大学物理 静电场(高斯定理)课件.ppt
合集下载
第二讲 应用高斯定理求场强 PPT
为高斯面,电通量为
E dS
E4π r 2
q内
0
• 球外( r > R )
q内
4π 3
R3
E
3 0
R3 r2
• 球内 ( r < R )
q内
4π 3
r3
E r 3 0
若 = (r) ? 如 (r)=A /r
r+
++r+
+ +
R+++
E dl a E dl b E dl c E dl d E dl
b
d
a
b
a E1dl c E2dl
d
cE
0
不是静电场
(2) 环路定理要求电力线不能闭合。
(3) 静电场是有源、无旋场,可引进电势能。
三. 电势能
• 电势能的差 力学
第二讲 应用高斯定理求场强分布
静电场高斯定理
e
E dS
1
S
0
q内
e
E dS
1
S
0
dV
V
真空中的任何静电场中,穿过任一闭合曲面的电通量,等
于该曲面所包围的电荷电量的代数和乘以 1 0
(1) 意义 反映静电场的性质 —— 有源场
(2) 通量的一般意义: (3) 注意
3 0
r1
E2
4 3
r23 ( 4 0r22
)
r2
0
3 0
r2
o o
E E1 E2
大学物理课件第五章静电场65页PPT
结论: 电场中各处的力 学性质不同。
2、在电场的同一点上放 不同的试验电荷
结论: F 恒矢量
q0
F3
q3
F1
q1
Q
q2
F2
电场强度定义:
E
F
qo
单位:N·C-1
1. 电场强度的大小为F/q0 。
2. 电场强度的方向为正电荷在该处所受电场 力的方向。
FqE
➢ 电场强度的计算
1.点电荷电场中的电场强度
n
Fi
E i1 q0
n Fi q i 1 0
n
Ei i1
q1 r0 1
F02r02q2 F
q0
F01
若干个静止的点电荷q1、q2、……qn,同时存在时的
场强为
n
E Ei
i 1
i
qi
4 π ori2
eˆri
3.连续分布电荷电场中的电场强度
将带电体分成许多无限小电荷元 dq ,先求出它在任意
目录
第五章 第六章 第七章 第八章
静电场 静电场中的导体和电介质 恒定磁场 变化的电磁场
第五章 静电场
5-1 电荷 库仑定律 5-2 电场 电场强度 5-3 高斯定理及应用 5-4 静电场中的环路定理 电势 5-5 等势面 电势梯度
5-1 电荷 库仑定律
➢ 电荷 带电现象:物体经摩擦 后对轻微物体有吸引作 用的现象。 两种电荷: • 硬橡胶棒与毛皮摩擦后 所带的电荷为负电荷。
Qi c
电荷守恒定律适用于一切宏观和微观过程( 例如 核反应和基本粒子过程 ),是物理学中普遍的基本定
律之一。
➢ 库仑定律
库仑定律描述真空中两个静止的 点电荷之间的相互 作用力。
2、在电场的同一点上放 不同的试验电荷
结论: F 恒矢量
q0
F3
q3
F1
q1
Q
q2
F2
电场强度定义:
E
F
qo
单位:N·C-1
1. 电场强度的大小为F/q0 。
2. 电场强度的方向为正电荷在该处所受电场 力的方向。
FqE
➢ 电场强度的计算
1.点电荷电场中的电场强度
n
Fi
E i1 q0
n Fi q i 1 0
n
Ei i1
q1 r0 1
F02r02q2 F
q0
F01
若干个静止的点电荷q1、q2、……qn,同时存在时的
场强为
n
E Ei
i 1
i
qi
4 π ori2
eˆri
3.连续分布电荷电场中的电场强度
将带电体分成许多无限小电荷元 dq ,先求出它在任意
目录
第五章 第六章 第七章 第八章
静电场 静电场中的导体和电介质 恒定磁场 变化的电磁场
第五章 静电场
5-1 电荷 库仑定律 5-2 电场 电场强度 5-3 高斯定理及应用 5-4 静电场中的环路定理 电势 5-5 等势面 电势梯度
5-1 电荷 库仑定律
➢ 电荷 带电现象:物体经摩擦 后对轻微物体有吸引作 用的现象。 两种电荷: • 硬橡胶棒与毛皮摩擦后 所带的电荷为负电荷。
Qi c
电荷守恒定律适用于一切宏观和微观过程( 例如 核反应和基本粒子过程 ),是物理学中普遍的基本定
律之一。
➢ 库仑定律
库仑定律描述真空中两个静止的 点电荷之间的相互 作用力。
大学物理静电场ppt课件
大学物理静电场ppt 课件
目录
• 静电场基本概念与性质 • 静电场中的电荷分布与电势 • 静电感应与电容器 • 静电场中的能量与动量 • 静电场与物质相互作用 • 总结回顾与拓展延伸
01
静电场基本概念与性质
电荷与电场
电荷的基本性质
同种电荷相互排斥,异种电荷相互吸引。
电场的概念
电荷周围存在的一种特殊物质,它对放入其中 的其他电荷有力的作用。
典型问题解析
电荷在电场中的受力与运动
根据库仑定律和牛顿第二定律分析电 荷在电场中的受力与运动情况。
电场强度与电势的关系
通过电场强度与电势的微分关系,分 析电场强度与电势的变化规律。
