△t
5.自感系数(L):是描述线圈对通过
(自感或电感)
自身电流变化所起阻碍作用大小的物理量。
(1)阻碍因数:与线圈的形状横在面积长短匝数铁芯有关。
(2)单位:亨利(亨)H mH UH。
高中物理第2章楞次定律和自感现象2.3自感现象的应用学案鲁科版选修3_2
第4讲自感现象的应用[目标定位] 1.知道日光灯的组成和电路图.2.知道日光灯的主要元件及作用.3.知道感应圈是利用自感现象由低压直流电源获得高电压的.一、日光灯与镇流器二、感应圈1.工作原理利用自感现象用低压直流电源来获得高电压.2.结构主要由直接绕在铁芯上的初级线圈和两端接在放电器上的次级线圈构成.3.用途在物理、化学实验室里可以做小功率高压电源,在汽车、煤气灶点火装置中产生高压电火花完成点火工作.三、自感的其他应用及危害1.其他应用在广播电台和电视台的无线电设备中,用自感线圈和电容器组成振荡电路来发射电磁波;在收音机和电视机中,同样也用振荡电路来接收电磁波.另外电焊机也利用了自感现象,使焊条与工件之间的空隙产生电弧火花,使工件局部熔化.2.危害在电路中,开关断开时产生电弧火花,烧坏开关或造成安全隐患.一、日光灯的发光原理图11.构造日光灯的电路如图1所示,由日光灯管、镇流器、开关等组成.2.启动前管内气体未导通,启动器动触片与静触片处于分离状态.3.日光灯的启动当开关闭合时,电源把电压加在启动器的两电极之间,使氖气放电而发出辉光,辉光产生的热量使U形动触片膨胀伸长与静触片接触,从而接通电路,于是镇流器的线圈和灯管的灯丝中就有电流通过;电路接通后,启动器中的氖气停止放电,U形动触片冷却收缩,两个触片分离,电路自动断开,流过镇流器的电流迅速减小,镇流器线圈中会产生很高的自感电动势,方向与原来电压方向相同,与电源电压一起形成瞬时高压加在灯管两端,使灯管中的气体开始放电,于是日光灯管成为电流的通路开始发光.启动器相当于一个自动开关.日光灯正常工作后处于断开状态,启动器损坏的情况下可将连接启动器的两个线头作一个短暂接触也可把日光灯启动.启动时电流流经途径是镇流器、启动器、灯丝,启动后电流流经途径是镇流器、灯丝、日光灯管.图24.日光灯正常工作时镇流器的作用由于日光灯使用的是交流电源,电流的大小和方向做周期性变化.当交流电的大小增大时,镇流器上的自感电动势阻碍原电流增大,自感电动势与原电压反向;当交流电的大小减小时,镇流器上的自感电动势阻碍原电流减小,自感电动势与原电压同向.可见镇流器的自感电动势总是阻碍电流的变化,正常工作时镇流器就起着降压、限流的作用.例1如图所示,S为启动器,L为镇流器,其中日光灯的接线图正确的是( )答案 A解析根据日光灯的工作原理,要想使日光灯发光,灯丝需要预热发出电子,灯管两端应有瞬时高压,这两个条件缺一不可.当动、静触片分离后,选项B中灯管和电源断开,选项B 错误;选项C中镇流器与灯管断开,无法将瞬时高压加在灯管两端,选项C错误;选项D中灯丝左、右端分别被短接,无法预热放出电子,不能使灯管气体导电,选项D错误.针对训练如图3是日光灯的结构示意图,若按图示的电路连接,关于日光灯的发光情况,下列叙述中正确的是( )图3A.只把S1接通,S2、S3不接通,日光灯就能正常发光B.把S1和S2接通后,S3不接通,日光灯就能正常发光C.S3不接通,接通S1和S2后再断开S2,日光灯就能正常发光D.当日光灯正常发光后,再接通S3,日光灯仍能正常发光答案 C解析A选项:只接通S1,灯管两端不能产生瞬时高压,日光灯不能点亮,A错误;B选项:S1和S2接通,S2不断开,日光灯被短路,电压为零,镇流器也不能产生断电自感电动势,日光灯不能点亮,B错误;C选项:S1和S2接通,再断开S2,镇流器产生自感电动势,与外加电压一起形成瞬时高压,使日光灯点亮而正常发光,C正确;D选项:日光灯正常发光后,再接通S3,镇流器被短接,不再起限流和降压作用,加在灯管两端的电压将达到220V,灯管将被烧坏,D错误.