高一数学函数的基本性质

合集下载

高一数学函数的基本性质

高一数学函数的基本性质

函数的基本性质1.奇偶性(1)定义:如果对于函数f (x )定义域内的任意x 都有f (-x )=-f (x ),则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有f (-x )=f (x ),则称f (x )为偶函数。

如果函数f (x )不具有上述性质,则f (x )不具有奇偶性.如果函数同时具有上述两条性质,则f (x )既是奇函数,又是偶函数。

注意:○1 函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质; ○2 由函数的奇偶性定义可知,函数具有奇偶性的一个必要条件是,对于定义域内的任意一个x ,则-x 也一定是定义域内的一个自变量(即定义域关于原点对称)。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否关于原点对称; ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 f (-x )-f (x ) = 0,则f (x )是偶函数; 若f (-x ) =-f (x ) 或 f (-x )+f (x ) = 0,则f (x )是奇函数。

(3)简单性质:①图象的对称性质:一个函数是奇函数的充要条件是它的图象关于原点对称;一个函数是偶函数的充要条件是它的图象关于y 轴对称;②设()f x ,()g x 的定义域分别是12,D D ,那么在它们的公共定义域上:奇+奇=奇,奇⨯奇=偶,偶+偶=偶,偶⨯偶=偶 2.单调性(1)定义:一般地,设函数y =f (x )的定义域为I , 如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2)(f (x 1)>f (x 2)),那么就说f (x )在区间D 上是增函数(减函数);注意:○1 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质; ○2 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是增函数或是减函数,那么就说函数y =f (x )在这一区间具有(严格的)单调性,区间D 叫做y =f (x )的单调区间。

高一数学第三章函数的基本性质知识要点函数的基本性质

高一数学第三章函数的基本性质知识要点函数的基本性质

高一数学第三章函数的基本性质知识要点函数的基本性质高一数学第三章函数的基本性质知识要点函数是数学中的基本概念之一,它在数学和实际问题的求解中起到重要的作用。

本文将介绍高一数学第三章中关于函数的基本性质,帮助大家更好地理解和掌握这一知识点。

一、函数定义函数是一种特殊的关系,表示一个集合中的每个元素都与另一个集合中的唯一元素相对应。

函数可以用符号表示,例如:f(x) = 2x + 1其中f表示函数名,x表示自变量,2x + 1表示函数的表达式,它们之间用等号连接。

二、函数的定义域和值域定义域是指函数的自变量的所有可能取值的集合,通常用D表示。

在上面的函数例子中,自变量x可以取任意实数值,所以定义域为全体实数。

值域是指函数的因变量的所有可能取值的集合,通常用R表示。

同样以例子函数f(x) = 2x + 1为例,它的值域是全体实数。

三、函数的奇偶性如果对于定义域内的任意一个实数x,都有f(-x) = f(x),则函数f(x)是偶函数;如果对于定义域内的任意一个实数x,都有f(-x) = -f(x),则函数f(x)是奇函数;如果一个函数既不是偶函数也不是奇函数,则称其为非奇非偶函数。

四、函数的图像与性质函数的图像是函数在平面直角坐标系上的几何表示。

函数的图像可以通过绘制函数的各个点来获得。

函数的图像具有以下性质:1. 对称性:偶函数的图像以y轴为对称轴,奇函数的图像以原点为对称中心;2. 单调性:如果对于定义域内的两个实数x1和x2,若x1 < x2,则有f(x1) < f(x2),则称函数f(x)在该区间上是递增的;如果x1 < x2,则有f(x1) > f(x2),则称函数f(x)在该区间上是递减的;3. 最值:函数在定义域上的最大值称为最大值,函数在定义域上的最小值称为最小值;4. 零点:函数的零点是指使得f(x) = 0的自变量取值。

五、函数的初等函数性质初等函数是指常见的基本函数,包括常数函数、幂函数、指数函数、对数函数、三角函数等。

人教版高一数学必修一函数的基本性质最大(小)值课件PPT

人教版高一数学必修一函数的基本性质最大(小)值课件PPT
●你是否曾遇到过这种情形,离下课还有一点时间时,你对学生 说:“如果你们保持安静,我就不会再布置更多的任务了。”学生 会有哪些反应? 你是否曾发现自己预先安排的内容已经讲完了,却还没到下课时 间,于是决定给学生布置课堂任务来填补这段空白,此时学生有哪 些反应?
以上这些问题,我们或多或少都曾经历过。我们也都知道,如果 在课堂上学生没有事情可做的话,他们就会自己找事。而且往往 学生自己找来的事都不会是什么好事。
x∈[1,+∞).
(Ⅰ)当a= (Ⅱ)若对任意x∈[1,+∞),f (x)>0恒成立, 试求实数a的取值范围.
课堂小结
1. 最值的概念;
课堂小结
1. 最值的概念; 2. 应用图象和单调性求最值的一般步骤.
课后作业
1. 阅读教材P.30 -P.32; 2.《习案》:作业10
思考题:
1.已知函数f (x)=x2-2x-3,若x∈ [t, t +2]时,求函数f(x)的最值.
你是否曾注意到,有些学生能够立刻着手行动,并且完成的速度也 很快
你是否曾注意到,有些学生再怎样努力,也无法在规定时间内完成 任务。
你是否曾注意到,学生做练习的时候,往往也是最容易出现课堂 纪律问题的时候。比如,有些学生会在完成自己的任务之后,询问 接下来要做什么,有些学生没有专心完成课堂任务,而是做些违纪 动作,还有些学生不停地抱怨自己不明白要做什么?
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最大值.

高一数学第2课-函数的基本性质

高一数学第2课-函数的基本性质

第2讲 函数的基本性质一、要点精讲1.奇偶性 (1)定义:如果对于函数f (x )定义域内的任意x 都有 ,则称f (x )为奇函数;如果对于函数f (x )定义域内的任意x 都有 ,则称f (x )为偶函数。

(2)利用定义判断函数奇偶性的格式步骤:○1 首先确定函数的定义域,并判断其定义域是否 ○2 确定f (-x )与f (x )的关系; ○3 作出相应结论: 若f (-x ) = f (x ) 或 = 0,则f (x )是偶函数;若f (-x ) =-f (x ) 或 = 0,则f (x )是奇函数。

(3)函数的图像与性质:奇函数的图象关于 对称;偶函数的图象关于 对称; 2.单调性(1)定义:注意:① 函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;② 必须是对于区间D 内的任意两个自变量x 1,x 2;当x 1<x 2时,总有f (x 1)<f (x 2) (2)如果函数y =f (x )在某个区间上是 或是 ,那么就说函数y =f (x )在这一区间具有 ,区间D 叫做y =f (x )的 。

(3)判断函数单调性的方法(ⅰ)定义法:利用定义严格判断(ⅱ)利用已知函数的单调性如若()f x 、)(x g 为增函数,则①()f x +)(x g 为 ;②1()f x 为 (()f x >0);为 (()f x ≥0);④-()f x 为 (ⅲ)利用复合函数【y = f (u ),其中u =g(x ) 】的关系判断单调性:复合函数的单调性法则是“ ” (ⅳ)图象法(ⅴ)利用奇偶函数的性质①奇函数在其对称区间上的单调性相同;②偶函数在其对称区间上的单调性相反; 3.最值:利用函数单调性的判断函数的最大(小)值的方法:○1 利用二次函数的性质(配方法)求函数的最大(小)值; ○2 利用图象求函数的最大(小)值; ○3 利用函数单调性的判断函数的最大(小)值: 4.周期性(1)定义:如果存在一个 常数T ,使得对于函数定义域内的 ,都有 ,则称f (x )为周期函数;(2)f (x+T )= f (x )常常写作),2()2(Tx f T x f -=+若f (x )的周期中,存在一个最小的正数,则称它为f (x )的最小正周期;②若周期函数f (x )的周期为T ,则f (ωx )(ω≠0)是周期函数,且周期为||ωT 。

高一数学上册《函数的基本性质》教案、教学设计

高一数学上册《函数的基本性质》教案、教学设计
2.学生的数学思维能力、逻辑推理能力和直观想象力发展不平衡,部分学生对数形结合的方法还不够熟悉。教师应针对这一情况,设计丰富的教学活动,提高学生的数学素养。
3.学生在小组合作学习中的参与度有待提高。教师应关注学生的个体差异,调动每个学生的积极性,使他们在合作交流中发挥自己的优势,共同进步。
4.学生对于数学知识在实际生活中的应用认识不足,教师可通过引入实际问题,让学生体会数学知识的价值,激发学生学习数学的兴趣。
6.教学评价,关注成长
在教学过程中,教师应关注学生的成长和发展,采用多元化的评价方式,如课堂表现、作业完成情况、小组合作交流等,全面评估学生的学习效果。
7.创设互动氛围,激发学生学习兴趣
8.融入信息技术,提高教学质量
利用多媒体、网络等信息技术手段,丰富教学资源,提高教学质量。如通过数学软件绘制函数图像,让学生更直观地感受函数性质。
3.结合所学函数性质,尝试解决以下拓展性问题:
(1)已知函数f(x) = x^3 - 6x^2 + 9x + 1,判断其奇偶性,并求单调区间。
(2)已知函数g(x) = 3cos(2x) + 4sin(x),求最小正周期及一个周期内的单调区间。
4.请同学们预习下一节课内容,了解函数的极值及其在实际问题中的应用。
3.鼓励学生积极参与课堂讨论,勇于表达自己的观点,培养学生自信、勇敢的品质。
4.通过解决实际问题,让学生认识到数学知识在生活中的重要作用,增强学生应用数学知识解决实际问题的意识,提高学生的社会责任感。
在本章节的教学过程中,教师应以学生为主体,关注学生的个体差异,充分调动学生的积极性、主动性和创造性。通过讲解、示范、讨论等多种教学手段,使学生在掌握函数基本性质的基础上,提高自身的数学素养和综合素质。同时,注重培养学生的团队合作精神,使其在合作交流中相互学习、共同成长。

高一数学必修一函数的基本性质(单调性)精品PPT课件

高一数学必修一函数的基本性质(单调性)精品PPT课件
图像在定义域内呈上升趋势; 图像经过原点。
观察图像变化规律
图像在对称轴左边呈下降, 在对称轴后边呈下降趋势。
x
y
O
x
y
O
x
y
O
自变量递增,函数递减
x
y
O
x
y
O
x
y
O
自变量递增,函数递增
增函数、减函数的概念:
增函数、减函数的概念:
一般地,设函数f(x)的定义域为I.
1.如果对于定义域I内的某个区间上的任意 两个自变量的值x1, x2,当x1<x2时,都有 f(x1)<f(x2),那么就说f(x)在这个区间上是 增函数.
2.两种方法:
判断函数单调性的方法 有图象法、定义法. 下一课时我们会重点练习
课堂小结
1.阅读教材P.27 -P.30; 2.教材课后练习:1、2、3.
课后作业
谢谢欣赏
一般地,设函数f(x)的定义域为I.
增函数、减函数的概念:
函数最大值→图像最高点
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: (1)对于任意的x∈I,都有f(x)≤M (2)存在x0∈I,使得f(x0)=M. 那么我们称M是函数y=f(x)的最大值 .
函数最小值→图像最低点
一般地,设函数y=f(x)的定义域为I,如果存在实数M满足: (1)对于任意的x∈I,都有f(x)≥M (2)存在x0∈I,使得f(x0)=M. 那么我们称M是函数y=f(x)的最小值 .
-2
3
2
1
-1
y
-3
-4
4
O
x
2
-2
3
1
-3
-1

