初三 圆中动点问题
(完整版)九年级数学动圆问题
动 圆 问 题圆心动,半径不变1.如图,△ABC 为等边三角形,AB =6,动点O 在△ABC 的边上从点A 出发沿A →C →B →A 的路线匀速运动一周,速度为1个单位长度每秒,以O 为圆心、3为半径的圆在运动过程中与△ABC 的边第二次相切时是出发后第_______秒.2(北海)如图,等边△ABC 的周长为6π,半径是1的⊙O 从与AB 相切于点D 的位置出发,在△ABC 外部按顺时针方向沿三角形滚动,又回到与AB 相切于点D 的位置,则⊙O 自转了 ( )周, 圆心O 所经路线的路程是_______ 。
3 如图所示,菱形ABCD 的顶点A 、B 在x 轴上, 点A 在点B 的左侧,点D 在y 轴的正半轴上, ∠BAD =60°,点A 的坐标为(-2,0).⑴求线段AD 所在直线的函数表达式.⑵动点P 从点A 出发,以每秒1个单位长度的速 度,按照A →D →C →B →A 的顺序在菱形的边上匀 速运动一周,设运动时间为t 秒.求t 为何值时, 以点P 为圆心、以1为半径的圆与对角线AC 相切?4、. 如图,⊙O 1的半径为1,正方形ABCD 的边长为6,点O 2为正方形ABCD 的中心,O 1O 2垂直AB 于P 点,O 1O 2=8.若将⊙O 1绕点P 按顺时针方向旋转360°,在旋转过程中,⊙O 1与正方形ABCD 的边只有一个公共点的情况一共出现 ( ) A. 3次 B. 5次C. 6次D. 7次圆心动,半径变1、如图,菱形ABCD 的边长为2cm ,∠DAB=60°.点P 从A 点出发,以cm/s 的速度,沿AC 向C 作匀速运动;与此同时,点Q 也从A 点出发,以1cm/s的速度,沿射线AB 作匀速运动.当P 运动到C 点时,P 、Q 都停止运动.设点P 运动的时间为ts .(1)当P 异于A .C 时,请说明PQ∥BC;(2)以P 为圆心、PQ 长为半径作圆,请问:在整个运动过程中,t 为怎样的值时,⊙P 与边BC 分别有1个公共点和2个公共点?分析如图:ABCO第22题图xy A BPC DA BCOD2. 如图9,已知直线l 的解析式为6y x =-+,它与x 轴、y 轴分别相交于A 、B 两点,平行于直线l 的直线n 从原点O 出发,沿x 轴正方向以每秒1个单位长度的速度运动,运动时间为t 秒,运动过程中始终保持n l ∥,直线n 与x 轴,y 轴分别相交于C 、D 两点,线段CD 的中点为P ,以P 为圆心,以CD 为直径在CD 上方作半圆,半圆面积为S ,当直线n 与直线l 重合时,运动结束.(1) 求A 、B 两点的坐标;(2) 求S 与t 的函数关系式及自变量t 的取值范围; (3) 直线n 在运动过程中,①当t 为何值时,半圆与直线l 相切?②是否存在这样的t 值,使得半圆面积12ABCD S S =梯形?若存在,求出t 值,若不存在,说明理由.动圆与定圆相切【解题技巧】当两圆相切时,把握d=R +r 与d=R -r 是解决问题的关键。
九年级重难点:圆中动点求最值专训
圆中动点求最值专训一.选择题(共24小题)1.如图,⊙O的半径为2,弦AB的长为,以AB为直径作⊙M,点C是优弧上的一个动点,连结AC、BC分别交⊙M于点D、E,则线段CD的最大值为()A.B.2 C. D.2.如图,等边△ABC边长为2,射线AM∥BC,P是射线AM上一动点(P不与A点重合),△APC的外接圆交BP于Q,则AQ长的最小值为()A.1 B.C.D.3.如图,已知⊙O的直径AB=6,弦CD⊥AB于H,⊙O′分别切⊙O、AB、CD于点E、F、G,则当⊙O′的半径取得最大值时,边BC的长度是()A.3.5 B.3 C.2.5 D.24.如图,∠MAN=45°,B、C为AN上的两点,且AB=BC=2,D为射线AN上的一个动点,过B、C、D三点作⊙O,则sin∠BDC的最大值为()A.B.C.D.5.如图,正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则⊙O的半径为()A.1 B.﹣1 C.﹣1 D.6.如图,△ABC内接于⊙O,过BC的中点D作直线l∥AC,l与AB交于点E,与⊙O交于点G、F,与⊙O在点A处的切线交于点P,若PE=3,ED=2,EF=3,则PA的长度为()A.B.C.D.7.如图,在菱形ABCD中,对角线AC、BD交于点O,以OB为直径画圆M,过D作⊙M的切线,切点为N,分别交AC、BC于点E、F,已知AE=5,CE=3,则DF的长是()A.3 B.4 C.4.8 D.58.如图,线段AB=4,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为()A.4 B.C.D.29.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为()A.5﹣4 B.﹣1 C.6﹣2D.10.如图,正方形ABCD内接于⊙O,P为劣弧上一点,PA交BD于点M,PB交AC于点N,记∠PBD=θ.若MN⊥PB,则2cos2θ﹣tanθ的值()A.B.1 C.D.11.如图,以G(0,1)为圆心,2为半径的圆与x轴交于A、B两点,与y轴交于C、D 两点,点E为圆G上一动点,CF⊥AE于F,当点E从点B出发顺时针运动到点D时,点F经过的路径长为()A.B.C.D.12.如图,⊙P在第一象限,半径为3.动点A沿着⊙P运动一周,在点A运动的同时,作点A关于原点O的对称点B,再以AB为边作等边三角形△ABC,点C在第二象限,点C 随点A运动所形成的图形的面积为()A.B.27πC.D.π13.如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是()A.4cm B.2cm C.cm D.1cm14.如图,等腰Rt△ABC和等腰Rt△ADE,∠BAC=∠DAE=90°,AB=2AD=6,直线BD、CE交于点P,Rt△ABC固定不动,将△ADE绕点A旋转一周,点P的运动路径长为()A.12πB.8πC.6πD.4π15.如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π B.πC.2D.216.如图,直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,与双曲线(x>0)交于点B,与x轴交于点C.若,则k的值为()A.12 B.10 C.8 D.617.如图,已知⊙O的半径为5,两弦AB、CD相交于AB中点E,且AB=8,CE:ED=4:9,则圆心到弦CD的距离为()A.B.C.D.18.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD 边于点F,则=()A.B.C.D.19.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD ⊥AB与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A. B.C.8 D.520.如图,I为△ABC的内心,△ABC的外接圆O,O在BC上,AD、BE、CF都经过I点分别交⊙O于点D、E、F,EF交AB于点G,交AC于点H,IM⊥BC于M.则下列结论:①EF⊥AD;②AB+AC﹣BC=AI;③AD=(IM+BC);④S△BIC:S△EFI的值随A点位置变化而变化.其中正确的是()A.①②④ B.①②C.①②③ D.③④21.如图,BC是⊙O的直径,半径为R,A为半圆上一点,I为△ABC的内心,延长AI交BC于D点,交⊙0于点E,作IF⊥BC,连接AO,BI.下列结论:①AB+AC=BC+2IF;②4∠AIB﹣∠BOA=360°;③EB=EI;④为定值,其中正确的结论有()A.①③④ B.①②③ C.①②③④D.①②④22.如图,已知OP平分∠AOB,∠AOB=60°,PC⊥OA于点C,PD⊥OB于点D,EP∥OA,交OB于点E,且EP=6.若点F是OP的中点,则CF的长是()A.6 B. C. D.23.如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径⊙C.G 是⊙C上一动点,P是AG中点,则DP的最大值为()A.B.C.2D.24.如图,直线l与半径为3的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连结PA,设PA=m,PB=n,则m﹣n的最大值是()A.3 B.2 C.D.圆中动点求最值专训参考答案与试题解析一.选择题(共24小题)1.如图,⊙O的半径为2,弦AB的长为,以AB为直径作⊙M,点C是优弧上的一个动点,连结AC、BC分别交⊙M于点D、E,则线段CD的最大值为()A.B.2 C. D.【解答】解:如图:连接OM,OB,OA,BD.则在Rt△OMB中,∵OB=2,MB=,∴OM=1.∵OB=2,∴∠OBM=30°.∴∠MOB=60°.连接OA.则∠AOB=120°.∴∠C=∠AOB=60°.∵AB是直径,∴∠ADB=90°,∴∠CDB=90°,∴∠CBD=30°,∴CD=BC,∴当BC取最大值时,CD最大.如图2,当BC是直径时,BC最大,此时点A、D重合.即BC=4.∴CD最大=2.故选B.2.如图,等边△ABC边长为2,射线AM∥BC,P是射线AM上一动点(P不与A点重合),△APC的外接圆交BP于Q,则AQ长的最小值为()A.1 B.C.D.【解答】解:过点B作BD⊥直线AP,垂足为D,过点C作CE⊥直线AP,垂足为E,连接QC,如图,则有BD∥CE.∵AP∥BC,∠BDE=90°,∴四边形BCED是矩形,∴∠DBC=∠ECB=90°.∵△ABC是等边三角形,∴AB=AC=BC=2,∠ABC=∠ACB=60°,∴∠DBA=∠ECA=30°,∴AD=1,AE=1,∴BD=,CE=.设AP=x,则DP=x+1,EP=.在Rt△BDP中,BP2=BD2+DP2=3+(x+1)2=x2+2x+4.在Rt△CEP中,CP2=CE2+EP2=3+(x﹣1)2=x2﹣2x+4.∵AM∥BC,∴∠APB=∠CBP.∵∠APB=∠ACQ,∴∠ACQ=∠CBP.∵∠QAC=∠CPB,∴△AQC∽△PCB,∴=,∴AQ=2×,∴AQ2=4×=4×=4×(1﹣)=4×(1﹣)=4﹣,当=0即x=2时,AQ2取到最小值为,此时AQ=.故选D.3.如图,已知⊙O的直径AB=6,弦CD⊥AB于H,⊙O′分别切⊙O、AB、CD于点E、F、G,则当⊙O′的半径取得最大值时,边BC的长度是()A.3.5 B.3 C.2.5 D.2【解答】解:设⊙O′的半径为r,BC=x,∵AB为⊙O的直径,∴∠C=90°,又AB⊥CD,∴BC2=BH•BA=6(BF﹣FH)=6(BF﹣r),如图,连接O′F,OO′,∵AB为⊙O′的切线,∴△OO′F为直角三角形,∴O′O2﹣O′F2=OF2,∴(3﹣r)2﹣r2=(BF﹣3)2,∴BF2=6(BF﹣r),∴BC=BF,∴BC2=6(BC﹣r),即x2=6(x﹣r),∴r=﹣x2+x=﹣(x﹣3)2+,∴当x=3时,⊙O′的半径取得最大值,即BC的长为3,故选B.4.如图,∠MAN=45°,B、C为AN上的两点,且AB=BC=2,D为射线AN上的一个动点,过B、C、D三点作⊙O,则sin∠BDC的最大值为()A.B.C.D.【解答】解:当⊙O与AM相切于D时,∠BDC最大,此时sin∠BDC的最大,如图,作BH⊥AD于H,∵∠A=45°,∴△ABH为等腰直角三角形,∴∠ADB=45°,AH=AB=,∵AD为⊙O的切线,∴AD2=AB•AC=2(2+2)=8,∴AD=2,∴DH=AH=,∴BH为△ACD的中位线,∴BH∥CD,∴CD⊥AM,∴∠ADC=90°,∴∠BDC=45°,∴sin∠BDC=.故选C.5.如图,正方形ABCD的边长为4,点E是AB上的一点,将△BCE沿CE折叠至△FCE,若CF,CE恰好与以正方形ABCD的中心为圆心的⊙O相切,则⊙O的半径为()A.1 B.﹣1 C.﹣1 D.【解答】解:连接AC交于点O,设EC与⊙O相切于点N,连接ON,∵O为正方形ABCD的中心,∴∠DCO=∠BCO,又∵CF与CE都为圆O的切线,∴CO平分∠ECF,即∠FCO=∠ECO,∴∠DCO﹣∠FCO=∠BCO﹣∠ECO,即∠DCF=∠BCE,又∵△BCE沿着CE折叠至△FCE,∴∠BCE=∠ECF,∴∠BCE=∠ECF=∠DCF=∠BCD=30°,∴∠OCN=15°,∵BC=AB=4,∴CO=AC=2,∵sin∠OCN=sin15°==,∴=,即ON=×2===﹣1,故选:C.6.如图,△ABC内接于⊙O,过BC的中点D作直线l∥AC,l与AB交于点E,与⊙O交于点G、F,与⊙O在点A处的切线交于点P,若PE=3,ED=2,EF=3,则PA的长度为()A.B.C.D.【解答】解:∵点D为BC的中点,DE∥AC,∴DE为△ABC的中位线,∴AE=BE,∵PE=EF=3,∴四边形PBFA是平行四边形,∴PA=BF,PB∥AF,∴∠BPF=∠AFP,∵PF∥AC,∴∠AFP=∠FAC,∴BPF=∠FAC,又∵∠FBC=∠FAC,∴∠FBC=∠BPF,∵∠DFB=∠BFP,∴△BFD∽△PFB,∴,即=∴BF=,∴PA=BF=.故选C.7.如图,在菱形ABCD中,对角线AC、BD交于点O,以OB为直径画圆M,过D作⊙M的切线,切点为N,分别交AC、BC于点E、F,已知AE=5,CE=3,则DF的长是()A.3 B.4 C.4.8 D.5【解答】解:延长EF,过点B作直线平行AC和EF相交于P,∵AE=5,EC=3,∴AC=AE+CE=8,∵四边形ABCD是菱形,∴OA=OC=AC=4,AC⊥BD,∴OE=OC﹣CE=4﹣3=1,∵以OB为直径画圆M,∴AC是⊙M的切线,∵DN是⊙M的切线,∴EN=OE=1,MN⊥AN,∴∠DNM=∠DOE=90°,∵∠MDN=∠EDO,∴△DMN∽△DEO,∴DM:MN=DE:OE,∵MN=BM=OM=OB,∴DM=OD+OM=3MN,∴DE=3OE=3,∵OE∥BP,∴OD:OB=DE:EP,∵OD=OB,∴DE=EP=3,∴BP=2OE=2,∵OE∥BP,∴△EFC∽△PFB,∴EF:PF=EC:BP=3:2,∴EF:EP=3:5,∴EF=EP×=1.8,∴DF=DE+EF=3+1.8=4.8.故选C.8.如图,线段AB=4,C为线段AB上的一个动点,以AC、BC为边作等边△ACD和等边△BCE,⊙O外接于△CDE,则⊙O半径的最小值为()A.4 B.C.D.2【解答】解:如图,分别作∠A与∠B角平分线,交点为P.∵△ACD和△BCE都是等边三角形,∴AP与BP为CD、CE垂直平分线.又∵圆心O在CD、CE垂直平分线上,则交点P与圆心O重合,即圆心O是一个定点.连接OC.若半径OC最短,则OC⊥AB.又∵∠OAC=∠OBC=30°,AB=4,∴OA=OB,∴AC=BC=2,∴在直角△AOC中,OC=AC•tan∠OAC=2×tan30°=.故选:B.9.如图,平面直角坐标系中,分别以点A(2,3)、点B(3,4)为圆心,1、3为半径作⊙A、⊙B,M,N分别是⊙A、⊙B上的动点,P为x轴上的动点,则PM+PN的最小值为()A.5﹣4 B.