例2启动器是由电容和氖管两大部分组成,其中氖管中充有氖气,内部有静触片和U形动触片.通常动、静触片不接触,有一个小缝隙,则下列说法中正确的是( )A.当电源的电压加在启动器两极时,氖气放电并产生热量,导致U形动触片受热膨胀B.当电源的电压加在启动器两极后,启动器的两个触片才接触,使电路有电流通过C.电源的电压加在启动器两极前,启动器的两个触片就接触着,电路就已经有电流通过D.当电路通电后,两个触片冷却,两个触片重新分离答案ABD解析依据日光灯的工作原理可知,电源把电压加在启动器的两极之间,使氖气放电而发出辉光.辉光产生热量使U形动触片膨胀伸长,跟静触片接触把电路接通.电路接通后,启动器的氖气停止放电,U形动触片冷却收缩,两个触片分开,电路自动断开.二、感应圈的工作原理如图4是感应圈的原理图,闭合开关K,低压直流电源接通.开关K和弹簧片DK与初级线圈L1构成回路.此时,铁芯被磁化,吸引弹簧片DK,使L1断路,瞬时无电流通过,铁芯失磁,弹簧片DK返回,L1回路再度接通.在这样的反复过程中,L1中产生变化的电流.在通、断的瞬间,由于初级线圈中的电流迅速变化,L1的自感电动势会猛增至数百伏.次级线圈L2的线圈匝数约为L1的100倍,于是在次级线圈L2的两端感应出数万伏的高压.图4例3关于感应圈下列说法不正确...的是( )A.感应圈是利用自感现象来获得高压电的装置B.在工程中,感应圈可作为大功率高压电源使用C.煤气灶电子点火装置,是利用感应圈产生高压电火花来完成的D.感应圈的主要构造包括绕在铁芯上的两个绝缘线圈及放电器等答案 B解析感应圈是利用自感现象,通过低压直流电源来获得高电压的装置,A正确;受直流电源提供电功率的限制,感应圈不能作为大功率高压电源使用,B不正确;感应圈的主要构造包括两个绝缘线圈和放电器等,D正确;煤气灶电子点火装置是利用感应圈产生的高压电火花来完成的,C正确.日光灯的发光原理1.关于日光灯电路的连接,下列说法正确的是( )A.启动器与灯管并联B.镇流器与灯管串联C.启动器与镇流器并联D.启动器相当于开关答案ABD解析根据日光灯工作原理知,启动器与灯管并联、镇流器与灯管串联,启动器的动触片和静触片短暂接通后断开,镇流器向灯管提供瞬时高压.所以,启动器仅起到了开关作用,A、B、D对,C错.2.在日光灯电路中接有启动器、镇流器和日光灯管,下列说法中正确的是( )A.日光灯点燃后,镇流器、启动器都不起作用B.镇流器在点燃灯管时产生瞬时高压,点燃后起降压限流作用C.日光灯点亮后,启动器不再起作用,可以将启动器去掉D.日光灯点亮后,使镇流器短路,日光灯仍能正常发光,并能降低对电能的消耗答案BC解析日光灯工作时都要经过预热、启动和正常工作三个不同的阶段,它们的工作电流通路如下图所示:在启动阶段镇流器与启动器配合产生瞬间高压.工作后,电流由灯管经镇流器,不再流过启动器,故启动后启动器不再工作,而镇流器还要起降压限流作用,不能去掉,故选B、C.感应圈的工作原理3.下列说法正确的是( )A.感应圈的工作原理是电磁感应现象B.日光灯和白炽灯一样,都可接在直流电路中正常工作C.感应圈中的两个线圈的匝数一样多D.一个标有“220V,40W”的日光灯管,用欧姆表测灯管两端,读数约为1210Ω答案 A4.下列装置中没有利用感应圈的是( )A.煤气灶电子点火装置B.汽车发动机点火装置C.物理、化学实验中的小功率高压电源D.自动设备中的延时继电器答案 D解析煤气灶电子点火装置,汽车发电机点火装置都是利用感应圈产生的高压电火花来完成点火工作的,物理、化学实验中的小功率电源是利用感应圈通过低压直流电源获得高电压,A、B、C正确;延时继电器是利用线圈的电磁感应来正常工作的,没有用到感应圈,D错误.。
高中物理第2章楞次定律和自感现象2.2自感课件鲁科版选修3_2
在磁场中要受到安培力的作用,根据楞次定律,安培力总是阻碍
导体的运动,于是产生电磁阻尼.