电容器与电容
分析平行板电容器、圆柱形电容器等 典型电容器的电容、电量、电压等物 理量的关系。
静电场的能量
计算静电场中电荷系统的电势能、电 场能量等物理量,分析静电场的能量 转化与守恒问题。
某些晶体在受到外力作用时,内部产生电极化现象,从而在晶体表面产生电荷的现象。 压电效应具有可逆性,即外力撤去后,晶体又恢复到不带电的状态。
热电效应
温差引起的电荷分布和电流现象。包括塞贝克效应(温差产生电压)和帕尔贴效应(电 流产生温差)。
压电效应和热电效应的应用
在传感器、换能器、制冷技术等领域有广泛应用。
静电场能量密度及总能量计算
静电场能量密度定义
01
单位体积内静电场所具有的能量。
计算公式
02
能量密度 = 1/2 * 电场强度平方 * 电介质常数。
静电场总能量计算
03
对能量密度在整个空间进行积分。
带电粒子在静电场中运动规律
运动方程
根据牛顿第二定律和库仑定律建立带电粒子在静 电场中的运动方程。
目录
• 静电场基本概念与性质 • 静电场中的电荷分布与电势 • 静电感应与电容器 • 静电场中的能量与动量 • 静电场与物质相互作用 • 总结回顾与拓展延伸
01
静电场基本概念与性质
电荷与电场
电荷的基本性质
同种电荷相互排斥,异种电荷相互吸引。
电场的概念
电荷周围存在的一种特殊物质,它对放入其中 的其他电荷有力的作用。
典型问题解析
电荷在电场中的受力与运动
根据库仑定律和牛顿第二定律分析电 荷在电场中的受力与运动情况。
电场强度与电势的关系
通过电场强度与电势的微分关系,分 析电场强度与电势的变化规律。
电容器与电容
分析平行板电容器、圆柱形电容器等 典型电容器的电容、电量、电压等物 理量的关系。
静电场的能量
计算静电场中电荷系统的电势能、电 场能量等物理量,分析静电场的能量 转化与守恒问题。
某些晶体在受到外力作用时,内部产生电极化现象,从而在晶体表面产生电荷的现象。 压电效应具有可逆性,即外力撤去后,晶体又恢复到不带电的状态。
热电效应
温差引起的电荷分布和电流现象。包括塞贝克效应(温差产生电压)和帕尔贴效应(电 流产生温差)。
压电效应和热电效应的应用
在传感器、换能器、制冷技术等领域有广泛应用。
静电场能量密度及总能量计算
静电场能量密度定义
01
单位体积内静电场所具有的能量。
计算公式
02
能量密度 = 1/2 * 电场强度平方 * 电介质常数。
静电场总能量计算
03
对能量密度在整个空间进行积分。
带电粒子在静电场中运动规律
运动方程
根据牛顿第二定律和库仑定律建立带电粒子在静 电场中的运动方程。
电场强度通量-高斯定理PPT教学课件
二 电场强度通量 通过电场中某一个面的电场线数叫做通过这个
面的电场强度通量。用Φe表示。
1 匀强电场情况
e n 为平面S的法线正方向,记为:S
2020/10/16
8
⑴ ES Φe ES
⑵ E 与平面 S 夹角为
由图可知: 通过
S
S 和 S 1 电场线条数相同。
Φe ES1 EScos
ES
S1 S
平面构成。
其中:MNPOM 为S1,前面和后面分 别为S2和S3,底面为 S4,右侧面为S5。
P
en5
N
E
e n 1 oo
Rx
z M en4 Q
通过S1、S2、S3、S4和S5右的电场强度通量
分别为Φe1 、Φe2 、 Φe3 、 Φe4和Φe5 。
2020/10/16
11
Φ e Φ e 1 Φ e 2 Φ e 3 Φ e 4 Φ e 5
1 qdS 1 q dSq
2020/10/16
S4
R2
0
4
R2
0
S
0
13
可即 见Φ :e与球S面E半dS 径 无关q0,即以点电荷q为中心的任
一球面,不论半径大小如何,通过球面的电通
量都相等。
⑵ 点电荷在任意闭合曲面内
dΦ eE dS = 4 1 0rq 2dScos
d S c o s= d S
dΦe 4q0
dS r2
dS
E
dS
d
q
2020/10/16
14
由数学上可知dS对q所在点张开的立体角为
d
Байду номын сангаас
=
dS r2
大学物理高斯定理课堂PPT
由高斯定理知 E
q
2 0lr
(1)当r<R 时, q0
E0
.
25
高斯定理的应用
(2)当r>R 时,
ql
E
2 0r
均匀带电圆柱面的电场分布
r
l
E Er 关系曲线
2 0 R
r1
0
R
r
.
26
高斯简介 高斯(Carl Friedrich Gauss 1777~1855)
高斯长期从事于数学并将数学应用于物理学、天 文学和大地测量学等领域的研究,主要成就:
6-3 电场线 高斯定理
一、电场线
1、定义
在电场中画一组带箭头的曲线, 这些曲线与电场强度 E 之间具有
E
以下关系:
①电场线上任一点的切线方向给出了该点电场 强度的方向;
②某点处电场线密度与该点电场强度的大小 相等。
.
