关于高等数学期末复习资料归纳大全

合集下载

《高等数学》(下)期末考试考前复习提纲

《高等数学》(下)期末考试考前复习提纲

《高等数学》下册期末考试考前复习提纲第一部分 空间解析几何与向量代数一、向量代数 1、向量的概念 (1)向量的定义有大小有方向的线段a(自由向量) (2)向量的表示1)),,(z y x a a a a =, 为向量的直角坐标表示2)0a a a=,其中a 为向量的模(大小),222zy x a a a a ++= 0a 为a的单位向量,0(cos ,cos ,cos )(,,)y x z a a a a a a aαβγ==,)cos ,cos ,(cos γβα为a的方向余弦,1cos cos cos 222=++γβα注:若有两点:111222(,,),(,,)A x y z B x y z ,则向量AB 为 212121{(),(),()}A B x x y y z z =--- 2、向量的运算 (1)线性运算),,(z z y y x x b a b a b a b a +++=+),,(z y x a a a a λλλλ=(2)数量积(标积,点积) 1)cos ,,a b a b a b ϕϕ⋅≡≡(0)ϕπ≤≤2)z z y y x x b a b a b a b a ++=⋅特例:当b a ⊥时,0=⋅b a(两向量垂直的判据)(3)向量积(矢积,叉积)1)0sin c b a c b a ϕ=≡⨯,b a ,与c为右手螺旋关系2)()()()xy z y z z yz x x z x y y x xy zij ka b a a a i a b a b j a b a b k a b a b b b b ⨯==-+-+-特例:当b a//时,0=⨯b a ,或z y x z y x z z y y x x b b b a a a b a b a b a ::::=↔==(两向量平行的判据)3、两点的间距公式212212212)()()(z z y y x x d -+-+-=4、平面π外一点0000(,,)P x y z 到平面π的距离公式:Dd =平面π的点法式方程为: 0Ax By Cz D +++= 二、空间解析几何1、空间曲面与空间曲线 (1)方程曲面方程 0),,(=z y x F (三元方程)曲线方程 ⎩⎨⎧==0),,(0),,(21z y x F z y x F 或)(),(),(t z z t y y t x x ===(2)常见的曲面与曲线1) 柱面—— 一直线l (母线)沿着一平面曲线C (准线)作平行于一定直线L 的移动所得的曲面 母线z //轴的柱面: 0),(=y x F母线y //轴的柱面: 0),(=x z F 母线x //轴的柱面: 0),(=z y F2) 旋转面—— 一平面曲线(母线)绕着同一平面内的定直线(转轴)旋转一周所得的曲面例(,)00z y f y z x =⎧⎨=⎩绕z 不变,旋转曲面0),(22=+±z y x f 3)空间螺旋线t k z a y a x ωθθθθ====,,c o s ,s i n4)二次曲面(三元二次方程) )(a 椭球面1222222=++cz b y a x椭球面与平行于坐标面平面的交线:→⎪⎩⎪⎨⎧==++12222221z z c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(z z z c c b yz c c a x ; →⎪⎩⎪⎨⎧==++12222221y y c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(y y y b b c z y b b a x ; →⎪⎩⎪⎨⎧==++12222221x x c z b y a x ⎪⎪⎩⎪⎪⎨⎧==-+-12122222122221)()(x x x a a c z x a a b y 分别为在1z z =,1y y =与1x x =平面内的椭圆。

《高等数学》(上)期末复习知识要点

《高等数学》(上)期末复习知识要点

1、 四则运算法则与复合运算法则(换元法);2、 初等函数的连续性(代入法): 00lim ()()x x f x f x →=;3、 两个重要极限:1)0sin lim1x x x→=,【特征:0sin lim 1→=】2)1lim(1)x x e x →∞+=(或1lim(1)n n e n→∞+=,10lim(1)x x x e →+=);【特征:1lim(1)e →∞+= 】4、 存在准则:1)夹逼准则,2)单调有界准则;5、 洛必达法则:未定式00或∞∞(其它类型未定式:000,,,1,0∞⋅∞∞−∞∞必须转化); 6、 等价无穷小量替换:只适用于乘除,加减不适用.(当0x →时,21cos 2x x −∼, sin (tan ,arctan ,arcsin ,1,ln(1)),x x x x x e x x −+∼(1)1a x x α+−∼(α为常数)等等)7、 无穷小的性质:有界量与无穷小的乘积、有限个无穷小的和与乘积均为无穷小等 8、 泰勒公式(麦克劳林公式); 9、 微分中值定理;10、 定积分或导数定义*: 1)*【定积分定义】、设()f x 在[,]a b 上可积,则1lim ()()nb a n i b a b af a i f x dx n n→∞=−−+⋅=∑∫; 2)【导数定义】设()f x 在点a 处可导,则0()()()()lim()lim ()x ah f x f a f a h f a f a f a x a h→→−+−′′==−或.1、 函数()f x 在点0x 处连续000lim ()()lim ()lim ()()x x x x x x f x f x f x f x f x +−→→→⇔=⇔==;2、 间断点:1)第一类间断点:可去,跳跃;2)第二类间断点:无穷,振荡等.3、 连续函数的运算性质:连续函数的加减乘除仍为连续函数;连续函数的复合函数仍为连续函数 4、 初等函数的连续性:一切初等函数在其定义区间内处处连续 5、 闭区间上连续函数的性质:1)有界性;2)最大值最小值定理;3)零点定理【闭上连续两端异号零点在开内】;4)介值定理及其推论一、 极限及其求法:二、 函数的连续性《高等数学》(上)期末复习要点1、 定义: 1)0000000()()()()()limlimx x x f x f x f x x f x f x x x x →∆→−+∆−′==−∆; 2)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x +++→∆→−+∆−′==−∆3)0000000()()()()()lim lim x x x f x f x f x x f x f x x x x−−−→∆→−+∆−′==−∆4)000()()()f x f x A f x A +−′′′==⇔= 2、 求导法则:【必须牢记18个基本导数公式】 1) 显函数()y f x =:I、四则运算法则: ()[()()],[()()],[],[()]()u x u x v x u x v x ku x v x ′′′′±⋅; II、复合函数的求导法则:设(),()y f u u g x ==都可导,则[()]y f g x =的导数为(){[()]}()()[()]()u g x d f g x f u g x f g x g x dx =′′′′=⋅=⋅,或dy dy du dx du dx=⋅ III、反函数的求导法则:1dy dx dxdy= IV、对数求导法则(特别适用于幂指函数):()y f x =,ln ||ln |()|y f x == (化简),y y′⇒= 2) 参数方程:()()x x t y y t =⎧⎨=⎩,()dy dydxg t dtdt dx == ,22()()d y dg t dg t dxdt dtdx dx=== , 其它阶同理可求.3) 隐函数:(,)0F x y =(方程两边对x 求导,注意y 为x 的函数)10x y dyF F dx′′⇒⋅+⋅= 3、 高阶导数:234(4)()234(),(),(),,()n n n d y d y d y d y f x f x f x f x dx dx dx dx′′′′′==== 等4、 微分()dy f x dx ′=5、 关系:可微与可导等价;可导必连续,反之未必.三、 导数与微分1、 曲线的切线与法线方程:00()y y k x x −=−,0()k f x ′=切,01/()k f x ′=−法;2、 微分中值定理:首先必须验证定理的条件是否满足,然后根据定理下结论!1)Rolle 定理:()0()f a b ξξ′=<<;2)Lagrange 中值定理:()()()()()f b f a f b a a b ξξ′−=−<<;估计函数值之差3)Cauchy 中值定理:()()()()()()()f b f a f a bg b g a g ξξξ′−=<<′−;4)Taylor 中值定理:()(1)100000()()()()()()!(1)!k n nkn k f x f f x x x x x x x k n ξξ++==−+−+∑在与之间 3、 洛必达法则:00()()limlim ()()f x f x org x g x ∞∞′′,其它型未定式必须转化 4、 泰勒公式:熟悉5个常见带Peano 型余项的Maclaurin 公式5、 函数的单调性【一阶导符号判定】、极值、最值及其函数图形的凹凸性【二阶导符号判定】、拐点和渐近线 6、 不等式的证明:1)单调性;2)中值定理;3)凹凸性;4)最值 7、 方程根的存在性及唯一性:1)零点定理;2)Rolle 定理;3)单调性;4)极值最值等等 8、 恒等式的证明:若在区间I 上()0f x ′≡,则在区间I 上()f x C ≡2π1、 基本性质:线性,对积分区间的可加性,保号性(特别课后Ex.7:用连续性与不恒等于去等号),定积分中值定理【()()()()baf x dx f b a a b ξξ=−<<∫】,定积分的奇偶对称性、周期性.2、()()f x dx F x C =+∫与Newton-Leibniz 公式:()()bba af x dx F x =∫,(()()F x f x ′=)3、 换元法:1)第一类(凑微分法);2)第二类:三角代换,倒代换等4、 分部积分法:1)三指动,幂不动;2)幂动,反对不动;3)凑同类所求便再现.5、 积分上限函数的导数:()()x a d f t dt f x dx =∫, ()()[()]()g x a d f t dt f g x g x dx′=⋅∫, 其中()f x 连续,()g x 可导,a 为常数,积分中的表达式()f t 必须与x 无关6、 有理函数的积分【假分式用除法化为多项式加真分式,真分式因式分解化为部分分式】以及可化为有理函数的积分【①三角函数有理式的积分:万能代换tan()2xt = ()x ππ−<<;②简单根式:线性函数或分式函数的根式讨厌要换之,开方不同最小公倍数】7、 反常积分:无穷限的反常积分或瑕积分,广义Newton-Leibniz 公式,特别注意瑕点在积分区间内部的瑕积分四、 导数的应用sin n xdx 】五、积分:不定积分,定积分,反常积分【必须牢记24个基本积分公式以及I n =∫1、 平面图形的面积:1) 直角坐标,x y :a、 曲边梯形1{(,)|,0()}D x y a x b y f x =≤≤≤≤:()baA f x dx =∫;b、 上、下型{(,)|,()()}D x y a x b g x y f x =≤≤≤≤:[()()]baA f x g x dx =−∫;c、 左、右型{(,)|,()()}D x y c y d g y x f y =≤≤≤≤:[()()]dcA f y g y dy =−∫;d、 设曲边梯形1D 的曲边由参数方程:(),()x x t y y t ==给出,则()()()b aA f x dx y t x t dt βα′==⋅∫∫【先代公式后换元】2) 极坐标,ρθ(极坐标变换cos ,sin x y ρθρθ==): 设曲边扇形{(,)|,0()}D ρθαθβρρθ=≤≤≤≤,则21()2A d βαρθθ=∫ 2、 体积:CaseA、旋转体的体积:1) X-型或上下型{(,)|,0()}D x y a x b y f x =≤≤≤≤:I、绕x 轴 2()bx aV f x dx π=∫;II、绕y 轴 2()(0)by aV xf x dx a π=≥∫2) Y-型或左右型{(,)|,0()}D x y c y d x g y =≤≤≤≤: I、绕y 轴 2()dy cV g y dy π=∫;II、绕x 轴 2()(0)dx cV yg y dy c π=≥∫CaseB、平行截面面积为已知的立体{(,,)|,(,)}x x y z a x b y z D Ω=≤≤∈,若()x AreaD A x =,则()baV A x dx =∫3、 弧长:由不同方程,代不同公式 1)():()()x x t C t y y t αβ=⎧≤≤⎨=⎩,()s βααβ=<∫;2):(),C y f x a x b =≤≤,()as a b =<∫;3):(),C ρρθαθβ=≤≤,()s βαθαβ=<∫六、 定积分的应用【有公式代就代公式,否则用元素法】 (一) 一阶微分方程:(,,)0F x y y ′=,(,)y f x y ′=或(.)(,)0M x y dx N x y dy +=1、 可分离变量:()()f x dx g y dy =,积分之可得通解2、 齐次:()dy ydx xϕ=,令y u x =,可将原方程化为关于,x u 的可分离变量3、 线性:()()dyP x y Q x dx+=,通解为()()[()]P x dx P x dx y e Q x e dx C −∫∫=+∫;或利用常数变易法或利用积分因之法:()()P x dxx e µ∫=4、 伯努利:()()(0,1)n dyP x y Q x y n dx+=≠,令1n z y −=,可将原方程化为关于,x z 的线性. (二) 可降阶的高阶微分方程: I 、()()n yf x =【右端只含x 】:连续积分之;II 、(,)y f x y ′′′=【不显含y 】:令,y p ′=则dpy dx′′=,可将原方程化为关于,x p 的一阶. III 、(,)y f y y ′′′=【不显含x 】:令y p ′=,则dpy p dy′′=,可将原方程化为关于,y p 的一阶 (三) 概念与理论1、 概念:阶,解(特解,通解),初始条件,初值问题,积分曲线2、 线性微分方程的解的结构:1)齐次:()()0y P x y Q x y ′′′++=,通解:1122()()y C y x C y x =+,其中12(),()y x y x 为该方程线性无关的两个解. 2)非齐次:()()()y P x y Q x y f x ′′′++= 通解:()*()y Y x y x =+,其中()Y x 为对应的齐次方程的通解,*()y x 为原方程的一个特解. 3)设12*(),*()y x y x 分别为1()()()y P x y Q x y f x ′′′++= 与2()()()y P x y Q x y f x ′′′++=的特解,则12**()*()y y x y x =+为12()()()()y P x y Q x y f x f x ′′′++=+的特解.七、 微分方程附录I——基本求导公式:1221(1)()0(2)();(3)();(4)(ln ||);1(5)()ln ;(6)(log );(01)ln (7)(sin )cos ;(8)(cos )sin ;(9)(tan )sec ;(10)(cot )csc ;(11)(sec )sec tan ;(12)x x x x a C C x x e e x xa a a x a a x ax x x x x x x x x x x αααα−′′′′====′′==>≠′′′′==−==−′=,为常数;,为常数常数且(csc )csc cot ;(13)(arcsin )(14)(arccos )(17)(sh )ch ;(18)(ch )sh .x x x x x x x x x ′′=−=′=′′==附录II——基本积分公式:122(1)1(2)1;(3)ln ||;1(4);(5)01;ln (6)sin cos ;(7)cos sin ;(8)sec tan ;(9)csc cot ;(10)sec tan sec x x x xkdx kx C k x x dx C dx x C x a e dx e C a dx C a a a xdx x C xdx x C xdx x C xdx x C x xdx x C αααα+=+=+≠−=++=+=+>≠=−+=+=+=−+=+∫∫∫∫∫∫∫∫∫∫,为常数;,常数,常数且;(11)csccot csc;(12)tan ln |cos |;(13)cot ln |sin |;(14)sec ln |sec tan |;(15)csc ln |csc cot |;(16);(18)x xdx x C xdx x C xdx x C xdx x x C xdx x x C C =−+=−+=+=++=−+∫∫∫∫∫2200;(20)(21)ln(;(22)ln ||;(23)sh ch ;(24)ch sh .1331,2422sin cos n n n C x C x C xdx x C xdx x C n n n nI xdx xdx πππ=+=++=+=+−−⋅⋅⋅⋅⋅⎛⎞−===⎜⎟⎝⎠∫∫∫∫∫ 1342,253n n n n n n ⎧⎪⎪⎨−−⎪⋅⋅⋅⋅⎪−⎩ 为正偶数;为大于1的正奇数.。