电磁阻尼是一种十分普遍的物理现象,任何在磁场中运动的导体,
只要给感应电流提供回路,就会存在电磁阻尼作用.
第3讲 自 感
21
例预4习导位学于光滑水平面的小车上放置一螺线管,一个梳比理螺·识线记管·点长拨的 条形磁铁沿着螺线管的轴线水平穿过,如图4所示,在此过程中 ()
26
预习导学
梳理·识记·点拨
解析 电感一定时,电流变化越快,ΔΔIt越大,由 E=LΔΔIt知,自感
电动势越大,A 错,B 对;
线圈中电流为零时,电流的变化率不一定为零,自感电动势不一 定为零,故C错; 当通过线圈的电流最大时,电流的变化率为零,自感电动势为零, 故D错.
答案 B
第3讲 自 感
27
经离开教室,也可以向同学请教,及时消除疑难问题。做到当堂知识,当堂解决。 • 二、补笔记 • 上课时,如果有些东西没有记下来,不要因为惦记着漏了的笔记而影响记下面的内容,可以在笔记本上留下一定的空间。下课后,再从头到尾阅读一
遍自己写的笔记,既可以起到复习的作用,又可以检查笔记中的遗漏和错误。遗漏之处要补全,错别字要纠正,过于潦草的字要写清楚。同时,将自己 对讲课内容的理解、自己的收获和感想,用自己的话写在笔记本的空白处。这样,可以使笔记变的更加完整、充实。 • 三、课后“静思2分钟”大有学问 • 我们还要注意课后的及时思考。利用课间休息时间,在心中快速把刚才上课时刚讲过的一些关键思路理一遍,把老师讲解的题目从题意到解答整个过 程详细审视一遍,这样,不仅可以加深知识的理解和记忆,还可以轻而易举地掌握一些关键的解题技巧。所以,2分钟的课后静思等于同一学科知识的 课后复习30分钟。
高中物理第2章楞次定律和自感现象第2节自感电感线圈基本知识素材鲁科版选修3-2(2021年整理)
电感线圈的基本知识电感线圈是由导线一圈靠一圈地绕在绝缘管上,导线彼此互相绝缘,而绝缘管可以是空心的,也可以包含铁芯或磁粉芯,简称电感。
用L表示,单位有亨利(H)、毫亨利 (mH)、微亨利(uH),1H=10^3mH=10^6uH。
一、电感的分类按电感形式分类:固定电感、可变电感。
按导磁体性质分类:空芯线圈、铁氧体线圈、铁芯线圈、铜芯线圈.按工作性质分类:天线线圈、振荡线圈、扼流线圈、陷波线圈、偏转线圈。
按绕线结构分类:单层线圈、多层线圈、蜂房式线圈。
二、电感线圈的主要特性参数1、电感量L电感量L表示线圈本身固有特性,与电流大小无关。
除专门的电感线圈(色码电感)外,电感量一般不专门标注在线圈上,而以特定的名称标注.2、感抗XL电感线圈对交流电流阻碍作用的大小称感抗XL,单位是欧姆。
它与电感量L和交流电频率f 的关系为XL=2πfL3、品质因素Q品质因素Q是表示线圈质量的一个物理量,Q为感抗XL与其等效的电阻的比值,即:Q=XL/R。
线圈的Q值愈高,回路的损耗愈小。
线圈的Q值与导线的直流电阻,骨架的介质损耗,屏蔽罩或铁芯引起的损耗,高频趋肤效应的影响等因素有关。
线圈的Q值通常为几十到几百。
4、分布电容线圈的匝与匝间、线圈与屏蔽罩间、线圈与底版间存在的电容被称为分布电容。
分布电容的存在使线圈的Q值减小,稳定性变差,因而线圈的分布电容越小越好三、常用线圈1、单层线圈单层线圈是用绝缘导线一圈挨一圈地绕在纸筒或胶木骨架上。
如晶体管收音机中波天线线圈。
2、蜂房式线圈如果所绕制的线圈,其平面不与旋转面平行,而是相交成一定的角度,这种线圈称为蜂房式线圈。
而其旋转一周,导线来回弯折的次数,常称为折点数。
蜂房式绕法的优点是体积小,分布电容小,而且电感量大。
蜂房式线圈都是利用蜂房绕线机来绕制,折点越多,分布电容越小.3、铁氧体磁芯和铁粉芯线圈线圈的电感量大小与有无磁芯有关。
在空芯线圈中插入铁氧体磁芯,可增加电感量和提高线圈的品质因素.4、铜芯线圈铜芯线圈在超短波范围应用较多,利用旋动铜芯在线圈中的位置来改变电感量,这种调整比较方便、耐用。