1
电场线密度:经过电场中任一点, 作一面积元dS,并使它与该点的 场强垂直,若通过dS面的电场线 条数为dN,则电场线密度
由电场线的连续性可知,穿 过 S的电场线都穿过同心球 面 S ,故两者的电通量相等, 均为 q ε 0 。
结论说明,单个点电荷包围 在任意闭合曲面内时,穿过 该闭曲面的电通量与该点电 荷在闭曲面内的位置无关。
.S
S
q •
S
电场线
S'
q+
r
10
③不包围点电荷q的任意闭合曲面S的电通量恒为零.
由于电场线的连续性可知,穿 入与穿出任一闭合曲面的电通 量应该相等。所以当闭合曲面 无电荷时,电通量为零。
斯定律。然而每一个带电平面的场强先可用高斯定
律求出,然后再用叠加原理求两个带电平面产生的
大学物理课件-4静电场中的电介质电介质中的电场高斯定理电位移
谢谢观看
2021/3/18
26
4πe r
Q R12
2
4πR1
er
1 Q
er
在外表面上的正极化电荷的总量为
q外
外 S外
er 1 4πe r
Q R22
4πR22
er 1Q er
2021/3/18
21
例2:平行板电容器充满两层厚度 +
为 d1 和 d2 的电介质(d=d1+d2 ),
相对电容率分别为e r1 和e r2 。
S1
求:1.电介质中的电场 ;2.电容量。
2021/3/18
12
在保持电容器极板所带电量不变的情况下, 电容与电势差成反比,所以
C C0
U012 U12
er
即
C = e r C0
式中C0是电介质不存在时电容器的电容。
可见,由于电容器内充满了相对电容率为e r的 电介质, 其电容增大为原来的e r倍。
2021/3/18
13
四、电介质存在时的高斯定理
但随着外电场的增强,排列整齐的程度要增大。
无论排列整齐的程度如何,在垂直外电场的两个端面上 都产生了束缚电荷。
结论:有极分子的电极化是由于分子偶极子在外电场的作用 下发生转向的结果,故这种电极化称为转向电极化。
说明:在静电场中,两种电介质电极化的微观机
理显然不同,但是宏观结果即在电介质中出现束缚
电荷的效果时确是一样的,故在宏观讨论中不必区
在宏观上测量到的是大量分子电偶极矩的统计
平均值,为了描述电介质在外场中的行为引入电极化
强度矢量。
2021/3/18
6
为表征电介质的极化状态,定义极化强度矢量:
大学物理静电场 ppt课件
46
讨论:
a. q0 e0
电量为q的正电荷有q/0条电场线 由它发出伸向无穷远
q0e0
电量为q的负电荷有q/0条 电场线终止于它
对于两个无限接近的球面,通过他们的电通量都相同。 说明电场线在无电荷处连续。
b、若q不位于球面中心, 积分值不变。
+q
c、若封闭面不是球面, 积分值不变。
q
E•dS
第四篇
电磁学
1
2
第九章
静电场----相对于观察者静止的电荷产生的电场 两个物理量:电场场强、电势;
一个实验规律:库仑定律; 两个定理: 高斯定理、环流定理
3
9-1 电荷 库仑定律
一、电荷
1、两种电荷:正电荷“ +”、负电荷“ –” 同号相斥、异号相吸
2、电荷守恒定律 在一个与外界没有电荷交换的系统内, 正负电荷的代数
x
2
dl
dxE dc E od syE dsE in
5. 选择积分变量
r、、l 是 变 量 , 而 线 积一分个只变能量21
选θ作为积分变量 lac( t g)actg
dlacs2cd r2 a2 l2
y
dE
dEy
a 2 a 2 c tg 2 a 2 csc2
dE x410rd2 lcos
i
讨论(1)当 q0, E 的方向沿x轴正向
当 q0, E 的方向沿x轴负向 (2)当x=0,即在圆环中心处,E0
当
x
E0
dE 0时 dx
x
a 2
aq
E Emax
4
2
0(a2
a2 2
3
)2
28
xq
E
讨论:
a. q0 e0
电量为q的正电荷有q/0条电场线 由它发出伸向无穷远
q0e0
电量为q的负电荷有q/0条 电场线终止于它
对于两个无限接近的球面,通过他们的电通量都相同。 说明电场线在无电荷处连续。
b、若q不位于球面中心, 积分值不变。
+q
c、若封闭面不是球面, 积分值不变。
q
E•dS
第四篇
电磁学
1
2
第九章
静电场----相对于观察者静止的电荷产生的电场 两个物理量:电场场强、电势;
一个实验规律:库仑定律; 两个定理: 高斯定理、环流定理
3
9-1 电荷 库仑定律
一、电荷
1、两种电荷:正电荷“ +”、负电荷“ –” 同号相斥、异号相吸
2、电荷守恒定律 在一个与外界没有电荷交换的系统内, 正负电荷的代数
x
2
dl
dxE dc E od syE dsE in
5. 选择积分变量
r、、l 是 变 量 , 而 线 积一分个只变能量21