﹣1 C.6﹣2D.【解答】解:作⊙A关于x轴的对称⊙A′,连接BA′分别交⊙A′和⊙B于M、N,交x轴于P,如图,则此时PM+PN最小,∵点A坐标(2,3),∴点A′坐标(2,﹣3),∵点B(3,4),∴A′B==5,∴MN=A′B﹣BN﹣A′M=5﹣3﹣1=5﹣4,∴PM+PN的最小值为5﹣4.故选A.10.如图,正方形ABCD内接于⊙O,P为劣弧上一点,PA交BD于点M,PB交AC于点N,记∠PBD=θ.若MN⊥PB,则2cos2θ﹣tanθ的值()A.B.1 C.D.【解答】解:设⊙O的半径为1,则BD=2.连结PD,则∠BPD=90°.在Rt△BPD中,PB=BD•cosθ=2cosθ.在Rt△BON中,BN==,在Rt△BMN中,MN=BN•tanθ=,在Rt△PMN中,∵∠MPN=∠APB=∠ADB=45°,∴PN=MN=.∵BN+PN=PB,∴+=2cosθ,∴1+tanθ=2cos2θ,∴2cos2θ﹣tanθ=1.故选B.11.如图,以G(0,1)为圆心,2为半径的圆与x轴交于A、B两点,与y轴交于C、D 两点,点E为圆G上一动点,CF⊥AE于F,当点E从点B出发顺时针运动到点D时,点F经过的路径长为()A.B.C.D.【解答】解:连接AC,AG,∵GO⊥AB,∴O为AB的中点,即AO=BO=AB,∵G(0,1),即OG=1,∴在Rt△AOG中,根据勾股定理得:AO==,∴AB=2AO=2,又∵CO=CG+GO=2+1=3,∴在Rt△AOC中,根据勾股定理得:AC==2,∵CF⊥AE,∴△ACF始终是直角三角形,点F的运动轨迹为以AC为直径的半圆,当E位于点B时,CO⊥AE,此时F与O重合;当E位于D时,CA⊥AE,此时F与A重合,∴当点E从点B出发顺时针运动到点D时,点F所经过的路径长,在Rt△ACO中,tan∠ACO==,∴∠ACO=30°,∴度数为60°,∵直径AC=2,∴的长为=π,则当点E从点B出发顺时针运动到点D时,点F所经过的路径长.故选B.12.如图,⊙P在第一象限,半径为3.动点A沿着⊙P运动一周,在点A运动的同时,作点A关于原点O的对称点B,再以AB为边作等边三角形△ABC,点C在第二象限,点C 随点A运动所形成的图形的面积为()A.B.27πC.D.π【解答】解:如图所示,点C随A运动所形成的图形为圆,可得OC=OA,OC′=OA′,∴CC′=OC′﹣OC=(OA′﹣OA)=AA′=6,∴点C随点A运动所形成的圆的面积为π×(3)2=27π,故选B.13.如图,正方形纸片ABCD的边长为4cm,点M、N分别在边AB、CD上.将该纸片沿MN折叠,使点D落在边BC上,落点为E,MN与DE相交于点Q.随着点M的移动,点Q移动路线长度的最大值是()A.4cm B.2cm C.cm D.1cm【解答】解:如图,取AB、CD中点K、G,连接KG、BD交于点O.由题意可知点Q运动的路线就是线段OG,∵DO=OB,DG=GC,∴OG=BC=×4=2.∴点Q移动路线长度的最大值是2.故选B.14.如图,等腰Rt△ABC和等腰Rt△ADE,∠BAC=∠DAE=90°,AB=2AD=6,直线BD、CE交于点P,Rt△ABC固定不动,将△ADE绕点A旋转一周,点P的运动路径长为()A.12πB.8πC.6πD.4π【解答】解:如图,作△ABC的外接圆⊙O,△ADE绕点A旋转一周,点P的运动轨迹是,当AD⊥BD时,∵AB=2AD,∴∠ABD=30°,∵∠ABC=45°,∴∠OBP=15°,∵OP=OB,∴∠OPB=∠OBP=15°∴∠POC=∠OPB+∠OBP=30°,当AE′⊥CE′时,同理可得∠BOP′=30°,∴∠POP′=120°,∵AC=AB=6,∠BAC=90°,∴BC=AB=12,∴OP=6,∴==4π,故选D.15.如图,在等腰Rt△ABC中,AC=BC=2,点P在以斜边AB为直径的半圆上,M为PC的中点.当点P沿半圆从点A运动至点B时,点M运动的路径长是()A.π B.πC.2D.2【解答】解:取AB的中点O、AE的中点E、BC的中点F,连结OC、OP、OM、OE、OF、EF,如图,∵在等腰Rt△ABC中,AC=BC=2,∴AB=BC=4,∴OC=AB=2,OP=AB=2,∵M为PC的中点,∴OM⊥PC,∴∠CMO=90°,∴点M在以OC为直径的圆上,点P点在A点时,M点在E点;点P点在B点时,M点在F点,易得四边形CEOF为正方形,EF=OC=2,∴M点的路径为以EF为直径的半圆,∴点M运动的路径长=•2π•1=π.故选B.16.如图,直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,与双曲线(x>0)交于点B,与x轴交于点C.若,则k的值为()A.12 B.10 C.8 D.6【解答】解:∵直线y=2x与双曲线(x>0)交于点A,将直线y=2x向右平移3个单位后,∴y=2(x﹣3)=2x﹣6,∵与双曲线(x>0)交于点B,与x轴交于点C.若,∴AD=2BE,∴假设B点的横坐标为3+x,∴B点的纵坐标为:y=2(x+3)﹣6=2x,∴BE=2x,AD=4x,∵y=2x,∴OD=AD=2x,∴A点的纵坐标为:4x,根据A,B都在反比例函数图象上得出:∴2x×4x=(3+x)×2x,x=1,∴k的值为:2×1×4×1=8,故选:C.17.如图,已知⊙O的半径为5,两弦AB、CD相交于AB中点E,且AB=8,CE:ED=4:9,则圆心到弦CD的距离为()A.B.C.D.【解答】解:作OF⊥CD,垂足为F,∵两弦AB、CD相交于AB中点E,且AB=8,CE:ED=4:9,∴AE=BE=4,AE×BE=CE×DE,假设CE=4x,DE=9x,∴4×4=4x•9x,解得:x=,∴CE=4×=,DE=9×=6;∵OF⊥CD,∴DF=CF=,⊙O的半径为5,∴OF==.故选A.18.如图,以正方形ABCD的AB边为直径作半圆O,过点C作直线切半圆于点E,交AD 边于点F,则=()A.B.C.D.【解答】解:连接OE、OF、OC.∵AD、CF、CB都与⊙O相切,∴CE=CB;OE⊥CF;OF平分∠AFC,OC平分∠BCF.∵AF∥BC,∴∠AFC+∠BCF=180°,∴∠OFC+∠OCF=90°,∴∠COF=90°.∴△EOF∽△EOC,得OE2=EF•EC.设正方形边长为a,则OE=a,CE=a.∴EF=a.∴=.故选C.19.如图,以OB为直径的半圆与半圆O交于点P,A、O、C、B在同一条直线上,作AD ⊥AB与BP的延长线交于点D,若半圆O的半径为2,∠D的余弦值是方程3x2﹣10x+3=0的根,则AB的长等于()A. B.C.8 D.5【解答】解:∵3x2﹣10x+3=0,∴x=3(不合题意,舍去)或x=.∴cosD=AD:BD=1:3,设AD=x,则BD=3x.∴AB==2x,BC=2x﹣4.∴(2x)2=(2x﹣4)•x.∴x=0(舍去),或x=2.∴AB=2×2=8.故选C.20.如图,I为△ABC的内心,△ABC的外接圆O,O在BC上,AD、BE、CF都经过I点分别交⊙O于点D、E、F,EF交AB于点G,交AC于点H,IM⊥BC于M.则下列结论:①EF⊥AD;②AB+AC﹣BC=AI;③AD=(IM+BC);④S△BIC:S△EFI的值随A点位置变化而变化.其中正确的是()A.①②④ B.①②C.①②③ D.③④【解答】解:∵I为△ABC的内心,∴∠ABE=∠CBE,∠ACF=∠BCF,∠BAD=∠CAD,∴弧AE+弧AF+弧CD=180°,∴∠AGF=∠EAD+∠AEF=90°,∴①正确;∵O在BC上,∴∠BAC=90°,∵I是△ABC的内心,∴CM=BM,CQ=CM,BM=BH,∴∠IQA=∠CAB=∠IHA=90°,IQ=IH,∴四边形QIHA是正方形,∴IQ=AQ=AI=IH,∴AC﹣IH+AB﹣IH=BC,∴IH=(AC+AB﹣BC),由勾股定理得:AI=IH,∴②正确;AD=AI+ID=(AC+AB﹣BC)+BC,=AC+AB,(IM+BC)=[(AC+AB﹣BC)+BC]=AC+AB,∴③正确;∵∠F=∠EBC,∠FEI=∠ICM,∴△EFI∽△CBI,∴=,∵BC一定,∴④错误;故选C.21.如图,BC是⊙O的直径,半径为R,A为半圆上一点,I为△ABC的内心,延长AI交BC于D点,交⊙0于点E,作IF⊥BC,连接AO,BI.下列结论:①AB+AC=BC+2IF;②4∠AIB﹣∠BOA=360°;③EB=EI;④为定值,其中正确的结论有()A.①③④ B.①②③ C.①②③④D.①②④【解答】解:①∵直角三角形内切圆半径=,∴IF=,∴AB+AC=BC+2IF,正确;②∵I为△ABC的内心,∴∠BIA=90+∠C,∴4∠BIA=360°+2∠C,∵∠BOA=2∠C,∴4∠AIB﹣∠BOA=360°,正确;③∵点I是△ABC的内心,∴∠FBI=∠ABI,∠CAD=∠BAD,∵∠CAD=∠EBC,∴∠EBC=∠BAD,∴∠EBC+∠FBI=∠ABI+∠BAD∴∠EIB=∠EBI,∴EB=EI.③正确;④作EN⊥AC于点N,EM⊥AB于点M,连接EC,EB,那么四边形ENAM是矩形,∠ENC=∠EMB=90°,∵∠BAC是直角,AI平分∠BAC,∴∠EAN=45°,∴EN=AN,∴四边形ENAM是正方形,∴(AM+AN)=AE,EN=EM,∵∠CEN+∠NEB=90°,∠NEB+∠MEB=90°,∴∠CEN=∠BEM,∴△CEN≌△BEM,∴CN=BM,∴(AB+AC)=AE,由(1)得AB+AC=BC+2IF,∴AB+AC=2R+2IF,IF+R=,∴=,∴④正确.故选C.22.如图,已知OP平分∠AOB,∠AOB=60°,PC⊥OA于点C,PD⊥OB于点D,EP∥OA,交OB于点E,且EP=6.若点F是OP的中点,则CF的长是()A.6 B. C. D.【解答】解:∵EP∥OA,∴∠DEP=∠AOB=60°,∵PD⊥OB,∴PD=PE=×6=3,∵OP平分∠AOB,PC⊥OA,PD⊥OB,∴PC=PD=3,∵OP平分∠AOB,∠AOB=60°,∴∠POC=×60°=30°,∴OP=2PC=6,∵点F是OP的中点,∴CF=OP=×6=3.故选D.23.如图,△ABC中,CA=CB,AB=6,CD=4,E是高线CD的中点,以CE为半径⊙C.G 是⊙C上一动点,P是AG中点,则DP的最大值为()A.B.C.2D.【解答】解:连接BG,如图.∵CA=CB,CD⊥AB,AB=6,∴AD=BD=AB=3.又∵CD=4,∴BC=5.∵E是高线CD的中点,∴CE=CD=2,∴CG=CE=2.根据两点之间线段最短可得:BG≤CG+CB=2+5=7.当B、C、G三点共线时,BG取最大值为7.∵P是AG中点,D是AB的中点,∴PD=BG,∴DP最大值为.故选A.24.如图,直线l与半径为3的⊙O相切于点A,P是⊙O上的一个动点(不与点A重合),过点P作PB⊥l,垂足为B,连结PA,设PA=m,PB=n,则m﹣n的最大值是()A.3 B.2 C.D.【解答】解:如图,作直径AC,连接CP,∴∠CPA=90°,∵AB是切线,∴CA⊥AB,∵PB⊥l,∴AC∥PB,∴∠CAP=∠APB,∴△APC∽△PBA,∴=,∵PA=m,PB=n,半径为3,∴=,∴n=m2,∴m﹣n=m﹣m2=﹣m2+m=﹣(m﹣3)2,∴m﹣n的最大值是.故选C.。
动点问题--圆初三数学
( 1)当点落在梯形的中位线上时,求的值;(全等)( 2)试用表示,并写出的取值范围;(相像)( 3)当的外接圆与相切时,求的值.(垂径定理+中线+等面积+相像)【答案】解:( 1 )如图 1 ,为梯形的中位线,则,过点作于点,则有:在中,有在中,又解得:(2)如图 2,交于点,与对于对称,则有:,又又与对于对称,( 3)如图 3,当的外接圆与相切时,则为切点.的圆心落在的中点,设为则有,过点作,连结,得则又解得:(舍去)①②③3.已知在平面直角坐标系 xOy中, O是坐标原点,以 P(1,1)为圆心的⊙ P与 x 轴, y 轴分别相切于点 M和点 N,点 F 从点 M出发,沿 x 轴正方向以每秒1个单位长度的速度运动,连结 PF,过点 PE⊥ PF交 y 轴于点 E,设点 F 运动的时间是 t 秒( t >0)(1)若点E在y轴的负半轴上(以下图),求证:PE=PF;(全等)(2)在点F运动过程中,设OE=a,OF=b,试用含a的代数式表示b;(全等 +分类议论)(3)作点F对于点M的对称点F′,经过M、E和F′三点的抛物线的对称轴交x 轴于点 Q,连结 QE.在点 F 运动过程中,能否存在某一时辰,使得以点Q、 O、E 为极点的三角形与以点、、为极点的三角形相像?若存在,请直接写出t 的值;若不存P M F在,请说明原因.(议论对称轴+全等 +相像)【剖析】:(1)连结PM, PN,运用△PMF≌△ PNE证明,(2)分两种状况①当t >1时,点 E 在 y 轴的负半轴上,0<t≤1时,点 E 在y 轴的正半轴或原点上,再依据(1)求解,(3)分两种状况,当 1<t<2 时,当t>2 时,三角形相像时还各有两种状况,依据比率式求出时间 t .【解答】:证明:( 1)如图,连结PM, PN,∵⊙P 与x轴,y轴分别相切于点和点,M N∴PM⊥ MF,PN⊥ ON且 PM=PN,∴∠ PMF=∠ PNE=90°且∠ NPM=90°,∵ PE⊥ PF,∠NPE=∠ MPF=90°﹣∠ MPE,在△ PMF和△ PNE中,,∴△ PMF≌△ PNE(ASA),∴PE=PF,(2)解:①当t> 1 时,点E在y轴的负半轴上,如图,由( 1)得△PMF≌△PNE,∴NE=MF=t,PM=PN=1,∴b=OF=OM+MF=1+t ,a=NE﹣ ON=t ﹣1,∴b﹣ a=1+t ﹣( t ﹣1)=2,∴ b=2+a,②0<t≤1时,如图 2,点E在y轴的正半轴或原点上,同理可证△ PMF≌△ PNE,∴b=OF=OM+MF=1+t ,a=ON﹣ NE=1﹣ t ,∴b+a=1+t +1﹣ t =2,∴b=2﹣ a,(3)如图 3,(Ⅰ)当 1<t<2 时,∵F(1+t ,0), F 和 F′对于点 M对称,∴F′(1﹣t ,0)∵经过 M、E 和 F′三点的抛物线的对称轴交x 轴于点 Q,∴Q(1﹣t ,0)∴ OQ=1﹣t ,由( 1)得△PMF≌△PNE[ 根源 : 学 , 科, 网 ]∴NE=MF=t ,∴ OE=t ﹣1当△ OEQ∽△ MPF∴=∴=,解得, t =,当△ OEQ∽△ MFP时,∴=,=,解得, t =,(Ⅱ)如图4,当t> 2 时,∵F(1+t ,0), F 和 F′对于点 M对称,∴F′(1﹣t ,0)∵经过、和′三点的抛物线的对称轴交x 轴于点,M E F Q∴Q(1﹣ t ,0)∴ OQ=t ﹣1,由( 1)得△≌△∴ = =,∴= ﹣ 1PMF PNE NE MF t OE t当△ OEQ∽△ MPF∴=∴=,无解,当△ OEQ∽△ MFP时,∴= ,=,解得, t =2±,因此当t =,=,=2±时,使得以点、、为极点的三角形与以点、、t t Q O E P M F为极点的三角形相像.【评论】:本题主要考察了圆的综合题,解题的重点是把圆的知识与全等三角形与相像三角形相联合找出线段关系.3.