高中物理 第2章 楞次定律和自感现象 第2节 自感教学案 鲁科版选修32
第2节 自感一、自感现象由导体自身电流变化所产生的电磁感应现象。
二、自感电动势三、自感系数1.自主思考——判一判(1)自感电动势的作用是阻碍导体自身电流发生变化。
(√) (2)当线圈中有电流时,线圈中就有自感电动势。
(×)1.由导体自身的电流变化所产生的电磁感应现象叫自感现象,产生的感应电动势叫自感电动势,E =L ΔIΔt。
2.当导体中原电流增大时,自感电动势与原电流方向相反;当导体中原电流减小时,自感电动势与原电流方向相同。
即自感电动势总是要阻碍导体自身的电流发生变化。
3.线圈的自感系数与线圈的形状、横截面积、长短、匝数、有无铁芯等因素有关。
(3)当线圈中电流减小时,线圈中自感电动势的方向与线圈中电流的方向相同。
(√)(4)线圈中电流变化得越快,线圈的自感系数越大。
(×)(5)不管电流如何变化,线圈的自感系数不变。
(√)2.合作探究——议一议(1)自感现象是否属于电磁感应现象,是否遵守楞次定律和法拉第电磁感应定律?提示:自感现象属于电磁感应现象,同样遵守楞次定律和法拉第电磁感应定律。
(2)自感电动势的方向与原电流的方向是否相反?提示:实际上,电流减弱时自感电动势的方向与原电流方向相同,电流增强时自感电动势的方向与原电流方向相反。
(3)感应电动势的结果可以“阻止”原电流的变化吗?提示:感应电动势只阻碍原电流的变化,不能“阻止”。
1.断电自感2.通电自感实验要求电路稳定时L A1、L A2亮度相同S 闭合的 瞬间L A1先亮由于L A1支路为纯电阻电路,不产生自感现象L A2逐渐变亮,最后与L A1一样亮由于L 的自感作用阻碍L A2支路电流增大,出现“延迟”现象[特别提醒](1)断电发生自感现象时,线圈产生感应电动势相当于电源,与其他元件构成新的电路。
(2)发生自感现象时,通过线圈的电流不能突变,只能在原来电流的基础上逐渐变化。
[典例] 如图221所示甲、乙中,自感线圈L 的电阻很小,接通S ,使电路达到稳定,灯泡A 发光,下列说法正确的是( )图221A .在电路甲中,断开S ,A 将立即熄灭B .在电路甲中,断开S ,A 将先变得更亮,然后逐渐变暗C .在电路乙中,断开S ,A 将逐渐变暗D .在电路乙中,断开S ,A 将先变得更亮,然后渐渐变暗 [思路点拨]⎦⎥⎥⎤甲图中,S 处于闭合状态时,I L =I A 乙图中,S 处于闭合状态时,I L >I A ⇒⎣⎢⎢⎡S 断开后,均发生断电自感现象两灯泡的电流均从I L 开始减小[解析] 甲图中,灯泡A 与电感线圈L 在同一个支路中,流过的电流相同,断开开关S 时,线圈L 中的自感电动势的作用使得支路中的电流瞬间不变,以后渐渐变小,A 、B 错误。
2020-2021学年高中物理 第二章 楞次定律和自感现象 第2节 自感教案2 鲁科版选修3-2
自感【教学目标】1、知识与技能(1)了解互感现象的电磁感应特点。
(2)指导学生运用观察、实验、分析、综合的方法,认识自感现象及其特点。
(3)明确自感系数的意义及决定条件。
2、过程与方法(1)能用电磁感应原理,解释生产和生活中的某些自感现象。
(2)提高学生分析问题的能力和运用物理知识解决实际问题的能力。
3、情感态度和价值观培养、提高学生尊重科学,利用实验探索研究自然的科学素养【教学重点】自感现象产生的原因及特点。
【教学难点】运用自感知识解决实际问题。
【教学方法】讨论法、探究法、试验法、练习法【教学用具】变压器原理说明器(用400匝线圈)、3.8V0.3A灯泡两只、滑动变阻器、电源(3V)、导线、开关,多媒体课件【教学过程】一、复习旧课,引入新课师:前面我们学习了电磁感应现象,了解了几种不同形式的电磁感应现象。
