高三数学分段函数

合集下载

高中分段函数求解技巧口诀

高中分段函数求解技巧口诀

高中分段函数求解技巧口诀分段函数是高中数学中比较重要的一个概念,它的解法是将整个自变量的定义域划分成不同的区间,并在每个区间内给出不同的函数表达式。

掌握分段函数的求解技巧可以帮助我们更好地理解和应用数学知识。

第一节:分段函数的图象一、定义函数体```plain定义域上,看函数体;画纵轴,分段写。

```二、取定义域```plain看矩阵的左右,找交集全等。

```三、划分区间```plain定义域中间横,取极限临。

```四、确定函数式```plain划竖线,命函数形;填函数,选函数式。

```第二节:分段函数的取值一、分析关系```plain找横线,有无交点;若有,找横,知关系;若无,找横,无关系。

```二、分情况```plain关系式,有两种;分情况,来讨论。

```第三节:分段函数的解析一、选择域```plain定义域,和问题域;选交集,作定义域。

```二、排除谬误```plain注意谬误,别两误;取定义,排多余。

```三、分情况```plain问题域,依关系;分情况,来解析。

```四、化简式```plain化简式,分三种;一元式,二元式。

```第四节:分段函数的性质一、分析定义```plain连续性,特殊点;关系性,分段式。

```二、求特征```plain极端值,极限值;奇偶性,有无解。

```三、确定趋势```plain左右极限,研判特性;分子分母,退特征。

```四、综合分析```plain总性质,综合观;切点图,带参看。

```第五节:分段函数的应用一、定义写```plain清醒明确,共理解。

```二、按需选```plain有条件,求最值;极限值,变介值。

```三、画图观```plain定义写,画线段;按条件,分区间。

```四、根据题意```plain找关系,写条件;设未知,代求解。

```以上是一些高中分段函数求解技巧的口诀,通过口诀的串联,可以帮助我们更加系统地理解和掌握分段函数的求解技巧。

但是,还需要多做题,多观察,多总结,才能真正掌握这些技巧,并能熟练地运用到解题过程中。

高三分段函数知识点总结

高三分段函数知识点总结

高三分段函数知识点总结在高中数学中,分段函数是一个非常重要的知识点。

它不仅在数学课堂上出现频率较高,而且在现实生活中也有很多实际应用。

掌握分段函数的相关知识,对于提高数学水平和解决实际问题都有着重要的意义。

一、分段函数的概念和定义所谓分段函数,就是将一个定义域分为若干子区间,并且每个子区间上都有一个特定的函数表达式。

在每个子区间上,函数的表达式都是简单的一次或多次函数。

具体来说,一个分段函数可以写成以下形式:\[ f(x) = \begin{cases}f_1(x), & a \leq x < b \\f_2(x), & b \leq x < c \\\cdots \\f_n(x), & y_m \leq x < y_{m+1} \\\end{cases} \]其中,f1(x), f2(x), ..., fn(x)是定义在子区间[a, b), [b, c), ..., [ym, ym+1)上的函数。

每个子区间的两个端点都是开区间,即不包含边界。

二、分段函数的图像特点绘制分段函数的图像是理解和运用分段函数的重要手段。

根据分段函数的定义,我们可以得出以下图像特点:1. 在子区间[a, b)上,函数的图像是一条直线或曲线;2. 在子区间[b, c)上,函数的图像是另一条直线或曲线;3. 不同子区间之间的连接点通常是开口;通过观察一个分段函数的图像,我们可以分别对每个子区间上的函数进行分析,从而确定函数的性质和变化趋势。

三、分段函数的应用举例分段函数的应用非常广泛,几乎涉及到了数学的各个领域。

以下是一些具体的应用示例:1. 路程和时间的关系。

设一辆汽车以常速行驶,行驶时间t与行驶路程d之间的关系可以用分段函数表示。

在不同的行驶时间段内,汽车的行驶速度可能不同,因此在不同的时间段内可能存在多个定义子区间和函数表达式。

2. 升学率与学生积极性的关系。

假设一个学校的升学率与学生积极性之间存在一定的关系,可以用一个分段函数进行表示。

高三分段函数单调性练习题

高三分段函数单调性练习题

高三分段函数单调性练习题分段函数是数学中常见的函数形式,其特点是定义域被分成多个部分,并在每个部分使用不同的函数规则进行描述。

掌握分段函数的单调性是解题的基本要求,下面我们来进行一些分段函数单调性的练习。

题目一:判断函数f(x) = x+1 (x≤0), f(x) = x^2 (x>0) 的单调性。

解析:首先,我们将函数f(x)分成两个部分,其定义域也相应分为两部分:x≤0和x>0。

当x≤0时,函数f(x) = x+1,这是一个线性函数,其单调性可直接判断。

由于系数为1,可以知道在x≤0的范围内,函数f(x)是递增的。

当x>0时,函数f(x) = x^2,这是一个二次函数。

我们可以通过求导数的方法来判断它的单调性。

求导得到f'(x) = 2x,在x>0的范围内,f'(x)始终大于0,说明函数f(x)在此范围内是递增的。

综上所述,函数f(x)在整个定义域内都是单调递增的。

题目二:判断函数g(x) = 3x-1 (x≤-1), g(x) = x^2 (x>-1) 的单调性。

解析:同样地,我们将函数g(x)分成两个部分,其定义域也相应分为两部分:x≤-1和x>-1。

当x≤-1时,函数g(x) = 3x-1,这是一个线性函数,其单调性可直接判断。

由于系数为3,可以知道在x≤-1的范围内,函数g(x)是递增的。

当x>-1时,函数g(x) = x^2,这是一个二次函数。

我们同样可以通过求导数的方法来判断其单调性。

求导得到g'(x) = 2x,在x>-1的范围内,f'(x)始终大于0,说明函数g(x)在此范围内是递增的。

综上所述,函数g(x)在整个定义域内都是单调递增的。

通过以上练习题,我们可以发现,对于分段函数的单调性判断,可以分别对每个部分进行讨论,并结合函数的具体形式来判断单调性。

对于线性函数来说,系数的正负决定了函数的单调性;对于二次函数来说,可以通过求导数的方法来判断。

高考数学复习1分段函数

高考数学复习1分段函数

第一讲 分段函数【基础知识】1.定义:一般地在定义域不同的部分上,有不同的解析式,像这样的函数通常叫做分段函数.2.理解:(1)分段函数是一个函数,而不是几个函数;(2)分段函数的定义域是自变量各段取值的并集;分段函数的值域是各段函数值的并集。

(3)写分段函数的定义域时,区间端点位置要不重不漏.3. 类型:(1)取整函数:f(x)=[x]([x]表示不大于x 的最大整数).(2)f(x)=(-1)x = -1,x 为正奇数1,x 为非付偶数(3)含绝对值符号的函数.如f(x)=|x+2|= x+2,x ≥2,-(x+2),x<-2(4)自定义函数. 如 -x-1,x ≤-1,f(x) = x 2-x-2,-1<x ≤2,x-2,x>24. 分段函数的图像(1)翻折法 (2)对折法 (3)分类讨论法【典型分析】题型一:分段函数的求值【例1】设函数,,,,)1()1(lg 2)(2>≤+=⎩⎨⎧--x x x x x x f 则f[f(-4)]=________.【例2】已知,,,,)0()0(log )(3≤>⎩⎨⎧+=x x b a x x f x 且f(0)=2,f(-1)=3,则f(f(-3))等于________.【例3】已知函数,,,,)31()3()3()1()(<≥⎪⎩⎪⎨⎧+=x x x f x f x 则f(2+log 32)的值为_________.【例4】已知函数)34()0()0(1)1()(,,,,cos 2f x x x f x f x 则>≤⎩⎨⎧+-=π的值为________.【例5】函数,,,,)21()1(2)(2<<-⎩⎨⎧+-≤=x x x x x f 若f(x)=3,则x=________.题型二:分段函数与方程、不等式问题【例6】函数,,,,,)4()42()2(31)(≥<<--≤⎪⎩⎪⎨⎧+=x x x x x x x f 若f(a)<-3,则a 的取值范围是________.【例7】已知函数,,,,)1()1()1(log 22)(21>⎩⎨⎧+--≤=-x x x x f x 且f(a)=-3,则f(6-a)=________.【例8】已知函数,,,,)0()0(2log )(31≤>⎪⎩⎪⎨⎧=x x x x f x 若21)(>a f ,则a 的取值范围是______.。

分段函数知识点总结整理

分段函数知识点总结整理

分段函数知识点总结整理分段函数是一种函数表达式,其定义域被分为几个部分,在每个部分,函数的表达式都是不同的。

分段函数在实际问题中有着广泛的应用,而对于学习者而言,掌握分段函数的知识是非常重要的。

本文将通过总结和整理分段函数的知识点,帮助读者更好地理解和掌握这一部分的数学知识。

1.分段函数的基本概念分段函数是由若干个部分组成的函数,每个部分都有自己的定义域和函数表达式。

通常来说,一般形式的分段函数可以表示为:\[ f(x) = \begin{cases} f_1(x), & a_1 \leq x < b_1 \\ f_2(x), & a_2 \leq x < b_2 \\ \vdots \\f_n(x), & a_n \leq x < b_n \\ \end{cases} \]其中,\[ f_1(x), f_2(x), \cdots, f_n(x) \] 分别为不同的函数表达式,\[ a_1, b_1, a_2, b_2,\cdots, a_n, b_n \] 分别为定义域的分割点。