木工黄师傅用长 AB=3,宽 BC=2的矩形木板做一个尽可能大的圆形桌面,他设计了四种方案:方案一:直接锯一个半径最大的圆;方案二:圆心 O1、 O2分别在 CD、 AB上,半径分别是 O1C、 O2A,锯两个外切的半圆拼成一个圆;(圆心距 +勾股)方案三:沿对角线AC将矩形锯成两个三角形,适合平移三角形并锯一个最大的圆;(相像 +设半径)方案四:锯一块小矩形BCEF拼到矩形 AFED下边,利用拼成的木板锯一个尽可能大的圆.(1)写出方案一中圆的半径;(2)经过计算说明方案二和方案三中,哪个圆的半径较大?(3)在方案四中,设CE=x(0<x< 1),圆的半径为y.(分类议论)①求 y 对于 x 的函数分析式;②当 x 取何值时圆的半径最大,最大部分径为多少?并说明四种方案中哪一个圆形桌面的半径最大.【考点】:圆的综合题【剖析】:( 1)察看图易知,截圆的直径需不超出长方形长、宽中最短的边,由已知长宽分别为3, 2,那么直接取圆直径最大为2,则半径最大为1.(2)方案二、方案三中求圆的半径是惯例的利用勾股定理或三角形相像中对应边长成比率等性质解直角三角形求边长的题目.一般都先设出所求边长,尔后利用关系代入表示其余有关边长,方案二中可利用△O1O2 E为直角三角形,则知足勾股定理整理方程,方案三可利用△AOM∽△ OFN后对应边成比率整理方程,从而可求r的值.(3)①近似( 1)截圆的直径需不超出长方形长、宽中最短的边,固然方案四中新拼的图象不必定为矩形,但直径也不得超出横纵向方向跨度.则选择最小跨度,取其,即为半径.由EC为 x,则新拼图形水平方向跨度为 3﹣x,竖直方向跨度为 2+x,则需要先判断大小,尔后分别议论结论.②已有关系表达式,则直接依据不等式性质易得方案四中的最大部分径.另与前三方案比较,即得最后结论.【解答】:解:( 1)方案一中的最大部分径为1.剖析以下:2,则半径最由于长方形的长宽分别为3, 2,那么直接取圆直径最大为大为 1.(2)如图 1,方案二中连结O1, O2,过 O1作 O1E⊥ AB于 E,方案三中,过点O分别作 AB,BF的垂线,交于M,N,此时 M,N恰为⊙ O与 AB, BF的切点.方案二:设半径为 r ,在 Rt△ O1O2E中,∵O1O2=2r , O1E=BC=2, O2E=AB﹣ AO1﹣CO2=3﹣2r ,∴( 2r)2 =22+( 3﹣ 2r)2,解得 r =.方案三:设半径为 r ,在△ AOM和△ OFN中,,∴△ AOM∽△ OFN,∴,∴,解得r =.比较知,方案三半径较大.(3)方案四:①∵ EC=x,∴新拼图形水平方向跨度为3﹣x,竖直方向跨度为 2+x.近似( 1),所截出圆的直径最大为 3﹣x或 2+x较小的.1.当 3﹣x< 2+x时,即当x>时,r=(3﹣x);2.当 3﹣x=2+x时,即当x=时,r=(3﹣)=;3.当 3﹣x> 2+x时,即当x<时,r=(2+x).②当 x>时,r=(3﹣x)<(3﹣)=;当 x=时, r =(3﹣)=;当 x<时, r =(2+x)<(2+)=,∴方案四,当 x=时, r 最大为.∵1<<<,∴方案四时可取的圆桌面积最大.【评论】:本题考察了圆的基天性质及经过勾股定理、三角形相像等性质求解边长及分段函数的表示与性质议论等内容,题目虽看似新奇不易找到思路,但认真察看每一小问都是惯例的基础考点,因此整体来说是一道质量很高的题目,值得认真练习.4.如图,已知 l 1⊥ l 2,⊙ O与 l 1,l 2都相切,⊙ O的半径为2cm,矩形 ABCD的边 AD、AB分别与 l 1, l 2重合, AB=4 cm, AD=4cm,若⊙ O与矩形 ABCD沿 l 1同时向右挪动,⊙ O的挪动速度为 3cm,矩形ABCD的挪动速度为 4cm/ s,设挪动时间为t(s)(1)如图①,连结OA、 AC,则∠ OAC的度数为105°;(2)如图②,两个图形挪动一段时间后,⊙O抵达⊙O1的地点,矩形ABCD抵达A1B1C1D1的地点,此时点 O1, A1, C1恰幸亏同向来线上,求圆心 O挪动的距离(即 OO1的长);(相像)(3)在挪动过程中,圆心O到矩形对角线AC所在直线的距离在不停变化,设该距离为d(cm),当 d<2时,求 t 的取值范围(解答时能够利用备用图画出有关表示图).(相像+切线)(数形联合 +分类议论)【考点】:圆的综合题.【剖析】:(1)利用切线的性质以及锐角三角函数关系分别求出∠OAD=45°,∠ DAC=60°,从而得出答案;(2)第一得出,∠C1A1D1=60°,再利用A1E=AA1﹣OO1﹣ 2=t﹣2,求出t的值,从而得出 OO1=3t 得出答案即可;(3)①当直线AC与⊙O第一次相切时,设挪动时间为t 1,②当直线 AC与⊙O第二次相切时,设挪动时间为t 2,分别求出即可.【解答】:解:( 1)∵l⊥ l,⊙ O与 l , l2都相切,121∴∠ OAD=45°,∵ =4,=4 ,AB cm AD cm∴CD=4cm, AD=4cm,∴tan ∠ DAC===,∴∠ DAC=60°,[根源:ZXXK]∴∠ OAC的度数为:∠ OAD+∠ DAC=105°,故答案为: 105;(2)如图地点二,当O1,A1,C1恰幸亏同向来线上时,设⊙O1与 l 1的切点为 E,连结 O1E,可得 O1E=2, O1E⊥ l 1,在 Rt△ A1D1C1中,∵ A1D1=4, C1D1=4,∴tan ∠ C1A1D1=,∴∠ C1A1D1=60°,在Rt△ A1O1E 中,∠ O1A1E=∠ C1A1 D1=60°,∴A E==,1∵ 1 =1﹣1﹣2=﹣2,AE AA OO t∴t ﹣2=,∴t =+2,∴1=3 =2+6;OO t(3)①当直线AC与⊙O第一次相切时,设挪动时间为t 1,如图,此时⊙O 挪动到⊙2 的地点,矩形挪动到2 2 2 2的地点,O ABCD ABCD设⊙ 2 与直线l 1, 2 2 分别相切于点,,连结2,2, 2 2,O A C F G OF OG OA ∴O2F⊥ l 1, O2G⊥ A2G2,由( 2)得,∠C2A2D2=60°,∴∠GA2F=120°,∴∠ O2A2F=60°,在Rt △ 2 2中, 2 =2,∴ 2 =,A OF OF A F∵OO=3t , AF=AA+A F=4t +,2221∴4t 1+﹣ 3t1=2,∴t 1=2﹣,②当直线AC与⊙ O第二次相切时,设挪动时间为t 2,记第一次相切时为地点一,点 O1,A1,C1共线时地点二,第二次相切时为地点三,由题意知,从地点一到地点二所用时间与地点二到地点三所用时间相等,∴+2﹣( 2﹣)=t2﹣(+2),解得: t 2=2+2,综上所述,当d<2时, t 的取值范围是:2﹣<t<2+2.【评论】:本题主要考察了切线的性质以及锐角三角函数关系等知识,利用分类议论以及数形联合 t 的值是解题重点.5.如图,平面直角坐标系 xOy中,一次函数 y=﹣ x+b( b 为常数, b>0)的图象与 x 轴、 y 轴分别订交于点A、B,半径为4的⊙ O与 x 轴正半轴订交于点 C,与 y 轴订交于点D、E,点D在点 E 上方.(1)若直线AB与有两个交点F、G.①求∠ CFE的度数;2②用含 b 的代数式表示FG,并直接写出 b 的取值范围;(垂径定理+直线方程)(2)设b ≥5,在线段上能否存在点,使∠=45°?若存在,恳求出P点坐标;若不AB P CPE存在,请说明原因.(相切 +圆周角)【考点】:圆的综合题【剖析】:(1)连结CD,EA,利用同一条弦所对的圆周角相等求行∠CFE=45°,(2)作OM⊥AB点M,连结OF,利用两条直线垂直订交求出交点M的坐标,利用勾股定理求出22FM,再求出FG,再依据式子写出 b 的范围,(3)当b=5 时,直线与圆相切,存在点P,使∠ CPE=45°,再利用两条直线垂直订交求出交点P的坐标,【解答】:解:(1)连结CD,EA,∵DE是直径,∴∠ DCE=90°,∵CO⊥ DE,且 DO=EO,∴∠ ODC=OEC=45°,∴∠ CFE=∠ ODC=45°,(2)①如图,作OM⊥ AB点 M,连结 OF,∵OM⊥ AB,直线的函数式为:y=﹣x+b,∴OM所在的直线函数式为:y=x,∴交点 M(b,b)222∴OM=(b)+(b),∵OF=4,2222﹣(2﹣(2∴FM=OF﹣ OM=4b)b),∵FM=FG,∴2=42=4×[4 2﹣()2﹣()2]=64 ﹣2=64×( 1﹣2),FG FM b b b b∵直线 AB与有两个交点F、 G.∴4≤b< 5,(3)如图,当 b=5时,直线与圆相切,∵DE是直径,[根源:]∴∠ DCE=90°,∵CO⊥ DE,且 DO=EO,∴∠ ODC=OEC=45°,∴∠ CFE=∠ ODC=45°,∴存在点 P,使∠ CPE=45°,连结 OP,∵P 是切点,∴OP⊥ AB,∴OP所在的直线为:y=x,又∵ AB所在的直线为:y=﹣x+5,∴P(,).【评论】:本题主要考察了圆与一次函数的知识,解题的重点是作出协助线,明确两条直线垂直时 K的关系.6.如图,矩形 ABCD的边 AB=3cm,AD=4cm,点 E 从点 A出发,沿射线 AD挪动,以 CE为直径作圆 O,点 F 为圆 O与射线 BD的公共点,连结 EF、CF,过点 E作 EG⊥ EF,EG与圆 O订交于点 G,连结 CG.(1)试说明四边形EFCG是矩形;(2)当圆O与射线BD相切时,点E停止挪动,在点E挪动的过程中,①矩形 EFCG的面积能否存在最大值或最小值?若存在,求出这个最大值或最小值;若不存在,说明原因;②求点 G挪动路线的长.【考点】:圆的综合题;垂线段最短;直角三角形斜边上的中线;矩形的判断与性质;圆周角定理;切线的性质;相像三角形的判断与性质.【剖析】:( 1)只需证到三个内角等于90°即可.FCE=∠ FDE,从而证到△CFE∽△ DAB,依据(2)易证点D在⊙ O上,依据圆周角定理可得∠S矩形ABCD 相像三角形的性质可获得S 矩形ABCD=2S△CFE=.而后只需求出CF的范围便可求出的范围.依据圆周角定理和矩形的性质可证到∠GDC=∠ FDE=定值,从而获得点G的挪动的路线是线段,只需找到点G的起点与终点,求出该线段的长度即可.【解答】:解:( 1)证明:如图1,∵CE为⊙ O的直径,[根源:学。
圆的动点问题方法总结
圆的动点问题方法总结
圆的动点问题涉及圆的运动轨迹和动点的位置变化。
在解决这类问题时,我们
可以采用以下方法:
1. 构建几何模型:首先,我们可以通过绘制几何图形来简化问题。
将圆和动点
在纸上画出来,有助于我们更清楚地理解问题。
2. 利用圆的性质:圆有很多重要的性质,我们可以利用这些性质来解决动点问题。
例如,圆的半径和直径之间的关系,圆的切线和切点的性质等。
3. 使用向量方法:在处理圆的动点问题时,向量方法很有用。
我们可以将动点
的位置表示为向量,并使用向量的运算规则来解决问题。
例如,我们可以用位置向量来表示动点的位置,并使用向量的加法和减法来计算动点的移动方向和距离。
4. 应用三角函数:如果涉及到角度的变化,我们可以使用三角函数来解决问题。
例如,如果动点绕圆心旋转,我们可以使用正弦和余弦函数来描述动点在不同位置的坐标变化。
5. 运用解析几何:解析几何是解决圆的动点问题的常用方法之一。
我们可以使
用坐标系和代数方程来描述圆和动点的运动轨迹。
通过求解方程组,我们可以得到动点的位置和移动方向。
总的来说,解决圆的动点问题需要充分利用圆的性质,运用几何、向量、三角
函数和解析几何等方法。
通过选择合适的方法,我们可以更好地理解问题并求解出准确的结果。
关于圆的动点问题常见解决方案[例谈圆中常见两解问题]
关于圆的动点问题常见解决方案[例谈圆中常见两解问题] 由于圆具有对称性,以及点、弦、角等元素在圆中位置的相对性.因此,在解答没有给出图形的圆的有关计算题时,就要仔细审题,周密思考,以防漏解. 一、有关点与圆的位置关系问题例1:点P到⊙O的最大距离是8cm,最小距离是4cm,则⊙O的半径是.分析:题中并没有说明点P与圆的位置关系,故需分点P在圆内与点P在圆外两种情况求解.(如图1)当点P在圆内时,由已知,得PA=4, PB=8.(如图2)当点P在圆外时,由已知,得PA=4,PB=8.综上所述,⊙O的半径为6cm或2cm.二、有关平行弦问题例2:已知四边形ABCD是⊙O的内接梯形,AB∥CD,AB=8,CD=6.⊙O的半径等于5,求梯形ABCD的高.分析:求圆内接梯形的高就是求圆中两条平行弦间的距离.(如图3)当AB、CD在圆心的两侧时,过圆心O作EF⊥AB于E,交CD于F.∵AB∥CD,∴EF⊥CD.连结OA、OD,则△OAE、△ODF都是直角三角形.∴梯形的高EF=OE+OF=3+4=7.(如图4)当AB、CD在圆心O的同侧时,作OF⊥CD于F,交AB于E,连结OA、OD.同理,求得OE=3,OF=4.∴梯形的高EF=OF-OE=4-3=1.综上所述,⊙O的内接梯形ABCD的高为7或1.三、有关公共弦问题例3:⊙O1和⊙O2相交于A、B两点,它们的半径AO1=20,AO2=15,公共弦AB=24,则△AO1O2的周长为 .分析:因为已知两圆的半径不等,所以,圆心可能在公共弦AB 的两侧(如图5),也可能在AB的同侧(如图6).分别在Rt△AO1C和Rt△AO2C中,由勾股定理求得O1C=16,O2C=9.∴O1O2=16+9=25.∴△AO1O2的周长为20+15+25=60.在图6中,同理求得O1C=16,O2C=9.∴O1O2=16-9=7.∴△AO1O2的周长为20+15+7=42.综上所述,△AO1O2的周长为60或42.四、有关两条弦的夹角问题分析:连结OA,则弦AC、AD可能在半径OA的两侧(如图7),也可能在OA的同侧(如图8).在图7中,连结OC.∴∠OAD=30°.∴∠CAD=∠CAO+∠OAD=45°+30°=75°.在图8中,同理求得∠OAD=30°,∠OAC=45°.∴∠CAD=∠OAC-∠OAD=45°-30°=15°.综上所述,∠CAD等于75°或15°.五、有关圆周角问题例5 :PA、PB是⊙O的切线,A、B是切点,∠APB=78°,点C是⊙O上异于A、B的任意一点,则∠ACB=.分析:如图9,因为C是⊙O上异于A、B的任意一点,所以点C可能在优弧AB上,也可能在劣弧 AB上.当点C在优弧AB上时,连结OA、OB,则OA⊥PA,OB⊥PB.又∠APB=78°,∴∠AOB=360°-90°-90°-78°=102°.当点C"在劣弧AB上时,四边形AC"BC是圆内接四边形.∴∠AC"B=180°-∠ACB=180°-51°=129°.综上所述,∠ACB等于51°或129°.六、有关圆的相切问题例6:以O为圆心的两个同心圆的半径分别9cm和5cm,若⊙A 与这两个圆都相切,则⊙A的半径为 .分析:因为相切分内切和外切两种,所以⊙A可能与大圆内切,与小圆外切(如图10),也可能与两个圆都内切(如图11).综上所述,⊙A的半径为2cm或7cm.本文为全文原貌未安装PDF浏览器用户请先下载安装原版全文内容仅供参考。
中考试题九年级专题训练:圆的专题14圆中的动态问题.docx
圆的专题14——圆中动态问题
1、如图,点P 是等边△ABC 外接圆BC 上的一个动点,求证PA =PB +PC.