如磁铁向线圈中插入或拔出时、闭合电路的一部分导体在磁场中做切割磁感线的运动时等,都会引起感应电动势,发生电磁感应现象。
你们认为引起电磁感应现象最重要的条件是什么?生:穿过电路的磁通量发生变化。
师:不论用什么方式,也不管是什么原因,只要穿过电路的磁通量发生了变化,都能引起电磁感应现象。
如果电路是闭合的,电路中就会有感应电流。
二、新课教学在法拉第的实验中两个线圈并没有用导线连接,当一个线圈中的电流变化时,在另一个线圈中为什么会产生感应电动势呢?(一)互感现象两个线圈之间并没有导线相连,但当一个线圈中的电流变化时,它所产生的变化的磁场会在另一个线圈中产生感应电动势。
这种现象叫做互感,这种感应电动势叫做互感电动势。
利用互感现象可以把能量由一个线圈传递到另一个线圈。
变压器就是利用互感现象制成的。
如下图所示。
在电力工程中和电子电路中,互感现象有时会影响电路的正常工作,这时要设法减小电路间的互感现象。
例如在电路板的刻制时就要设法减小电路间的互感现象。
(二)、自感现象1、演示实验,提出问题演示实验1:断电自感现象。
2020_2021学年高中物理第二章楞次定律和自感现象第2节自感教案鲁科版选修3_2
自感课题《自感》[鲁科版(山东科技出版社)选修3-2第2章第2节]教材分析本节内容是电磁感应现象在技术中的应用,也是学生在认知上对电磁感应规律的进一步巩固与深化。
《课程标准》对本节的要求是“通过实验,了解自感现象”,对于自感系数和自感电动势的公式《课程标准》没有明确要求。
教材对自感的编写顺序是:提出问题→演示实验(通电自感)→理论分析→提出自感、自感电动势概念→演示实验(断电自感)→理论分析自感电动势的作用→介绍自感系数和自感电动势的公式。
根据《课程标准》结合教材,教学中要做好实验,让学生通过实验来认识自感现象,明确自感现象是由于自身电流变化在自身电路中产生的电磁感应现象。
通过实验器材演示、多媒体的展示、营造生动、直观、具体的物理情景,让学生在具体的物理情景中去观察、分析、比较、概括、抽想出物理的概念,培养学生物理的核心素养教学目标知识与技能1.通过实验,了解自感现象及其产生的原因.2.理解自感电动势的作用,能解释通电自感和断电自感.3.知道自感系数是表示线圈本身特征的物理量,知道它的单位.过程与方法通电自感和断电自感自感现象实验的观察、分析和讨论,培养学生的分析推理能力。
2.通过对图像的处理过程,培养学生运用类比的方法进行探究的能力.情感态度与价值观1.通过介绍自感现象的发现过程以及美国实验物理学家亨利的事迹,培养学生的探究精神、体会科学家的人格魅力;2.渗透科学研究方法的教育,培养学生的自主学习的能力,提高学生物理学的核心素养,通过对已学知识的理解实现知识的自我更新,以适应社会对人才的要求.重点难点重点:自感现象及自感系数难点:(1) 自感现象的产生原因分析(2)通、断电自感的演示实验中现象解释学情分析学生已经学习了电路的基本常识以及电磁感应的相关规律,学会判断回路是否会产生感应电流以及感应电流的方向,而且还掌握了感应电动势的大小与什么因素有关。
但头脑中没有意识到当通过线圈变化的电流时,线圈本身也会产生电磁感应现象。
2020_2021学年高中物理第二章楞次定律和自感现象第2节自感课件1鲁科版选修3_2
2.决定L大小因素:
线线圈圈磁 欧 自的长现 姆 感象 定 现形短。 律 象状曾 的,、独 意1横8立 义3截观 。5年测1面8发到3积表2电年解磁,释感亨自应利感现首现象先象并发的揭现论示了文了, 单位受长到普度遍线重圈视的,匝为数纪念他这一成就,电感的
线圈单中位命是名否为插亨入利铁。 芯有关。
3.单位: 亨利 H
第2节:自 感
学习目标
1. 了解自感现象。 2. 知道自感现象产生的原因。 3. 理解自感电动势的作用。 4. 知道自感系数是表示线圈本身特征
的物理量,知道它的单位.