在每个分段区间,函数的表达式可能不同,也可能相同。

2. 分段函数的图像分段函数的图像通常是由若干个部分的图像组成的。

在每个分段区间内,函数的图像可能是一条直线、一个曲线或者其他形式。

需要注意的是,不同分段区间之间可能存在间断点,这些间断点通常需要特别关注。

3. 分段函数的定义域和值域在讨论分段函数的定义域和值域时,需要分别对每个函数表达式的定义域和值域进行分析。

需要注意的是,整个分段函数的定义域和值域需要考虑到每个部分的定义域和值域的并集或交集。

4. 分段函数的性质分段函数的性质通常是由其各个部分的函数表达式决定的。

当各个函数表达式的性质不同的时候,在整体上,分段函数可能具有一些特殊的性质。

例如,分段函数可能是一个单调递增的函数、单调递减的函数或者是非单调的函数。

5. 分段函数的应用分段函数在实际问题中有着广泛的应用。

高三数学-专题复习-函数(1)分段函数及题型

高三数学-专题复习-函数(1)分段函数及题型

x 2【经典例题赏析】例1 .求函数f (X ) 【解析】当x 0时, 分段函数及题型 4x 3 (x 0)x 3 (0 x 1)的最大值.x 5 (x 1)f max ( x) f(0) 3,当 0 x 1 时,f max (x) f (1) 4 x 5 1 5 4,综上有 f max (x) 4.例2 .在同一平面直角坐标系中 ,函数y f (x)和y g(x)的图象关于直线y x 对称,现将y g(x)的图象沿x 轴向左平移 2个单位, 再沿y 轴向上平移1个单位,所得的图象是由两条线段组成的折线 (如图所示),则函数 f (x)的表达式为() 答案A. f(x)2x 2 今2 (1 (0 x 0)x 2)B. f(x)2x 2 今2 (1 (0 x 0)x 2)C. f(x)2x 2 今1 (1 (2 2)4)D. f(x) 2x 6今3 (1 (2 2)4)例3 .判断函数f(x) x 2(x 1) (x x 2(x 1)(x 0)的奇偶性. 0)【解析】当x 0时,x 0, f( x) x)2( x 1) x 2(x 1) f (x),当 x f( 0) f (0) 0, 当x 0, 0,f( x) (x)2( x 1) x 2(x 1) f (x)因此, 对于任意x R 都有f( x) f(x),所以f(x)为偶函数.1 o 2f '(x) 3x 2 1 1恒成立,所以f (x)是单调递增函数,当x 0 f (x)也是单调递增函数,所以f (x)在R 上是单调递增函数 或画图易知f(x)在R 上是单调递增函数 例5 .写出函数f (x) |1 2x| |2 x|的单调减区间.3x 1 (x 4)【解析】f(x) 3 x (-2x2),画图易知单调减区间为(,弓].3x 1 (x 2)x 2 1 (x 0)例6 .设函数f(x) 1,若f(x 。

)1 ,则x 0得取值范围是( )答案D.x 2 (x 0)f (x) 1 4 \ x 1 1 \ x 1 3 x 10 , 0 x 10, 故选A 项.例4 .判断函数f(x) X 3 x(x X 2 (x 0)的单调性. 0) 【解析】 A.( 1,1) B.( 1,)C.( ,2) (0, )D. ( , 1) (1,) 例7 .设函数 f(x)(x 1)2 (x 1) 则使得f (x) 1的自变量x 4 、、x 1 (x 1) 的取值范围为 () A .(, 2] [0,10] B. (,2] [0,1] C.(, 2] [1,10] D. [2,0] [1,10] 【解析】 当 x 1 时,f (X )1 (x 1)21 x 2或x 0 , 所以x 2或0 x 1, 显然f(x)连续.当x 0时,时,f '(x) 2x 0恒成立, 所以1 x 10 , 综上所述,1 .函数y3 函数y lg x ()A.是偶函数,在区间(B.是偶函数,在区间(C.是奇函数,在区间(0,D是奇函数,在区间(0, 2、画出函数y |x 1|针对性课堂训练,0)上单调递增,0)上单调递减)上单调递增)上单调递减|2x 3|在区间[4,3)的图象3x 2(4 x 3)3x 2(1 x 3)4 •某商品在近30天内每件的销售价格p (元)与时间t (天)的函数关系是t 20,t 100, 0 t25 t25,t N,该商品的日销售量30,t N. Q (件)与时间t (天)的函数关系是t 40 (0 t 30,t N),求这种商品的日销售金额的最大值,并指出日销售金额最大的一天是30天中的第几天?。

全国高考数学复习微专题:分段函数的性质与应用

全国高考数学复习微专题:分段函数的性质与应用

分段函数的性质与应用分段函数是函数中比较复杂的一种函数,其要点在于自变量取不同范围的值时所使用的解析式不同,所以在解决分段函数的问题时要时刻盯着自变量的范围是否在发生变化。

即“分段函数——分段看” 一、基础知识:1、分段函数的定义域与值域——各段的并集2、分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

3、分段函数对称性的判断:如果能够将每段的图像作出,则优先采用图像法,通过观察图像判断分段函数奇偶性。

如果不便作出,则只能通过代数方法比较()(),f x f x -的关系,要注意,x x -的范围以代入到正确的解析式。

4、分段函数分析要注意的几个问题(1)分段函数在图像上分为两类,连续型与断开型,判断的方法为将边界值代入每一段函数(其中一段是函数值,另外一段是临界值),若两个值相等,那么分段函数是连续的。

否则是断开的。

例如:()221,34,3x x f x x x -≤⎧=⎨->⎩,将3x =代入两段解析式,计算结果相同,那么此分段函数图像即为一条连续的曲线,其性质便于分析。

再比如 ()221,31,3x x f x x x -≤⎧=⎨->⎩中,两段解析式结果不同,进而分段函数的图像是断开的两段。

(2)每一个含绝对值的函数,都可以通过绝对值内部的符号讨论,将其转化为分段函数。

例如:()13f x x =-+,可转化为:()13,113,1x x f x x x -+≥⎧=⎨-+<⎩5、遇到分段函数要时刻盯住变量的范围,并根据变量的范围选择合适的解析式代入,若变量的范围并不完全在某一段中,要注意进行分类讨论6、如果分段函数每一段的解析式便于作图,则在解题时建议将分段函数的图像作出,以便必要时进行数形结合。

高考分段函数知识点

高考分段函数知识点

高考分段函数知识点高考是每个学生都将经历的一次重要考试,它对于一个人的人生道路具有至关重要的影响。

其中,数学科目一直被认为是让人头疼的科目之一。

而在数学中,分段函数是一个重要的知识点。

本文将向大家介绍高考分段函数的相关知识点。

一、分段函数的定义分段函数是指由两个或多个函数组成的函数,其定义域上按照不同的条件来确定函数表达式。

通常情况下,每个函数表达式只在特定的子区间上有效。

二、分段函数的表示方式在数学中,对于分段函数的表示方式有两种常见的形式,分别是符号函数和条件函数。

1. 符号函数:符号函数是一种用数系的符号表示函数。

一般来说,符号函数的定义可以写成 f(x) = {±1, x>0或x<0},表示在不同的区间上函数取不同的值。

2. 条件函数:条件函数是一种用条件表达式表示函数的形式。

它的定义可以写成 f(x) = {f₁(x), x ∈ D₁;f₂(x), x ∈ D₂;f₃(x), x ∈D₃……},其中D₁、D₂、D₃……表示不同的区间,f₁(x)、f₂(x)、f₃(x)……表示不同的函数表达式。

三、分段函数的性质1. 连续性:一段函数在其定义域上是否连续是其性质之一。

对于分段函数而言,每个子区间内的函数表达式都是连续的,即在各个子区间的边界处函数值存在且相等。

2. 求导性质:在求导过程中,需要根据不同的子区间分别对函数进行求导。

首先,找到函数在定义域内的各个子区间,然后对每个子区间内的函数进行求导,最后将求导结果合并。

3. 极值问题:对于分段函数来说,极值问题也是一个值得关注的问题。

因为分段函数在定义域的不同子区间内可能存在多个极值点,所以需要根据实际题目的条件来确定具体的极值点。

四、解题技巧1. 确定分段函数的子区间:在解答分段函数的题目时,首先需要确定函数的定义域和区间。

这一步是解题的基础,也是问题的关键。

2. 绘制函数图像:根据所给的函数表达式和子区间,可以尝试绘制出函数的图像。

2023届高考数学专项(分段函数)题型归纳与练习(附答案)

2023届高考数学专项(分段函数)题型归纳与练习(附答案)

2023届高考数学专项(分段函数)题型归纳与练习【题型归纳】题型一 、分段函数的求值问题由于分段函数的答案解析式与对应的定义域有关,因此求值时要代入对应的答案解析式。

含有抽象函数的分段函数,在处理里首先要明确目标,即让自变量向有具体答案解析式的部分靠拢,其次要理解抽象函数的含义和作用(或者对函数图象的影响)例1、(2021∙江西南昌市∙高三期末(理))已知定义在R 上的奇函数满足,且当时,,其中a 为常数,则的值为( ) A .2B .C .D . 变式1、(辽宁省沈阳市2020‐2021学年高三联考)函数21,13()(4),3x x f x f x x --≤<⎧=⎨-≥⎩,则(9)f = ______. 变式2、(2021∙山东临沂市∙高三二模)已知奇函数,则( )A .B .C .7D .11变式3、(2020届浙江省杭州市建人高复高三4月模拟)对于给定正数k ,定义(),()(),()k f x f x kf x k f x k ≤⎧=⎨>⎩,设22()252f x ax ax a a =--++,对任意x ∈R 和任意(,0)a ∈-∞恒有()()k f x f x =,则( ) A .k 的最大值为2 B .k 的最小值为2C .k 的最大值为1D .k 的最小值为1题型二、与分段函数有关的方程或不等式含分段函数的不等式在处理上通常是两种方法:一种是利用代数手段,通过对x 进行分类讨论将不等式转变为具体的不等式求解。