选θ作为积分变量 lac( t g)actg
dlacs2cd r2 a2 l2
y
dE
dEy
a 2 a 2 c tg 2 a 2 csc2
dE x410rd2 lcos
i
讨论(1)当 q0, E 的方向沿x轴正向
当 q0, E 的方向沿x轴负向 (2)当x=0,即在圆环中心处,E0
当
x
E0
dE 0时 dx
x
a 2
aq
E Emax
4
2
0(a2
a2 2
3
)2
28
xq
E
静电场(全课件)
PA R T. 0 1
静电场(全课件)
单击此处添加文本具体内容
CONTENTS
目录
静电场的 简介
电场的基 本概念
静电场的 计算方法
静电场的 实际应用
静电场的 未来发展
PA R T. 0 2
静电场的简介
单击此处添加文本具体内容
静电场的定义
静电场是保守场,即电场力做功与路径无关,只与 初末位置的电势差有关。 静电场是由静止电荷产生的电场,其电场线从正电 荷出发,终止于负电荷或无穷远处。
定义
电场强度是描述电场中电场力性质的物理量, 用矢量表示,单位为牛/库或伏/米。
计算公式
在点电荷产生的电场中,电场强度的大小等 于点电荷的电量与距离的平方的比值,方向 由点电荷指向其周围的电场线。
电场强度的叠加原理
在空间中某一点的电场强度等于各个点电荷 在该点产生的电场强度的矢量和。
电势
电势是描述电场中电势能性质的物 理量,用标量表示,单位为伏特。
电场的基本概念
单击此处添加文本具体内容
电场线
电场线是用来描述电场分布的假想线,其 密度表示电场强度的大小。 描述电场分布 电场线的方向 电场线的切线 电场线的方向与电场强度矢量方向一致, 从正电荷或无穷远指向负电荷或无穷远。 电场线的切线方向表示电场强度的方向, 切线的长度表示电场强度的大小。
电场强度
离子交换 离子交换是一种常用的水处理技术,通过电场的 作用,使带电离子在电场中发生定向迁移,从而 实现离子的交换和去除。
电场在生物医学中的应用
医学成像
01
医学成像技术如X光、CT等利用电场的作用,使不同物质在电
场中的吸收和散射程度不同,从而实现医学成像。
电刺激细胞
静电场(全课件)
单击此处添加文本具体内容
CONTENTS
目录
静电场的 简介
电场的基 本概念
静电场的 计算方法
静电场的 实际应用
静电场的 未来发展
PA R T. 0 2
静电场的简介
单击此处添加文本具体内容
静电场的定义
静电场是保守场,即电场力做功与路径无关,只与 初末位置的电势差有关。 静电场是由静止电荷产生的电场,其电场线从正电 荷出发,终止于负电荷或无穷远处。
定义
电场强度是描述电场中电场力性质的物理量, 用矢量表示,单位为牛/库或伏/米。
计算公式
在点电荷产生的电场中,电场强度的大小等 于点电荷的电量与距离的平方的比值,方向 由点电荷指向其周围的电场线。
电场强度的叠加原理
在空间中某一点的电场强度等于各个点电荷 在该点产生的电场强度的矢量和。
电势
电势是描述电场中电势能性质的物 理量,用标量表示,单位为伏特。
电场的基本概念
单击此处添加文本具体内容
电场线
电场线是用来描述电场分布的假想线,其 密度表示电场强度的大小。 描述电场分布 电场线的方向 电场线的切线 电场线的方向与电场强度矢量方向一致, 从正电荷或无穷远指向负电荷或无穷远。 电场线的切线方向表示电场强度的方向, 切线的长度表示电场强度的大小。
电场强度
离子交换 离子交换是一种常用的水处理技术,通过电场的 作用,使带电离子在电场中发生定向迁移,从而 实现离子的交换和去除。
电场在生物医学中的应用
医学成像
01
医学成像技术如X光、CT等利用电场的作用,使不同物质在电
场中的吸收和散射程度不同,从而实现医学成像。
电刺激细胞
大学物理电磁学PPT课件
磁场是电流周围存在的一种特殊物质,它 对放入其中的磁体或电流有力的作用。
磁场的描述
磁场对电流的作用
磁场可以用磁感线来描述,磁感线的疏密 表示磁场的强弱,磁感线的切线方向表示 磁场的方向。
磁场对放入其中的电流有力的作用,这个力 的大小与电流的大小、磁场的强弱以及电流 与磁场的夹角有关。
电磁感应定律
电磁感应现象
当闭合回路中的磁通量发生变化时,回路中就会 产生感应电流,这种现象称为电磁感应现象。
楞次定律
感应电流的方向总是要阻碍引起感应电流的磁通 量的变化,即“增反减同”。
法拉第电磁感应定律
感应电动势与磁通量变化率的负值成正比,即E=n(ΔΦ)/(Δt),其中E为感应电动势,n为线圈匝数 ,ΔΦ为磁通量的变化量,Δt为时间的变化量。
在各向同性介质中传播特性
在各向同性介质中,平面电磁波的传播速度、传播方向和电场、磁场分量之间的关系遵 循一定的规律,如折射定律、反射定律等。