预习检测 各学习小组错误反馈统计
小组 题号
第2节:自 感
问题1:如图所示,开关k闭合或打开的时候,线圈B中
有没有感应电流 ? 线圈A中磁通量是否发生变化? 线圈A自身电流引起的磁通量发生是否也能产生 电磁感应呢?
B
A
?G
干电池也能使人触电,您相信吗?
干电池也能使人触电,您相信吗?
第2节:自 感
实验探索 1:如图甲所示,开关k闭合,灯A较暗甚至不亮, 当断开开关k时,观察到什么现象?
如图乙所示,把图甲中灯A换成两个发光二
极管,发光二极管具有单向导电性,从理论上
分析,闭合开关k和断开关k时,发光二极管的
原电流减小时,自感电动势与原电流方向相同
A A D2 B
D1
IL E自
第2节:自 感
一.自感现象
二.自感电动势
1.定义:导体自身电流变化所产生的感应电动势叫自感电动势
2.自感产生的原因: 自身I变化 φ变化
产生自感电动势
原电流减小时,自感电动势与原电流方向相同
iA
A
i
iL
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
第3讲自感[目标定位] 1.了解自感现象及自感现象产生的原因.2.知道自感现象中的一个重要概念——自感系数,了解影响其大小的因素.3.了解自感现象的利弊及其利用和防止.一、自感现象1.实验与探究(1)断电自感实验电路实验要求电路稳定时A1、A2亮度相同A2立刻熄灭线圈中的电流在原来电流值基础上逐渐减小I L>I A1A1猛然亮一下再逐渐熄灭I L=I A1A1由原来亮度逐渐熄灭I L<I A1A1先立即变暗一些再逐渐熄灭(2)通电自感实验电路实验要求电路稳定时A1、A2亮度相同S闭合的瞬间A1先亮由于A1支路为纯电阻电路,不产生自感现象A2逐渐变亮,最后与A1一样亮由于L的自感作用阻碍A2支路电流增大,出现“延迟”现象2.定义:由导体自身的电流变化所产生的电磁感应现象叫自感现象.二、自感电动势1.定义:由导体自身的电流变化所产生的感应电动势叫自感电动势.2.作用:总是阻碍导体中原电流的变化,即总是起着推迟电流变化的作用,当电流增大时,自感电动势阻碍电流的增大;当电流减小时,自感电动势阻碍电流的减小.三、自感系数1.物理意义:描述线圈本身特性的物理量,简称自感或电感.2.影响因素:线圈的形状、横截面积、长短、匝数、有无铁芯.线圈越粗、越长,匝数越多,其自感系数就越大;有铁芯时线圈的自感系数比没铁芯时大得多.3.单位:亨利,简称亨,符号是H.常用的较小单位有mH和μH.1mH=10-3H,1μH=10-6H.一、对通电自感现象的分析1.通电瞬间通过线圈的电流增大,自感电动势的方向与原电流方向相反,阻碍电流的增加,但不能阻止增加.2.通电瞬间自感线圈处相当于断路;电流稳定时,自感线圈相当于导体.3.与线圈串联的灯泡在通电后会逐渐变亮,直到稳定.例1如图1所示,灯A、B完全相同,带铁芯的线圈L的电阻可忽略,则( )图1A.S闭合的瞬间,A、B同时发光,接着A变暗,B更亮,最后A熄灭B.S闭合瞬间,A不亮,B立即亮C.S闭合瞬间,A、B都不立即亮D.稳定后再断开S的瞬间,B熄灭,A闪亮一下再熄灭答案AD解析S接通的瞬间,L所在支路中电流从无到有发生变化,因此,L 中产生的自感电动势阻碍电流增加。