高数期末必考知识点总结大一

高数期末必考知识点总结大一

高数期末必考知识点总结大一高数期末必考知识点总结高等数学是大一学生必须学习的一门重要课程,它在培养学生的数学思维、分析问题和解决问题的能力方面起着重要的作用。

期末考试是对学生整个学期所学知识的总结和检验,因此掌握必考的知识点至关重要。

本文将对高数期末必考的知识点进行总结和梳理,以帮助大家更好地备考。

一、函数与极限1. 函数的基本概念和性质:定义域、值域、奇偶性等。

2. 极限的定义与性质:极限存在准则、无穷大与无穷小、夹逼定理等。

3. 重要极限的求解方法:基本初等函数的极限、无穷小的比较、洛必达法则等。

二、导数与微分1. 导数的定义与性质:导数的几何意义、导数的四则运算、高阶导数等。

2. 基本初等函数的导数:常数函数、幂函数、指数函数、对数函数等。

3. 隐函数与反函数的导数:隐函数求导、反函数的导数等。

4. 微分的定义与性质:微分的几何意义、微分中值定理等。

三、不定积分与定积分1. 不定积分的定义与基本性质:不定积分的线性性质、换元积分法等。

2. 基本初等函数的不定积分:幂函数的不定积分、三角函数的不定积分等。

3. 定积分的定义与性质:定积分的几何意义、定积分的性质等。

4. 定积分的计算方法:换元法、分部积分法、定积分的性质等。

四、微分方程1. 微分方程的基本概念:微分方程的定义、阶数、解的概念等。

2. 一阶微分方程:可分离变量的微分方程、齐次线性微分方程等。

3. 高阶线性微分方程:齐次线性微分方程、非齐次线性微分方程等。

4. 常微分方程的初值问题:初值问题的存在唯一性、解的连续性。

五、级数1. 数项级数的概念与性质:数项级数的定义、级数的收敛与发散、级数的性质等。

2. 常见级数的判别法:比较判别法、比值判别法、根值判别法等。

3. 幂级数:幂级数的收敛半径、收敛域的判定、幂级数的和函数等。

综上所述,高数期末必考的知识点主要包括函数与极限、导数与微分、不定积分与定积分、微分方程以及级数等。

在备考期末考试时,同学们要重点复习这些知识点,并通过大量的练习题来巩固和提高自己的理论水平和解题能力。

高数知识点复习资料

高数知识点复习资料
2 lim x 1 2 x 1 2 x 1
x 1
tan x s)
2 x 1 2 x 1 2 x1 2 2 lim 1 2 x 1 2 x 1
x3 x 3 x 2 9 【求解示例】解:因为 x 3 ,从而可得 x 3 ,所以原 x 3 x 3 1 1 式 lim 2 lim lim x 3 x 9 x 3 x 3 x 3 x 3 x 3 6
【题型示例】求值 lim (其中 x 3 为函数 f x
1 第二个重要极限: lim1 e x x
(一般地, lim f x lim f x 0 )
g x
x
1.由 xn a 化简得 n g , 2.即对 0 , N g ,当 n N 时,始终 有不等式 xn a 成立, ∴ limxn a
e 2 x1 2 x 1 e1 e
第五节 函数的连续性 ○函数连续的定义
x x0 x x0
2 x2 lim
lim f x lim f x f x0
○间断点的分类
跳越间断点(不等) 第一类间断点(左右极 限存在) 可去间断点(相等) 第二类间断点 ) 无穷间断点(极限为 (特别地,可去间断点能在分式中约去相应公因式)
x2 a2 1

(或:过 y f x 图像上点 a, f a 处的切线与法线 方程) 【求解示例】 1. y f x , y |x a f a 2.切线方程: y f a f a x a 法线方程: y f a

大学高等数学最全复习内容汇总

大学高等数学最全复习内容汇总

例(P128) 3 ; (P130) 5、6
3、弹性函数 在点 x0 处的弹性为
Ey Ex x x0
f ( x0 )
x0 f ( x0 )
函数y=f(x)在点x0处的弹性反映了当自变量变化1%时, 函数y变化的百分数为 Ey %.
Ex x x0
例(P79) 3,2(思考题)
5、导数的计算 (1)(u v) u v;
(2)(u
(4)设
v) uv
y f (u),
uv;
u
(3) u
( x),v
uv uv v2
,(v
0).
y'x y'u u'x 或
例 ( P43) 2 (4) (5)
dy dy du dx du dx
6、高阶导数 y ( y), y ( y)
x1 x
y x x ( ln x 1 ) 2x x
9、微分 (1)点微分
dy x x0 y x x0 x或 df ( x0 ) f '( x0 )x
(2)函数微分 dy ydx或 df ( x) f ( x)dx
( P51) 例2 ( P54) 1、2
10、微分的应用
(1) y x x0 dy x x0 f ( x0 ) x.
0
(3) lim f ( x) A (或), 则 lim f ( x) lim f ( x) A(或).
xa g( x)
xa g( x) xa g( x)
0 型

0 1 , 或 0 0 1.
0
转换求商的极限.
1 1 通分 0 0 .
00
00
00、1、0 型
00 1
3、积分上限函数及其导数

高等数学全面复习资料

高等数学全面复习资料

一、函数与极限1、集合的概念一般地我们把研究对象统称为元素,把一些元素组成的总体叫集合(简称集)。

集合具有确定性(给定集合的元素必须是确定的)和互异性(给定集合中的元素是互不相同的)。

比如“身材较高的人”不能构成集合,因为它的元素不是确定的。

我们通常用大字拉丁字母A 、B 、C 、……表示集合,用小写拉丁字母a 、b 、c ……表示集合中的元素。

如果a 是集合A 中的元素,就说a 属于A ,记作:a ∈A ,否则就说a 不属于A ,记作:a A 。

⑴、全体非负整数组成的集合叫做非负整数集(或自然数集)。

记作N ⑵、所有正整数组成的集合叫做正整数集。

记作N +或N +。

⑶、全体整数组成的集合叫做整数集。

记作Z 。

⑷、全体有理数组成的集合叫做有理数集。

记作Q 。

⑸、全体实数组成的集合叫做实数集。

记作R 。

集合的表示方法⑴、列举法:把集合的元素一一列举出来,并用“{}”括起来表示集合 ⑵、描述法:用集合所有元素的共同特征来表示集合。

集合间的基本关系⑴、子集:一般地,对于两个集合A 、B ,如果集合A 中的任意一个元素都是集合B 的元素,我们就说A 、B 有包含关系,称集合A 为集合B 的子集,记作A B (或B A )。

⑵相等:如何集合A 是集合B 的子集,且集合B 是集合A 的子集,此时集合A 中的元素与集合B 中的元素完全一样,因此集合A 与集合B 相等,记作A =B 。

⑶、真子集:如何集合A 是集合B 的子集,但存在一个元素属于B 但不属于A ,我们称集合A 是集合B 的真子集。

⑷、空集:我们把不含任何元素的集合叫做空集。

记作 ,并规定,空集是任何集合的子集。

⑸、由上述集合之间的基本关系,可以得到下面的结论: ①、任何一个集合是它本身的子集。

即A A②、对于集合A 、B 、C ,如果A 是B 的子集,B 是C 的子集,则A 是C 的子集。

③、我们可以把相等的集合叫做“等集”,这样的话子集包括“真子集”和“等集”。

(完整版)高等数学复习资料大全

(完整版)高等数学复习资料大全

《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim 0)(6sin limxx f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限) 4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>- 解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求 1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

高等数学复习资料大全

高等数学复习资料大全

高等数学复习资料大全高等数学复习资料大全一、函数的极限1、函数极限的定义:当函数f(x)在x趋近于某一值时,函数值无限接近于某一确定的数值A,则称A为函数f(x)在x趋近于这一值时的极限。

2、函数极限的性质:(1)唯一性:若极限存在,则唯一。

(2)局部有界性:在极限附近的函数值有界。

(3)局部保号性:在极限附近,函数值的符号保持不变。

(4)归结原则:若在某一区间内,f(x)恒等于A,则A为f(x)在该区间内的极限。

3、极限的四则运算:设、存在,则、也存在,且、、、。

4、复合函数的极限:设、存在,且g(x)在u=a处连续,则、存在,且、。

5、无穷小与无穷大:(1)无穷小:若当x趋近于某一值时,函数f(x)的极限为0,则称f(x)为当x趋近于这一值时的无穷小。

(2)无穷大:若当x趋近于某一值时,函数f(x)的绝对值无限增大,则称f(x)为当x趋近于这一值时的无穷大。

6、两个重要极限:(1)sin x / x = 1 (x趋近于0);(2)(1+k)^ x / kx = e^k (k为常数且k趋近于0)。

二、导数与微分1、导数的定义:设y=f(x),若增量 / 趋于0时,之间的比值也趋于0,则称f(x)在处可导,称此比值为f(x)在处的导数。

2、导数的几何意义:函数在某一点处的导数就是曲线在该点处的切线的斜率。

3、微分的定义:设y=f(x),若函数的增量可以表示为,其中A不依赖于,则称在处可微分,为f(x)在处的微分。

4、导数与微分的关系:若函数在某一点处可导,则在该点处必可微分;反之,若函数在某一点处可微分,则在该点处不一定可导。

5、导数的计算方法:(1)四则运算导数公式;(2)复合函数的导数;(3)隐函数求导法;(4)对数求导法;(5)高阶导数。

三、不定积分1、不定积分的定义:设f(x)是一个函数,是一个常数,则对f(x)进行积分所得的结果称为f(x)的不定积分,记为或。

2、不定积分的性质:(1)线性性质:和都存在,且;(2)恒等性质:都存在,且。

期末高数考点总结

期末高数考点总结

期末高数考点总结1. 函数与极限函数与极限是高等数学的基础。

在这部分内容中,主要包括函数的概念、性质和常见类型,以及极限的概念、性质和计算方法。

其中,重点考查函数的性质和极限的计算方法。

需要掌握函数的奇偶性、周期性、单调性等基本性质;理解函数的极限定义,并能够应用极限的四则运算法则和夹逼定理等进行计算。

2. 一元函数微分学微分学是高等数学的重要内容之一。

在这部分内容中,主要包括导数的概念、计算方法和应用。

需要掌握函数的导数定义,了解导数的几何意义和物理意义;掌握导数的四则运算法则和链式法则,熟练掌握常见函数的导数计算方法,如幂函数、指数函数、对数函数、三角函数等;掌握导数的应用,如求函数的单调性、极值点、凹凸区间等。