反射、折射和衍射现象
反射现象
当电磁波遇到介质界面时,一部分能量被反射回原介质,形成反 射波。
折射现象Βιβλιοθήκη 当电磁波从一种介质传播到另一种介质时,传播方向会发生改变, 形成折射波。
互感现象
当两个线圈靠近并存在磁耦合时,一个线圈中的电流变化会在另一个线圈中产 生感应电动势。互感系数与两个线圈的形状、大小、匝数以及它们之间的相对 位置有关。
交流电路基本概念及分析方法
交流电路基本概念
交流电路是指电流、电压和电动势的大小和方向都随时间作周期性变化的电路。与交流电相对应的是直流电,其 电流、电压和电动势的大小和方向均不随时间变化。
06
电磁学实验方法与技巧
常见电磁学实验仪器介绍
大学物理_高斯定理 ppt课件
1777年4月30日生于布伦 瑞克。童年时就聪颖非凡, 10岁发现等差数列公式而 令教师惊叹。
因家境贫寒,父亲靠短工为生,在一位贵族资
助下与1795~1798年入格pp丁t课件根大学学习。
3
大学一年级(19岁)时就解决了几何难题: 用直尺与圆规作正十七边形图。1799年以论文 《所有单变数的有理函数都可以解成一次或二次 的因式这一定理的新证明》获得博土学位。
(q) 4 0r 3 r
分 布
ppt课件
dq ρdV (体 分 布)
dq σdS (面 分 布) dq λdl (线 分 布)
1
7.3 高斯定理
ppt课件
2
高斯(Carl Friedrich Gauss,1777~1855)
德国数学家、天文学
家、物理学家
高斯在数学上的建树颇 丰,有 “数学王子” 美称。
i
面内电荷产生
面外电荷产生
Φe
q1 ε0
E dS
S
qk ε0
S Ei dS 0 0
E dS
i(内) S
i (外)
qk 1
E dS
S
1
ε0
Φe
qi (内)
E dS
1807年起任格丁根大学数学教授和天文台台
长,一直到逝世。1838年因提出地球表面任一点
磁势均可以表示为一个无穷级数,并进行了计算
,从而获得英国皇家学会颁发的科普利奖章。
1855年2月23日在格丁根逝世。
ppt课件
4
高斯长期从事于数学并将数学应用于物理学、 天文学和大地测量学等领域的研究,主要成就:
大学物理静电场课件
Q dq
r q0
• P
那么电荷之间的作用是通过什么作用的呢?
§8.2 电场和电场强度
一、电场
• 场论观点(法拉第) 没有物质,物体之间的 相互作用是不可能发生的。
根据场论观点:
(1)特殊媒介物质——电场 电场
电荷
相互作用
(2)电场力
激发
电荷
电场
电荷 电场力
电荷
(3)电场是物质的一种特殊形态,不仅存在于带电体内, 而且存在于带电体外,弥漫在整个空间。
方向←
方向
电场强度小结
•电场强度的定义:
E
F
q0
•定量研究电场:对给定场源电荷求其 E分布函数 .
•基本方法: 用点电荷(或典型电荷)电场公式和
场强叠加原理
qr
E 4 0r 3
;
E Ei
i
dq dE ( dEx , dEy ) E dE
Ex dEx Ey dEy
•典型带电体 E分布:
电场 强度
电势
电通量
静电力叠加原理
高斯定理 环路定理
静电场的 基本性质
与带电粒子 的相互作用
稳恒电场
导体的静电平衡
电
电介质 极化
电 电位移矢量 介 容
质中高斯定理
场 能
• 重点
• 真空中的库仑定律 • 点电荷的概念 • 电场强度矢量 • 场强叠加原理
• 难点
• 电场强度矢量的计算(叠加法)
§8.1 静电的基本性质
EE与 与rr反 同向 向。 ;+q
(呈球对称分布)
P q0
r
-q
E
P q0 E
2、点电荷系的场强
大学物理静电场的高斯定理
高斯定理的数学表达形式简洁明了,是解决静电场问题的重要
03
工具。
高斯定理在物理中的重要性
高斯定理在物理学中具有广泛 的应用,不仅限于静电场。
它可用于分析恒定磁场、时 变电磁场以及相对论性电磁
场中的问题。
高斯定理是电磁学理论体系中 的重要基石,对于深入理解电 磁场的本质和规律具有不可替
代的作用。
THANKS FOR WATCHING
高斯定理的重要性
总结词
高斯定理是静电场理论中的基本定理之一,它揭示了电场与电荷之间的内在联 系。
详细描述
高斯定理的重要性在于它提供了一种计算电场分布的方法,特别是对于电荷分 布未知的情况。同时,它也揭示了电场线总是从正电荷出发,终止于负电荷, 或者穿过不带电的区域。
高斯定理的历史背景
总结词
高斯定理的发现和证明经历了漫长而曲折的历史过程。
VS
按空间位置分类
静电场可分为点电荷产生的电场、线电荷 产生的电场、面电荷产生的电场等类型。 这些不同类型的电场具有不同的分布规律 和性质。