2、已知弦AD ⊥BD ,且AB =2,点C 在圆上,CD =1,直线AD 、BC 交于点E.
(1)如图1,若点E 在⊙O 外,求∠AEB 的度数;
(2)如图2,若C 、D 两点在⊙O 上运动,CD 的
长度不变,点E 在⊙O 内,求∠AEB 的度数.
图-
1 图-2
3、已知直线l经过⊙O的圆心O,且交⊙O于A、B,点C在⊙O上,且∠AOC=30︒,点
P是直线l上一个动点(与O不重合),直线CP与⊙O交于Q,且QP=QO.
(1)如图1,当点P在线段AO上时,求∠OCP的度数;
(2)如图2,当点P在线段OA的延长线上时,求∠OCP的度数;
(3)如图3,当点P在线段OB的延长上时,求∠OCP的度数.
图-1
图-2
图-3
初中数学试卷
鼎尚图文**整理制作。
初三-圆中动点问题
个性化教学辅导教案例1.已知如图, 在平面直角坐标系中, 直线与轴、轴分别交于A, B两点, P是直线AB 上一动点, ⊙的半径为1.(1)判断原点O与⊙的位置关系, 并说明理由;(2)当⊙过点B时, 求⊙被轴所截得的劣弧的长;(3)当⊙与轴相切时, 求出切点的坐标.练习1: 平面上, 矩形ABCD与直径为QP的半圆K如图15-1摆放, 分别延长DA和QP交于点O, 且∠DOQ=60°, OQ=OD=3, OP=2, OA=AB=1, 让线段OD及矩形ABCD位置固定, 将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转, 设旋转角为.发现:(1)当, 即初始位置时, 点P 直线AB上.(填“在”或“不在”)求当是多少时, OQ经过点B?(2)在OQ旋转过程中, 简要说明是多少时, 点P, A间的距离最小?并指出这个最小值;如图15-2, 当点P恰好落在BC边上时, 求及.拓展: 如图15-3, 当线段OQ与CB边交于点M, 与BA边交于点N时, 设B M=x(x>0),用含x的代数式表示B N的长,并求x的取值范围.图15-2图15-3备用图探究: 当半圆K与矩形ABCD的边相切时, 求sin 的值.练习2: 如图1, 已知点A(8, 4), 点B(0, 4), 线段CD的长为3, 点C与原点O重合, 点D在x轴正半轴上. 线段CD沿x轴正方向以每秒1个单位长度的速度向右平移, 过点D作x轴的垂线交线段AB于点E, 交OA于点G, 连接CE交OA于点F(如图2), 设运动时间为t. 当E点与A点重合时停止运动.(1)求线段CE的长;(2)记△CDE与△ABO公共部分的面积为S, 求S关于t的函数关系式;(3)如图2, 连接DF.①当t取何值时, 以C、F、D为顶点的三角形为等腰三角形?②△CDF的外接圆能否与OA相切?如果能, 直接写出此时t的值;如果不能, 请说明理由。
图1图2最值问题例2.如图, 在△ACE 中, CA=CE, ∠CAE=30°, ⊙O 经过点C, 且圆的直径AB 在线段AE 上. (1)试说明CE 是⊙O 的切线;(2)若△ACE 中AE 边上的高为h, 试用含h 的代数式表示⊙O 的直径AB ;(3)设点D 是线段AC 上任意一点(不含端点), 连接OD, 当 CD+OD 的最小值为6时, 求⊙O 的直径AB 的长.练习1: 在△ 中, ,将△ 绕点 顺时针旋转, 得到△ .⑴.如图①, 当点 在线段 延长线上时.①.求证: ;②.求△ 的面积;⑵.如图②,点 是 上的中点,点 为线段 上的动点,在△ 绕点 顺时针旋转过程中,点 的对应点是 ,求线段 长度的最大值与最小值的差.练习2: 如图, 在平面直角坐标系中, 圆M 过原点o, 与x 轴交于A (4.0), 与y 轴交于B (0,3), 点C 为劣弧AO 的中点, 连接AC 并延长到D, 使DC=4CA,连接BD.(1)圆M 的半径;(2)证明:BD 为圆M 的切线;(3)在直线MC 上找一点p, 使|DP-AP |最大。
圆形中动点问题的解题策略:
圆形中动点问题的解题策略:圆形中动点问题的解题策略
圆形中动点问题是一类在几何学中常见的问题,涵盖了动点在圆形表面的位置、路径、速度和加速度等相关计算和性质。
解决这类问题可以采用以下简单策略:
1. 确定圆的性质
首先,确定给定圆的半径和中心坐标。
这些参数将是解题的基础,用来计算动点相对于圆的位置。
2. 确定动点的位置
确定动点在圆上的位置。
可以使用动点在圆上的弧长或角度来描述其位置。
3. 计算动点的速度
根据题目所给的信息,计算动点在圆上的速度。
可以使用速度公式来计算动点的线速度。
4. 计算动点的加速度
如果题目要求,计算动点在圆上的加速度。
可以使用加速度公
式来计算动点的向心加速度和切向加速度。
5. 分析动点的运动轨迹
根据动点的速度和加速度,可以分析动点的运动轨迹。
根据速
度的方向和大小,以及加速度的方向和大小,可以确定动点在圆上
的运动性质。
6. 结论
总结分析结果,得出关于动点在圆上运动的结论。
以上是解决圆形中动点问题的一般策略,根据具体题目的要求,可能需要适当调整和扩展这些策略。
通过掌握这些基本策略,可以
更有效地解决圆形中动点问题。
初三数学圆动点问题
初三数学圆动点问题
1.在直角梯形ABCD中,AD∥BC,∠B=90°,AD=13cm,BC=5cm,AB为圆O的直径,动点P沿AD从点A开始向点D以1m/s,的速度运动,动点Q沿CB从点C开始向点B以2cm/s的速度运动,点P、Q分别从A、C两点同时出发,当其中一点停止时,另一点也随之停止运动。
是否存在某一时刻t,使直线PQ与圆O相切?若存在,求出t的值,若不存在,说明理由。
1.如图,在△ABC中,∠B=45°,∠ACB=60°,AB=32,点D为BA延长线上的
一点,且∠D=∠ACB,⊙O为△ADC的外接圆.
(1)求BC的长;(特殊三角形)
(2)求⊙O的半径.(垂径定理+圆周角+圆心角)
1.▲存在.
若PQ与圆相切,设切点为G.(如图二)
作PH⊥BC于H.
∴PG=PA=t.
QG=QB=16-2t,QH=QB-BH=(16-2t)一t=16-3t
PQ=QB+AP=16一t.
在Rt△PQH中,PQ2=PH2+QH2,即(16一t)2=16+(16-3t)2∴t2-8t+2=0.
解得t
1=4+,t
2
=4- ,
∵0≤t≤8,
∴当t=4± 时,PQ与圆相切.。
中考数学---与圆有关的动点几何压轴题1
中考数学---与圆有关的动点几何压轴题1定圆结合直角三角形:1、已知:如图,在Rt △ABC 中, 90=∠C ,4=BC ,21tan =∠CAB ,点O 在边AC 上,以点O 为圆心的圆过A 、B 两点,点P 为AB 上一动点.(1)求⊙O 的半径;(2)联结AP 并延长,交边CB 延长线于点D ,设x P A =,y D B =,求y 关于x 的函数解析式,并写出x 的取值范围;(3)联结P B ,当点P 是AB 的中点时,求△ABP 的面积与△ABD 的面积比ABDABPS S ∆∆的值.2、如图,在Rt △ABC 中,∠ACB=90°.半径为1的圆A 与边AB 相交于点D ,与边AC 相交于点E ,连接DE 并延长,与线段BC 的延长线交于点P .(1)当∠B=30°时,连接AP ,若△AEP 与△BDP 相似,求CE 的长;(2)若CE=2,BD=BC ,求∠BPD 的正切值;(3)若tan ∠BPD=,设CE=x ,△ABC 的周长为y ,求y 关于x 的函数关系式.PD第1题图备用图B3、如图,在半径为5的⊙O 中,点A 、B 在⊙O 上,∠AOB=90°,点C 是弧AB 上的一个动点,AC 与OB 的延长线相交于点D ,设AC=x ,BD=y .(1)求y 关于x 的函数解析式,并写出它的定义域; (2)如果⊙O 1与⊙O 相交于点A 、C ,且⊙O 1与⊙O 的圆心距为2,当BD=OB 时,求⊙O 1的半径; (3)是否存在点C ,使得△DCB ∽△DOC ?如果存在,请证明;如果不存在,请简要说明理由.定圆中结合平行线:2、在半径为4的⊙O 中,点C 是以AB 为直径的半圆的中点,OD ⊥AC ,垂足为D ,点E 是射线AB 上的任意一点,DF //AB ,DF 与CE 相交于点F ,设EF =x ,DF =y .(1)如图1,当点E 在射线OB 上时,求y 关于x 的函数解析式,并写出函数定义域; (2)如图2,当点F 在⊙O 上时,求线段DF 的长;(3)如果以点E 为圆心、EF 为半径的圆与⊙O 相切,求线段DF 的长.ABEFCDOABF C D O动圆结合直角梯形:5、如图,已知在梯形ABCD 中,AD ∥BC ,AB ⊥BC ,AB=4,AD=3,sin ∠DCB=,P 是边CD 上一点(点P 与点C 、D 不重合),以PC 为半径的⊙P 与边BC 相交于点C 和点Q .(1)如果BP ⊥CD ,求CP 的长;(2)如果PA=PB ,试判断以AB 为直径的⊙O 与⊙P 的位置关系; (3)联结PQ ,如果△ADP 和△BQP 相似,求CP 的长.动圆结合内切直角三角形:6、在△ABC 中,∠ABC =90°,AB =4,BC =3,O 是边AC 上的一个动点,以点O 为圆心作半圆,与边AB 相切于点D ,交线段OC 于点E ,作EP ⊥ED ,交射线AB 于点P ,交射线CB 于点F 。
动点问题圆(含答案)初三数学(2020年整理).pptx
∵OO2=3t,AF=AA2+A2F=4t1+ ,
∴4t1+ ﹣3t1=2,
9
∴t1=2﹣ ,
②当直线 AC 与⊙O 第二次相切时,设移动时间为 t2, 记第一次相切时为位置一,点 O1,A1,C1 共线时位置二,第二次相切时为位置 三,
由题意知,从位置一到位置二所用时间与位置二到位置三所用时间相等, ∴ +2﹣(2﹣ )=t2﹣( +2),
5
分析如下: 因为长方形的长宽分别为 3,2,那么直接取圆直径最大为 2,则半径最 大为 1.
(2) 如图 1,方案二中连接 O1,O2,过 O1 作 O1E⊥AB 于 E, 方案三中,过点 O 分别作 AB,BF 的垂线,交于 M,N,此时 M,N 恰 为⊙O 与 AB,BF 的切点. 方案二: 设半径为 r, 在 Rt△O1O2E 中, ∵O1O2=2r,O1E=BC=2,O2E=AB﹣AO1﹣CO2=3﹣2r, ∴(2r)2=22+(3﹣2r)2, 解得 r= .
由(1)得△PMF≌△PNE ∴NE=MF=t,∴OE=t﹣1
当△OEQ∽△MPF∴ = ∴ =
,无解,
当△OEQ∽△MFP 时,∴ = , =
,解得,t=2± ,
所以当 t=
,t= ,t=2± 时,使得以点 Q、O、E 为顶点的三角形与以点 P、M、F
为顶点的三角形相似. 【点评】:本题主要考查了圆的综合题,解题的关键是把圆的知识与全等三角形与相似三角 形相结合找出线段关系.