另一种是通过作出分段函数的图象,数形结合,利用图像的特点解不等式例2、【2018年高考浙江】已知λ∈R ,函数f (x )=24,43,x x x x x λλ-≥⎧⎨-+<⎩,当λ=2时,不等式f (x )<0的解集是___________.若函数f (x )恰有2个零点,则λ的取值范围是___________.变式1、(2021∙浙江高三期末)已知,则______;若,则______.变式2、(2021∙山东烟台市∙高三二模)已知函数是定义在区间上的偶函数,且当()f x ()(6)f x f x =-03x ≤<21),01()2(2),13a x x f x x x ++≤≤⎧⎪=⎨-<<⎪⎩(2019)(2020)(2021)f f f ++2-1212-()()31,0,0x x f x g x x ⎧-<⎪=⎨>⎪⎩()()12f g -+=11-7-(),201,0x x f x x x ⎧≥=⎨-+<⎩()2f =()2f α=α=()f x ()(),00,-∞+∞时,,则方程根的个数为( )A .3B .4C .5D .6变式3、(2021∙山东高三其他模拟)已知,,则方程的解的个数是( ) A .B .C .D .题型三、分段函数的单调性分段函数单调性的判断:先判断每段的单调性,如果单调性相同,则需判断函数是连续的还是断开的,如果函数连续,则单调区间可以合在一起,如果函数不连续,则要根据函数在两段分界点出的函数值(和临界值)的大小确定能否将单调区间并在一起。

高中数学的分段函数

高中数学的分段函数

高中数学的分段函数分段函数是数学中非常重要的一个概念,它在高中阶段的数学学习中经常出现,不仅涉及到函数的定义与求值,还涉及到图像的绘制与性质的分析。

下面我将从分段函数的基本概念、定义与性质、图像分析等几个方面进行详细阐述,希望能够帮助你对高中数学中的分段函数有更深入的理解。

首先,我们先来了解一下分段函数的基本概念。

所谓分段函数,就是由两个或多个函数在不同的区间上组合而成的函数。

它的定义域被划分成多个不同的区间,并且在每个区间上有不同的函数式。

每一个区间上的函数式称为分段函数的一个分段。

分段函数常常由符号函数来定义,符号函数是根据自变量的取值范围判断所需函数的类型。

例如,当x小于其中一特定值时,分段函数的定义可能由多项式函数、指数函数或三角函数等组成;当x大于或等于这个特定值时,分段函数的定义可能完全由不同的多项式函数、指数函数或三角函数等组成。

其次,我们来详细了解分段函数的定义与性质。

分段函数的定义在每个区间上不同,因此我们需要将函数式按照每个区间进行表示。

例如,对于一个分段函数f(x),其定义域可以分为多个区间[a,b]、(b,c)、(c,d]等。

对于每个区间,我们需要确定相应的函数式,即f(x)={f1(x),a≤x≤b;f2(x),b<x<c;f3(x),c≤x≤d}。

在每个区间上,分段函数的性质可能与其对应的函数式有关。

例如,在[a,b]区间上的函数式f1(x)的性质可能是可导函数,而在(b,c)区间上的函数式f2(x)的性质可能是不可导函数。

最后,我们可以通过对分段函数的图像进行进一步的分析。

我们可以从图像的形状、连续性、单调性等方面来推断函数的性质。

例如,如果分段函数在一些区间上是光滑的、单调增加的,那么该区间上的函数式可能是一个增函数。

通过观察图像的局部特点,我们还可以找到函数的最大值、最小值以及极值点等。

通过对图像的分析,我们不仅可以了解函数的特点,还可以对函数进行进一步的运算和研究。

高三数学分段函数知识点

高三数学分段函数知识点

高三数学分段函数知识点分段函数是高中数学中的重要概念之一,广泛应用于各个领域的实际问题中。

在高三数学学习中,理解和掌握分段函数的知识点对于解题和理论应用都具有重要意义。

本文将为您介绍高三数学中与分段函数相关的知识点。

一、分段函数的定义与表达方式分段函数是由不同的函数规则在不同的定义域上确定的一种函数。

分段函数通常由若干段或多个函数规则组合而成,对于不同的自变量取值,函数的表达方式也不相同。

通常,分段函数可以用以下的形式表示:y = f(x),x ∈ D,其中D为定义域。

在定义域D的不同区间上,函数f(x)可以用不同的函数表达式来表示。

二、分段函数的性质1. 定义域和值域:分段函数的定义域由各个函数规则的定义域的并集构成,值域则由各个子区间的值域的并集构成。

2. 连续性和间断点:分段函数在定义域上可能存在间断点。

常见的间断点有可去间断点(函数值可以通过修复后定义),跳跃间断点(函数在间断点处的左右极限存在,但不相等)和无穷间断点(函数在间断点处的左右极限至少有一个为无穷大)。

3. 单调性:针对不同函数规则的子区间,分段函数可以是递增的、递减的或不变的。

4. 极值点:分段函数在每个子区间内寻找最大值和最小值,可以通过求导或者构建不等式来确定。

三、分段函数的图像分段函数的图像通常是一个由多段连接而成的曲线,并且在不同的子区间上可能有不同的形态。

对于每一个子区间,我们可以先画出对应函数规则的图像,然后将这些图像进行连接。

在画图时,需要注意各个子区间的连接点和间断点的特殊处理,以及函数图像的平滑与连续性。

四、分段函数的应用分段函数广泛应用于各个领域的实际问题中,下面举几个例子:1. 费用函数:在一些商业模型中,根据不同的销售数量区间,利用分段函数可以比较准确地计算成本、利润等。

2. 税务计算:税务计算常常需要根据收入或利润的不同区间采用不同的税率,这也可以通过分段函数进行模拟计算。

3. 温度转换:将摄氏度和华氏度进行相互转换时,由于两种温度间存在不同的线性关系,可以使用分段函数表示。

(完整)2.15 分段函数专题讲义

(完整)2.15 分段函数专题讲义

高三总复习—-分段函数专题分段函数的定义:分段函数;对于自变量x 的不同的取值范围,有着不同的对应法则,这样的函数通常叫做分段函数。

它是一个函数,而不是几个函数:分段函数的定义域是各段函数定义域的并集,值域也是各段函数值域的并集。

知识点梳理一、定义:分段函数是指自变量在不同范围内,有不同对应法则的函数. 二、注意:1、分段函数是一个函数,而不是几个函数;2、分段函数的定义域是自变量各段取值的并集;3、分段函数的值域是各段函数值的并集。

4、解决分段函数的方法:先分后合 三、涉及的内容及相应的常用方法:1、求解析式: 利用分段中递推关系,如平移、周期、对称关系,已知其中一段的解析式,得到整个定义域的解析式;2、求值、解不等式:注意只有自变量在相应的区间段才可以代入对应的解析式。

不能确定时常需要分情况讨论;3、单调性: 各段单调(如递增)+连接处不等关系.(如()()()12,(,],[,)f x x a f x f x x a ∈-∞⎧⎪=⎨∈+∞⎪⎩在R 上是增函数,则()()()()1212(,)[,)f x a f x a f a f a ⎧-∞↑⎪⎪+∞↑⎨⎪≤⎪⎩①在上②在上③);4、奇偶性: 分段讨论,各段均符合相同的定义中的恒等式,才有奇偶性,否则为非奇非偶函数;A5、图像性质或变换等: 作图、赋值等,注意变量的范围限制;6、最值: 求各段的最值或者上下界再进行比较;7、图像: 分类讨论,如零点分段法得到各段解析式再作图; 例题讲解:题型一、分段函数的图像。

1.作出函数()1y x x =+的图象2. 函数ln |1|xy e x =--的图象大致是 ( )题型二、分段函数的奇偶性 1、判断函数(1)(0),()(1)(0).x x x f x x x x -<⎧=⎨+>⎩的奇偶性2、已知函数)(x f 是定义在R 上的奇函数,且当20,()2 3.x f x x x >=-+时求f (x )的解析式。