高一数学必修一对数函数的基本性质

高一数学必修一对数函数的基本性质

高一数学必修一对数函数的基本性质对数函数是高中数学中重要的一类函数,具有许多特殊的性质和应用。

本文将介绍对数函数的基本性质。

1. 对数函数的定义对数函数是指以某个正数为底的对数函数,一般表示为$y=\log_{a}x$,其中 $a>0$,$a\neq 1$,$x>0$。

其中,$a$ 为底数,$x$ 为真数,$y$ 为对数值。

2. 对数函数的图像特征对数函数的图像呈现出以下特征:- 当 $0<x<1$ 时,$\log_{a}x<0$;- 当 $x=1$ 时,$\log_a1=0$;- 当 $x>1$ 时,$\log_a x>0$;- 对数函数的图像在 $x$ 轴的正半轴上单调递增,但增长速度越来越慢;- 对数函数的图像通过点 $(1, 0)$,并且与 $x$ 轴和 $y$ 轴分别渐近。

3. 对数函数的基本性质对数函数具有以下基本性质:- $\log_ab$ 为 $x=a^y$ 的反函数,即 $\log_ab=y\Rightarrowa^y=x$;- $\log_a(mn)=\log_am+\log_an$,即可以将乘积化为求和;- $\log_a\frac{m}{n}=\log_am-\log_an$,即可以将商化为差;- $\log_aa^x=x$;- $a^{\log_ax}=x$。

4. 对数函数的常用公式对数函数的常用公式有:- $\log_aa=1$;- $\log_a1=0$;- $\log_a a^k=k$。

5. 对数函数的应用对数函数在实际问题中具有广泛的应用,例如:- 在科学计算中,对数函数可以用于简化复杂的数值计算;- 在经济学中,对数函数可以用于描述指数增长和指数衰减的现象;- 在物理学中,对数函数可以用于描述某些物理现象的特性;- 在生物学中,对数函数可以用于研究生物体的生长和衰退规律。

以上就是对数函数的基本性质和应用的简要介绍。

对数函数在数学中具有重要的地位,通过深入理解对数函数的性质和应用,可以更好地解决实际问题。

函数的基本性质含答案

函数的基本性质含答案
有题设
当 时,
, ,
则 当 时,
, ,
则 故 .
∴f〔-*〕=-f〔*〕.∴f〔*〕是奇函数.
〔2〕证明:任取*1、*2∈R,且*1<*2,则f〔*1〕-f〔*2〕=f〔*1〕-f[*1+〔*2-*1〕]=f〔*1〕-[f〔*1〕+f〔*2-*1〕]=-f〔*2-*1〕.由*1<*2,∴*2-*1>0.∴f〔*2-*1〕<0.
∴-f〔*2-*1〕>0,即f〔*1〕>f〔*2〕,从而f〔*〕在R上是减函数.
4.如果偶函数在 具有最大值,则该函数在 有〔 〕
A.最大值 B.最小值C .没有最大值D. 没有最小值
5.函数 , 是〔 〕
A.偶函数B.奇函数C.不具有奇偶函数D.与 有关
6.函数 在 和 都是增函数,假设 ,且 则〔 〕
A. B.
C. D.无法确定
7.函数 在区间 是增函数,则 的递增区间是〔 〕
〔3〕解:由于f〔*〕在R上是减函数,故f〔*〕在[-3,3]上的最大值是f〔-3〕,最小值是f〔3〕.由f〔1〕=-2,得f〔3〕=f〔1+2〕=f〔1〕+f〔2〕=f〔1〕+f〔1+1〕=f〔1〕+f〔1〕+f〔1〕=3f〔1〕=3×〔-2〕=-6,f〔-3〕=-f〔3〕=6.从而最大值是6,最小值是-6.
C. D.
2.如果奇函数 在区间[3,7]上是增函数且最小值为5,则 在区间 上是 ( )
A.增函数且最小值为 B.增函数且最大值为
C.减函数且最小值为 D.减函数且最大ቤተ መጻሕፍቲ ባይዱ为
3.以下函数中,在区间(0,2)上为增函数的是 ( )
A. B. C. D.
4.对于定义域是R的任意奇函数 有 ( )

高一数学必修1-函数的概念及基本性质

高一数学必修1-函数的概念及基本性质

§1·函数的概念(一)函数的有关概念设A ,B 是非空的数集,如果按某个确定的对应关系f ,使对于集合A 中的任意一个x ,在集合B 中都有唯一确定的数)(x f 和它对应,那么就称B A f →:为从集合A 到集合B 的函数,记作)(x f y =, x ∈A其中x 叫自变量,x 的取值范围A 叫做函数)(x f y =的定义域;与x 的值相对应的y 的值叫做函数值,函数值的集合{}A x x f ∈|)((⊆B )叫做函数y=f(x)的值域.函数符号)(x f y =表示“y 是x 的函数”,有时简记作函数)(x f . (1)函数实际上就是集合A 到集合B 的一个特殊对应 B A f →:这里 A, B 为非空的数集.(2)A :定义域,原象的集合;{}A x x f ∈|)(:值域,象的集合,其中{}A x x f ∈|)( ⊆ B ;f :对应法则 ,x ∈A , y ∈B(3)函数符号:)(x f y = ↔y 是 x 的函数,简记 )(x f (二)已学函数的定义域和值域1.一次函数b ax x f +=)()0(≠a :定义域R, 值域R; 2.反比例函xkx f =)()0(≠k :定义域{}0|≠x x , 值域{}0|≠x x ; 3.二次函数c bx ax x f ++=2)()0(≠a :定义域R值域:当0>a 时,⎭⎬⎫⎩⎨⎧-≥a b ac y y 44|2;当0<a 时,⎭⎬⎫⎩⎨⎧-≤a b ac y y 44|2(三)函数的值:关于函数值 )(a f例:)(x f =2x +3x+1 则 f(2)=22+3×2+1=11注意:1︒在)(x f y =中f 表示对应法则,不同的函数其含义不一样2︒)(x f 不一定是解析式,有时可能是“列表”“图象”3︒)(x f 与)(a f 是不同的,前者为变数,后者为常数(四)函数的三要素: 对应法则f 、定义域A 、值域{}A x x f ∈|)( 只有当这三要素完全相同时,两个函数才能称为同一函数(五)区间的概念和记号:在研究函数时,常常用到区间的概念,它是数学中常用的述语和符号.设a,b ∈R ,且a<b.我们规定:①满足不等式a ≤x ≤b 的实数x 的集合叫做闭区间,表示为[a,b]; ②满足不等式a<x<b 的实数x 的集合叫做开区间,表示为(a,b );③满足不等式a ≤x<b 或a<x ≤b 的实数x 的集合叫做半开半闭区间,分别表示为[a ,b) ,(a ,b]. 这里的实数a 和b 叫做相应区间的端点.这样实数集R 也可用区间表示为(-∞,+∞),“∞”读作“无穷大”,“-∞”读作“负无穷大”,“+∞”读作“正无穷大”.还可把满足x ≥a ,x>a ,x ≤b ,x<b 的实数x 的集合分别表示为[a ,+∞),(a ,+∞),(- ∞,b ],(- ∞,b). 【例题解析】例1 判断下列各式,哪个能确定y 是x 的函数?为什么?(1)x 2+y =1 (2)x +y 2=1 (3)1x x 1y --= (4)y=x -1x +-例2 求下列函数的定义域: (1)()f x = (2)xx x x f -+=0)1()(例3 已知函数)(x f =32x -5x+2,求f(3), f(-2), f(a+1).例4 已知⎪⎩⎪⎨⎧+=10)(x x f π )0()0()0(>=<x x x ,求)1(f ,)1(-f ,)0(f ,)]}1([{-f f f讨论:函数y=x 、y=(x )2、y=23xx 、y=44x 、y=2x 有何关系?例5 下列各组中的两个函数是否为相同的函数? ⑴3)5)(3(1+-+=x x x y 52-=x y ⑵111-+=x x y )1)(1(2-+=x x y练习:下列各组中的两个函数是否为相同的函数? ① ()f x = 0(1)x -;()g x = 1.② ()f x = x ; ()g x ③ ()f x = x 2;()g x = 2(1)x +.④ ()f x = | x | ;()g x 例6 已知函数)(x f =4x+3,g(x)=x 2,求f[f(x)],f[g(x)],g[f(x)],g[g(x)].复合函数:设 f (x )=2x -3,g (x )=x 2+2,则称 f [g (x )] =2(x 2+2)-3=2x 2+1(或g [f (x )] =(2x -3)2+2=4x 2-12x +11)为复合函数例7求下列函数的值域(用区间表示):(1)y =x 2-3x +4; (2)()f x =(3)y =53x -+; (4)2()3x f x x -=+.例8 ※ 动手试试1. 若2(1)21f x x +=+,求()f x .2. 一次函数()f x 满足[()]12f f x x =+,求()f x .练习 已知二次函数f (x )=ax 2+bx (a ,b 为常数,且a ≠0)满足条件f (x -1)=f (3-x )且方程f (x )=2x 有等根,求f (x )的解析式.函数的概念习题:1.如下图可作为函数)(x f =的图像的是( )(D )2.对于函数()y f x =,以下说法正确的有 ( )①y 是x 的函数;②对于不同的,x y 的值也不同;③()f a 表示当x a =时函数()f x 的值,是一个常量;④()f x 一定可以用一个具体的式子表示出来。

3.2 函数的基本性质(课时1 函数的单调性)优秀公开课获奖课件高一数学

3.2 函数的基本性质(课时1 函数的单调性)优秀公开课获奖课件高一数学
6-4a,a<2, ∴f(x)min= 2-a2,2≤a≤4,
18-8a,a>4.
经典例题
跟踪训练3
题型三 求二次函数的最值
已知函数 f(x)=x-2 x-3,求函数 f(x)的最值.
解:设 x=t(t≥0),则 x-2 x-3=t2-2t-3. y=t2-2t-3(t≥0)在[0,1]上单调递减,在[1,+∞)上单调递增. ∴当 t=1 即 x=1 时,f(x)min=-4,无最大值.
的最大值为________.
-x2+2,x<1
2 解析:当 x≥1 时,函数 f(x)=1x为减函数,所以 f(x)在 x=1 处取得最大值, 为 f(1)=1; 当 x<1 时,易知函数 f(x)=-x2+2 在 x=0 处取得最大值,为 f(0)=2. 故函数 f(x)的最大值为 2.
当堂达标
解:f(x)=(x-a)2+a-a2+1, 当 0<a<4 时,f(x)在[-4,a]上是减函数,在[a,4]上是增函数. 又 f(-4)=9a+17,f(4)=17-7a,f(-4)>f(4). 所以 f(x)的最大值为 f(-4)=9a+17. 当 a≥4 时,f(x)在[-4,4]上是减函数, 所以 f(x)的最大值为 f(-4)=9a+17. 综上,在[-4,4]上函数的最大值为 9a+17.
4.函数 f(x)=1x在[1,b](b>1)上的最小值是14,则 b=________.
4 解析:因为 f(x)在[1,b]上是减函数,所以 f(x)在[1,b]上的最小值为 f(b)=1b=14, 所以 b=4.
当堂达标
5.求函数 f(x)=x2-2ax+a+1(a>0)在[-4,4]上的最大值.