3. 一元函数积分学积分学是高等数学的另一个重要内容。

在这部分内容中,主要包括不定积分和定积分。

需要掌握不定积分和定积分的定义;掌握常见函数的基本积分公式和换元积分法;掌握定积分的计算方法,如定积分的几何意义、定积分的性质、定积分的换元法和分部积分法等。

4. 无穷级数无穷级数是高等数学的重难点内容之一。

在这部分内容中,主要包括数项级数、幂级数和函数项级数等。

需要掌握数项级数的概念、判断级数是否收敛的常用方法,以及幂级数和函数项级数的收敛域判断方法。

5. 常微分方程常微分方程是高等数学的另一个重要内容。

在这部分内容中,主要包括一阶常微分方程、二阶常微分方程和变量可分离的方程等。

需要掌握一阶常微分方程和二阶常微分方程的基本概念,以及一阶常微分方程和二阶常微分方程的解法,包括变量可分离的方程、齐次线性方程、非齐次线性方程等。

6. 多元函数微分学多元函数微分学是高等数学的另一个重点和难点内容。

在这部分内容中,主要包括偏导数、全微分、梯度、方向导数和极值等。

需要掌握多元函数的偏导数定义和计算方法,了解全微分的概念和性质,掌握多元函数的梯度、方向导数的定义和计算方法,以及多元函数的极值点的判定方法。

(完整word版)高等数学复习资料大全(word文档良心出品)

(完整word版)高等数学复习资料大全(word文档良心出品)

《高等数学复习》教程第一讲 函数、连续与极限一、理论要求 1.函数概念与性质 函数的基本性质(单调、有界、奇偶、周期) 几类常见函数(复合、分段、反、隐、初等函数) 2.极限极限存在性与左右极限之间的关系 夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限 3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法 (1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子) (3)变量替换法 (4)两个重要极限法(5)用夹逼定理和单调有界定理求 (6)等价无穷小量替换法(7)洛必达法则与Taylor 级数法(8)其他(微积分性质,数列与级数的性质) 1.612arctan lim )21ln(arctan lim3030-=-=+->->-xx x x x x x x (等价小量与洛必达) 2.已知2030)(6lim0)(6sin limx x f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin limx xy x f x x x xf x x x ++=+>->- 72)0(''06)0(''32166'''''36cos 216lim6'''26sin 36lim 00=∴=+-=++-=++-=>->-y y xy y x x xy y x x x362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达) 3.121)12(lim ->-+x xx x x (重要极限)4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求 解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a xt b a t 2/300)()ln(23)ln ln (3limln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换) 5.)1ln(12)(cos lim x x x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+ 2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 2-==>-x x a x (连续性的概念)三、补充习题(作业) 1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0xx ctgx x ->- (洛必达或Taylor ) 3.11lim 22=--->-⎰x xt x edte x (洛必达与微积分性质)第二讲 导数、微分及其应用一、理论要求1.导数与微分 导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导) 会求平面曲线的切线与法线方程2.微分中值定理 理解Roll 、Lagrange 、Cauchy 、Taylor 定理 会用定理证明相关问题3.应用 会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图 会计算曲率(半径)二、题型与解法A.导数微分的计算 基本公式、四则、复合、高阶、隐函数、参数方程求导 1.⎩⎨⎧=+-==52arctan )(2te ty y t x x y y 由决定,求dx dy2.x y x y x x y y sin )ln()(32+=+=由决定,求1|0==x dxdy解:两边微分得x=0时y x y y ==cos ',将x=0代入等式得y=1 3.y x x y y xy+==2)(由决定,则dx dy x )12(ln |0-==B.曲线切法线问题 4.求对数螺线)2/,2/πθρρπθe e (),在(==处切线的直角坐标方程。

高数期末知识总结

高数期末知识总结

高数期末知识总结一、微积分部分:1. 函数的概念和性质:包括定义域、值域、奇偶性、周期性等。

2. 极限与连续:掌握函数趋于无穷时的极限和函数在某点处的极限计算方法。

了解连续函数的定义和性质。

3. 导数与微分:熟悉导数的定义、性质和计算方法,掌握基本的导数法则。

了解微分的概念和微分形式的变化。

4. 微分中值定理和泰勒公式:熟练掌握拉格朗日中值定理和柯西中值定理的条件和应用。

了解泰勒公式及其在函数逼近中的应用。

5. 一元函数的极值和最值:熟练掌握函数的极值和最值的判定方法,了解约束条件下的极值和最值问题。

6. 定积分和不定积分:掌握定积分的定义和计算方法,了解不定积分的概念和性质。

7. 微分方程:了解微分方程的基本概念和分类,熟悉一阶常微分方程的求解方法。

二、线性代数部分:1. 向量的概念和运算:熟练掌握向量的定义和运算法则,了解向量的数量积和向量积的定义和性质。

2. 矩阵的概念和运算:了解矩阵的定义和基本性质,熟练掌握矩阵的加法、数乘和乘法运算。

3. 行列式和矩阵的初等变换:熟练掌握行列式的定义、性质和计算方法,了解矩阵的初等行变换和初等列变换的基本法则。

4. 线性方程组:熟悉线性方程组的定义和基本性质,了解线性方程组的求解方法。

5. 特征值和特征向量:了解特征值和特征向量的定义和计算方法,掌握矩阵的对角化与相似对角化。

6. 线性空间和线性映射:了解线性空间和线性映射的基本概念,掌握线性映射的定义和性质。

以上是高等数学期末知识的基本总结。

在考试前,我们应该提前整理好复习资料,了解每个知识点的要点和考点,合理安排时间进行复习,并多做一些练习题来巩固所学知识。

希望以上总结对大家的期末考试有所帮助,祝大家取得好成绩!。

大二高数笔记期末知识点

大二高数笔记期末知识点

大二高数笔记期末知识点一、函数与极限1. 函数的概念和性质- 函数的定义- 函数的定义域、值域和对应关系- 奇函数和偶函数2. 极限的概念与性质- 极限的定义与符号表示- 左极限和右极限- 极限存在的条件- 极限的四则运算- 夹逼定理3. 连续函数- 连续函数的定义- 连续函数的性质- 闭区间上连续函数的性质二、导数与微分1. 函数的导数- 导数的定义- 导数的几何意义和物理意义- 导数的求法(基本的导数公式、常见函数的导数) - 导数的四则运算和复合函数的导数2. 高阶导数- 高阶导数的定义- 高阶导数的性质3. 微分- 微分的定义- 微分近似计算- 高阶微分三、微分中值定理与应用1. 罗尔中值定理- 罗尔中值定理的条件与结论- 应用举例2. 拉格朗日中值定理- 拉格朗日中值定理的条件与结论 - 应用举例3. 柯西中值定理- 柯西中值定理的条件与结论- 应用举例4. 泰勒中值定理- 泰勒中值定理的条件与结论- 泰勒公式四、不定积分与定积分1. 不定积分- 不定积分的概念- 基本的积分法则- 常见函数的积分2. 定积分- 定积分的概念和性质 - 积分的存在性- 反常积分3. 牛顿-莱布尼茨公式 - 高阶原函数- 定积分的比较性质五、常微分方程初步1. 一阶常微分方程- 可分离变量的方程- 齐次方程- 一阶线性方程2. 二阶常微分方程- 齐次线性方程- 非齐次线性方程- 常系数二阶齐次线性方程以上为大二高数笔记期末知识点的部分内容,希望对你的学习有所帮助。

祝你期末考试顺利!。

大一高数期末知识点总结

大一高数期末知识点总结

大一高数期末知识点总结高等数学是大一学生必修的一门重要学科,其内容涉及微积分、数学分析、线性代数等多个方面。

期末考试前的知识点总结对于巩固理论知识和提高解题能力具有重要意义。

本文将对大一高数期末考试的知识点进行总结,帮助大家进行复习和备考。

一、导数与微分1. 导数的定义及运算法则:常见函数的导数求法、导函数的运算法则,包括求和差积商的导数、复合函数的导数等。

2. 高阶导数与隐函数求导:高阶导数的定义与求法、隐函数的导数求法。

3. 微分的概念与应用:微分的定义、微分近似计算及其应用,如函数的局部线性化、极值点判定等。

二、积分与定积分1. 不定积分的求法:基本积分公式、换元法、分部积分法以及常见函数的积分求法。

2. 定积分的定义与性质:定积分的定义、可加性、区间可加性等性质。

3. 定积分的计算:基本计算法、变量代换法、分部积分法等。

4. 定积分的应用:面积计算、弧长计算、物理应用等。

三、级数与数项级数1. 数列的概念与性质:数列的定义、数列极限的判定、数列极限的性质等。

2. 数项级数的概念与性质:数项级数的定义、级数收敛的判定、级数性质(比较判别法、比值判别法、积分判别法等)。

3. 常见数项级数的求和:等比级数、调和级数、幂级数等。

四、函数极限与连续1. 函数极限的概念与性质:函数极限的定义、极限存在定理、函数极限的性质。

2. 函数连续的概念与性质:函数连续的定义、连续函数的性质、闭区间上连续函数的性质。

3. 函数的一致连续与间断点:一致连续的定义、一致连续与点态连续的关系、间断点的分类与判定。

五、多元函数与偏导数1. 多元函数的概念与性质:多元函数的定义、极限、连续与偏导数的性质。

2. 偏导数的定义与计算:偏导数的定义、计算方法及应用,包括高阶偏导数的定义与计算。

3. 多元函数的极限与连续:多元函数的极限存在定理、连续性的定义及判定。

六、空间解析几何1. 空间点、直线、平面的方程:点的坐标、直线的方程(点向式、对称式、一般式),平面的方程(点法式、一般式)。

高等数学上期末复习资料大全

高等数学上期末复习资料大全

例17. 求圆柱螺旋线

的切线方程和法平面方程.
解:
由于
对应的切向量为
切线方程 x R
T
y
(R, 0, R z 0
k )2 k
,
k


k y
x Rz R0
2
R
k
0
法平面方程
即 Rx
R
x
k
z
k (2zk22k0)
0
M
0
(0
,
R
,
2
k
)
z
o
x
y
例18计算由椭圆
所围图形绕 x 轴旋转而
,
其中系数A1、B1、C1与A2、B2、C2不成比例.
考虑三元一次方程:
A1xB1yC1zD1(A2xB2 yC2zD2)0,

(A1A2)x(B1B2)y(C1C1)zD1D20,
其中为任意常数.
上述方程表示通过定直线L的所有平面的全体, 称为平面
束.
1. 函数的极值问题 第一步 利用必要条件在定义域内找驻点.
2 3
(极大)
(拐点)
(极小)
极大值;
极小值:
拐点:
例15 计算两条抛物线 所围图形的面积 .
解: 由
得交点 (0, 0) , (1, 1)
1
AdA0
x x2 dx
1 3
在第一象限所围
y y2 x (1,1) y x2
o x x d x1 x
平面图形的面积
平面直角坐标下图形的面积
y
z Fy
xz
.
导时,将方程 F(x,y,z)=0中x,y,z

高三数学期末的主要复习知识点归纳

高三数学期末的主要复习知识点归纳

高三数学期末的主要复习知识点归纳高三数学期末的主要复习知识点归纳1一、函数的最值定义1.值值:设函数y=f(x)定义域为I,如果存在实数M满足:对于I中任意的x,都有f (x)<=M;I中存在一个数x0使得f(x0)=M。

则称M是函数y=f(x)的值,记作f(x)max=f(x0)=M2.最小值最小值:设函数y=f(x)定义域为I,如果存在实数M满足:对于I中任意的x,都有f(x)>=M;I中存在一个数x0使得f(x0)=M。

则称M是函数y=f(x)的最小值,记作f(x)min=f(x0)=M三、求函数的最值方法(1)图像法(1)二次函数法如果自变量的取值范围是全体实数,那么函数在顶点处取最值; (2)如果自变量的取值范围不是全体实数,要根据具体范围加以分析,结合函数图像的同时利用函数的增减性分析题意,求出函数的值或最小值。

(2)单调性法(3)求值域法高三数学期末的主要复习知识点归纳2一、极坐标系的建立在平面内取一个定点O,叫作极点,引一条射线OX,叫做极轴,再选定一个长度单位和角度的正方向(通常取逆时针方向)。

对于平面内任意一点M,用ρ表示线段OM的长度,θ表示从OX到OM的角度,ρ叫点M的极径,θ叫点M的极角,有序数对(ρ,θ),就叫点M的极坐标。

这样建立的坐标系叫极坐标系,记作M(ρ,θ).若点M在极点,则其极坐标为ρ=0,θ可以取任意值。

二、极坐标和直角坐标的互化把直角坐标系的原点作为极点,X轴的正半轴作为极轴,并在两种坐标系中取相同的长度单位,设M是平面内任意一点,其直角坐标(x,y),极坐标是(ρ,θ),从点M作MN⊥OX,由三角函数定义,得x=ρ cos θ,y=ρ sin θ.高三数学期末的主要复习知识点归纳3一、线线、面面、线面垂直的定义①两条异面直线的垂直:如果两条异面直线所成的角是直角,就说这两条异面直线互相垂直。