分段函数

分段函数

分段函数【知识提要】分段函数是指自变量在不同范围内具有不同对应法则的函数,分段函数对知识点的考察较为灵活、全面,特别是对学生思维能力、分析能力的考察更具有其独特之处,因而在近几年各地的高考试题中经常出现,是高考的新亮点之一,下面介绍几种常见题型: 一、求值:例一、1.若函数⎪⎩⎪⎨⎧>+≤--=1,111,2|1|)(2x x x x x f ,则⎥⎦⎤⎢⎣⎡⎪⎭⎫ ⎝⎛21f f =1342.函数()⎪⎩⎪⎨⎧≥<<-=-0,01,sin )(12x e x x x f x π,若2)()1(=+a f f ,则a 的所有可能值为( C )(A ) 1; (B )22-; (C )1,22-; (D )1,223.设函数⎩⎨⎧>≤++=0,20)(2x x c bx x x f ,,若2)2(),0()4(-=-=-f f f ,则关于x 的方程x x f =)(的解的个数为( C )(A) 1; (B )2; (C )3; (D )44.函数⎪⎩⎪⎨⎧>+-≤<+≤+=1,510,30,32)(x x x x x x x f 的最大值是4二、解不等式:例二、1.设函数⎩⎨⎧<-≥=0,10,1)(x x x f ,则不等式()()522≤+⋅++x f x x 的解集是⎥⎦⎤ ⎝⎛∞-23,2.设函数⎪⎩⎪⎨⎧>≤-=-0,0,12)(21x x x x f x ,若1)(0>x f ,则0x 的取值范围是()()+∞-∞-,11,3.设⎪⎩⎪⎨⎧>-≤-=0,10,)(2x e x x x f x ,则()21>-x f的解集为()()+∞--∞-,14,2e三、求函数的解析式:例三、1.求函数[]1,1,2)(2-∈--=x a ax x x f 的最小值)(a g ,并解不等式2)(≥a g ;2.已知偶函数)(x f 在[)+∞,0上的解析式为)1()(x x x f +=,求函数)(x f 的解析式;(()()⎩⎨⎧<-≥+=0,10,1)(x x x x x x x f )3.已知函数⎩⎨⎧->+--≤+=1,11,1)(2x x x x x f ,求)(1x f -的解析式;(⎩⎨⎧<+-≥--=-2,12,1)(1x x x x x f )4.已知偶函数)(x f 对任意实数x 都有0)()1(=++x f x f ,且[]1,0∈x 时x x f =)(试写出函数)(x f 的解析式四、判断函数的奇偶性:例四、1.在函数()x tg x h x x x x x x g x x f 2)(,1,21,01,2)(,1lg )(2=⎪⎩⎪⎨⎧>+-≤-<+=+=中,)(),(x g x f 是偶函数;2.试判断函数⎪⎩⎪⎨⎧>-+-=<++=0,320,00,32)(22x x x x x x x x f 的奇偶性3.设函数R x x x x f ∈--+=,12)(2(1)讨论)(x f 的奇偶性; (非) (2)求)(x f 的最小值43 五、作图例五、1.试作出函数1)(ln --=x e x f x的大致图像;2.作出函数xx x f --=11)(的大致图像;3.已知函数)(,)(R a a x x x f ∈-=;(1)解关于x 的不等式22)(a x f ≥;(当0≥a 时,a x 2≥;当0<a 时,a x -≥) (2)当0≥a 时,求)(x f 的单调区间 (当0>a 时,递增区间为⎥⎦⎤ ⎝⎛∞-2,a 和[)+∞,a ,递减区间为⎥⎦⎤⎢⎣⎡a a ,2;当0=a 时,递增区间为R )【课后练习】1.(05上海)函数)(x f =sin x +2|sin x |,x []π2,0∈的图象与直线y=k 有且仅有两个不同的交点,则k 的取值范围是________________;2.若函数⎪⎩⎪⎨⎧>+-≤<+≤+=1,8210,50,53x x x x x x y ,则函数的最大值为_____________ ;3.若函数⎪⎩⎪⎨⎧>≤-=0,0,1)21()(21x x x x f x,则使1)(>a f 的取值范围是________________4.函数1cos sin -⋅=x x y 的最小正周期与最大值的和为212-π5.已知⎩⎨⎧≤>+-=-6,36),1(log )(63x x x x f x ,若)(1x f -为)(x f 的反函数,且)91(1-=f a ,则)4(+a f =_______________6.(05上海)设定义域为R 的函数⎪⎩⎪⎨⎧=≠-=1,01,1lg )(x x x x f ,则关于x 的方程)()(2x f b x f ⋅+0=+c 有7个不同实数解的充要条件是 ( ) (A)b<0且c>0; (B)b>0且c<0; (C)b<0且c=0; (D)b ≥0且c=07.设函数)(1)(R x xxx f ∈+-=,区间[])(,b a b a M <=,集合 {}M x x f y y N ∈==),(|,则使N M =成立的实数对),(b a 有( A )(A )0个; (B )1个; (C )2个; (D )无数多个8.已知函数||2)(2x x x f -=,若方程)(x f =k 有4个互不相等的实数根,求k 的值 9.已知函数[]1,1)(1442)(2-∈∈---=x R a a ax x x f(1)求)(x f 的最小值)(a g ;(2)当1)(-=a g 时,求)(x f 的最大值 10.(05上海)对定义域分别为Df,Dg的函数)(),(x g y x f y ==,规定:函数)(x h =⎪⎩⎪⎨⎧∈∉∉∈∈∈.),(,),(,)()(g f g f g f D x D x x g D x D x x f D x D x x g x f 且当且当且,当 (1)若函数)(x f =11-x x x g =)(,写出函数)(x h 的解析式; (2)求问题(1)中函数)(x h 的值域;(3)若)()(α+=x f x g ,其中α是常数,且α[]π,0∈,请你设计一个定义域为R 的函数y=)(x f 及一个α的值,使得)(x h =cos4x ,并予以证明.11.已知函数y=)(x f 为偶函数,当0≥x 时,31)(x x f = (1)试写出y=)(x f 的解析式; (2)讨论该函数的单调性; (3)画出该函数的大致图象12.已知R x x x x f ∈++=,34)(2,函数)(t g 表示)(x f 在[]2,+t t 上的最大值,求)(t g 的表达式 ⎪⎩⎪⎨⎧-≥++-<++=3,1583,34)(22t t t t t t t g13.设数列{}n a 的首项411≠=a a ,且⎪⎪⎩⎪⎪⎨⎧+=+为奇数为偶数n a n a a n nn ,41,211,记4112-=-n n a b ,N n ∈(1)求32,a a ;(2)判断数列{}n b 是否为等比数列,并证明你的结论; (3)求()n n b b b +++∞→ 21lim14.定义在R 上的奇函数有最小正周期2,且()1,0∈x 时,142)(+=x xx f(1) 求)(x f 在[]1,1-上的解析式;()()⎪⎪⎪⎩⎪⎪⎪⎨⎧∈+±==-∈+-=1,0,1421,0,00,1,142)(x x x x x f x xxx(2) 实数k 为何值时,方程k x f =)(有解。

高三数学分段函数抽象函数与复合函数试题答案及解析

高三数学分段函数抽象函数与复合函数试题答案及解析

高三数学分段函数抽象函数与复合函数试题答案及解析1.设,若,则.【答案】1【解析】分段函数问题通常需要分布进行计算或判断,从算起是解答本题的突破口.因为,所以,又因为,所以,所以,.2.设f(x)=g(x)=则f(g(π))的值为().A.1B.0C.-1D.π【答案】B【解析】g(π)=0,f(g(π))=f(0)=0.3.已知【答案】【解析】由分段函数可得,.又因为.所以.故填.【考点】1.分段函数的性质.2.递推类比的思想.3.三角函数的诱导公式及特殊角的三角函数的值.4.已知函数,则 .【答案】【解析】由已知得:.【考点】分段函数.5.已知是上的增函数,则实数的取值范围是()A.B.C.D.【答案】C【解析】,所以选C.【考点】1、分段函数的单调性;2、解不等式.6.已知函数,则的解集为( )A.(-∞,-1)∪(1,+∞)B.[-1,-)∪(0,1]C.(-∞,0)∪(1,+∞)D.[-1,-]∪(0,1)【答案】B【解析】(1)-1≤x<0时,则0<-x≤1,此时,f(x)=-x-1,f(-x)=-(-x)+1=x+1f(x)-f(-x)>-1,即-2x-2>-1,得x<-1/2,又因为-1≤x<0,所以,-1≤x<-1/2(2)0<x≤1时,则:-1≤-x<0,此时f(x)=-x+1,f(-x)=-(-x)-1=x-1f(x)-f(-x)>-1,即-2x+2>-1,得x<3/2,又因为:0<x≤1,所以,0<x≤1.综上,原不等式的解集为:[-1,-1/2)(0,1].【考点】1.分段函数;2.不等式的解法.7.函数,则该函数为( )A.单调递增函数,奇函数B.单调递增函数,偶函数C.单调递减函数,奇函数D.单调递减函数,偶函数【答案】A【解析】当时,则,于是,所以为奇函数;结合函数的图像可发现其为单调递增函数.【考点】分段函数的性质.8.函数的零点个数是()A.2个B. 1 个C.4个D.3个【答案】D【解析】由,解得,由,解得或,故有三个零点.【考点】分段函数零点问题.9.已知函数,则()A.B.C.D.【答案】C【解析】因为,所以,选C.【考点】分段函数求值.10. .若则()A.B.C.D.【答案】D【解析】,选D.【考点】分段函数求值.11.已知函数若,则实数的取值范围是.【答案】【解析】根据所给的分段函数,画图像如下:可知已知函数在整个定义域上是单调递减的,由可知,,解得.【考点】1.分段函数的图像与性质;2.数形结合的思想12.,则 .【答案】【解析】,.【考点】分段函数求值.13.已知函数,则 .【答案】.【解析】,,,所以.【考点】1.分段函数;2.三角函数求值14.已知函数,则的值等于_______.【答案】【解析】由已知分段函数可得:.【考点】1.分段函数;2.基本初等函数求值15.已知函数,则 ( )A.0B.1C.2D.3【答案】D【解析】,所以.【考点】1.分段函数;2.指数、对数运算.16.已知函数,若,则实数等于()A.B.C.2D.4【答案】C【解析】,,由已知,解得.故选.【考点】求分段函数的函数值.17.已知函数,则________________,【答案】【解析】由已知.【考点】分段函数的值.18.设函数的最小值为,则实数的取值范围是()A.B.C.D.【答案】A.【解析】由题意,当时,函数有最小值为,则当时,,即.【考点】分段函数.19.函数的单调递增区间是 .【答案】(-1可以取等号,1不可以)【解析】由,得;又函数在区间上是减函数,利用复合函数单调性的判定得,函数的单调递增区间是(-1,1).【考点】复合函数单调性的判定20.已知函数,则.【答案】【解析】,同理:,所以.【考点】1.分段函数求值;2.三角诱导公式化简求值.21.,则 .【答案】【解析】因为,,所以-2【考点】分段函数点评:本题是由分段函数求函数值,做这类题目只要结合自变量的范围,代入相应的解析式即可。