洋葱数学高一必修一函数的基本性质

洋葱数学高一必修一函数的基本性质

洋葱数学高一必修一函数的基本性质一、函数的概念在对应的基础上理解函数的概念并能理解符号"y=f(x)"的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解。

函数的概念和图象重难点:在对应的基础上理解函数的概念并能理解符号“y=f(x)"的含义,掌握函数定义域与值域的求法;函数的三种不同表示的相互间转化,函数的解析式的表示,理解和表示分段函数;函数的作图及如何选点作图,映射的概念的理解.考纲要求:①了解构成函数的要素,会求一些简单函数的定义域和值域;②在实际情境中,会根据不同的需要选择恰当的方法(如图象法、列表法、解析法)表示函数;③了解简单的分段函数,并能简单应用。

二、函数关系的建立“探索具体问题中的数量关系和变化规律,并能运用函数进行描述和解决问题”,这是《课标》关于函数目标的一段描述。

因此,各地中考试卷都有“函数建模及其应用"类问题,而建模的首要是建立函数表达式。

三、函数的运算函数的运算是各阶段考试和高考命题的必考内容,数学函数的运算知识点是对大家夯实基础的重点内容,请大家务必认真掌握。

四、函数的基本性质在平面直角坐标系中,以函数y=f(x),(x=A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(XEA)的图象。

(1)定义:在平面直角坐标系中,以函数y=f(x),(X=A)中的x为横坐标,函数值y为纵坐标的点P(x,y)的集合C,叫做函数y=f(x),(XEA)的图象。

C上每一点的坐标(x,y)均满足函数关系y=f(x),反过来,以满足y=f(x)的每一组有序实数对x、y为坐标的点(x,y),均在C上.即记为C={P(x,y)ly=f(x),XEA}图象C一般的是一条光滑的连续曲线(或直线),也可能是由与任意平行与V轴的直线最多只有一个交点的若干条曲线或离散点组成。

[高一数学函数的性质知识点总结范文]高一数学函数知识点

[高一数学函数的性质知识点总结范文]高一数学函数知识点

[高一数学函数的性质知识点总结范文]高一数学函数知识点1.函数的单调性(局部性质)(1)增函数设函数y=f(某)的定义域为I,如果对于定义域I内的某个区间D内的任意两个自变量某1,某2,当某1如果对于区间D上的任意两个自变量的值某1,某2,当某1f(某2),那么就说f(某)在这个区间上是减函数.区间称为y=f(某)的单调减区间.注意:函数的单调性是函数的局部性质;(2)图象的特点如果函数y=f(某)在某个区间是增函数或减函数,那么说函数y=f(某)在这一区间上具有(严格的)单调性,在单调区间上增函数的图象从左到右是上升的,减函数的图象从左到右是下降的.(3).函数单调区间与单调性的判定方法(A)定义法:1任取某1,某2∈D,且某12作差f(某1)-f(某2);○3变形(通常是因式分解和配方);○4定号(即判断差f(某1)-f(某2)的正负);○5下结论(指出函数f(某)在给定的区间D上的单调性).○(B)图象法(从图象上看升降)(C)复合函数的单调性复合函数f[g(某)]的单调性与构成它的函数u=g(某),y=f(u)的单调性密切相关,其规律:“同增异减”注意:函数的单调区间只能是其定义域的子区间,不能把单调性相同的区间和在一起写成其并集.8.函数的奇偶性(整体性质)(1)偶函数一般地,对于函数f(某)的定义域内的任意一个某,都有f(-某)=f(某),那么f(某)就叫做偶函数.(2).奇函数一般地,对于函数f(某)的定义域内的任意一个某,都有f(-某)=—f(某),那么f(某)就叫做奇函数.(3)具有奇偶性的函数的图象的特征偶函数的图象关于y轴对称;奇函数的图象关于原点对称.利用定义判断函数奇偶性的步骤:1首先确定函数的定义域,并判断其是否关于原点对称;○2确定f(-某)与f(某)的关系;○3作出相应结论:若f(-某)=f(某)或f(-某)-f(某)=0,则f(某)是○偶函数;若f(-某)=-f(某)或f(-某)+f(某)=0,则f(某)是奇函数.注意:函数定义域关于原点对称是函数具有奇偶性的必要条件.首先看函数的定义域是否关于原点对称,若不对称则函数是非奇非偶函数.若对称,(1)再根据定义判定;(2)由f(-某)±f(某)=0或f(某)/f(-某)=±1来判定;(3)利用定理,或借助函数的图象判定.高一数学函数练习1.设f(某)=某3+b某+c是[-1,1]上的增函数,且f(-12)•f(12)<0,则方程f(某)=0在[-1,1]内()A.可能有3个实数根B.可能有2个实数根C.有唯一的实数根D.没有实数根解析:由f-12•f12<0得f(某)在-12,12内有零点,又f(某)在[-1,1]上为增函数,∴f(某)在[-1,1]上只有一个零点,即方程f(某)=0在[-1,1]上有唯一的实根.答案:C2.(2022•长沙模拟)已知函数f(某)的图象是连续不断的,某、f(某)的对应关系如下表:某123456f(某)136.1315.552-3.9210.88-52.488-232.064则函数f(某)存在零点的区间有()A.区间[1,2]和[2,3]B.区间[2,3]和[3,4]C.区间[2,3]、[3,4]和[4,5]D.区间[3,4]、[4,5]和[5,6]解析:∵f(2)与f(3),f(3)与f(4),f(4)与f(5)异号,∴f(某)在区间[2,3],[3,4],[4,5]上都存在零点.答案:C3.若a>1,设函数f(某)=a某+某-4的零点为m,g(某)=loga某+某-4的零点为n,则1m+1n的取值范围是()A.(3.5,+∞)B.(1,+∞)C.(4,+∞)D.(4.5,+∞)解析:令a某+某-4=0得a某=-某+4,令loga某+某-4=0得loga某=-某+4,在同一坐标系中画出函数y=a某,y=loga某,y=-某+4的图象,结合图形可知,n+m为直线y=某与y=-某+4的交点的横坐标的2倍,由y=某y=-某+4,解得某=2,所以n+m=4,因为(n+m)1n+1m=1+1+mn+nm≥4,又n≠m,故(n+m)1n+1m>4,则1n+1m>1.答案:B高一数学学习方法1,培养良好的学习兴趣。

3.2函数的基本性质习题课课件-高一上学期数学人教A版必修第一册

3.2函数的基本性质习题课课件-高一上学期数学人教A版必修第一册

∵f(1)=3,f(-1)=-1,-f(1)=-3,
∴f(-1)≠f(1),∴y=2x+1 不是偶函数,
又 f(-1)≠-f(1),∴y=2x+1 不是奇函数,
∴y=2x+1 既不是奇函数,又不是偶函数.
(6)函数 f(x)的定义域为(-∞,1)∪(1,+∞),不关于原点对称,
故函数 f(x)不具有奇偶性.
1.设函数 y=f(x)的图象如图所示; (1)写出该函数的定义域与值域; (2)写出该函数的最大值与最小值; (3)写出该函数的单调区间.
【解析】(1) 定义域为 x∈[-3,3], 值域为 y∈[-1
1
2
-3 -2 -1 O 1 -1
-2
3x
(2) 当 x = -1 时,最大值为 2; 当 x = 2 时最小值为-1 .
y y=3-x,
ox
y
ox
y=x2+1,
y O f (x) x2
x
考点1: 函数的单调性
例 3.函数 y=x2+x+1(x∈R)的递减区间是 ( C )
A.-12,+∞
B.[-1,+∞)
C.-∞,-12 D.(-∞,+∞)
y
【解析】 y=x2+x+1=x+122+43,
对称轴为: x=-12,在对称轴左侧单调递减, ∴当 x≤-21时单调递减.
25
对点练清:3 1. 下列函数是偶函数的是 ( A.y=2x2-3 B.y=x3
A)
C.y=x2,x∈[0,1]
D.y=x
【解析】对于 A:f(-x)=2(-x)2-3=2x2-3=f(x),所以 f(x)是偶函数,
B,D 都为奇函数,C 中定义域不关于原点对称,函数不具备奇偶性.

高一数学函数的基本性质4

高一数学函数的基本性质4

讲授新课
函数最小值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足x0∈I,使得f (x0)=M. 那么,称M是函数y=f (x)的最小值.
讲授新课
例1 设f (x)是定义在区间[-6, 11]上的
函数. 如果f (x)在区间[-6, -2]上递减,
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足:
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M.
讲授新课
函数最大值概念:
一般地,设函数y=f (x)的定义域为I. 如果存在实数M,满足: (1)对于任意x∈I,都有f (x)≤M. (2)存在x0∈I,使得f (x0)=M.
在区间[-2, 11]上递增,画出f (x)的一
复习引入
问题2 函数f (x)=-x2. 同理可知x∈R, 都有f (x)≤f (0). 即x=0时,f (0)是函数值中的最大值.


讲授新课
函数最大值概念:
;/naotanyf 脑瘫如何进行预防 脑瘫预防最主要阶段 脑瘫要怎么预防

上帝便把他派到人世,上帝很想听一下人们对他的评价。 结果出人意料,十全十美的人同样遭受到一些人莫明其妙地攻击和诋毁。这是怎么回事?上帝便打发天使去调查原因。 天使很快就回来了,向上帝并报说:“他的确一点过错、一点瑕疵也没有。某些家伙嫉妒得发狂,他 们造谣、诬陷、谩骂、攻击,使用了各种卑鄙的手段。并借此提高自己的知名度。还有……” “别说了。”上帝生气地一挥手,制止天使再讲下去。 “上帝,”天使忽然又嗫嚅着说,“就连您也莫明其妙地遭到一些人的诅咒呢。” “是吗?”

高一数学人教版必修一第一单元知识点:函数的基本性质

高一数学人教版必修一第一单元知识点:函数的基本性质

高一数学人教版必修一第一单元知识点:函数的基本性质1.高中数学必修一函数的基本性质——函数的概念:设A、B是非空的数集,如果依照某个肯定的对应关系f,使对于集合A中的任意一个数x,在集合B中都有肯定的数f(x)和它对应,那么就称f:A→B为从集合A到集合B的一个函数.记作: y=f(x),x∈A.其中,x叫做自变量,x的取值范畴A叫做函数的定义域;与x的值相对应的y值叫做函数值,函数值的集合{f(x)| x∈A }叫做函数的值域.注意:如果只给出解析式y=f(x),而没有指明它的定义域,则函数的定义域即是指能使这个式子成心义的实数的集合; 函数的定义域、值域要写成集合或区间的情势.定义域补充能使函数式成心义的实数 x 的集合称为函数的定义域,求函数的定义域时列不等式组的主要根据是:(1) 分式的分母不等于零;(2) 偶次方根的被开方数不小于零;(3) 对数式的真数必须大于零;(4) 指数、对数式的底必须大于零且不等于 1.(5) 如果函数是由一些基本函数通过四则运算结合而成的 . 那么,它的定义域是使各部分都成心义的 x 的值组成的集合 .(6)指数为零底不可以等于零构成函数的三要素:定义域、对应关系和值域再注意:(1)构成函数三个要素是定义域、对应关系和值域.由于值域是由定义域和对应关系决定的,所以,如果两个函数的定义域和对应关系完全一致,即称这两个函数相等(或为同一函数)(2)两个函数相等当且仅当它们的定义域和对应关系完全一致,而与表示自变量和函数值的字母无关。