05
高斯定理的推导过程
利用高斯定理推导电场强度与电通量的关系
总结词
通过高斯定理,我们可以推导出电场强度与 电通量之间的关系,即电场线穿过任意闭合 曲面的电通量等于该闭合曲面所包围的电荷 量与真空电容率的乘积。
静电场的电场强度与电势具有相对独立性
电场强度与电势之间没有直接关系,改变电场中某点的电势,不会影响该点的电场强度。
静电场的分类
按产生方式分类
静电场可分为感应起电和接触起电两种 方式。感应起电是由于带电体在接近导 体时,导体内部电荷重新分布而产生电 场;接触起电是两个不同物体相互接触 时,由于电子的转移而产生电场。
《静电场高斯定理》课件
及电场强度在不同区域的变化规律。
REPORT
CATALOG
DATE
ANALYSIS
用微积分的知识
总结词:数学推导
详细描述:通过微积分的知识,对电场E进行积分,利用矢量场的散度性质,推导出高斯定理。
证明方法二:利用电通量概念
总结词
物理概念理解
详细描述
详细描述
高斯定理是静电场的基本定理之一, 它表述了电场强度E的闭合曲面积分等 于被包围的电荷量Q除以真空电容率 ε₀。数学公式表示为∮E·dS = Q/ε₀。
高斯定理的应用场景
总结词
高斯定理的应用场景包括计算电场分布、确定电荷分布、解决静电场问题等。
详细描述
高斯定理在静电场理论中具有广泛的应用,它可以用于计算电场分布、确定电荷分布以及解决各种静电场问题。 通过高斯定理,我们可以求解电场中任意区域的电场强度,进而分析电场对电荷的作用力以及能量等物理量。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
在静电屏蔽中的应用
静电屏蔽原理
高斯定理可以用来解释静电屏蔽原理,当一 个带电体被导体外壳包围时,由于导体的静 电感应作用,带电体会在导体外壳内表面感 应出等量异种电荷,根据高斯定理,导体外 壳外部的电场线数为零,因此带电体被完全 屏蔽在导体外壳内部。
静电屏蔽的应用
高斯定理在静电屏蔽中有广泛的应用,如电 子设备、仪器仪表、输变电设备等需要防止 外界电场干扰的场合,通过采用静电屏蔽措 施来降低外界电场对设备的干扰。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
REPORT
CATALOG
DATE
ANALYSIS
用微积分的知识
总结词:数学推导
详细描述:通过微积分的知识,对电场E进行积分,利用矢量场的散度性质,推导出高斯定理。
证明方法二:利用电通量概念
总结词
物理概念理解
详细描述
详细描述
高斯定理是静电场的基本定理之一, 它表述了电场强度E的闭合曲面积分等 于被包围的电荷量Q除以真空电容率 ε₀。数学公式表示为∮E·dS = Q/ε₀。
高斯定理的应用场景
总结词
高斯定理的应用场景包括计算电场分布、确定电荷分布、解决静电场问题等。
详细描述
高斯定理在静电场理论中具有广泛的应用,它可以用于计算电场分布、确定电荷分布以及解决各种静电场问题。 通过高斯定理,我们可以求解电场中任意区域的电场强度,进而分析电场对电荷的作用力以及能量等物理量。
REPORT
THANKS
感谢观看
CATALOG
DATE
ANALYSIS
SUMMAR Y
在静电屏蔽中的应用
静电屏蔽原理
高斯定理可以用来解释静电屏蔽原理,当一 个带电体被导体外壳包围时,由于导体的静 电感应作用,带电体会在导体外壳内表面感 应出等量异种电荷,根据高斯定理,导体外 壳外部的电场线数为零,因此带电体被完全 屏蔽在导体外壳内部。
静电屏蔽的应用
高斯定理在静电屏蔽中有广泛的应用,如电 子设备、仪器仪表、输变电设备等需要防止 外界电场干扰的场合,通过采用静电屏蔽措 施来降低外界电场对设备的干扰。
REPORT
CATALOG
DATE
ANALYSIS
SUMMAR Y
03
大学物理静电场PPT课件
象。
雷电防护
避雷针是利用尖端放电原理来保护建筑物等免受雷击的一种装置。在雷雨天气,云层中 的电荷使避雷针尖端感应出与云层相反的电荷,由于避雷针尖端的曲率大,电荷密度高 ,使得其周围电场强度特别强,容易将空气击穿而产生放电现象,从而将云层中的电荷
引入大地,避免了对建筑物的雷击。
02 静电场中的电介质
05 静电场在生活、生产中的应用
静电除尘原理及设备简介
静电除尘原理
利用静电场使气体中的粉尘荷电,然后在电场力的作用下使粉尘从 气流中分离出来的除尘技术。
设备组成
主要包括电极系统、高压电源、收尘装置、气流分布装置、振打清 灰装置及电除尘器的外壳等。
工作过程
含尘气体在通过高压电场时,粉尘颗粒荷电并在电场力作用下向电极 运动,最终沉积在电极上,通过振打等方式使粉尘落入灰斗中。