分段函数常见题型解法-含答案

分段函数常见题型解法-含答案

【知识要点】分段函数问题是高中数学中常见的题型之一,也是高考经常考查的问题.主要考查分段函数的解析式、求值、解不等式、奇偶性、值域(最值)、单调性和零点等问题.1、 求分段函数的解析式,一般一段一段地求,最后综合.即先分后总.注意分段函数的书写格式为:1122()()()()n n n f x x D f x x D f x x D f x x D ∈⎧⎪∈⎪=⎨∈⎪⎪∈⎩,不要写成1122()()()()n n ny f x x D y f x x D f x x D y f x x D =∈⎧⎪=∈⎪=⎨∈⎪⎪=∈⎩.注意分段函数的每一段的自变量的取值范围的交集为空集,并集为函数的定义域D .一般左边的区域写在上面,右边的区域写在下面.2、分段函数求值,先要看自变量在哪一段,再代入那一段的解析式计算.如果不能确定在哪一段,就要分类讨论.注意小分类要求交,大综合要求并.3、分段函数解不等式和分段函数求值的方法类似,注意小分类要求交,大综合要求并.4、分段函数的奇偶性的判断,方法一:定义法.方法二:数形结合.5、分段函数的值域(最值),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.6、分段函数的单调性的判断,方法一:数形结合,方法二:先求每一段的单调性,再写出整个函数的单调性.7、分段函数的零点问题,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的.虽然分段函数是一种特殊的函数,在处理这些问题时,方法其实和一般的函数大体是一致的. 【方法讲评】【例1】已知函数)(x f 对实数R x ∈满足)1()1(,0)()(+=-=-+x f x f x f x f ,若当[)1,0∈x 时,21)23(),1,0()(-=≠>+=f a a b a x f x .(1)求[]1,1-∈x 时,)(x f 的解析式;(2)求方程0log )(4=-x x f 的实数解的个数.(2) )()2()1()1(,0)()(x f x f x f x f x f x f =+∴+=-=-+ )(x f ∴是奇函数,且以2为周期.方程0log )(4=-x x f 的实数解的个数也就是函数x y x f y 4log )(==和的交点的个数.在同一直角坐标系中作出这俩个函数的图像,由图像得交点个数为2,所以方程0log )(4=-x x f 的实数解的个数为2.【点评】(1)本题的第一问,根据题意要把[1,1]-分成三个部分,即(1,0),1,(0,1)x x x ∈-=±∈,再一段一段地求. 在求函数的解析式时,要充分利用函数的奇偶性、对称性等. (2)本题第2问解的个数,一般利用数形结合解答.【检测1】已知定义在R 上的函数()()22f x x =-.(Ⅰ)若不等式()()223f x t f x +-<+对一切[]0,2x ∈恒成立,求实数t 的取值范围;(Ⅱ)设()g x =,求函数()g x 在[]0,(0)m m >上的最大值()m ϕ的表达式.【例2】已知函数()()22log 3,2{21,2x x x f x x ---<=-≥ ,若()21f a -= ,则()f a = ( )A. 2-B. 0C. 2D. 9【解析】当22a -< 即0a >时, ()()211log 3211,22a a a ---=⇒+==- (舍); 当22a -≥ 即0a ≤时, ()2222111log 42a a f a ---=⇒=-⇒=-=- ,故选A.【点评】(1)要计算(2)f a -的值,就要看自变量2a -在分段函数的哪一段,但是由于无法确定,所以要就2222a a -<-≥和分类讨论. (2)分类讨论时,注意数学逻辑,小分类要求交,大综合要求并.当0a >时 ,解得12a =-,要舍去.【例3】【2017山东,文9】设()()121,1x f x x x <<=-≥⎪⎩,若()()1f a f a =+,则1f a ⎛⎫=⎪⎝⎭( ) A. 2 B. 4 C. 6 D. 8【点评】(1)要化简()()1f a f a =+,必须要讨论a 的范围,要分1a ≥和01a <<讨论.当1a≥时,可以解方程2(1)2(11)a a -=+-,得方程没有解.也可以直接由2(1)y x =-单调性得到()()1f a f a ≠+.【检测2】已知函数210()0xx f x x -⎧-≤⎪=>,若0[()]1f f x =,则0x = .【例3】已知函数则的解集为( )A.B.C.D.【点评】(1)本题中()f x 的自变量x 不确定它在函数的哪一段,所以要分类讨论. (2)当20x -<<时,计算()f x -要注意确定x -的范围,02x <-<,所以求()f x -要代入第一段的解析式.数学思维一定要注意逻辑和严谨. (3)分类讨论时,一定要注意数学逻辑,小分类要求交,大综合要求并.【检测3】已知函数()()()22log 2,02,{2,20,x x f x f x x --+≤<=---<<则()2f x ≤的解集为__________.【检测4】【2017课标3,理15】设函数10()20x x x f x x +≤⎧=⎨>⎩,,,,则满足1()()12f x f x +->的x 的取值范围是_________.【例4】判断函数⎩⎨⎧>+-<+=)0()0()(22x x x x x x x f 的奇偶性 【解析】由题得函数的定义域关于原点对称.设0,x <2()f x x x =+,则0x ->,222()()()()f x x x x x x x f x -=---=--=-+=- 设0,x >2()f x x x =-+则0x -<,222()()()()f x x x x x x x f x -=--=-=--+=- 所以函数()f x 是奇函数.【点评】(1)对于分段函数奇偶性的判断,也是要先看函数的定义域,再考虑定义,由于它是分段函数,所以要分类讨论. (2)注意,当0x <时,求()f x -要代入下面的解析式,因为0x ->,不是还代入上面一段的解析式.【检测5】已知函数()f x 是定义在R 上的奇函数,且当0x ≥时22)(+=x xx f . (1)求()f x 的解析式;(2)判断()f x 的单调性(不必证明);(3) 若对任意的t R ∈,不等式0)2()3(22≤++-t t f t k f 恒成立,求k 的取值范围.【例5】若函数62()3log 2a x x f x x x -+≤⎧=⎨+>⎩(01)a a >≠且的值域是[4,)+∞,则实数a 的取值范围是 .【点评】(1)分段函数求最值(值域),方法一:先求每一段的最大(小)值,再把每一段的最大(小)值比较,即得到函数的最大(小)值. 方法二:数形结合.(2)本题既可以用方法一,也可以利用数形结合分析解答. (3)对于对数函数log a y x =,如果没有说明a 与1的大小关系,一般要分类讨论.【检测6】设()()2,014,0x a x f x x a x x ⎧-≤⎪=⎨+++⎪⎩,>若()0f 是()f x 的最小值,则a 的取值范围为( ) A. []2,3- B. []2,0- C. []1,3 D. []0,3【检测7】已知函数()()222log 23,1{1,1x ax a x f x x x -+≥=-<的值域为R ,则常数a 的取值范围是( )A. ][()1123-,,B. ][()12-∞+∞,,C. ()[)1123-,,D. (,0]-∞{}[)123,【例6】若()()3,1{log ,1a a x a x f x x x --<=> 是(),-∞+∞上的增函数,那么a 的取值范围是( ).A. ()1,+∞B. 3,32⎡⎫⎪⎢⎣⎭C. (),3-∞D. ()1,3【点评】(1)函数是一个分段函数是增函数必须满足两个条件,条件一:分段函数的每一段必须是增函数;条件二:左边一段的最大值必须小于等于右边一段的最小值. 函数是一个分段函数是减函数必须满足两个条件,条件一:分段函数的每一段必须是减函数;条件二:左边一段的最小值必须大于等于右边一段的最大值. (3)一个分段函数是增函数,不能理解为只需每一段是增函数. 这是一个必要不充分条件.【检测8】已知函数()[)()232,0,32,,0x x f x x a a x ⎧∈+∞⎪=⎨+-+∈-∞⎪⎩在区间(),-∞+∞上是增函数,则常数a 的取值范围是 ( )A .()1,2B .(][),12,-∞+∞C .[]1,2D .()(),12,-∞+∞【例7】已知函数()21,0,{log ,0,x x f x x x +≤=>则函数()()1y ff x =+的所有零点构成的集合为__________.【点评】(1)分段函数的零点问题,一般有三种方法,方法一:解方程,方法二:图像法,方法三:方程+图像法. 和一般函数的零点问题的处理方法是一样的. (2)本题由于函数()()1y f f x =+的图像不方便作出,所以选择解方程的方法解答. (3)在函数()()1y f f x =+中,由于没有确定x 的取值范围,所以要分类讨论.【例8()()g x f x k =-仅有一个零点,则k 的取值范围是________.【解析】函数()()22,1{91,1x xf x x x x >=-≤ ,若函数()()g x f x k =- 仅有一个零点,即()f x k = ,只有一个解,在平面直角坐标系中画出, ()y f x =的图象,结合函数图象可知,方程只有一个解时,)4,23⎛⎫ ⎪⎝⎭ )4,23⎛⎫⎪⎝⎭.【点评】(1)直接画()()g x f x k =-的图像比较困难,所以可以利用方程+图像的方法. 分离参数得到()f x k =,再画图数形结合分析. 学.科.网【例9】已知函数关于的方程,有不同的实数解,则的取值范围是( )A. B.C. D.【解析】【点评】本题考查了类二次方程实数根的相关问题,以及数形结合思想方法的体现,这种嵌入式的方程形式也是高考考查的热点,这种嵌入式的方程首先从二次方程的实数根入手,一般因式分解后都能求实根,得到和,然后再根据导数判断函数的单调性和极值等性质,画出函数的图象,若直线和函数的交点个数得到参数的取值范围.【检测9】已知函数()()1114{(1)x x f x lnx x +≤=>,则方程()f x ax =恰有两个不同的实根时,实数a 的取值范围是( )(注: e 为自然对数的底数)A. 10,e ⎛⎫ ⎪⎝⎭B. 10,4⎛⎫ ⎪⎝⎭C. 11,4e ⎡⎫⎪⎢⎣⎭D. 1,e 4⎡⎫⎪⎢⎣⎭高中数学常见题型解法归纳及反馈检测第15讲:分段函数中常见题型解法参考答案【反馈检测1答案】(Ⅰ)11t -<<(Ⅱ)()222,011,112,1m m m m m m m m ϕ⎧-+<≤⎪⎪=<≤+⎨⎪->⎪⎩方法二:不等式恒成立等价于恒成立 .即等价于对一切恒成立,即恒成立,得恒成立, 当时,,,因此,实数t 的取值范围是11t -<<.【反馈检测2答案】或1【反馈检测2详细解析】当时,,则,即 ;当时,,则,即。