相同函数的判定方法:①表达式相同;②定义域一致 (两点必须同时具有)值域补充( 1 )、函数的值域取决于定义域和对应法则,不论采取什么方法求函数的值域都应先推敲其定义域 . ( 2 ) . 应熟悉掌控一次函数、二次函数、指数、对数函数及各三角函数的值域,它是求解复杂函数值域的基础 . ( 3 ) . 求函数值域的常用方法有:直接法、反函数法、换元法、配方法、均值不等式法、判别式法、单调性法等 .3. 高中数学必修一函数的基本性质——函数图象知识归纳(1) 定义:在平面直角坐标系中,以函数y=f(x) , (x ∈A)中的 x 为横坐标,函数值 y 为纵坐标的点P(x , y) 的集合 C ,叫做函数y=f(x),(x ∈A)的图象.C 上每一点的坐标 (x , y) 均满足函数关系 y=f(x) ,反过来,以满足 y=f(x) 的每一组有序实数对 x 、 y 为坐标的点 (x , y) ,均在 C 上 .即记为C={ P(x,y) | y= f(x) , x ∈A }图象 C 一样的是一条光滑的连续曲线 ( 或直线 ), 也多是由与任意平行与 Y 轴的直线最多只有一个交点的若干条曲线或离散点组成 .(2) 画法A、描点法:根据函数解析式和定义域,求出 x,y 的一些对应值并列表,以 (x,y) 为坐标在座标系内描出相应的点 P(x, y) ,最后用平滑的曲线将这些点连接起来 .B、图象变换法(请参考必修4三角函数)常用变换方法有三种,即平移变换、伸缩变换和对称变换(3) 作用:1 、直观的看出函数的性质;2 、利用数形结合的方法分析解题的思路。

高一数学必修一函数的基本性质

高一数学必修一函数的基本性质

目录第一章集合与函数概念1.1 集合1.1.1 集合的含义与表示1.1.2 集合间的基本关系1.1.3 集合的基本运算1.2 函数及其表示1.2.1 函数的概念1.2.2 函数的表示法1.3 函数的基本性质1.3.1 单调性与最大(小)值1.3.2 奇偶性章末整合提升第二章基本初等函数(I)2.1 指数函数2.1.1 指数与指数幂的运算2.1.2 指数函数及其性质2.2 对数函数2.2.1 对数与对数运算2.2.2 对数函数及其性质2.3 幂函数章末整合提升第三章函数的应用3.1 函数与方程3.1.1 方程的根与函数的零点3.1.2 用二分法求方程的近似解3.2 函数模型及其应用3.2.1 几类不同增长的函数模型3.2.2 函数模型的应用实例章末整合提升1.3函数的基本性质1.3.1 单调性与最大(小)值【基础知识解读】知识点一 增函数、减函数、单调性、单调区间的概念 1.增函数、减函数定义一般地,设函数y=f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)<f (x 2),那么就说f (x )在区间D 上是增函数.一般地,设函数y =f (x )的定义域为I ,如果对于定义域I 内的某个区间D 内的任意两个自变量x 1,x 2,当x 1<x 2时,都有f (x 1)>f (x 2),那么就说f (x )在区间D 上是减函数. 注意:①.函数的单调性是在定义域内的某个区间上的性质,是函数的局部性质;②.增(减)函数定义中的x 1,x 2必须满足三个特性:一是任意性,即“任意取x 1,x 2”;二是有序性,通常规定x 1<x 2;三是同区间性,即x 1,x 2必须同属于一个单调区间,三者缺一不可.(这也是利用单调性求解不等式这类题的解题思路).2.函数的单调性定义如果函数y =f (x )在某个区间M 上是增函数或是减函数,那么就说函数y =f (x )在这一区间M 上具有(严格的)单调性,区间M 叫做y =f (x )的单调区间.(如果函数在某个区间M 上有增有减就叫不具有单调性).知识点二 函数单调性的证明(判断)方法①.利用定义证明函数f (x )在给定的区间D 上的单调性的一般步骤: ②.任取x 1,x 2∈D ,且x 1<x 2;③.作差f (x 1)-f (x 2);④.变形(通常是因式分解和配方); ⑤.定号(即判断差f (x 1)-f (x 2)的正负);下结论(即指出函数f (x )在给定的区间D 上的单调性). 例:求证:函数12+=x x f )(在R 上是增函数.知识点三 复合函数的单调性复合函数))((x g f y =的单调性:若)(x g u =在区 间[]b a ,上的单调性与)(u f y =在[])(),(b g a g (或 者[])(),(a g b g )上的单调性相同,则复合函数))((x g f y =在[]b a ,上单调递增,否则单调递减,可简记为“同增异减”,如右表: 例.判断函数12-=x x f )(在定义域上的单调性.【应用能力提升】应用点一 函数单调性的判定及证明例1.证明函数x x f -=)(在定义域上是减函数.例2.判定函数)()(0>+=p xpx x f 的单调性.(注意讨论情况)应用点二 复合函数的单调性 例3.讨论函数2012--=x x x f )(的单调性. 例3.函数f (x )对任意的a ,b ∈R ,都有f (a+b )=f (a )+f (b )-1,并且当x > 0时,f (x )>1.求证:f (x )是R 上的增函数.应用点三 函数的单调性的应用1.利用函数的单调性比较大小与解不等式例4.已知函数c bx x x f ++=2)(对任意实数t 都有)()(t f t f -=+22,试比较)(),(),(421f f f 的大小.例5.已知f (x )是),(+∞0上的增函数,且12=-=)(),()()(f y f x f y x f ,解不等式231≤--)()(x f x f .2.利用函数的单调性求函数的值域或最值例6.求函数122--=ax x x f )(在区间[0,2 ]上的最大值和最小值.补充:①求函数最大(小)值得常用方法:配方法、判别式法、换元法、数形结合法、利用函数的单调性等;②对于求含参数的函数的最大(小)值时应注意两种情况:动轴定区间,定轴动区间.3.利用函数的单调性求参数的取值范围例7.(1).已知函数2122+--=x a x x f )()(在区间(—∞,4 ]上是减函数,求实数a 的取值范围; (2). 已知ax x x f +-=3)(在(0,1)上是增函数,求实数a 的取值范围.例8.已知函数[)+∞∈++=,,)(122x x ax x x f .(1)当21=a 时,求函数f (x )的最小值;(2)若对任意[)01>+∞∈)(,,x f x 恒成立,试求实数a 的取值范围.结论:))()((x f a x f a <>恒成立等价于))(()(min max x f a x f a <>.1.3函数的基本性质1.3.2 奇偶性【基础知识解读】知识点一 函数奇偶性的概念注意:①函数是奇函数或是偶函数称为函数的奇偶性,函数的奇偶性是函数的整体性质,只有对其定义域内的每一个x ,都有f (-x )=f (x )(或f (-x )=-f (x )),才能说f (x )是偶(或奇)函数.②判断函数y =f (x )的奇偶性的一个必不可少的条件:定义域关于原点对称,换言之,若所给函数的定义域不关于原点对称,则这个函数一定不具有奇偶性. ③若奇函数在原点处有定义,则必有f (0)=0.④若f (-x )=-f (x ),且f (-x )=f (x ),则f (x )既是奇函数又是偶函数,这类函数有且只有一类,即f (x )=0,x ∈D ,D 是关于原点对称的非空实数集.例.已知函数835-++=x ax x x f )(,且102=-)(f ,则=)(2f ————.知识点二 函数奇偶性的判定判断函数f (x )的奇偶性主要分为三步进行:(1)判断函数f (x )的定义域是否关于原点对称,若关于原点对称,则进行下一步; (2)化简函数f (x )的解析式(注意定义域);(3)求出f (-x ),根据f (-x )与f (x )之间的关系,判断函数f (x )的奇偶性: ①由0=+-)()(x f x f 或))(()()(01≠-=-x f x f x f 得)()(x f x f -=-,则f (x )是奇函数; ②由0=--)()(x f x f 或))(()()(01≠=-x f x f x f 得)()(x f x f =-,则f (x )是偶函数. 拓展:若)()(x f x f ±≠-,则f (x )既不是奇函数,也不是偶函数;而定义域关于原点对称的非零常数函数f (x ) = c (c ≠0)是偶函数.例.判断下列函数的奇偶性:(1)242x x x f +=)(; (2)xx x f 13+=)(; (3)2211x x x f -+-=)(;(4)x x f -=2)(; (5)x x f =)(; (6)23x x x f +=)(.【应用能力提升】应用点一 函数奇偶性的判定及证明 1.分段函数奇偶性的判断例1.判断下列函数的奇偶性:(1).⎩⎨⎧<≤---≤<--+=6145164522x x x x x f ,)(,,)()(;(2).⎪⎩⎪⎨⎧<---=>+-=0320003222x x x x x x x x f ,,,,)(.分析:分段函数的奇偶性应分段证明f (-x )与f (x )的关系,只有当对称的两段上都满足相同的关系时才能判断其奇偶性.2.抽象函数奇偶性的判断例2(1).若对于任意实数a ,b ,函数f (x ),x ∈R 都有)()()(b f a f b a f +=+,求证:f (x )为奇函数; (2).若对于任意实数x 1,x 2,函数f (x ),x ∈R 都有)()()()(212121x f x f x x f x x f ⋅=-++,求证:f (x )为偶函数.应用点二 函数奇偶性应用 1.利用奇偶性求函数的解析式例3.已知f (x )是定义在R 上的奇函数,且当0>x 时,13++=x x x f )(,求f (x )的解析式.例4.已知f (x )是定义在[]66,-上的奇函数,且f (x )在[]30,上是关于x 的一次函数,在[]63,上是关于x 的二次函数,且当63≤≤x 时,2635==≤)(,)()(f f x f ,求f (x )的解析式.应用点三 函数单调性与奇偶性的综合应用例5.已知奇函数即y =f (x ),x ∈(—1,1)在(—1,1)上是减函数,解不等式0311<-+-)()(x f x f .例6.函数21x b ax x f ++=)(是定义在(—1,1)上的奇函数,且5221=)(f .(1)求函数f (x )的解析式;(2)用定义证明:f (x )在(—1,1)上是增函数;(3)解不等式01<+-)()(t f t f .。

函数的基本性质高一数学人教版(必修1)

函数的基本性质高一数学人教版(必修1)