电源内部非静电力将正电荷从负极移 到正极所做的功与移送电荷量的比值 称为电源电动势,用符号E表示。电源 电动势反映了电源将其他形式的能转 化为电能的本领大小。
内阻
电源内部存在着阻碍电流通过的因素 称为内阻。内阻的大小反映了电源内 部损耗的大小。在电路中,内阻与负 载电阻串联连接,共同影响电路的性 能。
03 静电场能量与能量密度
静电场能量计算方法
电场能量定义
01
静电场中的电荷分布所具有的能量。
计算方法
02
通过对电场中所有电荷的电势能进行求和来计算。
公式表示
03
$W = frac{1}{2} int rho V dV$,其中$rho$为电荷密度,$V$
为电势。
能量密度概念及其物理意义
能量密度定义
应用实例
高压作业人员穿戴用金属丝制成的防护服,当接触高压线时,形成了等电位,使得作业人员的身体没有电流通过 ,起到了保护作用。此外,精密电子仪器和设备的金属外壳也是利用静电屏蔽原理来防止外部静电场对其内部电 子元件的干扰。
雷电防护
避雷针是利用尖端放电原理来保护建筑物等免受雷击的一种装置。在雷雨天气,云层中 的电荷使避雷针尖端感应出与云层相反的电荷,由于避雷针尖端的曲率大,电荷密度高 ,使得其周围电场强度特别强,容易将空气击穿而产生放电现象,从而将云层中的电荷
引入大地,避免了对建筑物的雷击。
02 静电场中的电介质
05 静电场在生活、生产中的应用
静电除尘原理及设备简介
静电除尘原理
利用静电场使气体中的粉尘荷电,然后在电场力的作用下使粉尘从 气流中分离出来的除尘技术。
设备组成
主要包括电极系统、高压电源、收尘装置、气流分布装置、振打清 灰装置及电除尘器的外壳等。
工作过程
含尘气体在通过高压电场时,粉尘颗粒荷电并在电场力作用下向电极 运动,最终沉积在电极上,通过振打等方式使粉尘落入灰斗中。
电源内部非静电力将正电荷从负极移 到正极所做的功与移送电荷量的比值 称为电源电动势,用符号E表示。电源 电动势反映了电源将其他形式的能转 化为电能的本领大小。
内阻
电源内部存在着阻碍电流通过的因素 称为内阻。内阻的大小反映了电源内 部损耗的大小。在电路中,内阻与负 载电阻串联连接,共同影响电路的性 能。
03 静电场能量与能量密度
静电场能量计算方法
电场能量定义
01
静电场中的电荷分布所具有的能量。
计算方法
02
通过对电场中所有电荷的电势能进行求和来计算。
公式表示
03
$W = frac{1}{2} int rho V dV$,其中$rho$为电荷密度,$V$
为电势。
能量密度概念及其物理意义
能量密度定义
应用实例
高压作业人员穿戴用金属丝制成的防护服,当接触高压线时,形成了等电位,使得作业人员的身体没有电流通过 ,起到了保护作用。此外,精密电子仪器和设备的金属外壳也是利用静电屏蔽原理来防止外部静电场对其内部电 子元件的干扰。
大学物理教学ppt02静电场
(1)描绘电力线的目的,在于形象地反映电场中各点场强的分布情 况,并不是电场中真有这些曲线存在,它是假想的一些曲线。
(2)电力线各点的切线方向是场强方向,也就是正电荷受力方向, 或者说是加速度方向,而不是速度方向,因而电力线不是电荷运 动的路径。
例 一个带正电荷的质点,在电场力作用下从A点经C点运 动到B点,其运动轨迹如图所示.已知质点运动的速率是递 增的,下面关于C点场强方向的四个图示中正确的是:
Ⅰ
Ⅱ Ⅲ
解:由上题已知:
无限大带正电平面:E
场强分布如图(红色)
2 0
无限大带负电平面:E
场强分布如图(兰色)
2 0
由场强迭加原理:
Ⅰ区、 Ⅲ 区:EⅠ=EⅢ=0
Ⅱ区: E E
E
2020/1/14
求:E p ?
解:dE
4
xdq (x2
r )2
3 2
0
R
dr
dE方向沿
x
轴方向
r x Px
o
dq dS 2rdr
各圆环在P点的
场强方向相同
R xrdr
讨
论
E
0
2
0
(
x2
r
2
3
)2
E
当 x R 时:E 当 x R时:E
2q0
2020/1/14
4 0 x
2
方 向
x
(1
)
2 0
(2)电力线各点的切线方向是场强方向,也就是正电荷受力方向, 或者说是加速度方向,而不是速度方向,因而电力线不是电荷运 动的路径。
例 一个带正电荷的质点,在电场力作用下从A点经C点运 动到B点,其运动轨迹如图所示.已知质点运动的速率是递 增的,下面关于C点场强方向的四个图示中正确的是:
Ⅰ
Ⅱ Ⅲ
解:由上题已知:
无限大带正电平面:E
场强分布如图(红色)
2 0
无限大带负电平面:E
场强分布如图(兰色)
2 0
由场强迭加原理:
Ⅰ区、 Ⅲ 区:EⅠ=EⅢ=0
Ⅱ区: E E
E
2020/1/14
求:E p ?