高三数学分段函数抽象函数与复合函数试题答案及解析

高三数学分段函数抽象函数与复合函数试题答案及解析

高三数学分段函数抽象函数与复合函数试题答案及解析1.已知函数f(x)=若f(a)=a,则实数a=________.【答案】或-1【解析】若a≥0,则1-a=a,得a=;若a<0,则=a,得a=-1.2.设(Ⅰ)当,解不等式;(Ⅱ)当时,若,使得不等式成立,求实数的取值范围.【答案】(1);(2).【解析】本题考查绝对值不等式的解法和不等式恒成立问题,考查转化思想和分类讨论思想.第一问,先将代入,解绝对值不等式;第二问,先将代入,得出解析式,将已知条件转化为求最小值问题,将去绝对值转化为分段函数,通过函数图像,求出最小值,所以,再解不等式即可.试题解析:(I)时原不等式等价于即,所以解集为. 5分(II)当时,,令,由图像知:当时,取得最小值,由题意知:,所以实数的取值范围为. 10分【考点】1.解绝对值不等式;2.分段函数图像;3.存在性问题的解法.3.函数,则_______________.【答案】【解析】.【考点】分段函数的解析式4.已知函数若存在,当时,,则的取值范围是()A.B.C.D.【答案】D【解析】作出函数的图象如图所示,由图可知:.选.【考点】1、分段函数;2、不等关系.5.已知函数,那么 .【答案】【解析】.【考点】分段函数.6.已知函数,则 .【答案】【解析】依题意,,所以.【考点】分段函数7.已知函数则的值是 .【答案】【解析】,.【考点】分段函数求值.8.已知函数,则满足方程的所有的的值为 .【答案】0或3【解析】当时,,解得;当时,,解得.综上.【考点】1.分段函数;2.指数、对数函数的求值9.设,则等于()A.B.C.D.【答案】B【解析】∵,∴.【考点】1、分段函数;2、指数、对数运算.10.若函数,则()A.B.1C.D.3【答案】A【解析】,,选A.【考点】分段函数的求值.11.已知函数满足对任意实数都有成立,且当时,,.(1)求的值;(2)判断在上的单调性,并证明;(3)若对于任意给定的正实数,总能找到一个正实数,使得当时,,则称函数在处连续。

分段函数的几种常见题型及解法好

分段函数的几种常见题型及解法好

分段函数的几种常见题型及解法分段函数是指自变量在两个或两个以上不同的范围内, 有不同的对应法则的函数, 它是一个函数, 却又常常被学生误认为是几个函数; 它的定义域是各段函数定义域的并集, 其值域也是各段函数值域的并集. 由于它在理解和掌握函数的定义、函数的性质等知识的程度的考察上有较好的作用, 时常在高考试题中“闪亮”登场, 笔者就几种具体的题型做了一些思考, 解析如下:1.求分段函数的定义域和值域例1.求函数122[1,0];()(0,2);3[2,);x x f x xx x +∈-⎧⎪=-∈⎨⎪∈+∞⎩的定义域、值域.【解析】作图, 利用“数形结合”易知()f x 的定义域为[1,)-+∞, 值域为(1,3]-.2.求分段函数的函数值例2.(05年浙江理)已知函数2|1|2,(||1)()1,(||1)1x x f x x x--≤⎧⎪=⎨>⎪+⎩求1[()]f f . 【解析】因为311222()|1|2f =--=-, 所以312223214[()]()1()13f f f =-==+-.3.求分段函数的最值例3.求函数43(0)()3(01)5(1)x x f x x x x x +≤⎧⎪=+<≤⎨⎪-+>⎩的最大值.【解析】当0x ≤时, max ()(0)3f x f ==, 当01x <≤时, max ()(1)4f x f ==,当1x >时, 5154x -+<-+=, 综上有max ()4f x =.4.求分段函数的解析式例4.在同一平面直角坐标系中, 函数()y f x =和()y g x =的图象关于直线y x =对称, 现将()y g x =的图象沿x 轴向左平移2个单位, 再沿y 轴向上平移1个单位, 所得的图象是由两条线段组成的折线(如图所示), 则函数()f x 的表达式为( )222(10).()2(02)xx x A f x x +-≤≤⎧=⎨+<≤⎩ 22(10).()2(02)xx x B f x x --≤≤⎧=⎨-<≤⎩ 222(12).()1(24)xx x C f x x -≤≤⎧=⎨+<≤⎩ 226(12).()3(24)xx x D f x x -≤≤⎧=⎨-<≤⎩ 【解析】当[2,0]x ∈-时, 11y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式为1122(2)111y x x =-+-=-, 所以()22([f x x x =+∈-, 当[0,1]x ∈时, 21y x =+, 将其图象沿x 轴向右平移2个单位, 再沿y 轴向下平移1个单位, 得解析式2(2)1124y x x =-+-=-, 所以12()2([0,2])f x x x =+∈, 综上可得222(10)()2(02)xx x f x x +-≤≤⎧=⎨+<≤⎩, 故选A .5.作分段函数的图像 例5.函数|ln ||1|x y ex =--的图像大致是( )yxACD6.判断分段函数的奇偶性例7.判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性.【解析】当0x >时, 0x -<, 22()()(1)(1)()f x x x x x f x -=---+=-=, 当0x =时,(0)(0)0f f -==, 当0x <, 0x ->, 22()()(1)(1)()f x x x x x f x -=---=-+=因此, 对于任意x R ∈都有()()f x f x -=, 所以()f x 为偶函数.7.判断分段函数的单调性例8.判断函数32(0)()(0)x x x f x x x ⎧+≥⎪=⎨-<⎪⎩的单调性.【解析】显然()f x 连续. 当0x ≥时, '2()311f x x =+≥恒成立, 所以()f x 是单调递增函数, 当0x <时, '()20f x x =->恒成立, ()f x 也是单调递增函数, 所以()f x 在R上是单调递增函数; 或画图易知()f x 在R 上是单调递增函数.例9.写出函数()|12||2|f x x x =++-的单调减区间.【解析】121231()()3(2)31(2)x x f x x x x x -+≤-⎧⎪=+-<<⎨⎪-≥⎩, 画图易知单调减区间为1(,]-∞-.8.解分段函数的方程例10.(01年上海)设函数812(,1]()log (1,)x x f x x x -⎧∈-∞=⎨∈+∞⎩, 则满足方程1()4f x =的x 的值为【解析】 若142x -=, 则222x--=, 得2(,1]x =∉-∞, 所以2x =(舍去), 若1814log x =, 则1481x =, 解得3(1,)x =∈+∞, 所以3x =即为所求.9.解分段函数的不等式例11.设函数1221(0)()(0)x x f x xx -⎧-≤⎪=⎨⎪>⎩, 若0()1f x >, 则0x 得取值范围是( ).(1,1)A - .(1,)B -+∞ .(,2)(0,)C -∞-⋃+∞ .(,1)(1,)D -∞-⋃+∞【解析1】首先画出()y f x =和1y =的大致图像, 易知0()1f x >时, 所对应的0x 的取值范围是(,1)(1,)-∞-⋃+∞.【解析2】因为0()1f x >, 当00x ≤时, 0211x -->, 解得01x <-, 当00x >时,xxy1201x >, 解得01x >, 综上0x 的取值范围是(,1)(1,)-∞-⋃+∞. 故选D.例12.设函数2(1)(1)()4(1)x x f x x ⎧+<⎪=⎨-≥⎪⎩, 则使得()1f x ≥的自变量x 的取值范围为( )A .(,2][0,10]-∞-⋃ B. (,2][0,1]-∞-⋃ C. (,2][1,10]-∞-⋃ D. [2,0][1,10]-⋃ 【解析】当1x <时, 2()1(1)120f x x x x ≥⇔+≥⇔≤-≥或, 所以21x x ≤-≤<或0, 当1x ≥时, ()141310f x x ≥⇔⇔⇔≤, 所以110x ≤≤, 综上所述, 2x ≤-或010x ≤≤, 故选A 项.【点评:】以上分段函数性质的考查中, 不难得到一种解题的重要途径, 若能画出其大致图像, 定义域、值域、最值、单调性、奇偶性等问题就会迎刃而解, 方程、不等式等可用数形结合思想、等价转化思想、分类讨论思想及函数思想来解, 使问题得到大大简化, 效果明显.。