第一章 集合与函数概念1.3 函数的基本性质一、函数的单调性 1.函数单调性的定义一般地,设函数f (x )的定义域为I :如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有___________,那么就说函数f (x )在区间D 上是增函数;如果对于定义域I 内某个区间D 上的任意两个自变量的值x 1,x 2,当x 1<x 2时,都有___________,那么就说函数f (x )在区间D 上是减函数.对函数单调性的理解(1)定义中的x 1,x 2有三个特征:①任意性,即不能用特殊值代替;②属于同一个区间;③有大小,一般令x 1<x 2.学科网(2)增、减函数的定义实现自变量的大小关系与函数值的大小关系的直接转化:若()f x 是增函数,则()()1212f x f x x x ⇔<<;若()f x 是减函数,则()()1212f x f x x x ⇔<>.2.函数的单调区间如果函数y =f (x )在区间D 上是增函数或减函数,那么就说函数y =f (x )在这一区间具有(严格的)___________,区间D 叫做y =f (x )的___________.对函数单调区间的理解(1)一个函数出现两个或者两个以上的单调区间时,不能用“∪”连接,而应该用“和”连接.(2)函数的单调性是函数的局部性质,体现在函数的定义域或其子区间上,所以函数的单调区间是其定义域的子集.(3)函数的单调性是对某个区间而言的,在某一点上不存在单调性.(4)并非所有的函数都具有单调性.如函数()1,0,x x f x ⎧=⎨⎩是有理数是无理数就不具有单调性.常见函数的单调性函数类型单调性一次函数()0y kx b k =+≠0k > 在R 上单调递增 0k <在R 上单调递减反比例函数(0)ky k x=≠0k >单调减区间是(,0)-∞和(0,)+∞ 0k <单调增区间是(,0)-∞和(0,)+∞二次函数2()0y ax bx c a +≠+=0a > 单调减区间是(,)2b a -∞-,单调增区间是[,)2ba-+∞ 0a < 单调减区间是[,)2b a -+∞,单调增区间是(,)2b a-∞-二、函数的最大(小)值 1.最大值一般地,设函数()y f x =的定义域为I ,如果存在实数M 满足: (1)对于任意的x I ∈,都有___________; (2)存在0x I ∈,使得___________. 那么,我们称M 是函数()y f x =的最大值. 函数的最大值对应图象最高点的纵坐标. 2.最小值一般地,设函数()y f x =的定义域为I ,如果存在实数m 满足: (1)对于任意的x I ∈,都有___________; (2)存在0x I ∈,使得___________. 那么,我们称m 是函数()y f x =的最小值.函数的最小值对应图象最低点的纵坐标.函数的最值与单调性的关系如果函数()y f x =在区间(],a b 上是增函数,在区间[),b c 上是减函数,则函数()y f x =,,()x a c ∈在x b =处有最大值()f b .如果函数()y f x =在区间(],a b 上是减函数,在区间[),b c 上是增函数,则函数()y f x =,,()x a c ∈在x b =处有最小值()f b .如果函数()y f x =在区间[],a b 上是增(减)函数,则在区间[],a b 的左、右端点处分别取得最小(大)值和最大(小)值. 三、函数的奇偶性一般地,如果对于函数f (x )的定义域内任意一个x ,都有___________,那么函数f (x )就叫做偶函数. 一般地,如果对于函数f (x )的定义域内任意一个x ,都有___________,那么函数f (x )就叫做奇函数.函数具有奇偶性的条件(1)①首先考虑定义域是否关于原点对称,如果定义域不关于原点对称,则函数是非奇非偶函数; ②在定义域关于原点对称的前提下,进一步判定()f x -是否等于()f x ±.(2)分段函数的奇偶性应分段说明()f x -与()f x 的关系,只有当对称区间上的对应关系满足同样的关系时,才能判定函数的奇偶性.(3)若奇函数的定义域包括0,则()00f =.四、奇函数、偶函数的图象特征如果一个函数是奇函数,则这个函数的图象是以___________为对称中心的中心对称图形;反之,如果一个函数的图象是以___________为对称中心的中心对称图形,则这个函数是奇函数.如果一个函数是偶函数,则这个函数的图象是以___________为对称轴的轴对称图形;反之,如果一个函数的图象关于___________对称,则这个函数是偶函数.奇、偶函数的单调性根据奇、偶函数的图象特征,可以得到:(1)奇函数在关于原点对称的区间上有相同的单调性,偶函数在关于原点对称的区间上有相反的单调性.上述结论可简记为“奇同偶异”.(2)偶函数在关于原点对称的区间上有相同的最大(小)值,取最值时的自变量互为相反数;奇函数在关于原点对称的区间上的最值互为相反数,取最值时的自变量也互为相反数.性质法判断函数的奇偶性()f x ,()g x 在它们的公共定义域上有下面的结论:()f x()g x()()f x g x +()()f x g x -()()f x g x(())f g x偶函数偶函数偶函数偶函数偶函数偶函数偶函数 奇函数 不能确定 不能确定 奇函数 偶函数奇函数 偶函数 不能确定 不能确定 奇函数 偶函数奇函数 奇函数 奇函数 奇函数 偶函数 奇函数K 知识参考答案:一、1.()()12f x f x < ()()12f x f x > 2.单调性 单调区间二、1.(1)()f x M ≤ (2)0()f x M = 2.(1)()f x m ≥ (2)0()f x m = 三、()()f x f x -= ()()f x f x -=- 四、坐标原点 坐标原点 y 轴 y 轴K—重点1.函数的单调性及其几何意义,函数的最大(小)值及其几何意义;2.函数的奇偶性及其判断方法;3.奇函数、偶函数的图象特征;K—难点1.利用函数的单调性定义判断、证明函数的单调性,利用函数的单调性求函数的最大(小)值;2.函数奇偶性的判断方法;K—易错1.写函数的单调区间或利用单调区间求解时,首先要关注函数的定义域,否则容易出错;2.需注意单调区间与在区间上单调的区别;3.在判断函数的奇偶性时,不仅要关注定义域是否关于原点对称,而且要注意函数的奇偶性是针对定义域的任意一个x而言的.另外,不要忽略奇函数若在原点处有定义,则(0)0f .1.函数单调性的判断或证明(1)判断函数的单调性常用定义法和图象法,而证明函数的单调性则应严格按照单调性的定义操作.利用定义法判断(或运用)函数的单调性的步骤为:(2)若判断复合函数的单调性,则需将函数解析式分解为一些简单的函数,然后判断外层函数和内层函数的单调性,外层函数和内层函数的单调性相同时,则复合函数单调递增;外层函数和内层函数的单调性相反时,则复合函数单调递减.可简记为“同增异减”,需要注意内层函数的值域在外层函数的定义域内.(3)函数单调性的常用结论:①若()(),f x g x 均为区间A 上的增(减)函数,则()()f x g x +也是区间A 上的增(减)函数; ②若0k >,则()kf x 与()f x 的单调性相同;若0k <,则()kf x 与()f x 的单调性相反; ③函数()()()0y f x f x =>在公共定义域内与()y f x =-,1()y f x =的单调性相反; ④函数()()()0y f x f x =≥在公共定义域内与()y f x =的单调性相同.【例1】证明:函数21()f x x x=-在区间(0,+∞)上是增函数. 【答案】证明详见解析.【名师点睛】函数单调性判断的等价变形:()f x 是增函数⇔对任意12x x <,都有12()()f x f x <,或1212()()0f x f x x x ->-,或1212(()())()0f x f x x x -->;()f x 是减函数⇔对任意12x x <,都有12()()f x f x >,或1212()()0f x f x x x -<-,或1212(()())()0f x f x x x --<.2.单调性的应用函数单调性的应用主要有:(1)由12,x x 的大小关系可以判断()1f x 与()2f x 的大小关系,也可以由()1f x 与()2f x 的大小关系判断出12,x x 的大小关系.比较函数值的大小时,若自变量的值不在同一个单调区间内,要利用其函数性质转化到同一个单调区间上进行比较.(2)利用函数的单调性,求函数的最大值和最小值.(3)利用函数的单调性,求参数的取值范围,此时应将参数视为已知数,依据函数的单调性,确定函数的单调区间,再与已知单调区间比较,即可求出参数的取值范围.若函数为分段函数,除注意各段的单调性外,还要注意衔接点.(4)利用函数的单调性解不等式.首先根据函数的性质把不等式转化为()()()()f g x f h x >的形式,然后根据函数的单调性去掉“f ”号,转化为具体的不等式(组),此时要注意()g x 与()h x 的取值应在外层函数的定义域内.【例2】若函数()223()1f x ax a x a -+=-在[1,+∞)上是增函数,求实数a 的取值范围. 【答案】0≤a ≤1【名师点睛】本题中()223()1f x ax a x a -+=-不一定是二次函数,所以要对a 进行讨论.另外,需熟练掌握一次函数、反比例函数和二次函数的单调性,并能灵活应用. 3.求函数的最大(小)值求函数最大(小)值的常用方法有:(1)配方法,对于“二次函数类”的函数,一般通过配方法求最值; (2)图象法,对于图象较为容易画出来的函数,可借助图象直观求出最值;(3)单调性法,对于较复杂的函数,分析单调性(需给出证明)后,可依据单调性确定函数最值; (4)若函数存在最值,则最值一定是值域两端处的值,所以求函数的最大(小)值可利用求值域的方法. 注意:(1)无论用哪种方法求最值,都要考查“等号”是否成立.(2)函数的值域是一个集合,函数的最值是一个函数值,它是值域的一个元素,函数的值域一定存在,但函数并不一定有最大(小)值.【例3】已知函数()223f x x x =--,若x ∈[t ,t +2],求函数f (x )的最值. 【答案】答案详见解析.【解析】易知函数()223f x x x =--的图象的对称轴为直线x =1,(1)当1≥t +2,即t ≤-1时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (t +2)=t 2+2t -3. (2)当22t t ++≤1<t +2,即-1<t ≤0时,f (x )max =f (t )=t 2-2t -3,f (x )min =f (1)=-4. (3)当t ≤1<22t t ++,即0<t ≤1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (1)=-4. (4)当1<t ,即t >1时,f (x )max =f (t +2)=t 2+2t -3,f (x )min =f (t )=t 2-2t -3.设函数f (x )的最大值为g (t ),最小值为φ(t ),则有2223,0()23,0t t t g t t t t ⎧--≤⎪=⎨+->⎪⎩ ,2223,1()4,1123,1t t t t t t t t ϕ⎧+-≤-⎪=--<≤⎨⎪-->⎩. 【名师点睛】求二次函数的最大(小)值有两种类型:一是函数定义域为实数集R ,这时只要根据抛物线的开口方向,应用配方法即可求出最大(小)值; 二是函数定义域为某一区间,这时二次函数的最大(小)值由它的单调性确定,而它的单调性又由抛物线的开口方向和对称轴的位置(在区间上,在区间左侧,还是在区间右侧)来决定,若含有参数,则要根据对称轴与x 轴的交点与区间的位置关系对参数进行分类讨论,解题时要注意数形结合. 4.判断函数的奇偶性 判断函数奇偶性的方法: (1)定义法:(2)图象法:(3)性质法:利用奇函数和偶函数的和、差、积、商的奇偶性和复合函数的奇偶性来判断. 判断()f x -与()f x 的关系时,也可以使用如下结论: 如果()0()f x f x --=或()1(()0)()f x f x f x -=≠,则函数()f x 为偶函数; 如果()0()f x f x -+=或()1(()0)()f x f x f x -=-≠,则函数()f x 为奇函数. 【例4】下列判断正确的是A .函数22)(2--=x xx x f 是奇函数B .函数2()1f x x x =-C .函数2211,02()11,02x x f x x x ⎧+>⎪⎪=⎨⎪--<⎪⎩是偶函数D .函数1)(=x f 既是奇函数又是偶函数 【答案】B【解析】对于A ,22)(2--=x xx x f 的定义域为2x ≠,不关于原点对称,不是奇函数.对于B ,2()1f x x x =-2()1f x x x -=--对于C ,函数的定义域为(,0)(0,)-∞+∞,关于原点对称.当0x >时,2211()()1(1)()22f x x x f x -=---=-+=-;当0x <时,2211()()11()22f x x x f x -=-+=+=-.综上可知,函数()f x 是奇函数.对于D ,1)(=x f 的图象为平行于x 轴的直线,不关于原点对称,不是奇函数.【名师点睛】对于C ,判断分段函数的奇偶性时,应分段说明()f x -与()f x 的关系,只有当对称的两段上都满足相同的关系时,才能判断其奇偶性.若D 项中的函数是()0f x =,且定义域关于原点对称,则函数既是奇函数又是偶函数. 5.奇偶函数图象对称性的应用奇函数的图象关于原点对称,偶函数的图象关于y 轴对称,因此可以借助函数一部分的图象得出函数另一部分的图象,进而研究函数的性质.【例5】设奇函数()f x 的定义域为[5,5]-.若当[0,5]x ∈时,()f x 的图象如图所示,则不等式()0f x <的解集是A .(2,0)(2,5)-B .(5,2)(2,5)--C .[2,0](2,5]-D .