分别相切于点 M 和点 N,点 F 从点 M 出发,沿 x 轴正方向以每秒 1 个单位长度的速度运动,
连接 PF,过点 PE⊥PF 交 y 轴于点 E,设点 F 运动的时间是 t 秒(t>0)
2023年九年级中考数学高频考点突破-圆的动点问题
2023年中考数学高频考点突破--圆的动点问题一、单选题1.如图,在ΔABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心,作半圆与AC相切,点P,Q分别是边BC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.6B.2√13+1C.323D.92.如图,直角△ABC中,∠ACB=90°,BC=2√3,点P是△ABC内部一动点,总满足∠APC=150°,连接BP,则BP的最小值为()A.2√7−4B.2√31−8C.4−√3D.23√183−83√3 3.点A,B的坐标分别为A (4,0),B(0,4),点C为坐标平面内一点,BC﹦2,点M为线段AC的中点,连接OM,则OM的最大值为()A.2 √2+1B.2 √2+2C.4 √2+1D.4 √2-24.如图,点A的坐标是(−2,0),点C是以OA为直径的∠B上的一动点,点A关于点C的对称点为点P. 当点C在∠ B上运动时,所有这样的点P组成的图形与直线y=kx-3(k>0)有且只有一个公共点,则k的值是()A.23B.√53C.6√55D.√525.如图,A是∠B上任意一点,点C在∠B外,已知AB=2,BC=4,∠ACD是等边三角形,则△BCD的面积的最大值为()A.4 √3+4B.4C.4 √3+8D.66.如图,A(12,0),B(0,9)分别是平面直解坐标系xOy坐标轴上的点,经过点O且与AB相切的动圆与x轴、y轴分别相交于点P、Q,则线段PQ长度的最小值是()A.6√2B.10C.7.2D.6√37.设O为坐标原点,点A、B为抛物线y=x2上的两个动点,且OA⊥OB.连接点A、B,过O 作OC⊥AB于点C,则点C到y轴距离的最大值()A.12B.√22C.√32D.18.已知∠O的半径为3,A为圆内一定点,AO=1,P为圆上一动点,以AP为边作等腰∠APQ,AP =PQ,∠APQ=120°,则OQ的最大值为()A.1+3√3B.1+2√3C.3+√3D.3√3−19.如图,在Rt△ABC中,∠C=90°,AC=6,BC=8,点F在边AC上,且CF= 2,点E为射线CB上一动点,连接EF.将△CEF沿直线EF折叠,使点C落在点P处,连接AP,BP,则△APB的面积最小值为()A.3B.6C.245D.1210.如图,在ΔABC中,AB=10,AC=8,BC=6,以边AB的中点O为圆心作半圆,使BC与半圆相切,点P,Q分别是边AC和半圆上的动点,连接PQ,则PQ长的最大值与最小值的和是()A.8B.9C.10D.1211.如图,A是⊙B上任意一点,点C在⊙B外,已知AB=2,BC=4,△ACD是等边三角形,则△BCD的面积的最大值为()A.4√3+4B.4√3C.4√3+8D.6√312.如图,在等边∠ABC中,AB=6,点D,E分别在边BC,AC上,且BD=CE,连接AD,BE 交于点F,连接CF,则CF的最小值是()A.3B.2 √3C.4D.3 √3二、填空题13.在平面直角坐标系中,已知点A (2√3,0),点B (−6√3,0),点C是y轴上的一个动点,当∠BCA=30°时,点C的坐标为.14.如图,在平面直角坐标系xOy中,半径为4的∠O与x轴的正半轴交于点A,点B是∠O上一动点,点C为弦AB的中点,直线y=34x−6与x轴、y轴分别交于点D、E,则△CDE面积的最小值为.15.如图,AB为半圆的直径,AB=10,点O到弦AC的距离为4,点P从B出发沿BA 方向向点A以每秒1个单位长度的速度运动,连接CP,经过秒后,ΔAPC为等腰三角形.16.如图,AB是⊙O的直径,M、N是AB̂异于A,B的两点,C是MN̂一动点,∠ACB的角平分线交⊙O于点D,∠BAC的平分线交CD于点E.当点C从点M运动到点N时,则E,C两点的运动路径长的比是.三、综合题17.如图,在平面直角坐标系中,边长为6的正方形ABCD的四条边与坐标轴平行,顶点A、B 分别在第一象限、第二象限,对角线AC、BD的交点与坐标原点O重合,当正方形ABCD的边上存在点Q,满足PQ≤2时,称点P为正方形ABCD的伴随点.(1)点A的坐标为点,B的坐标为,点C的坐标为,点D的坐标为.(2)当正方形ABCD的伴随点P的坐标为(3,0)时,点Q的坐标可以为(写出一个即可).(3)在点P1(0,0)、P2(5.5,5.5)、P3(−4,2)、P4(1,−2)中,正方形ABCD的伴随点是.(4)点P在直线y=x上.若点P为正方形ABCD的伴随点,直接写出点P横坐标m的取值范围.18.如图,已知∠MON=90°,OT是∠MON的平分线,A是射线OM上一点,OA=12cm.动点P从点A出发,以1cm/s的速度沿AO水平向左做匀速运动,与此同时,动点Q从点O出发,也以1cm/s 的速度沿ON竖直向上做匀速运动.连接PQ,交OT于点B.经过O,P,Q三点作圆,交OT于点C,连接PC,QC.设运动时间为t(s),其中0<t<12.(1)若tan∠OCQ =13,求t 的值;(2)当△PBC 为等腰三角形时,求t 的值;(3)若△OPQ 的内心为点I ,求线段IC 长度的最小值.19.在平面直角坐标系xOy 中,已知点M(a ,b),N.对于点P 给出如下定义:将点P 向右(a ≥0)或向左(a <0)平移|a|个单位长度,再向上(b ≥0)或向下(b <0)平移|b|个单位长度,得到点P′,点P′关于点N 的对称点为Q ,称点Q 为点P 的“对应点”.(1)如图,点M(1,1),点N 在线段OM 的延长线上,若点P(−2,0),点Q 为点P 的“对应点”.①在图中画出点Q ;②连接PQ ,交线段ON 于点T.求证:NT =12OM ;(2)⊙O 的半径为1,M 是⊙O 上一点,点N 在线段OM 上,且ON =t(12<t <1),若P 为⊙O 外一点,点Q 为点P 的“对应点”,连接PQ.当点M 在⊙O 上运动时直接写出PQ 长的最大值与最小值的差(用含t 的式子表示)20.如图①,在矩形ABCD 中,BC =60cm.动点P 以6cm/s 的速度在矩形ABCD 的边上沿A→D 的方向匀速运动,动点Q 在矩形ABCD 的边上沿A→B→C 的方向匀速运动.P 、Q 两点同时出发,当点P 到达终点D 时,点Q 立即停止运动.设运动的时间为t (s ),∠PDQ 的面积为S (cm 2),S 与t 的函数图象如图②所示.(1)AB=cm,点Q的运动速度为cm/s;(2)在点P、Q出发的同时,点O也从CD的中点出发,以4cm/s的速度沿CD的垂直平分线向左匀速运动,以点O为圆心的∠O始终与边AD、BC相切,当点P到达终点D时,运动同时停止.①当点O在QD上时,求t的值;②当PQ与∠O有公共点时,求t的取值范围.答案解析部分1.【答案】D 2.【答案】B 3.【答案】A 4.【答案】D 5.【答案】A 6.【答案】C 7.【答案】A 8.【答案】A 9.【答案】B 10.【答案】C 11.【答案】A 12.【答案】B13.【答案】(0,12+6√5) 或 (0,−12−6√5) 14.【答案】815.【答案】145 或4或516.【答案】√217.【答案】(1)(3,3);(−3,3);(−3,−3);(3,−3)(2)(3,1) 答案不唯一 (3)P 3 、 P 4(4)解:如图符合条件的临界点P 有4个,如图,过点 P 5 作 P 5E ⊥x 轴于E ,过点 P 6 作 P 6F ⊥x 轴于F ,∵点P5,点P6在y=x上,∴∠P5OE=45°,∵正方形ABCD边长为6,∴OG=AG=3,∴OA=3√2,P6F=OF=1,∴OP5=3√2+2,∴OE=P5E=√2+2√2=3+√2,∴P5(3+√2,3+√2),P6(1,1),∴1≤m≤3+√2,同理可得P7(−1,−1),P8(−3−√2,−3−√2),∴−3−√2≤m≤−1,综上,−3−√2≤m≤−1或1≤m≤3+√2.18.【答案】(1)解:由题意得:OQ=t,OP=12−t,∠MON=90°,∵OQ⌢=OQ⌢,∴∠OPQ=∠OCQ,∴tan∠OPQ=tan∠OCQ=1 3,在Rt△OPQ,tan∠OPQ=OQ OP,∴t12−t=13,解得:t=3;(2)解:∵∠BPC=∠QOC,∠PBC=∠POC+∠OPQ,∵∠MON=90°,OT是∠MON的平分线,∴∠QOC=∠POC=12∠MON=45°,∴∠BPC=45°,∠PBC>45°,∴当△PBC为等腰三角形时,则PB=PC或BC=BP,当PB=PC时,则∠PBC=∠PCB,如图,作BH⊥OQ,BG⊥OP,∵∠PCB=∠OQB,∠PBC=∠OBQ,∴∠OBQ=∠OQB,∴OB=OQ=t,∵∠QOC=∠POC=12∠MON=45°,∴BH=BG=√22t,∵S△OPQ=S△OBQ+S△OBP,∴12OQ⋅OP=12OQ⋅BH+12OP⋅BG,即:12t⋅(12−t)=12t×√22t+12(12−t)×√22t,解得:t=12−6√2;如图,当BC=BP时,则∠BPC=∠BCP=∠QOC=45°,∴∠OQP=∠BCP=45°,∴∠OPQ是等腰直角三角形,∴OP=OQ,即:12−t=t,解得:t=6;综上所述,当△PBC为等腰三角形时,求t的值为12−6√2或6.(3)解:设PQ的中点为D,∵△OPQ的内心为点I,OC平分∠MON,∴点I在OC上,∴ID+CD≥IC,∴当点I、D、C共线时,即点D与点B重合时,线段IC长度的值最小,如图,过点I作IE∠OQ于E,IF∠OP于F,∵点B为PQ中点,为圆心,∴OC为圆的直径,∴∠OPC=∠OQC=90°,∴∠OCP=∠POC=45°,∵∠OCP=∠OQP,∴∠OQP=∠OPQ=45°,∴OP=OQ,OB∠PQ,∴IE=IF=IB,即:12−t=t,解得:t=6;∴OC=√2OQ=6√2,OB=BC=3√2,∵∠QOC=45°,∴OI=√2EI,∵EI=FI=BI,OB=OI+BI,∴OB=√2BI+BI,即:3√2=√2BI+BI,解得:BI=6−3√2,IC=BC+BI=6−3√2+3√2=6,∴线段IC长度的最小为6.19.【答案】(1)解:①点Q如下图所示.∵点M(1,1),∴点P(−2,0)向右平移1个单位长度,再向上平移1个单位长度,得到点P′,∴P′(−1,1),∵点P′关于点N的对称点为Q,N(2,2),∴点Q的横坐标为:2×2−(−1)=5,纵坐标为:2×2−1=3,∴点Q(5,3),在坐标系内找出该点即可;②证明:如图延长ON至点A(3,3),连接AQ,∵AQ//OP,∴∠AQT=∠OPT,在ΔAQT与Δ∠OPT中,{∠AQT =∠OPT∠ATQ =∠OTP AQ =OP,∴ΔAQT ≅ΔOPT(AAS),∴TA =TO =12OA , ∵A(3,3),M(1,1),N(2,2),∴OA =√32+32=3√2,OM =√12+12=√2,ON =√22+22=2√2,∴TO =12OA =32√2, ∴NT =ON −OT =2√2−32√2=√22, ∴NT =12OM ; (2)解:PQ 长的最大值与最小值的差为4t −2.20.【答案】(1)30;6(2)解:①如图1,设AB ,CD 的中点分别为E ,F ,当点O 在QD 上时,QC =AB+BC ﹣6t =90﹣6t ,OF =4t ,∵OF∠QC 且点F 是DC 的中点,∴OF =12QC , 即4t =12(90﹣6t ), 解得,t =457; ②设AB ,CD 的中点分别为E ,F ,∠O 与AD ,BC 的切点分别为N ,G ,过点Q 作QH∠AD 于H ,如图2﹣1,当∠O 第一次与PQ 相切于点M 时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴∠QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=90﹣4t﹣6t=90﹣10t,PM=PN=60﹣4t﹣6t=60﹣10t,∴QP=QM+MP=150﹣20t,∵QP=√2QH,∴150﹣20t=30√2,;∴t=15−3√22如图2﹣2,当∠O第二次与PQ相切于点M时,∵AH+AP=6t,AB+BQ=6t,且BQ=AH,∴HP=QH=AB=30,∴∠QHP是等腰直角三角形,∵CG=DN=OF=4t,∴QM=QG=4t﹣(90﹣6t)=10t﹣90,PM=PN=4t﹣(60﹣6t)=10t﹣60,∴QP=QM+MP=20t﹣150,∵QP=√2QH,∴20t ﹣150=30√2,∴t =15+3√22, 综上所述,当PQ 与∠O 有公共点时,t 的取值范围为:15−3√22≤t≤15+3√22.。
2024年中考数学高频压轴题训练——圆-动点问题及参考答案