高中数学数学干货|经典分段函数专题

高中数学数学干货|经典分段函数专题

高中数学数学干货|经典分段函数专题在高中数学中,分段函数是一个非常重要且常见的概念。

它由多个线性函数组成,每个函数在不同的区间上定义。

在本文中,我们将深入探讨分段函数的相关知识,并介绍一些经典的分段函数题目和解法。

1. 什么是分段函数?分段函数是由若干段不同的线性函数组成的函数。

它通常采用以下的形式表示:\[f(x) = \begin{cases}f_1(x), & x \in D_1\\f_2(x), & x \in D_2\\\cdots\\f_n(x), & x \in D_n\end{cases}\]其中,$f_i(x)$表示第$i$段线性函数,$D_i$表示第$i$段函数的定义域。

2. 分段函数的分类根据不同的特性和形式,分段函数可以分为以下几种类型:2.1 分段常值函数分段常值函数是由多个常值函数组成的函数。

在不同的区间内,函数的取值是不同的常数。

例如,考虑以下分段函数:\[f(x) = \begin{cases}1, & x < 0\\ 2, & x \geq 0\end{cases}\]在$x < 0$的区间内,函数的取值为1;在$x \geq 0$的区间内,函数的取值为2。

2.2 分段线性函数分段线性函数是由多个线性函数组成的函数。

在不同的区间内,函数的斜率和截距可能是不同的。

例如,考虑以下分段函数:\[f(x) = \begin{cases}2x, & x < 0\\ x^2, & x \geq 0\end{cases}\]在$x < 0$的区间内,函数的斜率为2;在$x \geq 0$的区间内,函数的斜率为$x$。

3. 经典分段函数题目与解法接下来,我们将介绍一些经典的分段函数题目,并给出相应的解法。

3.1 题目一已知函数$f(x)$满足以下条件:\[f(x) = \begin{cases}x+1, & x < 1\\ 2x, & x \geq 1\end{cases}\]求解方程$f(x) = 3$的解。

高三数学分段函数抽象函数与复合函数试题答案及解析

高三数学分段函数抽象函数与复合函数试题答案及解析

高三数学分段函数抽象函数与复合函数试题答案及解析1.设函数,若,则 .【答案】【解析】若,则,所以,无解;若,则,所以,解得.故.【考点】分段函数,复合函数,容易题.2.若函数则____________.【答案】.【解析】由已知得.【考点】求分段函数的值.3.设,则满足的的值为()A.2B.3C.2或3D.【答案】C.【解析】由题意或.【考点】分段函数.4.已知函数,则的值是 .【答案】【解析】,.【考点】分段函数求值.5.已知函数则函数的零点个数()A.2B.3C.4D.5【答案】C【解析】由得:.由得:.所以;此时,每一段都是单调递增的,且,,.由此可作出其简图如下图所示(实线部分):由图可知,该函数有4个零点.【考点】1、分段函数;2、函数的零点.6.已知函数若存在,当时,,则的取值范围是 .【答案】【解析】作出函数的图象如图所示,由图可知:.选.【考点】1、分段函数;2、不等关系.7.设,则等于()A.B.C.D.【答案】B【解析】∵,∴.【考点】1、分段函数;2、指数、对数运算.8.已知定义在R上的函数满足,,且在区间上是减函数.若方程在区间上有四个不同的根,则这四根之和为()A.±4B.±8C.±6D.±2【答案】B【解析】由知,为奇函数,所以.由得,所以的周期为8.又由及得:,所以的图象关于直线对称.又在区间上是减函数,由此可得在一个周期上的大致图象:向左右扩展得:由于方程在区间上有四个不同的根,由上图可知,要么是,要么是,所以四个根之和要么为-8,要么为8.选B.【考点】1、抽象函数的奇偶性和周期性单调性及图象;2、方程的根.9.若函数,则()A.B.1C.D.3【答案】A【解析】,,选A.【考点】分段函数的求值.10.已知函数的定义域为,则函数的定义域是()A.[1,2]B.[0,4]C.(0,4]D.[,4]【答案】D【解析】依题意,得,即,故 .【考点】1.抽象函数的定义域;2.不等式的解法.11.已知函数有三个不同的零点,则实数的取值范围是_____.【答案】【解析】分段函数零点的判定,常借助于函数图像与轴的位置来确定.函数是由函数的图像上下平移得到,当,时,函数有一个零点;函数的图像是一条开口向上的抛物线,当,,即时,有两个零点;因此,满足题设的实数的取值范围是.【考点】分段函数指数函数二次函数的图像与性质函数零点的判定12.已知实数,函数,若,则的值为 .【答案】【解析】时,,解之得(舍);时,,解之得.本题易忽略分类讨论,直接由得,从而造成错误.【考点】考查分段函数,方程的解法及分类讨论思想.13.已知实数,函数,若,则的值为 .【答案】【解析】时,,解之得(舍);时,,解之得.本题易忽略分类讨论,直接由得,从而造成错误.【考点】考查分段函数,方程的解法及分类讨论思想.14.函数的图象与函数的图象的公共点个数是个【答案】2【解析】做出函数和的图象如图,显然有2个公共点.【考点】1.分段函数的图象;2.对数函数图象的变换.15.已知则的值等于.【答案】【解析】由题意知.【考点】分段函数16.设函数,则满足的的取值范围是__________.【答案】【解析】当时,由得,解得,所以不等式在区间上的解集为;当时,由得,解得,所以不等式在区间上的解集为,综上所述,满足的的取值范围是.【考点】分段函数、对数函数17.已知函数若,则等于.【答案】或【解析】令,满足,当,满足所以等于或【考点】分段函数点评:分段函数由函数值求自变量时需在各段内分别求x的值,求出后注意验证各段的x的范围是否满足18.已知函数,(,且),若数列满足,且是递增数列,则实数的取值范围是()A.B.C.D.【答案】C【解析】因为,函数,(,且),且数列满足,且是递增数列,所以,=在(1,+∞),是增函数.由复合函数的单调性,在(,+∞)是增函数,所以,a>1,且,解得,,故选C。

  1. 1、下载文档前请自行甄别文档内容的完整性,平台不提供额外的编辑、内容补充、找答案等附加服务。
  2. 2、"仅部分预览"的文档,不可在线预览部分如存在完整性等问题,可反馈申请退款(可完整预览的文档不适用该条件!)。
  3. 3、如文档侵犯您的权益,请联系客服反馈,我们会尽快为您处理(人工客服工作时间:9:00-18:30)。

2.11分段函数与绝对值函数——随着高考命题思维量的加大,分段函数成了新的热点和亮点,单设专题,以明析强化之一、明确复习目标了解分段函数的有关概念;掌握分段函数问题的处理方法二.建构知识网络1.分段函数:定义域中各段的x 与y 的对应法则不同,函数式是分两段或几段给出的. 分段函数是一个函数,定义域、值域都是各段的并集。

2.绝对值函数去掉绝对符号后就是分段函数.3.分段函数中的问题一般是求解析式、反函数、值域或最值,讨论奇偶性单调性等。

4.分段函数的处理方法:分段函数分段研究.三、双基题目练练手1.设函数f (x )=⎪⎩⎪⎨⎧≥--<+,114,1)1(2x x x x 则使得f (x )≥1的x 的取值范围为 ( )A.(-∞,-2]∪[0,10]B.(-∞,-2]∪[0,1]C.(-∞,-2]∪[1,10]D.[-2,0]∪[1,10] 2.(2006安徽)函数22,0,0x x y x x ≥⎧=⎨-<⎩的反函数是 ( ) A .,02,0xx y x x ⎧≥⎪=⎨⎪-<⎩ B .2,0,0x x y x x ≥⎧⎪=⎨-<⎪⎩C .,02,0xx y x x ⎧≥⎪=⎨⎪--<⎩D .2,0,0x x y x x ≥⎧⎪=⎨--<⎪⎩3.(2007启东质检)已知21[1,0)()1[0,1]x x f x x x +∈-⎧=⎨+∈⎩,,,则下列函数图象错误..的是( )4.(2006全国Ⅱ)函数191()n f x x n ==-∑的最小值为 ( )(A )190 (B )171 (C )90 (D )455.(2005北京市西城模拟)已知函数f (x )=⎩⎨⎧<-≥-),2(2),2(2x x x 则f (lg30-lg3)=___________;不等式xf (x -1)<10的解集是_______________.6. (2006浙江)对R b a ∈,,记则{}⎩⎨⎧≥=b a b ba ab a <,,,max 则函数(){}()R x x x x f ∈-+=2,1max 的最小值是 .7.已知函数132(0)()(01)log (1)xx f x x x x ⎧<=≤≤>⎪⎩,当a <0时,f {f [f (a )]}=8.函数221(0)()(0)x x f x x x ⎧+≥⎪=⎨-<⎪⎩的值域 。