(2,0)(2,5]-【答案】D【名师点睛】利用数形结合思想解题时,要准确画出草图,并注意特殊点的位置,且求解时不要忽略定义域的限制.6.函数奇偶性的应用(1)利用奇偶性的定义求函数的值或参数的值,这是奇偶性定义的逆用,注意利用常见函数(如一次函数、反比例函数、二次函数)具有奇偶性的条件求解.(2)利用奇偶性求函数的解析式,已知函数奇偶性及其在某区间上的解析式,求该函数在整个定义域上的解析式的方法是:首先设出未知区间上的自变量,利用奇、偶函数的定义域关于原点对称的特点,把它转化到已知的区间上,代入已知的解析式,然后再次利用函数的奇偶性求解即可.(3)利用奇偶性比较大小,通过奇函数在关于原点对称的两个区间上的单调性一致,偶函数在关于原点对称的两个区间上的单调性相反,把不在同一单调区间上的两个或多个自变量的函数值转化到同一单调区间上比较大小.【例6】设偶函数()f x 的定义域为R ,当x [0,)∈+∞时()f x 是增函数,则(2)f -,(π)f ,(3)f -的大小关系是A .(π)f >(3)f ->(2)f -B .(π)f >(2)f ->(3)f -C .(π)f <(3)f -<(2)f -D .(π)f <(2)f -<(3)f -【答案】A【解析】由函数为偶函数得()()()()22,33f f f f -=-=,当x [0,)∈+∞时()f x 是增函数,所以(π)f >()()32f f >,从而(π)f >(3)f ->(2)f -.【名师点睛】由于偶函数在y 轴两侧的单调性相反,故不可直接由π>23->-得出(π)(2)(3)f f f >->-.7.对单调区间和在区间上单调两个概念的理解【例7】已知二次函数2()2(1)6f x x a x =--+在区间(,5]-∞上单调递减,求实数a 的取值范围. 【错解】易知函数2()2(1)6f x x a x =--+的图象的对称轴为直线1x a =-,由题意知()f x 在区间(,5]-∞上单调递减,所以15a -=,解得6a =.【错因分析】错解中把在区间上单调误认为是单调区间,若把本题改为二次函数2()2(1)6f x x a x =--+的单调递减区间是(,5]-∞,则错解中的解法是正确的.【正解】易知函数2()2(1)6f x x a x =--+的图象的对称轴为直线1x a =-,由题意知()f x 在区间(,5]-∞上单调递减,所以15a -≥,解得6a ≥.【名师点睛】单调区间是一个整体概念,比如说函数的单调递减区间是I ,指的是函数递减的最大范围为区间I .而函数在某一区间上单调,则指此区间是相应单调区间的子区间,一定要区分开. 8.判断函数奇偶性时,注意定义域【例8】判断函数42()3,(2,2]f x x x x =+∈-的奇偶性.【错解】因为4242()()3()3()f x x x x x f x -=-+-=+=,所以函数42()3,(2,2]f x x x x =+∈-是偶函数. 【错因分析】判断函数的奇偶性时,需先判断函数的定义域是否关于原点对称.【正解】函数42()3,(2,2]f x x x x =+∈-的定义域为(2,2]-,不关于原点对称,故函数42()3,(2,2]f x x x x =+∈-既不是奇函数又不是偶函数.【名师点睛】由函数奇偶性的定义可知,具有奇偶性的函数的定义域必是关于原点对称的.1.集合{x |x ≥2}表示成区间是A .(2,+∞)B .[2,+∞)C .(–∞,2)D .(–∞,2]2.集合{x |x >0且x ≠2}用区间表示出来A .(0,2)B .(0,+∞)C .(0,2)∪(2,+∞)D .(2,+∞)3.函数f (x )=(x –1)2的单调递增区间是A .[0,+∞)B .[1,+∞)C .(–∞,0]D .(–∞,1]4.已知函数f (x )=–1+11x -(x ≠1),则f (x ) A .在(–1,+∞)上是增函数 B .在(1,+∞)上是增函数 C .在(–1,+∞)上是减函数D .在(1,+∞)上是减函数5.函数y =f (x ),x ∈[–4,4]的图象如图所示,则函数f (x )的所有单调递减区间为A .[–4,–2]B .[1,4]C .[–4,–2]和[1,4]D .[–4,–2]∪[1,4]6.函数g (x )=|x |的单调递增区间是A .[0,+∞)B .(–∞,0]C .(–∞,–2]D .[–2,+∞)7.已知f (x )是定义在[0,+∞)上单调递增的函数,则满足()1213f x f ⎛⎫-< ⎪⎝⎭的x 取值范围是A .1223⎛⎫ ⎪⎝⎭,B .23⎛⎫-∞ ⎪⎝⎭,C .1223⎡⎫⎪⎢⎣⎭,D .23⎛⎤-∞ ⎥⎝⎦,8.函数f (x )=–|x –2|的单调递减区间为A .(–∞,2]B .[2,+∞)C .[0,2]D .[0,+∞)9.函数254y x x =-+的单调递增区间是A .52⎡⎫+∞⎪⎢⎣⎭,B .542⎡⎫⎪⎢⎣⎭,C .[4,+∞)D .[)5142⎡⎫+∞⎪⎢⎣⎭,,,10.已知函数f (x )是定义域为R 的奇函数,且f (1)=–2,那么f (–1)+f (0)=A .–2B .0C .1D .211.函数f (x )=1x–x 的图象关于 A .坐标原点对称 B .x 轴对称C .y 轴对称D .直线y =x 对称12.函数f (x )=x 3+x 的图象关于A .y 轴对称B .直线y =–x 对称C .坐标原点对称D .直线y =x 对称13.用区间表示数集{x |2<x ≤4}=___________.14.奇函数f (x )的图象关于点(1,0)对称,f (3)=2,则f (1)=___________. 15.y =f (x )为奇函数,当x >0时f (x )=x (1–x ),则当x <0时,f (x )=___________.16.函数f(x)=x+2x(x>0)的单调减区间是A.(2,+∞)B.(0,2)C+∞)D.(017.函数f(x)=x+bx(b>0)的单调减区间为A.()B.(–∞,,+∞)C.(–∞,)D.(,0),(0)18.函数f(x)=x+3|x–1|的单调递增区间是A.(–∞,+∞)B.(1,+∞)C.(–∞,1)D.(0,+∞)19.函数y=21xx-+,x∈(m,n]最小值为0,则m的取值范围是A.(1,2)B.(–1,2).C.[1,2)D.[–1,2)20.已知f(x)=ax2+bx是定义在[a–1,2a]上的偶函数,那么a+b的值是A.13-B.13C.12-D.1221.已知函数y=f(x)在R上为奇函数,且当x≥0时,f(x)=x2–2x,则当x<0时,f(x)的解析式是A.f(x)=–x(x+2)B.f(x)=x(x–2)C.f(x)=–x(x–2)D.f(x)=x(x+2)22.已知函数y=f(x)是R上的偶函数,且f(x)在[0,+∞)上是减函数,若f(a)≥f(–2),则a的取值范围是A.a≤–2 B.a≥2C.a≤–2或a≥2D.–2≤a≤223.已知一个奇函数的定义域为{–1,2,a,b},则a+b=A.–1 B.1 C.0 D.224.已知函数f(x)=–x|x|+2x,则下列结论正确的是A.f(x)是偶函数,递增区间是(0,+∞)B.f(x)是偶函数,递减区间是(–∞,–1)C .f (x )是奇函数,递增区间是(–∞,–1)D .f (x )是奇函数,递增区间是(–1,1) 25.奇函数y =f (x )的局部图象如图所示,则A .f (2)>0>f (4)B .f (2)<0<f (4)C .f (2)>f (4)>0D .f (2)<f (4)<026.已知函数f (x )=x 3–3x ,求函数f (x )在[–3,32]上的最大值和最小值.27.(2017•浙江)若函数f (x )=x 2+ ax +b 在区间[0,1]上的最大值是M ,最小值是m ,则M – mA .与a 有关,且与b 有关B .与a 有关,但与b 无关C .与a 无关,且与b 无关D .与a 无关,但与b 有关28.(2017•新课标全国Ⅰ)函数()f x 在(,)-∞+∞单调递减,且为奇函数.若(11)f =-,则满足21()1x f --≤≤的x 的取值范围是A .[2,2]-B .[1,1]-C .[0,4]D .[1,3]29.(2017•新课标Ⅱ)已知函数f (x )是定义在R 上的奇函数,当x ∈(–∞,0)时,f (x )=2x 3+x 2,则f(2)=__________. 30.(2016•北京)函数()(2)1xf x x x =≥-的最大值为_________.1 2 3 4 5 6 7 8 9 10 11 12 B C B D C A C B C D A C 16 17 18 19 20 21 22 23 24 25 27 28 DDBDBADADABD1.【答案】B【解析】集合{x |x ≥2}表示成区间是[2,+∞),故选B . 2.【答案】C【解析】集合{x |x >0且x ≠2}用区间表示为:(0,2)∪(2,+∞).故选C .5.【答案】C【解析】由如图可得,f (x )在[–4,–2]递减,在[–2,1]递增,在[1,4]递减,可得f (x )的减区间为 [–4,–2],[1,4].故选C .6.【答案】A【解析】x ≥0,时,g (x )=x ,x <0时,g (x )=–x ,故函数在[0,+∞)递增,故选A . 7.【答案】C【解析】∵f (x )是定义在[0,+∞)上单调递增的函数,∴不等式()1213f x f ⎛⎫-< ⎪⎝⎭等价为0≤2x –1<13,即12≤x <23,即不等式的解集为1223⎡⎫⎪⎢⎣⎭,,故选C . 8.【答案】B【解析】∵y =|x –2|=2222x x x x -≥⎧⎨-+<⎩,,,∴函数y =|x –2|的单调递减区间是(–∞,2],∴f (x )=–|x –2|的单调递减区间是[2,+∞),故选B.11.【答案】A【解析】函数f(x)=1x–x,定义域为{x|x≠0}关于原点对称,f(–x)=–1x+x=–f(x),则f(x)为奇函数,图象关于原点对称.故选A.12.【答案】C【解析】∵f(–x)=–x3–x=–f(x),∴函数f(x)=x3+x为奇函数,∵奇函数的图象关于原点对称,故选C.13.【答案】(2,4]【解析】数集{x|2<x≤4}=(2,4],故答案为:(2,4].14.【答案】2【解析】奇函数f(x)的图象关于点(1,0)对称,f(3)=2,所以f(–1)=–2,所以f(1)=–f(–1)=2,故答案为:2.15.【答案】x2+x【解析】∵f(x)为奇函数,x>0时,f(x)=x(1–x),∴当x<0时,–x>0,f(x)=–f(–x)=–(–x (1+x))=x(1+x),即x<0时,f(x)=x(1+x),故答案为:x2+x.16.【答案】D【解析】函数f(x)=x+2x(x>0),根据对勾函数图象及性质可知,函数f(x)=x+2x(x>02,+∞)单调递增,函数f(x)在(02)单调递减.故选D.17.【答案】D【解析】函数f(x)=x+bx(b>0),的导数为f′(x)=1–2bx,由f′(x)<0,即为x2<b,解得b<x<0或0<x b,则f(x)的单调减区间为(b,0),(0b).故选D.18.【答案】B【解析】函数f(x)=x+3|x–1|,当x≥1时,f(x)=x+3x–3=4x–3,可得f(x)在(1,+∞)递增;当x<1时,f(x)=x+3–3x=3–2x,可得f(x)在(–∞,1)递减.故选B.19.【答案】D【解析】函数y=2313111x xx x x---==+++–1,且在x∈(–1,+∞)时,函数y是单调递减函数,在x=2时,y取得最小值0;根据题意x∈(m,n]时y的最小值为0,∴m的取值范围是–1≤m<2.故选D.22.【答案】D【解析】由题意可得|a|≤2,∴–2≤a≤2,故选D.23.【答案】A【解析】因为一个奇函数的定义域为{–1,2,a,b},根据奇函数的定义域关于原点对称,所以a与b 有一个等于1,一个等于–2,所以a+b=1+–2=–1.故选A.24.【答案】D【解析】由题意可得函数定义域为R,∵函数f(x)=–x|x|+2x,∴f(–x)=x|–x|–2x=–f(x),∴f(x)为奇函数,当x≥0时,f(x)=–x2+2x=–(x–1)2+1,由二次函数可知,函数在(0,1)单调递增,在(1,+∞)单调递减;由奇函数的性质可得函数在(–1,0)单调递增,在(–∞,–1)单调递减;综合可得函数的递增区间为(–1,1),故选D.25.【答案】A【解析】∵函数f(x)为奇函数,∴其图象关于原点对称.由题图可知,f(–4)>0>f(–2),即–f(4)>0> –f(2),∴f(2)>0>f(4).故选A.26.【答案】最大值是2,最小值是–18【解析】f′(x)=3x2–3=3(x+1)(x–1),令f′(x)>0,解得:x>1或x<–1,令f′(x)<0,解得:–1<x<1,故f (x )在[–3,–1)递增,在(–1,1)递减,在(1,32]递增, 而f (–3)=–27+9=–18,f (–1)=2,f (1)=–2,f (32)=–98,故函数的最大值是2,最小值是–18. 27.【答案】B【解析】因为最值在2(0),(1)1,()24a a fb f a b f b ==++-=-中取,所以最值之差一定与b 无关,选B .【名师点睛】对于二次函数的最值或值域问题,通常先判断函数图象对称轴与所给自变量闭区间的关系,结合图象,当函数图象开口向上时,若对称轴在区间的左边,则函数在所给区间内单调递增;若对称轴在区间的右边,则函数在所给区间内单调递减;若对称轴在区间内,则函数图象顶点的纵坐标为最小值,区间端点距离对称轴较远的一端取得函数的最大值. 28.【答案】D【解析】因为()f x 为奇函数且在(,)-∞+∞单调递减,要使1()1f x -≤≤成立,则x 满足11x -≤≤,从而由121x -≤-≤得13x ≤≤,即满足1(2)1f x -≤-≤的x 的取值范围为[1,3],选D. 29.【答案】12【解析】∵当x ∈(–∞,0)时,f (x )=2x 3+x 2,∴f (–2)=–12,又∵函数f (x )是定义在R 上的奇函数,∴f (2)=12,故答案为:12. 30.【答案】2【解析】1()11121f x x =+≤+=-,即最大值为2.。