2024年中考数学高频压轴题训练——圆-动点问题1.“同弧或等弧所对的圆周角相等”,利用这个推论可以解决很多数学问题.(1)【知识理解】如图1,圆O 的内接四边形ACBD 中,60ABC ∠=︒,BC AC =,①BDC ∠=;DAB ∠DCB ∠(填“>”,“=”,“<”)②将D 点绕点B 顺时针旋转60︒得到点E ,则线段DB DC DA ,,的数量关系为.(2)【知识应用】如图2,AB 是圆O 的直径,1tan 2ABC ∠=,猜想DA DB DC ,,的数量关系,并证明;(3)【知识拓展】如图3,已知2AB =,A B ,分别是射线DA DB ,上的两个动点,以AB 为边往外构造等边ABC ,点C 在MDN ∠内部,若120D ∠=︒,直接写出四边形ADBC 面积S 的取值范围.2.如图1,对于PMN 的顶点P 及其对边MN 上的一点Q ,给出如下定义:以P 为圆心,PQ 为半径的圆与直线MN 的公共点都在线段MN 上,则称点Q 为PMN 关于点P 的内联点.在平面直角坐标系xOy 中:(1)如图2,已知点(70)A ,,点B 在直线1y x =+上.①若点(34)B ,,点(30)C ,,则在点O ,C ,A 中,点是AOB 关于点B 的内联点;②若AOB 关于点B 的内联点存在,求点B 纵坐标n 的取值范围;(2)已知点(20)D ,,点(42)E ,,将点D 绕原点O 旋转得到点F .若EOF 关于点E 的内联点存在,直接写出点F 横坐标m 的取值范围.3.在平面直角坐标系xOy 中,O 的半径为1,对于点A 和线段BC ,给出如下定义:若将线段BC 绕点A 旋转可以得到O 的弦B C ''(B C '',分别是B C ,的对应点),则称线段BC 是O 的以点A 为中心的“关联线段”.(1)如图,点112233A B C B C B C ,,,,,,的横、纵坐标都是整数.在线段112233B C B C B C ,,中,O 的以点A 为中心的“关联线段”是;(2)ABC 是边长为1的等边三角形,点()0A t ,,其中0t ≠.若BC 是O 的以点A 为中心的“关联线段”,求t 的值;(3)在ABC 中,12AB AC ==,.若BC 是O 的以点A 为中心的“关联线段”,直接写出OA 的最小值和最大值,以及相应的BC 长.4.已知:点C 为⊙O 的直径AB 上一动点,过点C 作CD ⊥AB ,交⊙O 于点D 和点E ,连接AD 、BD ,∠DBA 的角平分线交⊙O 于点F .(1)若DF =BD ,求证:GD =GB ;(2)若AB =2cm ,在(1)的条件下,求DG 的值;(3)若∠ADB 的角平分线DM 交⊙O 于点M ,交AB 于点N .当点C 与点O 重合时,AD BD DM+=;据此猜想,当点C 在AB (不含端点)运动过程中,AD BD DM +的值是否发生改变?若不变,请求其值;若改变,请说明理由.5.在平面直角坐标系xOy 中,O 的半径为1,对于ABC 和直线l 给出如下定义:若ABC 的一条边关于直线l 的对称线段PQ 是O 的弦,则称ABC 是O 的关于直线l 的“关联三角形”,直线l 是“关联轴”.(1)如图1,若ABC 是O 的关于直线l 的“关联三角形”,请画出ABC 与O 的“关联轴”(至少画两条);(2)若ABC 中,点A 坐标为(23),,点B 坐标为(41),,点C 在直线3y x =-+的图像上,存在“关联轴l ”使ABC 是O 的关联三角形,求点C 横坐标的取值范围;(3)已知A ,将点A 向上平移2个单位得到点M ,以M 为圆心MA 为半径画圆,B ,C 为M 上的两点,且2AB =(点B 在点A 右侧),若ABC 与O 的关联轴至少有两条,直接写出OC 的最小值和最大值,以及OC 最大时AC 的长.6.如图,在⊙O 中,AB 为弦,CD 为直径,且AB ⊥CD ,垂足为E ,P 为 AC 上的动点(不与端点重合),连接PD .(1)求证:∠APD =∠BPD ;(2)利用尺规在PD 上找到点I ,使得I 到AB 、AP 的距离相等,连接AD (保留作图痕迹,不写作法).求证:∠AIP+∠DAI =180°;(3)在(2)的条件下,连接IC 、IE ,若∠APB =60°,试问:在P 点的移动过程中,IC IE 是否为定值?若是,请求出这个值;若不是,请说明理由.7.在平面直角坐标系xOy 中,已知线段AB 和点P ,给出如下定义:若PA PB =且点P 不在线段AB 上,则称点P 是线段AB 的等腰顶点.特别地,当90APB ∠≥︒时,则称点P 是线段AB 的非锐角等腰顶点.(1)已知点(20)A ,,(42)B ,.①在点(40)C ,,(31)D ,,(15)E -,,(05)F ,中,是线段AB 的等腰顶点的是▲;②若点P 在直线3(0)y kx k =+≠上,且点P 是线段AB 的非锐角等腰顶点,求k 的取值范围;(2)直线33y x =-+与x 轴交于点M ,与y 轴交于点N .⊙P 的圆心为(0)P t ,,半径为,若⊙P 上存在线段MN 的等腰顶点,请直接写出t 的取值范围.8.在平面直角坐标系xOy中,⊙O的半径为1,T(0,t)为y轴上一点,P为平面上一点.给出如下定义:若在⊙O上存在一点Q,使得△TQP是等腰直角三角形,且∠TQP=90°,则称点P为⊙O的“等直点”,△TQP为⊙O的“等直三角形”.如图,点A,B,C,D的横、纵坐标都是整数.(1)当t=2时,在点A,B,C,D中,⊙O的“等直点”是;(2)当t=3时,若△TQP是⊙O“等直三角形”,且点P,Q都在第一象限,求CPOQ的值.9.综合与实践动手操作利用正方形纸片的折叠开展数学活动.探究体会在正方形折叠过程中,图形与线段的变化及其蕴含的数学思想方法.如图1,点E 为正方形ABCD 的AB 边上的一个动点,3AB =,将正方形ABCD 对折,使点A 与点B 重合,点C 与点D 重合,折痕为MN .思考探索(1)将正方形ABCD 展平后沿过点C 的直线CE 折叠,使点B 的对应点B '落在MN 上,折痕为EC ,连接DB ',如图2.①点B '在以点E 为圆心,的长为半径的圆上;②B M '=;③DB C ' 为三角形,请证明你的结论.(2)拓展延伸当3AB AE =时,正方形ABCD 沿过点E 的直线l (不过点B )折叠后,点B 的对应点B '落在正方形ABCD 内部或边上.①ABB ' 面积的最大值为;②连接AB ',点P 为AE 的中点,点Q 在AB '上,连接PQ AQP AB E ∠=∠',,则2B C PQ '+的最小值为.10.在平面直角坐标系xOy 中,过⊙T (半径为r )外一点P 引它的一条切线,切点为Q ,若0<PQ≤2r ,则称点P 为⊙T 的伴随点.(1)当⊙O 的半径为1时,①在点A(4,0),B(0,),C(1,)中,⊙O 的伴随点是▲;②点D 在直线y =x+3上,且点D 是⊙O 的伴随点,求点D 的横坐标d 的取值范围;(2)⊙M 的圆心为M(m ,0),半径为2,直线y =2x ﹣2与x 轴,y 轴分别交于点E ,F .若线段EF 上的所有点都是⊙M 的伴随点,直接写出m 的取值范围.11.定义:在平面直角坐标系xOy 中,点P 为图形M 上一点,点Q 为图形N 上一点.若存在OP OQ =,则称图形M 与图形N 关于原点O “平衡”.(1)如图,已知⊙A 是以()1,0为圆心,2为半径的圆,点()1,0C -,()2,1D -,()3,2E .①在点C ,D ,E 中,与⊙A 关于原点O “平衡”的点是;②点H 为直线y x =-上一点,若点H 与⊙A 关于原点O “平衡”,点H 的横坐标的取值范围为:;(2)如图,已知图形G 是以原点O 为中心,边长为2的正方形.⊙K 的圆心在x 轴上,半径为2.若⊙K 与图形G 关于原点O “平衡”,请直接写出圆心K 的横坐标的取值范围.12.阅读下列材料,并按要求解答相关问题:【思考发现】根据直径所对的圆周角是直角,我们可以推出“如果一条定边所对的角始终为直角,那么所有满足条件的直角顶点组成的图形是以定边为直径的圆或圆弧(直径的两个端点除外)”这一正确的结论.如图1,若AB 是一条定线段,且90APB ∠=︒,则所有满足条件的直角顶点P 组成的图形是定边AB 为直径的O (直径两端点A 、B 除外)(1)已知:如图2,四边形ABCD 是边长为8的正方形,点E 从点B 出发向点C 运动,同时点F 从点C 出发以相同的速度向点D 运动,连接AE ,BF 相交于点P .①当点E 从点B 运动到点C 的过程中,APB ∠的大小是否发生变化?若发生变化,请说明理由;若不发生变化,请直接写出APB ∠的度数.②当点E 从点B 运动到点C 的过程中,点P 运动的路径是()A .线段;B .弧;C .半圆;D .圆③点P 运动的路经长是▲.(2)已知:如图3,在图2的条件下,连接CP ,请直接写出E 、F 运动过程中,CP 的最小值.13.对于平面内的图形1G 和图形2G ,记平面内一点P 到图形1G 上各点的最短距离为1d ,点P 到图形2G 上各点的最短距离为2d ,若12d d =,就称点P 是图形1G 和图形2G 的一个“等距点”.在平面直角坐标系xOy 中,已知点()60A ,,(0B .(1)在()30R ,,()20S ,,(1T 三点中,点A 和点B 的等距点是;(2)已知直线2y =-.①若点A 和直线2y =-的等距点在x 轴上,则该等距点的坐标为▲;②若直线y a =上存在点A 直线2y =-的等距点,求实数a 的取值范围;(3)记直线AB 为直线1l ,直线2l :33y x =-,以原点O 为圆心作半径为r 的O .若O 上有m 个直线1l 和直线2l 的等距点,以及n 个直线1l 和y 轴的等距点(0m ≠,0n ≠),求m n ≠时,求r 的取值范围.14.如图,平面上存在点P 、点M 与线段AB .若线段AB 上存在一点Q ,使得点M 在以PQ 为直径的圆上,则称点M 为点P 与线段AB 的共圆点.已知点P (0,1),点A (﹣2,﹣1),点B (2,﹣1).(1)在点O (0,0),C (﹣2,1),D (3,0)中,可以成为点P 与线段AB 的共圆点的是;(2)点K 为x 轴上一点,若点K 为点P 与线段AB 的共圆点,请求出点K 横坐标x K 的取值范围;(3)已知点M (m ,﹣1),若直线y =12x +3上存在点P 与线段AM 的共圆点,请直接写出m 的取值范围.15.如图,在ABC 中,AB BC =,30CAB ∠=︒,8AC =,半径为2的O 从点A 开始(如图1)沿直线AB 向右滚动,滚动时始终与直线AB 相切(切点为D ),当O 与ABC 只有一个公共点时滚动停止,作OG AC ⊥于点G .(1)图1中,O 在AC 边上截得的弦长AE =;(2)当圆心落在AC 上时,如图2,判断BC 与O 的位置关系,并说明理由.(3)在O 滚动过程中,线段OG 的长度随之变化,设AD x =,OG y =,求出y 与x 的函数关系式,并直接写出x 的取值范围.16.在平面直角坐标系xOy 中,给出如下定义:若点P 在图形M 上,点Q 在图形N 上,称线段PQ 长度的最小值为图形M ,N 的“近距离”,记为d(M ,N),特别地,若图形M ,N 有公共点,规定d(M ,N)=0.已知:如图,点A(2-,0),B(0,.(1)如果⊙O 的半径为2,那么d(A ,⊙O)=,d(B ,⊙O)=.(2)如果⊙O 的半径为r ,且d (⊙O ,线段AB )=0,求r 的取值范围;(3)如果C(m ,0)是x 轴上的动点,⊙C 的半径为1,使d (⊙C ,线段AB )<1,直接写出m 的取值范围.17.在平面直角坐标系xOy 中,对于点()P m n ,,我们称直线y mx n =+为点P 的关联直线.例如,点()24P ,的关联直线为24y x =+.(1)已知点()12A ,.①点A 的关联直线为;②若O 与点A 的关联直线相切,则O 的半径为;(2)已知点()02C ,,点()0.D d ,点M 为直线CD 上的动点.①当2d =时,求点O 到点M 的关联直线的距离的最大值;②以()11T -,为圆心,3为半径作.T 在点M 运动过程中,当点M 的关联直线与T 交于E ,F 两点时,EF 的最小值为4,请直接写出d 的值.18.在平面直角坐标系xOy 中,给定圆C 和点P ,若过点P 最多可以作出k 条不同的直线,且这些直线被圆C 所截得的线段长度为正整数,则称点P 关于圆C 的特征值为.k 已知圆O 的半径为2,(1)若点M 的坐标为()11,,则经过点M 的直线被圆O 截得的弦长的最小值为,点M 关于圆O 的特征值为;(2)直线y x b =+分别与x ,y 轴交于点A ,B ,若线段AB 上总存在关于圆O 的特征值为4的点,求b 的取值范围;(3)点T 是x 轴正半轴上一点,圆T 的半径为1,点R ,S 分别在圆O 与圆T 上,点R 关于圆T 的特征值记为r ,点S 关于圆O 的特征值记为.s 当点T 在x 轴正轴上运动时,若存在点R ,S ,使得3r s +=,直接写出点T 的横坐标t 的取值范围.答案解析部分1.【答案】(1)60︒;=;DC DB DA=+(2)解:在AB 上取一点E ,使ADE BDC ∠=∠,如图所示:∵AB 是圆O 的直径,1tan 2ABC ∠=,∴1tan 2AC ABC BC BC =∠⋅=,∴在Rt ACB 中,52AB BC ==,∵ BD BD =,∴DAB DCB ∠=∠,∵ADE BDC ∠=∠,∴ADE CDB ∽,∴ADAECD CB =,∴AD CB CD AE ⋅=⋅,∵ AD AD =,∴DBA DCA ∠=∠,∵ADE CDE CDB CDE ∠-∠=∠-∠,即ADC BDE ∠=∠,∴BDE CDA ∽,∴BDBECD AC =,∴BD AC CD BE ⋅=⋅,∴()AD CB AC BD CD AE CD BE CD AE BE CD AB⋅+⋅=⋅+⋅=⋅+=⋅,∴AB CD AC DB AD BC ⋅=⋅+⋅,∴122BC CD BC DB AD BC ⋅=⋅+⋅,∴5122CD DB AD ⋅=⋅+,∴5122CD DB AD =+,即2DB AD =+,故答案为:2DB AD =+.(3)解:∵A B ,分别是射线DA DB ,上的两个动点,120D ∠=︒,ABC 是等边三角形,∴四边形ADBC 的两个对角180ADB ACB ∠+∠=︒,∴构造四边形ADBC 的外接圆,∴根据四边形外接圆的性质可得:当点A 和点D 重合时,四边形ADBC 面积S 最小;当CD AB ⊥时,四边形ADBC 面积S 最大,①当点A 和点D 重合时,四边形ADBC 面积S 最小,∵CBD 时等边三角形,且2AB =,∴60CBD ∠=︒,2AB BD BC ===∴1sin 602CBD S BC BD =⋅⋅⋅= ,②当CD AB ⊥时,四边形ADBC 面积S 最大,∵CBD 时等边三角形,且2AB =,∴30ACD ∠=︒,2AC =,∴tan 233AD ACD AC =∠⋅==,∴11232322233ADC S AD DC =⋅⋅=⨯= ,∴23ADC ADBC S S == 四边形;433S <≤.2.【答案】(1)解:①O ,C ②当点B 的坐标为(0,1)时,如图,此时以BO 为半径的B 与线段OA 相切于点O ,∴点O 是OAB 关于点B 的内联点;当点B 移动到在y 轴左侧时,作图发现B 与x 轴有相交,且有一个交点不在线段OA 上,∴不再有OAB 关于点B 的内联点;当点B 的坐标为(7,8)时,以BA 为半径的B 与x 轴相切于点A ,∴点A 是OAB 关于点B 的内联点;当点B 直线x=7的右侧时,以BA 为半径的B 与x 轴相交,且有一个交点不在线段OA 上∴不再有OAB 关于点B 的内联点;综上所述,若AOB 关于点B 的内联点存在,求点B 纵坐标n 的取值范围为18n ≤≤;(2)80m 555m -≤≤≤≤或3.【答案】(1)22B C (2)解:由题意可得:当BC 是O 的以点A 为中心的“关联线段”时,则有AB C '' 是等边三角形,且边长也为1,当点A 在y 轴的正半轴上时,如图所示:设B C ''与y 轴的交点为D ,连接OB ',易得B C y ''⊥轴,∴12B D DC ''==,∴32OD ==,32==,∴OA =,∴t =;当点A 在y 轴的正半轴上时,如图所示:同理可得此时的OA =,∴t =;(3)当1min OA =时,此时BC =;当2max OA =时,此时2BC =.4.