②线面垂直:如果一条直线和一个平面内的任何一条直线垂直,就说这条直线和这个平面垂直。

大学高数复习资料大全

大学高数复习资料大全

高等数学第一章 函数与极限第一节 函数○函数基础(高中函数部分相关知识)(★★★) ○邻域(去心邻域)(★)(){},|U a x x a δδ=-<(){},|0U a x x a δδ=<-<第二节 数列的极限○数列极限的证明(★)【题型示例】已知数列{}n x ,证明{}lim n x x a →∞= 【证明示例】N -ε语言1.由n x a ε-<化简得()εg n >, ∴()N g ε=⎡⎤⎣⎦2.即对0>∀ε,()N g ε∃=⎡⎤⎣⎦,当N n >时,始终有不等式n x a ε-<成立, ∴{}a x n x =∞→lim第三节 函数的极限○0x x →时函数极限的证明(★) 【题型示例】已知函数()x f ,证明()A x f x x =→0lim【证明示例】δε-语言1.由()f x A ε-<化简得()00x x g ε<-<, ∴()εδg =2.即对0>∀ε,()εδg =∃,当00x x δ<-<时,始终有不等式()f x A ε-<成立, ∴()A x f x x =→0lim○∞→x 时函数极限的证明(★)【题型示例】已知函数()x f ,证明()A x f x =∞→lim【证明示例】X -ε语言1.由()f x A ε-<化简得()x g ε>, ∴()εg X =2.即对0>∀ε,()εg X =∃,当X x >时,始终有不等式()f x A ε-<成立, ∴()A x f x =∞→lim第四节 无穷小与无穷大○无穷小与无穷大的本质(★) 函数()x f 无穷小⇔()0lim =x f 函数()x f 无穷大⇔()∞=x f lim○无穷小与无穷大的相关定理与推论(★★)(定理三)假设()x f 为有界函数,()x g 为无穷小,则()()lim 0f x g x ⋅=⎡⎤⎣⎦(定理四)在自变量的某个变化过程中,若()x f 为无穷大,则()1f x -为无穷小;反之,若()x f 为无穷小,且()0f x ≠,则()x f1-为无穷大【题型示例】计算:()()0lim x x f x g x →⋅⎡⎤⎣⎦(或∞→x ) 1.∵()f x ≤M ∴函数()f x 在0x x =的任一去心邻域()δ,0x U内是有界的;(∵()f x ≤M ,∴函数()f x 在D x ∈上有界;) 2.()0lim 0=→x g x x 即函数()x g 是0x x →时的无穷小; (()0lim =∞→x g x 即函数()x g 是∞→x 时的无穷小;)3.由定理可知()()0lim 0x x f x g x →⋅=⎡⎤⎣⎦(()()lim 0x f x g x →∞⋅=⎡⎤⎣⎦)第五节 极限运算法则○极限的四则运算法则(★★) (定理一)加减法则 (定理二)乘除法则关于多项式()p x 、()x q 商式的极限运算设:()()⎪⎩⎪⎨⎧+⋯++=+⋯++=--nn n mm m b x b x b x q a x a x a x p 110110则有()()⎪⎪⎩⎪⎪⎨⎧∞=∞→0lim 0b a x q x p x m n m n m n >=<()()()()000lim 00x x f x g x f x g x →⎧⎪⎪⎪=∞⎨⎪⎪⎪⎩()()()()()0000000,00g x g x f x g x f x ≠=≠== (特别地,当()()00lim 0x x f x g x →=(不定型)时,通常分子分母约去公因式即约去可去间断点便可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9x x x →--【求解示例】解:因为3→x ,从而可得3≠x ,所以原式()()23333311limlim lim 93336x x x x x x x x x →→→--====-+-+ 其中3x =为函数()239x f x x -=-的可去间断点倘若运用罗比达法则求解(详见第三章第二节):解:()()0233323311lim lim lim 9269x L x x x x x x x '→→→'--===-'- ○连续函数穿越定理(复合函数的极限求解)(★★) (定理五)若函数()x f 是定义域上的连续函数,那么,()()00lim lim x x x x f x f x ϕϕ→→⎡⎤=⎡⎤⎣⎦⎢⎥⎣⎦ 【题型示例】求值:93lim 23--→x x x【求解示例】36x →===第六节 极限存在准则及两个重要极限○夹迫准则(P53)(★★★) 第一个重要极限:1sin lim 0=→xxx∵⎪⎭⎫⎝⎛∈∀2,0πx ,x x x tan sin <<∴1sin lim0=→x x x 0000lim11lim lim 1sin sin sin lim x x x x x x x x x x →→→→===⎛⎫⎪⎝⎭(特别地,000sin()lim1x x x x x x →-=-)○单调有界收敛准则(P57)(★★★)第二个重要极限:e x xx =⎪⎭⎫⎝⎛+∞→11lim(一般地,()()()()lim lim lim g x g x f x f x =⎡⎤⎡⎤⎣⎦⎣⎦,其中()0lim >x f )【题型示例】求值:11232lim +∞→⎪⎭⎫ ⎝⎛++x x x x【求解示例】()()211121212122121122122121lim21221232122lim lim lim 121212122lim 1lim 121212lim 121x x x x x x x x x x x x x x x x x x x x x x x x +++→∞→∞+→∞⋅++++⋅⋅+++→∞+→∞++→∞+++⎛⎫⎛⎫⎛⎫==+ ⎪ ⎪ ⎪+++⎝⎭⎝⎭⎝⎭⎡⎤⎛⎫⎛⎫⎢⎥=+=+ ⎪ ⎪⎢⎥++⎝⎭⎝⎭⎣⎦⎡⎤⎛⎫⎢⎥=+⎪⎢⎥+⎝⎭⎣⎦解:()()12lim 1212121212122lim 121x x x x x x x x x ee e e+→∞⎡⎤⋅+⎢⎥+⎣⎦+→∞+→∞⎡⎤⋅+⎢⎥+⎣⎦+⎛⎫⎪+⎝⎭====第七节 无穷小量的阶(无穷小的比较) ○等价无穷小(★★)1.()~sin ~tan ~arcsin ~arctan ~ln(1)~1UU U U U U U e +- 2.U U cos 1~212-(乘除可替,加减不行)【题型示例】求值:()()xx x x x x 31ln 1ln lim 20++++→ 【求解示例】()()()()()()()3131lim 31lim 31ln 1lim 31ln 1ln lim,0,000020=++=+⋅+=++⋅+=++++=≠→→→→→x x x x x x x x x x x x x x x x x x x x x 所以原式即解:因为第八节 函数的连续性○函数连续的定义(★)()()()000lim lim x x x x f x f x f x -+→→==○间断点的分类(P67)(★)⎩⎨⎧∞⋯⋯⎩⎨⎧)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数()⎩⎨⎧+=x a e x f x 2 ,00≥<x x 应该怎样选择数a ,使得()x f 成为在R 上的连续函数?【求解示例】1.∵()()()2010000f e e e f a a f a --⋅++⎧===⎪⎪=+=⎨⎪=⎪⎩2.由连续函数定义()()()e f x f x f x x ===+-→→0lim lim 0∴e a =第九节 闭区间上连续函数的性质 ○零点定理(★)【题型示例】证明:方程()()f x g x C =+至少有一个根介于a 与b 之间 【证明示例】1.(建立辅助函数)函数()()()x f x g x C ϕ=--在闭区间[],a b 上连续;2.∵()()0a b ϕϕ⋅<(端点异号)3.∴由零点定理,在开区间()b a ,内至少有一点ξ,使得()0=ξϕ,即()()0fg C ξξ--=(10<<ξ) 4.这等式说明方程()()f x g x C =+在开区间()b a ,内至少有一个根ξ 第二章 导数与微分第一节 导数概念○高等数学中导数的定义及几何意义(P83)(★★)【题型示例】已知函数()⎩⎨⎧++=b ax e x f x1 ,00>≤x x 在0=x 处可导,求a ,b【求解示例】1.∵()()0010f e f a -+'⎧==⎪⎨'=⎪⎩,()()()00001120012f e e f b f e --+⎧=+=+=⎪⎪=⎨⎪=+=⎪⎩2.由函数可导定义()()()()()0010002f f a f f f b -+-+''===⎧⎪⎨====⎪⎩ ∴1,2a b ==【题型示例】求()x f y =在a x =处的切线与法线方程 (或:过()x f y =图像上点(),a f a ⎡⎤⎣⎦处的切线与法线方程) 【求解示例】1.()x f y '=',()a f y a x '='=| 2.切线方程:()()()y f a f a x a '-=- 法线方程:()()()1y f a x a f a -=--' 第二节 函数的和(差)、积与商的求导法则○函数和(差)、积与商的求导法则(★★★) 1.线性组合(定理一):()u v u v αβαβ'''±=+ 特别地,当1==βα时,有()u v u v '''±=± 2.函数积的求导法则(定理二):()uv u v uv '''=+3.函数商的求导法则(定理三):2u u v uv v v '''-⎛⎫= ⎪⎝⎭第三节 反函数和复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数()x f1-的导数【求解示例】由题可得()x f 为直接函数,其在定于域D上单调、可导,且()0≠'x f ;∴()()11fx f x -'⎡⎤=⎣⎦' ○复合函数的求导法则(★★★)【题型示例】设(ln y e =,求y '【求解示例】(22arcsi y ex a e e e ''='⎛⎫' ⎪+=⎝⎛⎫⎪ =⎝⎭=解:⎛ ⎝第四节 高阶导数 ○()()()()1n n fx fx -'⎡⎤=⎣⎦(或()()11n n n n d y d y dx dx --'⎡⎤=⎢⎥⎣⎦)(★) 【题型示例】求函数()x y +=1ln 的n 阶导数 【求解示例】()1111y x x-'==++, ()()()12111y x x --'⎡⎤''=+=-⋅+⎣⎦, ()()()()()2311121y x x --'⎡⎤'''=-⋅+=-⋅-⋅+⎣⎦……()1(1)(1)(1)nn n y n x --=-⋅-⋅+!第五节 隐函数及参数方程型函数的导数 ○隐函数的求导(等式两边对x 求导)(★★★) 【题型示例】试求:方程ye x y +=所给定的曲线C :()x y y =在点()1,1e -的切线方程与法线方程【求解示例】由ye x y +=两边对x 求导即()y y x e '''=+化简得1yy e y ''=+⋅∴ee y -=-='11111 ∴切线方程:()e x ey +--=-1111法线方程:()()e x e y +---=-111○参数方程型函数的求导【题型示例】设参数方程()()⎩⎨⎧==t y t x γϕ,求22dx yd【求解示例】1.()()t t dx dy ϕγ''= 2.()22dy d y dx dxt ϕ'⎛⎫⎪⎝⎭=' 第六节 变化率问题举例及相关变化率(不作要求)第七节 函数的微分○基本初等函数微分公式与微分运算法则(★★★) ()dx x f dy ⋅'=第三章 中值定理与导数的应用第一节 中值定理 ○引理(费马引理)(★) ○罗尔定理(★★★) 【题型示例】现假设函数()f x 在[]0,π上连续,在()0,π 上可导,试证明:()0,ξπ∃∈, 使得()()cos sin 0ff ξξξξ'+=成立【证明示例】1.(建立辅助函数)令()()sin x f x x ϕ=显然函数()x ϕ在闭区间[]0,π上连续,在开区间()0,π上可导;2.又∵()()00sin00f ϕ==()()sin 0f ϕπππ== 即()()00ϕϕπ==3.∴由罗尔定理知()0,ξπ∃∈,使得()()cos sin 0f f ξξξξ'+=成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x >时,xe e x >⋅ 【证明示例】1.(建立辅助函数)令函数()x f x e =,则对1x ∀>,显然函数()f x 在闭区间[]1,x 上连续,在开区间()1,x 上可导,并且()x f x e '=;2.由拉格朗日中值定理可得,[]1,x ξ∃∈使得等式()11x e e x e ξ-=-成立,又∵1e e ξ>,∴()111x e e x e e x e ->-=⋅-,化简得x e e x >⋅,即证得:当1x >时,xe e x >⋅ 【题型示例】证明不等式:当0x >时,()ln 1x x +< 【证明示例】1.(建立辅助函数)令函数()()ln 1f x x =+,则对0x ∀>,函数()f x 在闭区间[]0,x 上连续,在开区间()0,π上可导,并且()11f x x'=+;2.由拉格朗日中值定理可得,[]0,x ξ∃∈使得等式()()()1ln 1ln 1001x x ξ+-+=-+成立,化简得()1ln 11x x ξ+=+,又∵[]0,x ξ∈, ∴()111f ξξ'=<+,∴()ln 11x x x +<⋅=, 即证得:当1x >时,xe e x >⋅第二节 罗比达法则○运用罗比达法则进行极限运算的基本步骤(★★) 1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类型及是否满足运用罗比达法则的三个前提条件 A .属于两大基本不定型(0,0∞∞)且满足条件,则进行运算:()()()()lim limx a x a f x f x g x g x →→'=' (再进行1、2步骤,反复直到结果得出)B .