简答:1-4.ACDC;4.x=10时,取最小值90.f(x)=|x-1|+|x-2|+…+|x-19| =|x-1|+…+|x-10|+|11-x|+…+|19-x| ≥|x-1+x-2+…x-9+11-x+…19-x|+|x-10| ≥|90|+0=90, 当x=10时取等号.一般地:…5. f (lg30-lg3)=f (lg10)=f (1)=-2,f (x -1)=⎩⎨⎧<-≥-.32,33x x x 当x ≥3时,x (x -3)<10⇔-2<x <5,故3≤x <5.当x <3时,-2x <10⇔x >-5,故-5<x <3.解集 {x |-5<x <5} 6. 由()()21212122≥⇒-≥+⇒-≥+x x x x x , ()112122x x f x x x ⎧⎛⎫+≥ ⎪⎪⎪⎝⎭=⎨⎛⎫⎪-< ⎪⎪⎝⎭⎩如右图()min 1322f x f ⎛⎫== ⎪⎝⎭7.12-;8. 当x ≥0时,x 2+1≥1;当x<0时,-x 2<0原函数值域是[1,+∞]∪(-∞,0)。

四、经典例题做一做【例1】设定义在N 上的函数f (x )满足f (n )=⎩⎨⎧-+)]18([13n f f n ),2000(),2000(>≤n n 求f (2002).解:∵2002>2000,∴f (2002)=f [f (2002-18)]=f [f (1984)]=f [1984+13]=f (1997)=1997+13=2010. 感悟方法 求值时代入哪个解析式,一定要看清自变量的取值在哪一段上.【例2】判断函数22(1)(0)()(1)(0)x x x f x x x x ⎧-≥⎪=⎨-+<⎪⎩的奇偶性。

解:当x>0时,-x<0, f(-x)= -(-x)2(-x+1)=x 2(x -1)=f(x);当x=0时,f(-0)=f(0)=0;当x<0时,f(-x)=( -x)2(-x -1)= -x 2(x+1)=f(x)。

因此,对任意x ∈R 都有f(-x)=f(x),所以函数f(x)为偶函数。

提炼方法::分段函数的奇偶性必须对x 的值分类比较f(-x)与f(x)的关系,得出f(x)是否是奇偶函数的结论。

【例3】(2007启东质检)已知函数1()|1|f x x=-,(0)x > (1)当0,()()a b f a f b <<=且时,求证:1ab >;(2)是否存在实数,()a b a b <,使得函数()y f x =的定义域、值域都是[,]a b ,若存在,则求出,a b 的值,若不存在,请说明理由;(3)若存在实数,()a b a b <,使得函数()y f x =的定义域为[,]a b 时,值域为[,](0)ma mb m ≠,求m 的取值范围.解:(1)∵0x >,∴11,1,()11,0 1.x xf x x x⎧-≥⎪⎪=⎨⎪-<<⎪⎩∴)(x f 在(0,1)上为减函数,在(1,+∞)上是增函数. 由0,()()a b f a f b <<=且,可得01a b <<<, 所以有1111a b -=-,即112a b+=.∴2ab a b =+>1>,即1ab >(2)不存在满足条件的实数,a b .若存在满足条件的实数,a b ,使得函数1()|1|y f x x==-的定义域、值域都是[,a b ],则0a >.由11,1,()11,0 1.x xf x x x⎧-≥⎪⎪=⎨⎪-<<⎪⎩①当,a b ∈(0,1)时,1()1f x x=-在(0,1)上为减函数. 故(),().f a b f b a =⎧⎨=⎩,即11,11.b aa b⎧-=⎪⎪⎨⎪-=⎪⎩,解得a b =. 故此时不存在适合条件的实数,a b .②当,a b ∈[)1,+∞时,1()1f x x =-在(1,+∞)上为增函数.故(),().f a a f b b =⎧⎨=⎩,即11,11.a a b b⎧-=⎪⎪⎨⎪-=⎪⎩此时,a b 是方程210x x -+=的根,由于此方程无实根. 故此时不存在适合条件的实数,a b .③当a ∈(0,1),[)1,b ∈+∞时,由于1∈[,a b ],而[](1)0,f a b =∉,故此时不存在适合条件的实数,a b .综上可知,不存在适合条件的实数,a b .(3)若存在实数,()a b a b <,使得函数()y f x =的定义域为[,a b ]时,值域为[,]ma mb ,则0,0a m >>.①当,a b ∈(0,1)时,由于()f x 在(0,1)上是减函数,值域为[,]ma mb ,即11,11.mb a ma b⎧-=⎪⎪⎨⎪-=⎪⎩ 解得a =b>0,不合题意,所以,a b 不存在.②当(0,1)(1,)a b ∈∈+∞或时,由(2)知0在值域内,值域不可能是[,]ma mb ,所以,a b 不存在.故只有[),1,a b ∈+∞.∵|11|)(x x f -=在(1,+∞)上是增函数,∴(),().f a ma f b mb =⎧⎨=⎩,即11,11.ma a mb b⎧-=⎪⎪⎨⎪-=⎪⎩,a b 是方程210mx x -+=有两个根.即关于x 的方程210mx x -+=有两个大于1的实根. 设这两个根为12,x x .则121211,x x x x m m+=⋅= ∴12120,(1)(1)0,(1)(1)0.x x x x ∆>⎧⎪-+->⎨⎪-->⎩即140,120.m m ->⎧⎪⎨->⎪⎩解得104m <<. 综上m 的取值范围是104m <<. 【例4】设a 为实数,设函数x x x a x f -+++-=111)(2的最大值为g (a )。

(Ⅰ)设t =x x -++11,求t 的取值范围,并把f (x )表示为t 的函数m (t ); (Ⅱ)求g (a );解:(I )∵t=x +1+x -1,∴要使t 有意义,必须1+x ≥0且1-x ≥0,即-1≤x ≤1. ∵t 2=2+221x -∈[2,4],t ≥0, ①∴t 的取值范围是[2,2].由①得21x -=21t 2-1, ∴m(t)=a(21t 2-1)+t=21at 2+t-a,t ∈[2,2].(Ⅱ)由题意知g(a)即为函数m (t )=21at 2+t-a, t ∈[2,2]的最大值.注意到直线t=-a 1是抛物线m(t)= 21at 2+t-a 的对称轴,分以下几种情况讨论.(1)当a>0时,函数y=m(t), t ∈[2,2]的图像是开口向上的抛物线的一段,由t=-a1<0知m(t)在[2,2]上单调递增, ∴g(a)=m(2)=a+2.(2)当a=0时,m(t)=t,t ∈[2,2], ∴g(a)=2.(3)当a<0时,函数y=m(t), t ∈[2,2]的图像是开口向下的抛物线的一段.若t=-a1∈(0,2],即a ≤-22,则g(a)=m(2)=2. 若t=-a 1∈(2,2],即a ∈(-22,-21]则g(a)=m(-a 1)=-a-a21.若t=-a 1∈(2,+ ∞),即a ∈(-21,0),则g(a)=m(2)=a+2. 综上有g(a)=12, ,2121, ,22222, .a a a a a a ⎧+>-⎪⎪⎪---<≤-⎨⎪⎪≤-⎪⎩核心步骤:(1) m(t)=a(21t 2-1)+t=21at 2+t-a,t ∈[2,2]. (2)求g(a)=[m(t)]max ,按对称轴相对于区间[2,2]的位置,对a 分类分类讨论. 【研讨.欣赏】(2000全国)某蔬菜基地种植西红柿,由历年市场行情得知,从二月一日起的300天内,西红柿市场售价与上市时间的关系用图一的一条折线表示;西红柿的种植成本与上市时间的关系用图二的抛物线段表示.(Ⅰ) 写出图一表示的市场售价与时间的函数关系式P =()t f ; 写出图二表示的种植成本与时间的函数关系式Q =()t g ;(Ⅱ) 认定市场售价减去种植成本为纯收益,问何时上市的西红柿收益最大?(注:市场售价和种植成本的单位:元/210kg ,时间单位:天) 解:(Ⅰ)由图一可得市场售价与时间的函数关系为 f (t )=⎩⎨⎧≤<-≤≤-;300200,3002,2000300t t t t ,由图二可得种植成本与时间的函数关系为 g (t )=2001(t -150)2+100,0≤t ≤300. (Ⅱ)设t 时刻的纯收益为h (t ),则由题意得 h (t )=f (t )-g (t )即h (t )=⎪⎪⎩⎪⎪⎨⎧≤<-+-≤≤++-3002002102527200120002175********t t t t t t ,,当0≤t ≤200时,配方整理得 h (t )=-2001(t -50)2+100, 所以,当t =50时,h (t )取得区间[0,200]上的最大值100; 当200<t ≤300时,配方整理得 h (t )=-2001(t -350)2+100 所以,当t =300时,h (t )取得区间[200,300]上的最大值87.5.综上,由100>87.5可知,h (t )在区间[0,300]上可以取得最大值100,此时t =50,即从二月一日开始的第50天时,上市的西红柿纯收益最大.思路点拨: 题(Ⅱ)分段写出收益与时间的函数关系h(t), 是分段函数,再分段求最值.五.提炼总结以为师1.分段函数、绝对值函数问题类型——2.分段函数的处理方法:分段函数分段研究;解题中务必看清自变量在哪一段,该代哪个解析式。

相关文档
最新文档