【答案】(1)证明:∵CD ⊥直径AB ,∴ BDBE =,∵DF =BD ,∴ DFBD =,∴ BEDF =,∴∠1=∠2,∴DG =BG(2)解:∠DBA 的角平分线交⊙O 于点F ,∴∠2=∠3,由(1)知,∠1=∠2,∴∠1=∠2=∠3,∵∠BCD =90°,∴∠1+∠2+∠3=90°,∴∠1=∠2=∠3=30°,∵AB 是⊙O 的直径,∴∠ADB =90°,∴∠4=90°﹣∠2﹣∠3=30°,∵AB =2,∴BD =1,在Rt △BCD 中,∠1=30°,∴BC =12BD =12,在Rt △BCG 中,∠3=30°,∴CG ==6,∴BG =2CG =33,由(1)知,DG =BG =33(3)5.【答案】(1)解:如图1,作BM ⊥x 轴,垂足为M ,根据题意AB=AE=EF=BF=,且∠EFO=∠BFM=45°,∴∠EFB=90°,∴四边形ABFE 是正方形,∴边AE ,BF 的中点所在直线就是ABC 与O 的一条“关联轴”;∵O 的半径为1,∴,且∠EFG=90°,∴四边形EFGH 是正方形,∵∠EFG+∠EFB=180°,∴B 、F 、G 三点共线,∴直线EF 是ABC 与O 的一条“关联轴”.(2)解:如图2,根据A (2,3),B (4,1),C (4,1),计算2=,故AB 不能落在圆的内部;过点A 作AN ⊥y 轴,垂足为N ,则AN=2,等于圆的直径,存在“关联轴l ”使ABC 是O 的关联三角形,此时0C x =;作点B 关于x 轴的对称点P ,此时BP=2,等于圆的直径,存在“关联轴l ”使ABC 是O 的关联三角形,此时4C x =,综上所述,点C 横坐标的范围是04C x ≤≤.(3)解:OC 的最小值为2-;OC 最大,根据勾股定理,AC=4.6.【答案】(1)证明:∵直径CD ⊥弦AB ,∴ AD BD=,∴∠APD=∠BPD ;(2)解:如图,作∠BAP 的平分线,交PD 于I ,证:∵AI 平分∠BAP ,∴∠PAI=∠BAI ,∴∠AID=∠APD+∠PAI=∠APD+BAI ,∵ AD BD=,∴∠DAB=∠APD ,∴∠DAI=∠DAB+∠BAI=∠APD+∠BAI ,∴∠AID=∠DAI ,∵∠AIP+∠DAI=180°,∴∠AIP+∠DAI=180°;(3)解:如图2,连接BI ,AC ,OA ,OB ,∵AI 平分∠BAP ,PD 平分∠APB ,∴BI 平分∠ABP ,∠BAI=12∠BAP ,∴∠ABI=12∠ABP ,∵∠APB=60°,∴∠PAB+∠PBA=120°,∴∠BAI+∠ABI=12(∠BAP+∠ABP )=60°,∴∠AIB=120°,∴点I 的运动轨迹是 AB ,∴DI=DA ,∵∠AOB=2∠APB=120°,∵AD ⊥AB ,∴ AD BD=,∴∠AOB=∠BOD=60°,∵OA=OD ,∴△AOD 是等边三角形,∴AD=AO ,∵CD 是⊙O 的直径,∴∠DAC=90°,∵CD ⊥AB ,∴∠AED=90°,∴∠AED=∠CAD ,∵∠ADC=∠ADE ,∴△ADE ∽△CDA ,∴AD DE CD AD=,∴AD 2=DE•CD ,∵DI′=DI=AD ,∴DI 2=DE•CD ,∵∠I′DE 是公共角,∴△DIE ∽△DCI ,∴2IC CD IE DI==.7.【答案】(1)解:①C(4,0),E(-1,5);②(Ⅰ)当点(40),在直线3y kx =+上时,430k +=,34k =-;(Ⅱ)当点(31),在直线3y kx =+上时,331k +=,23k =-;(Ⅲ)当点(22),在直线3y kx =+上时,232k +=,12k =-;结合图象可得3142k -≤≤-且23k ≠-;(2)解:直线333y x =-+与x 轴的交点M 坐标为()30,,与y 轴交点N 的坐标为(03,,∴tan 3NMO ∠=,∴30NMO ∠=︒,如图,作出线段MN 的垂直平分线,如图为两个临界情况:,利用待定系数法求得MN 垂直平分线解析式为y =,∴(0R -,,12230ORQ P RQ ∠=∠=︒,∴1112PR PQ ==,2222P R P Q ==,∴(10P ,(20P -,,∴t -≤<.8.【答案】(1)A 、B 、D(2)解:如图,依题意作⊙O 的“等直三角形”△TQP∴TQ=PQ ,∠TQP=90°过Q 点作MH //x 轴,交y 轴于M 点,过点P 作PH ⊥MH 于H 点∴∠TMQ=∠QHP=90°∴∠TQM+∠MTQ=∠TQM+∠HQP=90°∴∠MTQ=∠HQP∴△TMQ ≌△QHP (AAS )∴TM=QH ,MQ=HP设Q (x ,y )∴HM=MQ+QH=MQ+TM=x+3-y ,PH=MQ=x∴P (x-y+3,x+y )∵C (3,0)∴∵∴CP OQ .9.【答案】(1)BE ;3332-;等边;证明:B′D=BC CD ==,∴△DB'C 为等边三角形(2)310.【答案】(1)B ,C ;解:②如图2中,设点D 的坐标为(3)d d +,当过点D 的切线长为22r =时,OD ==由两点之间的距离公式得:OD =解得1221d d =-=-,结合图象可知,点D 的横坐标d 的取值范围是21d -≤≤-;(2)解:对于22y x =-当0y =时,220x -=,解得1x =,则点E 的坐标为(10)E ,当0x =时,2y =-,则点F 的坐标为(02)F -,⊙M 的半径为2,⊙M 的圆心为(0)M m ,24r ∴=,OM m=由题意,由以下两种情况:如图3-1中,点M 在点E 的右侧设FT 是⊙M 的切线则有两个临界位置:4FT =和点E 对应的切线长为0当4FT =时,则4OM m FT ===当点E 对应的切线长为0,即2EM =12EM m ∴=-=解得3m =结合图象得,当34m <≤时,线段EF 上的所有点都是⊙M 的伴随点②如图3-2和3-3中,点M 在点E 的左侧则有如下两个临界位置:如图3-2,设ET 是⊙M 的切线,连接MT ,则90MTE ∠=︒当4ET =时,2222245EM MT ET =+=+此时15m -=解得15m =-如图3-3,当⊙M 在直线EF 的左侧与EF 相切时,设切点为T ,连接MT∵(10)(02)E F -,,,∴12OE OF ==,∴22125EF =+=∵EF 是切线∴EF MT⊥∴90MTE FOE ∠=∠=︒∵MET FEO∠=∠∴MTE FOE~ ∴EM MTEF OF =,即22=解得EM =,即1m -=解得1m =-结合图象得,当11m -≤<-时,线段EF 上的所有点都是⊙M 的伴随点综上,m 的取值范围是11m -≤<-或34m <≤.11.【答案】(1)点C 、D ;22H x -≤≤-或22H x ≤≤(2)解: 图形G 是以原点O 为中心,边长为2的正方形,∴原点O 到正方形的最短距离是1d =,最长距离是d =,⊙K 与图形G 关于原点O “平衡”,∴原点O 到⊙K 上一点的距离1d ≤≤,⊙K 的圆心在x 轴上,半径为2,∴当⊙K 在x 轴正半轴时,圆心K 的横坐标的取值范围为:22x -≤≤+,当⊙K 在x 轴负半轴时,圆心K 的横坐标的取值范围为:22x --≤≤,综上所述,圆心K 的横坐标的取值范围22x -≤≤+或22x --≤≤.12.【答案】(1)解:①90°;②B ;③2π(2)解:413.【答案】(1)S(2,0)(2)解:①(4,0)或(8,0);②如图,设直线y a =上的点Q 为点A 和直线2y =-的等距点,连接QA ,过点Q 作直线2y =-的垂线,垂足为点C .点Q 为点A 和直线2y =-的等距点,QA QC ∴=.22QA QC ∴=.点Q 在直线y a =上,∴可设点Q 的坐标为()Q x a ,.()()22262x a a ∴-+=--⎡⎤⎣⎦.整理得2123240x x a -+-=.由题意得关于x 的方程2123240x x a -+-=有实数根.()()()212413241610a a ∴∆=--⨯⨯-=+≥.解得1a ≥-.(3)解:如图.直线l 1和直线l 2的等距点在直线l 3:33y x =-+上,直线l 1和y 轴的等距点在直线4l y =+:或33y x =+上,点O 与l 4的距离为32,点O 与l 3的距离为,点O 与l 5的距离为3,当r <时,n=0不符合题意,当r=时,m=2,n=0,符合题意,当<r <3时,m=n=2,不符合题意,当r≥3时,m=2,n=3或4,符合题意,综上所述,r=或r≥3.14.【答案】(1)C(2)解:∵P (0,1),点A (﹣2,﹣1),点B (2,﹣1).∴AP =BP ==2,如图2,分别以PA 、PB 为直径作圆,交x 轴于点K 1、K 2、K 3、K 4,∵OP=OG=1,OE∥AB,∴PE=AE=,∴OE=12AG=1,∴K1(﹣1﹣,0),k2(1﹣,0),k3(﹣1,0),k4(1+,0),∵点K为点P与线段AB的共圆点,∴﹣1﹣≤x k≤1﹣或﹣1≤x k≤1+(3)解:分两种情况:①如图3,当M在点A的左侧时,Q为线段AM上一动点,以PQ为直径的圆E与直线y=12x+3相切于点F,连接EF,则EF⊥FH,当x=0时,y=3,当y=0时,y=12x+3=0,x=﹣6,∴ON=3,OH=6,∵tan∠EHF=ON EFOH FH=36=12,设EF=a,则FH=2a,EH=a,∴OE=6﹣a,Rt △OEP 中,OP =1,EP =a ,由勾股定理得:EP 2=OP 2+OE 2,∴2221(6)a =+-,解得:a =2+(舍去)或2,∴QG =2OE =2(6﹣a )=﹣3+2,∴m≤3﹣2;②如图4,当M 在点A 的右侧时,Q 为线段AM 上一动点,以PQ 为直径的圆E 与直线y =12x+3相切于点F ,连接EF ,则EF ⊥FH ,同理得QG =3+2,∴m≥3+2,综上,m 的取值范围是m≤3﹣2或m≥3+215.【答案】(1)2(2)解:BC 与O 相切;理由:如图2,过点O 作OH BC ⊥于H ,连接OD ,∵O 与AB 相切于D ,∴OD AB ⊥,在Rt AOD 中,30BAC ∠=︒,∴24OA OD ==,∵8AC =,∴4OC =,在ABC 中,AB BC =,∴30C BAC ∠=∠=︒,在Rt OHC 中,30C ∠=︒,∴122OH OC OD ===,∴BC 与O 相切,(3)解:①当点O 在AC 的左侧时,连接OD 交AC 于F ,如备用图1,∵O 与AB 相切于D ,∴OD AB ⊥,∵OG AC ⊥,∴30FOG BAC ∠=∠=︒,在Rt FDA 中,tan FD BAC AD ∠=,∴tan 3FD AD BAC x =⋅∠=,∴23OF x =-,在Rt FOG 中,331cos 2322y OG OF FOG ⎛⎫==⋅∠=-⨯-+ ⎪ ⎪⎝⎭,即12y x =-+,此时x 的取值范围为0x ≤≤;②当点O 在AC 的右侧时,连接DO 并延长交AC 于F ,如备用图2,同①的方法得,33FD x =,∴23OF x =-,∵FD AB ⊥,∴90BAC AFD ∠+∠=︒,∴30FOG BAC ∠=∠=︒,在Rt FOG 中,331cos 2322y OG OF FOG x x ⎛⎫==⋅∠=-⨯- ⎪⎪⎝⎭,即12y x =-,此时x 的取值范围为1433x ≤≤.16.【答案】(1)0;2-(2)解:过点O 作OD ⊥AB 于点D ,∵点A(2-,0),B(0,.∴2OA OB ==,,∴4AB ==,∵1122OA OB AB OD ⋅=⋅,∴112422OD ⨯⨯=⨯⨯∴DO =,∵d (⊙O ,线段AB )=0,∴当⊙O 的半径等于OD 时最小,当⊙O 的半径等于OB 时最大,∴r r ≤≤(3)43423m -<<-17.【答案】(1)2y x =+(2)解:①当2d =时,()20D ,,设直线CD 的解析式为:y kx b =+,()02C ,,202k b b +=⎧∴⎨=⎩,解得:12k b =-⎧⎨=⎩,∴直线CD 的解析式为:y x =-+,设点M 的坐标为()2m m -+,,∴点M 的关联直线为:()212y mx m m x =-+=-+,∴点M 的关联直线经过定点()12N ,,如图2,过点O 作直线2y mx m =--+的垂线,垂足为H ,连接ON ,ON OH ∴≥,∴当点H与点N重合时,OH最大,即点O到点M的关联直线的距离最大,∴点O到点M=;2 d=②或2 3-18.【答案】(1);3(2)解:设点G是O的特征值为4的点,∴经过一点G且弦长为4(最长弦)的直线有1条,弦长为3的直线有2条,弦长为2的直线有且只有1条, 经过点G的直线被O截得的弦长的最小值为2,=,∴关于O的特征值为4的所有点都在以O为半径的圆周上,直线y x b=+分别与x,y轴交于点A、B,()0A b∴-,,()B b,,OA OB b∴==,45OBH∴∠=︒,当0b>时,线段AB与以O为半径的圆相切时,点G特征值为4,设切点为为H,连接OH,则OH=,OB∴==,b∴=,设以O 为半径的圆与y 轴正半轴的交点记为1B ,则1OB =,当线段AB 与以O 1B 时,可得b =,b ≤≤同理可求当0b <时,b ≤≤,综上,b b b ≤≤-≤(3)当372122t -≤≤+时,存在点R ,S ,使得3r s +=。
与圆有关的动点问题[下学期]--浙教版
(2)当△ABC的一边与半圆O所在的圆相切时,如果半圆O与 直径DE围成的区域与△ABC的三边围成的区域有重叠部分, 求重叠部分的面积.
小结:
1.复习整理所学圆的知识,注意前后知识的衔接.
2.解题要注重审题.在了解所用知识和产生解题方 案过程中,适时关注数学思想方法运用.
与圆有关的动点 问题
初三数学组
1.如图,⊙ O的半径为1,圆心O在正三角形的边
AB上沿图示方向移动,当⊙ O移动到与AC边相
23
切时,OA的长是 3 .
2.如图,从⊙ O外一点A作⊙ O的切线AB,AC,切点 分别为B、C, ⊙ O的直径BD为6,连结CD,AO.
(1)求证:CD∥AO;
(2)设CD=x,AO=y,求y与x之间的函数关系式,并写 出x的取值范围;
(3)若AO+CD=11,求AB的长.
3.如图,在矩形ABCD中,AB=20cm,BC=4cm,点p从 A开始折线A——B——C——D以4cm/秒的 速度 移动, 点Q从C开始沿CD边以1cm/秒的速度移动,如果点P、Q 分别从A、C同时出发,当其中一点到达D时,另一点也 随之停止运动,设运动的时间t(秒)
OF FH 1 AE AB 2
∴AE与以CD为直径的圆F相 切.