☆不属于两大基本不定型(转化为基本不定型) ⑴0⋅∞型(转乘为除,构造分式) 【题型示例】求值:0lim ln x x x α→⋅【求解示例】()10000201ln ln lim ln lim lim lim 111lim 0x x L x x x x x x x x x x x x x a ααααααα∞∞-'→→→→→'⋅===⋅'⎛⎫- ⎪⎝⎭=-=解: (一般地,()0lim ln 0x x x βα→⋅=,其中,R αβ∈)⑵∞-∞型(通分构造分式,观察分母) 【题型示例】求值:011lim sin x x x →⎛⎫-⎪⎝⎭【求解示例】200011sin sin lim lim lim sin sin x x x x x x x x x x x x →→→--⎛⎫⎛⎫⎛⎫-== ⎪ ⎪ ⎪⋅⎝⎭⎝⎭⎝⎭解:()()()()000002sin 1cos 1cos sin limlim lim lim 0222L x x L x x x x x x xx x x ''→→→→''---====='' ⑶00型(对数求极限法)【题型示例】求值:0lim xx x →【求解示例】()()0000lim ln ln 000002ln ,ln ln ln 1ln ln 0lim ln lim lim111lim lim 0lim lim 11x x x x x L x yy x x x x x y x y x x x xx xx y xx x x y e e e x→∞∞'→→→→→→→===='→=='⎛⎫ ⎪⎝⎭==-=====-解:设两边取对数得:对对数取时的极限:,从而有 ⑷1∞型(对数求极限法)【题型示例】求值:()10lim cos sin xx x x →+【求解示例】()()()()()1000000lim ln ln 10ln cos sin cos sin ,ln ,ln cos sin ln 0limln limln cos sin cos sin 10lim lim 1,cos sin 10lim =lim x xx x L x x yy x x x x y x x y xx x y x y xx x x x x x x y e e e e→→→'→→→→+=+=+→='+⎡⎤--⎣⎦====++'===解:令两边取对数得对求时的极限,从而可得⑸0∞型(对数求极限法) 【题型示例】求值:tan 01lim xx x →⎛⎫⎪⎝⎭【求解示例】()()tan 00200020*******,ln tan ln ,1ln 0lim ln lim tan ln 1ln ln lim limlim 1sec 1tan tan tan sin sin lim lim li xx x x L x x x L x y y x x x y x y x x x xx x x xx x x x x →→∞∞'→→→'→→⎛⎫⎛⎫==⋅ ⎪⎪⎝⎭⎝⎭⎡⎤⎛⎫→=⋅ ⎪⎢⎥⎝⎭⎣⎦'=-=-=-⎛⎫'⎛⎫-⎪ ⎪⎝⎭⎝⎭'==='解:令两边取对数得对求时的极限,00lim ln ln 002sin cos m 0,1lim =lim 1x x yy x x x xy e e e →→→→⋅====从而可得○运用罗比达法则进行极限运算的基本思路(★★)00001∞⎧⎪∞-∞−−→←−−⋅∞←−−⎨∞⎪∞⎩∞(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分式形式) ⑶取对数获得乘积式(通过对数运算将指数提前)第三节 泰勒中值定理(不作要求) 第四节 函数的单调性和曲线的凹凸性 ○连续函数单调性(单调区间)(★★★) 【题型示例】试确定函数()3229123f x x x x =-+-的单调区间 【求解示例】1.∵函数()f x 在其定义域R 上连续,且可导∴()261812f x x x '=-+2.令()()()6120f x x x '=--=,解得:121,2x x ==4.∴函数f x 的单调递增区间为,1,2,-∞+∞; 单调递减区间为()1,2【题型示例】证明:当0x >时,1xe x >+ 【证明示例】1.(构建辅助函数)设()1x x e x ϕ=--,(0x >)2.()10xx e ϕ'=->,(0x >)∴()()00x ϕϕ>=3.既证:当0x >时,1xe x >+【题型示例】证明:当0x >时,()ln 1x x +<【证明示例】1.(构建辅助函数)设()()ln 1x x x ϕ=+-,(0x >)2.()1101x xϕ'=-<+,(0x >) ∴()()00x ϕϕ<=3.既证:当0x >时,()ln 1x x +<○连续函数凹凸性(★★★)【题型示例】试讨论函数2313y x x =+-的单调性、极值、凹凸性及拐点【证明示例】1.()()236326661y x x x x y x x '⎧=-+=--⎪⎨''=-+=--⎪⎩ 2.令()()320610y x x y x '=--=⎧⎪⎨''=--=⎪⎩解得:120,21x x x ==⎧⎨=⎩3.(四行表)x(,0)-∞ 0(0,1) 1(1,2) 2(2,)+∞y '-++- y '' ++--y1 (1,3) 5 4.⑴函数13y x x =+-单调递增区间为(0,1),(1,2)单调递增区间为(,0)-∞,(2,)+∞;⑵函数2313y x x =+-的极小值在0x =时取到,为()01f =,极大值在2x =时取到,为()25f =;⑶函数2313y x x =+-在区间(,0)-∞,(0,1)上凹,在区间(1,2),(2,)+∞上凸;⑷函数2313y x x =+-的拐点坐标为()1,3第五节 函数的极值和最大、最小值○函数的极值与最值的关系(★★★)⑴设函数()f x 的定义域为D ,如果M x ∃的某个邻域()M U x D ⊂,使得对()M x U x ∀∈,都适合不等式()()M f x f x <,我们则称函数()f x 在点(),M M x f x ⎡⎤⎣⎦处有极大值()M f x ;令{}123,,,...,M M M M Mn x x x x x ∈则函数()f x 在闭区间[],a b 上的最大值M 满足:()(){}123max ,,,,...,,M M M Mn M f a x x x x f b =;⑵设函数()f x 的定义域为D ,如果m x ∃的某个邻域()m U x D ⊂,使得对()m x U x ∀∈,都适合不等式()()m f x f x >,我们则称函数()f x 在点(),m m x f x ⎡⎤⎣⎦处有极小值()m f x ;令{}123,,,...,m m m m mn x x x x x ∈则函数()f x 在闭区间[],ab 上的最小值m 满足:()(){}123min ,,,,...,,m m m mn m f a x x x x f b =;【题型示例】求函数()33f x x x =-在[]1,3-上的最值 【求解示例】1.∵函数()f x 在其定义域[]1,3-上连续,且可导 ∴()233f x x '=-+2.令()()()3110f x x x '=--+=, 解得:121,1x x =-= .(三行表)x1- ()1,1-1 (]1,3()f x ' 0+-()f x极小值极大值4.又∵12,12,318f f f -=-==- ∴()()()()max min 12,318f x f f x f ====- 第六节 函数图形的描绘(不作要求) 第七节 曲率(不作要求)第八节 方程的近似解(不作要求) 第四章 不定积分第一节 不定积分的概念与性质 ○原函数与不定积分的概念(★★) ⑴原函数的概念:假设在定义区间I 上,可导函数()F x 的导函数为()F x ',即当自变量x I ∈时,有()()F x f x '=或()()dF x f x dx =⋅成立,则称()F x 为()f x 的一个原函数⑵原函数存在定理:(★★)如果函数()f x 在定义区间I 上连续,则在I 上必存在可导函数()F x 使得()()F x f x '=,也就是说:连续函数一定存在原函数(可导必连续) ⑶不定积分的概念(★★)在定义区间I 上,函数()f x 的带有任意常数项C 的原函数称为()f x 在定义区间I 上的不定积分,即表示为:()()f x dx F x C =+⎰(⎰称为积分号,()f x 称为被积函数,()f x dx 称为积分表达式,x 则称为积分变量)○基本积分表(★★★)○不定积分的线性性质(分项积分公式)(★★★)()()()()1212k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ 第二节 换元积分法○第一类换元法(凑微分)(★★★) (()dx x f dy ⋅'=的逆向应用)()()()()f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰【题型示例】求221dx a x +⎰【求解示例】222211111arctan 11x x dx dx d Ca x a a aa x x a a ⎛⎫===+ ⎪+⎝⎭⎛⎫⎛⎫++ ⎪ ⎪⎝⎭⎝⎭⎰⎰⎰解:【题型示例】求【求解示例】()()121212x x C=+=+=○第二类换元法(去根式)(★★)(()dx x f dy ⋅'=的正向应用)⑴对于一次根式(0,a b R ≠∈):t =,于是2t b x a-=,则原式可化为t⑵对于根号下平方和的形式(0a >):tan x a t =(22t ππ-<<),于是arctan xt a=,则原式可化为sec a t ;⑶对于根号下平方差的形式(0a >):asin x a t =(22t ππ-<<),于是arcsin xt a=,则原式可化为cos a t ;bsec x a t =(02t π<<),于是arccos at x =,则原式可化为tan a t ;【题型示例】求(一次根式) 【求解示例】2221t x t dx tdttdt dt t C Ct =-=⋅==+=⎰⎰【题型示例】求(三角换元)【求解示例】()()2sin ()2222arcsincos 22cos 1cos 221sin 2sin cos 222x a t t xt adx a ta a tdt t dta a t t C t t t C ππ=-<<==−−−−−−→=+⎛⎫=++=++ ⎪⎝⎭⎰⎰第三节 分部积分法 ○分部积分法(★★)⑴设函数()u f x =,()v g x =具有连续导数,则其分部积分公式可表示为:udv uv vdu =-⎰⎰⑵分部积分法函数排序次序:“反、对、幂、三、指” ○运用分部积分法计算不定积分的基本步骤: ⑴遵照分部积分法函数排序次序对被积函数排序; ⑵就近凑微分:(v dx dv '⋅=) ⑶使用分部积分公式:udv uv vdu =-⎰⎰⑷展开尾项vdu v u dx '=⋅⎰⎰,判断a .若v u dx '⋅⎰是容易求解的不定积分,则直接计算出答案(容易表示使用基本积分表、换元法与有理函数积分可以轻易求解出结果); b .若v u dx '⋅⎰依旧是相当复杂,无法通过a 中方法求解的不定积分,则重复⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2x e x dx ⋅⎰【求解示例】()()222222222222222x x x x x x x x x x x x x x x e x dx x e dx x de x e e d x x e x e dx x e x d e x e xe e dx x e xe e C⋅===-=-⋅=-⋅=-+=-++⎰⎰⎰⎰⎰⎰⎰解:【题型示例】求sin x e xdx ⋅⎰【求解示例】()()()()sin cos cos cos cos cos cos sin cos sin sin cos sin sin x x x xx x x x x x x x x x e xdx e d x e x xd ee x e xdx e x e d x e x e x xd e e x e x e xdx⋅=-=-+=-+=-+=-+-=-+-⎰⎰⎰⎰⎰⎰⎰解:()sin cos sin sin x x x x e xdx e x e x xd e ⋅=-+-⎰⎰即:∴()1sin sin cos 2xxe xdx e x x C ⋅=-+⎰第四节 有理函数的不定积分 ○有理函数(★)设:()()()()101101m m mn n nP x p x a x a x a Q x q x b x b x b --=++⋯+==++⋯+ 对于有理函数()()P x Q x ,当()P x 的次数小于()Q x 的次数时,有理函数()()P x Q x 是真分式;当()P x 的次数大于()Q x 的次数时,有理函数()()P x Q x 是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数()()P x Q x 的分母()Q x 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示为一次因式()kx a -;而另一个多项式可以表示为二次质因式()2lx px q ++,(240p q -<);即:()()()12Q x Q x Q x =⋅一般地:n mx n m x m ⎛⎫+=+ ⎪⎝⎭,则参数n a m =-22b c ax bx c a x x a a ⎛⎫++=++ ⎪⎝⎭则参数,b cp q a a ==⑵则设有理函数()()P x Q x 的分拆和式为:()()()()()()122k lP x P x P x Q x x a x px q =+-++其中()()()()1122...k kkP x A A A x a x a x a x a =+++----()()()()2112222222...ll llP x M x N M x N x px q x px q x px q M x N x px q ++=++++++++++++参数121212,,...,,,,...,l k lM M M A A A N N N ⎧⎧⎧⎨⎨⎨⎩⎩⎩由待定系数法(比较法)求出⑶得到分拆式后分项积分即可求解【题型示例】求21x dx x +⎰(构造法) 【求解示例】()()()221111111111ln 112x x x x dx dx x dx x x x xdx dx dx x x x Cx +-++⎛⎫==-+ ⎪+++⎝⎭=-+=-++++⎰⎰⎰⎰⎰⎰第五节 积分表的使用(不作要求)第五章 定积分极其应用第一节 定积分的概念与性质 ○定积分的定义(★)()()01lim nbiiai f x dx f x I λξ→==∆=∑⎰(()f x 称为被积函数,()f x dx 称为被积表达式,x则称为积分变量,a 称为积分下限,b 称为积分上限,[],a b 称为积分区间)○定积分的性质(★★★)⑴()()b baaf x dx f u du =⎰⎰ ⑵()0a af x dx =⎰ ⑶()()b ba akf x dx k f x dx =⎡⎤⎣⎦⎰⎰⑷(线性性质)()()()()1212b b ba a a k f x k g x dx k f x dx k g x dx +=+⎡⎤⎣⎦⎰⎰⎰ ⑸(积分区间的可加性)()()()bc baacf x dx f x dx f x dx =+⎰⎰⎰⑹若函数()f x 在积分区间[],a b 上满足()0f x >,则()0baf x dx >⎰;(推论一)若函数()f x 、函数()g x 在积分区间[],a b 上满足()()f x g x ≤,则()()b baaf x dxg x dx ≤⎰⎰;(推论二)()()b baaf x dx f x dx ≤⎰⎰○积分中值定理(不作要求) 第二节 微积分基本公式○牛顿-莱布尼兹公式(★★★)(定理三)若果函数()F x 是连续函数()f x 在区间[],a b 上的一个原函数,则()()()baf x dx F b F a =-⎰○变限积分的导数公式(★★★)(上上导―下下导)()()()()()()()x x d f t dt f x x f x x dxϕψϕϕψψ''=-⎡⎤⎡⎤⎣⎦⎣⎦⎰ 【题型示例】求21cos 2limt xx e dt x -→⎰【求解示例】()2211cos cos 2002lim lim 解:t t x x x L x d e dt e dt dx x x--'→→='⎰⎰()()()()2222221cos cos000cos 0cos cos 0cos 010sin sin limlim 22sin lim 2cos sin 2sin cos lim21lim sin cos 2sin cos 21122xxx x xL x xxx x x e ex x e xxdx e dx x x ex ex xe x x x x e e---→→-'→--→-→-⋅-⋅-⋅==⋅='⋅+⋅⋅=⎡⎤=+⋅⎣⎦=⋅=第三节 定积分的换元法及分部积分法 ○定积分的换元法(★★★) ⑴(第一换元法)()()()()b ba a f x x dx f x d x ϕϕϕϕ'⋅=⋅⎡⎤⎡⎤⎡⎤⎣⎦⎣⎦⎣⎦⎰⎰ 【题型示例】求20121dx x +⎰【求解示例】()[]222000111121ln 212122121ln 5ln 5ln122解:dx d x x x x =+=⎡+⎤⎣⎦++=-=⎰⎰ ⑵(第二换元法)设函数()[],f x C a b ∈,函数()x t ϕ=满足: a .,αβ∃,使得()(),a b ϕαϕβ==;b .在区间[],αβ或[],βα上,()(),f t t ϕϕ'⎡⎤⎣⎦连续 则:()()()baf x dx f t t dt βαϕϕ'=⎡⎤⎣⎦⎰⎰。