解:dE
4
xdq (x2
r )2
3 2
0
R
dr
dE方向沿
x
轴方向
r x Px
o
dq dS 2rdr
各圆环在P点的
场强方向相同
R xrdr
讨
论
E
0
2
0
(
x2
r
2
3
)2
E
当 x R 时:E 当 x R时:E
2q0
2020/1/14
4 0 x
2
方 向
x
(1
)
2 0
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
。
四. 高斯定理在解场方面的应用
对 Q 的分布具有某种对称性的情况下 利用高斯定理解 E 较为方便
常见的电量分布的对称性:
球对称
均
匀 带
球体
电 球面
的 (点电荷)
柱对称 无限长 柱体 柱面 带电线
。
面对称 无限大 平板 平面
例1 均匀带电球面 总电量为 Q 半径为 R 求:电场强度分布
解: 根据电荷分布的对称性, 选取合适的高斯面(闭合面)
把曲面分成许多个面积元
每一面元处视为匀强电场
d E dS
S
S
。
E dS
S
讨论
正与负
E dS
d E dS
取决于面元的法 线方向的选取
S
如前图 知 E
若如红箭头所示
ds>0
则E
ds
<0
通过闭合面的电通量
S
SE dS
。
计算闭合平面曲线对曲线内一点所张的平面角
d dl cos dl0 2 弧度
l
lr
r l0 0
平面
r0 r
l0
l
计算闭合曲面对面内一点所张的立体角
d dS0 4
S
r2
S
0 。
球面度
2.高斯定理的证明 库仑定律 + 叠加原理
思路:先证明点电荷的场
4
q
0r 2
r
dS
qds cos 4 0r 2
q d
4 0
E dS
q d q
d q
S
S 4 0
4 0 S
0
在所设的情况下得证
E
ds
S
。
q内i
i
0
2)源电荷仍是点电荷
取一闭合面不包围点电荷(如图示)
然后推广至一般电荷分布的场
1) 源电荷是点电荷
在该场中取一包围点电荷的闭合面(如图示)
在闭合面S上任取面元
ds
q
E
该面元对点电荷所张
的立体角 d
S d
dS
点电荷在面元处的场强为 E
。
点电荷在面元处的场强为
E
q
4 0r 2
r^
qr S d
r^
E
dS
d
E
dS
。
规定:面元方向
由闭合面内指向面外
E dS 确定的值 S
E
ds
<0
电力线穿入
E
E
ds>0
电力线穿出
dS
。
S
dS
三.静电场的高斯定理 Gauss theorem 1.表述 在真空中的静电场内,任一闭合面的电通量
等于这闭合面所包围的电量的代数和除以 0 。
d
E dS
d Eds
若面积元不垂直电场强度,
匀强电场
E ds
E
dS dS
电场强度与电力线条数、面积元的
关系怎样?
由图可知
通过
ds和 ds
电力线条数相同
ds dsn^
d Eds Edscos
d E dS
。
2.电力线的性质 1)电力线起始于正电荷(或无穷远处), 终止于负电荷,不会在没有电荷处中断; 2)两条电场线不会相交; 3)电力线不会形成闭合曲线。
之所以具有这些基本性质, 由静电场的基本性质和场的单值性决定的。 可用静电场的基本性质方程加以证明。
。
匀强电场
二.电通量 (electric flux)
藉助电力线认识电通量 通过任一面的电力线条数ຫໍສະໝຸດ dS
E
dsE
dS
通过任意面积元的电通量 d E dS
通过任意曲面的电通量怎么计算?
在闭合面上任取面元 dS1
q
dS
r2
2
S
r1 r^1
E2
E1
dS1
该面元对点电荷张的
d
1
立体角 d
也对应面元dS2
两d面元E处1 对ds1应的E2点 d电s2 荷的4电q0r场12 ^强r1 度ds1分 别4为q0r22Er^21, dsE2 2
qi
E dS Ei dS
S
Si
i
0
。
讨论
1.闭合面内、外电荷的贡献
对 E 都有贡献
对电通量 E dS 的贡献有差别
只有闭合面S 内的电量对电通量有贡献
2.静电场性质的基本方程 有源场
3.源于库仑定律 高于库仑定律
4.微分形式
1
E 0
Q
Ro
r
P E
S
dS
取过场点的 以球心 o 为心的球面
先从高斯定理等式的左方入手
先计算高斯面的电通量
E dS
EdS E dS E4 r 2
S
S
。S
E dS E4 r 2
S
再根据高斯定理解方程
qi
E4r i 0
Q
Ro
r
P E
。
单位:弧度
r 平面角
d
dl0
dl
cos
rr
立体角
d
面元dS 对某点所张的立体角:
r1
drlr1 0dl0
dl
dS
锥体的“顶角”
d
dS1 dS0
对比平面角,取半径为 r1 r1
r0
球面面元 ds1
定义式
d
dS1 r12
dS0 r02
dS
d r 2 cos
单位 球面度
qi内
E dS i
S
0
。
补充:立体角的概念
平面角:
r 由一点发出的两条射线之间的夹角
取 r1为半径的弧长 dl1 d r1
dlr1 0dl0
dl
当然 也
dl0 r0
r 射线长为
r1
d
dl1
一般的定义:线段元dl 对某点所张的平面角
d
dl0
dl
cos
rr
§3 高斯定理
一.电力线
用一族空间曲线形象描述场强分布
通常把这些曲线称为电场线(electric field line)或电力线 (electric line of force)
1.规定
方向:力线上每一点的切线方向;
大小:在电场中任一点,取一垂直于该点场强 方向的面积元,使通过单位面积的电力线数目, 等于该点场强的量值。 。
S
dS
qi
E
i
4 0r 2
过场点的高斯面内电量代数和?
r<R qi 0
i
r>R qi Q
i
r< R E 0
r> R
。
E
Q
4 0r 2
如何理解面内场强为0 ?
P
过P点作圆锥
dq1
则在球面上截出两电荷元
qds1 cos1 qds2 cos2 0
4 0r12
4
0
r 2。 2
d1 d2 0
SE ds 0
此种情况下 仍得证 3) 源和面均 任意
q
dS
r2
2
S
r1
r^1
E2
E1
dS1
d
1
E
ds
i
qi
S
0
根据叠加原理可得