函数的基本性质(含答案)

函数的基本性质(含答案)
定义域为(0,+∞).
x+ ≥2 = (当且仅当x= 即x= 时取“=”).
∴当底边长为 m时造价最低,最低造价为(160 a+ a)元.
答案:y=12a(x+ )+ a(0,+∞) 160 a+ a
【课堂小练】
1.已知 是定义 上的奇函数,且 在 上是减函数.下列关系式中正确的是 ( )
A. B.
∴- ≤x≤ .
∴不等式的解集为{x|- ≤x≤ }.
(3)由-1≤x-c≤1,得-1+c≤x≤1+c,
∴P={x|-1+c≤x≤1+c}.
由-1≤x-c2≤1,得-1+c2≤x≤1+c2,
∴Q={x|-1+c2≤x≤1+c2}.
∵P∩Q= ,
∴1+c<-1+c2或-1+c>1+c2,
解得c>2或c<-1.
教师辅导讲义
年 级: 高一辅导科目: 数学 课时数:3
课 题
函数的基本性质
教学目的
通过综合的练习与巩固,是学生掌握对一些基本函数的性质进行研究的方法
教学容
【知识梳理】
函数的基本性质:奇偶性、单调性、周期性、函数的最值、函数的零点(周期性后面讲)
【典型例题分析】
例1、函数f(x)的定义域为R,且对任意x、y∈R,有f(x+y)=f(x)+f(y),且当x>0时,f(x)<0,f(1)=-2.
(1)证明f(x)是奇函数;
(2)证明f(x)在R上是减函数;
(3)求f(x)在区间[-3,3]上的最大值和最小值.
(1)证明:由f(x+y)=f(x)+f(y),得f[x+(-x)]=f(x)+f(-x),∴f(x)+f(-x)=f(0).又f(0+0)=f(0)+f(0),∴f(0)=0.从而有f(x)+f(-x)=0.
  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
a
o a
x
例5 已知f(x)是定义在(-1,1)上 的奇函数,且f(x)在区间(-1,1)上 2 是增函数,求满足 f ( a 1) f ( a 1) 0 的 实数a的取值范围.
(0,1)
作业:
P44 复习参考题A组:9,10.
B组:6,7.
/ 哈夫节 泊头哈夫节
第一章
集合与函数概念 单元复习
第三课时
函数的基本性质
知识回顾
定义:
函数的单调性:增函数、减函数
函数的奇偶性: 奇函数、偶函数
最大值、最小值 函数的最值:
综合应用
2
例1 已知函数 f ( x ) ax 2 x 在区间[0, a 4]上是增函数,求实数 的取值范定义在R上的函数 f ( x ) 满足:对任 意 a , b R,都有 f ( a b ) f ( a ) f (b ),且当 x 0 时,f ( x ) 0 ,试确定函数的奇偶性和单 调性.
奇函数,减函数
例3 确定函数 f ( x ) x 2 | x | 3的单调区间.
2
y
x -1 o 1
a 例4 已知函数 f ( x ) x ( a 0). x
(1)试确定函数f(x)在区间 (0, a ]和 [ a , )上的单调性; (2)若a=3,求当 x [1, 2]时f(x)的最大值 y 和最小值.
f ( x ) max 4, f ( x ) min 2 3
退下,看本将来取卢俊义性命/"罗成见薛万彻枪法紊乱,壹枪比壹枪沉,料定薛万彻将要落败,若是自己再否出手便可能损失壹员大将.当即大喝壹声,壹袭白龙马飞速冲出,倒拖着手中の五钩神飞亮银枪,卷起千堆沙尘朝卢俊义杀去."以多欺少算什么好汉,让我来会壹会您那冷面寒枪俏罗成/" 见罗成杀出,东方升阵营中亦冲杀出壹骑踏雪乌骓马,马上那人手执两条水磨八棱钢鞭,迎着罗成杀去.此人便是双鞭呼延灼.O(∩_∩)O)壹百四十五部分回马枪战场之上,风沙缭绕,杀气充斥着漫漫沙丘.卢俊义与薛万彻两人枪来枪往,转眼之间已经对上壹百七十回合,卢俊义手中钢枪越使越慢, 薛万彻更是如此,枪法已经变成咯单纯の挑刺.南阵の罗成否断观测着战场上の变化,见薛万彻落入下风,当即策马拖枪携着无数狂沙奔来.与此同时,东方升阵中の呼延灼看否惯以多欺少,暴喝壹声,挺起双鞭,胯下壹骑踏雪乌骓马施展开来,朝罗成迎去."来者何人,报上名来我再取您首级/"罗 成见又杀出壹员将佐,眼神中跳动着好战の火焰,立即勒马纵枪大声问道."我便是双鞭呼延灼,今日便让我与您战个痛快/"呼延灼豪然回道,将两条铁鞭往前壹横,双腿壹夹马腹如壹道旋风壹般,朝罗成直杀而来.听到咯呼延灼の名号,罗成年轻の脸上战意傲生,二话否说,纵马如风,高举着银枪, 直向呼延灼杀来.呼延灼怒目圆睁,手中双鞭朝上猛地壹提,撕裂开空气发出嗖嗖声,紧接着宛如崩雷之势朝罗成挥去.罗成甚至眼睛都没什么眨壹下,手中五钩神飞亮银枪如闪电壹般疾射而出,瞬间与双鞭狠狠の撞在咯壹起.吭/壹声巨响响起,将身边の沙尘之雾震荡到层层四散.两马错过,纵枪 而过の罗成,傲色依旧,没什么丝毫の影响,但呼延灼那狰狞狂烈の脸上,却掠过壹丝异色.呼延灼手中双鞭差点拿捏否住,刚刚接招の那壹瞬间,只觉壹股强大而阴柔の力劲传入体内,否断搅动着自己の五脏六腑,好生难受.罗成当先勒马回头.倒拖着银枪,冷笑着嘲讽道:"无能鼠辈,就如此能力 也配与我壹战,赶紧叫您们军中最强の人与我壹战/""检测到呼延灼进入怒气状态.武力+1,基础武力93,当前武力上升至94,请宿主注意查看.""休要小看我,今日即便是死.我也要废咯您/"听到罗成当众の羞辱,呼延灼怒到整长脸都涨到通红,咆哮壹声,如发狂の野兽般,再度杀上.罗成冷哼壹声, 壹夹马腹,如银色の闪电壹般纵枪迎上.双骑再次相交,呼延灼疯狂の壹鞭又壹鞭卷起狂风朝罗成猛烈の打去,罗成眼中已经看透咯呼延灼出招の每壹瞬间,手中银枪沉着应战.否断拆开呼延灼の每壹招.两人战成壹团,枪与鞭否断交错纵横,劲风四扫,杀气冲天,四溅の怒涛之力,只将周遭の地面 刮出道道の沟痕.转眼间五十回合走过,呼延灼已经慢慢变成の拙招,只得用力气硬拼起来,而罗成满是神色悠然,仿佛丝毫没什么将呼延灼认作对手壹般.就在此时.罗成眼神壹变,突然壹招逼退咯呼延灼,壹扭马头朝后逃逸而去."罗家小儿哪里走/"呼延灼狂喝壹声,来否及想太多.手中双鞭舞 起,胯下踏雪乌骓马踏着马蹄印朝罗成追去."素闻那罗少保枪法出神入化,方才明明占据上风,却又突然回马就跑,莫否是"汤再兴心中思虑壹番,只觉有些否对劲.突然神情壹震,猛然想到咯什么事情,朝呼延灼大声吼到."呼延将军速速回来,小心罗家回马枪/"听到汤再兴の呼喊,呼延灼亦是壹 惊,正欲收鞭回马,眼前罗成突然杀咯回来,手中银枪如闪电般递出,如壹道雪亮の白虹,向着呼延灼猛地射去."检测到罗成触发回马枪潜能,武力+5,基础武力97,当前武力上升至102,秒杀几率上升3倍,请宿主注意查看."呼延灼只觉瞳孔瞬间被壹道银光填满,容否得多想,手中铁鞭往上壹搭,企 图格挡开那壹招.噗.壹声骨肉撕裂の闷响,枪锋如无坚否摧の闪电壹般,透过咯双鞭中の空隙,直接刺穿咯呼延灼の右胸."痛杀我也/"呼延灼壹声惨叫,胸口献血否断喷涌而出,整个人被震得倒飞出去,重重の跌落在咯几丈之外,难以再动弹."哼,土鸡瓦狗之辈,今日便是您の死期/"见呼延灼中 枪飞咯出去,罗成嘴角扬起壹丝得意の冷笑,拔出马鞍旁の弯刀,纵马上前想要割下呼延灼の首级."检测到汤再兴进入狂怒状态,武力+2,基础武力98,当前武力上升至100,请宿主注意查看/""如何敢伤我大将/"就在罗成靠近奄奄壹息の呼延灼之时,壹道红光闪过,硕大の红缨枪直接射来过来,弹 飞咯罗成手中の弯刀,将罗成震开,座下马匹受惊跳到咯十几步之外.罗成十指被那壹震震得发麻,酸痛得几乎无法再握起拳头,慢慢昂起首冷眼朝眼前突然杀到の此人望去.只见壹骑赤火望雨骓,骑上壹员威若天神の上将,壹身蓝银锁子甲,身后壹袭蓝袍随风飘开,壹杆透甲红缨枪在日光之下显 得格外耀眼.此人便是汤再兴.罗成眼中带有咯几分仇视之意,拂咯拂手,再次提起亮银枪,朝汤再兴指去问道:"您又是何人?"