高数复习资料

高数复习资料

高等数学期末复习资料第 1 页(共9 页)高等数学第一章函数与极限函数与极限函数与极限函数与极限第一节函数○函数基础(高中部分相关知识)(★)○邻域(去心邻域)(★)....,|Uaxxa.........,|0Uaxxa......第二节数列的极限数列的极限数列的极限数列的极限○数列极限的证明(★)【题型示例】已知数列..nx,证明..limnxxa...【证明示例】N..语言1.由nxa...化简得...gn.,∴..Ng......2.即对0...,..Ng.......,当Nn.时,始终有不等式nxa...成立,∴..axnx (i)第三节函数的极限函数的极限函数的极限函数的极限○0xx.时函数极限的证明(★)【题型示例】已知函数..xf,证明..Axfxx..0lim【证明示例】...语言1.由..fxA...化简得..00xxg....,∴....g.2.即对.. . 0 ,....g..,当00xx....时,始终有不等式..fxA...成立,∴ f .x. Ax x.. 0lim○..x时函数极限的证明(★)【题型示例】已知函数 f .x. ,证明..Axfx (i)【证明示例】X..语言1.由..fxA...化简得..xg..,∴ (X)2.即对.. . 0 ,...gX..,当Xx.时,始终有不等式..fxA...成立,∴..Axfx (i)第四节无穷小与大无穷小与大无穷小与大无穷小与大无穷小与大○无穷小与大的本质(★)函数..xf无穷小...0lim.xf函数..xf无穷大.....xflim○无穷小与大的相关定理推论(★)(定理三)假设 f .x. 为有界函数,..xg为无穷小,则....lim0fxgx......(定理四)在自变量的某个化过程中,若在自变量的某个化过程中,若..xf为无穷大,则无穷大,则无穷大,则..1fx.为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若为无穷小;反之,若..xf为无穷小,且..0fx.,则..xf1.为无穷大【题型示例】计算:....0limxxfxgx......(或..x)1.∵..fx≤M∴函数..fx在0xx.的任一去心邻域...,0xU.内是有界的;(∵..fx≤M ,∴函数..fx在Dx.上有界;)2...0lim0..xgxx即函数..xg是0xx.时的无穷小;(..0lim...xgx即函数g.x. 是x . . 时的无穷小;)3.由定理可知....0lim0xxfxgx.......(....lim0xfxgx........)第五节极限运算法则极限运算法则极限运算法则极限运算法则极限运算法则○极限的四则运算法(★)(定理一)加减法则(定理二)乘除法则关于多项式..px、..xq商式的极限运算设:.....................nnnmmmbxbxbxqaxaxaxp110110则有...............0lim00baxqxpxmnmnmn...........000lim00xxfxgxfxgx......................0000000,00gxgxfxgxfx.....(特别地,当....00lim0xxfxgx..(不定型)时,通常分子分母约去公因式约去公因式约去公因式即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便即约去可间断点便可求解出极可求解出极可求解出极限值,也可以用罗比达法则求解)【题型示例】求值233lim9xxx...高等数学期末复习资料第 2 页(共9 页)【求解示例】解:因为3.x,从而可得3.x,所以原式....23333311limlimlim93336xxxxxxxxx.............其中3x.为函数..239xfxx...的可去间断点倘若运用罗比达法则求解(详见第三章二节):解:....00233323311limlimlim9269xLxxxxxxx.............○连续函数穿越定理(复合函数的极限求解)(★)(定理五)若函数..xf是定义域上的连续函数,那么,....00limlimxxxxfxfx...............【题型示例】求值:93lim23 (xxx)【求解示例】22333316limlim9966xxxxxx.........第六节极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要极限存在准则及两个重要○夹迫准则(P53P53)(★)第一个重要极限:1sinlim0..xxx∵........2,0.x,xxxtansin..∴ 1sinlim.. xxx0000lim11limlim1sinsinsinlimxxxxxxxxxx.............(特别地,000sin()lim1xxxxxx....)○单调有界收敛准则(P57P57)(★)第二个重要极限:exxx..........11lim(一般地,(一般地,(一般地,(一般地,........limlimlimgxgxfxfx.........,其中..0lim.xf)【题型示例】求值:11232lim (xxxx)【求解示例】....211121212122121122122121lim21221232122limlimlim121212122lim1lim121212lim121xxxx xxxxxxxxxxxxxxxxxxxx...................................................................................................解:....12lim1212121212122lim121xxxxxxxxxeeee.......................................第七节无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小量的阶(无穷小的比较无穷小的比较无穷小的比较)○等价无穷小(★)1...~sin~tan~arcsin~arctan~ln(1)~1UUUUUUUe..2.UUcos1~212.(乘除可替,加减不行)【题型示例】求值:....xxxxxx31ln1lnlim20.....【求解示例】..............3131lim31lim31ln1lim31ln1lnlim,0,000020........................xxxxxxxxxxxxxxxxxxxxx所以原式即解:因为第八节函数的连续性函数的连续性函数的连续性函数的连续性函数的连续性○函数连续的定义(★)......000limlimxxxxfxfxfx......○间断点的分类(P67P67)(★).........)无穷间断点(极限为第二类间断点可去间断点(相等)跳越间断点(不等)限存在)第一类间断点(左右极(特别地,可去间断点能在分式中约去相应公因式)【题型示例】设函数.......xaexfx2,00..xx应该怎样选择数a,使得..xf成为在R上的连续函数?【求解示例】1.∵......2010000feeefaafa...................2.由连续函数定义......efxfxfxx.......0limlim00∴ea.高等数学期末复习资料第 3 页(共9 页)第九节闭区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质区间上连续函数的性质○零点定理(★)【题型示例】证明:方程】证明:方程】证明:方程】证明:方程....fxgxC..至少有一个根介于a与b之间【证明示例】1.(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)(建立辅助函数)......xfxgxC....在闭区间..,ab上连续;2.∵....0ab....(端点异号)3.∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间∴由零点定理,在开区间..ba,内至少有一点.,使得..0...,即....0fgC.....(10...)4.这等式说明方程这等式说明方程这等式说明方程这等式说明方程....fxgxC..在开区间在开区间.a,b.内至少有一个根.第二章导数与微分导数与微分导数与微分导数与微分第一节导数概念○高等数学中导的定义及几何意(P83P83)(★)【题型示例】已知函数】已知函数】已知函数........baxexfx1,00..xx在0.x处可导,求a,b【求解示例】1.∵....0010fefa............,......00001120012feefbfe...................2.由函数可导定义..........0010002ffafffb..................∴1,2ab..【题型示例】求..xfy.在ax.处的切线与法方程(或:过(或:过(或:过..xfy.图像上点..,afa....处的切线与法处的切线与法处的切线与法处的切线与法方程)【求解示例】1...xfy...,..afyax....|2.切线方程:......yfafaxa....法线方程:......1yfaxafa.....第二节函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则函数的和(差)、积与商求导法则○函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则函数和(差)、积与商的求导法则★)1.线性组合(定理一):线性组合(定理一):()uvuv..........特别地,当1....时,有()uvuv......2.函数积的求导法则(定理二):函数积的求导法则(定理二):()uvuvuv.....3.函数商的求导法则(定理三):函数商的求导法则(定理三):2uuvuvvv...........第三节反函数和复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则复合函数的求导法则○反函数的求导法则(★)【题型示例】求函数..xf1.的导数【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得【求解示例】由题可得..xf为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域为直接函数,其在定于域D上单调、可导,且..0..xf;∴....11fxfx........○复合函数的求导法则(★)【题型示例】设..2arcsin122lnxyexa....,求y.【求解示例】................2222222arcsin122arcsin122222arcsin1222arcsin1222arcsin1222arcsin122arcsiarcsin12 211121*********xxxxxxxyexaexaxxaexaxexaxxxexxaeaeexa.......................................................... .......解:2n1222212xxxxxxa.............第四节高阶导数○........1nnfxfx.......(或....11nnnndydydxdx..........)(★)【题型示例】求函数..xy..1ln的n阶导数【求解示例】..1111yxx......,......12111yxx...............,..........2311121yxx....................……..1(1)(1)(1)nnnynx........!第五节隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导隐函数及参方程型的导○隐函数的求导(等式两边对x求导)(★)【题型示例】试求:方程】试求:方程】试求:方程】试求:方程yexy..所给定的曲线所给定的曲线所给定的曲线所给定的曲线C:..xyy.在点..1,1e.的切线方程与法【求解示例】由y y . x . e 两边对x 求导即..yyxe.....化简得1yyey.....∴eey (11111)高等数学期末复习资料第 4 页(共9 页)∴切线方程:..exey (1111)法线方程:....exey (111)○参数方程型函数的求导【题型示例】设参数方程.........tytx..,求22dxyd【求解示例】1.....ttdxdy.....2...22dydydxdxt..........第六节变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变化率问题举例及相关变(不作要求)第七节函数的微分函数的微分函数的微分函数的微分○基本初等函数微分公式与运算法则(★★★)..dxxfdy...第三章中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用中值定理与导数的应用第一节中值定理○引理(费马)(○引理(费马)(★)○罗尔定理(★)【题型示例】现假设函数..fx在..0,.上连续,在上连续,在上连续,在..0,.上可导,试证明:..0,....,使得....cossin0ff.......成立【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....sinxfxx..显然函数..x.在闭区间.0,. .上连续,在开区间开区间.0,. . 上可导;2.又∵....00sin00f.......sin0f......即....00.....3.∴由罗尔定理知....0,..,使得,使得. .c . . ossin0 f. f ... . . . 成立○拉格朗日中值定理(★)【题型示例】证明不等式:当1x.时,xeex..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令函数..xfxe.,则对1x..,显然函数..fx在闭区间..1,x上连续,在开区间..1,x上可导,并且..xfxe..;2.由拉格朗日中值定理可得,..1,x...使得等式..11xeexe....成立,又∵1ee..,∴..111xeexeexe......,化简得xeex..,即证得:当x .1时,x e ex . .【题型示例】证明不等式:当0x.时,..ln1xx..【证明示例】1.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令.(建立辅助函数)令....ln1fxx..,则对0x..,函数,函数 f .x. 在闭区间..0,x上连续,在开区上连续,在开区上连续,在开区上连续,在开区间.0,. . 上可导,并且..11fxx...;2.由拉格朗日中值定理可得,由拉格朗日中值定理可得,..0,x...使得等式......1ln1ln1001xx.......成立,化简得..1ln11xx....,又∵..0,x..,∴..111f......,∴..ln11xxx....,即证得:当x .1时,x e ex . .第二节罗比达法则罗比达法则罗比达法则罗比达法则○运用罗比达法则进行极限算的基本步骤(★)1.☆等价无穷小的替换(以简化运算)2.判断极限不定型的所属类及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比及是否满足运用罗比达法则的三个前提条件A.属于两大基本不定型(0,0..)且满足条件,则进行运算:........limlimxaxafxfxgxgx.....(再进行1、2步骤,反复直到结果得出)B.☆不属于两大基本定型(转化为基本不定型)⑴0..型(转乘为除,构造分式)【题型示例】求值:0limlnxxx...【求解示例】..10000201lnlnlimlnlimlimlim111lim0xxLxxxxxxxxxxxxxa.................................解:(一般地,..0limln0xxx.....,其中,R...)⑵...型(通分构造式,观察母)【题型示例】求值:011limsinxxx........【求解示例】200011sinsinlimlimlimsinsinxxxxxxxxxxxx...........................解:........000000002sin1cos1cossinlimlimlimlim0222LxxLxxxxxxxxxx..................高等数学期末复习资料第 5 页(共9 页)⑶00型(对数求极限法)【题型示例】求值:0limxxx.【求解示例】....0000limlnln000002ln,lnlnln1lnln0limlnlimlim111limlim0limlim11xxxxxLxyyxxxxxyxyxxxxxx xyxxxxyeeex...................................解:设两边取对数得:对对数取时的极限:,从而有⑷1.型(对数求极限法)【题型示例】求值:..10limcossinxxxx..【求解示例】..........01000000limlnln100lncossincossin,ln,lncossinln0limlnlimlncossincossin10limlim1,cossin1 0lim=limxxxxLxxyyxxxxyxxyxxxyxyxxxxxxxxyeeee.................................解:令两边取对数得对求时的极限,从而可得⑸0.型(对数求极限法)【题型示例】求值:tan01limxxx.......