如图,半圆O直径DE=12,Rt△ABC中,BC=12,∠ACB=900, ∠ACBC=300.半圆O以每秒2个单位从左到右运动,在运动 过程中,点D,E始终在直线BC上,设运动时间为t秒.当t=0 时,半圆O在△ABC的左侧,OC=8.
y ( X 2 1) X 2
4
4
4
(2)作OF⊥CD,垂足为F,
初三圆动点问题练习题
初三圆动点问题练习题圆动点问题是初中数学中的一个基础知识点,涉及到平面几何中圆的性质和相关定理的运用。
通过解决这类问题,可以提高学生对于几何形态的理解和分析问题的能力。
下面将给出一些初三圆动点问题的练习题,帮助学生巩固相关知识,并提供一些解题思路。
练习题一:已知半径为4cm的圆O,圆上一点A不动,圆按逆时针方向匀速转动。
点P从圆上某一位置出发,按顺时针方向匀速运动,经过3秒钟到达圆上另一点B。
求点P的速度大小。
解答思路:根据题目所给信息,可知点A和点B在圆上的位置是变化的,但速度大小是恒定的。
由于点A不动,所以可以通过计算点A的线速度来确定点P的速度大小。
设圆心O的角速度为ω,则点A的线速度为v=ω×r,其中r为圆的半径。
根据题目中的信息,点P经过3秒钟到达点B,所以可以计算出点B到点A的弧长为s=ω×r×3。
由于点P匀速运动,所以点B到点P的弧长也为s。
将s代入线速度公式中,即可求得点P的速度大小v。
练习题二:已知半径为6cm的圆O以7π弧度/秒的角速度顺时针转动。
设圆上一动点P的轨迹方程为x=-3sin(t),y=3cos(t)(t为时间),求动点P的速度大小和速度方向。
解答思路:根据题目中给出的动点P的轨迹方程,可以确定动点P的坐标与时间的关系。
通过对x和y的导数,可以求得动点P在任意时刻的速度向量。
速度向量的大小即为速度大小,速度向量的方向即为速度方向。
x=-3sin(t),y=3cos(t),对t求导可得:dx/dt=-3cos(t),dy/dt=-3sin(t)。
由此可知,动点P在任意时刻的速度向量为v=(-3cos(t),-3sin(t))。
求速度大小|v|,可以应用勾股定理,即|v|=√((-3cos(t))^2+(-3sin(t))^2)=3√(cos^2(t)+sin^2(t))=3。
由此可知,动点P的速度大小为3,且恒定不变。
速度方向可以由速度向量的方向角来表示,即tanθ=(-3sin(t))/(-3cos(t))=tan(t),所以速度方向为动点P所对应弧上的切线的斜率。
中考数学专题复习:与圆有关的动点问题(精品含答案)
2014年中考数学专题复习:与圆有关的动点问题1、如图,⊙O的直径AB=4,C为圆周上一点,AC=2,过点C作⊙O的切线DC,P点为优弧CBA上一动点(不与A.C重合).(1)求∠APC与∠ACD的度数;(2)当点P移动到CB弧的中点时,求证:四边形OBPC是菱形.(3)P点移动到什么位置时,△APC与△ABC全等,请说明理由.2、如图,在⊙O上位于直径AB的异侧有定点C和动点P,AC=12AB,点P在半圆弧AB上运动(不与A、B两点重合),过点C作直线PB的垂线CD交PB于D点.(1)如图1,求证:△PCD∽△ABC;(2)当点P运动到什么位置时,△PCD≌△ABC?请在图2中画出△PCD并说明理由;(3)如图3,当点P运动到CP⊥AB时,求∠BCD的度数.3、如图,在半径为2的扇形AOB中,∠AOB=90°,点C是弧AB上的一个动点(不与点A、B重合)OD⊥BC,OE⊥AC,垂足分别为D、E.(1)当BC=1时,求线段OD的长;(2)在△DOE中是否存在长度保持不变的边?如果存在,请指出并求其长度,如果不存在,请说明理由;(3)设BD=x,△DOE的面积为y,求y关于x的函数关系式,并写出它的定义域.4、如图,菱形ABCD的边长为2cm,∠DAB=60°.点P从A点出发,以cm/s的速度,沿AC向C作匀速运动;与此同时,点Q也从A点出发,以1cm/s的速度,沿射线AB作匀速运动.当P运动到C点时,P、Q都停止运动.设点P运动的时间为ts.(1)当P异于A.C时,请说明PQ∥BC;(2)以P为圆心、PQ长为半径作圆,请问:在整个运动过程中,t为怎样的值时,⊙P与边BC分别有1个公共点和2个公共点?5、如图,在菱形ABCD中,AB=23,∠A=60º,以点D为圆心的⊙D与边AB相切于点E.(1)求证:⊙D与边BC也相切;(2)设⊙D与BD相交于点H,与边CD相交于点F,连接HF,求图中阴影部分的面积(结果保留π);(3)⊙D上一动点M从点F出发,按逆时针方向运动半周,当S△HDF=3S△MDF时,求动点M经过的弧长(结果保留π).6、半径为2cm的与⊙O边长为2cm的正方形ABCD在水平直线l的同侧,⊙O与l相切于点F,DC在l上.(1)过点B作的一条切线BE,E为切点.①填空:如图1,当点A在⊙O上时,∠EBA的度数是;②如图2,当E,A,D三点在同一直线上时,求线段OA的长;(2)以正方形ABCD的边AD与OF重合的位置为初始位置,向左移动正方形(图3),至边BC与OF重合时结束移动,M,N分别是边BC,AD与⊙O的公共点,求扇形MON的面积的范围.7、如图,Rt△ABC的内切圆⊙O与AB、BC、CA分别相切于点D、E、F,且∠ACB=90°,AB=5,BC=3,点P在射线AC上运动,过点P作PH⊥AB,垂足为H.(1)直接写出线段AC、AD及⊙O半径的长;(2)设PH=x,PC=y,求y关于x的函数关系式;(3)当PH与⊙O相切时,求相应的y值.8、如图1,正方形ABCD的边长为2,点M是BC的中点,P是线段MC上的一个动点(不与M、C重合),以AB为直径作⊙O,过点P作⊙O的切线,交AD于点F,切点为E.(1)求证:OF∥BE;(2)设BP=x,AF=y,求y关于x的函数解析式,并写出自变量x的取值范围;(3)延长DC、FP交于点G,连接OE并延长交直线DC与H(图2),问是否存在点P,使△EFO∽△EHG(E、F、O与E、H、G为对应点)?如果存在,试求(2)中x和y的值;如果不存在,请说明理由.9、如图,⊙O 的半径为1,直线CD 经过圆心O ,交⊙O 于C 、D 两点,直径AB ⊥CD ,点M 是直线CD 上异于点C 、O 、D 的一个动点,AM 所在的直线交于⊙O 于点N ,点P 是直线CD 上另一点,且PM=PN .(1)当点M 在⊙O 内部,如图一,试判断PN 与⊙O 的关系,并写出证明过程; (2)当点M 在⊙O 外部,如图二,其它条件不变时,(1)的结论是否还成立?请说明理由; (3)当点M 在⊙O 外部,如图三,∠AMO=15°,求图中阴影部分的面积.10、如图,在⊙O 中,直径AB ⊥CD ,垂足为E ,点M 为OC 上动点,AM 的延长线交⊙O 于点G ,交过C 的直线于F ,∠1=∠2,连结CB 与DG 交于点N . (1)求证:CF 是⊙O 的切线;(2)点M 在OC 上移动时(点M 不与O 、C 点重合),探究△ACM 与△DCN 之间关系,并证明 (3)若点M 移动到CO 的中点时,⊙O 的半径为4,cos ∠BOC=41,求BN 的长.11、如图,已知AB 是圆O 的直径,BC 是圆O 的弦,弦ED ⊥AB 于点F,交BC于点G,过点C作圆O的切线与ED的延长线交于点P.(1)求证:PC=PG;(2)点C在劣弧AD上运动时,其他条件不变,若点G是BC的中点,试探究CG、BF、BO三者之间的数量关系,并写出证明过程;(3)在满足(2)的条件下,已知圆为O的半径为5,若点O到BC时,求弦ED的长.12、如图1,已知⊙O的半径长为3,点A是⊙O上一定点,点P为⊙O上不同于点A的动点.(1)当1A=时,求AP的长;tan2(2)如果⊙Q过点P、O,且点Q在直线AP上(如图2),设AP=x,QP=y,求y关于x的函数关系式,并写出函数的定义域;(3)在(2)的条件下,当4A=时(如图3),存在⊙M与⊙O相内切,同时与⊙Qtan3相外切,且OM⊥OQ,试求⊙M的半径的长.图1 图2 图3答案:1、解:(1)连接AC ,如图所示:∵AB=4,∴OA=OB=OC=12AB=2。
人教版数学九年级圆上的动态问题探析
人教版数学九年级圆上的动态问题探析 动态问题依然是中考数学的重量级的题型。
是体现学生创造性解题能力的代表。
也是学生综合数学素质的体现。
下面就谈一谈圆中的动态问题以及解答的策略,供同学们学习时参考。
一 动点在圆的直径上,探求线段和的最小值例1 如图1所示,MN 是半径为1的⊙O 的直径,点A 在⊙O 上,∠AMN =30°,B 为AN 弧的中点,P 是直径MN 上一动点,则PA +PB 的最小值为( )(A)22 (B) 2 (C)1 (D)2分析: 要求求出线段和的最小值,关键是要明白当点P 运动到何位置时才能存在最小值。
这个问题实际上就是一个对称性作图问题。
具体的解答过程如下:过点A 作AC ⊥MN 交圆O 于点C ,连接CB 交MN 于点P ,则线段BC 就是PA+PB 的最小值。
如图2所示,连接OB ,OC ,因为∠AMN =30°,所以AN 弧的度数为60°。
因为B 为AN 弧的中点,所以∠BON =30°。
因为AC ⊥MN ,MN 是圆的直径,所以AN 弧等于CN 弧,所以CN 弧的度数为为60°。
所以∠CON =60°。
所以∠BOC =90°。
在直角三角形BOC 中,OC=OB=1,所以BC=2211+=2。
解:选B 。
点评:利用对称性确定出线段和最小位置是解题的关键所在。
只要确定好了,求就变得简单多了。
二 动点圆上走,探求三角形面积最小值例2 如图3,已知A 、B 两点的坐标分别为(2,0)、(0,2),⊙C 的圆心坐标为(-1,0),半径为1.若D 是⊙C 上的一个动点,线段DA 与y 轴交于点E ,则△ABE 面积的最小值是A .2B .1C .222- D .22-分析: 确定好点D 运动到何时位置时,点E 到直线AB 的距离最短,是解题的关键。
原因是:线段AB 是一个定值,所以三角形ABE 的面积大小就只取决于点E 到AB 的距离了。
- 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
- 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
- 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。
初三圆中动点问题
年级:九年级任课教师:
授课时间:xx 年春季班
第2周教学课题圆中动点问题教学目标
1、熟悉圆的基础知识和常用证明技巧。
2、运用圆的知识解圆中动点问题。
教学重难点圆中动点问题教学过程相切问题例
1、已知如图,在平面直角坐标系中,直线与轴、轴分别交于A,B两点,P是直线AB上一动点,⊙的半径为
1、(1)判断原点O与⊙的位置关系,并说明理由;(2)当⊙过点B时,求⊙被轴所截得的劣弧的长;(3)当⊙与轴相切时,求出切点的坐标、BPOyxA图15-1练习1:平面上,矩形ABCD与直径为QP的半圆K如图15-1摆放,分别延长DA和QP交于点O,且∠DOQ=60,OQ=OD=3,OP=2, OA=AB=1,让线段OD及矩形ABCD位置固定,将线段OQ连带着半圆K一起绕着点O按逆时针方向开始旋转,设旋转角为、发现:(1)当,即初始位置时,点P 直线AB上、(填“在”或“不在”)求当是多少时,OQ经过点B?(2)在OQ旋转过程中,简要说明是多少时,点P,A间的距离最小?并指出这个最小值;图15-2(3)
如图15-2,当点P恰好落在BC边上时,求及、拓展:如图15-3,当线段OQ与CB边交于点M,与BA边交于点N时,设
BM=x(x>0),用含x的代数式表示BN的长,并求x的取值范围、图15-3备用图探究:当半圆K与矩形ABCD的边相切时,求sin 的值、练习2:如图1,已知点A(8,4),点B(0,4),线段CD的长为3,点C与原点O重合,点D在x轴正半轴上、线段CD 沿x轴正方向以每秒1个单位长度的速度向右平移,过点D作x 轴的垂线交线段AB于点E,交OA于点G,连接CE交OA于点F (如图2),设运动时间为t、当E点与A点重合时停止运动、(1)求线段CE的长;(2)记△CDE与△ABO公共部分的面积为S,求S关于t的函数关系式;(3)如图2,连接DF、①当t取何值时,以
C、F、D为顶点的三角形为等腰三角形?②△CDF的外接圆能否与OA相切?如果能,直接写出此时t的值;如果不能,请说明理由。
ABOExDyG图1(C)
CABOExDyGF图2最值问题例
2、如图,在△ACE中,CA=CE,∠CAE=30,⊙O经过点C,且圆的直径AB在线段AE上、(1)试说明CE是⊙O的切线;(2)若△ACE中AE边上的高为h,试用含h的代数式表示⊙O的直径AB;(3)设点D是线段AC上任意一点(不含端点),连接OD,当CD+OD的最小值为6时,求⊙O的直径AB的长、练习1:在△中,,将△绕点顺时针旋转,得到△、⑴、如图①,当点在线段延长线上时、①、求证:;②、求△的面积;⑵、如图②,点是上的中点,点为线段上的动点,在△绕点顺时针旋转过程中,点
的对应点是,求线段长度的最大值与最小值的差、练习2:如图,在平面直角坐标系中,圆M过原点o,与x轴交于A(
4、0),与y轴交于B(0,3),点C为劣弧AO的中点,连接AC并延长到D,使DC=4CA,连接B
D、(1)圆M的半径;(2)证明:BD为圆M的切线;(3)在直线MC上找一点p,使|DP-AP|最大。
函数关系问题例
1、如图,在平面直角坐标系中,点M是第一象限内一点,过M的直线分别交轴,轴的正半轴于A,B两点,且M是AB的中点、以OM为直径的⊙P分别交轴,轴于C,D两点,交直线AB于点E (位于点M右下方),连结DE交OM于点K、(1)若点M的坐标为(3,4),①求A,B两点的坐标;②求ME的长;[来源:学科网](2)若,求∠OBA的度数;(3)设(0<<1),,直接写出关于的函数解析式、练习:如图10,以点M(-1,0)为圆心的圆与y轴、x轴分别交于点
A、
B、
C、D,直线y=- x-与⊙M相切于点H,交x轴于点E,交y轴于点F、(1)请直接写出OE、⊙M的半径r、CH的长;(2)如图11,弦HQ交x轴于点P,且DP:PH=3:2,求cos∠QHC的值;(3)如图12,点K为线段EC上一动点(不与E、C重合),连接BK交⊙M于点T,弦AT交x轴于点N、是否存在一个常数a,始终满足MNMK=a,如果存在,请求出a的值;如果不存在,
请说明理由、xDABHCEMOF图10xyDABHCEMOF图11PQxyDABHCEMOF 图12NTKy存在性问题例
4、已知AB是⊙O的直径,AB=4,点C在线段AB的延长线上运动,点D在⊙O 上运动(不与点B重合),连接CD,且CD=O
A、(1)当OC=时(如图),求证:CD是⊙O的切线;(2)当OC>时,CD所在直线于⊙O相交,设另一交点为E,连接AE、①当D为CE中点时,求△ACE的周长;②连接OD,是否存在四边形AODE为梯形?若存在,请说明梯形个数并求此时AEED的值;若不存在,请说明理由。