由于有铁芯,自感系数较大,对电流的阻碍作用也就很强,所以S接通的瞬间L中的电流非常小,即干路中的电流几乎全部流过A,所以A、B会同时亮;又由于L中电流逐渐稳定,感应电动势逐渐消失,A逐渐变暗,线圈的电阻可忽略,对A起到“短路”作用,因此A最后熄灭.这个过程电路的总电阻比刚接通时小,由恒定电流知识可知,B会比以前更亮.稳定后S断开瞬间,由于线圈的电流较大,L与A组成回路,A要闪亮一下再熄灭,B立即熄灭.二、对断电自感现象的分析1.断电时自感线圈处相当于电源.2.断电时灯泡会不会闪亮一下再熄灭取决于通过灯泡前后电流大小的关系.若断电前,自感线圈电流大小I L大于灯泡的电流I D则灯泡会闪亮一下再熄灭;若断电前,自感线圈中的电流I L小于灯泡中的电流I D 则灯泡不会出现闪亮,而是逐渐熄灭.3.要注意断电前后通过灯泡的电流方向可能变化.例2如图2(a)、(b)所示的电路中,电阻R和自感线圈L的电阻值都很小,且小于灯泡A的电阻,接通S,使电路达到稳定,灯泡A发光,则( )图2A.在电路(a)中,断开S,A将渐渐变暗B.在电路(a)中,断开S,A将先变得更亮,然后渐渐变暗C.在电路(b)中,断开S,A将渐渐变暗D.在电路(b)中,断开S,A将先变得更亮,然后渐渐变暗答案AD解析在电路(a)中,灯泡A和线圈L串联,它们的电流相同,断开S 时,线圈上产生自感电动势,阻碍原电流的减小,但流过灯泡A的电流仍逐渐减小,从而灯泡A只能渐渐变暗;在电路(b)中,电阻R和灯泡A串联,灯泡A的电阻大于线圈L的电阻,电流则小于线圈L中的电流,断开S时,电源不再给灯供电,而线圈产生自感电动势阻碍电流的减小,通过R、A形成回路,灯泡A中电流突然变大,灯泡A先变得更亮,然后渐渐变暗.故A、D正确.针对训练如图3所示的电路中,电源的电动势为E,内阻为r,电感L的电阻不计,电阻R的阻值大于灯泡D的阻值,在t=0时刻闭合开关S,经过一段时间后,在t=t1时刻断开S,下列表示A、B两点间电压U AB随时间t变化的图象中,正确的是( )图3答案B解析在t=0时刻闭合开关S,由于电感L产生自感电动势,阻碍电流通过,电源输出电流较小,路端电压较高,经过一段时间电路稳定,电源输出电流较大,路端电压较低.在t=t1时刻断开S,电感L产生自感电动势,与灯泡构成闭合回路,灯泡D中有反向电流通过,所以表示A、B两点间电压U AB随时间t变化的图象中正确的是B.三、对自感电动势及自感系数的理解1.对自感电动势的理解(1)自感电动势总是阻碍导体中原来电流的变化,可概括为“增反减同”.(2)由E =L ΔI Δt 知自感电动势与L 和ΔI Δt有关,与ΔI 、Δt 无关. 2.对自感系数的理解(1)自感系数的大小由线圈本身的特性决定,线圈越长,单位长度的匝数越多,横截面积越大,自感系数越大.(2)自感系数与E 、ΔI 、Δt 等均无关系.例3 关于线圈的自感系数,下面说法正确的是( )A .线圈的自感系数越大,自感电动势就一定越大B .线圈中电流等于零时,自感系数也等于零C .线圈中电流变化越快,自感系数越大D .线圈的自感系数由线圈本身的因素及有无铁芯决定答案 D解析 线圈的自感系数是由线圈本身的因素及有无铁芯决定的,与有无电流、电流变化情况都没有关系,故B 、C 错误,D 正确;自感电动势的大小除了与自感系数有关,还与电流的变化率有关,故A 错误.四、电磁阻尼、电磁驱动闭合回路的部分导体在做切割磁感线运动产生感应电流时,导体在磁场中要受到安培力的作用,根据楞次定律,安培力总是阻碍导体的运动,于是产生电磁阻尼.电磁阻尼是一种十分普遍的物理现象,任何在磁场中运动的导体,只要给感应电流提供回路,就会存在电磁阻尼作用.