【求解示例】....tan002000202200011,lntanln,1ln0limlnlimtanln1lnlnlimlimlim1sec1tantantansinsinlimlimlixxx xLxxxLxyyxxxyxyxxxxxxxxxxxxx...................................................................解:令两边取对数得对求时的极限,00limlnln0002sincosm0,1lim=lim1xxyyxxxxyeee.........从而可得○运用罗比达法则进行极限算的基本思路(★)0000001.......................(1)(2)(3)⑴通分获得分式(通常伴有等价无穷小的替换)⑵取倒数获得分式(将乘积形式转化为分)⑶取对数获得乘积式(通过对数运算将指提前)第三节泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理泰勒中值定理(不作要求)(不作要求)(不作要求)(不作要求)第四节函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸函数的单调性和曲线凹凸○连续函数单调性(单调区间)(★)【题型示例】试确定函数】试确定函数】试确定函数】试确定函数..3229123fxxxx....的单调区间【求解示例】1.∵函数..fx在其定义域R上连续,且可导∴..261812fxxx....2.令......6120fxxx.....,解得:,解得:,解得:121,2xx..3.(三行表).(三行表).(三行表).(三行表)x..,1..1..1,22..2,....fx......fx极大值极小值4.∴函数 f .x. 的单调递增区间为....,1,2,....;单调递减区间为..1,2【题型示例】证明:当0x.时,1xex..【证明示例】1.(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数).(构建辅助函数)设..1xxex....,(0x.)2...10xxe.....,(x . 0 )∴....00x....3.既证:当x . 0 时,1 x e .x.【题型示例】证明:当x . 0 时,..ln1xx..【证明示例】1.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设.(构建辅助函数)设....ln1xxx....,(x . 0 )2...1101xx......,(x . 0 )∴....00x....3.既证:当x . 0 时,l . . n1 .x .x○连续函数凹凸性(★)【题型示例】试讨论函数2313yxx...的单调性、极值的单调性、极值的单调性、极值的单调性、极值的单调性、极值凹凸性及拐点【证明示例】高等数学期末复习资料第 6 页(共9 页)1.....236326661yxxxxyxx........................320610yxxyx................120,21xxx......3.(四行表)x(,0)..(0,1)1(1,2)2(2,)..y.....y......y1(1,3)4.⑴函数 2 3 y 1 3xx . ..单调递增区间为(0,1), (1,2) 单调递增区间为( ,0) .. , (2,) .. ;⑵函数 2 3 y 1 3xx . ..的极小值在0x.时取到,为..01f.,极大值在2x.时取到,为..25f.;⑶函数 2 3 y 1 3xx . ..在区间( ,0) .. , (0,1)上凹,在区间(1,2), (2,) .. 上凸;⑷函数 2 3 y 1 3xx . ..的拐点坐标为..1,3第五节函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小函数的极值和最大、小○函数的极值与最关系(★)⑴设函数..fx的定义域为的定义域为的定义域为D,如果Mx.的某个邻域..MUxD.,使得对..MxUx..,都适合不等式....Mfxfx.,我们则称函数 f .x. 在点..,MMxfx....处有极大值..Mfx;令..123,,,...,MMMMMnxxxxx.则函数 f .x. 在闭区间..,ab上的最大值M满足:......123max,,,,...,,MMMMnMfaxxxxfb.⑵设函数 f .x. 的定义域为D,如果,如果mx.的某个邻域..mUxD.,使得对,使得对,使得对..mxUx..,都适合不等,都适合不等,都适合不等,都适合不等,都适合不等式....mfxfx.,我们则称函数我们则称函数我们则称函数我们则称函数 f .x. 在点..,mmxfx....处有极小值..mfx;令..123,,,...,mmmmmnxxxxx.则函数 f .x. 在闭区间.a,b. 上的最小值m满足:......123min,,,,...,,mmmmnmfaxxxxfb.;【题型示例】求函数..33fxxx..在..1,3.上的最值【求解示例】1.∵函数 f .x. 在其定义域. 1 . ,3 . 上连续,且可导∴..233fxx....2.令......3110fxxx......,解得:121,1xx...3.(三行表).(三行表).(三行表).(三行表)x1...1,1.1..1,3f. .x...f .x.极小值极大值4.又∵......12,12,318fff......∴........maxmin12,318fxffxf.....第六节函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘函数图形的描绘(不作要求)(不作要求)(不作要求)第七节曲率(不作要求)(不作要求)(不作要求)(不作要求)第八节方程的近似解方程的近似解方程的近似解方程的近似解方程的近似解(不作要求)(不作要求)(不作要求)(不作要求)第四章不定积分第一节不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质不定积分的概念与性质○原函数与不定积分的概念(★)⑴原函数的概念:假设在定义区间I上,可导函数上,可导函数上,可导函数..Fx的导函数为..Fx.,即当自变量,即当自变量,即当自变量,即当自变量xI.时,有时,有....Fxfx..或....dFxfxdx..成立,则称成立,则称成立,则称成立,则称F.x. 为..fx的一个原函数⑵原函数存在定理:(★)如果函数..fx在定义区间I 上连续,则在I 上必存在可导函数..Fx使得 F . . . . xfx . . ,也就是说:连续函数一定存在原(可导必)⑶不定积分的概念(★)在定义区间I 上,函数上,函数f .x. 的带有任意常数项C的原函数称为 f .x. 在定义区间I 上的不定积分,即表示为:....fxdxFxC...(.称为积分号, f .x. 称为被积函数,..fxdx称为积分表达式,x则称为积分变量)○基本积分表(★)○不定积分的线性性质(分项积公式)(★)........1212kfxkgxdxkfxdxkgxdx..........第二节换元积分法换元积分法换元积分法换元积分法○第一类换元法(凑微分)((凑微分)((凑微分)((凑微分)(★)(dy . f ..x.. dx 的逆向应用)........fxxdxfxdx......................高等数学期末复习资料第7 页(共9 页)【题型示例】求221dxax..【求解示例】222211111arctan11xxdxdxdCaxaaaaxxaa............................解:【题型示例】求121dxx..【求解示例】....111121************dxdxdxxxxxC.............解:○第二类换元法(去根式)(★)(dy . f ..x.. dx的正向应用)⑴对于一次根式(0,abR..):axb.:令taxb..,于是2tbxa..,则原式可化为t⑵对于根号下平方和的形式(0a.):22ax.:令tanxat.(22t.....),于是arctanxta.,则原式可化为secat;⑶对于根号下平方差的形式( a . 0 ):a.22ax.:令sinxat.(2 2t. .. ..),于是arcsinxta.,则原式可化为cosat;b.22xa.:令secxat.(02t...),于是arccosatx.,则原式可化为tanat;【题型示例】求12 1dxx . . (一次根式)【求解示例】2211122112121txxtdxtdtdxtdtdttCxCtx.....................解:【题型示例】求22axdx..(三角换元)【求解示例】....2sin()222222arcsincos22cos1cos221sin2sincos222xattxtadxataaxdxatdttdtaattCtttC.................... .............解:第三节分部积法分部积法分部积法分部积法○分部积法(★)⑴设函数..ufx.,..vgx.具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其具有连续导数,则其分部积公式可表示为:udvuvvdu....⑵分部积法函数排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”排序次:“反、对幂三指”○运用分部积法计算不定积分的基本步骤:⑴遵照分部积法函数排序次对被;⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(⑵就近凑微分:(vdxdv...)⑶使用分部积公式:udvuvvdu . . ..⑷展开尾项vduvudx.....,判断a.若vudx...是容易求解的不定积分,则直接计,则直接计,则直接计算出答案(容易表示使用基本积分、换元法算出答案(容易表示使用基本积分、换元法与有理函数积分可以轻易求解出结果);与有理函数积分可以轻易求解出结果);b.若v udx . . . 依旧是相当复杂,无法通过a中方法求解的不定积分,则重复⑵、⑶,直至⑵、⑶,直至⑵、⑶,直至出现容易求解的不定积分;若重复过程中出现循环,则联立方程求解,但是最后要注意添上常数C【题型示例】求2xexdx..【求解示例】....222222222222222xxxxxxxxxxxxxxxexdxxedxxdexeedxxexedxxexdexexeedxxexeeC................ .........解:【题型示例】求sinxexdx..【求解示例】........sincoscoscoscoscoscossincossinsincossinsinxxxxxxxxxxxxxxexdxedxexxdeexexdxexedxexe xxdeexexexdx...........................解:..sincossinsinxxxxexdxexexxde.......即:∴..1sinsincos2xxexdxexxC.....第四节有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分有理函数的不定积分○有理函数(★)设:........101101mmmnnnPxpxaxaxaQxqxbxbxb.............对于有理函数....PxQx,当..Px的次数小于..Qx的次数时,有理函次数时,有理函次数时,有理函次数时,有理函. .. .P xQ x是真分式;当是真分式;当是真分式;当是真分式;当P.x. 的次数高等数学期末复习资料第8 页(共9 页)大于. . Q x 的次数时,有理函. .. .P xQ x是假分式○有理函数(真分式)不定积分的求解思路(★)⑴将有理函数将有理函数将有理函数将有理函数. .. .P xQ x的分母Q.x. 分拆成两个没有公因式的多项式的乘积:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示:其中一个多项式可以表示为一次因式..kxa.;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为;而另一个多项式可以表示为二次质因式..2lxpxq..,(240pq..);即:......12QxQxQx..一般地:nmxnmxm.........,则参数nam..22bcaxbxcaxxaa...........则参数,bcpqaa..⑵则设有理函数. .. .P xQ x的分拆和式为:............122klPxPxPxQxxaxpxq.....其中........1122...kkkPxAAAxaxaxaxa................2112222222...llllPxMxNMxNxpxqxpxqxpxqMxNxpxq...............参数121212,,...,,,,...,lklMMMAAANNN.........由待定系数法(比较)求出⑶得到分拆式后项积即可求解【题型示例】求21xdxx..(构造法)【求解示例】......221111111111ln112xxxxdxdxxdxxxxxdxdxdxxxxCx................................第五节积分表的使用积分表的使用积分表的使用积分表的使用积分表的使用(不作要求)(不作要求)(不作要求)(不作要求)第五章定积分极其应用定积分极其应用定积分极其应用定积分极其应用定积分极其应用第一节定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质定积分的概念与性质○定积分的义(★)....01limnbiiaifxdxfxI.........( f .x. 称为被积函数,f . . xdx称为被积表达式,x则称为积分变量,a称为积分下限,b称为积分上限,..,ab称为积分区间)○定积分的性质(★)⑴....bbaafxdxfudu...⑵..0aafxdx..⑶....bbaakfxdxkfxdx.......⑷(线性质)........1212bbbaaakfxkgxdxkfxdxkgxdx..........⑸(积分区间的可加性)......bcbaacfxdxfxdxfxdx.....⑹若函数..fx在积分区间.a,b. 上满足..0fx.,则..0bafxdx..;(推论一)若函数 f .x. 、函数、函数..gx在积分区间在积分区间在积分区间.a,b. 上满足....fxgx.,则....bbaafxdxgxdx...;(推论二)....bbaafxdxfxdx...○积分中值定理(不作要求)第二节微积分基本公式微积分基本公式微积分基本公式微积分基本公式微积分基本公式○牛顿-莱布尼兹公式(★)(定理三)若果函数..Fx是连续函数..fx在区间..,ab上的一个原函数,则......bafxdxFbFa...○变限积分的导数公式(★)(上导―下)..............xxdftdtfxxfxxdx...................【题型示例】求21cos20limtxxedtx...【求解示例】..221100coscos2002limlim解:ttxxxLxdedtedtdxxx.........高等数学期末复习资料第9 页(共9 页)........2222221coscos000cos00coscos0cos010sinsinlimlim22sinlim2cossin2sincoslim21limsincos2 sincos21122xxxxxLxxxxxxeexxexxdxedxxxexexxexxxee.......................................第三节定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部定积分的换元法及部○定积分的换元法(★)⑴(第一换元法)........bbaafxxdxfxdx......................【题型示例】求20121dxx..【求解示例】....222000111121ln212122121ln5ln5ln122解:dxdxxxx...............⑵(第二换元法)设函数....,fxCab.,函数..xt..满足:a.,...,使得....,ab......;b.在区间.在区间.在区间..,..或..,..上,....,ftt.......连续则:......bafxdxfttdt............【题型示例】求40221xdxx...【求解示例】..221210,43220,1014,332332311132222113111332223522933解:ttxxxtxttxdxdxtxttdttdttxt........................................⑶(分部积法)........................bbaabbbaaauxvxdxuxvxvxuxdxuxdvxuxvxvxdux..............○偶倍奇零(★)设....,fxCaa..,则有以下结论成立:⑴若....fxfx..,则....02aaafxdxfxdx....⑵若....fxfx...,则..0aafxdx...第四节定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用定积分在几何上的应用(不作要求)第五节定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用定积分在物理上的应用(不作要求)第六节反常积分(不作要求)(不作要求)(不作要求)(不作要求)如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式如:不定积分公式21arctan1dxxCx....的证明。