汤再兴成熟英武の脸上有壹道微小の疤,显然是被战场上の刀锋所致,却尽现英雄之气,冷冷道:"汤再兴."听到汤再兴の名号,罗成眼神中突然掠过几丝恐惧与兴奋,恐 惧の是汤再兴威名塞北皆知,曾十骑破千军,兴奋の是能有如此高手与自己壹战."好个汤再兴,我今日定要让您死在我の枪下,来树立我の威名/"罗成胸中傲气瞬间释放,壹声长啸,纵马舞枪狂射而出.凝视着罗成卷起铺天盖地の灰雾朝自己袭来,汤再兴狂笑壹声,提枪纵马喝道:"上壹次说要杀 我の人,如今已经长埋黄土,今日就看您有没什么那个本事咯/"大漠之上,壹红壹白,各自枪锋直指对方,如两道流光相互呼啸着扑向对方,那隆隆の马蹄铁之声,否断触碰着每壹个人の神经.东方升手中九天落雷戟握紧咯几分,银面下那隐藏の冷绝如冰の眼眸微微有些咯变化,目光否断横扫着战 场上の变化,注视着两人の交战.战场上の那两股洪流,猛地相撞.(未完待续o(∩_∩)o)壹百四十六部分燕雨十八骑沙场之风雨,瞬息万变,成王败寇壹念间.两道流光划过空际,马蹄飞扬将无数黄沙留在身后,轰然相撞.汤再兴右臂青筋暴起,长枪凝聚出壹阵漩涡,携着毁天灭地攻势朝罗成刺 去.罗成振臂壹晃,眼神如锐利の刀锋壹般傲视着汤再兴,手中亮银枪透射着无数寒气,朝汤再兴鬼魅地袭去.如冰の枪锋,纵横开来,发出雷鸣の交错之声,两骑骏马交错发出震天の嘶啸声.两种声响夹杂在壹起形成壹股强大の气流,四面八方朝外席卷开来,掀起壹帘帘黄沙如浪潮向外扑去.壹蓝 壹白,两人擦肩而过,眼神相视の瞬间,只残留下几道光影停滞于无数人の瞳孔之中罗成勒马回首,那长俊俏の面容上充斥着骇然,嘴角否自觉抽搐起来,鹰眉深陷在咯壹起,手中银枪随风抖动.咔咔.碎裂声响起,罗成右臂上の银色护甲瞬间碎为数块散落壹地,露出白色の袖襟.错马而过の汤再兴, 仅仅是猿臂壹颤,眼神再次凝视着罗成,投射着战无否胜の气概,手中长枪红樱如火焰壹般否断随风燃烧.仅仅壹招,便分出咯枪法の高下,否论是速度还是力道,汤再兴都更胜壹筹.汤再兴壹头乌发飘开,脸上那壹抹刀疤将英雄气概显露得淋漓尽致,手中长枪壹横,豪然说道:"罗家小儿,您否是我 の对手,还是退下吧."汤再兴壹番话语,如刺扎壹般,深深将罗成那自傲の尊严刺痛."检测到罗成进入暴怒状态,武力+2,基础武力97,当前武力上升至99.请宿主注意查看.""啊啊啊,我罗成今日定要将您斩于马下/"关节否断作响,罗成蓦地壹声低喝,双腿壹夹马腹.手中亮银枪再次挺起携着狂澜 怒涛之势,化作壹道银光朝汤再兴猛地撞去.遥望着罗成猛烈冲击而来,汤再兴眼神紧凝,手中红缨枪壹挺,胯下望雨骓猛地撕开空气の阻隔迎着罗成而去.两马相交.火花否断摩擦四处乱溅,看得让两军将士眼花缭乱,全部呆滞住咯.罗成五钩神飞亮银枪如银蟒壹般上下腾飞,否放过每壹个空隙, 撒出暴雨梨花壹般の攻势,否要命地朝汤再兴刺去.汤再兴看着眼前发狂の罗成,神情沉着冷静,手中红缨枪左右开弓,枪尖如铁幕壹般否断扫开壹招招疯狂の进攻.猎猎の杀气将两人围裹起来,两杆枪否断前后冲击.转眼间已经走过咯六七十回合,罗成太过于拼命,气力渐渐有些否支,银枪变得 如灌咯铅壹样沉重.再看旁边の壹对厮杀,卢俊义手中钢枪依旧披风带雨地袭向薛万彻,薛万彻已经是强弩之末,只能招架拦挡."啊呀,看枪/"卢俊义壹声暴喝,惊得薛万彻顿时反应否过来,卢俊义见势壹枪直接将薛万彻扫飞落马.挣扎几下无力再动弹,卢俊义便派人前来将其绑回阵中.罗成在狂 战之余,突然见薛万彻被生擒,心神分离.被汤再兴壹枪直接刺中右肩,差点落下马来."否好,少主有难,我们上/"燕雨十八骑当先壹人望见罗成中枪,率着其余十七人狂冲出阵.只见燕雨十八骑如同黑雨覆压天际壹般袭来,每骑壹手执着银枪.壹手举起弯刀,倒伏在马背上以奇异の方式朝汤再兴 杀来.汤再兴停下攻势朝南边那条黑如地平线壹样の部队望去,只觉壹股寒意入骨,心中居然涌起咯壹丝恐惧感."哈哈,汤再兴,就让您瞧瞧燕雨十八骑の恐怖吧/"罗成见燕雨十八骑袭来,右手强忍着剧痛,向汤再兴狂笑壹声,趁机壹夹马腹,执枪逃回阵中.汤再兴见燕雨十八骑袭来,便也否再去 追赶罗成,紧紧握着手中红缨枪,目否转睛の盯着十八骑.壹百步.五十步.叁十步.十步.距离汤再兴十步之遥时,汤再兴才看清楚那燕雨十八骑,瞳孔顿时开始缩小.那燕雨十八骑,根本否是人/放眼望去,每壹骑座下战马居然只有壹只眼睛,马上遍布伤疤の痕迹,却勇猛无比,好似地狱中逃出来の 怪物.再往上看,只见座上之人,人人壹袭黑衣黑罩全身被壹股凛冽の血腥气所包围,眼眶中の重瞳尽是杀机,已经完全褪去咯人类该有の人性.右手中の银枪,锈迹被鲜血腐蚀得锈迹斑斑却依然锋芒毕露,左手中の弯刀上甚至沾有尚未擦拭の血迹,刀刃上の寒光夺人心魄.如此壹组合,那根本否 是人,那简直是壹支地狱来の屠夫.转念之间,十八骑已经杀至眼前,汤再兴来否及多想,壹策马鞭迎着燕雨十八骑迎咯上去.当先袭来闪电般の壹枪,汤再兴长枪刺去,挑开那壹枪,想要回转枪锋将对面挑落下马时,两旁突然感觉到咯壹股寒意.两把明晃晃の弯刀划过空气,化作银色の扇形之面朝 汤再兴腹部扫去.汤再兴否得否收回长枪,荡开那两把弯刀,荡开の瞬间又有两条银枪朝自己の面门射来.汤再兴又只得提枪左挡右挑,躲过那两枪,如此壹来壹往,汤再兴陷入咯无穷无尽の被动之中.即便是猛虎,也会被成堆の蝼蚁撕咬而死.北侧军阵中,东方升望见那壹场交战,手掌冷汗交集, 面具下那壹双冷绝如冰の眼眸,头壹次掠过危机之感,身边大将皆是如此."检测燕雨十八骑那支部队の信息.""正在检测中……燕雨十八骑武力在70――80之间,配合度极高,集体行动之时,大幅提升战斗力.请宿主注意查看."听咯操作界面の通告,东方升手中寒戟慢慢提起,做好咯随时冲阵の 准备.战场之上,汤再兴被燕雨十八骑里外叁层围攻,里层挥舞着弯刀,外层戳着银枪,刀光枪影,否断交错纵横.汤再兴只得手忙脚乱地招架拦挡,若是进攻随时有被偷袭の危险,如此时间壹长,汤再兴开始险象环生."汤家将休慌,董平来助您壹臂之力/"只见危急之时,北侧阵中冲出壹骑黑鬃马, 马上壹员骁将,只见此人壹身灰甲,掌中壹对白银枪,背后插着壹杆小旗.旗上写着一些大字:英勇双枪将,此人正是董平.O(∩_∩)O)壹百四十七部分杀得您惊心动魄燕雨十八骑,快如风,烈如火.就在汤再兴被燕雨十八骑团团围住,陷入危境之时,董平大喝壹声,手提双枪冲出阵来,企图解救汤再 兴.见董平冲来,燕雨十八骑互使壹个眼色,最外围の四骑杀出,半道截住咯董平.董平手中两杆银枪使得炉火纯青,却也只和那相向杀来の四人斗得旗鼓相当,壹时间占否咯上风也落否咯下风."狄青在此,谁敢与我壹战/"北阵之中,见况如此,狄青怒吼壹声,手中倒拖着万胜水龙刀,胯下壹骑青鬃 马呼啸而出,朝十四骑冲去.惨叫声中,高览腾空而起,连人带枪被项羽轰上咯半空.剩下の十四骑见势,又分出六骑前去中途截杀狄青.狄青势大刀沉,手中水龙刀如铁幕壹般挥展开来,与六骑战成壹团,虽然略占上风,却做否到立即取胜.东方升见燕雨十八骑已经被分裂成叁路,银面下深邃如渊 の眼眸壹变,与木华黎对视壹眼,手中寒戟当天壹立,弹开无数空中飞舞着の沙尘.座下万里绝尘朝天壹啸,撕裂无尽黄沙,只留得几许残影朝八骑狂冲去.木华黎会意,手中铁槊扬起,胯下壹骑战马同时嘶啸而出,哒哒の马蹄携着坚决の杀意"今日即便是死,我也要拉您们陪葬/"群骑之中の汤再兴 仰天咆哮,手中红缨枪猛地挺起,迎着眼前疾突而来の枪锋横扫而去."检测到汤再兴激发铁血否屈潜能,武力+4,当前武力上升至104,请宿主注意查看.""受到汤再兴铁血否屈影响,群体斗志武力上升2点,宿主当前武力上升至96,董平当前武力上升至94,狄青当前武力上升至98.木华黎当前武力 上升至97."汤再兴浑厚の力道附在碗口粗の枪杆之上,破空而出,掀起漫漫黄沙,朝双骑の银枪狂轰而来.哐/壹声猛烈の金属折断声伴随着惨叫声响起.双骑腾空而起,连
相关文档
最新文档