例4 位于光滑水平面的小车上放置一螺线管,一个比螺线管长的条形磁铁沿着螺线管的轴线水平穿过,如图4所示,在此过程中( )图4A .磁铁做匀速直线运动B .磁铁做减速运动C.小车向右做加速运动D.小车先加速后减速答案BC解析磁铁水平穿入螺线管时,管中将产生感应电流,由楞次定律知螺线管左端相当于S极,与磁铁S极相斥,阻碍磁铁的运动.同理,磁铁穿出时,由楞次定律知螺线管右端为S极,与磁铁的N极相吸,阻碍磁铁的运动,故整个过程中,磁铁做减速运动,B正确;而对于小车上螺线管来说,在此过程中,螺线管会产生感应电流,从而使螺线管受到的安培力都是水平向右,这个安培力使小车向右运动起来,且一直做加速运动,C正确.对通、断电自感现象的分析1.如图5所示的电路中A1和A2是两个相同的小灯泡,L是一个自感系数相当大的线圈,其阻值与电阻R相同.在开关S接通和断开时,灯泡A1和A2亮暗的顺序是( )图5A.接通时A1先达最亮,断开时A1后灭B.接通时A2先达最亮,断开时A1后灭C.接通时A1先达最亮,断开时A1先灭D.接通时A2先达最亮,断开时A2先灭答案A解析当开关S接通时,A1和A2同时亮,但由于自感现象的存在,流过线圈的电流由零变大时,线圈上产生自感电动势阻碍电流的增大,使通过线圈的电流从零开始慢慢增加,所以开始时电流几乎全部从A1通过,而该电流又将同时分两路通过A2和R,所以A1先达最亮,经过一段时间电路稳定后,A1和A2达到一样亮;当开关S断开时,电源电流立即为零,因此A 2立即熄灭,而对A 1,由于通过线圈的电流突然减小,线圈中产生自感电动势阻碍电流的减小,使线圈L 和A 1组成的闭合电路中有感应电流,所以A 1后灭.对自感电动势的理解2.关于线圈中自感电动势大小的说法中正确的是( )A .电感一定时,电流变化越大,自感电动势越大B .电感一定时,电流变化越快,自感电动势越大C .通过线圈的电流为零的瞬间,自感电动势为零D .通过线圈的电流为最大值的瞬间,自感电动势最大答案 B解析 电感一定时,电流变化越快,ΔI Δt 越大,由E =L ΔI Δt知,自感电动势越大,A 错,B 对;线圈中电流为零时,电流的变化率不一定为零,自感电动势不一定为零,故C 错;当通过线圈的电流最大时,电流的变化率为零,自感电动势为零,故D 错.3.一个线圈中的电流均匀增大,这个线圈的( )A .磁通量均匀增大B .自感系数均匀增大C .自感系数、自感电动势均匀增大D .自感系数、自感电动势、磁通量都不变答案 A解析 电流均匀增大时,线圈中磁感应强度均匀增大,所以磁通量均匀增大,而自感电动势取决于磁通量的变化率,所以自感电动势不变;自感系数取决于线圈本身的因素,也保持不变,只有选项A 正确.对电磁阻尼的理解4.如图6所示,使一个铜盘绕其竖直的轴OO ′转动,且假设摩擦等阻力不计,转动是匀速的。
现把一个蹄形磁铁移近铜盘,则( )图6A.铜盘转动将变慢B.铜盘转动将变快C.铜盘仍以原来的转速转动D.铜盘转动速度是否变化,要根据磁铁的上、下两端的极性来决定答案A解析当一个蹄形磁铁移近铜盘时,铜盘转动切割磁感线,产生感应电流,由楞次定律可知感应电流所受的安培力阻碍其相对运动,所以铜盘转动将变慢.本题也可以从能量守恒的角度去分析,因为铜盘转动切割磁感线,产生感应电流,铜盘的机械能不断转化成电能,铜盘转动会逐渐变慢.选项A正确.【感谢您的阅览,下载后可自由编辑和修改,关注我每天更新】。