高数期末复习知识点

高数期末复习知识点

高数期末复习知识点
1. 函数的性质:
⑴单调性:f(x)在x上有定义,对x上的。

若f()f(),表示f(x)在x上单调递增。

⑵奇偶性:在定义域上
若f()=f(-x),表示f(x)为偶函数(关于y轴对称)。

若f()=-f(-x),称f(x)为奇函数(关于原点对称)。

⑶周期性:f(x)在x上加定义,t为非0常数,x及x+t为x上数。

若f()=f(x+t),称f(x)为周期为t的函数。

周期函数可以存有很多个周期,通常把最轻正周期称作周期。

18. 分段函数在分段点的连续性:计算分段点处的左右极限。

19. 连续函数运算的性质:
i、连续函数在定义域内的和差积商(分母不为0)仍是连续函数
ii、初等函数在其定义域内已连续。

iii、连续函数经有限次复合仍是连续函数。

iv、在定义域内已连续且单调的函数的反函数在对应定义域内已连续。

20. 闭区间上连续函数的性质:
i、存有界定理:闭区间上连续函数必有界。

ii、最值定理:闭区间上连续函数必有最大值m和最小值m。

iii、多值定理:设c介乎m,m之间,在闭区间内存有x使f(x)=c。

iv、零点定理:闭区间上连续函数在端点处异号,则在区间内至少存在一个x使得f(x)=0 。

高数期末复习总结

高数期末复习总结

高数期末复习总结一、函数与极限1. 函数函数是一种特殊的关系,它将集合中的每个元素对应到另一个集合中的唯一元素上。

函数一般用f(x)或者y来表示,其中x是自变量,y是因变量。

2. 极限极限是研究函数收敛性与连续性的重要概念。

对于函数f(x),当自变量x无限接近于某个值a时,因变量f(x)的值趋向于一个确定的值L,即lim(x->a)f(x)=L。

3. 极限的性质- 唯一性:如果极限存在,则极限值唯一。

- 有界性:有界数列必有收敛子数列。

- 保号性:如果数列收敛于非零数L,则数列的绝对值保持与L同号。

4. 极限的运算法则- 四则运算:函数的和、差、积、商的极限等于各个函数极限的和、差、积、商的极限。

- 复合函数:复合函数的极限等于函数的极限的复合。

- 函数与常数的乘积:函数与常数的乘积的极限等于函数的极限与常数的乘积的极限。

5. 无穷大与无穷小无穷大是指极限趋向于无穷大的函数,无穷小是指极限趋向于零的函数。

6. 连续性函数在某一点连续是指函数在该点的极限等于函数在该点的值。

如果函数在一个区间内的每个点都连续,则称函数在该区间上连续。

7. 中值定理中值定理是微积分中重要的定理,它包括了拉格朗日中值定理、柯西中值定理和罗尔中值定理。

这些定理揭示了函数在一定条件下存在某一点满足特殊性质。

二、导数与微分1. 导数导数描述了函数在某一点附近的变化率。

函数f(x)在点x=a处的导数用f'(a)表示,它等于函数在该点处的切线的斜率。

2. 导数的计算法则- 基本公式:导数的基本公式包括常数函数、幂函数、指数函数、对数函数、三角函数和反三角函数的导数。

- 四则运算:两个函数的和、差、积、商的导数等于各个函数导数的和、差、积、商的导数。

- 复合函数:复合函数的导数等于外函数的导数乘上内函数的导数。

3. 高阶导数高阶导数是指导数的导数。

如果函数f(x)的导数存在,我们可以继续对导数求导,得到2阶导数、3阶导数等。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

关于高等数学期末复习资料归纳大全Document serial number【KKGB-LBS98YT-BS8CB-BSUT-BST108】《高等数学复习》教程第一讲函数、连续与极限一、理论要求1.函数概念与性质函数的基本性质(单调、有界、奇偶、周期)几类常见函数(复合、分段、反、隐、初等函数)2.极限极限存在性与左右极限之间的关系夹逼定理和单调有界定理会用等价无穷小和罗必达法则求极限3.连续函数连续(左、右连续)与间断理解并会应用闭区间上连续函数的性质(最值、有界、介值)二、题型与解法A.极限的求法(1)用定义求(2)代入法(对连续函数,可用因式分解或有理化消除零因子)(3)变量替换法(4)两个重要极限法(5)用夹逼定理和单调有界定理求(6)等价无穷小量替换法(7)洛必达法则与Taylor级数法(8)其他(微积分性质,数列与级数的性质)1.612arctan lim )21ln(arctan lim3030-=-=+->->-x x x x x x x x (等价小量与洛必达)2.已知2030)(6lim0)(6sin limx x f x x xf x x x +=+>->-,求 解:20303')(6cos 6lim )(6sin lim x xy x f x x x xf x x x ++=+>->-362722''lim 2'lim )(6lim0020====+>->->-y x y x x f x x x (洛必达)3.121)12(lim ->-+x xx x x (重要极限)4.已知a 、b 为正常数,xx x x b a 30)2(lim +>-求解:令]2ln )[ln(3ln ,)2(3-+=+=x x x x x b a x t b a t2/300)()ln(23)ln ln (3lim ln lim ab t ab b b a a b a t xx x x x x =∴=++=>->-(变量替换)5.)1ln(12)(cos lim xx x +>-解:令)ln(cos )1ln(1ln ,)(cos 2)1ln(12x x t x t x +==+2/100212tan limln lim ->->-=∴-=-=e t x x t x x (变量替换)6.设)('x f 连续,0)0(',0)0(≠=f f ,求1)()(lim22=⎰⎰>-xx x dtt f xdtt f(洛必达与微积分性质)7.已知⎩⎨⎧=≠=-0,0,)ln(cos )(2x a x x x x f 在x=0连续,求a解:令2/1/)ln(cos lim 20-==>-x x a x (连续性的概念)三、补充习题(作业)1.3cos 11lim-=---->-xx x e x x (洛必达)2.)1sin 1(lim 0x x ctgx x ->- (洛必达或Taylor )3.11lim22=--->-⎰xx tx edtex(洛必达与微积分性质)第二讲导数、微分及其应用一、理论要求1.导数与微分导数与微分的概念、几何意义、物理意义会求导(基本公式、四则、复合、高阶、隐、反、参数方程求导)会求平面曲线的切线与法线方程2.微分中值定理理解Roll、Lagrange、Cauchy、Taylor定理会用定理证明相关问题3.应用会用导数求单调性与极最值、凹凸性、渐进线问题,能画简图会计算曲率(半径)二、题型与解法A.导数微分的计算基本公式、四则、复合、高阶、隐函数、参数方程求导1.⎩⎨⎧=+-==52arctan)(2tetyytxxyy由决定,求dxdy2.xyxyxxyy sin)ln()(32+=+=由决定,求1|==xdxdy解:两边微分得x=0时yxyy==cos',将x=0代入等式得y=13.yxxyy xy+==2)(由决定,则dxdyx)12(ln|-==B.曲线切法线问题4.求对数螺线)2/,2/πθρρπθee(),在(==处切线的直角坐标方程。

解:1|'),,0(|),(,sincos2/2/2/-==⎪⎩⎪⎨⎧====πθππθθθθθyeyxeyex(x)为周期为5的连续函数,它在x=1可导,在x=0的某邻域内满足f(1+sinx)-3f(1-sinx)=8x+o(x)。

求f(x)在(6,f(6))处的切线方程。

解:需求)1('),1()6('),6(ffff或,等式取x->0的极限有:f(1)=0C.导数应用问题6.已知xexfxxxfxxfy--=+=1)]('[2)('')(2满足对一切,)0(0)('0 0≠=xxf若,求),(yx点的性质。

解:令⎩⎨⎧<>>>===-,0,0)(''1xxxeexfxxxx代入,,故为极小值点。

7.23)1(-=xxy,求单调区间与极值、凹凸区间与拐点、渐进线。

解:定义域),1()1,(+∞-∞∈x8.求函数xexy arctan2/)1(+-=π的单调性与极值、渐进线。

解:11'arctan2/22-==⇒++=+xxexxxy x与驻点π,2)2(-=-=xyxey与渐:πD.幂级数展开问题9.⎰=-xxdttxdxd22sin)sin(或:2202sinsin)(sin xduudxdduudxdutx xx==-⇒=-⎰⎰10.求)0()1ln()()(2nfnxxxxf阶导数处的在=+=解:)(2)1(32()1ln(2213222---+--+⋅⋅⋅-+-=+n n n x o n x x x x x x x=)(2)1(321543n nn x o n x x x x +--+⋅⋅⋅-+-- 2!)1()0(1)(--=∴-n n f n n E.不等式的证明11.设)1,0(∈x ,211)1ln(112ln 1)1(ln )122<-+<-<++x x x x x ,求证( 证:1)令0)0(,)1(ln )1()(22=-++=g x x x x g2)令单调下降,得证。

,0)('),1,0(,1)1ln(1)(<∈-+=x h x x x x hF.中值定理问题12.设函数]11[)(,在-x f 具有三阶连续导数,且1)1(,0)1(==-f f ,0)0('=f ,求证:在(-1,1)上存在一点3)('''=ξξf ,使证:32)('''!31)0(''!21)0(')0()(x f x f x f f x f η+++=其中]1,1[),,0(-∈∈x x η将x=1,x=-1代入有)('''61)0(''21)0()1(1)('''61)0(''21)0()1(021ηηf f f f f f f f ++==-+=-=两式相减:6)(''')('''21=+ηηf f13.2e b a e <<<,求证:)(4ln ln 222a b e a b ->-证:)(')()(:ξf a b a f b f Lagrange =--令ξξln 2ln ln ,ln )(222=--=a b a b x x f令2222ln )()(0ln 1)(',ln )(e e t t t t t t >∴>∴<-==ξξϕξϕϕϕ)(4ln ln 222a b e a b ->- (关键:构造函数)三、补充习题(作业)1.23)0('',11ln)(2-=+-=y x x x f 求 2.曲线012)1,0(2cos 2sin =-+⎪⎩⎪⎨⎧==x y t e y te x tt处切线为在3.e x y x x e x y 1)0)(1ln(+=>+=的渐进线方程为 4.证明x>0时22)1(ln )1(-≥-x x x证:令3222)1(2)('''),(''),(',)1(ln )1()(x x x g x g x g x x x x g -=---=第三讲 不定积分与定积分 一、理论要求 1.不定积分 掌握不定积分的概念、性质(线性、与微分的关系)会求不定积分(基本公式、线性、凑微分、换元技巧、分部) 2.定积分理解定积分的概念与性质理解变上限定积分是其上限的函数及其导数求法 会求定积分、广义积分会用定积分求几何问题(长、面、体)会用定积分求物理问题(功、引力、压力)及函数平均值二、题型与解法 A.积分计算1.⎰⎰+-=--=-C x x dx x x dx 22arcsin)2(4)4(22.⎰⎰⎰+=+=+Cx e xdx e xdx e dx x e x x x xtan tan 2sec )1(tan 2222223.设x x x f )1ln()(ln +=,求⎰dx x f )(解:⎰⎰+=dx e e dx x f x x )1ln()( 4.⎰⎰∞∞>-∞+=+-+-=112122ln 214)11(lim |arctan 1arctan b b dx x x x x x dx x x πB.积分性质5.)(x f 连续,⎰=10)()(dt xt f x ϕ,且A x x f x =>-)(lim 0,求)(x ϕ并讨论)('x ϕ在0=x 的连续性。

解:xdy y f x xt y f x⎰=⇒===0)()(,0)0()0(ϕϕ⎰⎰---=-x x x t d t x f dx d dt t x tf dx d 02222022)()(2)(C.积分的应用三、补充习题(作业)1.⎰+---=Cxxxxdxxxcot2sinlncotsinsinln22.⎰+-+dxxxx136523.⎰dxxx arcsin第四讲向量代数、多元函数微分与空间解析几何一、理论要求1.向量代数理解向量的概念(单位向量、方向余弦、模)了解两个向量平行、垂直的条件向量计算的几何意义与坐标表示2.多元函数微分理解二元函数的几何意义、连续、极限概念,闭域性质理解偏导数、全微分概念能熟练求偏导数、全微分熟练掌握复合函数与隐函数求导法3.多元微分应用理解多元函数极值的求法,会用Lagrange乘数法求极值4.空间解析几何掌握曲线的切线与法平面、曲面的切平面与法线的求法会求平面、直线方程与点线距离、点面距离二、题型与解法A.求偏导、全微分1.)(xf有二阶连续偏导,)sin(yefz x=满足zezz xyyxx2''''=+,求)(xf解:uu ececufff-+=⇒=-21)(''2.yxzyxyxyfxz∂∂∂++=2)()(1,求ϕ3.决定由0),,(),()(),(=+===zyxFyxxfzxzzxyy,求dxdz/B.空间几何问题4.求azyx=++上任意点的切平面与三个坐标轴的截距之和。

相关文档
最新文档